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ABSTUCT 

An analys ls  was done he transmission of a 
pressure signal through a small diameter ( C  0.14 a) 
f l u i d  transmission l ine.  The e f f e c t s  of t he  v iacos i ty  
and compressibil i ty of the  f l u i d ,  of t he  tubing s i ze ,  
and of the  temperature changes v i t h  t i m e  were inves t i -  
gated. 
considered. 
bulk modulus, the  propagation of t he  pressure 6 igna l  
vas characterized by a di f fus ion  equation with a source 
term. For l a rge  disturbances, compressibil i ty e f f e c t s  
become s ign i f i can t  and the  s igna l  propagation must be 
described by a wave equation v i t h  damping. A compari- 
.on was done between the  theo re t i ca l  model and experl- 
mental results v l t h  excellent agreement. 
led tubing could be described by t h e  mall disturbance 
equation. 
tubing was modelled with the  l a rge  disturbance equa- 
tion. 
vellhead da ta  can be inverted t o  g ive  t h e  actual dovn- 
ho le  pressure using a mlnimitatiog techntque. 

Both an oil and a nitrogen f i l l e d  tube e r e  
For a mall diaturbance, say 1% of the  

An o i l - f i b  

The pressure response of a nitrogen f i l l e d  

It is a l so  shown t h a t  f o r  t h e  former case, t h e  

W 
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monitored continuously during a test. 
requi res  a f l u i d  ( e i the r  gas o r  l iqu id)  t h a t  w i l l  not 
undergo a phase t r a n s i t i o n  a t  the pressures and temp- 
e r a tu re s  of i n t e r e s t ,  and tubing small enough i n  dia- 
meter so it can be e a s i l y  lowered dovnhole. However, 
any f l u i d  transmission l i n e  vi11 d i s t o r t  and delay 
t h e  downhole-pressure qignal. 
t i o n  depends on t h e  compressibil i ty and the  v i scos i ty  
of t he  f l u i d  and t h e  s igna l  shape i t s e l f .  
quency s igna l s  are attenuated more and have a g rea t e r  
phase lag than lower frequencies. A s i g n a l  wave form 
generated at one end of a f l u i d  f i l l e d  cap i l l a ry  tube 
w i l l  a r r i v e  as a different wave form a t  the  o the r  enc 
Also, any temperature changes i n  time along the  tube, 
create addi t iona l  pressure pulses which f u r t h e r  dis- 
t o r t  t h e  downhole.sIgna1. 
correctly these  e f f e c t s  must be.tmderstood. I n  some 
cases, i t  is poss ib l e ' t o  i nve r t  the  measured signal 
and obta in  t h e  actual downhole pressure changes as a 
function of time. 

The system 

The amount of d l s tor -  

High fre- 

To i n t e rp re t  t he  da ta  

i o n  of a transmitted s igna l  by a 
f l u i d  transmission l i n e  has been considered previous- 
19. Ibera112 looked at the  d i s to r t ion  of o s c i l l a t i n g  
pressure s igna l s  i n  instrument l i n e s  while o ther  
authors3-6 d e a l t  v i t h  the  response of a general  
pressure t r ans i en t  signal. Unfortunately, they have 
d e a l t  only with  small  disturbances and have not ln- 
cluded outs ide  temperature changes. A small  d i s tur -  
bance is approximated as a pressure change less than 
1% of the  bulk modulus, AP < 1% p(B/ap)T, assuring 
t h a t  changes i n  p a r e  small. Uhen a l iqu id  I s  used 
as the  f l u i d ,  pressure changes as l a rge  as 15MPa 
w i l l  qua l i fy , a s  a small disturbance because the  bulk 
modulus is so large.  On t he  other hand, when gas is 
used, t h e  pressure change must usually be less than l% 
of the  pressure t o  be considered a small disturbance. 
When the  pressure i n  t h e  tubing is about 1511Pa, a 
pressure change g rea t e r  than 0.1SEIPa must be analyzed 
as a l a rge  disturbance. Because the  gas requires a 
more de t a i l ed  so lu t ion ,  one might think it uvuld be 
easier t o  j u s t  use a l iqu id  such as o i l  in the tube. 
However, any temperature change8 i n  time along the  
tubing produce pressure pulses. 
arises with t h e  l i qu id  f i l l e d  l i n e  than the gas f i l l e d  
tubing because t h e  l i qu id  is less compressible. 
of the  f l u i d  types have drawbacks and f o r  a complete 
8MlySiS of t he  system, both of these problems must 

lbre d i s to r t ion  

Both 

be CQ-d. 
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To make be t t e r  use of the measured data.  it is 
of i n t e r e s t  t o  a l so  solve the  inverse problem. 1.e.. 
given the  measured pressure signal.  how does one ob- 
t a i n  the  ac tua l  downhole signal.  This paper reviews 
the  equations tha t  describe the  propagation of a small 
m d  of a l a rge  disturbance including t r ans i en t  temp- 
e ra ture  e f fec ts .  
numerically. and the so lu t ionr  have been comparrd 
with ape r imen ta l  values. 
type, t he  tubing diameter, and the  tubing length 
have also been considered. A l e a s t  squares midmi- 
ring technique reported i n  the  heat t r ans fe r  litera- 
tu re  has been used t o  inver t  the  da t a  f o r  t h e  small 
disturbance case. 
obtained between the  numerical and experimental re- 
6ults. 
delayed s igna ls  where damped o s c i l l a t i o n s  occur, good 
r e su l t s  were obtained f o r  the  inverse problem. 
unique so lu t ion  for  inverting da ta  i n  the  l a rge  dis- 
turbance case has not been determined t o  date. 

The equations have been solved 

The e f f e c t  of t he  f l u i a  

In general, exce l len t  agreement is 

Except f o r  cases with highly d i s to r t ed  and 

A 

DEFINING EQUATIONS 

One dimensional t rans ien t  flow is assumed. The 
equations used t o  describe t h e  flow are: 

continuity, $ + (pu) = 0 

md momentum, 
a 2 ap  1 f I ?  

(pl) + (pu ) + + pg + + - 0. (2) 

me cap i l l a ry  tube is so small in r e l a t i o n  t o  the  w e l l  
Ltself, i t  is assumed tha t  t he  temperature of the  
tubing instrument w i l l  be at the  same temperature as 
the brine surrounding it. In most cases every t i m e  
there is a flow r a t e  change i n  the  wellbore, t h e  tem-  
perature a t  any point in t h e  w e l l  w i l l  increase o r  de- 
crease imposing a temperature change along the  ins t ru-  
iaent. It is assuned tha t  there  is some knowledge of 
t h i s  temperature change v l t h  t i m e ,  e i t h e r  through mea- 
surement or  by the modelling of the  w e l l  flow. An 
Equation of s t a t e .  r e l a t ing  the  dens i ty  t o  pressure 
md temperature, completes the  set of equations. 

In the  momentum equation. t he  viscous term 
jeen expressed as a f r i c t i o n  f ac to r  times 112 pu ID. 
For laminar flow, f - 641Re. where R e  is t he  Reynolds 
surnber and is equal t o  puD/p. For turbulen t  flow I n  
i smooth tube the  f r i c t i o n  f ac to r  has been expressed 
ts 0.18 which is va l id  over t h e  range of 1760 
C Re < 107. 

as 9 

Below Re - 1760. t h e  flow is laminar. 

The tubing length is L with t h e  downhole chamber 
being a t  x - 0 while the  pressure gauge is a t  x - L. 
Lnitially,  t he  f lu id  is quiescent,  u(x.t - 0 )  - 0 ,  
md only a s t a t i c  p ro f i l e  e x i s t s  i n  the  tube, 

Po(x) - - j p o g d x  + Pr. The boundary conditions are: 

0 

u(L,t > 0)  - 0 

P ( 0 , t  > 0) or P a s t  0 )  is known, 

ind T ( X , t  2 0 )  is known. 

t t  is a l s o  assumed tha t  the b r ine l f lu id  in t e r f ace  i n  
the l a rge r  chamber downhole does not change s lgn i f i -  
:antly beeause of the la rge  d i f fe rence  i n  diameter be- 

tween t h e  cap i l l a ry  tube and the  chamber. 
e x i t s  o r  en te r s  t he  cap i l l a ry  tube. there  w i l l  be only 
a small change i n  the  in t e r f ace  insur ing  that t h e  pres 
su re  is being calculated a t  the  same point. 

When f l u i d  

The equations can be simplified and solved. 
F i r s t  t he  so lu t ion  f o r  the  small disturbance w i l l  be 
considered and then the  method f o r  a l a rge  disturbance 
v f l l  be presented. 

SI4ALL DISTURBANCE 

For a rmall disturbance, the  f l u i d  ve loc i ty  a s  
w e l l  as changes i n  t h e  f l u i d  dens i ty  are s m a l l .  Qua- 
t i o n  l reduces t o  

Because t h e  f l u i d  v e l o p t y  is small, laminar flow is 
4ssumed so t h a t  1/2fvu /D reduces t o  ( 8 l d R  )u. 
so lve  both Equations 2 and 3, the  der iva t ive  of Eq. 2 
is taken with respec t  t o  x and aulax I s  replaced 
using E q .  3. 
is used t o  relate t h e  dens i ty  changes t o  those of 
psessuse and temperature. 
a p l a t  are ignored. t h e  r e su l t an t  equation obtained 
is 

To 

The equation of state, dp -pB dT + pCeP 

I f  second order terms as 

The f i r s t  term on the  r.h.s. is j u s t  t he  d i f fu-  
s ion  of a pressure pulse down the  tube. 
term is 
t u r e  change i n  time, and the  last t e r m  is due t o  
changes i n  thq balance of g rav i ty  which is usually 
s m a l l .  For R / 8 y t =  constant, one has a l i n e a r  
d i f fus ion  equation with a source term. 
w i l l  be used t o  analyze a l i qu id  f i l l e d  transmission 
l ine .  

The second 
t h e  pressure pulse generated by a tempera- 

This equation 

LARGE DISTURBANCE 

For a gas f i l l e d  transmission l i n e ,  u and Ap a r e  
no longer necessar i ly  small and cannot be neglected. 
The so lu t ion  procedure is t o  combine t h e  cont inui ty  
equation and the  momentum pquation a s  i n  the  small d i s  
turbance case. 
r e su l t i ng  i n  a wave l i k e  equation with damping: 

The t e r m  aLplat2 cannot be neglected, 

The dens i ty  changes are again wr i t ten  as a function 
of pressure and temperature using the equation of 
state. Laminar flow cannot be assumed. The appro- 
p r i a t e  expression must be used f o r  f depending on 
whether t he  flow is turbulent o r  laminar. More de- 
t a i l s  of t he  der iva t ion  of these equations is given 
i n  Reference 7. 

The equations were solved numerically. The solu- 
t i o n  procedure is given i n  Reference 8. 
tests were set up t o  determine i f  the equations (4 
and 5 )  could be used t o  model the f lu id  transmission 
l i ne .  In one case, 1Oc.s o i l  was used as the  f l u i d  
and in the  second case, nitrogen was used. 
ment was t o  measure the  a r r iv ing  pressure signal f o r  
a s t ep  change i n  pressure a t  t he  other end. 

Experimental 

The exper i  

The c a p i l  

. 
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assumption is not r e a l l y  appropriate i n  a geothermal 
w e l l  but is of i n t e r e s t  t o  f i r s t  i nves t iga t e  t h e  iso- 
thermal'response and then consider t h e  e f f e c t  of tem- 
perature-and of tubing size.)- 
response 'for 10 cs s i l i c o n e  o i l  a t  180OC. 
a small delay before any signal is measured a t  wll- 
head'. The measured curve coincides with t h e  s i m u l r  
t e d  drawdown curve a f t e r  approximately 7 minutes* 
C U N e  (c) p l o t s  t h e  response using nitrogen l a  t h e  
tube and C U N ~  i d )  shows the  response f o r  t h e  10 cs 
o i l  'at '21% This l a s t  case is very slow, taking 
a t  least 30 minutes before the  wellhead and downhdle 
pressure would coincide. The l a r g e  change i n  response 
betveen curve (b) and curve (d) is because of the  
l a r g e  increase  i n  v i scos i ty  of t he  o i l  vhen t h e  t a p -  ' 
e ra tu re  decreases. 
the response is controlled by t h e  d i f fus iv i ty ,  R /8pct4 
As t he  v i scos i ty  increases,  t he  damping e f f e c t  i s  
increased because t h e  d i f fus ion  coe f f i c i en t  g e t s  
smaller. 
f i l l e d  tubing should not be used at low temperatures 
unless  t h e  tubing rad ius  is increased subs tan t ia l ly .  
Uowever, a s  t he  tubing radius increases , t h e  tubing 
cannot be handled very e a s i l y  and an e labora te  system ' 

is needed a t  wellhead f o r  i n s t a l l i n g  t h e  tubing. 
t h e  o i l  f i l l e d  tube and f o r  t he  constant temperature 
i n  time case, an  estlmate of the  t i m e  required f o r  
t h e  measured signal at w l l h e a d  t o  redlect a given 
downhqle pressure.drop is when t > 5L /4k where 

Curve (b) g ives  t h e  
There is 

' 

For t h e  o i l  f i l l e d  tubing, 

. 

From the  f igure ,  i t  is evident t h a t  t he  o i l  

For 

s used as the  pressure sensing 
medium, t h e  propagation of a pressure signal is a l s o  
very dependent on t h e  compressibil i ty of the  f lu id .  
Although the  v i scos i ty  becomes very small. t h e  com- 
p r e s s i b i l i t y  increases. 
flow I s  important and is dependent on the  compress- 
i b i l i t y .  The compressibil i ty,  though, is inverse ly  
proportional t o  the  pressure. As t he  pressure de- 
creases, the  response of t h e  instrument a l s o  decreases. 
For a given length of tubing, it I s  bes t  t o  measure 
t h e  pressure drop i n  the  w e l l ,  vhere t h e  pressure is  
highest ,  because t h e  time €or t h e  disturbance to  
through the  f i r e d  length  of  tubing w i l l  be  less. 
In Figure 3, t h e  pressure l e v e l  i n  the  tubing was 
r e l a t i v e l y  high, so t h a t  t he  response was almost as 
f.8t case o i l  at high temperatures. 

With t h i s  measuring instrument, t h e  very e a r l y  

Also, t he  wave na ture  of t he  

t i m e  da ta  of e i t h e r  t h e  pressure drawdown o r  buildup 
curve t s  due t o  t h e  measuring instrumentation and not 
t h e  w e l l  i t s e l f .  Figure 4 p l o t s  t he  s igna l s  obtained 
in t h e  isothermal case with a high temperature o i l  
f i l l e d  tube. Curves 1 and 2 show the  simulated draw- 
down curves, one v i t h  an e a r l y  t i m e  drop of 
-180 (1 - 
-180 (I  - e 4 5 b  1. The pressure signals t h a t  w u l d  
be measured at t h e  o ther  end are given by 1' and 2' 
respectively.  
curve I' and analyze it as a wellbore s torage  curve. 
Actually, t he  s l y e  of t h e  curve is not one to  one on 
t h e  log-log s c a l e  as one might expect. However, it 
can be shown9 tha t  in a geothermal w e l l ,  one should 
not expect a one-to-one p lo t  of ea r ly  t i m e  da ta  anyway 
because t h e  r e se tvo i r  can respond quickly and the  t i m e  
Ear a disturbance t o  propagate down the  well is  impor- 
tant. But although there  is almost an order of magni- 
tude difference i n  the  rate of the i n i t i a l  pressure 
drop between curves 1 and 2, t he  d i f fe rence  between 
curves l'and 2' is much smaller. The next s ec t ion  
6hOWS how the  wellhead measurement can be inverted 
t o  obta in  the  downhole s igna l  even i n  t h i s  s i t ua t ion .  

and the second with a change of 

One might t r y  t o  take t h e  response 

_ _  

la 
dfamettr of 0.0011 m. 
both ends, one with a Hewlett Packard gage and t h e  

ing was 2400 m i n  ' length and had an inner  
The pressure w a s  recorded a t  

a Sperry Sun gage. Eq. 4 was used to  
1 f i l l e d  tube, and Eq. 5 vas used t o  w d e l  

t h e  nitrogen f i l l e d  tube. Figure 2 shows the  compari- 
ran-between the  experiment and the  theo re t i ca l  model. 
One can s e e . t h a t  there is exce l len t  agreement. In t he  
one case v i t h  an o i l  f i l l e d  tube, t h e  i n i t i a l  pressure 
was 7.3IPa and a s tep  change of 3.4HPa vas imposed. 
In t h e  oecond case,  t he  i n i t i a l  pressure of t h e  nitro- 
gen vad 4.0lPa and a pressure .change o€ 3.2MPa vas 
imposed. 
used to model the  nitrogen case, t h e  ca lcu la ted  re- 
sponse.wuld have been too quick. 
experiment and the  ca lcu la t ions  are given i n  Refer- 
ence 7. 

SIGNAL RESPONSE 

I f  t h e  m a l l  disturbance equation had been 

More d e t a i l s  of the  

her equation 4 or 5 co 
t o  model a f l u i d  transmission l i ne ,  one can use these  
equations t o  determine the  response of t he  instrument 
Ln d i f f e ren t  circuustances. F i r s t ,  i n  a self-flowing 
l iqu id  f i l l e d  w e l l ,  t he  wellhead pressure measurement 
itself vould probably g ive  a b e t t e r  estimate of the  
downhole s igna l  than the  f l u i d  transmission l ine.  
ve l1  i t s e l f  is acting as a transmission l i n e  and the  
trictional losses  i n  t h e  vell would be far less than 
Ln t he  cap i l l a ry  tube. The l i qu id  f i l l e d  w e l l  can be 
modelled j u s t  as eas i ly  as the  f l u i d  f i l l e d  cap i l l a ry  
tube. 
the vellhead is usually flashed. Wellhead pressure 
measurements i n  t h i s  case are d i f f i c u l t  t o  analyze, 
requiring modelling of the  twophase flow conditions i n  
the well .  
Eriction f ac to r s  and s l i p  phenomena. 
Ire not  w e l l  known. For this s i tua t ion ,  t h e  f l u i d  
f i l l e d  c a p i l l a r y  tube can be modelled anre accurate1 
than t h e  vell flow i t se l f !  However, t o  i nve r t  the  
neasured pressure s igna l  a n d . t o  obta in  the  ac tua l  
downhole pressure, if is bes t  t o  use a f l u i d  traas- 
sission l i n e  t h a t  d i s t o r t s  t h e  signal t he  least amount. 
l o  understand t h e  e f f ec t  of f l u i d ,  temperat 
lu re  and tube site on t he  measured signal, 
necessary to loo  
typ ica l  rignal. 

The 

However, i n u a n y  geothermal vells, t h e  br ine  at 

Such a model depends on a knowledge of 
These e f f e c t s  

To mimulate a typ ica l  d r  
t i an  - 

uas 
la1 pressure,  t h e  aecond term simulates a drop i n  
pressure due t o  vellbore rtorage,  and t h e  t h i r d  term 
iproximates the  s t r a i g h t  l i n e  semilog p l o t  t h a t  re- 
iu l ta  at later times and is ind ica t ive  of t he  reser- 
voir i t s e l f  - A  very mall wellbore s torage  'constant - 
tas approximated because rapid changes i n  pressure are 
i i s to r t ed  s igni f icant  

Figure 3 i l l u s t r  

The f i r o t - t e r m  i n  the  equation is the  init- 

Jhich simulates the  pressure a t  the  vell  bottom and 
the response t h a t  would be measured at t h e  sur face  
asing the  cap i l l a ry  tubing with d i f f e r e n t  f lu ids .  For 
these ca lcu la t ions ,  it ms assumed t h a t  t he  tempera- 
ture of the  instrument did not change i n  time and tha t  
the diameter of t he  tubing was 0.0014 m. (The former 
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From the  in i t ia l  conparison it seemed as i f  the 
high temperature oil gave t h e  bes t  response. However. 
t h e  response w a s  calculated with no change of tempera- 
ture with time along the tubing. 
assumption is not realistic i n  a geothemal  f ie ld .  
Because t h e  oil is almost incompressible, any increa- 
ses in t q p e r a t u r e  at a point are manifested a8 l a r g e  
increases  in pressure- The pressure signal generated 
ia (8/ct)aT/ate 
though the  downhole pressure is dropping a t  one end, 
the Masured surface s igna l  may a c t u a l l y  increase i n  
e a r l y  times. This case has been observed in f i e l d  
data.10 To a l l e v i a t e  this problem, t h e  w e l l  is flowed 
unt i l  the change i n  temperature with t i m e  14 le58 than 
say, IoC over 1 hour. Then, t h e  flow rate is changed. 
Even i n  these  circumstances, small temperature changes 
stfll take place i n  t h e  w e l l  because of changes in 
the heat loss out  of the w e l l  and because of changes 
i n  t h e  f l a s h  point  level. To i n v e s t i g a t e  t h i s  temp- 
e r a t u r e  e f f e c t ,  a change in temperature in t h e  vell 
was approximated as 

As s t a t e d ,  t h i s  

Thia s i t u a t i o n  oeans t h a t  even 

A t  time t - 0, t h e  temperature p r o f i l e  along the well-  
bore ia (181 - 0.0054x)OC. The temperature at well-  
head is 165OC. After the flow rate change, the 
temperature a t  wellhead is 168%. The average temp- 
e ra ture  change Over the length of the  w e l l  is only 
1.5%. 
in t h e  Peasured surface pressures  using a Capillary 
tube system. Figure 5 14 8 p l o t  of t h e  pressure re- 
mpoose when t h e  
Curve (a) is again the s b u l a t e d  drawdown, curve (b) 
is t h e  response f o r  the  10 cs o i l  at 18WC, and curve 
(c) is the  response f o r  t h e  o i l  when the temperature 
changes according t o  the  above equation. 
response increases and then slowly decreases. 
this r e l a t i v e l y  small AT change i n  time, t h e  measured 
i i g u a l  now takes alnosr 10-15 minutes t o  approach the 
sirmulated drawdown curve ins tead  of j u s t  5-7 minutes. 
Koreover, there  is i n i t i a l l y  a pressure increase when 
the actual downhole pressure is decreasing. 
nitrogen is used with this small temperature change, 
the response is almost Ident ica l  t o  curve (c) assuming 
mn average pressure oflSMPa i n  the-tube- For the  iso- 
thermal case, t h e  o i l  responds f a s t e r  than t h e  ni t ro-  
gen. However, when there  is a small temperature 
change with time, a nuch l a r g e r  pulse is imposed on 
the  oil f i l l e d  tube than with t h e  ni t rogen f i l l e d  
tube f o r  the  same aT/a t .  
approximate the  d o w h i l e  pressure w i l l  be about the 
same f o r  t h e  oil o r  nitrogen f i l l e d  transmission 
Line i n  this case. 
response Vi11 became more d i s t o r t e d  than the nitrogen. 

Because t h e  mall tubing diameter has  such a 
large e f f e c t  .on t h e  signal, t h e  pressure response was 
analyzed f o r  d i f f e r e n t  s izes .  Figure 6 p l o t s  the  pres- 
Bure response f o r  the  nitrogen f i i l e d  tube with an 
average temperature change of 1.5 C and f o r  t h r e e  dif- 
ferent reasonably s ized c a p i l l a r y  tubes: 0.27 cm, 
D.14 cm, and 0.066 cm i n  inner  diameter. One sees 
that  t h e  smallest s ized tubing produced a very l a r g e  
l i s t o r t i o n  even i n  the nitrogen case. The l a r g e r  
i ized tubing produced much b e t t e r  results; i.e., t h e  
response t ime  was only about 4 lldnutes i n s t e a d  of 
b o u t  10 lldnuEes even with t h e  average temperature 
:hange of  1.5 C. 

This s m a l l  change will  produce a l a r g e  change 

wellbore temperature changes i n  time. 

The pressure 
For 

Uhen 

The t i m e  f o r  t h e  s i g n a l  t o  

For a l a r g e r  aT/at, t h e  o i l  

Looking a t  t h e  tubing response it w u l d  seem 
t h a t  when choosing a f l u i d  pressure transmission , 

system the  following recomendations can be made t o  
minimize t h e  amount of signal dis tor t ion :  

(1) c a p i l l a r y  tubing of 0.066 c m  is too small 
to be used at al l ;  
(2) i f  the  temperature is high (say 180°C) and 
the  change of temperature with time is negligible 
10 cs s i l i c o n e  o i l  gives  less d ie tora t ion  than 
nitrogen; 
(3) i f  t h e  temperature is low o r  changes i n  time 
and i f  the  average pressure i n  the tube is high, 
(say 1SfPa) ni t rogen is the best  f l u i d ;  and 

(4) at  low temperatures and low pressures ,  t h e  
system shouldn't be used- 

~ 

INVERSION OF WELLHEAD DATA 

Before choosing the  most appropriate  f l u i d  trans- 
mission system, i t  ir important t o  deternine i f  the 
wellhead data can be corrected,  Le., given t h e  mea- 
sured pressure response, can one inver t  t h i s  p r o f i l e  
t o  obtain t h e  pressure s igna l  tha t  caused it. 
case is usual ly  re fer red  t o  as the "inversion problem, 
A unique so lu t ion  is not necessar i ly  always possible.  
A t  present,  it has been possible  t o  ge t  reasonable 
so lu t ions  t o  t h i s  inversion problem f o r  the "small" 
disturbance equation. 
be inverted i n  most cases. However, t h e  inversion 
f o r  the  nitrogen f i l l e d  tube and r e s u l t a n t  "large" 
disturbances has not ye t  been determined. 
f o r  t h i s  d i f f i c u l t y  will be evident below. 

This 

The o i l  f i l l e d  tubing da ta  

The reason 

The small  dis turbance equation is  r e a l l y  j u s t  a 
d i f fus ion  equation with a source term. 
type of equation is important i n  heat conduction pro- 
blems. The so lu t ion  t o  the  inverse heat conduction 
problem has been considered previously. Exact solu- 
t ions  are ava i lab le  f o r  t h e  l i n e a r  caseell However, 
t h e  a a c t  so lu t ion  requires  a continuous pressure mea- 
surement i n  time. The inverse so lu t ion  is a conver- 
gent  series dependent on der iva t ives  of pressure with 
t i m e .  The more d i s t o r t e d  the s igna l  is, t h e  more 
higher order der iva t ives  are needed. Accurate mea- 
surement of these  der iva t ives  may not  be ava i lab le  
from point measurements. Another method of invert ing 
t h e  data  is the  nonlinear estimation technique used 
by Beck12. 
between the  calculated response of the system f o r  a 
given value of P or aP/ax at the  bottom of the wel l  
and the  measured response over some time in te rva l .  
The minimization is done with respect  t o  the boundaq 
condition t h a t  is guessed, Le., P o r  aP/ax. 
Because there  is a delay i n  t i m e  before changes down- 
hole  can be measured a t  wellhead, the  minimization is 
done over a number of "future times." The number of 
fu ture  tines depends on j u s t  how long t h e  delay is. I 
a s igna l  takes 10 s e c  t o  produce a measurable value at 
wellhead, then t h e  minimizat on t o  obtain the boundaq 
condition downhole at time t must be over t h e  in te i  
v a l  ta t o  + 10 sec. I f  the s igna l  takes longer I 
a r r i v e  a t  wellhead, t h e  minimization must be over more 
f u t u r e  t i m e s .  A d e t a i l e d  descr ipt ion of t h e  method ir 
avai lab le  i n  e i t h e r  Reference 12 o r  13, but  because t t  
method is of p a r t i c u l a r  I n t e r e s t ,  a very br ie f  descr i l  
t i o n  follows. 

. Define q as aP/ax. Now g i v e  P a t  wellhead, one 
m u s t  determine q downhole. Say q (E denotes the  t i m e  
level) is known. m e n  how is qb l  determined? The 
idea is t o  guess qL+l and denote the  guess as q!tl vi1 

This same 

The method is t o  minimize t h e  d i f fe rence  

#.+I 

'k 

. 

. 
b 
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* '  l'he Om are t h e  sensitivity coef f ic ien ts , '  ire. ,  i f  q 
b changed, how nuch do t h e  ca lcu la ted  values change. 
&e mum ia done from 1 - 1 t o  t where r gives t h e  
lumber of fu tu re  times. The small disturbance equa- 
:ion can be solved numerically given t h e  value of q. 

' The method was used t o  inve r t  t h e  simulated draw. 
lam data. 
ieasuremeats. The comparison of t he  iaver ted  solutior 
md the exact so lu t ioas  are given in Figureo 7-90 

' . I n  Figure (7a1, t h e  inversion method vas 
led f o r  a di f fus ion  coe t f i c i en t  of 40,000 m2/s 
:orresponaing t o  IO cs o i l  a t  180OC i n  a tube of 
r d i u s  0.14 cm. Nrst, the  measured d a t a  was obtained 
ly ying t he  simulated drawdown curve Equation 6 with 
Y t  5 replaced by e-t/50. Then, t h e  "measured" da ta  
'as inverted using the lPiaimization technique t o  
ibtain t h e  expected drawdowa curve. Because the  
Qual took about 8 aec t o  arrive at wellhead, t h e  
dnfmization vas wet 8 sec of fu tu re  time. One can 
ee that there  is e x c e l l m t  agreement.. However, as 
he  inversion method is used oa more and mre dis tor -  
ed curves, o sc i l l a t ions  appear. This problem is evi- 
ent in Figure (7b). Again, t he ' d i f fus ion  coefficient 
aa 4 0 , ~ o  Ip2/sec, but t h e  simulated drawdown curve 
as E q .  6 v i t h  the  term eWtI5, ' h i c h  creates a steepex 
ni t i .1  drop in t h e  pressureb -The simulated curve vaa 
sed to  ca l cu la t e  th'c "measured" values. These values 
ere then inverted t o  obta in  t h e  o r i g i n a l  disturbance. 
&ever. o s c i l l a t i o n s  start t o  appear because the  mea- 
ured values have a limited*accuracy. The more accu- 
ate t h e  values are; the  smaller the o s c i l l a t i o n s  wi l l  
ppear. Nevertheless, t he  o s c i l l a t i o n s  are symmetric 
bout t h e  ac tua l  solution and r ea l i z ing  t h i s  r e su l t ,  
he ac tua l  so lu t ion  could probably be obtained within 
easoaable accuracy. F i r s t  one i n v e r t s  t h e  measured 
a t a  and ge t s  t he  best  r e s u l t s  as possible.  
naring t h a t  t h e  ac tua l  so lu t ion  is not o sc i l l a to ry ,  
ne  ob ta ins  the  ac tua l  ro lu t ioa  by assuming t h e  
s c i l l a t i o n s  are symnetric about it. 
ssumed so lu t ion ,  one can r eca l cu la t e  t h e  expected 
alues and compare the calculated r e s u l t s  with the  
easured values 

It vas also used f o r  some experimental 

Then, 

Using t h i s  

Figure 8 i l l u s t r a t e s  an even more damped aad i 

i s to r t ed  case. I n  t h i s  f l gu re ,  t h e  d i f fus ion  coeffi- 
t en t  used vas 6000 n2/sec (2OoC oil), and the  simu- 
r ted  curve t o  generate the  da ta  vas Equation 6 but 
l t h  , 4 5 0  instead of e-t/5, The minimization now 
ad t o  be over 40 Bec because t h e  delay vas so much 
Dager. 
p e t r i c  about t he  ac tua l  drawdown s i g n a l  and do damp 
u t -  Again when inverting, one can estimate the  s o h -  
Lon as j u s t  the  average of the  osc i l l a t ions .  
his "guess" can be checked. 

The osc i l l a t ions  are l a rge r  but they a r e  

Then 

The only experimental da ta  t h a t  vas avai lab le  
aere the -ac tua l  pressure s i g a a l  t h a t  caused the  mea- 

sured valuea was Icnown, vas f o r  t h e  ease where 'a atel 
function vas imposed at one end of t he  tube and then 
the  pressure signal was measured a t  t h e  o ther  end.'- 
The measurements e r e  obtained at '2OoC M t h  10 cs oi: 
in a tubing 2400 meters la length. This s i t u a t i o n  11 
probably one of the'"worst cases". Figure 9 shows 
vhat 1s:calculated when t ry ing  to inve r t  t h e  data. 
kperf.nenta1 values were taken only every minute 
i k n  inver t ing  t h e  da ta ,  very larRe oscillations 
obtained, bu t  one can aee they are almost symmet 
about t h e  ac tua l  disturbanbe signal.  The ac tua l  
aignal vas a s t e p  jump'frqm 10.9MPa t o  14MPa. 
ca lcu la ted  s i g n a l  is j u s t  damped o s c i l l a t i o n s  about 
t h e  14MPa l ine .  
results are possible. 

The 

Even io t h i s  "worst case," reasonabl 

The inve t i fon  of t he  nitrogen da ta  la not q u i t e  
as s t r a i g h t  forward. The method used f o r  t he  iavers j  
of o i l  f i l l e d  tubing has been t o  guess a so lu t ion  aac 
minimize t h e  d i f fe rence  between the  ca lcu la ted  and 
measured value. Xowevcr, t h e  lar e disturbance equa- 

could be used f o r  t h e  aon-linear d i f fus ion  equation, 
bu t  a l l  h i s  examples were f o r  l i n e a r  problems. When 
t h e  coe f f i c i en t s  are a function of t i m e  and pos i t ion ,  
it is not obvious t h a t  t h i s  minimization technique l a  
applicable. For tvo d i f f e re ren t  guesses of the  pres- 
su re  change dowahole, one may ca l cu la t e  t h e  same 
pressure chaage at vellhead. 
no t  exist. 

t i on  is hlghly non-linear. Beck 15 s t a t e d  h i s  method 

A unique so lu t ion  may 

For a gas f i l l e d  tubing, t he  propagation of the  

As t h e  pressure i n  t h e  tubing decreases,  t h e  
pressure signal I s  inverse ly  proportional t o  the  pres 
sure. 
s i g a a l  propagation decreases. Say one guesses a pres 
su re  drop t h a t  is l a rge r  than t h e  ac tua l  change. Al- 
though t h e  change ia pressure is too la rge ,  t he  propa 
t i o n  of t h i s  s i g n a l  Is slaver than f o r  t he  ac tua l  s i g  
n a l  because t h e  pressure i n  t h e  tubing is lower. The 
ca lcu la ted  pressure change a t  wellhead f o r  t h i s  guess 
may be t h e  same as caused by t h e  ac tua l  dowahole pres 
su re  change. 
small, t h e  s i g n a l  is transmitted f a s t e r  than i n  the  
ac tua l  case, 
t h e  same. 
data have re su l t ed  i n  divergent sol\ttions. 

CONCLUSIONS 

If one guesses a pressure drop too 

and again the  calculated response is 
The attempts at inver t ing  t h e  a i t rogen  

A f l u i d  transmission l i n e  can be used t o  measure 

Aa the  v i scos i ty  
dovahole pressure changes i n  a vel1 wlth time, but 
the  system does ,d i s to r t  t he  signal.  
and the  compressibil i ty of t he  f l u i d  increases,  t h e  
d i s to r t ion  and delay of t he  transmitted s igna l  in- 
creases v i t h  high frequencies being damped more than 
low frequencies. For the  case when t h e  pressure 
rrlgnal can be c l a s s i f i e d  as a small disturbance, such 
as when o i l  is used as t he  transmitt ing f l u i d ,  t h e  
ueasured s igna l  w i l l  not show t h e  ex tea t  of a sharp 
pressure change u n t i l  t > t* where t* - 5L2/4k and 
k - l12/SuCt. Wen t h e  time changes of i n t e r e s t  are 
Dn the  saue order of magnitude or smaller than t h i s  
t*, such as i n  a two rate test, t he  amount of s igna l  
d i s to r t ion  must be considered. 
nal t o  propagate through the  cap i l l a ry  tube vi11 in- 
xease f o r  any t r ans i en t  temperature e f f e c t s  along 
the tubing, say even an  average change of 1/2OC over 
L couple of minutesc 
:tease i f  t he  pressure change of the f l u i d  becomes toc 
Large v i t h  respect t o  i t a  bulk modulus. 

The t h e  f o r  t h e  sig- 

,Also the t i m e  delay w i l l  ia- 

The o i l  f i l l e d  tube system looks a t t r a c t i v e  be- 
:.use the  measured da ta  can be corrected e a s i l y  t o  

. 1  
" .  
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obtain the actual damhole signal. 
temperature changes with time are n o t  known, the  in- 
version cannot be done. For l a r g e  temperature changea 
v i t h  t h e  vhere the r a t e  of change ia u n k n m ,  the 
n i t rogen  system may be b e t t e r  because it ia less af- 
fected by temperature. On the  other  hand, the syste- 
matic h v e r s i o n  of da ta  obtained with the nitrogen 
f i l l e d  tube has not been determined. It i s  possible  
t o  j u s t  guess the dravdava curve and ca l cu la t e  the 
a p e c t e d  response. Howver, this method would be veq 
tedious as there  is no systematic way of guessing. 
Also, in the nitrogen case, the  response Is very 
dependent on t he  absolute pressure in the  tube. 

Hdevcr ,  if the 

The device ie a r e l a t ive ly  simple way of continu- 
ously measuring dovahole pressures. Nevertheless, 
t he re  are problems and one should be ware of them be- 
f o r e  using or  analyzing any da ta  obtained w i t h  such a 
mystem. 

IaUt?CIATUBE 

ct 
D 
f f r i c t i o n  f ac to r  

g P.vitY 

L l e n g t h o f  tubhg 

P pressure 
P i  i r r i t l a l  pressure 

P pressure change 
R 
Pe Reynolds number - puD/p 

t time 
T Temperature 

isothermal compressibil i ty of f l u i d  p-?tapiaP)T 
inner  diameter of cap i l l a ry  tubing 

k X2/8uc t  

inner radius  of cap i l l a ry  tubing 

u velocity of f l u i d  
I d i s t ance  

6 volumetric expansivity, p"(ap/aT)p 
p densi ty  

absolute  v i scos i ty  
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Figure 4.  Comparison of expected pressure s igna l s  
for di f ferent  drawdown curves; 
10 cs o i l  at 18OoC, L = 2400 m, D = .0014 m. 
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Figure 6 .  E f f e c t  of d i f f e r e n t  diameter tubing 
on the  expected pressure response. 
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