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Using Gibbs Sampling with People
to characterize perceptual and aesthetic evaluations

in multidimensional visual stimulus space
Eline Van Geert1,2 (eline.vangeert@kuleuven.be)

Nori Jacoby1 (nori.jacoby@ae.mpg.de)
1Computational Auditory Perception Group, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany

2Laboratory of Experimental Psychology, Department of Brain and Cognition,
Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium

Abstract
Aesthetic appreciation is inherently multidimensional: many
different stimulus dimensions (e.g., colors, shapes, sizes) con-
tribute to our aesthetic experience. However, most studies in
empirical aesthetics used either non-parametrically controlled
multidimensional or parametrically controlled unidimensional
stimuli, preventing insight into the relative contribution of each
stimulus dimension or any potential interactions between them
to perceptual and aesthetic evaluations. To adress this gap
we combined two recent developments: the Order & Com-
plexity Toolbox for Aesthetics (Van Geert, Bossens, & Wage-
mans, 2023) for generating multidimensional parametrically
controlled stimuli, and Gibbs Sampling with People (Harrison
et al., 2020) for efficiently characterizing subjective evalua-
tions in multidimensional stimulus space. We show the ad-
vantages of this new approach by estimating multidimensional
probability distributions for both aesthetic (pleasure and inter-
est) and perceptual evaluations (order and complexity) in two
visual multidimensional parametric stimulus spaces, and we
compare our results with findings from earlier studies that used
either non-parametric or unidimensional stimuli.
Keywords: empirical aesthetics; order; complexity; multidi-
mensionality; aesthetic appreciation; OCTA toolbox; Gibbs
Sampling with People; transmission chain experiments

Introduction
Every day we evaluate the world around us in aesthetic terms.
This feature of our cognition in turn influences designers,
artists, architects, and advertisers, whose work shapes our
environment. A key challenge to studying appreciation is
its multidimensional nature: many different stimulus dimen-
sions contribute to our aesthetic experience, and they may
do so to a different extent and in different ways (Van Geert,
Warny, & Wagemans, 2024). Most previous research ei-
ther manipulated a single stimulus dimension (e.g., Spehar,
Walker, & Taylor, 2016; Wilson & Chatterjee, 2005; Sun
& Firestone, 2022), or used non-controlled stimulus sets in
which differences on multiple stimulus dimensions cannot
be clearly separated (e.g., natural images, paintings, or pho-
tographs; Braun, Amirshahi, Denzler, & Redies, 2013; Graf
& Landwehr, 2017; Van Geert & Wagemans, 2021). Both
approaches prevent insight in the relative importance of each
of the single dimensions or any interactions between them in
a multidimensional context. Even when studies did include
multidimensional parametric stimuli, some of the dimensions
were discretized rather than studied in a continuous fashion
(e.g., Jacobsen & Höfel, 2002; Gartus & Leder, 2013; Palmer
& Schloss, 2010).

Why are full-fledged multidimensional investigations of
parametric stimulus spaces lacking so far? First, an easy

tool was lacking to generate such multidimensional paramet-
rically controlled stimuli. Second, using traditional research
methods, multidimensionality comes with a cost, sometimes
called the ‘curse’ of dimensionality, namely leading to an ex-
ponential increase in the required number of trials. Only re-
cently, new methods have been developed that can efficiently
sample high multidimensional spaces without leading to ex-
ponential increases in the number of trials required (Martin,
Griffiths, & Sanborn, 2012; Sanborn, Griffiths, & Shiffrin,
2010; Harrison et al., 2020; van Rijn et al., 2021, 2022).

The current project enabled the characterization of sub-
jective evaluations for fine-grained, high-dimensional para-
metric stimulus spaces by combining the Order & Com-
plexity Toolbox for Aesthetics (OCTA; Van Geert et al.,
2023) for stimulus creation and Gibbs Sampling with Peo-
ple (GSP; Harrison et al., 2020) for efficiently sampling the
high-dimensional space. We show how this new approach
can further our understanding of the relations between com-
monly studied aspects of perceptual appearance (perceived
order and complexity; e.g., Van Geert & Wagemans, 2020)
and aesthetic appreciation (pleasure and interest; e.g., Graf &
Landwehr, 2017) in two visual stimulus spaces.

We hypothesized distinct contributions of each stimulus di-
mension to the subjective evaluations as well as distinct mul-
tidimensional landscapes for each of the evaluation criteria.
We expected to confirm the correlations between evaluation
criteria found in previous research using non-parametric or
unidimensional stimuli (e.g., Van Geert & Wagemans, 2021),
but also to bring new insights into how different stimulus di-
mensions interact in contributing to our perceptual and aes-
thetic evaluations.

Background
The Order & Complexity Toolbox for Aesthetics
Recently the Order & Complexity Toolbox for Aesthetics
(OCTA; Van Geert et al., 2023) was created. OCTA is
available as a Python toolbox as well as an online point-
and-click application and allows researchers to create repro-
ducible multidimensional, parametric stimulus sets. The fo-
cus of OCTA is on the creation of multi-element displays
varying qualitatively (i.e., different types) and quantitatively
(i.e., different levels) in order and complexity, based on regu-
larity and variety along multiple element features (e.g., shape,
size, color, orientation). Recent studies using OCTA have
manipulated color, shape, and size complexity and found that
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Figure 1: Illustration of the Gibbs Sampling with People
(GSP) method like in Experiment 1. (A) Interface for a partic-
ipant. (B) Illustration of the GSP procedure. (C) Illustration
of how GSP efficiently samples the multidimensional space.

color complexity was more positively appreciated than shape
and size complexity (Van Geert, Warny, & Wagemans, 2024;
Van Geert, Hofmann, & Wagemans, 2024). In addition, ap-
preciation for complexity decreased when the level of order
in the pattern decreased (operationalized as the number of el-
ement position switches in the pattern; Van Geert, Warny, &
Wagemans, 2024), for each of the tested complexity manipu-
lations. Although these studies varied the number of different
colors, shapes, and sizes in the stimulus, they fixed the size of
the difference between these feature values per dimension.

Efficiently estimating subjective probability
distributions in multidimensional space
Gibbs Sampling with People (GSP; Harrison et al., 2020)
is an efficient way to sample internal representations from a
multidimensional latent space. In the paradigm, participants
explore a single continuous stimulus dimension per trial with
a slider (cf. Figure 1A) and select the value on the stimulus
dimension that maximizes the given criterion (e.g., interest-
ing). The stimulus in the next iteration will have the parame-
ter value selected in the previous trial as a fixed characteristic,
and another continuous stimulus dimension is then explored
(cf. Figure 1B-C). As the slider dimension that participants
adjust varies across trials, GSP allows to explore the full mul-
tidimensional space over the course of the trials. It can be
shown that in GSP parameter combinations are sampled pro-
portionally to their exponentiated subjective utility (Harrison
et al., 2020), which allows to characterize the latent distribu-
tion of criterion values in the multidimensional space. Some
first studies using GSP show the method’s promise in both
visual and auditory stimulus domains (Harrison et al., 2020;
Kumar et al., 2022; van Rijn et al., 2021, 2022, 2024).

In the two experiments reported here, we combined OCTA
for multidimensional parametric stimulus generation and
GSP for efficiently sampling the multidimensional space. We
demonstrate the fruitfulness of combining these techniques
to study visual empirical aesthetics in a systematic, multidi-
mensional manner. In a first experiment, we investigated the
influence of absolute color, shape, and size on how ordered,
complex, pleasant, and interesting an image is evaluated to
be. In a second study, we introduced additional complexity
by allowing participants to vary the absolute color, shape, and
size of odd and even elements in the image independently.

Figure 2: Illustration of the parameters included in (A) Ex-
periment 1 and (B) Experiment 2.

Methods
Participants
Participants were recruited online via Prolific and provided
consent in accordance with an approved protocol (Max
Planck Ethics Council #2021 42). We recruited native En-
glish speakers, born in and currently residing in the United
Kingdom. Participants who failed a brief color blindness test
were excluded from participation. In the first GSP experi-
ment, 98 participants (36 female, 61 male, 1 other; Mage=39.4
years, SDage=11.8 years) took part. In Experiment 2, GSP
data was collected from 195 participants (74 female, 119
male, 2 other; Mage=39.0 years, SDage=11.7 years). Partici-
pants received £3.50 for their participation in the study, which
on average took 20-25 minutes to complete.

Stimuli
Stimuli were vector images created using OCTA. For Experi-
ment 1, 6-by-6 grid stimuli of identical elements were gener-
ated in which the color, shape, and size of the elements could
vary (cf. Figure 2A). These stimulus dimensions were cho-
sen because they are core visual dimensions that have shown
a relation to perceptual appearance and aesthetics in previous
research (e.g., Palmer, Schloss, & Sammartino, 2013; Schloss
& Palmer, 2011; Smart & Szafir, 2019). In the color domain,
stimuli varied in hue. The colors were generated in Oklch
space (Ottosson, 2020), with a fixed lightness and chroma
(0.65 and 0.15, respectively) and then transformed into their
respective RGB color. Shapes were squircles, the most com-
mon specific case of a larger class of supershapes (Gielis,

2003): r =
(∣∣∣ cos(θ)

a

∣∣∣n + ∣∣∣ sin(θ)
a

∣∣∣n)−1/n
, with a being the semi-

diameter of the shape and the n parameter varying between 1
(diamond) and 10 (approximate square), with 2 (circle) as the
midpoint. The size of the shapes varied between 30% and
130% of the available element spacing, simultaneously in the
horizontal and the vertical direction. In Experiment 1, all el-
ements in the grid had identical feature values, leading to a
three-dimensional (color x shape x size) stimulus space (cf.
Figure 2A). In Experiment 2, the same feature dimensions
were used, but now applied in a checkerboard pattern: odd
and even elements could change color, shape, and size inde-
pendently, leading to a six-dimensional stimulus space (cf.
Figure 2B).
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GSP task
In the GSP task, participants were asked to adjust a slider
to make an image as ordered, complex, pleasant, or interest-
ing as possible (cf. Figure 1A). Experiment 1 contained 200
chains of 24 iterations (i.e., 8 cycles through all 3 parame-
ters per chain; each chain starting from a different random
parameter combination; 50 chains per evaluation criterion).
Each chain included responses from several participants, and
each participant contributed to multiple chains. Depending
on the trial, the slider changed the elements’ color, shape, or
size. Experiment 2 contained 200 across-participant chains of
48 iterations. Depending on the trial, the slider changed the
odd or even elements’ color, shape, or size (cf. Figure 2B).

Procedure
In both experiments, participants went through the same pro-
cedure. After providing informed consent, they conducted a
color blindness test consisting of six Ishihara plates (Clark,
1924; Harrison et al., 2020). To determine the scaling factor
for fixing the stimulus presentation size regardless of screen
resolution, participants resized a rectangle on the screen to
match the size of a physical object with known size (i.e., stu-
dent card, identity card, or bank card).

Participants were instructed to sit at an arm’s length dis-
tance directly in front of the screen, and to keep that distance
as constant as possible throughout the experiment. After pro-
viding some demographic information (i.e., their gender, age,
education level, mother tongue, country of birth, and coun-
try of residence), participants received instructions concern-
ing the GSP task and conducted maximally 50 GSP trials.
Afterwards, participants completed two brief questionnaires:
the Personal Need for Structure (PNS; Neuberg & Newsom,
1993) and the Art Interest scale of the Vienna Art Interest and
Art Knowledge questionnaire (VAIAK; Specker et al., 2020).
Both experiments were implemented with PsyNet (Harrison
et al., 2020), a platform for designing and running complex
online experiments (www.psynet.dev).

Results
Experiment 1
Experiment 1 examined to what extent certain color, shape,
and size combinations are perceived as ordered, complex,
pleasant, or interesting in 6-by-6 multi-element displays with
identical elements. We estimated the multidimensional prob-
ability distribution for each evaluation criterion by fitting a
three-dimensional kernel density estimate (KDE) to the GSP
samples.1 From these three-dimensional KDEs, also the one-
and two-dimensional KDEs can be calculated. We assessed
split-half reliability of the reported three-dimensional KDEs
for each evaluation criterion via bootstrapping 1000 times
(95% highest density continuous interval [HDCI] around the

1For the KDEs of Experiment 1 and Experiment 2, we used a
kernel width of .07 and .10 respectively. In the analyses, the KDE
is calculated based on a grid size of .05. In some of the Figures, we
represent the KDE with a grid size of .01.

Figure 3: Two-dimensional KDEs for the color and shape
choices in Experiment 1, with density expressed relative to a
uniform distribution. The local maxima with a density higher
than 2.5 are marked by black dots and visualized on the side.

mean reliability estimate). The lower boundary of this reli-
ability interval exceeded .70 for each of the four evaluation
criteria, which assures the KDE results can be reliably in-
terpreted (rordered = .90 [.85, .94]; rcomplex = .84 [.78, .89];
rpleasant = .79 [.74, .84]; rinteresting = .82 [.77, .87]).

Figure 3 shows the two-dimensional KDEs for the chosen
colors and shapes in Experiment 1, separately for each eval-
uation criterion. Numerically, density is expressed relative to
a uniform distribution, with values above one indicating that
the feature value combination was more often chosen than ex-
pected under a uniform distribution. Although the KDEs for
the four evaluations show some overlap, they also differ in
clear and interpretable ways. For example, blue squares and
blue diamonds were evaluated as particularly ordered, and
all blue-colored familiar shapes (i.e., diamonds, circles, and
squares) were often chosen as pleasant. For complexity and
interest evaluations, diamond shapes were very dominant.

Figure 4 shows the one-dimensional KDEs for the chosen
colors, shapes, and sizes in Experiment 1, which emphasize
the peaks visible also in Figure 3. The stability of the one-
dimensional local maxima (peaks) for each evaluation crite-
rion was calculated using 1000 bootstraps (sampled with re-
placement). We report the peaks’ mean density relative to a
uniform distribution, with a bootstrapped 95% HDCI.

The peaks we find are interpetable and consistent with pre-
vious literature. In particular, on the color dimension (cf. Fig-
ure 4A), a maximum occurred for blue-colored shapes for or-
der (M=2.50 [2.27, 2.71]) and pleasantness (M=1.87 [1.70,
2.07]), and a minimum occurred at the color between orange
and green (Mordered=0.44 [0.34, 0.57]; Mpleasant=0.23 [0.17,
0.30]). These results align with earlier work on hue prefer-
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Figure 4: One-dimensional KDEs for (A) color, (B) shape,
and (C) size in Experiment 1. Local maxima that appeared in
≥ 80% of all bootstraps are indicated by shaded areas.

ences that showed a general preference for cool (green, cyan,
blue) over warm colors (red, orange, yellow), with a maxi-
mum at blue and a minimum around yellow to yellow-green
(Palmer & Schloss, 2010). This minimum for the color be-
tween orange and green also appeared for the interestingness
evaluation (M=0.52 [0.41, 0.61]). In the complexity condi-
tion, this color resulted in a maximum (M=1.50 [1.30, 1.73]).
For the evaluation of interestingness, most density occurred
for purple-colored shapes (M=1.56 [1.37, 1.75]).

For both order and pleasantness, local maxima arose
around the included familiar shapes (i.e., circles, squares,
and diamonds; cf. Figure 4B), in line with earlier research
that found preferences for object shapes to the extent that
they conform to categorical prototypes (Rosch, 1975; Palmer
et al., 2013; Martindale, Moore, & West, 1988). However,
squares (M=3.61 [3.08, 4.08]) and diamonds (M=1.88 [1.48,
2.28]) showed much higher density for being ordered than
circles (M=0.67 [0.51, 0.81], ps<.0001), whereas circles
were relatively more probable when pleasantness was eval-
uated (Mcircles=1.77 [1.54, 1.99]; Msquares=0.94 [0.68, 1.17],
pdiff <.0001; Mdiamonds=1.40 [1.08, 1.69], pdiff=.03). This
preference for circles above diamonds and squares is in line
with earlier work on preferences for objects with curved
rather than sharp contours (e.g., Silvia & Barona, 2009; Bar
& Neta, 2006). In case participants were optimizing for com-
plexity or interestingness, the diamond shapes were preferred
(Mcomplex=2.84 [2.41, 3.27]; Minteresting=2.31 [2.06, 2.59]).

When inspecting the one-dimensional peaks for size (cf.
Figure 4C), we see similar distributions for order and
pleasant, with the largest peak for nearly touching shapes
(Mordered=2.03 [1.80, 2.25]; Mpleasant=1.96 [1.73, 2.17]). For
complexity and interest, a peak occurs for slightly over-
lapping shapes (Mcomplex=2.11 [1.87, 2.34]; Minteresting=2.25
[2.03, 2.48]), and for complexity there is an additional peak
for strongly overlapping shapes (M=1.97 [1.70, 2.23]).

Figure 5 shows the three-dimensional KDEs for the cho-
sen color, shape, and size combinations for each evaluation
criterion in Experiment 1, which allows to see interactions
between the dimensions. For example, in the results for or-
der, there is an interaction visible between size and shape:
smaller squares (size ≤ 100%) and touching diamonds (size
≈ 100%) were seen as most ordered. This could be related
to a prototypical proportion of filled versus blank space (i.e.,

Figure 5: Three-dimensional KDEs for color, shape, and size
in Experiment 1.

density in terms of how the figure looks like): for the same
bounding box, squares take up much more space than dia-
monds. As a consequence, for the same size (in these Experi-
ments defined based on the bounding box), squares will have
a larger spatial density. A similar interaction occurs for pleas-
antness, where the distribution for circles peaks at a smaller
size (around 100%) than the distribution for diamonds (above
100%). For complexity and interest, the highest peaks arose
for shapes that fill more than 100% or approximately 100%.

Figure 7B shows the overall correlations between the three-
dimensional probability distributions for the four evaluations.
Similar to previous research with non-parametrically con-
trolled stimuli (cf. Figure 7A; Van Geert & Wagemans,
2021), we found a strong positive Pearson’s product-moment
correlation between complexity and interest, and a positive
correlation between order and pleasantness. In contrast to
this earlier study, order did not have a strong positive rela-
tion with interest, and complexity showed a positive relation
with pleasantness rather than a negative one. This difference
in results could be due to the stimulus space we chose for
Experiment 1: all stimuli in the space were relatively simple
(low number of elements) and ordered (no deviations from
the homogeneous pattern of colors, shapes, and sizes). In
such a simple and ordered setting, complexity could get more
room to be appreciated (in line with classical theories on opti-
mal arousal level, or an optimal level of complexity; Berlyne,
1960, 1971; Van Geert & Wagemans, 2020). To assess to
what extent the marginal probabilities for each of the feature
dimensions (i.e., color, shape, size) contributed to the three-
dimensional KDEs, we calculated the conditional Shannon
entropy (Shannon, 1948) for each of the feature dimensions
given that the values for the two other feature dimensions are
known. The conditional entropies for color (4.06-4.29), shape
(3.80-4.17), and size (3.80-4.09) were relatively equal, indi-
cating that the dimensions contributed similarly to the overall
entropy. In addition, we assessed the extent to which interac-
tions between the feature dimensions contributed to the three-
dimensional KDEs. The sum of the conditional entropies
almost equalled the total entropy in the three-dimensional
KDEs, indicating that the mutual information between the
three feature dimensions (i.e., the total entropy minus the
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Figure 6: Two-dimensional KDEs for the chosen combination of (A) colors, (B) shapes, and (C) sizes for each evaluation
criterion in Experiment 2, with density expressed relative to a uniform distribution.

three conditional entropies) contributed less than 2% to the
overall entropy (1.01-1.53%). Given the small contribution
of the interactions, this finding indicates that the feature di-
mensions acted as largely independent.

Experiment 2
Experiment 2 examined to what extent pairs of colors,
shapes, and sizes are perceived as ordered, complex, pleas-
ant, or interesting in 6-by-6 multi-element displays with dif-
ferent feature values for odd and even elements. Although
participants could only manipulate the color, shape, or size of
either the odd or even elements within a specific trial, from
these choices we could also derive probability distributions
for feature difference, which can be seen as a stimulus-based,
“objective” measure of complexity.

We estimated the multidimensional probability distri-
butions for each evaluation criterion (a) by fitting two-
dimensional KDEs to the GSP samples for each feature sep-
arately; (b) by fitting three-dimensional KDEs to the GSP
samples aggregated across the two dimensions per feature
(e.g., representing choices for a color regardless of which
other color was present) and thus affording a direct compar-
ison with Experiment 1; and (c) by fitting three-dimensional
KDEs to the GSP samples using the absolute difference be-
tween the two chosen values per feature (i.e., representing
choices for a particular level of difference in color, shape, or
size). Compared with Experiment 1, the 95% HDCIs for the
split-half reliabilities in Experiment 2 were wider. Although
the reliabilities were above .70 for most evaluations, the 95%
HDCI did include values below .70 for order when looking
at the absolute values (M=.77 [.66,.86]) and for complex-
ity (M=.80 [.68,.89]), pleasantness (M=.68 [.47,.83]), and in-
terest (M=.78 [.55,.91]) when looking at the difference val-
ues. To simplify the interpretation, we focus on the two-
dimensional KDE results per feature, which are in direct rela-
tion to the six-dimensional probability distribution, and com-
bine those with descriptions of the local maxima in the one-
dimensional KDEs for both combined absolute values and
difference values.

Figure 6 shows the two-dimensional KDEs for the chosen
combination of colors, shapes, and sizes for each evaluation
criterion in Experiment 2. Again, we see complex but inter-
pretable structure. For order, the highest density was located
around the diagonal for all three feature dimensions, indicat-
ing small differences in color, shape, and size to be evalu-
ated as most ordered (Mcolor=2.05 [1.96, 2.14]; Mshape=2.04
[1.90, 2.18]; Msize=2.16 [2.01, 2.29]). However, for shapes
there was a high density concentration around identical dia-
monds (M=2.49 [1.99, 3.00]) and identical squares (M=1.91
[1.56, 2.25]), and for sizes the density around the diagonal
decreased once shapes start to overlap (i.e., around a size of
+- 100% of the available element spacing). For absolute color
values, we see the same local minimum for order as in Exper-
iment 1, around the color between orange and green.

For the evaluation of complexity, overlapping shapes were
most prominent, as were combinations of diamonds and
squares. For pleasantness, a clear local minimum was present
on the color dimension around the color between orange and
green that was also perceived as unpleasant in Experiment 1.
For shape, combinations of familiar shapes were most promi-
nent for pleasantness. For pleasantness in the size domain,
a local maximum arose for images with similarly-sized, non-
overlapping odd and even elements. Color combinations cho-
sen to be interesting were located off-diagonal, indicating a
choice for a maximal difference in color between the odd and
even elements. In the shape domain, combinations of familiar
shapes including a diamond as one of the shapes were most
prominent in the interesting evaluation. For size combina-
tions, images including large size differences between the odd
and even elements as well as images including large overlap-
ping elements showed a local maximum for being interesting.

Figure 7 shows the overall correlations between the (C)
combined absolute and (D) difference three-dimensional
probability distributions in Experiment 2 for the four evalu-
ations. Similar to previous research and Experiment 1, we
found strong positive correlations between complexity and
interest, order and pleasantness, and pleasantness and inter-
est. When considering the absolute values, order did have a
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Figure 7: Correlations between order, complexity, and appre-
ciation in (A) Van Geert and Wagemans (2021) and (B-D) the
current experiments. For (B-D), correlations are calculated
between the three-dimensional KDEs for each pair of evalua-
tion criteria. Note. * p < .01, ** p < .001, *** p < .0001.

positive relation with interest, but this positive relation was
absent when considering the differences between feature val-
ues. This may indicate for example that whereas absolute
shapes that are evaluated as ordered were also perceived as
interesting, shape differences that were perceived as ordered
(i.e., small differences) were not necessarily perceived as in-
teresting. In contrast to our expectations, complexity showed
a positive relation with pleasantness rather than a negative one
when looking at the difference values, and a non-significant
one when looking at the combined absolute values. Also
in this case, this difference in correlation could indicate that
for example color differences that were evaluated as complex
(i.e., large differences) were also often evaluated as highly
pleasant, whereas absolute colors that were perceived as com-
plex were not necessarily experienced as pleasant.

To assess to what extent interactions between features were
important for the overall probability distributions, we calcu-
lated the conditional Shannon entropy for a feature combi-
nation given that the values for one of the four other dimen-
sions was known. Given that the conditional entropies for the
color combinations, shape combinations, and size combina-
tions were all very similar to their respective overall entropies
(∆ordered = 0.32-0.89%; ∆complex = 0.22-0.64%; ∆pleasant =
0.20-0.51%; ∆interesting = 0.19-0.46% difference compared to
total entropy), we can conclude that choices for each feature
dimension (e.g., color, shape, or size) were made relatively
independent of the two other feature dimensions. In addi-
tion, we assessed the extent to which each color, shape, or
size combination could be predicted based on the average
of the feature values in the display, or based on the signed
or absolute difference between the two feature values. To
do so, we calculated the conditional entropy of the full two-
dimensional KDEs given the average, the signed difference,
or the absolute difference and compared it to the total en-
tropy for the two-dimensional distribution. Both absolute fea-
ture values (53.89-67.18%) as well as differences between ab-
solute features (∆signed=48.71-61.93%; ∆abs=38.41-50.56%)

contributed in determining the probability distributions for
each feature, with some overlap in explained entropy (14.23-
24.32%). This confirms the idea that it is important to take
both absolute and difference aspects of the stimulus into ac-
count when investigating appreciation.

Discussion

In this work, we demonstrate a new approach to efficiently
characterize perceptual and aesthetic evaluations in multidi-
mensional parametric stimulus space. To do so, we com-
bine OCTA for the generation of multidimensional paramet-
ric stimuli and GSP to efficiently sample evaluations in the
multidimensional space. This enabled a fine-grained, high-
dimensional yet controlled characterization of the interrela-
tions between different stimulus dimensions, perceived order
and complexity, and appreciation.

In contrast to unidimensional or non-parametric ap-
proaches, our multidimensional parametric approach enabled
us (a) to provide richer results and interpretations, (b) to as-
sess the relative contributions of different stimulus aspects,
and (c) to verify whether interactions between stimulus di-
mensions mattered. In these particular cases the different fea-
ture dimensions acted relatively independent. However, we
found that both absolute values and difference values need to
be taken into account when studying appreciation: a mere fo-
cus on either absolute values or objective complexity (here
defined as the difference between the two absolute values
present) could only partially explain the results.

Of course there are also some limitations to the work pre-
sented here. First, GSP is a powerful exploratory tool, but the
assumptions underlying the efficient sampling (e.g., that trials
are relatively independent and only weakly affected by previ-
ous stimuli) may induce biases. Therefore, findings need to
be validated with confirmatory experiments that do not rely
on generative sampling (Harrison et al., 2020). Second, we
defined two specific, relatively simple and ordered stimulus
spaces including a particular set of parametric stimulus di-
mensions. In future studies, we will apply the same approach
to diverse stimulus spaces including more complex and un-
ordered sets and different parametric stimulus dimensions.
Third, the current experiments assumed general population
preferences in a Western sample and did not take individ-
ual or cultural differences into account. In future studies, we
will run within-participant GSP chains to assess individual
preferences (Harrison et al., 2020) and compare multidimen-
sional characterizations of perception and appreciation across
cultures (Jacoby et al., 2024; Jakubowski, Polak, Rocamora,
Jure, & Jacoby, 2022; McPherson et al., 2020).

Overall, this work provides a novel methodological ap-
proach for efficiently characterizing subjective evaluations
in multidimensional visual stimulus space, thereby enabling
new theoretical insights in the complex interplay between di-
verse stimulus dimensions in shaping our perceptual and aes-
thetic evaluations.
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