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Abstract

Fast Frequency Estimator

Based on Extended Kalman Filter

by

Lin Jin

Estimating the frequency and phase of a signal is a fundamental problem in signal

processing and communication. Extended Kalman Filter (EKF) is one of the

approaches, and most of the implementations are in digital technologies. The

fast frequency estimator (FFE), as an application of extended Kalman Filter, is

an analog circuit which can determine the amplitude, frequency and phase of

a sine wave signal with noise. This work has built and analyzed the model of

a continuous-time FFE. We approximately derive the FFE transfer function in

steady state, which is a second-order type-2 feedback system. Compared with

a second-order type-2 phase-locked loop (PLL), the bandwidth of the FFE is a

variant during the acquisition. Thus, the architecture of FFE breaks the tradeoff

between loop bandwidth and acquisition time with changeable loop dynamics,

which is a main improvement over the PLL. The design and operation of the

FFE are described in detail and verified by simulations using Cadence SpectreRF.

The circuit of the FFE is divided into three main blocks: the main oscillator

block performing the update of the state equations, and the K and P matrix

blocks, which solve the Riccati equation of the analog FFE. A quadrature LC

oscillator and a two-stage ring oscillator with injection signals are proposed to

implement the main oscillator block and K matrix block, respectively. A simplified

implementation of the P matrix block is proposed based on the study of the phase

of all the signals. The FFE could be used instead of the PLL in the application

xiii



of Clock Recovery. Compared with the PLL, the FFE achieves much more rapid

acquisition with changeable loop dynamics.
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Chapter 1

Introduction

Estimating the frequency and phase of a signal is a fundamental problem in sig-

nal processing and communication. A variety of approaches have been developed.

For instance, Fisher information is applied to estimating signal parameters in the

presence of noise [1], and fast Fourier transform (FFT) based maximum likelihood

estimation (MLE) has been proposed in [2] to derive practical algorithms on a fi-

nite number of discrete noisy observations. Furthermore, many well established

methods to estimate instantaneous frequency (IF) were reviewed in [3], including

differentiation of the phase and smoothing thereof, adaptive frequency estimation

techniques, and extraction of the peak from time-varying spectral representations.

In this study, we focus on the use of the extended Kalman filter (EKF). In

literature, the design and parameterization of EKF frequency estimation has been

discussed in [4][5][6]. The majority of Kalman filter applications are implemented

in digital computers. Also, most modern systems employ digital technologies

to perform the functions once performed by analog circuits. However, analog

circuits design helps to provide more fundamental knowledge for the digitalizing

of analog functions. Moreover, the steady state of continuous-time estimators

can be analyzed in frequency domain, which is an advantage over discrete-time

1



estimators [7]. In chapter 2, the model of fast frequency estimator (FFE) is derived

in both discrete time and continuous time based on the extended Kalman filter.

Implemented in Matlab, the choices of optimal noise covariances Q and R are

studied for the discrete-time estimator. To implement the frequency estimator

in continuous time, analog circuit design is considered and verified in simulation

using the Cadence Spectre simulator. This is a novel approach, because all the

previous Kalman filter research was done digitally. This is due to the difficulty in

solving the associated Riccati equations.

The phase locked loop (PLL) has been studied for almost a century since the

first description appeared in 1920’s [8]. With the fast development of integrated

circuits (IC), the PLL has been widely used since the 1970’s [9]. There are ad-

vanced applications in communication, power and control systems in the past

decades [10][11][12]. The tracking behavior has been studied according to the

type of PLL [13]. The type-1 PLL can track the input frequency, but the phase

error may not be zero. The type-2 PLL can track both the input frequency and

phase. In 1955, Jaffe and Rechtin showed that a PLL is equivalent to a Wiener

filter when the carrier frequency is known [14]. The Wiener filter is the steady

state equivalent of the Kalman filter. In chapter 3, we approximately derive the

FFE transfer function in steady state, which is a second-order type-2 feedback

system. The bandwidth of the FFE is a variant during the acquisition. Thus, the

architecture of FFE breaks the tradeoff between loop bandwidth and acquisition

time with changeable loop dynamics. This is a main improvement over the PLL.

In chapter 4, two analog circuit structures are proposed to implement the FFE,

based on GmC and LC structures, separately. The circuit of the FFE is divided

into three main blocks: the main oscillator block performing the update of the

state equations, and the K and P matrix blocks, which solve the Riccati equation

2



of the analog FFE. Then, the basic issues in FFE circuit design are discussed.

Namely, these are the requirements for the integrator corner frequency, loss and

frequency detuning tolerance.

We begin in chapter 5 with the design and implementation of each of the 3

blocks in the FFE. We choose the LC oscillator as the main oscillator to achieve

better phase noise performance. A coupled LC oscillator is designed to generate

quadrature outputs, and its model is derived based on the concept of injection.

There are several advantages for the K matrix block using a ring oscillator, rather

than an LC oscillator. The ring oscillator is compact, has less coupling to and

from other circuits, and has easy availability of multiple phases [15]. To avoid the

feedback within the K and P matrix blocks, simplification in implementation is

considered and verified by simulation. The performance of the FFE is simulated

with GlobalFoundries 0.13µm 8HP process.

There are mainly four contributions in this work. First, we designed the

continuous-time FFE, and its transfer function was derived in steady state. Sec-

ond, we proposed two analog circuit structures to implement FFE, based on GmC

and LC, separately. We then proposed the quadrature LC oscillator and the

two-stage ring oscillator to implement the main oscillator block and K matrix

block, respectively. Finally, we studied the phase of all the signals and proposed

a simplified implementation of the P matrix block, correspondingly.

3



Chapter 2

Kalman Filter

The Kalman filters have been widely used in control theory for applications,

like navigation, trajectory optimization, etc [16][17]. We introduce, in this section,

the basic theory of the Kalman filter and then discuss the fast frequency estimator

based on the extended Kalman Bucy filter.

2.1 Kalman filter

The Kalman filter (KF) [18] is a recursive estimator, which compares its pre-

dictions with the incoming data and uses the difference to maintain a covariance

matrix, which keeps track of how well the data is matching the model. If the

model fits the data well, the covariance matrix tends to a matrix of zeros. The

basic Kalman filter is in discrete-time form. The input of the system is denoted as
−−→
u(k), a known time sequence. The state space variable

−−→
x(k) at time k is derived

from the state model at time (k − 1) as,

−→x (k) = −→Φ (k − 1)−→x (k − 1) +−→B (k)−→u (k) +−→w (k), (2.1)
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where for the model of the input,
−→Φ k is the state transition model applied to the previous state −→x k−1;
−→
B k is the control-input model applied to the input vector −→u k;
−→w k is the process noise assumed to follow a normal distribution N with mean 0

and covariance Qk.

The observation
−−→
z(k) at time k is from the model,

−→z (k) = −→H (k)−→x (k) +−→v (k), (2.2)

where
−→
H k is the observation model which maps the real state space variable

−−→
x(k) into

the observed space;
−→v k is the observation noise assumed to follow normal distribution N with mean

0 and covariance Rk.

The state estimate is denoted as
−−→ˆx(k) at each time step k. The Kalman filter

makes two estimates of the state at each step: a prediction estimate, −→x̂ −, and

an updated estimate, −→x̂ +.
−→
x̂ +(k) is used to denote the estimate of −→x at time k

given observations up to and including at time k. −→x̂ −(k) is used to denote the

estimate of −→x at time k given observations up to and including at time (k − 1).

x̂−(k) = E[x(k)|z(1), z(2), · · · , z(k − 1)], (2.3)

x̂+(k) = E[x(k)|z(1), z(2), · · · , z(k)]. (2.4)

A covariance matrix is modified for both the prediction and update step. The

notation P (k) is used to denote the covariance of the estimation error, which is

divided into the + and − steps as follows. P−(k) denotes the covariance of the

estimation error of x̂−(k), and P+(k) denotes the covariance of the estimation
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error of x̂+(k).

P−(k) = E[(x(k)− x̂−(k))− (x(k)− x̂−(k))T ], (2.5)

P+(k) = E[(x(k)− x̂+(k))− (x(k)− x̂+(k))T ]. (2.6)

These relationships are depicted in Figure 2.1.

Figure 2.1: Timeline for a prediction and an updated estimates and estimation
error covariances.

The process is carried out as follows:

Prediction Steps:

State Prediction Extrapolation

−→
x̂ −(k) = −→Φ (k − 1)−→x̂ +(k − 1) +−→B (k)−→u (k), (2.7)

Error Covariance Extrapolation

P−(k) = Φ(k − 1)P−(k − 1)Φ(k − 1)T +Q(k), (2.8)

Eq. (2.8) is called the Riccati equation [19]. P (k) is a positive symmetric

matrix. P (k) = P T (k).

Update steps:

Kalman Gain Matrix

K(k) = P−(k)HT [H(k)P−(k)H(k)T +R(k)]−1, (2.9)
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State Estimate Update

−→
x̂ +(k) = −→x̂ −(k) +K(k)[

−−→
z(k)−H−→x̂ −(k)], (2.10)

Error Covariance Update

P+(k) = P−(k)[I −K(k)H(k)]. (2.11)

2.2 Extended Kalman filter

The Kalman filter provides the optimal solution to the tracking problem in

the linear Gaussian environment [20]. The extended Kalman filter (EKF) is the

nonlinear version of the Kalman filter [18]. In the extended Kalman filter, we

linearize the nonlinear system around the Kalman filter estimate. The model is

similar to the Kalman filter, and the difference is the state transition model f and

observation model h, which do not need to be linear functions.

−→x (k) = −→φ (−→x (k − 1),−→u (k)) +−→w (k), (2.12)

−→z (k) = −→h (−→x (k)) +−→v (k). (2.13)

Unlike the Kalman filter, functions φ and h cannot be applied to the covariance

directly. Instead, the Jacobian matrix is computed at each step. As follows, the

extended Kalman filter is derived by linearizing the signal model and using the

KF equations to calculate the gain matrix.

Prediction steps:
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System Linearization

Φ(k) = ∂φ

∂x

∣∣∣∣∣
x̂+(k−1),u(k)

, (2.14)

H(k) = ∂h

∂x

∣∣∣∣∣
x̂−(k)

, (2.15)

State Prediction Extrapolation

−→
x̂ −(k) = Φ(−→x̂ +(k − 1),−→u (k)), (2.16)

Error Covariance Extrapolation

P−(k) = Φ(k − 1)P+(k − 1)Φ(k − 1)T +Q(k), (2.17)

Update steps:

The gain matrix K(k) is calculated based on the KF equations for the linearized

system,

K(k) = P−(k)H(k)T [H(k)P−(k)H(k)T +R(k)]−1, (2.18)

The gain matrix, together with the nonlinear signal model, is used to generate

the filtered state estimate at the next time instant.

State Estimate Update,

−→
x̂ +(k) = −→x̂ −(k) +K(k)[z(k)−H−→x̂ −(k)], (2.19)

Error Covariance Update

P+(k) = P−(k)[I −K(k)H(k)]. (2.20)
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2.3 Fast frequency estimator model

A discrete-time single tone signal can be expressed as z(k) = a(sin kωTs+φ)+

v(k), where
z(k) instantaneous signal;

a amplitude;

k sampling constant;

ω radian frequency;

Ts sampling time;

φ phase;

v(k) observation noise, follows a normal distribution N with mean 0 and covariance R(k).

The estimated signal ẑ(k) can be written as ẑ(k) = z(k)− v(k).

It is known that the consecutive samples of a sinusoid signal satisfy

ẑ(k + 1) = a sin[(k + 1)ωTs + φ] (2.21)

= a sin(kωTs + φ) cos(ωTs) + a cos(kωTs + φ) sin(ωTs). (2.22)

To accurately estimate ω from the above model, the EKF can be applied. We

denote the estimated signal x1 and x2 as in phase and quadrature with z, sep-

arately, and x3 as the radian frequency of z. Assuming the frequency ω varies

slowly enough, i.e. x3(k + 1) = x3(k) = ω is assumed constant, the state space

vector is given as

−→x (k) =


x1

x2

x3

 =


sin(kωTs + φ)

cos(kωTs + φ)

ω

 (2.23)
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−→x (k + 1) =


a sin[(k + 1)ωTs + φ]

a cos[(k + 1)ωTs + φ]

ω

 (2.24)

=


a sin(kωTs + φ) cos(ωTs) + a cos(kωTs + φ) sin(ωTs)

a cos(kωTs + φ) cos(ωTs)− a sin(kωTs + φ) sin(ωTs)

ω

(2.25)

=


x1(k) cos(x3(k)Ts) + x2(k) sin(x3(k)Ts)

−x1(k) sin(x3(k)Ts) + x2(k) cos(x3(k)Ts)

x3(k)

 (2.26)

=


cos(x3(k)Ts) sin(x3(k)Ts) 0

− sin(x3(k)Ts) cos(x3(k)Ts) 0

0 0 1




x1(k)

x2(k)

x3(k)

 (2.27)

Now the EKF may be able to estimate the constant x3(k) = ω. Then the mea-

surement equation is

ẑ(k) = [1 0 0] x̂(k) + v(k), (2.28)

Thus, according to the EKF model, there is

−→x (k + 1) = φ(−→x (k)) + w(k), (2.29)

−→z (k) = h(−→x (k)) + v(k), (2.30)

where

φ(k) =


cos(x3(k)Ts) sin(x3(k)Ts) 0

− sin(x3(k)Ts) cos(x3(k)Ts) 0

0 0 1

 , (2.31)
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h(k) = x1(k). (2.32)

−→w (k) is the process noise assumed to follow a normal distribution N with mean,

0 and covariance, Q(k). As x1 and x2 are the noiseless transformations of the

frequency x3, the corresponding Q are all zeros except for Q(3, 3) = q, where q is

the variance of the frequency.
−→v (k) is the measurement noise assumed to follow normal distribution N with

mean, 0 and covariance, R(k).

Applying the EKF theory to the above model, a nonlinear recursive filter for

estimating the frequency of a single sinusoid in white noise is obtained as follows,

Φ(k) = ∂φ

∂x
= (2.33)


cos(x3(k)Ts) sin(x3(k)Ts) −Tsx1(k) sin(x3(k)Ts) + Tsx2(k) cos(x3(k)Ts)

− sin(x3(k)Ts) cos(x3(k)Ts) −Tsx1(k) cos(x3(k)Ts)− Tsx2(k) sin(x3(k)Ts)

0 0 1

 ,
(2.34)

H(k) = [1 0 0] , (2.35)

−→
x̂ −(k) = −→Φ (−→x̂ +(k − 1),−→u (k)), (2.36)

P−(k) = Φ(k − 1)P+(k − 1)F (k − 1)T +Q(k), (2.37)

K(k) = P−(k)H(k)T [H(k)P−(k)H(k)T +R(k)]−1 (2.38)

−→
x̂ +(k) = −→x̂ −(k) +K(k)[z(k)−H−→x̂ −(k)], (2.39)

P+(k) = [I −K(k)H(k)]P−(k). (2.40)
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2.3.1 Matlab implementation

This discrete-time FFE model is implemented in Matlab. In Figure 2.2, the

measured signal z is a 1GHz sinusoidal signal embedded in Gaussian noise, and

the estimated signals x1 and x2 are in phase and quadrature with z, respectively.

Figure 2.3 shows the dynamic performance of the frequency estimate x3, which

starts from 0 and converges to a steady state value of 1GHz within 5 cycles. The

error covariance matrix P is shown in Figure 2.42.5. P11, P22 and P33 are shown

in Figure 2.4, with initial value of 1 and steady state value close to 0. As P is

a non-negative symmetric matrix, only P12, P13 and P23 are shown in Figure 2.5,

with steady state value of 0.

Figure 2.2: Measured and estimated signals in the discrete time FFE. The
measured signal z is a 1GHz sinusoidal signal embedded in Gaussian noise, and
the estimated signals x1 and x2 are in phase and quadrature with z, respectively.
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Figure 2.3: Estimated frequency in the discrete time FFE. The frequency es-
timate x3 starts from 0 and converges to a steady state value of 1GHz within 5
cycles.

Figure 2.4: Portion performance of error covariance matrix P. P11, P22 and P33
with initial value of 1 reach steady state value close to 0.
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Figure 2.5: Portion performance of error covariance matrix P. P12, P13 and P23
reach steady state value of 0.

2.3.2 Choices of Q and R

When the signal is buried in Gaussian noise, the random noise will lead to small

differences in every simulation, which makes it difficult to compare the influences

of different Q and R. Therefore, in this section, we assume the input is a pure

sinusoidal signal of constant amplitude, frequency and phase.

The Riccati equation shows that the minimum value of the solution of the

Riccati equation is given by Q, as

P−(k) = Φ(k − 1)P+(k − 1)F (k − 1)T +Q(k). (2.41)

Therefore, the value of the Kalman gain matrix K is related to the choice of Q.

K defines the rate at which we change x̂ based on the measurement. A smaller

value of Q leads to more confidence in the estimated model, thus, the filter pays

less attention to new data with smaller K. In Figure 2.6, different values of Q

14



lead to different damping factors.

Figure 2.6: Dynamic comparison of different Q in discrete-time FFE. Different
values of Q lead to different damping factors.

In the FFE, as x1 and x2 are noiseless transformations of frequency x3, we

only need to determine the estimation error covariance for x3. When the signal

frequency x3 is constant or varies very slowly, the estimate model is reliable and

very small Q is needed. However, during the acquisition, x3 changes aggressively.

Thus, if the chosen Q is too small, the filter may not be accurate enough. Fig-

ure 2.7 shows the steady state value of Q = 1e − 8 is less accurate than that of

Q = 1e−6 and Q = 1e−7. As there is no measurement noise in this case, this con-

clusion works with different values of R. For the EKF, the solution of the Riccati

equation is the first-order approximation to the true error covariance. Thus, the

error covariance is underestimated according to the true error covariance. This

condition needs to be taken into consideration as well.

The choice of R for the FFE is less important than that of Q, which means the

accuracy of tracking is less sensitive to the value of R. The value of R influences
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Figure 2.7: Steady state of different Q in discrete-time FFE. The steady state
value of Q = 1e− 8 is less accurate than that of Q = 1e− 6 and Q = 1e− 7.

the acquisition time of the model. A smaller value of R means the measurement

noise is smaller and thus, the measurement is more reliable. The influence of R

is compared for pure sinusoidal input in Figure 2.82.9 for Q = 0 and Q = 1e− 6,

separately. In both cases, the filter reaches the steady state faster with smaller

R.

The steady state results in Figure 2.10 show that a proper value of Q leads to

accurate steady state value for different values of R. Otherwise, as in Figure 2.11,

there is a bias between the steady state value and expected value.
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Figure 2.8: Dynamic comparison of different R when Q = 0. The filter reaches
the steady state faster with smaller R

Figure 2.9: Dynamic comparison of different R when Q = 1e−6. The filter also
reaches steady state faster with smaller R.
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Figure 2.10: Steady state of different R when Q = 1e− 6. A proper value of Q
leads to accurate steady state value for different values of R.

Figure 2.11: Steady state of different R when Q = 0. There is a bias between
the steady state value and expected value.

2.4 Kalman-Bucy filter

The Kalman-Bucy filter is the continuous-time version of Kalman filter [21][22].

Assuming we have an input state space ~x, and if it is an n× 1 vector, the signal18



can be represented in the form

d−→x
dt

= A−→x +B−→u +−→w , (2.42)

−→y = C−→x +−→v , (2.43)

where A is an n×n matrix, w is the process noise which follows a normal distribu-

tion N(0, Q) and v is the measurement noise which follows a normal distribution

N(0, R).

Taking the limit as T → 0 over the KF models, we can get the estimate of −→x ,

denoted as −→x̂ ,
d
−→
x̂

dt
= A
−→
x̂ +B−→u +K(t)(−→y − C−→x̂ ), (2.44)

and the best K is given by PCTR−1 [23], where P is defined as,

dP

dt
= AP + PAT +Q− PCTR−1CP, (2.45)

Eq. (2.44) is called analysis equation and Eq. (2.45) is called a differential Riccati

equation [19]. P (t) is the covariance of (x(t)− x̂(t)), which is a positive symmetric

n× n matrix. P (t) = P T (t).

2.5 Extended Kalman-Bucy filter

The Kalman-Bucy filter only deals with a linear system. To accommodate

nonlinearity, the extended Kalman-Bucy filter is derived based on the nonlinear

function −→f . The modified model is,

d−→x
dt

= −→
f (−→x ) +B−→u +−→w , (2.46)

−→y = C−→x +−→v , (2.47)
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where

−→
f (−→x ) =


f1(−→x ) = f1(x1, · · · , xn)

...

fn(−→x )

 , (2.48)

Then

A(t) = ∂
−→
f

∂−→x

∣∣∣∣∣−→x=−→x̂ (t)
, (2.49)

Thus, the estimated model is

d
−→
x̂

dt
=
−−→
f (x̂) +B−→u +K(t)(−→y − C−→x̂ ), (2.50)

dP

dt
= AP + PAT +Q− PCTR−1CP, (2.51)

where the best K is given by PCTR−1.

2.6 Fast frequency estimator model

Now let’s consider a sinusoidal signal x1(t) = a sin(ωt+ φ) and its quadrature

signal x2(t) = a cos(ωt + φ), where a is the amplitude, ω is the radian frequency

and φ is the phase. Thus there is dx1/dt = ωx2 and dx2/dt = −ωx1. Now let’s

define frequency ω = ω0 +kx3, where ω0 is the initial fixed radian frequency, x3 is

a variable voltage and k is the frequency/voltage gain. Thus, there is dω/dt = 0 =

dω0/dt+ kdx3/dt, which leads to dx3/dt = 0 when ω0 is assumed to be constant.

Hence, we can define

−→
f (x) = d

dt


x1

x2

x3

 =


ωx2

−ωx1

0

 , (2.52)
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B = 0, (2.53)

C = [1 0 0], (2.54)

d
−→
x̂

dt
=
−−→
f (x̂) +B−→u +K(t)(−→y − C−→x̂ ), (2.55)

The best K is PCTR−1, where P is defined as,

dP

dt
= AP + PAT +Q− PCTR−1CP, (2.56)

As indicated in the Extended Kalman Filter,

A = ∂
−→
f

∂−→x
=


0 ω0 + kx3 kx2

−(ω0 + kx3) 0 −kx1

0 0 0

 , (2.57)

Thus, we derive

AP =


(ω0 + kx̂3) P12 + kx̂2P13 (ω0 + kx̂3) P22 + kx̂2P23 (ω0 + kx̂3) P23 + kx̂2P33

− (ω0 + kx̂3) P11 − kx̂1P13 − (ω0 + kx̂3) P12 − kx̂1P23 − (ω0 + kx̂3) P13 − kx̂1P33

0 0 0

 ,

(2.58)

PAT =


(ω0 + kx̂3) P12 + kx̂2P13 − (ω0 + kx̂3) P11 − kx̂1P13 0

(ω0 + kx̂3) P22 + kx̂2P23 − (ω0 + kx̂3) P12 − kx̂1P23 0

(ω0 + kx̂3) P23 + kx̂2P33 − (ω0 + kx̂3) P13 − kx̂1P33 0

 , (2.59)
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PCTR−1CP = 1
r


P 2

11 P11P12 P11P13

P11P12 P 2
12 P12P13

P11P13 P12P13 P 2
13

 . (2.60)

Therefore, we can summarize 9 equations for the FFE,

dx̂1

dt
= (ω0 + kx̂3)x̂2 + P11

r
(y − x̂1), (2.61)

dx̂2

dt
= −(ω0 + kx̂3)x̂1 + P12

r
(y − x̂1), (2.62)

dx̂3

dt
= P13

r
(y − x̂1), (2.63)

dP13

dt
= (ω0 + kx̂3)P23 + kx̂2P33 −

P11P13

r
, (2.64)

dP23

dt
= −(ω0 + kx̂3)P13 − kx̂1P33 −

P12P13

r
, (2.65)

dP33

dt
= −P

2
13
r
, (2.66)

dP11

dt
= 2(ω0 + kx̂3)P12 + 2kx̂2P13 −

P 2
11
r
, (2.67)

dP12

dt
= −(ω0 + kx̂3)(P11 − P22) + k(x̂2P23 − x̂1P13)− P11P12

r
, (2.68)

dP22

dt
= −2(ω0 + kx̂3)P12 − 2kx̂1P23 −

P 2
12
r
. (2.69)

2.7 Summary

In this chapter, both linear and nonlinear Kalman filters are introduced in

discrete time and continuous time. The discrete-time FFE is designed and verified

in Matlab. Furthermore, the choices of optimal noise covariances Q and R are

discussed and compared in simulation. Finally, based on extended Kalman-Bucy

filter, the model of the continuous-time FFE is designed and 9 equations are

derived.
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Chapter 3

Phase-Locked Loop

The phase-locked loop (PLL) is a feedback control system whose output phase

is related with the input phase [12]. In this chapter, we discuss different types

of analog PLL. Then, the steady-state transfer function of FFE is derived and

compared with that of the PLL.

3.1 Analog phase-locked loop

3.1.1 Simple PLL

Figure 3.1 is the block diagram of a simple PLL, which includes phase detector

(PD), loop filter and voltage controlled oscillator (VCO) [24]. The PD compares

the phase difference of the reference signal and VCO output, and then generates

an output voltage. The relationship between the output voltage and input phase

difference is defined as the gain of the PD and denoted by KPD(V/rad). In

practice, the PD gain is nonlinear and non-monotonic. The loop filter, usually a

low-pass filter, is used to suppress the large sidebands. The simplest loop filter is

an R and C low-pass filter. The VCO is an oscillator whose frequency is decided
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PD VCO
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Figure 3.1: Simple PLL block diagram.

by the loop filter output voltage. The loop filter output voltage is also called the

control voltage of the VCO. The ratio of the frequency and the control voltage is

defined as the gain of the VCO and denoted by KV CO(rad/s/V ). The relationship

is expressed as

ωout = ω0 +KV COVcont, (3.1)

where ωout is the VCO frequency, Vcont is the control voltage from the loop filter,

and ω0 is the VCO free running frequency when the control voltage is 0.

To further model VCO, we can write the VCO output as

Vout(t) = V0 cos
(
ω0t+KV CO

∫
Vcontdt

)
. (3.2)

Thus, the VCO can be modeled as a block with the control voltage as input and

excess phase as output

φout = KV CO

∫
Vcontdt. (3.3)

Hence, in s-domain we have

φout
Vcont

(s) = KV CO

s
. (3.4)
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The low-pass loop filter is expressed as

GLPF (s) = 1
1 + s/ωLPF

, (3.5)

where ωLPF = 1/(R1C1).

Thus, the open-loop transfer function is

G(s) = KPDGLPF (s)KV CO

s
. (3.6)

Then, the closed-loop transfer function is

H(s) = Φout

Φin

(s) = KPDKV CO

R1C1s2 + s+KPDKV CO

. (3.7)

It is a second-order transfer function, which can be written as

H(s) = ω2
n

s2 + 2ζωns+ ω2
n

, (3.8)

where

ζ = 1
2

√
ωLPF

KPDKV CO

(3.9)

ωn =
√
KPDKV COωLPF . (3.10)

The corresponding error response of the closed-loop PLL is

E(s) = 1−H(s) = s2 + 2ζωns
s2 + 2ζωns+ ω2

n

. (3.11)

As there is one pole at the origin in the open-loop transfer function, this PLL is

also called a type-1 PLL. The amplitude responses of system and error transfer
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function are shown in Figure 3.2 and 3.3 for different values of damping factor

ζ. The system transfer function H(s) performs as a low-pass filter, whereas the

error transfer function E(s) performs as a high-pass filter. Figure 3.2 shows that

natural frequency ωn is a good indication of bandwidth of the second-order type-1

PLL. The bandwidth means PLL can track a time varying input phase modulation

within the loop bandwidth. The error response shows that input phase modulation

outside the bandwidth can cause total phase error and can’t be tracked. The loop

3dB bandwidth can be calculated as

ω3dB = ωn

(
1− 2ζ2 +

√
(1− 2ζ2)2 + 1

)1/2
. (3.12)

Figure 3.2: Second order type-1 PLL system amplitude response |H(s)| for
different values of damping factor ζ.

Natural frequency ωn and ζ are two important parameters that describe the
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Figure 3.3: Second order type-1 PLL error amplitude response |E(s)| for differ-
ent values of damping factor ζ.

properties of second-order loops. The value of ζ is typically chosen as
√

2/2 [13].

When ζ < 1, there is a complex conjugate pair of poles; when ζ = 1, two poles

are real and coincident; when ζ > 1, there are two separate real poles. We can

denote loop gain K = KPDKV CO, and there is

ωn =
√
ωLPFK, (3.13)

ζ = 1
2

√
ωLPF
K

. (3.14)

There are several drawbacks of the simple PLL [25]. First, the loop stability ζ

is tightly related by the corner frequency ωLPF of the loop filter. A small value of

ωLPF is needed to suppress the ripple on the VCO control voltage, while it may

lead to a less stable loop. Second, for an input frequency step change, there is

finite static phase error, which is undesirable. We can derive the phase error in
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this case from

Φ(s) = Φin(s)− Φout(s) (3.15)

= Φin(s)
[
1− Φout

Φin

(s)
]

(3.16)

= Φin(s) [1−H(s)] (3.17)

For an input frequency step change of ∆ω, there is

Φin(s) = ∆ω
s2 , (3.18)

Hence, the steady-state phase error is

Φss(s) = lim
s→0

sΦin(s) [1−H(s)] (3.19)

= lim
s→0

s
∆ω
s2

(
1− KPDKV CO

R1C1s2 + s+KPDKV CO

)
(3.20)

= lim
s→0

∆ω(R1C1s+ 1)
R1C1s2 + s+KPDKV CO

(3.21)

= ∆ω
KPDKV CO

. (3.22)

Larger KPD and KV CO leads to smaller phase error. However, a smaller damping

factor is not good for stability and settling time. The open-loop transfer function

can be expressed in terms of ωn and ζ,

G(s) = ω2
n

s2 + 2ζωns
. (3.23)

A Bode plot of the open loop transfer function can be used to evaluate stability.

The gain crossover frequency ωgc is defined as |G(jωgc)| = 0dB. From the Bode

plot in Figure 3.4, we can get the phase margin, which is defined as Arg[G(jωgc)]+

π. The phase margin gets larger as ζ increases and approaches 90o when ζ > 2.
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The least phase margin of 45o can be met when ζ > 0.5.

Figure 3.4: Type-1 PLL Bode plot. The phase margin gets larger as ζ increases
and approaches 90o when ζ > 2.

3.1.2 Type-2 PLL

Figure 3.5 is the block diagram of a charge-pump PLL, which includes a phase

frequency detector (PFD), a charge pump(CP), a loop filter and a voltage con-

trolled oscillator (VCO) [26]. In the beginning, the PFD acts as a frequency

detector. When the VCO frequency is close enough to the input frequency, the

PFD operates as a phase detector to make the loop into phase lock. Determined

by PFD output, the charge pump sources or sinks current into a capacitor. The

PFD, CP and capacitor work together as an integrator of the input phase differ-
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Figure 3.5: Type-2 PLL block diagram.

ence. As the model of the VCO is also an integrator, there are two integrators in a

loop, which makes the loop unstable. Thus, a resistor in series with the capacitor

acts as a loss to the integrator to make the system stable. A charge-pump PLL is

also called type-2 PLL. The relationship between phase difference and the control

voltage of the VCO is approximately

Vcont '
φin − φout

2π

[
ICP
C1

tu(t) + ICPR1u(t)
]
, (3.24)

Differentiating with respect to time, and taking a Laplace transform, we can get

Vcont
φin − φout

= ICP
2π

( 1
C1s

+R1

)
. (3.25)

Then, the closed-loop transfer function of the PLL in Figure 3.5 is

H(s) =
ICPKV CO

2πC1
(R1C1s+ 1)

s2 + ICP
2π KV COR1s+ ICP

2πC1
KV CO

. (3.26)
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This is a second-order transfer function,

H(s) = 2ζωns+ ω2
n

s2 + 2ζωns+ ω2
n

, (3.27)

where

ζ = R1

2

√
ICPC1KV CO

2π , (3.28)

ωn =
√
ICPKV CO

2πC1
. (3.29)

The corresponding error response is

E(s) = 1−H(s) = s2

s2 + 2ζωns+ ω2
n

. (3.30)

As opposed to a type-1 PLL, there is no need to trade off stability against ripple

suppression. Increasing C1 means a smaller cut-off frequency, which can lower

the control voltage ripple. Correspondingly, larger ζ is achieved for better loop

stability. The amplitude responses of the system and error transfer functions are

shown in Figure 3.6 and 3.7 for different values of damping factor ζ. The system

transfer function H(s) performs as a low-pass filter, whereas the error transfer

function E(s) performs as a high-pass filter.

For a type-2 PLL, the bandwidth differs for different ζ. Thus, the natural

frequency ωn is no longer a good indication of bandwidth. However, ωn is a

good indication of the corner frequency of error high-pass filter. The loop 3dB

bandwidth can be calculated as

ω3dB = ωn

(
1 + 2ζ2 +

√
(2ζ2 + 1)2 + 1

)1/2
. (3.31)
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Figure 3.6: Second order type-2 PLL system amplitude response |H(s)|.

Figure 3.7: Second order type-2 PLL error amplitude response |E(s)|.
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In PLL design, bandwidth is usually set as one-tenth of the input frequency

to suppress the out-of-band phase noise. Figure 3.8 shows the step response of

a second-order type-2 PLL. The settling time depends on the natural frequency

and damping factor,

Ts = − ln(tolerance fraction×
√

1− ζ2)
ζωn

(3.32)

When input frequency is 1GHz, if we choose ωn = 2MHz and ζ = 0.707, then

the time taken to settle within 1 percentage is

Ts = − ln(0.01×
√

1− 0.7072)
0.707× 2× 106 (3.33)

= 3.5µs. (3.34)

In this case, the settling time is about 3500 signal cycles.

Figure 3.8: Step response for a second order type-2 PLL.
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Figure 3.9: Gain peaking in |H(s)| for a second order type-2 PLL.

As in Figure 3.2, gain peaking exists when ζ is smaller than 0.707 for second

order type-1 PLL. In Figure 3.6, larger gain peaking is observed in type-2 PLL.

The gain peaking of a second-order type-2 PLL can be expressed as

gainpeaking = 10log 8ζ4

8ζ4 − 4ζ2 − 1 +
√

8ζ2 + 1
. (3.35)

Figure 3.9 shows that small damping leads to large peaking, and peaking still

exists with large damping and never disappears.

The open loop transfer function can be expressed in terms of ωn and ζ,

G(s) = 2ζωns+ ω2
n

s2 . (3.36)

Figure 3.10 shows the open-loop Bode plot of a type-2 PLL. The phase margin

performance is the same as type-1 PLL, which is listed in Table 3.1.
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Figure 3.10: Type-2 PLL bode plot.

Table 3.1: Phase margin of second order PLL.

Damping factor Phase margin(o)
0.3 33.3
0.5 51.8

0.707 65.6
1 76.4
2 86.4

3.2 FFE phase transfer function

In chapter 2, we have derived the model for FFE. From the observation on

steady-state P signals, we can get the phase relation among them. For x1 =

sin(ωt) and x2 = cos(ωt), there are P13 = cos(ωt), P23 = − sin(ωt), P11 = P33 =

1 + cos(2ωt), P22 = 1− cos(2ωt), and P12 = − sin(2ωt). These phase relations can
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be also derived from FFE equations. From Eq. (2.61) we can derive the phase of

P11x1, which should follow the phase of x2. Then, there is

φp11 − φx1 = φx2, (3.37)

φp11 = φx1 + φx2. (3.38)

Similarly, Eq. (2.62) shows

φp12 − φx1 = φx1 + π, (3.39)

φp12 = 2φx1 + π. (3.40)

From Eq. (2.64), there is

φp11 − φp13 = φp23 + π, (3.41)

φp11 = φp13 + φp23 + π. (3.42)

Therefore,

φp13 = φx1 + π

2 , (3.43)

φp23 = φx2 + π

2 . (3.44)

Assuming the initial phase of x1 is φ0, we can derive the steady-state phases for

all the signals in Table 3.2.

Table 3.2: Phases of FFE signals in steady state.

Signal x1 x2 P13 P23 P11 P12
Phase 0 π/2 π/2 π π/2 π

To derive the phase transfer function as for the PLL, we start with the first
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and third equations for x1 and x3. In steady state, we assume the input signal

y = a sin(ωt + φin) and output signal x1 = a sin(ωt + φout), where φin and φout

are very small phase excesses, and φin 6= φout. Also, we can approximately define

P11 = a11(1 + cos 2ωt) and P13 = a13 cosωt. Thus, when φin and φout are small,

we can make an approximation that,

y − x1 = a sin(ωt+ φin)− a sin(ωt+ φout) (3.45)

= a sinωt cosφin + a cosωt sinφin − a sinωt cosφout − a cosωt sinφout(3.46)

' a cosωt(φin − φout). (3.47)

From Eq. (2.63), we obtain

dx3

dt
= P13

r
(y − x1) (3.48)

= a13a

r
cosωt cosωt(φin − φout) (3.49)

= a13a

2r (cos 2ωt+ 1)(φin − φout), (3.50)

Ignoring the high-frequency term,

dx3

dt
= a13a

2r (φin − φout), (3.51)

Taking the Laplace transform, we have

x3

φin − φout
= Kx3

s
(3.52)

where

Kx3 = a13a

2r (3.53)

Eq. (2.61) for x1 can be viewed as an oscillator with injection. If the injection
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signal is excluded, it follows the model of the VCO

φex
x3

(s) = KV CO

s
. (3.54)

Therefore, the model for the equation x3 is a negative feedback loop with the

open-loop transfer function

G3(s) = Kx3KV CO

s2 (3.55)

The injection signal of Eq. (2.61) can be approximately as

P11(y − x1) = a11(1 + cos 2ωt)a cosωt(φin − φout) (3.56)

= 3a11a

2 cosωt(φin − φout)−
a11a

2 cos 3ωt(φin − φout) (3.57)

' 3a11a

2 cosωt(φin − φout) (3.58)

To further analyze the equation for x1, we use the complex polar form to denote

x1 = −ja exp(jθ), x2 = a exp(jθ) and P11(y − x1) = 3a11a
2 (φin − φout) exp(jθ).

Thus, there is

d

dt

(
−jaejθ

)
= 3a11a

2r (φin − φout)ejθ + ωaejθ (3.59)

Assuming the amplitude a changes slowly in steady state, that is, da/dt ' 0, then

dθ

dt
= 3a11

2r (φin − φout) + ω (3.60)

θ = ωt+ φout (3.61)
dφout
dt

= 3a11

2r (φin − φout) (3.62)
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Figure 3.11: Model of FFE transfer function.

Taking the Laplace transform, we have

φout = K11

s
(φin − φout) (3.63)

where

K11 = 3a11

2r (3.64)

Therefore, the model for the injection in equation x1 is a negative feedback loop

with the open-loop transfer function

G11(s) = K11

s
(3.65)

Now there are two paths for the excess phase φex, one is through the control

voltage x3, and the other is through the injection current into the oscillator.

Then, we can get the model for both paths in Figure 3.11. Thus, we can derive

the closed-loop phase transfer function:

H(s) = G3(s) +G11(s)
1 +G3(s) +G11(s) (3.66)

= sK11 +Kx3KV CO

s2 + sK11 +Kx3KV CO

(3.67)
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As a second-order transfer function, there is

ωn =
√
Kx3KV CO (3.68)

=
√
a13aKV CO

2r , (3.69)

ζ = K11

2
√
Kx3KV CO

(3.70)

= 3a11

2
√

2ra13aKV CO

. (3.71)

Charge-pump PLL uses a resistor in series with the capacitor in the loop filter to

make the system stable. Several approaches were also studied to provide a zero

in PLLs. A voltage-controlled delay line [27] and a discrete-time delay cell [28]

are employed in the synthesizers. From the analysis on FFE transfer function, we

can view the function of the injection signals as providing the zero to stabilize the

system.

Besides those already known advantages of a second-order type-2 PLL, fast

settling speed is one of the biggest advantages of the FFE. As we know, the

settling time of a second-order system is inverse proportional to the bandwidth.

Multi modes are employed in [29] to achieve Adaptive bandwidth. A fractional

PLL is studied to achieve faster acquisition together with wide bandwidth in [30].

In the FFE, the natural frequency is not a constant, as it is decided by a13,

which is the time-varying amplitude of P13. In the very beginning, the covariance

P is large, thus, very fast acquisition is achieved. In general, the loop bandwidth

is designed to not exceed 1/10 of the signal frequency. Assuming that we set the

steady state bandwidth of both PLL and FFE to be 1/10 of the signal frequency,

the bandwidth of FFE during the acquisition can be much larger to achieve fast

acquisition. The acquisition is also called capture, and pull-in [31]. In steady

state, all the P signals are close to 0 and a small value of P leads to a low natural
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frequency to meet the bandwidth requirement.

The exact acquisition range is given by the solution of a second-order nonlinear

differential equation. Thus, approximation is made in terms of loop gain [32].

Hence, the changeable loop dynamics leads to a large acquisition range. After

acquisition, the output signal can still track the input frequency deviation within

a certain range, which is called hold-in range. The hold-in range is always larger

than the acquisition range with an incoming signal [33]. In real circuits, there are

more restrictions, like the frequency range of the main oscillator and its ability of

injection locking.

3.3 Summary

In this chapter, we first introduce type-1 and type-2 PLL and their transfer

function. Also, the bode diagrams of PLL with different damping factors are sim-

ulated and compared. Finally, we approximately investigate the transfer function

of FFE in steady state, which is a second-order type-2 system. The bandwidth

of FFE is decided by the amplitude of P13, which is a variable during acquisition.

Hence, the architecture of FFE breaks the tradeoff between loop bandwidth and

acquisition time with changeable loop dynamics.
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Chapter 4

Circuit Implementation and

Design Concerns

In this chapter, we investigate various ways to implement the FFE. First, the

most straightforward approach is using GmC structures. Second, a model based

on LC structures is introduced and analyzed. Finally, we discuss several design

concerns of the FFE we have discovered, namely: (1) requirement for integrator

corner frequency; (2) main oscillator loss requirement; (3) frequency detuning

tolerance; (4) K matrix block loss and frequency detuning tolerance; (5) K matrix

block loss and phase delay tolerance.

4.1 GmC implementation model

The structure of the FFE is diagrammatically depicted in Figure 4.1. From

an external point of view, the FFE is a device with the measured signal y as

input and a generating signal x1 and the estimated control voltage x3 as outputs.

The internal structure consists of three main blocks: the main oscillator block

performing the update of the state equations, with the K and P matrix blocks
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providing the Riccati equation. The equations for the FFE are first-order differ-

Figure 4.1: FFE diagram.

ential equations, and the most direct implementation is based on capacitors. The

derivative form of the capacitor current-voltage relation is

dV (t)
dt

= 1
C
I(t), (4.1)

Using this, Eq. (2.61), (2.62) and (2.63) can be rewritten as

dx̂1

dt
= Gm

C
x̂2 + I1

C
, (4.2)

dx̂2

dt
= −Gm

C
x̂1 + I2

C
, (4.3)

dx̂3

dt
= I3

C
, (4.4)

where Gm = ωC, I1 = P11(y − x̂1)C/r, I2 = P12(y − x̂1)C/r and I3 = P13(y −

x̂1)C/r.

Thus, we obtain the corresponding circuit model as Figure 4.2, which is called
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the main oscillator block. It can be seen that x1&x2 comprise a 2-stage GmC ring

oscillator with natural frequency ω, and x3 is generated by an integrator.

Figure 4.2: GmC model for FFE main oscillator.

Similarly, Eq. (2.64), (2.65) and (2.66) can be rewritten as

dP13

dt
= Gm

C
P23 + I13

C
, (4.5)

dP23

dt
= −Gm

C
P13 + I23

C
, (4.6)

dP33

dt
= I33

C
, (4.7)

where Gm = ωC, I13 = (kx̂2P33C − P11P13C)/r, I23 = (−kx̂1P33C − P12P13C)/r

and I33 = −P 2
13C/r.

The circuit model for P13 and P23 is called the K matrix block, and its block

diagram is shown in Figure 4.3. P13&P23 can be implemented as a 2-stage GmC

ring oscillator with natural frequency ω, and P33 is generated by an integrator.
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Figure 4.3: GmC model for FFE K matrix, portion of the covariance matrix.

Eq. (2.67), (2.68) and (2.69) can be rewritten as

dP11

dt
= 2Gm

C
P12 + I11

C
, (4.8)

2dP12

dt
= −2Gm

C
(P11 − P22) + I12

C
, (4.9)

dP22

dt
= −2Gm

C
P12 + I22

C
, (4.10)

where Gm = ωC, 2Gm = 2ωC,I11 = (2kx̂2P13C − P 2
11C)/r, I12 = [k(x̂2P23 −

x̂1P13)C − P11P12C]/r and I22 = (−2kx̂1P23C − P 2
12C)/r.

The circuit model for P11, P12 and P22 is called the P matrix block and shown in

Figure 4.4. (P11−P22) and 2P12 can also be generated by a 2-stage ring oscillator

with natural frequency 2ω.
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Figure 4.4: GmC model for FFE P matrix, portion of the covariance matrix.

We set the initial frequency of the main oscillator ω0 = Gm/C to 1GHz and

tuning gain k to 400MHz/V for simulation. For the input signal y = a sin(ωint),

when a = 1V and ωin = 1GHz, the GmC model generates the signals x1, x2, x3

and their covariance P signals as shown in Figure 4.5 - 4.8. These are generated

by ideal behavioural models using Cadence SpectreRF.

In Figure 4.5 the estimated signals x1 and x2 are in phase and quadrature

with input signal y, respectively. Figure 4.6 shows the dynamic performance

of the frequency control voltage estimate x3, which starts from 0V and quickly

converges to the steady-state value of 0V corresponding to 1GHz.

As P is a non-negative symmetric matrix, only P12, P13, P23, P11, P22 and P33

are simulated. P13 and P23 shown in Figure 4.7 oscillate at the same frequency of

the main oscillator, ω, and converge to the steady-state value of 0V. P33 shown
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Figure 4.5: GmC circuit performance showing the output x1 and its quadrature
x2 following input y during acquisition.

Figure 4.6: Frequency estimate x3 performance of the GmC circuit showing x3
converging to its steady state value during acquisition. The acquisition time to 1
percentage of steady-state value is around 10ns, which equals to 10 cycles of the
signal showing rapid acquisition.
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Figure 4.7: K matrix performance of GmC circuit with P13 setting the gain
which drives the output frequency estimate x3 to match the input and going to
zero when the output and input match.

Figure 4.8: P matrix performance of GmC circuit. These terms control the gain
of the error signal (y−x1) used to match input and output, and will also approach
zero for a lossless main oscillator and occur at twice its frequency.
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in Figure 4.7 is the variance of x3 with initial guess set to 0.5V, and converges to

0V when x3 reaches the steady state. P11 and P12 shown in Figure 4.8 oscillate at

twice the frequency of the main oscillator, 2ω, and converge to the steady-state

value close to 0V.

Figure 4.9 and Figure 4.10 show the performance when the input frequency

is 0.95GHz and 1.05GHz, respectively. In both cases, the frequency estimate x3

quickly converges to the corresponding steady-state value within 10 cycles. The

working frequency range for the FFE, ideally, is determined by the initial values

chosen for P11, P22 and P33. Large initial value leads to large acquisition range.

In real circuits, there are more restrictions, like the tuning range of the main

oscillator.

Figure 4.9: X3 performance of GmC circuit with 0.95GHz input. The frequency
estimate x3 reaches a steady state of -0.125V with 1GHz natural frequency within
around 10 cycles.
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Figure 4.10: X3 performance of GmC circuit with 1.05GHz input. The frequency
estimate x3 reaches a steady state of 0.125V with 1GHz natural frequency within
around 10 cycles.

4.2 LC implementation model

Besides GmC oscillators, LC oscillators are often used due to the good phase

noise performance. Thus, an alternate way to implement FFE is using inductors

and capacitors. Similar to the capacitor, the derivative form of the inductor

current-voltage relation is
dI(t)
dt

= 1
L
V (t). (4.11)

Thus, for the circuit in Figure 4.11, the FFE equations correspond to an inductor

with series voltage injection and a capacitor with parallel current injection. The

state-space circuit description of this oscillator is:

dV

dt
= 1

C
(I + Ic), (4.12)

dI

dt
= − 1

L
(V − Vc), (4.13)
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Figure 4.11: LC model for the FFE main oscillator using ideal LC components.

To match the LC model with the FFE equations, the above equations can be

rewritten as

√
C
dV

dt
= 1√

LC

√
L(I + Ic), (4.14)

√
L
dI

dt
= − 1√

LC

√
C(V − Vc), (4.15)

Thus, from the Eq. (2.61) and (2.62) for x1 and x2, we can identify:

x̂1 =
√
CV, (4.16)

x̂2 =
√
LI, (4.17)

Ic = P11
√
C

r
(y − x̂1), (4.18)

Vc = P12
√
L

r
(y − x̂1), (4.19)

ω = 1√
LC

. (4.20)

For simulation we now somewhat arbitrarily choose the initial frequency of the

main oscillator, ω = 1/
√
LC, to 100MHz and the tuning gain k to 40MHz/V .

For an input signal y = a sin(ωint), with a = 0.6V and ωin = 100MHz, the

LC model generates the signals x1, x2, x3 and their covariance P signals are again

simulated using Cadence SpectreRF and the results are shown in Figure 4.12 -
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4.15.

In Figure 4.12 the estimated signals x1 and x2 are in phase and quadrature

with input signal y, respectively. Figure 4.13 shows the dynamic performance

of the frequency control voltage estimate x3, which starts from 0V and quickly

converges to the steady-state value of 0V corresponding to 100MHz.

Figure 4.12: LC circuit acquisition performance using ideal LC oscillators in all
the circuit blocks.

P13 and P23 shown in Figure 4.14 oscillate at the same frequency of the main

oscillator, ω, and converge to the steady-state value of 0V. P33 shown in Figure 4.14

is the variance of x3 with initial value of 0.5V, and converges to 0V in the steady

state. P11 and P12 shown in Figure 4.15 oscillate at twice the frequency of the

main oscillator, 2ω, and converge to the steady-state value close to 0V.

Figure 4.16 and 4.17 show the acquisition performance when the input fre-

quency is 95MHz and 105MHz, respectively. In both cases, the frequency es-

timate x3 quickly converges to the corresponding steady-state value within 10

cycles.
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Figure 4.13: X3 performance of ideal LC implementation showing convergence
of the frequency estimate x3 to the steady state.

Figure 4.14: K matrix performance of ideal LC implementation, which is similar
to that obtained by GmC implementation.
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Figure 4.15: P matrix performance of ideal LC implementation, and again sim-
ilar to that using GmC circuits.

Figure 4.16: X3 performance of LC circuit with 95MHz input. The frequency
estimate x3 reaches a steady state of -0.125V with 100MHz natural frequency
within around 10 cycles.
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Figure 4.17: X3 performance of LC circuit with 105MHz input. The frequency
estimate x3 reaches a steady state of 0.125V with 100MHz natural frequency
within around 10 cycles.

4.3 Design concerns

The nine equations show that the FFE is a complicated feedback system. For

better analysis, it is important to divide them into blocks. We have found that

x1&x2, P13&P23 and (P11−P22)&2P12 can be treated as three similar blocks with

natural frequency ω, ω and 2ω, separately. Also, x3 and P33 can be implemented

as two integrators.

4.3.1 Integrator corner frequency requirement

For both GmC and LC models, the implementation of x3 and P33 is based on

a pure GmC integrator. Eq. (2.63) and (2.66) represents ideal integrators without

loss. The requirement for the practical integrator is studied based on the model

in Figure 4.18. The corner frequency in Figure 4.18 is defined as fc = 1/2πRC.

For an ideal integrator, fc is at DC. To analyze the influence of corner frequency,
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two cases with different signal frequencies are studied in Table 4.1. For both

input signal frequencies of 11kHz and 1.1GHz in case 1 and 3, 10−4 times smaller

corner frequency is required to maintain FFE stable operation. Thus, the FFE

has a quite stringent requirement for the integrator. This is also verified with a

different Capacitor value in case 2.

Figure 4.18: GmC Integrator with loss, finite DC gain, and higher corner fre-
quency relative to an ideal integrator.

Table 4.1: Requirement for integrator corner frequency is 10−4 times smaller
than the signal frequency.

Signal frequency(Hz) R(Ω) C(F) Corner frequency(Hz)
Case 1 11k 1M 100n 1.59
Case 2 11k 100k 1u 1.59
Case 3 1.1G 1M 1p 159k

4.3.2 Main oscillator loss requirement

The ideal GmC and LC models studied so far include no loss, but loss is

unavoidable in real circuits. We now use the model in Figure 4.19 to analyze

the requirement for the main oscillator block loss. When the signal frequency is

1GHz and C = 1pF , at least R = 3.2 ∗ 106 is needed to maintain the amplitude

of x1 and x2. Smaller R leads to an obvious decrease in the amplitude of the

oscillator. Then, we can get the required minimum Q factor is ωRC = 2π ∗ 109 ∗

3.2 ∗ 106 ∗ 10−12 = 2 ∗ 104, which is much higher than standard passive device Q
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value. Thus, to maintain x1 and x2 in steady state, negative resistance is needed

to compensate for the loss in the main oscillator block.

Figure 4.19: Main oscillator with loss R.

4.3.3 Frequency detuning tolerance

Ideally, the frequency of the main oscillator and K matrix blocks should be

exactly the same, ω. In real circuits, there will be mismatch between each block,

which causes frequency detuning. For GmC circuits, the frequency of the main

oscillator and K matrix block is decided by:

ω = ω0 +Kvx3 = (Gm0 +K0x3)/C, (4.21)

For a 1GHz natural frequency and 400MHz/V tuning gain, we set Gm0 = 31.4m,

K0 = 12.56m and C = 5pF . Gm0 determines the natural frequency and K0

determines the tuning gain. Thus, the free running frequency is

f = Gm0/C/(2 ∗ π) = 31.4m/5p/(2 ∗ π) = 1GHz. (4.22)

We can tune Gm0 and K0 of the K matrix block separately to determine the

effect of frequency detuning between the main oscillator and K matrix block. To
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better understand the influence of frequency detuning, several cases are studied

for different input frequency.

For a 1.1GHz input signal, the maximum tolerated positive frequency detuning

in the K matrix block caused by Gm0 is

31.4m ∗ (1.004− 1)/5p/(2 ∗ π) = 4MHz. (4.23)

As the steady-state value of x3 is 0.25V, the maximum tolerated positive frequency

detuning in the K matrix block caused by Kv is calculated by

12.56m ∗ (1.04− 1) ∗ 0.25/5p/(2 ∗ π) = 40MHz. (4.24)

For a 0.9GHz input signal, the maximum tolerated positive frequency detuning in

the K matrix block caused by Gm0 is

31.4m ∗ (1.002− 1)/5p/(2 ∗ π) = 2MHz. (4.25)

As the steady-state value of x3 is -0.25V, the maximum tolerated positive fre-

quency detuning in the K matrix block caused by Kv is calculated by

12.56m ∗ (1/1.02− 1) ∗ (−0.25)/5p/(2 ∗ π) = 20MHz. (4.26)

Both cases show the detuning of Gm0 in the K matrix block has more influence

than that of K0 on the FFE performance. Therefore, the requirement for the

free-running frequency match between blocks is more stringent.

Next, compensation between Gm0 and K0 is studied for different input fre-

quencies.

In case 1, the input signal frequency is 1.1GHz. When Gm0 = 31.4m∗1.005, the
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FFE fails to function. Then we adjust K0 in the opposite direction to compensate

for the detuning frequency. then the FFE acquires the input signal for K0 ranging

from 12.56m/1.21 to 12.56m/1.009.

In case 2, the signal frequency is 0.9GHz. When Gm0 = 31.4m ∗ 1.003, the

FFE again becomes unstable. Then we adjust K0 in the opposite direction to

compensate for the detuning frequency. FFE can work again for K0 ranging from

12.56m ∗ 1.003 to 12.56m ∗ 1.11.

Both cases show that frequency detuning caused by Gm0 can be compensated

by tuning K0 in the opposite direction, which means the frequency detuning by

Gm0 and K0 should be considered as a whole.

Ideally, the P matrix block should be exactly twice the frequency of the main

oscillator and K matrix blocks. Table 4.2 shows the maximum tolerated frequency

detuning for the P matrix block. Compared with K matrix block, the P matrix

block is much less sensitive to frequency detuning.

Table 4.2: P matrix frequency detuning tolerance range.

f(Hz) Gm0(S) K0(S/V ) V (V ) C(F )
2.2G 62.8m/1.095∼ 62/8m*1.033 25.12m 0.25 5p

62.8m 25.12m/100∼ 25.12m*1.38
2G 62.8m/1.061∼ 62.8m*1.085 25.12m 4.8m 5p

62.8m 25.12m/100∼ 25.12m*30.3
1.8G 62.8m/1.013∼ 62.8m*1.163 25.12m -0.25 5p

62.8m 25.12m/100∼ 25.12m*1.17

4.3.4 K matrix loss and frequency detuning tolerance

We have seen that the main oscillator block poles must lie close to the imagi-

nary axis. Conversely, loss in the K matrix block can help improve the frequency

detuning tolerance. Figure 4.20 shows the K matrix model with resistive loss.

Maximum tolerated natural frequency ω0 detuning for different values of the K
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matrix loss is summarized in Figure 4.21 and 4.22. Both positive and negative

frequency detuning show that larger loss leads to better detuning tolerance. Thus,

the biasing of the K matrix circuit should be set below the criterion of oscillation.

Figure 4.20: K matrix with loss R in the GmC model.
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Figure 4.21: K matrix loss vs. maximum tolerated positive detuning frequency.
This shows increasing tolerance to detuning as the loss increases.
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Figure 4.22: K matrix loss vs. maximum tolerated negative detuning frequency.
This also shows increasing tolerance to detuning as the loss increases.

4.3.5 K matrix loss and phase delay tolerance

Besides the frequency detuning, the phase delay caused by different buffer

sizes among each block is also an implementation concern. In simulation, we have

observed that the FFE is much more sensitive to the phase delay in P11 and P12

signals injected into the K matrix block. The maximum tolerated phase delay in

P11 and P12 for different loss R in the K matrix block is simulated in Figure 4.23.

Similar to the frequency detuning tolerance, the maximum phase delay tolerance

can be improved by the loss in the K matrix block.
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Figure 4.23: K matrix loss vs. maximum tolerated phase delay in P11 and P12.
This shows increasing tolerance to delay as the loss increases.

4.4 Summary

In this section, we discuss two types of FFE models and several design concerns

in FFE implementation. First, we propose a GmC structure and simulate the

performance using the ideal behavioral model in Cadence spectreRF showing the

rapid signal acquisition possible using the FFE. We then proposed and analyzed

an LC structure and its performance is simulated. Based on the ideal circuit

model, several design issues are investigated. First, a very low corner frequency

for the x3 integrator and a loss compensated main oscillator are required for the

FFE to aquire the input signal. Then the frequency detuning tolerance between

the blocks of main oscillator, K matrix and P matrix are simulated based on

the GmC structure. Finally, loss in the K matrix block is found to improve the

tolerance of frequency detuning and phase delay between blocks.
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Chapter 5

Main Oscillator Block

Implementation Methods

Because the FFE is based on quadrature signals, we discuss the implementation

of the main oscillator and its design concerns in this chapter. As for the PLL,

the oscillator is the core of the FFE, which can influence at the transistor level

its major performance metrics, like phase noise. There are multiple methods to

implement oscillators with quadrature outputs. Before that, we need to mention

an important point. Under most situations, symmetrical oscillators are necessary

to obtain better rejection of supply and substrate noise. Thus, when we choose

the topology for main oscillators, symmetry needs to be considered together with

quadrature. In many applications, LC oscillators are chosen over ring oscillators

to achieve better phase noise performance [34]. Thus, this chapter will focus on a

discussion of LC oscillators implementations.
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5.1 Injection locking in oscillators

In chapter 4, two ideal behavioral models are discussed for the FFE. For the

implementation of the main oscillator, the LC structure has better phase noise

performance, while the current injection in the GmC structure is more straight-

forward to realize. Thus, an LC oscillator with injection current is studied to

combine the advantages of the two proposed models.

5.1.1 Dynamics of oscillator with injection

Adler’s equation [35] was developed in 1946 to analyze injection locking of

oscillators, it focused on a weak injection at a nearby frequency. Figure 5.1 shows

a cross-coupled LC oscillator with injection current. To understand the dynamic

performance of injection, we use the polar form to denote the oscillation voltage as

a(t) expjθ(t), the oscillation current without injection is represented as i(t) expjθ(t)

and the injection current as iinj(t) expjθinj(t). Then, the LC oscillator can be

modeled as Figure 5.2.

Using Kirchhoff’s circuit laws, we can derive that:

a

R
ejθ + C

d

dt

(
aejθ

)
+ 1
L

∫
aejθ dτ = iejθ + iinje

jθinj . (5.1)

This integro-differential equation can be simplified as:

a

R
+ C

da

dt
+ jca

dθ

dt
+ 1
L
e−jθ

∫
aejθ dτ = i+ iinje

j(θinj−θ). (5.2)

For the integral term Integ(t) = e−jθ
∫
aejθ dτ , there is:

dInteg

dt
= −je−jθ dθ

dt

∫
aejθ dτ + e−jθaejθ, (5.3)
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Figure 5.1: A cross-coupled LC oscillator with injection current.
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Figure 5.2: Model of LC oscillator with injection current. Polar form is used
to denote the oscillation voltage as a(t) expjθ(t), the oscillation current without
injection as i(t) expjθ(t) and the injection current as iinj(t) expjθinj(t).

which follows the first order differential equation:

dInteg

dt
+ j

dθ

dt
Integ = a, (5.4)

This equation is similar to an RC low-pass filter equation, and the solution is:

Integ = a

j dθ
dt

(
1− e−j dθdt t

)
, (5.5)
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Here j(dθ/dt) is equivalent to the cutoff frequency in a low-pass filter. If the

injection frequency ωinj is close to free running frequency ω0 = 1/
√
LC, dθ/dt

is approximately ω0. Input a(t) is the oscillation amplitude, which is also ap-

proximately constant. Thus, the output Integ(t) ' a/j dθ
dt
. Using a Taylor series

approximation and dθ/dt ' ω0, we derive

Integ(t) = a

jω0
[
1 +

(
1
ω0

dθ
dt
− 1

)] (5.6)

' a

jω0

[
1−

(
1
ω0

dθ

dt
− 1

)]
(5.7)

= −j a
ω2

0

(
2ω0 −

dθ

dt

)
. (5.8)

Eq. (5.2) can be further separated into real and imaginary parts:

a

R
+ C

da

dt
= i+ iinj cos(θinj − θ), (5.9)

ca
dθ

dt
+ a

Lω2
0

dθ

dt
= 2a
Lω0

+ iinj sin(θinj − θ). (5.10)

Because a(t) changes slowly, we can approximate

a ' R [i+ iinj cos(θinj − θ)] , (5.11)

dθ

dt
= ω0 + ω0

2Q
iinj sin(θinj − θ)

i+ iinj cos(θinj − θ)
. (5.12)

Thus, we have derived the polar-form model for an LC oscillator with injection.

5.1.2 Dynamics of the FFE main oscillator block

Here we will use the same method to analyze the amplitude and phase per-

formance in the case of the FFE. In Eq. (2.61), we denote x1 as aejθ, and view
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P11(y − x1)/r as the injection signal iinjejθinj . Thus, x2 is aej(θ+π/2) and after

substitution,
d

dt

(
aejθ

)
= (ω0 + kx3)aej(θ+

π
2 ) + iinje

jθinj , (5.13)

da

dt
ejθ + jaejθ

dθ

dt
= j(ω0 + kx3)aejθ + iinje

jθinj , (5.14)

da

dt
+ ja

dθ

dt
= j(ω0 + kx3)a+ iinje

j(θinj−θ), (5.15)

Thus, the amplitude and phase can be expressed as:

da

dt
= iinj cos(θinj − θ), (5.16)

dθ

dt
= (ω0 + kx3) + 1

a
iinj sin(θinj − θ), (5.17)

which can be rewritten as:

a = a0 − iinj sin(θinj − θ), (5.18)

dθ

dt
= (ω0 + kx3) + iinj sin(θinj − θ)

a0 − iinj sin(θinj − θ)
. (5.19)

We can notice these expressions are very similar to the general expressions

for an LC oscillator with injection Eq. (5.11)(5.12), with only differences in the

constant coefficients. Therefore, an LC oscillator with injection will be a possible

solution for the main oscillator in the FFE.
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5.1.3 Injection locking range

To discuss the requirement for injection locking, the polar-form geometry of

injection is sketched in Figure 5.3, based on the model in Figure 5.2. The angle

between the injection current, iinj, and the oscillator current, i, is denoted as

α. The total current after injection, itotal, is composed of i and iinj. The angle φ

between itotal and the tank voltage a must be equal to angle of the tank impedance

at the injection locking frequency, ωinj when the oscillator is injection locked. The

geometry in Figure 5.3 shows that a solution exists if

iinj ≥ i sinφ. (5.20)

Figure 5.3: Geometrical interpretation of injection locking. The total current
after injection, itotal, is composed of i and iinj.

For an LC parallel tank in Figure 5.4, its impedance is:

Z(jω) = 1
1
R

+ jωC + 1
jωL

, (5.21)

Then the phase is:

φ(jω) = − tan−1 ωC −
1
ωL

1
R

, (5.22)

At the injection frequency ωinj = ω0 + ∆ω,
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Figure 5.4: RLC in parallel.

tanφ(jωinj) = R

(
1

ωinjL
− ωinjC

)
(5.23)

= R

(ω0 + ∆ω)L − (ω0RC + ∆ωRC) (5.24)

= R

ω0
(
1 + ∆ω

ω0

)
L
− (ω0RC + ∆ωRC) (5.25)

' R

ω0L

(
1− ∆ω

ω0

)
− (ω0RC + ∆ωRC) (5.26)

= Q− Q

ω0
∆ω −Q− Q

ω0
∆ω (5.27)

= −2Q
ω0

∆ω (5.28)

Thus, the oscillator locks to the injection when

iinj
i
≥ |∆ω|√

∆ω2 +
(
ω0
2Q

)2
. (5.29)

The locking is remained over the frequency range |2∆ω| given by

|2∆ω| = ω0

Q

1√(
i

iinj

)2
− 1

. (5.30)

5.2 Quadrature oscillators

Next we will investigate different types of quadrature oscillators for possible

implementation. The study of multi-phase oscillators begins from the early 20th
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century [36, 37]. Adding a divide-by-2 to a 2ω1 signal is one way to generate

a quadrature signal at the frequency ω1. However, it’s not a popular solution

for high frequency applications, because generation of signals at 2ω1 may not

be realistic due to the limitations of technology. Both ring and LC oscillators

can generate quadrature outputs. One major difference between them is that a

ring oscillator only has one mode. This is because a ring oscillator is a single

oscillator with multiple outputs, while a LC quadrature oscillator is comprosed

of two oscillators injection locked to each other, and this leads to multiple modes

[38].

5.2.1 Dynamics in a quadrature oscillator

In 2007, the Generalized Adler’s equation [38] was introduced to reveal the

dynamics of quadrature LC oscillators. Figure 5.5 shows a classic quadrature LC

oscillator. The two identical oscillators are pulled to a common frequency when

the first injects into the second in phase, and the second into the first out-of-phase

[39].

The linear model of the oscillator is shown in Figure 5.6 [40]. Gm represents

the transconductance of the negative resistance pair, Gmc is the transconductance

of the coupling pair, and R is the loss of the LC tank.

The free running frequency of each oscillator is still ω0 = 1
√
LC and the two

locked oscillators reach a new frequency called ωqosc. As we did previously with the

oscillator with injection, we denote the first and second oscillator output voltage

as a1e
jθ1 and a2e

jθ2 . According to one method of injection, the injection current

into each other is iC1 = −iCejθ2 and iC2 = iCe
jθ1 . Applying Eq. (5.11) and (5.12)
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Figure 5.5: Quadrature LC cross-coupled oscillator.

Figure 5.6: Quadrature LC cross-coupled oscillator model. Gm represents the
transconductance of the negative resistance pair, Gmc is the transconductance of
the coupling pair, and R is the loss of the LC tank.

we obtain the amplitude and phase for the quadrature oscillators:

a1 ' R [i− iC cos(θ2 − θ1)] , (5.31)

a2 ' R [i+ iC cos(θ1 − θ2)] , (5.32)
dθ1

dt
= ω0 −

ω0

2Q
iC sin(θ2 − θ1)

i− iC cos(θ2 − θ1) , (5.33)

dθ2

dt
= ω0 + ω0

2Q
iC sin(θ1 − θ2)

i+ iC cos(θ1 − θ2) . (5.34)
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5.2.2 Multi modes in LC quadrature oscillator

As mentioned before, an LC quadrature oscillator has multiple modes, which

means different phase sequences. Now let’s figure out which are stable oscillation

modes. In stable conditions, there is θ1 = ωqosct and correspondingly θ2 = ωqosct+

Φ, which results in dθ1/dt = dθ2/dt. From Eq. (5.33)(5.34), this results in:

− iC sin Φ
i− iC cos Φ = iC sin(−Φ)

i+ iC cos(−Φ) , (5.35)

cos Φ = 0, (5.36)

Φ = π

2 ,−
π

2 . (5.37)

These two opposite phase sequences lead to oscillations with the same ampli-

tude, but different oscillation frequencies:

am1 = am2 = Ri (5.38)

ωm1 = dθ1

dt
= ω0 −

ω0

2Q
iC
i
, (5.39)

ωm2 = dθ2

dt
= ω0 + ω0

2Q
iC
i
. (5.40)

In the FFE, if the main oscillator output x1 and x2 can have two stable modes,

the oscillation in the K and P matrix blocks may not have the same phase se-

quence. This phase ambiguity can not be tolerated. It is stated in [38] that

inductor series resistance leads to asymmetry in the tank impedance characteris-

tic. When a real oscillator starts up, the initial condition varies. If two modes can

exist, the one with higher gain or amplitude can outpace the other and suppress

it. For a single LC oscillator, we know that the oscillation frequency is the tank

resonation frequency ω0 = 1/
√
LC and the corresponding phase shift is 0 degrees.

For two coupled oscillators, we have learned there is π/2 or −π/2 phase difference
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between the coupled currents. As shown in Figure 5.7, if the coupling mosfet size

is the same as the biasing mosfet size, the tank phase shift will be either π/4 or

−π/4.

�!
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V2

I1 = gm(V1 + V2)
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I1 = gm(V1 + V2)
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gmV1 + gmcV2
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Figure 5.7: Tank phase shift of either π/4 or −π/4 when the coupling mosfet
size is the same as the biasing mosfet size.

In most cases, the coupling mosfet is much smaller than the core mosfet, and

the corresponding phase shift is smaller as shown in Figure 5.8.
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Figure 5.8: Tank phase shift when the coupling mosfet size is much smaller than
the biasing mosfet size.

In Figure 5.9, for phases of π/4 and −π/4, we can find frequencies f1 and f2. If

at f1 or f2, the tank impedance amplitude is larger, then the oscillator’s feedback

gain is larger. Thus, the corresponding phase sequence would be chosen.
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Figure 5.9: Simulated amplitude and phase of the LC tank. Frequencies f1 and
f2 are corresponding to the phases of π/4 and −π/4. If at f1 or f2, the tank
impedance amplitude is larger, then the oscillator’s feedback gain is larger. Thus,
the corresponding phase sequence would be chosen.

5.3 Proposed design

For the quadrature oscillator in the FFE, we propose the use of the LC cross-

coupled oscillator shown in Figure 5.5, which can achieve good phase noise and

is suitable for Gigahertz applications. Table 5.1 shows the phase noise of the

differential and quadrature oscillator, separately.

Eq. (2.61) and (2.62) shows there is injection current into both quadrature

outputs x1 and x2, and the injection is generated by subtraction and multipli-

cation operations on other signals. Transconductance circuits are proposed to

74



Table 5.1: Phase noise of differential and quadrature oscillators

PhaseNoise (dBc/Hz)
Offset (Hz) differential quadrature

10k -84.51 -74.64
100k -112.8 -103.3
1M -135.6 -131.8
10M -157.5 -159

implement these operations. Connecting transconductance outputs together can

easily implement summation or subtraction. Transconductance circuits can imple-

ment multiplication in a couple of ways [41]. The MOSFET is a transconductance

device and its models in the triode and saturation regions are expressed as:

Id = K(Vgs − Vth −
Vds
2 )Vds, for Vgs > Vth, Vds < Vgs − Vth, (5.41)

Id = K

2 (Vgs − Vth)2, for Vgs > Vth, Vds < Vgs − Vth, (5.42)

where K = µCoxW/L is the transconductance parameter and Vth is the threshold

voltage.

The terms VgsVds, V 2
ds and V 2

gs can be used to implement multiplication. Fig-

ure 5.10 shows the realization of VgsVds by combining two transconductors in series.

According to Eq. (5.3), when M1,M2 operate in deep triode region and M3,M4

operate in the saturation region, then Vgs1 = Y + y and Vds1 = x. Hence,

I1 = K(Y + y − Vth −
x

2 )x, (5.43)

I2 = K(Y − y − Vth −
x

2 )x, (5.44)

Io = I1 − I2 = 2Kxy. (5.45)
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Figure 5.10: Multiplication using transconductor. When M1,M2 operate in
deep triode and M3,M4 operate in saturation region, Vgs1 = Y + y, Vds1 = x and
multiplication is achieved with Vgs1Vds1 in I1 and Vgs2Vds2 in I2.

To achieve better nonlinearity reduction, a fully differential configuration is

proposed as shown in Figure 5.11.

Figure 5.11: Four quadrant multiplication with better nonlinearity reduction.

Therefore, the multiplication is implemented by a multiplier shown in Fig-

ure 5.12. The constant coefficient in the FFE equation can be adjusted by the

size of the output MOSFET. For this circuit the output current is:

Io = I1 + I3 − (I2 + I4) = 4Kxy. (5.46)
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Figure 5.12: Multiplier for the main oscillator block.

Figure 5.13 - 5.15 show the performances of an ideal tank with input signal

of 1GHz, 0.95GHz and 1.05GHz respectively. As the main oscillator output is

not a pure sinusoidal signal, x3 does not immediately become constant after the

acquisition. The equation of x3 indicates that a symmetrical difference between

input y and main oscillator x1 can be cancelled during integration. However,

asymmetry in real x1 would influence the steady state of x3.
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Figure 5.13: X3 performance of the real main oscillator with 1GHz input. The
frequency estimate x3 quickly converges to 1 percent of the corresponding steady-
state value within 10 cycles.

Figure 5.14: X3 performance of the real main oscillator with 0.95GHz input.
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Figure 5.15: X3 performance of the real main oscillator with 1.05GHz input.

5.4 Design constraints

In simulations, it was found that use of a real quadrature LC oscillator causes

phase-sequence problems traced to its multiple modes discussed previously. Here

we investigate other effects of the impedance characteristic of different LC tanks.

Figure 5.16 and Figure 5.17 show the comparison of amplitude and phase for an

ideal and a real LC tank. The ideal tank consists of an ideal inductor and varactor,

with series resistance in the inductor. The real tank consists of PDK inductor and

varactor, including additional limitations on the Q factor and nonlinearity. The

comparison shows the more ideal tank has a larger Q factor and sharper amplitude

and phase performance. For use in a certain quadrature oscillator, given the multi

phase sequence issue, higher Q factor means that the two possible steady-state

frequencies are closer. Simulations have shown that the whole FFE loop is more

likely to reach a correct steady state with the ideal LC tank.

79



Figure 5.16: Comparison of ideal and real LC tank amplitude. The ideal tank
consists of an ideal inductor and varactor, with series resistance in the inductor.
The real tank consists of a PDK inductor and varactor.

Figure 5.17: Comparison of ideal and real LC tank phase.
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In simulations, we have observed two different phase sequences with the same

input frequency 1GHz. The initial frequency of the single oscillator is 0.99GHz

and 1.046GHz as x3 = 0V and x3 = 0.6V , separately. In Figure 5.18, the initial

value of x3 is set at 0V and a steady-state value of 38mV is achieved with x2

leading x1. In Figure 5.19, the initial value of x3 is set as 0.6V and steady state

value of 0.54V is achieved with x1 leading x2. Thus, the first case is corresponding

to mode 2 with higher frequency after injection and the second case achieves the

lower frequency after injection as mode 1.
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Figure 5.18: Performance of real tank with 1GHz input. The initial value of x3
is set at 0V and a steady-state value of 38mV is achieved with x2 leading x1.
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Figure 5.19: Another phase performance of real tank with 1GHz input. The
initial value of x3 is set as 0.6V and steady state value of 0.54V is achieved with
x1 leading x2.
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The varactor would convert the envelope fluctuations, amplitude modulation

from the control voltage into frequency modulation noise[42]. The more nonlinear

the C-V curve of varactor is, the more low-frequency noise is converted into phase

noise [43]. Thus, a fixed capacitor is connected in series with the varactor to

linearize the C-V curve at the expense of tuning range as in Figure 5.20. The

control voltage x3 contains a twice-frequency term, which may disturb the tank

voltage and cause issues like ringing in the x3 and wrong I/Q phase order. Thus,

a biasing resistor Rbias is added to the varactor, which works as an isolation of

the x3 signal.

I+

Q+ Q-

I- Q- Q+

I+ I-

X3
Rbias Rbias

Figure 5.20: Proposed quadrature LC cross-coupled oscillator.

5.5 Summary

In this chapter, we start with different definitions of Q factor, which is a key

factor in the study of the LC oscillator. We then investigate the LC oscillator

with injection and its dynamic amplitude and phase equations are derived. The
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LC quadrature oscillator is also investigated from the view of an oscillator with

injection. The equations for the main oscillator block in the FFE show that it

can be expressed as an oscillator with injections, which shares the same format

as the amplitude and phase equations for the LC quadrature oscillator. Thus,

a quadrature LC cross-coupled oscillator and transconductance multipliers are

proposed to implement the main oscillator and its injection signals. The multi-

phase sequence issue in the LC quadrature oscillator is discovered in the FFE

simulation with a real oscillator tank.
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Chapter 6

Implementation of the K and P

Matrix Blocks

We have discussed the implementation of the main oscillator block in the pre-

vious chapters, and in this chapter, we explore the remaining K and P matrix

blocks. A number of implementations are investigated, and a two-stage ring os-

cillator is chosen to implement the K matrix block, based on the GmC structure

discussed in chapter 4. There is feedback in both K and P matrix blocks, thus,

simplification is considered and verified in both theory and simulation for these

portions. The frequency, phase and amplitude curve trend are the major concerns

for simplification. Finally, x3 is implemented based on a charge pump.

6.1 Two-stage ring oscillator

Ring oscillators are widely used because they have a compact layout and can

easily generate multiple phases. The basic structure of a ring oscillator is an N-

stage array with negative feedback. To meet Barkhausen’s criterion for oscillation,

1) the loop delay for the overall N stages should be 180 degrees; 2) the loop gain at
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the oscillation frequency should be larger than 1 [44]. For the circuit in Figure 6.1,

that is,

φN(jω0) = Nφd(jω0) = π, (6.1)

|AN(jω0)| = |ANd (jω0)| = 1, (6.2)

ω0 = 1
2Nτd

, (6.3)

where N is the number of stages, τd is the time delay of each stage and Ad is the

gain of each stage.

Figure 6.1: Ring oscillator model. τd is the time delay of each stage and Ad is
the gain of each stage.

Inverters are often used as delay stages. Thus, the ring oscillator can be further

modeled as in Figure 6.2 [45], where

Ad(jω) = −GmR

1 + jωRCL
, (6.4)

φd(jω) = tan−1(ωRC). (6.5)

Figure 6.2: Ring oscillator model. Gm and R are used to represent inverters.
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To generate quadrature outputs, a two-stage ring oscillator is considered.

Eq. (6.4) shows 90 degrees is only attained when ωRC reaches infinity for one

stage, which is not realistic. Thus, cross-coupled latches are used to provide ad-

ditional phase delay as in Figure 6.3 [46]. This approach assumes there are two

sources of phase shift, one is the RC time constant from each stage, and the other

is the hysteresis from the cross-coupled latch [47].

Figure 6.3: Differential two-stage ring oscillator with cross-coupled latches pro-
viding additional phase delay.

To figure out a proper latch ratio, we have simulated the phase delay for

different latch ratios. For a 1GHz input signal, a single GmC stage provides 73.9o

phase delay. Figure 6.4 shows another 27.4o phase delay is provided by latch ratio

of 1:1, which makes the total phase delay exceed the 90o oscillation boundary. In

Figure 6.5, a single buffer with a latch ratio of 0.6 is simulated, and a total 90.1o

phase delay is achieved. Thus, a latch ratio of 0.6 is close to the boundary of the

oscillation criterion.
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Figure 6.4: Phase delay when latch ratio is 1. Another 27.4o phase delay pro-
vided by latches makes the total phase delay exceed the 90o oscillation boundary.

Figure 6.5: Phase delay when latch ratio is 0.6. 16.9o phase delay provided by
latches makes the total phase delay just meet the 90o oscillation boundary.
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6.2 Proposed K matrix block Implementation

In the proposed two-stage ring oscillator, Figure 6.3, the cross-coupled latch

works as a negative feedback active cell Gmc between each stage. Thus, we obtain

the model for a two-stage ring oscillator in Figure 6.6.

Figure 6.6: Two-stage ring oscillator model with latch feedback represented by
Gmc.

Then, we can use a negative resistance −Rn = −1/Gmc to represent the feed-

back as in Figure 6.7 [48].

Figure 6.7: Two-stage ring oscillator model with negative resistance. Negative
resistance −Rn = −1/Gmc represents the feedback provided by latches.

Now Eq. (6.4) is

Ad(jω) = −GmRt

1 + jωRtCL
, (6.6)

where

Rt = −RnR

−Rn +R
= R

1−RGmc

. (6.7)
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When the negative resistance Rn is large enough to compensate for the loss R,

then the oscillation criterion is satisfied.

Inverters as shown in Figure 6.8 are used to implement the delay and latch

stage. As we have discussed in chapter 4, the loss in the K matrix block helps the

FFE tolerate frequency detuning and phase delay between blocks. Therefore, we

choose the latch size ratio to be 0.5. Lower ratios may degrade the FOM of the

oscillator [49].

Figure 6.8: Inverter for ring oscillator.

Furthermore, to match the FFE model, injection currents are added into the

two-stage ring oscillator as in Figure 6.9.

Figure 6.9: Model for the K matrix block.
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6.3 Simplification of the P matrix block Imple-

mentation

In chapter 3, we have derived the phases of the P signals. We here summarize

the frequency and phase of the injection signals into the P matrix block.

x2P13 ∝ cosωt cosωt = 1 + cos 2ωt
2 , (6.8)

P 2
11 ∝ (1 + cos 2ωt)2 = 3 + 2 cos 2ωt+ cos 4ωt

2 , (6.9)

−x1P13 ∝ − sinωt cosωt = −sin 2ωt
2 , (6.10)

x2P23 ∝ cosωt(− sinωt) = −sin 2ωt
2 , (6.11)

P11P12 ∝ (1 + cos 2ωt)(− sin 2ωt) = − sin 2ωt− sin 4ωt
2 , (6.12)

−x1P23 ∝ − sinωt(− sinωt) = 1− cos 2ωt
2 . (6.13)

Neglecting high-frequency terms, we see that the frequency and phase of x2P13

and P 2
11 are the same as that of P11. The frequency and phase of −x1P23 are the

same as that of P22. The frequency and phase of −x1P13, x2P23 and P11P12 are the

same as that of P12. Hence, we investigate the use of x2P13 and −x1P13 to take

the place of the P11 and P12, respectively. Getting rid of the oscillator operating

2ω in the P matrix can greatly simplify the FFE implementation.

Ideal GmC behavioral model in Cadence SpectreRF is simulated to evaluate

the substitution. The P matrix block is modified with the simplified implemen-

tation x2P13 and −x1P13. Simulations show the FFE reaches the correct steady

state with 1GHz, 0.9GHz and 1.1GHz input signals. The dynamic performance

of the control voltage x3 is simulated and compared with that of the ideal P ma-

trix block in Figure 6.10 - 6.12. With different steady-state values of 0V , 1V and

−1V , these three cases show three types of acquisition performance. The acqui-
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sition time of x3 is the same after simplification, and the damping factor can be

adjusted by the output amplitude of x2P13 and −x1P13.

Figure 6.10: Comparison of x3 performance when input is 1GHz. The acquisition
time of x3 is the same after simplification, and the damping factor can be adjusted
by the output amplitude of x2P13 and −x1P13.

Similarly, let’s take a look at the frequency and phase of the injection signals

into the K matrix block. There are

x2P33 ∝ cosωt(1 + cos 2ωt), (6.14)

P11P13 ∝ (1 + cos 2ωt) cosωt, (6.15)

x1P33 ∝ sinωt(1 + cos 2ωt), (6.16)

−P12P13 ∝ −(− sin 2ωt) cosωt = sinωt(1 + cos 2ωt). (6.17)

Neglecting high-frequency terms, the frequency and phase of x2P33 and P11P13

are the same. Also, x1P33 and −P12P13 are the same. Thus, we can simplify the

injection signals to x2P33 and x1P33 only.
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Figure 6.11: Comparison of x3 performance when input is 0.9GHz. The acqui-
sition time of x3 is also the same after simplification.

Figure 6.12: Comparison of x3 performance when input is 1.1GHz. The acqui-
sition time of x3 is also the same after simplification.
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6.4 Proposed P matrix block

A fully differential structure has better common-mode noise rejection and bet-

ter distortion performance [50]. Figure 6.13 is the fully differential multiplier to

implement P11 and P12. The multiplier outputs x2P13 and −x1P13 are simulated

X+ X-

Y+ Y-

OUT+OUT-

X+ X-

Y+ Y-

Figure 6.13: Multiplier for P matrix.

and compared with ideal P signals in Figure 6.14 and 6.15. As the simplified P11

and P12 are the same as P11 and P12 in both frequency and phase, the remaining

issue is the amplitude performance during the acquisition. If the model fits the

data well, the P matrix tends to a matrix of zero values. Thus, the changing

trend of the amplitude needs to be compared. In Figure 6.14 and 6.15, both mag-

nitudes of P11 and P12 decrease until close to zero when the FFE reaches steady

state and the changing trend of x2P13 and −x1P13 is the same as that of P11 and

P12, respectively.

Now we can simulate the FFE performance with the proposed main oscillator,

K and P matrix blocks. In Figure 6.16, the main oscillator takes about 10 more
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Figure 6.14: Comparison of ideal P11 and proposed substitution x2P13. The
frequency, phase and trend of x2P13 is the same as that of P11.

Figure 6.15: Comparison of ideal P12 and proposed substitution−x1P13. The
frequency, phase and trend of −x1P13 is the same as that of P12.
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cycles to start up with real K and P matrix blocks compared with ideal K and P

matrix blocks. Figure 6.17 and 6.20 show the acquisition of x3 with input signal

of 1.05GHz and 0.95GHz, respectively. In both cases, the frequency estimate x3

quickly converges to 1 percent of the corresponding steady-state value within 10

cycles. Compared with ideal implementation, the K matrix block signals P13 and

P23 contain obvious high-order frequency terms as in Figure 6.18. In Figure 6.19,

the decreasing rate of P matrix signals P11 and P12 is slower than that in Figure 4.8

due to the simplification. However, simulation shows that the acquisition time of

FFE won’t be much influenced, which is still around 10 cycles.

Figure 6.16: Performance of the real main oscillator, K and P matrix blocks
with 1.05GHz input. The main oscillator takes about 10 more cycles to start up
with real K and P matrix blocks compared with ideal circuits.
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Figure 6.17: X3 performance of the real main oscillator, K and P matrix blocks
with 1.05GHz input. The frequency estimate x3 quickly converges to 1 percent of
the corresponding steady-state value within 10 cycles.

Figure 6.18: K matrix performance of the real main oscillator, K and P matrix
blocks with 1.05GHz input. Compared with ideal implementation, P13 and P23
contain obvious high-order frequency terms.
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Figure 6.19: P matrix performance of the real main oscillator, K and P matrix
blocks with 1.05GHz input. The decreasing rate of P matrix signals P11 and P12
is slower due to the simplification.

Figure 6.20: X3 performance of the real main oscillator, K and P matrix blocks
with 0.95GHz input. The frequency estimate x3 quickly converges to 1 percent of
the corresponding steady-state value within 10 cycles.
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6.5 Proposed X3 implementation

Figure 6.21 shows the implementation of x3, based on the derived x3 model

Eq. 3.51. P13 is multiplied by input y and x1, respectively, and both multiplication

results are fed into the current sink or source driving a capacitor C. This current

sink/source is similar to the charge pump in PLL [51]. During each signal period,

the output voltage x3 changes when y and x1 are different, and the changing

voltage ∆x3 is decided by the phase difference ∆φ and the amplitude of P13.

∆x3 = ∆Q
C

= a13∆tICP
C

(6.18)

= ∆φ
2π Tin

a13ICP
C

. (6.19)

Note that x3 remains constant when y∗P13 is equal to x1 ∗P13, and changes when

Figure 6.21: Model for X3 implementation. y ∗P13 and x1 ∗P13 are fed into the
current sink or source driving a capacitor C.

there is a difference. Hence, the changing rate of x3 is nonlinear. We can linearize

the voltage change by approximating it as a ramp with a slope of:

dx3

dt
' ∆x3

Tin
= ∆φ

2π
a13ICP
C

. (6.20)
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This approximated model matches with Eq. (3.51), where

a

2r = ICP
2πC . (6.21)

Figure 6.22 shows the performance for the FFE fully implemented in Cadence

SpectreRF. To implement this x3, P13∗y and P13∗x1 are generated in Figure 6.23.

As we have derived in chapter 3:

P13 ∗ y = cosωt ∗ sin(ωt+ φex) = sin 2ωt
2 + 1 + cosωt

2 φex, (6.22)

P13 ∗ x1 = cosωt ∗ sinωt = sin 2ωt
2 . (6.23)

The amplitude difference of P13 ∗ y and P13 ∗ x1 contains the information of the

excess phase between y and x1.

Figure 6.22: Performance of real FFE with 1.1GHz input.
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Figure 6.23: Comparison of P13 ∗ y and P13 ∗ x1. The amplitude difference of
P13 ∗ y and P13 ∗ x1 contains the information of the excess phase between y and
x1.

Then, the inverters are used as buffers to generate the control signals UP and

DOWN into the charge pump as in Figure 6.24. Finally, in Figure 6.25, x3 changes

with the pulse width differences between UP and DOWN according to the phase

difference between P13 ∗ y and P13 ∗x1, then reaches steady state within 10 cycles.
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Figure 6.24: Up and down signals from P13 ∗ y and P13 ∗ x1.

Figure 6.25: X3 Performance of real FFE with 1.1GHz input. x3 changes with
the pulse width differences between UP and DOWN according to the phase dif-
ference between P13 ∗ y and P13 ∗ x1, then reaches steady state within 10 cycles.
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6.6 Summary

In this chapter, we discussed the implementation of the K matrix and P matrix

blocks. First, a 2-stage ring oscillator is studied and used for the K matrix block.

We then explore the simplified implementation of K and P matrix blocks. The

phases of all the signals are studied to support the simplification in theory. We

also made a simulation experiment and have demonstrated that simplified P11 and

P12 can keep the performance of frequency, phase and amplitude curve trend. The

implementation of x3 is based on the concept of a charge pump. The difference is

that the control signals have brought in P13 by multiplication. Finally, the whole

FFE system is simulated in Cadence spectreRF.
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Chapter 7

Conclusion

A frequency estimator based on the Kalman filter has been widely studied and

designed. Different models have been discussed in discrete time or continuous

time. However, we found that the implementation of the Kalman filter based

estimator was rarely studied. We, therefore, intend to implement an estimator in

analog integrated circuits that could, to some degree, fill the blank. The contribu-

tion of the dissertation work can be summarized in the following four paragraphs.

We derived both the discrete-time and continuous-time state space models

for the FFE. A discrete-time FFE was simulated in Matlab and the choices of

error covariances Q and R were discussed. Inspired by analyses on PLLs, we

analyzed the steady-state performance of the continuous-time FFE and approx-

imately derived its phase transfer function. The FFE is a feedback system and

the output phase is decided by two paths, i.e., the control voltage x3 the injec-

tion signals by P11 and P12. The steady-state transfer function shows that the

FFE is a second-order type-2 feedback loop. During the acquisition, the FFE

has very large bandwidth, which can achieve fast settling. After acquisition, the

bandwidth returns to a much smaller value. With a changeable bandwidth and

relative constant damping factor, the FFE can break the tradeoff between loop
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bandwidth and acquisition time.

This work is the first time that analog circuits are designed to implement a

Kalman filter based frequency estimator. The internal structure of the FFE is

divided into three main blocks: the main oscillator block performing the update

of the state equations, the K and P matrix blocks providing the Riccati equation.

We proposed both GmC and LC structures, and the performances were simulated

using the ideal Cadence SpectreRF model. Based on the ideal circuit model, sev-

eral design constraints were discussed. First, very low corner frequency integrator

and a loss compensated main oscillator are required to make FFE work. Then the

frequency detuning tolerance between the main oscillator, K matrix and P matrix

was simulated based on the GmC structure, which showed that twice frequency

detuning can be highly tolerated. Finally, the loss in K matrix was found to be

able to improve the tolerance of frequency detuning and phase delay.

We then investigated the LC oscillator with injection and its dynamic ampli-

tude and phase equations were derived. The LC quadrature oscillator was also

studied from the view of the oscillator with injection signals. The equations for

the main oscillator in the FFE also showed that it can be expressed as an oscillator

with injections, which shares the same format of amplitude and phase equations

with LC quadrature oscillator. Thus, a quadrature LC cross-coupled oscillator

was proposed to implement the main oscillator. All the injection signals were

generated by transconductance multipliers. Q factor is a key factor in the study

of the LC oscillator. The LC tank impedance performance was further studied as

it is related with the multi-phase sequence issue in the LC quadrature oscillator.

Compared with LC oscillators, ring oscillators have the advantages of compact

layout and are easy to generate multiple phases. The 2-stage ring oscillator was

studied and applied to the K matrix block. We then explored the simplified
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implementation of the K and P matrix blocks. The phases of all the signals were

studied to support the simplification in theory. Meanwhile, simulation results

have demonstrated that the simplified P11 and P12 signals can maintain the same

frequency, phase and amplitude curve trend. The implementation of x3 was based

on the concept of charge pump. The difference is that the control signals have

brought in the variable P13 by multiplication. Finally, the whole FFE system was

simulated and verified in Cadence SpectreRF with GlobalFoundries 0.13µm 8HP

process.

In summary, this work leads to a conclusion that analog integrated circuits

can be adopted to implement the EKF based FFE. Compared with the traditional

type-2 PLL, the FFE can achieve much faster acquisition with a changeable loop

dynamics. In particular, we have shown that the settling time for the second-order

type-2 PLL of 2MHz bandwidth is around 3500 cycles, whereas for our simplified,

preliminary, stable implementation of the FFE, the settling time is around 10

cycles.

There are some potential future work, namely: (1) solve the loading issue

between each block, especially in the post-simulation of the layout; (2) investi-

gate a main oscillator, whose amplitude could follow that of the input signal;

(3) explore a larger acquisition range; (4) current implementation of the FFE is

more complicated than a traditional PLL, and it is worthwhile to study a simpler

implementation with lower noise.
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