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ACCURATE ITERATIVE ANALYSIS OF THE K-V EQUATIONS
O. A. Anderson, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA

Those working with alternating-gradient (A-G) systems
look for simple, accurate ways to analyze A-G performance
for matched beams. The uvseful K-V equations [1] are easily
solved in the smooth approximation [2], [3], [4]. This approxi-
mate solution becomes quite inaccurate for applications with
large focusing fields and phase advances. Results of efforts to
improve the accuracy [5], [6] have tended to be indirect or
complex. Our peneralizations presented previously [7] gave
better accuracy in a simple explicit format, However, the
method used to derive our results {(expansion in powers of a
small parameter) was complex and hard to follow; also, refer-
ence [7] only gave low-order correction formulas,

The present paper uses & straightforward iterstion method
and obtains equations of higher order than shown in our
previous paper.

The K-V equations for the envelopes a(z) and h(z) are

a@)” = —K(z)a + :—32 + % o)
=+ O

with input parameters: normalized beam current Q; emittance
& ; and A-G focus function (7). The z origin is located at the
midpoint of a guadrupole and K(z) is assumed here to be
symmetric about z=0, periodic over a cell length 2L, and
antisymmetric about 1/2, Thus

K(z-2L)=K(z), K(-2=K(z), K(zL)=-K{z). @)
‘We solve for the x and y beam envelopes a(z) and b(z),
assurned to be matched to the lattice, i.e., periodic over 2L, To
aid the solution of Egs. (1) and (2), we define in Egs. (4)-(15}]
the operators on even periodic functions (...), {...}, ] and [|;
the even periodic functions h{z), g(z), 6(z) and p(z); and the
constants k, &, B, q, A, Kegp, @, and p,. In Eq. (19), b, is the
first Fourier coefficient of h(z).
The operator (...) performs an average over a cell length 2L
witile the operator {...} removes the average part of a periodic

o g2
b(z)” = +K(2)b + e +

Table 1: Definitions to be used in this paper
(f)s(lsz)_[ﬂ?f(z)dz, @ 8== [[{ng}, an
{f} =1-(D. (5 A= @) (12)

p(@) = (a(z-A)A,  (13)
Foreveny@ 2T o= plarAYA, (14)

= [W(z)dz and (6 2 2

v qu“’.‘zi ad (© =3, p=dky, a9
fe={jefvened o _f . 16)
I = KO, @ KO=EGP), o an
h(z) = K(2)/k, @ @ =36, (18)
g = [fh, (10) pgm = hkLP/nd  (19)

function: e.g., 2{cos’x}={1+cos2x }=cos2x. The operator J
operates on periodic functions that have no average. It gives
the repeated indefinite integral and remaoves the average part,
if any, of the result.

DECOUPLING AND DECOMPOSING
With the quadrupole symmetries of Eq. (3), our matched
beam asswmption implies b(z)=a(z+L}, so that Egs. (1) and {2)
are decoupled. We have {(a)=(b)= A, and

B = A(l+p), b=Al+py). (20)
The Q terms in Eqgs. (1) and (2) can be expanded as
29 9o+ = L(-2s@)+..) @1

since [8] P2 = K28 +... . (22)
with &(z) [Eq. (11)] derived from the lattice waveform h(z).

This decouples Egs. (1) =nd (2). After the decoupled
version of Eq. (1) is solved for a(z), then b(z) is found by
symmetry. Equation (2) is no longer needed.

Substituting a = A(1+p) in the first three terms of Eg. (1),
expanding 1/83, dividing by A, and using (21) and (13), the
first K-V equation is equivalent io

p(z)" =—kh(z) ~ kh(z)p + $(1-3p+6p2-10p>+15p%...)
+a(1-128(z)...). (23)

To solve for the ripple p(z) and the mean radius A (which
appears in the definitions of © and q), we decompose Eqg, {23)
into a pair of equations. Averaging Eq. (23,

=~k(bp)+ -+ 20.(p1)— ot(P ye5alpt).. +a. (24)
Subtractmg Ea. (24) fiom (23),
p” =-kh(z)~k{hp} - ap+2a{p2} R} +5afpk ..
- qk*8(z)..., (25)

with {..} from Eg. (5). There are now two equations, each
containing A and p(z}). Becanse of our periodicity constraint
these have the essence of the K-V equations (1) and (2).

ITERATIVE SOLUTION OF K-V EQUATIONS

On the right of Eq. (25), the kh(z) term dominates the terms
involving the unknown function p(z) They are omitted for the
initial integrations, which g'lve . Then we insert pg, into
(25) and integrate again to get f 1 e process is repeated for
Pay The resulting terms of greatast significance are:

P(ﬂ) kgs (26&)
Py P okllg+ 108+ Soi’lgh,  ob)
p,. = p.—akf[[[g ~k3[[hd —20k3[[gd.  (26c)

@ M
To complete the eppraximate salution of the K-V equations,
p(z) from Eq. (26) is put in the matching equation (24). From
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from Egs. (36), (37), or (38). Input

quantities are Q, €, and quadrupole voltnge Vg (proportional to K). Quadrupole dimensions, etc.,, are in Ref. [8]. Vi, fixed at 20 kV, gives
phase advance o, = 83.37% &, Q are varied so that depressed tune ¢ ranges between 0° and 76.5°; exact S, and ¢ are obtained numerically,

Eq. (26) we discarded items, such as 20k*[[g% that would give
terms in (24) higher than third power in the parameters k?, o,
and g. A miniscule term, qk2J[5(z), in p oy i8 also omitted.

The order of a term in the matching equation is reckoned by
counting the number of factors k2, o, and q. (These would
become small parameters in a non-dimensional formalism [B1.
Here, we prefer to retain physical units for length z, etc.)

Third Order; Inserting Eq. (26) inte Eq. (24) vields seven
terms [8] through third order, Some terms corbine, with result

2
€ Q
L (27)
4 2
t Am Amz

where

0e)]:  ew

(29)

KT = ([IK(z)ﬁ[l + 579 (1 +57

ey = €1+a(l +i‘¢’+3ﬁx)]~

Here C4 is of order unity [8]. Roman-numeral subscripts on A
and & signify the order of approximation—third order in this
case. The subscript on f~A"* indicates that A, [Eq. (33)] is
used to approximate A, The matching equntmn {27) is in the
standard form of the smooth approximation, Eq. (33), and can
be solved to find the third-order A:

— £t 2 2 122
= (Q/ZKT" Y+ [(Q/:J.K= Yie /K;E] - (30)
If the input quantity is the mean radius Amp, then Eq. (27)
gives the allowable Q to third order,
= eff _ 2
C‘-‘IH A'mp Kf /Amp

Second_Order: There are two second-order terms. One
ylelds the correction to Ko seen m Eq. (28). The other term is
(g, or, using definition (18), 0. We define

e“ =c (l+rI:), (31)
and get
ger _ S Qg (32)
oAl Af

Eq. (32} can be solved for A} or Q,, in the same way as for
the third order, giving nseful approximations when XK(z) and
€ produce g, and o less than sbout 80°,

Ei;s_t__Qr_d;c_u The three terms of lowest order produce what
is called the first-order matching equation in this paper (Ref.
[7] used another terminology). This is the classic smooth
approximation, These terms give &([Ju}%)= o/3+ g, or, using
the definitions {15}, (16), and (17)

(33)

First, second, and third-order results for A, from (33), (32)
and (30), are plotted in Fig. 1a, The smaooth approximation is
relatively inaccurate except mear the point where its error
curve crosses the 0% line.

MAXTMUM RADIUS

Knowing the matched mean radius A, one can complete the
solution for the envelope a(z) = A[1+p(z)] using p(z) from
Eq. (26); b(z) can be found by changing the sign of the terms
that contain odd powers of k.

Some terms of Eq. {26) can be written in exact form [8] for
models such as FODO, but Fourier expansion is more useful
in general:

h@) =k, [msn_:"' %‘33 COoS 3“—5-1- ;—cscns 5“—5 ] . (34)

Values (usually of order unity) of hy &nd ¢, for both FODO
and smooth profiles are given in Ref. [8]. With the definition
2
2 €
B, =3

=S—7 (35)
s A{‘

we have
- 1 1
amﬁ“’“‘ = IJ][11:~pm(1+2—7 S5t 735 °5)+ ¥ pm(1+ °3)

5 Blpm(lnpm*-ﬁl)] (6)

using results from Ref [8]. The acouracy of Eq. (36) is shown
in Fig, 1b, along with that of the truncations
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= 1 1
e = H[1+Pm(1+ffc3+ﬁs CS)+BIPm] &)
and (the smooth approximation)
ap = a1, |- @8)

PHASE ADVANCES

From-the well-known phase-amplitude result [9], the phase
advance per quadrupole cell of length 2L is

)
dz
= E _— =
o -l
We approximate a(z) by Ap[1+p(2)] with A, from Eq. (30)

and p(z) to third order from Eq. (26). Subscripts are omitted
for brevity. Expanding i2 and taking the average gives

2Le (@),

€
o = 2L [1+302) -4+ 56 -] G9)
puig
(The 2p term has zero average by definition.) Ref, [8] shows
that to third-order accuracy

- & 3

% = 2Ly [1+0(1+ 3 +2p,)]. (40)
Ermrors with respect to exact values from gimulations are shown
in Fig. 2a. Useful accuracy is retained after dropping two

terms and using A from Eq. (32):

€

oy = 2L—(1+®).

Ag

(41)

Figure 2a shows large errors for the first-order result (smooth

approxiration):
€

o =2L—.

I A]Z

The undepressed 6, is found by setting Q = 0 in Eq. (27),

then climinating € from Eq. (40). Details are in Ref. [8]. The

result is

(42)
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ooy = LET) 1+ lo+102]. )

This equation is vsed to calenlate o, as a function of the
strength of the quadrupole field gradient. Figure 2b shows its
accuracy and also illustrates the second-order case

Gy = ZL(KT"‘E)IE[I +lo] (44)
and the smooth approximation,
oy, = 2L(KH) ', “5)
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