
UC Santa Cruz
Working Papers

Title
Software Development: A View from the Outside

Permalink
https://escholarship.org/uc/item/1pd2q6np

Author
Eischen, Kyle

Publication Date
2002-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1pd2q6np
https://escholarship.org
http://www.cdlib.org/

Software Development: A View from the Outside*

*A later version of this paper was published as

“Software: An Outsider’s View” in Computer May 2002 (www.computer.org/computer)

Summary

From the outside looking in, software development debates seem to be thriving. Both software

engineering and craft-based method advocates appear no closer to a consensus now than thirty years

ago. Considering the debate from a social and economic viewpoint helps reframe the issue, moving

towards a clearer understanding of software and software development. There is much that is unique

in software, but also much that, especially conceptually, is and has been debated, discussed and

learned before. This places software development debates within historical and current perspective.

Bringing software into non-technical frameworks involves translating software issues into

equivalent social and economic problem domains. The very act of translating and viewing software

through social science domains raises questions — What is software? Why is it hard to make? Why

do we care? — that normally are assumed by insiders as obvious and well understood. However,

such assumptions are often the central issue at stake that prevents solutions from forming.

While there is general agreement on the goal of producing high-quality, low cost software,

underlying assumptions concerning the rationalization of software, managing communication and

the role of domain-knowledge remain at the heart of development debates. Developing new

analogies outside of the current dichotomy of craft and engineering can help highlight these central

issues. This also enables software development to learn from existing research on innovation,

intellectual work, and information industries to bring new tools to an old debate. Placing domain-

knowledge and design at the center of software discussions, opens up a series of issues that can

guide software development questions in the short and long-term future.

2

Outside Looking In

The debate surrounding competing software development methods seems to be thriving [1][2].

Advocates of both software engineering and craft-based (or agile) development approaches appear

no closer to a consensus now than thirty years ago when the debate began. Yet from the outside

looking in, the debate and the issue of software development itself take on a different perspective.

Particularly from a social and economic viewpoint, the importance of the discussion is evident in

how widespread the issue actually is. Though not always explicit, how software is made is a central

issue in both technical circles and in general social debates on privacy, trade, patents, innovation,

immigration and security, to name just a few. Building a bridge between the specific technical and

broader issues helps reframe the debate itself, moving hopefully towards a clearer understanding of

software and software development.

Bringing software into non-technical frameworks involves translating what appear to be unique

software (or even technological) issues into equivalent social and economic problem domains.

There is much that is unique in software, but also much that, especially conceptually, is and has

been debated, discussed and learned before, which is in part why debates on software development

have broader social importance. The very act of translating and viewing software through social

science domains raises questions — What is software? Why is it hard to make? Why do we care? —

that normally are assumed by insiders as obvious and well understood. However, one of the

essential lessons learned from the social sciences is that assumptions are often the central issue at

stake that prevents solutions from forming. Drawing on these different traditions is a worthwhile

exercise, not because it will solve the software development debate (far from it actually), but rather

because it may give insiders new tools and insights to move the discussion forward.

A Little History

A simple take on the software development debate is that it is not new nor is it unique. Arguably,

this is true both historically and currently. Looking at the debate over the last thirty years, there are

clear cycles of alternating strength between craft and engineering approaches to software

development. For a debate to exist so strongly for so long, even as the software industry has grown

to maturity, signals to an outside perspective that the debate touches on fundamental, and not just

superficial, aspects of software.
1

Much is made of the 1968 NATO conference that defined software engineering [3], but from a

sociological point of view, the follow-up 1970 conference and report [4] is far more revealing. The

first meeting, focusing on general concerns and management issues, produced widespread

agreement around the clear need to prevent a “ software crisis”. The second meeting, designed to

focus on the technical questions of preventing the “crisis” came to be dominated by a

“communication gap” between participants, particularly between theory/practice and computer

science/software engineering approaches. From its conception as an independent field of activity,

software established a basic pattern that continues to this day, with serious unresolved tensions

between issues of management, theory and practice.

3

Questions of software methods, and the answers generally given, tend to focus on aspects of quality,

cost and practice. There is generally agreement that software should be produced at the highest

quality for the lowest cost (hence, the agreement at the first conference). However, defining,

estimating and measuring quality and cost — as well as the methods to produce such results —

were and remain very open to question (hence, the disagreement at the second conference). This

seems to be the heart of the matter.

The question is not why there is debate on how to produce software at the highest quality and

efficiency, but why there is a gap between agreement on the general problem and disagreement on

specific solutions. The most likely answer is that there is not even agreement on the general issue of

software quality and efficiency, if the matter is pushed towards real specifics. Much the same way

that everyone agrees that a code of law is a good thing, without agreeing on which specific laws are

needed. This fundamental difference is only obvious when specific details and methods are

discussed, and as a result the questions of software quality, cost and efficiency never really get

asked or placed within a broader context.

Rationalizing Software

The broader context involves the issue of rationalization. Going back to Adam Smith’s advocacy of

the division of labor in the “Wealth of Nations” in 1776, rationalizing production has been a proven

method to increase quality, lower cost and raise efficiency. The expansion of industrial capitalism,

the rise of modern bureaucracy and scientific-management all added to the momentum to create

defined, quantifiable, repeatable production and organizational processes. General competition in

markets both proved the power of such rational systems as well as pushed their general adaptation.

The ideal example of such a process is the modern automobile industry. But the general logic of

rational organization and production exists quite broadly in society, from government to public

schools to farming.

It is not surprising that the 1968 NATO meeting, at the beginning of a true computer revolution and

the height of US industrial manufacturing dominance, produced general agreement on the

increasing importance of software in society and the need for an engineered approach to its

production. It is also not surprising that the details of a defined, quantifiable, repeatable process

could not agreed upon when the majority of world’s software (and even computer systems) was still

being crafted, by highly skilled professionals. Professionals who were often engineers by training

(so not objecting to the software engineering title), but also direct practitioners who were not

involved in nor inclined to build software factories.

The problem then and now between the two viewpoints rests on the question of software

rationalization. Assuming that software can be rationalized leads to a whole host of additional

assumptions that frame the debate on development methods. Rationalization assumes a quantifiable

process, maximized for efficiency by a distinct division of labor, with defined inputs and outputs,

managed by an effective rule-bound bureaucratic structure. In other words, a process that is capable

of being engineered
2
.

History is full of conflicts and debates between craft and engineered approaches. Arguably, the

industrial revolution in large part was the success of rational approaches to production over small-

scale craft-based methods. In a world of scarce resources, producing more with less is a positive

4

outcome. Within economics there is always a trade off between benefits to society overall and costs

to individual producers from new production processes or organization. This is true for free trade,

technological change and manufacturing methods. The argument, with strong evidence behind it, is

that in the long-term, both individuals and society benefit from increasing productivity, higher

quality, greater variety and lower costs.

Given the rationalization of multiple craft industries over the last two centuries —all that at one

time were considered impossible to “manufacture” or mass produce — and the resulting benefits in

efficiency and quality, it is reasonable to expect that software can and should become engineered

also. Equally expected is that producers of software, like all skilled professionals in the past, will

resist this process vehemently, swearing that it is impossible to rationalize software, that software is

unique and requires skilled training and “un-quantifiable” knowledge. Max Weber’s comment from

the turn of the 20
th

 century of a world of “specialists without spirit, sensualists without heart; this

nullity imagines that it has attained a level of civilization never before achieved” reflects the attitude

that skilled-artisans have always felt toward rationalization. However, Weber also recognized that

rationality and bureaucracy are essential, and thus inevitable, features of modern life and its

benefits, even if flawed [5]
3
.

Rationalization and bureaucracy, underpinning modern manufacturing, has consistently placed

management objectives and goals as the driver of industry development. The more rationalized, the

more explicit, a process the more it can be managed, moving control over the process from

producers to managers. The very act of quantifying the process, moving it toward a manufactured

method, places skill in new tools and techniques, opening up the possibility of replacing skilled

professionals with less-skilled workers. Individual resistance to the process isn’t sufficient in and of

itself to prevent an overall transformation of the industry towards engineered methods.

So from the outside looking in, the question is why hasn’t software development been rationalized?

Why, even with a tremendous effort to “engineer” the process both from within the profession and

the industry overall, is the development of software locked in the same issues as thirty years ago.

Why haven’t basic industrial patterns — “software industrialization”, “software manufacturing”,

“software engineering”, “software assembly-lines” — become dominant within the industry?

Answering the question requires understanding software exceptionalism, or in other words,

answering the general question of what exactly is software.

What is Software?

Looking at discussions both within and outside the software profession, it becomes obvious that

software is difficult to define. Even where discussions are focused on specific issues like software

development methodologies, the definition of software that each party has in mind — though

assumed to be the same — is often quite distinct. Issues of software quality, skill and

professionalism are all open to interpretation. This clearly limits the rationalization of a process,

where even a definition of what needs to be rationalized is difficult to generate. Understanding why

definitions are hard to generate is, however, a key step to understanding exactly what software is.

One example is the question of software “patentability” or “copyrightableness”. The answer is

important, because it frames the debate on software methods. Is software development an invention

derived through a scientific method, or is it an act of speech and creativity? In other words, is

5

software an act of engineering or an act of communication? If software is a rational endeavor, then

improving quality involves better and more resources: better management, better tools, more

disciplined production and more programmers. If software is a craft, then improving quality

involves the exact opposite, focusing on less-hierarchy, better knowledge, more skilled

programmers, and greater development flexibility.

The fact that in reality software has characteristics of both patents and copyrights helps to explain

why debates around software development are so intractable and conditional. It is difficult,

especially from the outside looking in, to separate software into categories that are understood and

well defined. Our legal system, our assumptions, our experience force software to be one or another,

losing an accurate description in the process. Normally, processes, products and industries are

relatively separate areas of study. Such assumptions don’t work for software. Debates surrounding

open-source development are an example of this. In many ways, the basic conflict is between two

distinct visions of how software should be made, distributed and rewarded simultaneously. Even

questions of quality — the belief that open, transparent, peer-reviewed products have higher quality

— don’t deal only with the end product itself, but eventually with how software businesses and

processes are structured. Half of the problem in the software development debate is that such

assumptions are not clearly out in the open or linked together. The other half of the problem is that

being adamantly committed to open source for its quality aspects, still leaves possible being

adamantly opposed on sound business grounds. In both cases, what the basic patterns of software

are remain hidden.

Brooks [6], as early as 1974, stated that merely adding people to a software project didn’t increase

its productivity. From an economic viewpoint, this is classic phenomenon of diseconomies of scale.

At some point, more people trying to use the same tool (or screw in the same light bulb) cause the

whole process to slowdown. From a sociological point of view, this is a fascinating case study into

the specific limits of software development, because the essential limit is not the number of tools or

a lack of organization, but rather communication. It isn’t the number of people, but the increase in

lines and quality of communication that complicate software development. Yet, this is exactly the

motivation behind bureaucracy and rationally managed processes. To create rules and flows of

information so that economies of scale can be achieved. So the solution to software development

should be just better planning, particularly in defining a project at its inception to accurately define

needed resources. However, as outlined above, such defined, managed processes have not come to

dominate.

The simple reason is that communication is equally difficult between developers and users at the

inception of a project as it is between developers during the process [7]. This isn’t surprising to

sociologists. Communication is always difficult, mediated by codes, norms, culture and perceptions

that are always contextual. What is new and surprising is that software has the characteristics of

other mediums of communication [8]. The process of software development, and building basic

requirements, is a process of tacit knowledge communication. This explains much of what is

difficult in software development. Translating knowledge from one context to another, like

translating any language, involves not just basic rules of grammar and syntax, but also issues of

meaning and intent that are contextual and subjective.

Sociologists who take as their domain of interest anything and everything social, clearly understand

the difficulty in defining and quantifying, particularly universally and over time, anything that

involves human interaction, practice or belief. Yet, this is what software development attempts to do

6

[9]. Broadly, software is essentially an exercise in translating existing algorithms, in nature or

organizations or in practices, into digital form. Much of this domain-knowledge is tacit, undefined,

uncodified, developed over time, and often not even explicit to the individuals participating in the

process. Even more important, such knowledge and practices are dynamic, constantly evolving and

transforming. It should not be surprising that modeling such processes is exceedingly difficult, and

that such efforts are often incomplete, impractical or unsatisfactory.

The Key Role of Domain-Knowledge

The importance of domain-knowledge seems consistent for all software development, though it is

difficult to see at times. How easily a concept is translated is a function of the nature of domain-

knowledge itself. Designing a car is something that most people, even children, can do. The concept

is widely known and, in essence, socially agreed upon. Asking someone to design how cars are

made is more difficult, though most people have a basic concept of a factory. However, asking

someone to design the process of designing a car creates far more difficulty. Is there one right way

to design? Are there rules? Is it a burst of inspiration, or 99% hard work and struggle, in a team or

by a solitary individual? The farther away from broadly accepted and understood domain-

knowledge the more difficult it is to translate. And examples such as these are clearly context

specific, changing with culture, location, gender and experience. Looking at software development

through the importance of domain-knowledge sheds light on much of what is discussed and

practiced within software.

• Organizational, development will be structured around and struggle with the demands of

communication, both in the initial project design and during its development.

• If defining software requirements is difficult, defining a universal and fixed process also will

be difficult. This suggests that development modeled on a rational process or physical

principals, will always have limited applicability to software development.

• Because software products often involve undefined domain-knowledge, the more social the

development process, the better. Arguably the extensive use of beta-testing and networks of

peer-review are both patterns of focusing tacit knowledge.

• Because the end result of software development will be both a defined product and an aspect

of a translation process, it will have characteristics of patents and copyrights.

• Questions of quality will be subjective, often on an individual basis, changing over time and

place. The social nature of software insures that even measuring quality will be difficult,

involving mixed and relative aspects of cost, reliability and “look and feel”.

• How well domain-knowledge is defined — beyond issues of organization, cost and

development time — will play a large role in structuring development. Where the processes

being modeled are well understood, where the algorithms of daily life are transparent, then

software will be more easily created. Arguably, existing well-engineered processes lend

themselves to engineered software development.

• Questions of engineering and craft methods are reflections of the assumptions about and

experiences with how well defined, and thus translatable, knowledge-domains are.

Overall, the debate on software development methods would benefit from addressing the basic

process of design that is inherently difficult, social and domain-knowledge based. Design in any

industry is always a challenging intellectual activity. It is even more so in software, exactly because

it is almost a pure design process. Software methods like CMM, and the concept of software

7

engineering, comes out of a government and military tradition where problems and needs are clearly

defined. Issues of management, cost and robustness, not how to define the problem domain, are

central. Agile or craft methods, come out of university and programmer communities, where

solutions to problems evolved overtime, collectively, based on an open-ended transparent process.

The important aspect is not that one method is superior, but rather that both methods address the

specific demands of translating domain-knowledge. This shifts the debate to consider what software

is expected to do, how to design to meet these needs, and what methods and tools support that

process.

The Question of Analogies

Part of the problem in debates on software development stems from the analogies used to describe

the benefits of specific methods. Both engineering and craft approach analogies have limitations.

Engineering methods stem from a tradition where domains are defined by physical laws and defined

parameters, not evolving dynamic systems. Craft approaches highlight the centrality of individual

producers, but do not necessarily address the needs of one of the central industries of the coming

decades. However, software is not unique in being an intellectual, domain-knowledge focused

activity and business. There are other examples outside of engineering and craft examples that

software can learn from. The question of analogies is even more significant when trying to explain

software issues and debates outside of the software community. Analogies, particularly for outside

audiences, can be misleading and only partial. However, a well-chosen analogy can serve as model

to highlight key questions, assumptions and possible new directions for software methodologies. A

few alternative analogies are:

♦ Software as University.

The university combines highly independent and creative professionals in an overall

structure that can be quite bureaucratic. Many IT firms already formally follow a “campus”

model. Innovation, communication and creativity are highly valued. Research is structured

around peer-review, with dominant ideas evolving and emerging over time. Teaching and

research resist rationalization, remaining highly subjective and individually centered. Issues

of productivity and quality are always a mix of qualitative and quantitative factors.

Admission to the profession is through a long apprenticeship, guided by senior faculty. The

training process tends to not respond in real-time, creating cyclical patterns of under and

over supply of academics. Standard quality of personnel at the end of the training process is

difficult to guarantee and highly individualistic.

In terms of specific departments, the analogy becomes more complicated. Engineering and

Computer Science have traditional been home to software. However, Economics has a long

history of quantitatively modeling social activities (e.g. valuing safety or clean air or health),

and testing such models against actual experience. Psychology also has a similar tradition,

with already strong links between psychologists and computer fields. Sociology has

developed extensive tools to model qualitative behavior in society, organizations and

individuals, as well as having a strong understanding of the nature of knowledge, belief and

practice. On a general level, the university presents a social model where public support for

universities is linked to their contribution to public knowledge and benefit. This fits well

with a model of software as a social and public activity, but leaves open to question software

as a private industry and the nature of privatized knowledge.

8

♦ Software as Hollywood
On an industry level, Hollywood is very similar to software. Historically, it has gone

through phases of highly centralized production and more distributed phases of product

development. Struggles over control of content and distribution have always been central

issues. Film is made using highly skilled teams, normally brought together for individual

projects, with members individually judged by overall reputation and experience within the

industry. People are trained both formally (through film schools) and informally (through

apprenticeships or self-learning). Product quality is hard to evaluate, let alone quantify, prior

to release in the market. Success is defined both critically (by peer-review) and publicly

(through box office sales), with no guarantee that these will match. Critical success does not

guarantee longevity in the industry.

The production process itself is a non-linear, multi-staged process, where the final product is

often undetermined until the final stages. Production is highly susceptible to cost overruns

and missed deadlines. Large-budgets and film crews are no guarantee of timely production

or actual success in final product. The industry allows for a range of large-scale studio

production and independent projects, producing a variety of products from one-off

masterpieces to long-running television shows (e.g. soap operas). Film is also directly

involved in translating and producing culture on a worldwide scale, producing standardized

formats that appeal to the widest possible audience. The limitation as an analogy is in the

non-interactivity of the final product that is designed to only entertain passively. However,

the software gaming industry, already as large-as Hollywood in revenue terms, presents an

interesting example of interactive, yet-very Hollywood like, entertainment.

♦ Software as Construction
Constructing buildings, while seemingly not an intellectual or domain-knowledge activity, is

actually a very helpful model. Building takes a variety of final forms from individual

housing to large-scale urban commercial projects. Actual building is done by “do-it-

yourselfers”, independent local contractors, large construction firms, and global engineering

companies. There is a division of labor between architects, developers and builders. The line

between these activities is often unclear, as the knowledge of actual construction involves a

set of skills covering each aspect. However, there are individual licensing practices for most

of these levels, often controlled by government or practitioners themselves. Each project

reflects local laws, customs and resources, merging them with the demands and limits of the

final consumer. Construction is also highly cyclical, with boom and bust cycles for both

firms and labor.

Overall, building is a very complex organizational problem that draws on experience rather

than pre-defined rules or methods. Translating consumer demands into workable end

projects that take account of local limits and resources is an intensely intellectual activity.

The architecture of a building needs to reflect functional and form demands that are often

uncodified. How do people live, work and play are key questions for designers that they may

not directly have knowledge with. Quantifying the success of a building, its “look and feel”

is difficult. Some buildings are mass-produced, focusing on meeting average needs and

demands, and able to be built using average skills and materials. Other projects are one-off

developments, requiring innovative designs, materials and highly skilled labor. The more

unique a project, the more susceptible it is to cost and time overruns, though all construction

projects face this possibility.

9

Each of these analogies is limited in some way. The exercise, however, is not for an ideal fit. The

aim is to highlight the assumptions underlying software methods and help locate possible scenarios

that are more reflective of software reality. In each of these examples, issues of design, quantifying

quality, efficiency, skill and complexity dominate the development process. In each, the success of

the final product and the development process are susceptible to very complex interactions that are

difficult to control, anticipate and quantify. Thinking through various examples of intellectual,

domain-knowledge based work, opens up debates to new models of software development.

Linking the Inside with the Outside

From the outside, a few things seem clear. There is a real challenge in developing high-quality

software, consistently, at a reasonable cost. Software is a unique activity that combines creativity,

translation, skill and a disciplined method. The various aspects of software as industry, product and

process, both push for and simultaneously resist rational, standardized methods. Software as an

industry is subject to the same market forces, accounting practices and government oversight as all

other industries. Software products combine both functional and subjective aspects that make

standard assessment difficult. Even basic issues of security, privacy and “look and feel” are relative

and situational, just as they are in other aspects of life. Rationalizing software processes really

involves standardizing intellectual work, which is historically difficult and most likely counter

productive. However, this raises tremendous challenges for the industry, which is subject to a

market that expects rational management and calculation. Overall, thinking through how to

“improve” software involves touching each of these aspects.

As our society and economy become more information and knowledge-based, what is demanded of
software and its producers will increase. Software is increasingly a central means of producing,
storing, transforming and distributing knowledge [8], raises the importance of discussions on
software methods and the demand for ever greater numbers of software solutions and professionals.
The original articulation of this trend in 1968 by NATO was correct. However, while software has
unique characteristics and role to play in society, it is also a part of a broader trend where multiple
industries are facing similar challenges around producing intellectual work on a global scale.
Software development can learn from the work on the characteristics of “information economies”
and intellectual or information industries.

The flexible, regional-based, information-rich, global economy networked together by flows of

people, ideas and finance [10] fits extremely well with the basic patterns structuring software as an

industry. It is an environment where competition is based on the management, development and

control of innovation and knowledge in both products and people [11]. In order to achieve these

aims, firms and organizations are structured for learning, innovation and general goal-setting, in

contrast to the bureaucratic, fixed models of the past [12]. Certain industries and organizations, like

pharmaceuticals, film or the university, are more adaptable to such an environment, exactly because

they are structured around basic issues of intellectual production and management. Design,

innovation and intellectual work are basic issues in an information economy. The work detailing

these trends is extensive and well-documented, including the quantitative and qualitative factors of

R&D, productivity, commercialization, entrepreneurship, learning and network organizations, to

name just a few.

10

All of this provides an extensive resource for software development to draw upon, learn from and

apply. There is a history of this in software development, but it has usually drawn upon techniques

or methods drawn from manufacturing (TQM) or engineering (Statistical Quality Control) that are

based on defined processes linked to quantitative tools. These have a place in software

development, but they should follow from an understanding of design as the central activity within

software. The issue of design changes the tools and the questions. TQM is an important tool for

manufacturing cars, but is far less effective as tool for designing them. Even manufactured products

suffer from poor industrial design, resulting in product recalls or failure in the market. Generally

questions of design, domain-knowledge and specification don’t lend themselves easily to pure

statistical analysis. Software shouldn’t be expected be different than other industries in this regard,

but it also doesn’t eliminate the possibility for software — as one of the leading design and

intellectual activities of our time — to be an innovator in generating new combinations and insight

into tools and resources around intellectual work in an information age.

Looking Towards Future Issues

Short-term concerns in software development are clearly focused on cost, efficiency and quality.

However, design and domain-knowledge should be at the center of the discussion. Focusing

software development discussions in this way highlights certain issues.

♦ Software benefits from peer-review. The question really is when and how. Early in the

process, as in an open source model, or late in the process through beta-testing or public

review. Private software will continue to be a factor in society, so a key question is the

funding of third-party or public monitoring. Universities have an obvious role to play here,

especially in term of protecting the “public commons” in terms of security and privacy. But

the process should also be democratized, so that general user comments and perspectives

can be included, and that trade-offs between cost, quality and appropriateness can be openly

understood and chosen.

♦ Much is already right with software development. There is general agreement on many

methods that work, usually rules of thumb (test early, test often; perform daily builds; focus

resources early on requirements). What should be articulated is why these work, specifically

related to the core activity of translating domain-knowledge and managing intellectual work.

This will help compare software to existing case studies of other informational industries, as

well develop basic concepts that will help make software understandable to other sectors of

the economy and society.

♦ Competition in the market is essential, regardless of specific development methods.
Emphasis on the fact that monopoly impedes innovation misses an equally essential point

that markets can also evaluate cost and quality trade-offs very efficiently. Well-functioning

markets will eventually support well-functioning development processes. However, there is

much to be learned from studies of the media industry surrounding control over content and

distribution. Keeping open distribution channels, particular as software becomes more

service-oriented, is key to insuring innovation in not only products but in processes.

♦ Build and borrow tools for evaluating and transferring domain-knowledge. Simple metrics

or models that quantify how well a process is defined will in turn help generate estimates of

11

time and cost. Such efforts will also help define the resources needed to define the domain

originally. Simply questions of how well codified is a process, how well such codes transfer

to digital form, and how well can individuals communicate such knowledge all can be

evaluated building on tools form the social sciences.

♦ Design is difficult across the board, and is inherently a buggy process. This means that

software as a pure design activity, will never be perfect, especially as it models and interacts

with human activities in a dynamic environment. It will also never be manufacturing, accept

in that aspect of manufacturing that is design. The question is what do we expect from

software. Tools to not only define but rank requirements are essential. Software

development and software products should reflect these trade-offs. The nature of design, as a

human-centered process, also means that mistakes, bugs and unforeseen and unintended

consequences will happen, just as they do in other industries and sectors of society.

Developing mechanisms to correct these problems, and create incentives (like product

liability) to avoid them, need to be part of the discussion. The increasing pervasiveness of

software in society will make such issues central, regardless if software increases in quality

and reliability.

Longer-term issues involve creating support for software development that reflects both the

increasing importance of software in society and the unique demands made in transferring domain-

knowledge into effective software.

♦ Software education should include general skills of communication, social analysis, design
processes, teamwork, both between software developers and non-technical users. This

training involves developing the means to analyze, communicate and work within design

environments, simultaneously with developing strong software skills. Such general skills

that will serve programmers well in multiple capacities and roles over the course of their

professional lives.

♦ Cross-disciplinary education to create expertise in new areas of domain-knowledge in order

to combine software skill with specific understanding of problem domains. Biology, finance,

film and management are all examples of areas where software skills will be needed in the

future. Applied projects, especially in non-technical environments (e.g. IT for non-profits or

in the developing world), would reinforce these aspects and would benefit from becoming

standardized part of curriculums. These measures would most likely increase participation

and interest in software as a dynamic, socially engaged profession.

♦ Cross-disciplinary training should extend to non-technical fields as well, particularly in the

fields listed above. An understanding of technology generally, and software practices in

particular, will help create the common understanding that will facilitate communication

around needs and products. There is a serious lack of understanding and appreciation for

software outside of the industry and Computer Science departments. This ultimately limits

the effectiveness of future managers, financiers, consultants, educators and economists to

both see the potential benefits of software and to effectively and successfully implement

new software related projects.

♦ Increased support for cross-disciplinary research focused on software processes, products
and industries. Cross-disciplinary teams and support between all of the sciences would help

12

software understand specific issues of process and product innovation, impacts and direction

of R&D funding, aspects of public regulation and support, and help provide an overall map

of software presently and into the future. Simultaneously, it would expand the general

understanding of software, and help key lessons from software development be incorporated

into broader disciplines.

The ultimate goal should be to simply and directly raise the profile of software generally, respecting

and making explicit its unique structures and important role in society, and creating the training,

research and tools that support both. Such efforts move software not only beyond current

methodology debates, but help move software closer and more understandably to the world outside

looking in.

13

References

[1] A. Cockburn and J. Highsmith, “Agile Software Development: The Business of

Innovation,” Computer, pp. 120-122, Sept. 2001.

[2] S. R. Rakitin, “Letters”, pp. 4, Computer, Dec. 2001.

[3] Software Engineering: Report on a conference sponsored by the NATO Science
Committee, Edited by P. Naur and B. Randell, Garmisch, Germany, 7th to 11th October,

1968.

[4] Software Engineering Techniques: Report on a conference sponsored by the NATO
Science Committee, Edited by J.N. Buxton and B. Randell, Rome, Italy, 27th to 31st

October, 1970.

[5] M. Weber, The Protestant Ethic and the Spirit of Capitalism, New York: Routledge, 1992.

[6] F.P. Brooks, The Mythical Man-month: Essays on Software Engineering, Addison-Wesley,

Reading, Mass: Addison-Wesley, 1995.

[7] P. McBreen, Software Craftsmanship: the New Imperative, New York: Addison-Wesley,

2002.

[8] P. G. Armour, “The Case for a New Business Model”, Communications of the ACM,

Volume 43, Number 8, August 2000.

[9] K. Eischen, Information Technology: History, Practice and Implications for Development,
Center for Global, International and Regional Studies, University of California, Santa

Cruz, Working Paper 2000-4, 2000.

[10] M. Castells, The Information Age: The Rise of the Network Society, Cambridge, Mass.:

Blackwell Publishers, 1996.

[11] P. F. Drucker, Management Challenges for the 21st Century, New York: HarperBusiness,

1999.

[12] C. A. Bartlett and S. Ghoshal, Beyond the M-Form: Toward a Managerial Theory of the
Firm, Carnegie Bosch Institute for Applied Studies in International Management, Working

Paper 94-6, 1994

14

Endnotes

1
 In contrast, by the time the automotive industry had reached its thirty-year anniversary (roughly

1930), the fundamental patterns of production (Ford’s assembly line), product (standardized design)

and industry (a few dominant national players like Ford and GM) had been clearly established.
2
 The term ‘Engineering’ originated in 1720 and is “1: the activities or function of an engineer 2 a:

the application of science and mathematics by which the properties of matter and the sources of

energy in nature are made useful to people in structures, machines, products, systems, and processes

b: the design and manufacture of complex products <software engineering> 3: calculated

manipulation or direction (as of behavior) <social engineering>”. Source: Merriam-Webster New

Collegiate Dictionary.
3
 This is Weber’s famous “iron cage”. Rationality and bureaucracy are essential to modern society

and its material achievements, but limit creativity, innovation and spirituality. This is by definition.

Rationality leads to rule-bound, fixed parameters and hierarchies that place control, knowledge and

power in institutions and not individuals. Bureaucracy is essentially an institutionalized algorithm

that takes general inputs and produces fixed and anticipated outcomes.

