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The digital imaging revolution has made the camera ubiquitous; however, image quality

has not improved at the same rate as the increase in camera availability. Increasingly more cameras

are small, with inexpensive lenses, no flash, and lightweight bodies that are difficult to hold steady,

and this results in images with blur, noise, and poor color-balance. Consequently, there is a

strong need for simple, automatic, and accurate methods for image correction. This dissertation,

presents work that uses “content-specific” image models and priors for image enhancement.

Image enhancement is a challenge problem – corrections such as deblurring, denoising,

and color-correction are ill-posed, where the number of unknown values outweighs the number

of observations. As a result, it is necessary to add additional information as constraints. Previous

work has focused on using generic image priors that are applicable to a large number of images.

In this work, we develop constraints that are tuned to the specific content of an image.

First, we discuss a fast, accurate blur estimation method that models all edges in a sharp

image as step-edges. The method predicts the “sharp” version of a blurry input image and uses

the two images together to solve for a PSF.

Second, we discuss a framework for image deblurring and denoising that uses local color

statistics to produce sharp, low-noise results. Even when the blur function is known, deblurring

an image is still quite difficult due to information loss during blurring and due to the presence of

xvii



noise. In our work, we investigate using local-color statistics of an image in a joint framework for

deblurring and denoising of images.

Lastly, we discuss work in methods that use “identity-specific” priors to perform cor-

rections for images containing faces. These priors provide the guidance needed to perform

high-quality corrections needed for known, familiar faces. Deblurring, super-resolution, color-

balancing, and exposure correction operate independently, so that a user can correct selected

image properties, while still retaining certain desired qualities of the original photo. We have also

developed a prototype application for performing these corrections.
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Introduction

“You don’t take a photograph, you make it.”

—Ansel Adams

The visual form is an integral part of the human experience. Over the ages people have had

a continuing fascination with the visual world and have strived to capture precious, memorable

sights in the world around them. The earliest recorded forms of visual communication pre-date

the written word by thousands of years, yet, in the intervening centuries the desire to capture

the visual world has not waned. In those years, visual imagery has become an essential part of

communication, education, entertainment, art, and the sciences. Since the first cave paintings,

perhaps the most significant change in the process of creating visual imagery was the invention of

the photograph in the 1800s. Two-hundred years later, photography has permeated almost every

aspect of our lives with reckless abandon.

Over the years, there has been a consistent increase in the quality of photographs as

scientists and engineers have pioneered new camera technologies, processing methods, and film

types to push the limits of photography ever-further. Perhaps the most significant recent step in

photography has been the advent of the digital camera. The creation of low-cost, high-quality

digital image sensors combined with the power and availability of computers has introduced

photography to new applications and new populations in a staggering way. However, while recent

advances have vastly increased the popularity and ease with which photographs can be taken,

many fundamental limits of photography remain the same. As a result, capturing a high quality

1
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Figure 1.1: One of the oldest surviving photographs. This image is believed to be the second photograph
ever taken and the first using a camera. Ever since the first days of photography, the quality of photographs
has been limited by technical aspects of image capture. Though manual means in the darkroom and
improvements in technology as photography progressed, there has been a constant desire to improve the
quality of images. [View from the Window at le Gras, Joseph Nicéphore Niépce 1826]

photograph can still be quite challenging even for experienced users. For inexperienced uses,

who carry cameras tucked away in pockets and handbags, perfect photographic moments are

often lost due to an inadvertent camera movement, an incorrect camera setting, or poor lighting.

Such imperfections in the photographic process often cause a photograph to be a complete loss.

Image enhancement and alteration has a long storied history that dates back to the dawn

of photography. Colorization is perhaps the first form of photo alteration starting in the 1840s,

with darkroom techniques such as dodging and burning for modifying image contrast dating back

to the late 19th century. Photo-retouching and manipulation began in earnest in the 20th century

as “airbrushing” emerged as a way to remove undesirable elements in a photograph.

In the past few decades, the parallel development of ever-faster computer technology has

collided with digital photography, enabling novel ways to tackle the traditional problems of image

processing. Image processing methods have offered ways to improve and at times remove artifacts

that reduce the quality of photographs, with the now ubiquitous process of “Photoshopping”

becoming available to amateur photographers with the first graphical user-interface computers

in the mid 1980s.

Automatic digital image enhancement dates back to the late 60s with much of this work
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being in image restoration such as denoising and deconvolution. A recent approach is to use

image-based priors to guide the correction of common flaws. Image-based priors have been

exploited for super-resolution [Baker and Kanade, 2000; Freeman et al., 2002; Liu et al., 2007],

deblurring [Miskin and Mackay, 2000; Fergus et al., 2006], denoising [Roth and Black, 2005], and

in-painting [Levin et al., 2003]. These priors are specific to a particular domain, such as a face

prior for super-resolution of faces or a gradient distribution prior that models natural images, but

they tend to be general within the domain, i.e., they capture properties of everyone’s face or all

natural images. Such methods are promising and have shown some impressive results; however,

at times their generality limits their quality.

In this dissertation, we address image enhancement and correction by developing con-

straints that are tuned to the specific content of an image. We specifically address the following

corrections:

• Deblurring: removing blur for images when the blur function is both known and unknown

• Denoising: removing artifacts due to image noise

• Super-resolution and up-sampling: creating high-resolution images from low-resolution

images

• Lighting transfer and enhancement: transferring lighting color balance and correcting

detail due to under exposure or saturation

1.1 Summary of Original Contributions

The work in this dissertation builds upon several methods in image processing, computer

vision, and computer graphics. We outline our major contributions below.

PSF Estimation using Sharp Edge Prediction: We present an algorithm that estimates non-

parametric, spatially-varying blur functions (i.e., point-spread functions or PSFs) at sub-pixel

resolution from a single image. Our method handles blur due to defocus, slight camera motion,

and inherent aspects of the imaging system. Our algorithm can be used to measure blur due to
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limited sensor resolution by estimating a sub-pixel, super-resolved PSF even for in-focus images.

It operates by predicting a “sharp” version of a blurry input image and uses the two images to

solve for a PSF. We handle the cases where the scene content is unknown and also where a known

printed calibration target is placed in the scene. Our method is completely automatic, fast, and

produces accurate results.

Image Enhancement using Color Statistics: We present a novel image deconvolution algorithm

that deblurs and denoises an image given a known shift-invariant blur kernel. Even when the blur

function is known, deblurring an image is still quite difficult due to information loss during blur-

ring and due to the presence of noise, which can be significant. At times, blur can be eliminated

during capture, yet noise remains. Our algorithm uses local color statistics derived from the image

as a constraint in a unified framework that can be used for deblurring, denoising, up-sampling,

and demosaicing. A pixel’s color is required to be a linear combination of the two most prevalent

colors within a neighborhood of the pixel. This two-color prior has two major benefits: it is tuned

to the content of the particular image and it serves to decouple edge sharpness from edge strength.

Image Correction using Identify-Specific Priors: We present a framework for improving the

quality of personal photographs by using a person’s favorite photographs as examples. We ob-

serve that the majority of a person’s photographs include the faces of a photographer’s family

and friends and often the errors in these photographs are the most disconcerting. We focus on

correcting these types of images and use common faces across images to automatically perform

both global and face-specific corrections. Our system achieves this by using face detection to align

faces between “good” and “bad” photos such that properties of the good examples can be used to

correct a bad photo. “Personal” photographs provide strong guidance for a number operations

and, as a result, enable a number of high-quality image processing operations. We illustrate the

power and generality of our approach by presenting a novel deblurring algorithm, and we show

corrections that perform sharpening, super-resolution, in-painting of over and under-exposure

regions, and white-balancing.
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1.2 Organization of the Dissertation

This dissertation is divided into six chapters. In Chapter 2, we present an overview

of the related work relevant to the areas of this dissertaion: image deblurring, denoising, up-

sampling, and color balancing. While Chapter 2 gives a high-level overview of related work, we

directly compare our methods to relevant previous work in each subsequent chapter. Chapter 3

discusses our work in PSF estimation using sharp edge prediction. Chapter 4 presents our work on

image enhancement using color statistics, and Chapter 5 discusses our work in image correction

using identify-specific priors. In Chapter 6, we close this dissertation with a summary of our

contributions and several directions for future work.
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Previous Work

“The great thing in the world is not so much where we stand, as in what direction we are moving”

—Oliver Wendell Holmes

Acquiring satisfactory and usable images with a camera involves ensuring that the film

or digital sensor in a camera is properly exposed given a scene’s illumination strength and color.

Several camera parameters affect this process. To properly handle variations of lighting strength a

camera’s exposure can be adjusted by varying three parameters: exposure time, aperture size, and

film or sensor sensitivity (ISO). To properly color balance a photo, the lighting color needs to be

offset by adjusting the camera white-balance. This white-balance setting affects the relative ratio

of red, green, and blue so that photos can be captured that better reflect the human perception of

an object’s color under varied lighting color.

Each exposure adjustment has its own tradeoff that can lead to various image artifacts

in low-light conditions. Long exposure times allow more light to be captured, but increase the

chances of getting blurred images if an object or the camera moves during the exposure window.

Large apertures allow more light to reach the film or sensor, but can cause depth-dependent blur

as the depth of field is decreased. High ISOs increase image contrast; however, they increase

image noise – for film cameras, larger ISOs correspond to larger film grain, thus noise appears as

the large discrete film grains become visible, while for digital cameras, ISO represents a gain that

amplifies sensor noise in addition to the image signal. As a result, acquiring high-quality images

in low-light conditions can be quite challenging.

6
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Figure 2.1: Examples of Image Blur. Object motion blur: stars moving relative to the camera cause blur
trails. Here the trails capture the PSF. [From Flick.com] (top left) and fast-motion of the gymnast’s leg causes
the leg to blur with the background [From Jia 2007] (top right), Blur from inadvertent camera movement
[From Fergus et al. 2007] (bottom left), and defocus blur due to shallow depth-of-field and the camera
auto-focus focusing on the background [From Flick.com] (bottom right).

Incorrect white-balance adjustments can also lead to image artifacts, where the percep-

tion of the colors in a photograph does not match what a human observer would see. While

current cameras implement basic white-balancing algorithms and have presets for common

lighting conditions, the basic approaches are not always successful.

A significant area of research in image-processing, computer vision, and, more recently,

computer graphics has addressed the area of image quality enhancement and much of this work

handles lighting related situations.

In this chapter, we will give and overview of the previous work in image enhancement.

We will focus on image deblurring, denoising, up-sampling, and white-balancing, which are the

four main image corrections discussed in this dissertation. The previous work discussed in this

chapter is discussed at a high level to give an overview of the relevant areas. Individual chapters

that appear later in this dissertation will discuss previous work in direct comparison to the work

presented in the respective chapters.

2.1 Deblurring

There are numerous causes of image blur. Some examples of image blur, specifically

motion and defocus blur are illustrated in Figure 2.1. Classical, non-blind deconvolution refers to

deblurring a signal that was blurred with a known blur function. In contrast, blind deconvolution

refers to the process of estimating both a blur function and true image when only the blurred

image is known. This problem, which is inherently under-constrained, is quite challenging and
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Figure 2.2: Defocus blur (left) and motion blur (right).

has spawned a large area of research. Blind deconvolution has been applied in many fields outside

imaging such as audio processing and seismography; however, in this chapter, we will focus on

imaging applications.

Blur estimation when observing only the blurred result is an ill-posed problem and cannot

be solved without extra constraints or information. If one thinks of blind deconvolution in signal

processing terms as blind source-separation, this lack of constraints becomes clear. Blind source-

separation refers to the process of recovering two independent signals from one observed signal

that is mixing of the two. In the case of image blur, the independent signals are the potentially

spatially-varying point-spread function (PSF) and the sharp image. Estimating two unknowns

from one known is clearly not well-posed. In fact, given an input blurred image and no constraints

on the image or kernel, there are infinitely many pairs of kernels and images that can be combined

to result in the blurred image. An illustration of this is shown in Figure 2.3.

Thus to estimate the PSF and sharp image from a blurred image it is necessary to add

constraints or information to the system, and this is how the problem has been approached by the

research community. Where methods have differed over the years is the nature of the constraints

that are added.

Before discussing blur estimation and blind-deconvolution, we will first give some back-

ground on image blur. The rest of this chapter proceeds as follows: in Section 2.1.1 we will give an

high-level overview of types image blur types and the intuition behind the factors that affect blur

estimation algorithms, in Section 2.1.2 we will formally define the commonly used image blurring
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Figure 2.3: Blind deconvolution is under-constrained. An observed blurred image (left) can be described by
infinitely many combinations of a “sharp” image convolved with a blur kernel, even in the case of a simple
non-spatially varying blur. Three examples are shown (right). [From Fergus et al. 2006]

model, followed by a discussion of the most commonly used non-blind image deblurring methods

(deblurring when the blur function is given) in Section 2.1.3. We break down blur estimation

and blind-deconvolution methods into three general categories: methods that used parametric

PSF models are discussed in Section 2.1.4, methods that use image constraints are discussed in

Section 2.1.5, and lastly, methods that use multiple images are discussed in Section 2.1.6. These

categories are not mutually exclusive, for example there are methods that use image constraints

and parametric models. For these mixed methods, we group work by the area where its most

novel contribution lies.

2.1.1 Image Blur Overview

Image blur can be described by a point spread function (PSF). A PSF models how an

imaging system captures a single point in the world – it literally shows how a point “spreads”

across an image. An entire image is then made up of a sum of the individual images of every scene



10

point, where each point’s image is affected by the PSF associated with that point. Thus, in imaging

applications where one ideally does not want any image blur, the PSF should be minimal, i.e., it

should be a delta function, where each scene point should correspond only to one image point. In

practice, PSFs can take on a range of shapes and sizes depending on the properties of an imaging

system. When PSFs are large relative to image resolution, blurry images are captured. If a PSF is

known one can rely on non-blind deconvolution to remove image blur. Unfortunately, PSFs are

not typically known, and it is necessary to estimate them.

It is necessary to understand what governs the form of a PSF to properly estimate one.

The shape and size of the PSF is determined by properties of the imaging system as they relate

to the scene. As discussed above, to get sharp images PSFs should be delta functions; however,

due to numerous physical limits, this is impossible. As a result common cameras do not point-

sample a scene, but instead capture images by integrating light over fixed areas and ranges of time.

Properties such as aperture size, exposure duration, lens focal length, pixel size, and changes in

the relative position between camera and object, all influence how the sampling is performed

and in turn affect the PSF. Cameras sample light entering the lens over an a pixel with non-zero

area – this area affects the PSF. Similarly, it is not possible to use single point apertures or to

capture a single instant in time; instead cameras must use an aperture of some non-zero area and

an exposure that lasts some duration of time. Thus movement during the exposure window or

changes in aperture will affect the PSF.

These effects on the PSF can be categorized into three areas: blur due to lack of resolution,

motion blur, and defocus blur. In general, image blur can be an arbitrary combination of these

effects. While these three types of blur can be treated in a somewhat related fashion, resolution

blur is typically addressed as separate research problem than motion and defocus blur. The pri-

mary reason for the separation is that for resolution blur the PSF is known and is also unchanging

across the image, while for motion and defocus blur, the PSF is often unknown and could be

spatially varying. In this section, we will focus on PSF estimation and thus address motion and

defocus blur.

Motion blur is due to motion of scene objects and/or the camera while the camera shutter

is open, which causes points to be imaged over a large area of camera sensor or film. The PSF
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Figure 2.4: Image Formation Model. The imaging model consists of two geometric transforms as well as
blur induced by motion, defocus, sensor anti-aliasing, and finite-area sensor sampling.

describing motion blur is actually a projection of the motion path of the moving objects onto

the image plane, as illustrated in 2.2. The motion path of a point can be due to translation and

rotation of objects in three dimensions, and there can be different paths for different parts of the

scene, and when using long-exposures, these paths can be quite large.

Defocus blur occurs when using an aperture with a non-zero area. For very small apertures

or a nearly “pinhole” aperture the PSF and consequently the blur can be insignificant relative to

the resolution or pixel size of the camera. However, in light-limited situations, larger apertures are

used. With a large aperture the “depth-of-field” of the lens is no longer infinite and the PSF for

objects off the focal plane is larger. The amount of blur is depth dependent; it depends on the

focal length of the lens and the focal depth, and it grows with distance from the focal plane, as

illustrated in Figure 2.2.

In the next section, we will formally define blind deconvolution and PSF estimation, we

will then discuss the current work on estimating PSFs for motion and defocus blur, and we will

discuss them in the context of the assumptions they place on the form of both the PSF and the

input blurred image.

2.1.2 Image Blur Model

We now give a brief overview of relevant imaging and optics concepts needed for blur esti-

mation. As illustrated in Figure 2.4, the imaging model from world to image consists of geometric

transforms: a perspective transform and a radial distortion, and there are several sources of blur

induced by motion, defocus, sensor anti-aliasing, and pixel sampling area (fill factor and active

sensing area shape). In blind deconvolution and most PSF estimation algorithms, image blur is
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modeled as a convolution along the image plane, and thus the geometric transformations are

ignored. In the simplest case, the PSF is considered to be shift-invariant, i.e., the same for all parts

of the scene. Blur estimation methods account for depth-dependent defocus blur and 3D motion

blur by allowing for the PSF to be spatially varying.

PSF estimation methods generally seek to find a discrete representation of an underlying

continuous PSF that is modeled as a blur kernel. For most practical imaging situations a linear

model of blur is an accurate representation. A blurred image B is a convolution of a kernel K and

a potentially higher-resolution sharp image I , plus noise, which is usually assumed to be additive

Gaussian white noise:

b = i ⊗k +n, (2.1)

where n ∼ N(0,σ2). In this formulation, the kernel k models all blurring effects, which are

potentially spatially varying and wavelength dependent. The goal of image deconvolution is to

recover i given k, and “blind” deconvolution is recovering both i and k simultaneously from

b. There are two approaches to blind deconvolution. The first approach is to initially perform

PSF estimation to recover k given b. Then once k is known, i can be recovered using image

deconvolution. The second approach is to merge PSF estimation with deconvolution where

k and i are estimated simultaneously. We will now give a brief overview of non-blind image

deconvolution before discussing the area of PSF estimation and blind deconvolution.

2.1.3 Image Deconvolution

While this section focuses on blur estimation and blind deconvolution, non-blind decon-

volution is an important component of many estimation and blind deconvolution methods and is

relevant to the contributions of this dissertation. As stated in the previous section blur estimation

and blind deconvolution often make use of non-blind deconvolution methods. Blur estimation

methods (methods that only seek to recover the PSF) at times use a non-blind deconvolution algo-

rithm as a way to measure the accuracy of a particular PSF. While blind-deconvolution methods

often use non-blind deconvolution algorithms as part of a closed-loop optimization.

Formally, non-blind image deconvolution is the process of recovering a sharp image from
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an input image corrupted by blurring and noise, where the blurring is due to convolution with a

known kernel and the noise level is known. It is important to note that non-blind deconvolution,

just as blind-deconvolution, is an inherently ill-posed problem due to the loss of information

during blurring and the addition of noise. Thus even if the blur function is known, there are

multiple sharp images that can result from deconvolution. The observed blurred image only pro-

vides a partial constraint on the solution—there exist many “sharp” images that when convolved

with the blur kernel will match the observed, noisy blurred image. Thus, the central challenge

in deconvolution is to develop methods to disambiguate among the many potential solutions

and bias the process towards more likely results given some prior information, and this is where

various algorithms differ.

The current most popular approaches are the Lucy-Richardson’s algorithm [Richardson,

1972; Lucy, 1974], Wiener deconvolution, and least-squares deconvolution, and deconvolution

that uses image priors derived from natural image statistics [Levin et al., 2007]. Other methods

have explored the use of graph cuts to reduce over-smoothing [Raj and Zabih, 2005], deconvolution

using multiple blurs [Harikumar and Bresler, 1999], and energy minimization functions using

wavelets for deconvolution [de Rivaz and Kingsbury, 2001; Neelamani et al., 2004].

The most straightforward deconvolution method is inverse filtering, which can be per-

formed in the frequency domain:

I = B/K . (2.2)

In the case of zero noise, infinite precision, and no zero frequencies in the kernel, this method will

be successful. In the more realistic case of noise corruption of b, this method quickly becomes

unusable as there are additional frequencies added to b.

The Lucy-Richardson algorithm deconvolves an image given a known PSF by using an

iterative method that is derived assuming a Poisson noise model in a Bayesian framework:

i j+1 = i j

[
k ∗ b

i j ⊗k

]
, (2.3)

where ’*’ is the correlation operator.

The Weiner filter is similar to inverse filtering that uses a prior measure of image signal



14

to noise to minimized the impact of deconvoluted noise for frequencies that have low signal to

noise:

I ( f ) = B( f )G( f ) (2.4)

G( f ) = K ( f )∗S( f )

|K ( f )|2S +N ( f )
, (2.5)

where K ∗ is the complex conjugate of K , and N and S are the mean spectral density of I and the

noise.

If the Weiner filter is re-written one can see the relationship to inverse filtering:

G( f ) = 1

K ( f )

[ |K ( f )|2
|K ( f )|2 +N ( f )/S( f )

]
(2.6)

= 1

K ( f )

[ |K ( f )|2
|K ( f )|2 +1/SN R( f )

]
, (2.7)

where SN R( f ) is the frequency-dependent signal-to-noise ratio. As the SNR become infinitely

large, i.e. no noise, the Weiner filter reduces to the standard inverse filter. As the SNR decreases

the Weiner filter attenuates the corresponding frequencies.

Lucy-Richardson and Weiner filtering were developed for applications where the images

are quite different than those taken by a typical photographer, e.g., Lucy-Richardson assumes

Poisson noise statistics, which are more applicable to very low-light conditions. Consequently,

these methods are not always well suited to the desired task of deblurring common photographic

images and often generate unwanted artifacts such as ringing. A disadvantage of the Weiner filter

is that the signal to noise ratio must be known to get optimal results, which is difficult to know as

it requires some measure of the unobserved latent image i .

An alterative approach to these frequency domain methods are image-space methods

that use image priors. The simplest of these is a least squares deconvolution, such as least-squares

deconvolution with a smoothness prior:

i = argmin
i

||i −b ⊗k||2
σ2 +λ||∇i ||2. (2.8)
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Sparse Gradient Distributions. (a) A sharp image, (b) a visualization of the magnitudes of the
gradients of that image, i.e., edge strength, (c) The log histogram of these gradients, (d) the L0.8 norm
used by Levin et al., (e) A gaussian distribution and corresponding L2 norm. The L0.8 norm minimizes
the gradients according to a hyper-laplacian distribution, which is a better model for natural image edge
statistics.



16

Here the first term is an “observation” term that states that the recovered sharp image i must blur

to match the observation. The second term states that the gradients of i must be minimal in a L2

sense.

The work of Levin et al. [2007] is a significant improvement upon this method. Instead

of using a simple L2 norm on the gradients, which enforces a Gaussian distribution. They use a

smoothness prior based on assumptions about the edge content of “natural” images. Specifically,

the authors assume that images are piecewise smooth and thus the gradient distribution of an

image is zero-peaked with high kurtosis. They enforced this property using a hyper-Laplacian

prior on image gradients during deconvolution. As a result of using this prior, they can generate

sharp images that are more consistent with typical photographic images. The error function for

their deconvolution method is:

i = argmin
i

||i −b ⊗k||2
σ2 +λ||∇i ||0.8. (2.9)

As the gradient penalty is no longer quadratic, they minimize this function using iterative re-

weighted least-squares.

See Figure 2.6 for a comparison of Lucy-Richardson, least-squares deconvolution with

a Gaussian prior, and the sparse prior. The Richardson-Lucy algorithm shows ringing artifacts,

while the Gaussian prior is smoothed, but still contains ringing artifacts and noise. The sparse

prior show less noise and ringing and sharper edges. The sparse prior has very clear benefits for

natural images. The one downside of this approach is that it is more time consuming. While other

methods can be formed in the frequency domain, Levin et al.’s method must be performed in the

image domain using the iterative re-weighted least-squares method. The authors report running

times of up to an hour for several mega-pixel images.

2.1.4 PSF Estimation by Constraining the PSF

Recall that recovering a PSF from a single blurred image is an inherently ill-posed problem.

Prior knowledge about the image or kernel can disambiguate the potential solutions. Much of the

early work in blur estimation constrained the form of the kernel [Kundur and Hatzinakos, 1996].
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Figure 2.6: The Richardson-Lucy algorithm shows ringing artifacts, while the Gaussian prior is smoothed,
but still contains ringing artifacts. The sparse prior show less noisy and ringing and sharper edges.[From
Levin et al. 2007]

There are several common assumptions made on the PSF that serve to constrain its form:

• Values of the PSF are non-negative

• The PSF is energy conserving, i.e.,
∑

i ki = 1

• The PSF is symmetric – radially or along some axis

• The PSF is has a known parametric form

These assumptions are listed in order from least to most restrictive. Positivity, is a strong constraint

and the least restrictive in that is does not eliminate any truly valid kernels, i.e. no true blur kernel

can have negative values as blurring in is a purely additive process. Another way of thinking of

this is that there is no “negative” light. Similarly the second constraint is equally not restrictive in

that blurring does not remove light, thus all true blur kernels should be energy conserving. Thus
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the assumptions of positivity and energy conservation are ones that can be used by virtually all

PSF estimation methods. In practice, whether a particular method uses them depends on the

nature of the other assumptions and models they use.

The second two assumptions are much more restrictive. Symmetry is typical used when

one wants to generalize a 2D PSF from some 1D cross section [Yoon et al., 2001]. Assuming a

parametric form is also very restrictive as it assumes the entire shape of the blur kernel can be

modeled by a low parameter mathematical model. We will now discuss blur estimation that uses

parametric models. Methods that use the other priors will be discussed in Section 2.1.5.

Parametric Blur

PSF models are commonly used for defocus and motion blurs.

Defocus Blur: Defocus blur has two commonly used models. A circular disk or “pillbox” function

[Cannon, 1976]:

k(x, y) =

 0
√

x2 + y2 > r

1
πr 2

√
x2 + y2 ≤ r

(2.10)

and a circularly symmetric 2D Gaussian [Banham and Katsaggelos, 1997]:

K (x, y) = Nexp(−x2 + y2

2σ2 ), (2.11)

where N is a normalization constant. In both cases a single parameter determines the PSF – r for

the pillbox and σ for the 2D Gaussian.

Motion Blur: Motion blur is usually parameterized as a 1D box-blur, where a horizontal blur is:

k(x, y) =

 0 y 6= 0 −∞≤ x ≤∞
1

2d y = 0 −d ≤ x ≤ d
, (2.12)

and blurs at other orientations can represented by rotating this kernel.

Frequency Domain Zeros:
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Figure 2.7: Frequency domain zeros. As the size parameter of a parametric the blur kernel increases (red >
green > blue) the spacing and number of zeros changes. By locating these zeros one can recover the blur
scale.

One of the simplest approaches for finding the respective parameter for defocus and 1D

motion blur is to find frequency domain zeros of the imaging system [Cannon, 1976; Gennery,

1973; Chang et al., 1991]. The high-level idea is that for any blur kernel there are certain spatially

frequencies of the underlying sharp image that will not be retained after blurring. Thus by identi-

fying these zero frequencies and matching them to the known zero frequencies for a particular

parameteric blur model, one can recover the kernel.

Consider the following blurring model, which is the same as Equation 2.1, except that the

noise component has been removed:

b = i ⊗k, (2.13)

if we take the Fourier transform of each side of the equation the following frequency domain

relationship results:

B(u, v) = I (u, v)∗K (u, v),u, v ∈R, (2.14)

where B , I and K are the discrete Fourier transform of the respective lowercase counterparts. It is

clear from this frequency domain representation that the zeros of B are the zeros of the combined

I and K . Thus by computing the Fourier transform of the blurred image b and locating the zeros,
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one can recover the blur kernel by identifying which parameter value creates a PSF whose zeros

values match those of the blurred image. Figure 2.7 shows an illustration of how frequency domain

zeros locations and number scale with blur kernel size.

Blur identification using frequency domain zeros is a nice and mathematically elegant

approach, but it suffers from several drawbacks. The theory relies on the observed image being

noise-free, i.e. no additional image frequencies are introduced after the blurring process. Thus

the frequency-zeros of I and K remain those of B . However, in the presence of noise, such as the

additive noise in the image model described by Equation 2.1, the observed image B will have no

frequency-domain zeros, as the noise introduces image frequencies independent of the blurring

process.

Typically this weakness is addressed by assuming that the additional frequencies intro-

duced by the noise will be small and thus values close to zero are identified as opposed to exact

zero-values. However, even with this modification, as the signal-to-noise of the observed image

decreases, the frequency profile flattens and finding “zeros” become increasingly difficult [Chang

et al., 1991]. Following up on Gennery’s [1973] work, Cannon [1976] proposed a similar approach

operating on the power spectra and cepstrum, the Fourier transform of the log of Fourier coeffi-

cients of the signal, rather than on the Fourier coefficients themselves. This approach showed

increased robustness to noise.

Chang et al. [1991] built on this work by operating on the frequency bispectrum, which

is a third order frequency measure, instead of the frequency spectrum. The bispectrum has the

property that the contribution from a gaussian white noise signal is zero as the bispectrum of a

gaussian signal is zero and the bispectrum of two added signals is the sum of the bispectrum of

the two signals. Thus the frequency zeros of the bispectrum of I and K remain the zeros of the

bispectrum of B .

While frequency space zeros methods have achieved some success, there are many cases

in which they are not appropriate. Even when using power spectra, cepstrum, or bispectrum there

is still some noise sensitivity. As a result, these methods have generally fallen out of favor. Further-

more these methods are limited to finding parametric PSFs that contain frequency-space zeros.

There are many types of blur that do not have zeros in the Fourier domains, e.g., atmospheric blur
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or Gaussian blurs (in the continuous case), and some that do not have easily indefinable zeros.

Blur Identification using Parameter Search:

An alternative approach to finding the unknown parameter values for parametric blur

models is to do a search over the parameter space with a match metric that can be computed

for each parameter value. The proper parameter value is chosen as that which gives the best

match according to the metric. If the blur in the scene is only due to depth of field and a search is

performed for the scale of a defocus kernel, this method is equivalent to shape-from-defocus as

the scale of the parametric defocus kernel is related directly to the depth of an object.

The work in this area takes the general approach of estimating a sharp image by perform-

ing deconvolution in the frequency or image domain and using the residual as match metric. In

the simple case, given an observed blurred image b, a candidate PSF k j , and the corresponding

recovered sharp image, i j obtained using a deconvolution method, the residual is:

r j = b − (i j ⊗k j ), (2.15)

where j is an index into the parameter space for the PSF model. Without loss of generality, we

notate the parameter space as one-dimensional, but the space could be of higher dimensionality.

Methods in this area use different approaches for estimating i j and for computing the residual

metric (Equation 2.15).

Savakis and Trussell [1993], presented one of the first approaches of this type. They use a

frequency domain residual:

R j (u, v) = B(u, v)− I j (u, v)∗K j (u, v),u, v ∈R, (2.16)

where B , I j , and K j are the discrete Fourier transform of the respective lowercase counterparts.

The sharp image is estimated using a Weiner filter deconvolution:

I j (u, v) = B(u, v)H j (u, v)P f (u, v)

P f (u, v)|H j (u, v)|2 +Pn(u, v)
, (2.17)
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where P f (u, v) and Pn(u, v) are the power spectra of the original image and noise respectively.

The authors show how to compute a cost function to determine if a particular frequency domain

residual indicates a good match. They compute their cost as a function of the L2 frequency

domain residual and the expected frequency domain residual for the “correct” deconvolution

given a prior model for the spectral density of typical images.

Rooms et al. [2004] take a similar approach; however, they replace the spectral residual

metric with an image-space metric. They seek to maximize a focus measure that will choose the

PSF such that the deconvolved result with a Wiener filter using that PSF has the sharpest edges.

The authors use a Wavelet basis as an edge filter, and their focus measure is the kurtosis of the

histogram of two bands of wavelet coefficients. The authors compare their work to that of Savakis

and Trussell [1993]. They show few quantitative comparisons, but state that their method tends to

over-estimate the PSF size while Savakis and Trussell’s method under-estimates the PSF size.

Levin et al. [2007] also perform a search over PSF size using an image-space metric;

however, in contrast with previous work, they do not use Wiener deconvolution and instead they

use their own deconvolution method (described in Section 2.1.3) with an image space residual as

their match metric. Specifically, given an estimated deconvolved image i j for a candidate PSF k j ,

the PSF is chosen as:

k = argmin
j

||b − i j ⊗k j ||2. (2.18)

The advantage of Levin et al.’s method for deconvolution is that it produces images that

are more consistent with natural images that we typically see. Visually this results in sharper

images with fewer ringing artifacts, as shown in Figure 2.6. It is unclear that their method provides

a significant benefit relative to Lucy-Richardson or Weiner Deconvolution when it comes to

providing a discriminating match metric, as for all of these methods the residual in Equation 2.18

will be relatively small for all methods when the PSF is near the correct value.

The main advantages of a parametric search over the frequency zero method is that it

is less sensitive to noise and that it applies to a broader range of parametric PSFs. The main

disadvantage is computational cost. Performing a search over a parameter space can be quite

time consuming depending on the dimension of the parameter space, the sampling density of
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the space for the search, and the time complexity of computing the match metric. In Levin et

al.’s approach each individual deconvolution can take up to an hour for large images, thus even a

modest parameter search will take many hours. In contrast, the frequency domain zero method

should take on the order of seconds.

Multiple Blurs

In the previous section, each algorithm found a single blur kernel for an image by evaluat-

ing a matching function for the entire image. However, in many cases a single blur will not model

the image, as there are different amounts of blur for different parts of the scene, i.e. the blur is

spatially varying. Spatially varying blur occurs most often due to depth of field effects. Depth of

field is the property that for a lens system, only one depth in the scene is perfectly “in-focus” and

for all other depths there is some depth-dependant defocus. Thus for many real images it is often

desirable to solve for the blur in a spatially varying way.

Every technique described in the previous section can be used to identify spatially varying

blurs. The most straightforward approach, used by Cannon [1976], is to perform the search

process on sub-windows of the image instead of the entire image. The assumption here is that the

blur is slowly varying and consistent within each small sub-section of the image. This is a generally

reasonable approach that has been used by a number of researchers; however, it does have some

limitations. While it is a relatively safe assumption that the blurs vary slowly across the image,

it is often not a good assumption that a PSF can be accurately computed for each sub-window,

as there may not be enough relevant image information in the sub-window. For example, in a

constant, textureless region of a scene, any amount of blur will produce the same observed image

data. Thus all the methods in the previous section require some significant amount of texture

for their match metrics to be discriminative. While sufficient texture is generally available when

using the entire image, as people do not tend to photograph completely textureless scenes, most

scenes have locally textureless areas.

Levin et al. [2007] address this issue by adding regularization to the process of picking

the scale for each sub-window. They do this by adding a smoothness term on the scales of

PSFs for neighboring windows to enforce that neighboring regions of the image has similar
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scales of blur. For images where the blur is piecewise smooth this is reasonable. They regularize

the scale selection by using a graphcut framework. The graphcut is well-suited to this type of

regularization – when the match metric is ambiguous the PSF scale for a pixel will be consistent

with its neighbors’ scales. Despite these additions the problem of selecting the correct scale is

still non-trivial. As illustrated in Figure 2.8, to get an acceptable assignment, Levin et al. still need

some user intervention to refine the solution.

Levin [2007] also developed a method to identify multiple 1D motion blurs within in an

image. Similar to selecting the scale of a defocus blur, Levin computes a match metric as the

log likelihood of the image data in sub-windows of an image matching a particular 1D motion

blur. This is done by first identifying the blur direction for each sub-window of the image as the

direction with the minimum response to an oriented edge-filter. The idea is that if the magnitude

of derivatives in the latent sharp image is equal in all orientations, in the blurred image the

orientation with the weakest derivatives is the blur direction. Given this direction, the algorithm

blurs the image data in the window along the direction orthogonal to the blur and computes a

histograms of the magnitude of the derivative in the same orthogonal direction after blurring. The

blur scale is the one that results in this histogram best matching the histogram of gradients along

the identified blurring direction. The scale selection is also regularized spatially using a graphcut.

Jia [2007] addresses finding multiple motion blurs in a scene but uses a very different

method for identifying the blur. She observes that given the alpha matte of a blurred object (a

soft-segmentation that captures the transparency the object) the size and varying opacity of the

matte is determined by the motion blur. She uses standard techniques to compute the alpha

matte and then show how to find 1D motion blurs in closed form. This can be done for a number

of segmented objects in a scene. She also extends the method to 2D motion blur – this is discussed

in Section 2.1.5

Shan et al. [2007], also use an alpha matte, but fit a low-parameter rotational model to the

matte to model motion blur due to an object translating and rigidly rotating about an axis parallel

to the camera’s optical axis. The model is fit on a per-pixel basis with spatial regularization over

the model parameters.
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Figure 2.8: Selecting the blur kernel size. (b) The raw depth map by finding the best match per-pixel
independently – the result is quite noisy and in-accurate. (c) Using a graphcut to compute a spatially
regularized solution – there are still error where the head has been miss-labeled. Using (a) user suggestions
is the only way for the work to get the correct scale/depths in (d) [From Levin et al. 2007]

2.1.5 PSF Estimation by Constraining the Image

While constrained or parametric kernels can model a wide range of common blurs, such as

1D motion and defocus, there are many types of blurs that are difficult to capture using parametric

models.

When a parametric model is not sufficient it is necessary to solve for a full blur ker-

nel. Methods that solve for a full kernel generally still assume that the blur can be modeled as

convolution with a single shift-invariant blur kernel.

A full non-parametric blur kernel of N xN values has N 2 unknowns. As discussed in Sec-

tion 2.1, to solve for such a kernel it is necessary to constrain the image or otherwise incorporate

prior information about the image to solve the blur estimation and blind-deconvolution problem.

In this section, we will discuss blur estimation and blind-deconvolution methods that use

image constraints or priors. Most of the work in this area use some form of prior on the PSF as a

weak constraint on the kernel.
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When using image priors or constraints, there are several common priors used to constrain

the PSF:

• Values of the PSF are non-negative

• The PSF is energy conserving, i.e.,
∑

i ki = 1

• The PSF is smooth, i.e., the magnitude gradients of the kernel are minimal

• The PSF is is mostly zero or has low entropy

As in the previous section, assumptions of positivity and energy conservation are con-

straints that can be used by virtually all PSF estimation methods. One of the final two constraints

are used by most methods.

Bayesian Blind Deconvolution

The work that we discuss in this section employs image and PSF priors in a Bayesian

framework [Richardson, 1972; Gull, 1988; Wan and Nowak, 1999; Miskin and Mackay, 2000; Fergus

et al., 2006]. Thus before discussing these methods we will first introduce the basic Bayesian

framework used by these methods.

The goal of Bayesian blind-deconvolution is to find the most likely estimate of the sharp

image i and blur kernel k, given the observed blurred image b and a known noise level σ. This

is typically solved by maximizing the probability distribution of the posterior using Bayes’ rule –

also known as maximum a posteriori (MAP) estimation.

The posterior distribution is thus expressed as the joint probability of i and k given b:

P (i ,k|b) = P (b|i ,k)P (i ,k)

P (b)
. (2.19)

Since i and k can be assumed to be statistically independent:

P (i ,k|b) = P (b|i ,k)P (i )P (k)

P (b)
, (2.20)
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i and k can then be recovered by minimizing of a sum of negative log likelihoods:

i ,k = argmax
i ,k

P (i ,k|b) (2.21)

= argmin
i ,k

L(i ,k|b) (2.22)

= argmin
i ,k

L(b|i ,k)+L(i )+L(k). (2.23)

Where L(b|i ,k) is the “data” or “observation” log-likelihood:

L(b|i ,k) = ||b − i ⊗k||2/σ2. (2.24)

that ensures that the error between the recovered values and observation matches best under a

Gaussian distribution and L(i ) and L(k) reflect image and PSF priors.

Equation 2.21 specifies an error function in two unknowns i and k. Minimizing this error

function is challenging as it is non-linear, which can be seen as the partial derivatives of Equation

2.21 in terms of i and k are interdependent.

Equation 2.21 can not be solved in closed form to recover i and k and thus is solved

iteratively using one of two methods. The first option is to minimize the equation directly using any

number of non-linear optimization methods. A number of gradient-descent style methods have

been used for this approach such as standard steepest descent and more sophisticated Newton’s

style methods. As the error function is subject to numerous local minima, the final solution is

highly dependent on the initial guess. An alternative approach is to use Simulated Annealing,

which is an optimization approach that attempts to avoid local minima by probabilistically

sampling the input space for different starting points for a gradient descent style optimization

[McCallum, 1990].

Gradient descent algorithms and Simulated Annealing are quite time consuming; fortu-

nately, there are alternative approaches to minimizing the error function for blind-deconvolution

that have been used with equal success and increased speed. The most common alternative is to

use an alternating minimization scheme such the Expectation Maximization algorithm or similar

approaches [Richardson, 1972; Gull, 1988; Ayers and Dainty, 1988; Wan and Nowak, 1999; Miskin
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and Mackay, 2000; Fergus et al., 2006].

An alternating minimization approach can be used for this non-linear problem by break-

ing the problem into two more easily solvable sub-problems by considering one set of unknowns

as observed and solving for the other and vice versa in an alternating fashion. In the context

of blind-deconvolution, this consists of making some initial guess for i and k and then alter-

nately solving for i given k and then k given i . Both sub-problems can still be formulated using

an Bayesian MAP framework and can be individually solved more easily and in closed-form,

depending on the forms of the image and PSF priors.

The image deconvolution sub-problem using a Bayesian framework is found by minimiz-

ing the negative log likelihood:

i = argmin
i

L(i |b,k) = argmin
i

[L(b|i ,k)+L(i )], (2.25)

while the kernel estimation sub-problem is found as:

k = argmin
k

L(k|b, i ) = argmin
k

[L(b|i ,k)+L(k)]. (2.26)

Early Work using Image Priors:

We will now give an overview of the blind-deconvolution algorithms that employ this type

of alternating minimization. The simplest approach is to to assume that L(i ), and potentially L(k),

is constant. The constant prior assumes that all images and kernels are likely. This approach boils

down to a simple inverse filtering or least-squares approach, which is equivalent to a maximum-

likelihood solution given a Gaussian distribution for P (b). As expected, this method is not very

successful as it does not constrain the image and kernel at all.

The earliest successful work in this area is the seminal work of Richardson and Lucy [1972].

Richardson and Lucy assume that the conditional distribution P (b|i ,k) is Poisson, which they

formulate as maximizing the posterior distribution P (i |b,k) given a constant model for P (i ) and a

Poisson noise model. A Poisson distribution is appropriate for low-light situations which are the

imaging conditions for the remote-sensing and astronomical applications that the algorithm was
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Figure 2.9: Natural Image Statistics. (left) A typical scene. (right) The log distribution of gradient magnitudes
within the scene are shown in red. The mixture of Gaussians approximation used by Fergus et at. is shown
in green. [From Fergus et al. 2006]

developed for. Gull [1988] additionally examines using Cauchy and Gaussian distributions in a

similar framework. To perform blind deconvolution with Richardson and Lucy’s algorithm, one

performs an alternating minimization, guessing an initial value for k0 and i0 commonly i0 = b

and alternately minimizing:

i j+1 = i j

[
k j ∗ b

i j ⊗k j

]
, (2.27)

k j+1 = k j

[
i j+1 ∗ b

i j+1 ⊗k j

]
, (2.28)

where ‘*’ is the correlation operator [Fish et al., 1995].

There are numerous other similar techniques for blind-deconvolution; however, all of

this earlier worked was focused on astronomical imaging. In most cases blind-deconvolution is

easier in this application domain as the images of stars in the scene are known to be “point-like”,

and the blurry image of a single star reflects the point-spread function.

Natural Image Priors:

As consumer photography has increased in popularity, the need for new blind-deconvolution

algorithms became imperative as the earlier methods were not very successful when applied to

typical everyday photographs.

More recent work in blind-deconvolution seeks to derive priors based on image statistics
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measured from typical, everyday, or “natural” scenes. Natural image statistics refers to the

observation that many images have gradient distributions that are zero-peaked, with high-kurtosis

and are heavy tailed, as shown in Figure 2.9. Simply put, this implies that images are piecewise

smooth, i.e., most areas of the image are constant or slowly varying, separated by few large edges.

The work by Caron et al. [2002] is the earliest to use this concept for blind-image decon-

volution. The authors derived a prior in the frequency domain that is a power-law that models

that the strength of the frequency content of an image is peaked largely around low-frequencies,

with a smaller proportion of high-frequency texture. They incorporate this prior as a frequency

dependent power law in a frequency-domain Wiener filtering framework.

In contrast, Wan and Nowak [1999] use natural image statistics in the imaging domain

instead of the frequency domain. Specifically, they learn a two component mixture of Gaussians

to model the zero-peaked, heavy-tailed distributions of edges strengths modeled as Wavelet coeffi-

cients. They then incorporate this prior into a MAP estimation using an alternating minimization

as discussed in Section 2.1.5. One advantage of Wan and Nowak’s work is that by using a edge

prior in the image domain, local-spatially information is retained, as opposed to Caron et al.work

that uses a frequency domain prior. Both methods will attenuate frequencies due to noise, but

Wan and Nowak’s do this by maintaining image smoothness thus enforcing the additional model

of the image being piecewise smooth.

The most recent work in this area is that of Fergus et al. [2006] who, like Wan and Nowak,

use a mixture of Gaussian distribution as a prior on image gradients, as shown in Figure 2.9.

However, in contrast with Wan and Nowak, Fergus et al. do not perform the alternating mini-

mization using a MAP estimation, but instead build on work by Miskin and Mackay [2000] that

used a variational Bayes framework for blind-deconvolution. Miskin and Mackay use priors based

on image color statistics for deblurring cartoon images. This method is not very successful for

natural images as deriving a broadly applicable color prior is not straightforward. By adapting

this work to use the natural image gradient prior, Fergus et al. achieved good results on a number

of images, as the gradient distribution prior is much more generalizable than a color prior. Fergus

et al. choose to use the Variational Bayes approach as the more standard MAP estimation did not

product high-quality results as it is subject to local-minima.
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Instead of finding i and k to maximize the posterior distribution P (i ,k|b), a variational

Bayes approach tries to approximate the full posterior distribution and then compute the kernel

k with the maximum marginal probability given this approximate posterior. The method selects a

kernel that is most likely relative to the entire distribution of possible latent images. In addition to

the gradient prior, Fergus et al. place a mixture of exponential distributions prior on the kernel

values, to enforce sparsity, i.e., kernel values are encouraged to be zero, and the prior requires that

all values be positive.

The minimization is performed by approximating the full posterior with a joint distribu-

tion Q(i ,k) and finding the value of k such that Q(i ,k) and P (i ,k|b) are most similar as measured

by the KL-divergence of the two distributions, as illustrated in Figure 2.10. A more detailed ex-

planation of Variational Bayes is beyond the scope of this chapter, and we refer the reader to the

paper by Miskin and Mackay [2000] for more details. We note that Fergus et al.’s algorithm is not a

full blind-deconvolution method as they operate only on gradients of a sub-section of an image

to recover a PSF. To recover the full deblurred image they use the non-blind Richardson-Lucy

algorithm. A result from their work is shown in Figure 2.11.

Zheng and Hellwich [2006b; 2006c; 2006a] explore several variational image priors includ-

ing Mumford-Shah regularization [1989], which is based on the assumption that an image can be

divided into a piecewise smooth approximation. They also explore total variational regularization.

Both of these approaches are somewhat similar to the gradient priors of the previously discussed

work. What is particularly interesting about Zheng and Hellwich’s work is that they include a

model prior on the PSF. They consider the unknown PSF to come from one of several distinct

parametric PSF models and for a particular PSF they derive a likelihood of it coming from each

model. In their alternating minimization framework, they adhere to the parametric model that

gives the maximum likelihood. This method is interesting as it provides more flexibility than

models that use a single parametric model, but more regularization than a simple sparsity or

smoothness constraint on the PSF.

Jia [2007] presents a method for recovering full 2D blur kernels based on computing an

alpha-matte of a scene. Instead of performing an alternating minimization on the original image

data, they perform blind-deconvolution on the alpha matte to recover the known blur function.
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Figure 2.10: Variational Bayes approximates the full posterior with a joint distribution Q(I ,K ) and finds the
value of K such that Q(I ,K ) and P (I ,K |B) are most similar as measured by the KL-divergence of the two
distributions. [From Fergus et al. 2006]

They enforce a prior on the alpha-matte that it should be mostly valued 0 and 1, which implies

that in the latent sharp image most edges are step edges. The benefit of such an approach is that a

binary valued prior (they use a beta distribution) is relatively easy to enforce and fairy consistent

across many natural images. The disadvantage of this method is that it completely relies on the

blur being modeled by the alpha matte. For large, complex blurs this is not likely as the alpha

matte can only represent the blending of two colors, while a complex blur can mix many areas of

the image that consists of many colors.

Bayesian methods for non-blind deconvolution and blur estimation are quite promising –

the work of Fergus et al. is perhaps the most successful method for recovering an arbitrary blur

kernel. Yet, there are some limitations of the current work in this area. The first is that in many

cases the state of the art methods often do not recover the correct PSF. Secondly, these methods

are time consuming even when using the faster alternating, EM-style approaches.

Non-Bayesian Methods

An interesting approach by Yoon et al. [2001] approaches blur estimation from a com-

pletely different point of view. Instead of taking a probabilistic approach or using a parametric PSF,

they analyze the image data to look for direct evidence of the form of the PSF. Their work is similar

to slant-edge calibration [Reichenbach et al., 1991; Burns and Williams, 1999]. These methods

recover 1D blur profiles by imaging a slanted edge feature and finding the 1D kernel normal to the
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Figure 2.11: Result from Fergus et al’s work. (top) The input blurry image and the location on the image that
is used to compute the PSF. (bottom) The recovered PSF and deblurred image using Lucy-Richardson.[From
Fergus et al. 2006]

edge profile that gives rise to the blurred observations of the known step edge. Reichenbach et

al. [1991] combine several 1D sections to estimate a 2D PSF.

Yoon et al. perform a similar operation, though in a blind setting. Instead of imaging a

known edge, they run an edge detector on the image and look at the intensity profiles orthogonal

to those edge. For each detected edge they compute the edge orientation and bin it into one of 4

orientation bins (0, 45, 90, and 135 degrees). Within each bin they average the step response of

the edge along the orthogonal direction of the edge. This results in 4 radial slices of the PSF that
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they use to estimate a single circularly-symmetric PSF.

The benefit of such an approach is that is is computationally quite simple and avoids

many of the ambiguities of the methods discussed in the previous section. The disadvantage of

Yoon et al.’s approach is that it only models circularly symmetric PSF; however, this still provides

more flexibility than some of the parameteric models. Another shortcoming is that by aggregating

data in a relatively coarse way, many of the subtle aspects of the PSF may be lost. Bones et al. [2005]

use a similar approach of identifying a 1D PSF, but use a tomographic reconstruction method to

recover the 2D PSF. This method appears to recover more subtle structure of the PSF; however, as

better evaluation of this work is needed.

2.1.6 Multi-Image Blur Estimation

As discussed in Section 2.1, blur estimation and blind deconvolution from a single image

is inherently ill-posed. While image and PSF priors can be used to regularize the solution and

recover images and blurs that are more likely for a particular application domain, the current

work in this area is still only partially successful. An alternate approach to blur estimation is to

acquire multiple images. While this may not always be possible and does little to help deblur an

existing image, it is an interesting idea to acquire data more intelligently during capture knowing

that deblurring will happen afterwards.

One straight-forward approach to handle defocus blur is to take images focused at multi-

ple depths and then create a “deblurred” image by essentially compositing together the focused

regions. This type of approach is essentially the same as classical shape-from-focus methods

[Nayar and Nakagawa, 1990, 1994; Nayar et al., 1995], which addresses depth estimation using a

parametric model for blur that is either a “pillbox” or 2D Gaussian function with a single parameter

for the PSF size, i.e., focal length or kernel radius. The “pillbox” function is the same as those used

by the frequency-spectrum zeros methods [Cannon, 1976; Gennery, 1973; Chang et al., 1991] for

defocus blur. In essentially the inverse fashion of the parameter search methods described in

Section 2.1.4, depth-from-focus methods work by scoring every pixel in each image with a “focus

measure”, which is a function of the magnitude of the derivative in the pixel’s local neighborhood.

The depth for a pixel is chosen as the one with the highest focus measure and this can then be



35

Figure 2.12: Bascle et al’s Tracking and Temporal deconvolution. (left) Motion is tracked across four input
frames. (middle) One of the four input images. (right) Their deblurred output. [From Bascle et al. 1996]

used to assemble a sharp focused photograph. Similar to the method discussed in Section 2.1.4,

spatial regularization can be used.

A big disadvantage of such methods are that the scene has to remain static while all

images are acquired, which is quite impractical. An alternative to is capture multiple views of a

scene at once, i.e., a lightfield [Levoy and Hanrahan, 1996] and refocus these to different depths in

post-processing. We refer the reader to the work of Isaksen et al. [2000] for more details on this

approach.

Bascle et al. [1996] show how to deblur a sequence of motion-blurred and defocus blurred

images of a moving object, where the motion is rigid, by using a combination of tracking and

temporal deconvolution [Irani and Peleg, 1993] to recover a single sharp image.

RavAcha and Peleg [2000; 2005] take a different approach where they show that they

produce better deblurring results given multiple images of a scene where each image has a

different blur direction. The authors assume a parametric oriented linear motion blur for each

image and use a parameter search to recover the blur function for each image. They then use the

images together to recover a higher quality sharp image using a non-blind deconvolution method.

Ben-Ezra and Nayar [2004] take the approach of attaching a video camera to a traditional

still camera where the video camera is filming at a high frame rate with lower resolution during

the exposure duration of the still camera. By tracking the motion of the video frames, they capture
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Figure 2.13: Hybrid Imaging. (left) Ben-Ezra and Nayar’s hybrid imaging camera. The video camera record
a video during the camera exposure time. By tracking motion in the video, the camera motion is recovered.
(right) (a) Input images, including the motion blurred image from the primary detector and a sequence of
low-resolution frames from the video camera. (b) The computed PSF. (c) The deblurring result. (d) Sharp
groundtruth image captured using a tripod. [From Ben-Ezra and Nayar 2004]

Figure 2.14: Rav-Acha and Peleg’s multi-image deblurring. (left) and (middle) have horizontal and vertical
motion blur, respectively. (right) Their recovered image. [From Rav-Acha and Peleg 2005]

the motion path of the camera. They recover the camera-shake PSF by performing optical flow

between each video frame to recover the global motion model for each frame. The concatenation

of the frame-to-frame movement of the video provides the path of the camera, which is used as

the PSF.

One of the most recent methods in this area is that of Yuan et al. [2007]. The authors

show that a sharp and noisy short exposure of a scene and a long exposure of the same scene,

taken in quick succession, can be used together to recover a PSF and a high-quality deconvolved
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Figure 2.15: Yuan et al.’s deblurring with a noisy and blurry image pair. (a) Blurred image (with shutter
speed of 1 second, and ISO 100). (b) Noisy image (with shutter speed of 1/100 second, and ISO 1600). (c)
Noisy image enhanced by adjusting level and gamma. (d) Their deblurred result. [From Yuan et al. 2007]

image. This is done by aligning the two images and using a denoised version the noisy image as

an initial guess for i in the alternating minimization approach discussed in Section 2.1.5. The

advantage of this method is that the denoised image is a very good initial guess for the sharp

image i . Furthermore, during the deconvolution step of their algorithm, they use the denoised

image as prior which increases the quality of the deconvolution.

2.1.7 Image Deblurring Summary

In the previous sections, we have surveyed a broad range of work in blur estimation

and blind deconvolution. These problems are fundamental ones in computer vision and image

processing with applications to a number of fields. In addition to being critical problems, they are

difficult problems, as they are theoretically unsolvable given the general formulation. As a result

not only has there been a lot of motivation to address this problem, there have been a wide variety

of methods. We will now review these approaches at a high-level and compare and contrast them.

Much of the earlier work in blur estimation used parametric blur models. This work dates

back to the 1970s and has several strong points. Parametric models simplify the deblurring task

by reducing the set of unknowns to a small set. Estimating this small set of parameters in a very

restricted space is a much better conditioned problem than the general blind-deconvolution

problem. Furthermore, a parametric model provides robustness to measurement noise in the

observed blurred image and prevents “over-fitting”, which can happen when the degrees of
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freedom of the solution space are large enough to allow a model to fit to noise. When a parametric

model can appropriately describe the blur in an image, fitting such a model is often the best

solution for blur estimation. Thus these methods are limited to cases where a model can be

developed. In the case of 2D or 3D motion blur (of the camera or objects in a scene) parametric

models tend to be less useful as the space of 2D and 3D motion is quite large and is not easily

generalizable.

In contrast with methods that use parametric blur models, methods that solve for a

full blur kernel have much broader applicability, but also suffer from over-fitting and can have

ambiguous solutions. Work in this area uses image and kernel priors to find better solutions and

have achieved some success.

Multi-image blur estimation and deconvolution often produce the highest visual quality

and most accurate results. The disadvantages of such methods are that cannot deblur an existing

single image and that many of these methods require some modification to the camera or typical

image acquisition process.

2.2 Denoising

Image denoising is closely coupled to image deblurring, as for many of the cases that lead

to image blur, image noise is an additional factor; however, even in the absence of blur there can

be significant artifacts due to image noise. As a result image denoising has received a significant

amount of attention separate from image deblurring.

Image noise can arise at several different stages of an imaging system. The observed

noise in an image is a combination of shot, quantization, sampling, thermal, and flicker noise.

Noise occurs due to various aspects of the electronics in an image sensor and tends to be most

disturbing in low-light situations, where the signal value, due to minimal light exposure, is low

compared to the noise values.

These different types of noise have different characteristics. Shot noise occurs in low-light

situations where the number of photons reaching an image sensor is small enough that there

is a detectable statistical fluctuation in accuracy of the measurement. This fluctuation can be
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described by a Poisson distribution. Thermal noise is due to the thermal excitation of electrons

in the sensor, it has a white noise spectrum (flat spectral density), and is well modeled by a

Gaussian distribution. Flicker noise has a pink spectrum (falls of with 1/frequency) and is due to

quantization noise and noise introduced at the transistor level. For a more detailed discussion of

the sources and types of image noise, we refer the reader to the paper by Tsin et al. [2001].

Most work in the image denoising literature models noise as a additive white Gaussian

noise (AWGN) process:

O = I +N , (2.29)

where I is the noise-free image, O is the observed image, and the noise N ∼N(0,σ2). While this

model is not completely accurate, it is a reasonable approximation in many common situations.

Poisson distributions with large N are well-modeled by a Gaussian distribution, thermal noise

is Gaussian, and flicker noise is generally dominated by the first two noise processes. Thus it is

a reasonable approximation to model the combination of all noise processes using a Gaussian

distribution. Where this model fails is in lower light situations, where the shot noise dominates

and the noise-levels scale with intensity.

While the AWGN noise process is by far the most commonly used model, several re-

searchers have developed more sophisticated and accurate noise models [Healey and Kondepudy,

1994; Tsin et al., 2001; Liu et al., 2006].

All denoising methods share the same general property that they desire to keep important

edges due to scene content and remove less meaningful edges due to noise. Where methods

differ are the models and priors they use on the image, which affects which edges are considered

meaningful and which are not. We will now give a high-level overview of these methods. For a

more detailed discussion we refer the reader to the paper by Buades et al. [2005].

2.2.1 Basic Filtering Methods

The most basic approaches for denoising are neighborhood filtering methods such as

Gaussian and median filtering. These methods rely on the assumption that image noise is

most prevalent in the highest-frequency components of an image and that the statistics of the
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neighborhood around a pixel can be used to smooth the noise. The most basic filter is a box-

blur that assumes the value of a pixel is equal to the most likely intensity value in the pixel’s

neighborhood, given a uniform spatial distribution. Gaussian filtering uses a normal distribution

to spatially weight the pixels:

I (p) = 1

W (p)

∑
q∈S

Gσs (||p −q||)O(q), (2.30)

where the value for pixel p is I (p), O is the noisy image, W (p) is a normalization factor, S is the

neighborhood of p, and Gσs ∼ N(0,σ2
s ). Formally, it is equivalent to solving an isotropic heat

diffusion equation [Strang, 1986]. Median filtering follows a similar approach that expects the

median of the neighboring pixels to best model a pixel value. For low noise levels and small

neighborhoods, the median filter produces visually sharper results than Gaussian filtering, which

tends to over-smooth edges and remove image detail.

2.2.2 Edge-Preserving Methods

One way to improve on the results of Gaussian filtering is to consider posing denoising

as solving an anisotropic heat (or diffusion) equation. Anisotropic diffusion methods add an

edge-dependent scaling term to the smoothing operation that enforces that smoothing occurs

along an edge instead of across it. This is done by solving a PDE:

I = di v(g (||∇I (x, y)||)∇I ), (2.31)

where g is a monotonically decreasing function that is small for large values, thus resulting in less

smoothing for large gradients, and large for small values, thus smoothing small gradients more

strongly [Perona and Malik, 1990].

Another approach for adapting Gaussian filtering to be edge-preserving is Bilateral filter-

ing [Tomasi and Manduchi, 1998]. The Bilateral filter combines a Gaussian weighting spatially
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with a Gaussian distribution in the intensity range:

I (p) = 1

W (p)

∑
q∈S

Gσs (||p −q||)Gσr (|O(p)−O(q)|)O(q), (2.32)

where S is the neighborhood of the pixel p given by the size of the Gaussian spatial filter. One

difficulty with the Bilateral filter is how to choose σr . Denoising with a bilateral filter produces

similar results as with anisotropic diffusion. For an direct comparison of the two methods we

refer the reader to the paper by Barash [2002]. Both methods have a tendency to over-smooth

highly textured regions and over-sharpen strong edges.

A different approach to performing edge-preserving denoising is the Non-Local Means

method [Buades et al., 2005]. For static scenes, one approach to denoising is to take N images

and average them. Under a Gaussian noise assumption the variance of the observed noise will

decrease as
p

N . The Non-Local means method approximates this temporal mean from a spatially

mean by finding patches with similar texture for a patch around each pixel and taking the mean of

the center pixels values. This algorithm is essentially a combination of the bilateral filter [Tomasi

and Manduchi, 1998] and example driven methods [Efros and Freeman, 2001], as it averages in

the range domain similar to the bilateral filter, but considers pixels across the entire image that

have have a similar neighborhood instead of only using a local neighborhood.

This method produces high-quality results, but can be quite time consuming, O(N 4) for

an image with N 2 pixels, as the algorithm calls for performing a weighted sum with every patch in

the image. Buades et al. propose restricting the search area for patches to a fixed window of size of

M 2 around each pixel, which reduces the time to O(M 2N 2), where M = 21 in their experiments.

2.2.3 Using Image Priors

An alternative approach to neighborhood filtering approaches is to consider denoising at

a higher level view of global image estimation under some image prior. A very prevalent approach

in recent years is to use the properties of natural image statistics to derive methods that enhance

large intensity edges and suppress lower intensity edges. This property has been used by wavelet

based methods [Simoncelli and Adelson, 1996; Portilla et al., 2003] and Field of Experts models
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[Roth and Black, 2005].

Wavelet based methods use the image prior that natural images have highly-peaked,

kurtotic marginal distributions of edge filter responses. Methods such as Wavelet coring [Si-

moncelli and Adelson, 1996; Portilla et al., 2003] decompose images into a multi-scale wavelet

representation (multi-scale sub-bands of oriented filter responses) and enforce the highly kurtotic

distribution by suppressing low-amplitude wavelets coefficients while retaining high-amplitude

values. The denoised image is then reconstructed by inverting the wavelet decomposition.

Field of Experts models [Roth and Black, 2005] also rely on natural images, but in a

more direct way. They view an image as a global Markov-Random-Field (MRF) and develop a

parametric prior over large neighborhood cliques where potential functions are learned from

a set of representative images of training data. Field of Experts methods do not achieve quite

the same performance of Wavelet methods, although the benefit is that the same prior can be

used for other applications such as in-painting, super-resolution, sharpening, and image-based

rendering[Roth and Black, 2005].

The current best performing denoising algorithm is that by Liu et al. [2006], whose work

addresses denoising by considering that images should adhere to a “two-color” model that states,

which states that within some local neighborhood of a pixel the colors can be represented as a

linear combination of two dominant colors, where these colors are piecewise smooth and can be

derived from local properties:

I =αP + (1−α)S. (2.33)

Liu et al. build this model by segmenting an image first and then build an affine color model per

segment. They not only use this model for denoising but they additionally address noise-level

estimation, where instead of using a standard AWGN model with a single variance value for the

entire image, they use a AWGN model where the noise variance can vary spatially as a function of

image intensity. They refer to this function as a noise-level-function (NLF).

Our work builds on the work of Liu et al. in several ways. Many of the algorithms presented

in this dissertation require a proper noise level estimate, and, as indicated in each chapter, we use

their method for estimating the spatially varying noise level. Our work further builds on Liu et
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Original Noisy (10 %) Field of ExpertsWaveletNon‐Linear Diffusion

PSNR = 28.72PSNR = 28.90PSNR = 27.18

Original Noisy (10 %) Bilateral Filter Wavelet Liu et al. 2008

PSNR = 29.25 PSNR = 31.23 PSNR = 33.27

Figure 2.16: Comparisons of several denoising method. [From Roth and Black 2005 – top row] and [Liu et al.
2008 – bottom row]

al.’s in that we use the concept of local two-color model for several applications in addition to

denoising. Furthermore, we improve on their denoising results by considering denoising under a

per-pixel color model rather than a per-segment model.

Figure 2.16 shows comparisons of several of the denoising methods discussed in this

section.

2.3 Up-sampling

As part of the imaging process, the continuous lighting domain of the world is discretely

sampled by a sensor, where the size of the sensor and each pixel limits an image’s resolution. In

many scenarios, an image is needed at a higher resolution than it was captured, and, in these

cases, an image must be up-sampled to this new target resolution. Ideally, the up-sampling

process should preserve the sharpness of the original image, but in practice, this is not possible,

as the highest frequency image data for the higher resolution is not present in the down-sampled

observation. Thus the up-sampled image is invariably less sharp than the original. To com-

bat this problem, up-sampling algorithms try to predict this missing data by interpolating or
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“hallucinating” the high-frequencies given a particular image model.

In this section, we give an overview of image up-sampling algorithms. In some of the

relevant literature these algorithms are referred to as performing super-resolution. We will use the

terms super-resolution, up-sampling, and hallucination interchangeably, as is done in the litera-

ture; however, it is important to note the term super-resolution when used to refer to up-sampling

is somewhat of a misnomer. The algorithms we address here and develop later in this dissertation

do not perform super-resolution in the strictest sense. (True super-resolution constructs a high-

resolution image of a scene from lower resolution images that over-sample the scene in a way

that the high-resolution image contains accurate high-frequency data.) In contrast, up-sampling

algorithms essentially “make-up” the higher-resolution data without directly deriving it from the

scene.

2.3.1 Image Invariant Filters

The most basic approaches to image up-sampling are those that use data-invariant filters,

such as nearest-neighbor, bilinear, bicubic, and Lanczos interpolation filters. These methods

are the most well-known and more widely-used up-sampling methods and appear in numerous

commercial image editing packages. These methods interpolate the missing data using a formula

that is independent of the data. They assume that the image is smooth or band-limited, which

is generally not the case [Fattal, 2007]. As a result, they produce visual artifacts such as blurring,

ringing, and aliasing. We refer the reader to the paper by Thévenaz et al. [2000] for a more detailed

survey of data invariant up-sampling methods.

2.3.2 Image Dependent Filters

Similarly to the denoising work discussed in the previous section, more sophisticated up-

sampling methods are data dependent and modify their interpolation methods to better preserve

edges. Carrato et al. [1996] change the parameters of a linear interpolation filter according to

local intensity differences to better preserve edge strength and reduce blurring. They do this by

biasing the interpolated pixels on 1D edge profiles to be closer to the end-points of the transition

than one would get with the standard linear filter. While this method does produce somewhat
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sharper images, by only strengthening 1D vertical and horizontal edges the method can creating

block-like artifacts. Su and Willis [2004] take another approach to modifying standard bilinear

interpolation. Instead of using the values of the four bounding pixels as in bilinear interpolation,

when an edge cuts through this four-pixel square, only the three out of the four pixels that are

most consistent with being on one side of the edge are averaged to compute the interpolated

value. This serves to maintain edges, that are more consistent with the estimated edge direction

within the four pixel region. This method can also suffer from block like or stair-step artifacts as

only an edges aligned with one of the two diagonals are retained. Li and Orchard [2000] alleviate

these artifacts some by using a local intensity covariance matrix computed at the lower resolution

to better model edge direction. They then use this covariance estimate to weigh neighboring pixel

values in a way that is more consistent with the edge direction, which avoids averaging across the

edge.

Tumblin and Choudhury [2004] propose a data structure where each pixel stores ad-

ditional boundary information extracted from the original higher-resolution data (when later

down-sampling and up-sampling is expected) or the boundary information is otherwise provided.

This enables creating an image of any resolution where the boundary between two color regions is

always at the proper location; however, this it is generally only acceptable for piece-wise constant

images and is not as directly useful for up-sampling where no high-resolution boundary data is

available.

Instead of modifying interpolation weights, Greenspan et al. [2000] and Morse and

Schwartzwald [2001] present methods that post-process standard linear interpolation meth-

ods to add sharpness. Greenspan et al. perform a multi-scale Laplacian decomposition of the

interpolated image and extrapolate the coefficients at the highest pyramidal level to create ideal

step edges that are consistent with the low-frequency image data. Morse and Schwartzwald

smooth 2D level curves/isophotes (curves of constant intensity) of an up-sampled image using an

iterative level-set framework. Their method smooths the curvature of the isophotes to remove

stair-step artifacts or “jaggies”.
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Original Down‐sampled 4x Bicubic upsampling

Fattal 2007 Carrato et al. 1996 Li and Orchard 2000

Figure 2.17: Comparisons of several up-sampling methods. [From Fattal 2007].

2.3.3 Using Image Priors

An alternative approach to filtering based up-sampling is to using a more global image

prior or model. Hertzman et al. [2001] and Freeman et al. [2002] proposed similar methods to up-

sample images by predicting the missing high-frequency data uses a non-parameteric, example

based approach. Both methods use a training data set that consists of high and low resolution

pairs and use this set to predict the highest frequency data for the input image based on how

the mid-frequencies of the input image match the training pairs. Liu et al. [2007] take a similar

approach, but specifically consider up-sampling face images using a training set of high and

low resolution face images. These methods are quite interesting and have been quite successful,

as they look beyond simply retaining edges and consider image data on a larger scale than the

previously discussed methods. This allows them to predict more complex texture features. These

methods inspired several of the algorithms discussed in Chapter 5 of this dissertation.

The work of Fattal [2007] and Dai et al. [2007] also use empirically derived priors but in a
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Fattal 2007Freeman et al. 2002
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Figure 2.18: Comparisons of example-based super resolution [Freeman et al. 2002] and Fattal’s method
[2007]. [From Fattal 2007].

slightly different way. Fattal derived an edge model that they use to predict the gradients of an

up-sampled image in a way that maintains the first three moments of an edge profile from the low

to high resolution image. Dai et al. on the other hand transform the image up-sampling problem
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to that of an alpha matting problem, i.e., separation of the image into:

I =αF + (1−α)B , (2.34)

where F and B are up-sampled in standard way and α is up-sampled using a set of alpha-edge

priors. The methods presented in Chapter 4 share some similarities with the work of Dai et al. in

that we also consider alpha priors.

Figures 2.17 and 2.18 show comparisons of several of the up-sampling methods discussed

in this section.

2.4 White-Balancing

It can be quite challenging to accurately convey colors using a photograph. Every step

from capture to display can affect our subjective color perception. Perhaps the most important

thing to account for are the differences in lighting color during image capture and viewing, as the

viewing conditions of an image strongly affect our subjective sense of color due to the principle of

color constancy.

Color constancy is the property that the perceived color of objects remains relatively

constant under varying illuminations conditions. For example, our perception of the color of an

orange is nearly the same whether it is viewed under broad-spectrum sunlight, yellow indoor

tungsten light, or bluish indoor florescent lighting, when in fact the actual color spectrum reflected

by the orange in these scenarios is quite different. This property is a result of chromatic adaptation

of the human visual system to the lighting of the viewing conditions. For images to agree with our

sense of color perception and seem realistic and convincing, it is important for the image to be

matched to the conditions it will be viewed under, as those are the conditions our visual system

will be adapted to at the time.

In certain scenarios, such as graphic design or professional photography printing, it is

common to perform color matching that accounts for every step of the imaging pipeline by

performing color management using calibrated setups and standardized color profiles. However,

in most cases a simpler form of color management is acceptable, where matching is performed
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under a certain set of assumptions. For most common photography and imaging applications

it is reasonable to assume that images will be viewed under relatively neutral colored lighting.

Thus color matching can be reduced to “white-balancing”, where the goal is to balance the color

channels during capture or post-processing such that the image appears as if acquired under

neutral light. In other words, the process of white-balancing a photograph seeks to remove the

color cast introduced by the lighting during capture such that a “white” or “gray” object, an object

that has equal reflectance across the color spectrum, has a neutral RGB value in the image.

Over the years, numerous approaches have been used to automatically white-balance an

image. The methods fall into two basic categories: methods that estimate the illuminate color

and those that attempt to match an image’s color characteristics to a reference image which has a

desired color balance. In the following sections, we will give an overview of these methods.

2.4.1 Estimating Illumination Color

The most commonly used white-balancing algorithms explicitly or implicitly try to recover

the illumination color from an image. The explicit methods estimate the color first and then apply

a transformation to map that color to gray, while the implicit methods directly estimate the color

balanced image, after which the light source color can be recovered.

The fastest, most straight-forward methods use low-level image statistics to estimate

the light color. The “gray-world” method assumes that the average reflectance in the scene is

achromatic and thus considers the mean of the image to indicate the color of the light [Land and

McCann, 1971]. The image is then white-balanced by scaling the red and blue color components

of the mean match the green value. The “max-RGB” techniques takes a similar approach, but

estimates the light color as the maximum response of each color channel [Buchsbaum, 1980].

Finlayson and Trezzi’s [2004] “shades-of-gray” work unifies the gray-world and max-RGB methods

as part of a more general color-constancy algorithm. Automatic white balance algorithms in

digital cameras use either the gray-world or max-RGB methods due to their computational

efficiency. A slightly more sophisticated low-level approach is the “gray-edge” method that derives

the light color from edge statistics by assuming that the average edge difference is achromatic

[van de Weijer et al., 2007]. Figure 2.19 shows a comparison of low-level statistical color constancy
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Figure 2.19: Comparisons of methods that estimate illuminant color using low-level statistics. The angular
error, the angle between the estimated light color and known light color for the test data, is displayed in the
lower-left corner of each image. A lower error indicates a better color estimate. [From van de Weijer 2007]

methods.

More sophisticated approaches incorporate priors on color casts of different types of

illumination and the typical color distributions observed under these illuminants. One of the more

successful methods is the “gamut-mapping” approach of Forsyth [1990], who uses the distribution

of colors in a scene as an indication of the color of the light source. Forsyth observed that only a

limited set of colors can be observed under a given illuminant, e.g., if a scene is strongly red, the

illuminant is unlikely to be a strong green or blue. The gamut-mapping algorithm computes a

transformation that maps an observed color gamut to a canonical white illuminant gamut, which

implicitly estimates the illuminant color as it can be recovered from the color transformation.

Finlayson et al. [2001] take this approach further by operating in a chromaticity space, to

be invariant to brightness changes, and use a correlation matching approach to find the most

likely illuminant given the observed color gamut. While Finlayson and Hordley [2006] define a
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Figure 2.20: Estimating illuminant color using the intersection of a dichomatic line with the Planckian
locus, i.e., the curve in chromaticity space as specified by Planck’s law for black-body radiation. [Finlayson
and Schaefer 2000]
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specific set of plausible lights a priori to further restrict the color transformations. Brainard and

Freeman [1997] take a similar approach and use a prior assumption on the likelihood of light

colors in a Bayesian framework, while Cardei et al. [2002] use a neural network.

Each one of the illuminant estimation methods has it strengths and weaknesses. On the

whole these methods can be quite fast and reliable, given that certain assumptions are met. The

gamut-mapping style methods rely on the color distribution of an image to completely indicate

the color of the light. In practice this works if the scene has objects that span a wide color gamut

under a natural illuminant; however, in practice this is not often the case. For example, nature

landscapes with trees, grass, and blue sky will be dominant in greens and blues and less so in

reds, even under neutral illumination. In this case, a gamut-mapping approach would incorrectly

identify the illuminant color as being greenish-blue and improperly color-balance the image. This

dependence and ambiguity between scene color content and the color distribution imposed by

the light can significantly limit the quality of such methods.

Another set of approaches relies on the assumption that images in the scene adhere to a

dichromatic model. In regions of constant color albedo, the observed chromaticity for the region

lies on a line between the region’s color albedo and the illuminant color. In the full RGB space the

colors lie on a plane instead of a line. Thus by observing different dichromatic surfaces, Lee [1986]

and Tominga and Wandell [1989], respectively showed that the illuminant color can be recovered

by intersecting dichromatic lines or planes. Finlayson and Schaefer [2000] further constrained

this approach by assuming that the illumination spectra follows Planck’s law, which describes

black-body light spectra as a function of temperature, thereby reducing the 2D dichromatic space

for lights to a 1D space. With Finlayson and Schaefer’s work only one dichromatic surface needs

to be identified. Then the corresponding single dichromatic line is intersected with the 1D curve

as specified by Planck’s law. Figure 2.20 shows an illustration of this method for three different

illuminant types.

While dichromatic methods avoid the aforementioned problems of gamut-mapping

methods, they have their own short-comings. These methods rely on being able to identify one or

many dichromatic surfaces. This can be difficult to do automatically, and often a human observed

is expected to provide this identification.
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Figure 2.21: Color matching using linear transformations in RGB and lαβ color spaces. Using a linear
transformation in color space that is a non-linear map of RGB can produce better matching results. Here
the result using lαβ better matches the look of the reference image. [Reinhard et al. 2001]

2.4.2 Color Matching

A very different approach to color-balancing is to perform color matching. Color matching

assumes that one wants to color balance an image relative to some reference image. This approach

avoids some of the difficulties of estimating the illuminant color as it does not require an image

to have a very broad color gamut and it does require the need for dichromatic surfaces. Color

matching methods assume that a reference photograph is available, that the illumination color

in the reference is the desired target illumination for the correction, and that the inherent color

distributions of the images are the same, i.e., the two images would have similar color distributions

if the scenes were imaged under the same lighting conditions.

The most basic color matching approach is a linear color transformation. A linear

color transformation consist of a full 3x3 or 3x4 color transformation (3x4 if per-channel bright-

ness/offset adjustments are desired). The linear color transform can be computed directly to

transform pixels in one image directly the values in the reference if the images have pixel-wise

correspondence (e.g., the same scene and camera configuration with only a lighting color dif-

ference). More commonly, the transform is computed using some statistical measure of the

image, such as matching the mean or median color. Reinhard et al. [2001] explore this type of

correction and propose first performing a non-linear mapping of the RGB color space to the lαβ

color space before computing linear transforms. Numerous researchers have explored taking a

similar approach in a variety of color spaces, such as HSV, CIEXYZ, LUV, and CIELAB. Figure 2.21

shows a comparisons of using Reinhard et al.method in RGB and lαβ.

Another non-linear approach is to operate on the full color histogram of an image, rather

than the simplification of a mean color and the standard deviation as in Reinhard et al.’s [2001]
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work. Histogram matching is a standard technique that computes a non-linear remapping of an

images color space, implemented as a look-up table, such that an image’s color histogram after

the remapping matches the histogram of the reference [Gonzalez and Woods, 2001]. Histogram

matching can be done in the full RGB space, in 2D chromaticity space, or independently in 1D

for the red, green, and blue channels. Performing matching in RGB or chromaticity space can

be more successfully but is more computationally costly, while independent matching on each

color channel is fast but may not always account for differences in color balance, as is does not

account for correlation between the color channels. Pitie et al. [2005] recently proposed a method

to address this by performing a randomized search for a color rotation matrix that decorrelates

the red, green, and blue axes first to improve the quality of independent 1D histogram matching.
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PSF Estimation using Sharp Edge Prediction

“Things are only impossible until they’re not.”

—Captain Jean-Luc Picard

In this chapter, we present an algorithm that estimates non-parametric, spatially-varying

blur functions (i.e., point-spread functions or PSFs) from a single image. Our method handles

blur due to defocus, slight camera motion, and inherent aspects of the imaging system. Our

algorithm can be used to measure blur due to limited sensor resolution by estimating a sub-pixel,

super-resolved PSF even for in-focus images. It operates by predicting a “sharp” version of a blurry

input image and uses the two images to solve for a PSF. We handle the cases where the scene

content is unknown and also where a known printed calibration target is placed in the scene. Our

method is automatic, is fast, and produces accurate results.

Image blur is introduced in a number of stages in a camera. The most common sources

of image blur are motion, defocus, and aspects inherent to the camera, such as pixel size, sensor

resolution, and the presence of anti-aliasing filters on the sensor.

When blur is undesirable, one can deblur an image using a deconvolution method, which

requires accurate knowledge of the blur kernel. In applications where blur is desirable and

essential, such as shape from defocus, it is still necessary to recover the shape and size of the

spatially varying blur kernel.

Recovering a PSF from a single blurred image is an inherently ill-posed problem due

to the loss of information during blurring. The observed blurred image provides only a partial

55
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Figure 3.1: Sharp Edge Prediction. A blurry image (top left) and the 1D profile normal to an edge (top
right, blue line). We predict a sharp edge (top right, dashed line) by propagating the max and min values
along the edge profile. The algorithm uses predicted and observed values to solve for a PSF. Only observed
pixels within a radius R are used. (bottom left) Predicted pixels are blue and valid observed pixels are green.
(bottom right) The predicted values.

constraint on the solution, as there are many combinations of PSFs and “sharp” images that can

be convolved to match the observed blurred image.

Prior knowledge about the image or kernel can disambiguate the potential solutions. Early

work in this area significantly constrained the form of the kernel [Kundur and Hatzinakos, 1996],

while more recently, researchers have put constraints on the underlying sharp image [Fergus et al.,

2006]. In our work, we take the latter approach; however, instead of using statistical priors, we

leverage our prior assumption more directly. Specifically, we present an algorithm for estimating

regions of a sharp image from a blurry input—if one can estimate the sharp image, recovering the

blur kernel is possible.

The key insight of our work is that with certain types of image blur, the location of image

features such as edges are detectable even if the feature strength is weakened. When the scene

content is unknown, we detect edges and predict the underlying sharp edges that created the
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blurred observations, under the assumption that the detected edge was a step edge before blurring.

Each pair of predicted and blurred edges gives information about a radial profile of the PSF. If

an image has edges spanning all orientations, the blurred and predicted sharp image contain

enough information to solve for a general two-dimensional PSF.

For situations where the scene content can be controlled, we have designed a printed

calibration target whose image is automatically aligned with a known representation of the target.

We then use this pair to solve for an accurate PSF.

Our method has several advantages over previous approaches: it measures the entire

PSF of an image system from world to image, it is fast and accurate, and it can solve for spatially

varying PSFs at sub-pixel resolution using only a single image.

We show results for both unknown scenes and images of our calibration target. We present

deconvolution results using the recovered PSFs to validate the blur kernels and show a synthetic

experiment to further evaluate the method. We also show that by solving for spatially varying,

per-color channel PSFs combined with per-channel radial distortion corrections, we can remove

chromatic aberrations artifacts.

3.1 Related Work

The problem of blur kernel estimation and more generally blind deconvolution is a

longstanding problem in computer vision and image processing. Chapter 2 presents a discussion

of this general area. To briefly review, work in single image blind deconvolution falls in to two

areas: those that use parametric models for PSFs and those that use a non-parametric model. The

bulk of the previous work in blur estimation lies in the first area, while there is significantly less

work in the area of single image blur estimation using non-parametric kernels.

The work by Fergus et al. [2006] is perhaps the most notable non-parametric method.

Fergus et al.use natural image statistics to derive an image prior that is used in a variational

Bayes formulation. In contrast, we leverage prior assumptions on images to directly predict the

underlying sharp image. We consider our approach complementary to that of Fergus et al., as our

method excels at accurately computing smaller kernels, and it can be used for lens and sensor
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Figure 3.2: Image Formation Model. The imaging model consists of two geometric transforms as well as
blur induced by motion, defocus, sensor anti-aliasing, and finite-area sensor sampling. We solve for an
estimate of the continuous point-spread function at each discretely sampled (potentially blurry and noisy)
pixel.

characterization. In contrast, their method is not as well suited to these applications, but excels at

computing large kernels due to complex camera motion, which is outside the scope of our work.

Our work is conceptually most similar to slant-edge calibration [Reichenbach et al.,

1991; Burns and Williams, 1999]. These methods recover 1D blur profiles by imaging a slanted

edge feature and finding the 1D kernel normal to the edge profile that gives rise to the blurred

observations of the known step edge. Reichenbach et al. [1991] note that one can combine

several 1D sections to estimate a 2D PSF. We take a similar approach philosophically to slant-edge

techniques, with three major differences: we extend the method to directly solve for 2D PSFs,

solve for spatially varying PSFs, and further present a blind approach where the underlying step

edge is not know a priori.

A related area is modulation transfer function (MTF) estimation for lenses that uses

images of random dot patterns [Levy et al., 1999]. In theory, infinitesimal dot patterns are useful

for PSF estimation, but in practice, it is not possible to create such a pattern. In contrast, creating

sharp step edges is relatively easy and thus generally preferable [Reichenbach et al., 1991]. An

additional advantage of our work relative to using dot patterns is that by using a grid-like structure

with regular, detectable corner features, we can compute a radial distortion correction in addition

to estimating PSFs.
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3.2 Image Formation Model

We now give a brief overview of relevant imaging and optics concepts needed for PSF

estimation. As illustrated in Figure 3.2, the imaging model consists of two geometric transforms: a

perspective transform (used when photographing a known planar calibration target) and a radial

distortion. There are several sources of blur induced by motion, defocus, sensor anti-aliasing, and

pixel sampling area (fill factor and active sensing area shape). We model all sources of blur as a

convolution along the image plane and account for depth dependent defocus blur and 3D motion

blur by allowing the PSF to be spatially varying.

Our method estimates a discretely sampled version of the continuous PSF by either match-

ing the sampling to the image resolution (which is useful for estimating large blur kernels) or

using a sub-pixel sampling grid to estimate a detailed PSF, which captures effects such as aliasing

in the sensor and allows us to do more accurate image restoration. In addition, by computing a

sub-pixel PSF, we can perform single-image super-resolution by deconvolving up-sampled images

with the recovered PSF.

Geometric Transformations: The world to image transformation consists of a perspective trans-

form and a radial distortion. With the blind method, we ignore the perspective transform and

operate in image coordinates.

With the non-blind method, where we photograph a known calibration target, we model

the perspective transformation as a 2D homography to map known feature locations F k on the

grid pattern to detected feature points from the image F d . We use a standard model for radial

distortion: (F ′
x ,F ′

y )T = (Fx ,Fy )T (a0+a1r 2(x, y)+a2r 4(x, y)), where r (x, y) =
√

F 2
x +F 2

y is the radius

relative to the image center.

Given a radial distortion function R(F ) and warp function which applies a homography

H (F ), the full alignment process is F d = R(H (F k )). We compute the parameters that minimize the

L2 norm of the residual ||F d −R(H(F k ))||2. Computing these parameters cannot be done simulta-

neously in closed form. However, the problem is bilinear, and thus we solve for the parameters

using an iterative approach.
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Modeling the Discrete Point-Spread Function: The equation for the observed image B is a con-

volution of a kernel K and a potentially higher-resolution sharp image I , plus additive Gaussian

white noise, whose result is potentially down-sampled:

B = D(I ⊗K )+N , (3.1)

where N ∼ N(0,σ2). D(I ) down-samples an image by point-sampling IL(m,n) = I (sm, sn) at a

sampling rate s for integer pixel coordinates (m,n). In our formulation, the kernel K models all

blurring effects, which are potentially spatially varying and wavelength dependent.

3.3 Sharp Image Estimation

The blurring process is formulated as a invertible linear system, which models the blurry

image as the convolution of a sharp image with the imaging system’s PSF. Thus, if we know the

original sharp image, recovering the kernel is straightforward. The key contribution of our work is

a reliable and widely applicable method for predicting a sharp image from a single blurry image.

In the following section, we present our methods for predicting the sharp image. In Section 3.4, we

discuss how to formulate and solve the invertible linear system to recover the PSF. In the following

discussion, we consider images to be a single channel (grayscale); in Section 3.5, we discuss color

images.

3.3.1 Blind Estimation

For blind sharp image prediction, we assume that blur is due to a PSF with a single mode

(or peak), such that when an image is blurred, the ability to localize a previously sharp edge is

unchanged; however, the strength and profile of the edge is changed, as illustrated in Figure 3.1.

Thus, by localizing blurred edges and predicting sharp edge profiles, estimating a sharp image is

possible.

We assume that all observed blurred edges result from convolving an ideal step edge with

the unknown kernel. Our algorithm finds the location and orientation of edges in the blurred
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image using a sub-pixel difference of Gaussians edge detector. It then predicts an ideal sharp

edge by finding the local maximum and minimum pixel values, in a robust way, along the edge

profile and propagates these values from pixels on each side of an edge to the sub-pixel edge

location. The pixel at an edge itself is colored according to the weighted average of the maximum

and minimum values according to the distance of the sub-pixel location to the pixel center, which

is a simple form of anti-aliasing (see Figure 3.1).

We find the maximum and minimum values robustly using a combination of two tech-

niques. To find the maximum value, our algorithm marches along the edge normal, sampling the

image looking for a local maximum using hysteresis. Specifically, the maximum location is the

first pixel that is less than 90% (as opposed to strictly less than) of the previous value. Once this

value and location are identified, we store the “maximum” value as the mean of all values along

the edge profile that are within 10% of the initial maximum value. An analogous approach is used

for the minimum.

Since we can only reliably predict values near edges, we only use observed pixels within a

radius of the predicted sharp values. These locations are stored as valid pixels in a mask, which is

used when solving for the PSF, as discussed in Section 3.4. At the end of the prediction process, we

have a partially estimated sharp image, as shown in Figure 3.1.

3.3.2 Non-Blind Estimation

For non-blind sharp edge prediction, we want to compute the PSF given that we know

the sharp image. Since we anticipate using this technique in a controlled lab setup, we designed

a special calibration pattern for this purpose (Figure 3.3). We take an image of this pattern and

align the known grid pattern to the image to get the sharp/blurry pair needed to compute the PSF

accurately. The grid has corner (checkerboard) features so that it can be automatically detected

and aligned, and it also has sharp step edges equally distributed at all orientations within a tiled

pattern, so that it provides edges that capture every radial slice of the PSF. (Alternatively, we can say

that the calibration patterns provides measurable frequencies at all orientations.) Furthermore,

we represent the grid in mathematical form (the curved segments are 120◦ arcs), which gives us a

very precise definition for the grid, which is advantageous for performing alignment.
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Figure 3.3: Non-Blind Estimation. (left) The tiled calibration pattern, (middle) cropped section of an image
of a printed version of the grid, and (right) the corresponding cropped part of the known grid warped and
shaded to match the image of the grid.

For non-blind prediction, we continue to assume that kernel has no more than a single

peak. Thus even when the pattern is blurred, we can detect corners on the grid with a sub-pixel

corner detector. Because our corners are actually balanced checkerboard crossings (radially

symmetric), they do not suffer from “shrinkage” (displacement) due to blurring. Once corners are

found, the ground truth pattern is aligned to the acquired image. To obtain an accurate alignment,

we correct for both geometric and radiometric aspects of the imaging system.

We perform geometric alignment using the corrections discussed in Section 3.2. We fit a

homography and radial distortion correction to match the known feature locations on the grid

pattern to corners detected with sub-pixel precision on the acquired (blurry) image of the printed

grid.

We also must account for the lighting and shading in the image of the grid. We do this

by first aligning the known grid to the image. Then, for each edge location (as known from

mathematical form of the ground truth grid pattern), the algorithm finds the maximum and

minimum values on the edge profile and propagates them just as in the non-blind approach. We

shade the grid for pixels within the blur radius of each edge. By performing the shading operation,

our algorithm has corrected for shading, lighting, and radial intensity falloff. Figure 3.3 shows the

results of the geometric warp and shading transfer.
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3.4 PSF Estimation

Once the sharp image is predicted, we estimate the PSF as the kernel that convolved with

the sharp image produces the blurred input image. We formulate the estimation using a Bayesian

framework solved using a maximum a posteriori (MAP) technique. In MAP estimation, one tries

to find the most likely estimate for the blur kernel K given the sharp image I and the observed

blurred image B , using the known image formation model and noise level.

We express this as a maximization over the probability distribution of the posterior using

Bayes’ rule. The result is minimization of a sum of negative log likelihoods L(.):

P (K |B) = P (B |K )P (K )/P (B) (3.2)

argmax
K

P (K |B) = argmin
K

L(B |K )+L(K ). (3.3)

The problem is now reduced to defining the negative log likelihood terms. Given the

image formation model (Equation 3.1), the data term is:

L(B |K ) = ||M(B)−M(I ⊗K )||2/σ2. (3.4)

(The downsampling term D in (3.1) will be incorporated in Section 3.4.1.) M(.) is a masking

function such that this term is only evaluated for “known” pixels in B , i.e., those pixels that result

from the convolution of K with properly estimated pixels I , which form a band around each edge

point, as described in Section 3.3.1.

The remaining negative log likelihood term, L(K ), models prior assumptions on the blur

kernel and regularizes the solution. We use a smoothness prior and a non-negativity constraint.

The smoothness prior penalizes large gradients and thus biases kernel values to take on values

similar to their neighbors: Ls(K ) = λγ||∇K ||2. λ controls the weight of the smoothness penalty,

and γ= (2R +1)2 normalizes for the kernel area (R is the kernel radius). Since the kernel should

sum to one (as blur kernels are energy conserving) the individual values decrease with increased

R. This factor is needed to keep the relative magnitude of kernel gradient values on par with the

data term values regardless of kernel size.
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We minimize the following error function:

L = ||M(B)−M(I ⊗K )||2/σ2 +λγ||∇K ||2, (3.5)

subject to Ki ≥ 0, to solve for the PSF using non-negative linear least squares using a projective

gradient Newton’s method. We currently estimate the noise level σ using a technique similar to

that of Liu et al. [2006], and we have empirically found λ= 2 to work well.

3.4.1 Computing a Super-Resolved PSF

By taking advantage of sub-pixel edge detection for blind prediction and sub-pixel corner

detection for non-blind prediction, we can estimate a super-resolved blur kernel by predicting a

sharp image at a higher resolution than the observed image.

For the blind method, in the process of estimating the sharp image, it is necessary to

rasterize the predicted sharp edge-profile back onto a pixel grid. By rasterizing the sub-pixel

sharp-edge profile onto an up-sampled grid, we can estimate a super-resolved sharp image. In

addition, at the actual identified edge location (as before), the pixel color is a weighted average of

the minimum and maximum, where the weighting reflects the sub-pixel edge location on the grid.

For the non-blind method, we also must rasterize the grid pattern at a some desired

resolution. Since we detect corners at sub-pixel precision, the geometric alignment is computed

with sub-pixel precision. Using the mathematical description of our grid, we can choose any

up-sampled resolution when rasterizing the predicted sharp image. We also perform anti-aliasing,

as described in Section 3.3.2.

To solve for the PSF using the super-resolved predicted sharp image IH and the observed

(vectorized) blurry image b, we modify Equation 3.4 to include a down-sampling function accord-

ing to our image model (Equation 3.1). We consider b̂H = AH kH to be super-resolved sharp image

blurred by the super-resolved kernel kH , where AH is the matrix form of IH . Equation 3.4 is then

||b −D AH kH ||2 (we have left out the masking function for readability). D is a matrix reflecting the

down-sampling function: B̂L(m,n) = B̂H (sm, sn).
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3.4.2 Computing a Spatially Varying PSF

Computing a spatially varying PSF is easy given our formulation—we simply perform the

MAP estimation process described in the previous section for sub-windows of the image. The

process operates on any size sub-window as long as enough edges at different orientations are

present in that window. In the limit, we could compute a PSF for every pixel using sliding windows.

We have found, in practice, that such a dense solution is not necessary, as the PSF tends to vary

spatially relatively slowly.

Our method requires enough edges to be present at most orientations. When using the

entire image, this is not usually an issue; however, when using smaller windows, the edge content

may under-constrain the PSF solution. We have a simple test that avoids this problem. We ensure

that (a) the number of valid pixels in the mask described in Equation 3.4 is greater than the

number of unknowns in the kernel, and (b) we compute a histogram of 10 degree bins of the

detected edges orientations and ensure that each bin contains at least 100 edges. When this check

fails, we do not compute a kernel for that window.

3.5 Chromatic Aberration

In the previous sections, we did not explicitly address solving for PSFs for color images. To

handle color, one could convert the image to grayscale. In many cases this is sufficient; however,

it is more accurate to solve for a PSF for each color channel. This need arises when chromatic

aberration effects are apparent.

Due to the wavelength-dependent variation of the index of refraction of glass, the focal

length of a lens varies continually with wavelength. This property causes longitudinal chromatic

aberration (blur/shifts along the optical axis), which implies that the focal depth, and thus amount

of defocus, is wavelength dependent. It also causes lateral chromatic aberration (blur/shifts

perpendicular to the optical axis). We refer the reader to the paper by Kang [2007] for a more

detailed discussion of these artifacts.

By solving for a PSF per color channel, we can model the longitudinal aberrations; we use
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Figure 3.4: Recovering Blur Kernels of Different Sizes and Orientations. We convolved the sharp original
version of the image shown in Figure 3.1 with kernels of 13 and 17 pixels for three different orientations.
Each set is a side by side comparisons of the ground truth (left), our recovered kernel (middle), and the
result of running Fergus et al.’s [2006] method (right).

a per-color channel radial distortion correction to handle the lateral distortions. We correct for

lateral distortions by first performing edge detection on each color channel independently and

only keeping edges that are detected within 5 pixels of each other in R, G, and B. We then compute

a radial correction to align the R and B edges to the G edges and then perform blind sharp image

prediction.

To correct for any residual radial shifts, we use the green edge locations for all color

channels so that all color bands have sharp edges predicted at the same locations. One could

perform this last step without correcting radial distortion first and allow the shifts to be entirely

modeled within the PSF; however, we have found the two stage approach is better, as is removes

some aberration artifacts even when there is not enough edge information to compute a PSF, and

by removing the majority of the shift first, we can solve for smaller kernels.

If we have access to RAW camera images, we can compute more accurate per-channel

PSFs by accounting for the Bayer pattern sampling during PSF computation instead of using the

demosaicked color values. We solve for a PSF at the original image resolution, which is 2x the

resolution for each color channel and use the point sampling function discussed in Section 3.2,

where the sampling is shifted according to the appropriate Bayer sample location.

3.6 Results

To validate our blind prediction method, we synthetically blurred a sharp image with

oriented Gaussian kernels of 13 and 17 pixels in diameter for three different orientations, added
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Gaussian white noise with standard-deviation 0.01 (where 0=black and 1=white), and then es-

timated the blur kernel using our blind method. Figure 3.4, shows a comparison of the ground

truth kernels, our recovered kernels, and the result of running Fergus et al.’s [2006] method. Our

blind algorithm recovers the size and shape of each kernel accurately.

In Figures 3.5 and 3.7, we show results for estimating kernels for images with real, un-

known blurs, where there is both defocus and camera motion blur. Our method predicts slightly

asymmetric disk-like kernels that are consistent with defocus and slight motion blur.

To qualitatively validate these kernels, we deconvolve the input images using the Lucy-

Richardson algorithm. We chose this over other methods as it produces results with a good

balance of sharpness and noise reduction. Furthermore, the method is less forgiving than some

newer methods, which allows for better validation. (Deconvolution with a incorrect kernel leads

to increased ringing artifacts, as shown in Figure 3.6). Our resulting deconvolved images are

significantly sharper and show relatively minimal ringing artifacts, which indicates that the

kernels are accurate.

In Figure 3.5, we also compare our recovered kernel to a result from running Fergus et

al.’s code. The kernel obtained by their method has more noise than ours, does not have a shape

consistent with defocus blur, and the size of the non-zero area of the kernel does not match the

amount of blur seen in the input image. Fergus et al.’s method took 21 minutes, while ours took

2.5 seconds for the original resolution and 9.5 seconds at 2x super-resolution. Our method is

significantly faster as its running time scales with the number of edges and kernel size, while

the Fergus et al. method is a multi-resolution method whose speed scales with image size and

(a) (b) (c) (d) (e) (f)

Figure 3.5: Defocus and Slight Motion-Blur. (a) The original blurred image and (b) the deconvolved output
using our recovered PSF. (c–d) Zoomed-in versions of the original and deconvolved image respectively. (e)
The kernel recovered using the method of Fergus et al. [2006] and (f) our recovered kernel.
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Figure 3.6: Kernel Size and Orientation. Image deconvolved with (left) our kernel, (middle) our kernel
scaled 20% larger, and (right) our kernel rotated by 45◦. The middle and right images have more ringing
(most apparent at the bottom of the word “Leicester”).

kernel size. Our method is a couple seconds faster when using regular least-squares instead of

a non-negative version; however, more smoothing is needed to suppress large negative values.

Thus we prefer to enforce non-negativity as it produces sharper PSFs.

Figure 3.8 displays an image with camera motion blur. Our recovered kernel correctly

shows the diagonal motion blur that is apparent in the input image. The deconvolved image is

much sharper with minimal ringing.

In Figure 3.9, we show super-resolution results where we have taken a sharp image,

bicubically down-sampled it by 4x, and then solved for a 4x super-resolved kernel from the down-

sampled input. We compare the original full resolution image to a bicubically up-sampled version

of the low-resolution image and to the up-sampled image deconvolved with our recovered kernel.

The deconvolution results show a sharpening and recovery of high-frequency texture that is

consistent with the full resolution images.

Figure 3.10 shows results for our calibration grid captured with an 11 mega-pixel Canon

1Ds camera using a Canon EF 28-200mm f3.5-5.6 lens at two apertures and focal lengths. For each

image, we computed spatially varying PSFs by computing kernels for non-overlapping 220-pixel

(the size of one grid tile) windows across the image at 2x resolution, i.e., two times the Bayer

sampling resolution. Each PSF is displayed according to the location of its corresponding image

window. The recovered PSFs show some interesting properties. The PSF should be an image

of the aperture, and some do show the shape of the aperture, which we know from the lens

specifications to have 6 blades. They also show “donut” artifacts that can occur at some settings
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Figure 3.7: Defocus and Slight Motion-Blur. (top left) The original blurred image and (top right) the
deconvolved output with the recovered kernel displayed in the top right of the image (the kernel has been
enlarged by 10x for display). (bottom row) Zoomed-in versions of the original and deconvolved image,
respectively.

with lower-quality lenses. Perspective distortion across the image plane and vignetting (clipping

of the aperture) by the lens barrel are also visible. For comparison we imaged back-lit pinholes at

the same camera settings. Imaging pinholes to measure PSFs has some inherent problems due to

the pinhole actually being a disk and not an infinitesimal point and due to diffraction; however,

these images validate our recovered PSFs.

We also acquired a very sharply focused image, so that we could measure sub-pixel blur.

Figure 3.11 shows an image of our grid from a 6 mega-pixel Canon 1D, using a high-quality Canon

EF 135mm f/2L lens. We show recovered PSFs at 1x, 2x, 8x, and 16x sub-pixel sampling. The PSFs

using higher sub-pixel resolution show an interesting structure that results from a combination of
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Figure 3.8: Motion Blur. (top row) The original blurred image (left) and the deconvolved output (right)
with the recovered kernel displayed in the top right of the image (the kernel has been enlarged by 10x for
display). (bottom row) Zoomed-in versions of the original and deconvolved image, respectively.

diffraction, lens imperfections, and sensor anti-aliasing and sampling.

Figure 3.12 shows a result for performing blind chromatic aberration correction for a

JPEG image from a Canon S60 using a 5.8mm focal length at f8. After performing radial distortion

correction and piecewise deconvolution using the spatially varying PSF, the aberration artifacts

are significantly reduced. Figure 3.13 shows chromatic aberration correction for our non-blind

method. We encourage the reader to visit http://graphics.ucsd.edu/~neel/dissertation/

for additional results.

3.7 Discussion and Future Work

We have shown how to recover spatially varying PSFs at sub-pixel precision that capture

blur due to motion, defocus, and intrinsic camera properties. Our method is fast, straightforward

to implement, and predicts kernels accurately for a wide variety of images. Nevertheless, our

http://graphics.ucsd.edu/~neel/dissertation/
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Figure 3.9: 4x Super-Resolution. (left) The original image and zoom-in, (middle) the original image bi-
cubically down-sampled and up-sampled by 4x and zoom-in, (right) the up-sampled image deconvolved
using the recovered 4x super-resolved kernel (displayed in the top left of the image – the kernel has been
enlarged by 10x for display) and a zoom-in on the bottom.

method does have some limitations, and there are several avenues for future work.

The primary limitation of our method is that we can only solve for kernels with a single

peak. This limitation is due to relying on an edge detector to find a single location for every blurred

edge. In the case of a multi-peaked kernel, our method will incorrectly interpret the “ghost” copies

of edges as independent edges. While we have shown that single-peaked kernels model many

commonly occurring cases of blur, we would like to extend our method to handle multi-modal

kernels. One option is to group each stronger edge with its weaker ghost edges using contour

matching. Once the ghost edges are identified, we could perform sharp edge prediction only for

the primary edges.

Another approach is to incorporate sharp-edge prediction into an iterative blind decon-

volution algorithm, such as the methods used by Wan and Nowak [1999], Fergus et al. [2006], and

Shan et al. [2008]. These methods use natural image priors into an minimization that alternates

between solving for an unknown kernel (PSF estimation) and solving for an unknown sharp

image (non-blind deconvolution) given an initial guess for both. Figure 3.14 shows an example
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(a) 150mm f5.6 (b) 145mm f10

Figure 3.10: Different Apertures and Focal Lengths. (first row) Cropped portions of the observed blurred
images, (second row) recovered spatially varying PSFs (green channel only), (third row) images of pinholes
at the same depths and settings, and (fourth row) our recovered PSFs convolved with a disk the size of the
pinhole. For (a) each PSF is 33×33 pixels and (b) they are 41×41 pixels The PSFs reflect the shape of the
aperture and show perspective distortion and vignetting across the image plane.

of preliminary work that performs a multi-scale iterative blind deconvolution with sharp-edge

prediction, where we predict a sharp image from the output of the non-blind deconvolution step.
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Figure 3.11: Sub-Pixel PSFs. (a) Cropped section of a sharp image of our grid, (b) PSF (green channel only)
at the Bayer resolution (1x), (b) 2x, (c), 8x, and (d) 16x sub-pixel sampling. The sub-pixel PSFs show blur
resulting from a combination of diffraction, lens imperfections, and sensor anti-aliasing and sampling.

(a) (b) (c) (d) (e)

Figure 3.12: Blind Chromatic Aberration. (a) Recovered spatially varying PSFs for red, green, and blue
shown as a color image. PSFs are only computed where there are enough edges observed. (b) The original
image, (c) after radial correction and deconvolution the aberrations are significantly reduced, and (d–e)
zoomed-in versions and intensity profiles for (b–c).

Figure 3.13: Chromatic Aberration. (left) The recovered spatially varying PSFs for red, green, and blue
shown as a color image. The red and blue fringing is reflected in the PSF image and the PSFs are larger
towards the edge of the image and spread along the direction orthogonal to the optical axis. (middle) Zoom-
in on the input image. (right) After radial correction and deconvolution the aberrations are significantly
reduced.

We compare our results to those by Shan et al. [2008] and show that we recover sharp images and

kernels that are similar to their results.

As each sharp edge profile gives information about a radial slice of the PSF, it is necessary



74

(a) Input Images

2

(b) Our Results

3

(c) Results from Shan et al. [2008]

Figure 3.14: Iterative Blind Deconvolution with Sharp Edge Prediction. We perform multi-scale iterative
blind deconvolution where we predict a sharp image from the output of the non-blind deconvolution step.
Compared to Shan et al.’s [2008] results we recover sharp images and kernels that are similar to their results.
(a) Input images, (b) our recovered sharp image and kernel, and (c) Shan et al.’s recovered sharp images –
for the top image the kernel shown is the ground-truth and not estimated by their method, while for the
bottom image Shan et al. estimate the kernel and the sharp image.

for an image, or image window, to have edges (or at least high-frequency content) at most

orientations. If some orientations are lacking, our regularization terms can compensate; however,

there is a breaking point, and at times there may not be enough edge information to properly

compute a PSF. In these cases, a low parameter kernel model may be more appropriate, but our

sharp image prediction could still be be used to improve more traditional parametric kernel

estimation procedures. We also plan to try using robust least squares to compensate for erroneous

edge detections or profile fits.

Lastly, we would like to characterize more lenses and cameras. We would like to build a

database that the vision and photography community could contribute to by using our pattern

and code to take their own measurements.
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Image Enhancement using Color Statistics

“It is not the form that dictates the color, but the color that brings out the form.”

—Hans Hofmann

In the previous chapter, we presented methods to recover the blur function from a photo-

graph. Even when the blur function is known, deblurring an image is still quite difficult due to

information loss during blurring and due to the presence of noise, which can be significant. At

times, blur can be eliminated during capture, yet noise remains. Thus the task of recovering an

uncorrupted image, free of blur or noise, from a single observed image is difficult in its own right.

Image deconvolution in the presence of noise is an inherently ill-posed problem. The

observed blurred image only provides a partial constraint on the solution—there exists many

“sharp” images that when convolved with some blur kernel can match the observed blurred and

noisy image. Image denoising alone is similarly ill-posed as there is an ambiguity between the

high-frequencies of the unobserved noise-free image and those of the noise. Thus, the central

challenge in deconvolution and denoising is to develop methods to disambiguate solutions and

bias the processes towards more likely results given some prior information. Exploring and

developing appropriate priors is the central part of this work.

A central part of deconvolution is properly handling the noise that is often present in

blurred images. As a result, denoising can be considered a sub-problem of deblurring, and

deconvolution methods can thus be used purely for denoising by considering the blurring kernel

to be a delta function. An existing example of this is the Wiener filter for deconvolution and

76
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Figure 4.1: Deblurring with a two color prior. (a) Input blurry image (the 9x9 PSF is displayed (enlarged
by 4×) in the top right corner, the noise level is estimated per-pixel with the median σ = 0.0137), (b)
image deblurred using the Lucy-Richardson algorithm, (c) using a sparse gradient prior, and (d) using
our method (λ2 = 1.4). Result (b) is sharp but noisy and has ringing artifacts; the sparse prior result (c) is
overly-smoothed; our result (d) has the sharpness of Lucy-Richardson with significantly reduced noise and
ringing (most apparent in the red/white checkerboard pattern and green cross in the bottom left of each
sub-figure.)

denoising; however, there is little other work that we are aware of that has analyzed or presented

deconvolution as a unified framework for deblurring and denoising. We treat denoising as a

sub-problem of deconvolution and present a non-blind deconvolution algorithm that can be

used for both applications. We further illustrate that image up-sampling is a sub-problem of

deconvolution and use our framework to address this problem.
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4.1 Related Work

Image deblurring and denoising have received a lot of attention in the computer graphics

and vision communities. Chapter 2 presents a discussion of these areas. To briefly review, the

most basic approaches for denoising are Gaussian and median filtering, which have a tendency to

over-smooth edges and remove image detail. More sophisticated approaches use the properties of

natural image statistics to derive methods that enhance large intensity edges and suppress lower

intensity edges. This property has been used by wavelet based methods [Simoncelli and Adelson,

1996; Portilla et al., 2003], anisotropic diffusion [Perona and Malik, 1990], Bilateral filtering [Tomasi

and Manduchi, 1998], and Field of Experts models [Roth and Black, 2005]. Our method shares

some similarities with these works in that we consider natural image statistics in the form of a

prior on the distribution of image gradients [Levin, 2007], but we go beyond this and additionally

incorporate a prior derived from local color statistics in the form of a local two color model. This

allows us to avoid some of the over-smoothing that can occur with gradient-based methods alone.

The denoising aspect of our work is most similar to that of Liu et al. [2006] in that we

both use a local-linear color model. Where our methods differ is that we build a color model

per-pixel, while Liu et al. segment the image first and then build the model per segment. Liu et al.

additionally address noise-level estimation, and we use their method for estimating the spatially

varying noise level in our work. A further distinction between our work and previous work is that

we address denoising in the larger context of image deconvolution, while most denoising work

considers this problem in isolation.

To address image deblurring, some researchers have modified the image capture pro-

cess [Ben-Ezra and Nayar, 2004; Raskar et al., 2006] or used multiple images [Bascle et al., 1996;

Rav-Acha and Peleg, 2005; Yuan et al., 2007] to aid in deblurring. Image blur due to limited resolu-

tion has lead to the development of up-sampling algorithms[Freeman et al., 2002; Fattal, 2007].

Determining the blur kernel from a single image, which is a critical sub-problem for deblurring

natural images, has also been studied significantly, including our contributions in Chapter 3

and those of numerous other researchers [Fergus et al., 2006; Levin, 2007]. One area that has

received less attention, yet is critical for the above techniques to succeed, is that of non-blind
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deconvolution.

Non-blind image deconvolution is the process of recovering a sharp image from an

input image corrupted by blurring and noise, where the blurring is due to convolution with

a known kernel and the noise level is known. Most deblurring approaches rely on decades

old deconvolution techniques such as the Lucy-Richardson algorithm [Richardson, 1972; Lucy,

1974], Wiener deconvolution, and least-squares deconvolution. Many of these algorithms were

developed for applications where the images are quite different than those taken by an everyday

photographer, e.g., Lucy-Richardson assumes Poisson noise statistics, which are more applicable

to very low-light conditions. Consequently, these methods are not always well suited to the

desired task and often generate unwanted artifacts such as ringing. One approach that attempts

to overcome the shortcomings of these traditional techniques is that of Levin et al. [2007] in

which they incorporate image priors derived from natural image statistics. Other methods have

explored the use of graph cuts to reduce over-smoothing [Raj and Zabih, 2005], deconvolution

using multiple blurs [Harikumar and Bresler, 1999], and energy minimization functions using

wavelets for deconvolution [de Rivaz and Kingsbury, 2001].

The work of Levin et al. [2007] was a significant improvement in non-blind deconvolution.

Their work uses priors based on assumptions about the edge content of images. Specifically, the

authors assume that images are piecewise smooth and thus the gradient distribution of an image

is zero-peaked with high kurtosis. They enforced this property using a hyper-Laplacian prior on

image gradients during deconvolution. In our work, we show that while this assumption holds for

many images, it has a tendency to generate overly smoothed results.

We propose an auxiliary approach using priors derived from image color statistics. We

model an image as a per-pixel linear combination of two color layers, where these layer colors are

expected to vary more slowly than the image itself. Edges and textures in an image are accounted

for by blending the colors of the two layers. This two-color assumption is often reliable, as there

are many situations where images themselves are not smooth, yet the underlying parameters

such as lighting and material color vary much more slowly. Unlike previous methods, which

compute priors based on gradient magnitudes, our approach places priors on the alpha value

used for blending between the two colors. As a result, our two-color model can act as a sparse
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edge prior that is independent of gradient magnitude. Our results show that the method produces

qualitatively and quantitatively better results with sharper edges, less color bleeding, and less

multi-colored noise.

4.2 Overview

We model a blurred, noisy image as the convolution of a latent sharp image with a

known shift-invariant kernel plus additive white Gaussian noise, whose result is potentially down-

sampled. Specifically, blur formation is modeled as:

B = D(I ⊗K )+N , (4.1)

where K is the blur kernel, N ∼ N(0,σ2) is the noise, and σ2 potentially varies spatially. D(I )

down-samples an image by point-sampling IL(m,n) = I (sm, sn) at a sampling rate s for integer

pixel coordinates (m,n)

Our goal is to recover the unobserved sharp image I from only the observed blurred input

image B given the kernel K . We use the method of Liu et al. [2006] to estimate the spatially-varying

noise level σ2.

We formulate the image deconvolution problem using a Bayesian framework and find the

most likely estimate of the sharp image I , given the observed blurred image B , the blur kernel K ,

and the recovered noise level σ2 using a maximum a posteriori (MAP) technique.

We can express this as a maximization over the probability distribution of the posterior

using Bayes’ rule and express the result as minimization of a sum of negative log likelihoods:

P (I |B) = P (B |I )P (I )/P (B) (4.2)

argmax
I

P (I |B) = argmin
I

[L(B |I )+L(I )]. (4.3)

The problem of deconvolution is now reduced to defining and minimizing the negative log

likelihood terms. Given the blur formation model (Equation 4.1), the “data” negative log likelihood
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is:

L(B |I ) = ||B − I ⊗K ||2/σ2. (4.4)

We incorporate the down-sampling function in Equation 4.1 by modifying the likelihood term

to be ||B −D(IH ⊗KH )||2, where the super-resolved latent image and kernel are IH and KH , re-

spectively, and BH = IH ⊗ KH . D(I ) is formed as a simple point-sampling matrix such that

B(m,n) = BH (sm, sn) for a sampling rate s.

To perform denoising alone we set the kernel K in Equation 4.4 to a delta function, which

reduces the data negative log likelihood to:

L(B |I ) = ||B − I ||2/σ2. (4.5)

The form of the remaining negative log likelihood term, L(I ), in Equation 4.2 depends on

the image prior that is used. Defining this term is the focus of this work.

4.3 Gradient Priors

In image deconvolution, the data likelihood is inherently ambiguous, i.e., there are many

“sharp” images that when blurred match the observed blurred image. The range of ambiguity

increases with the amount of blur, and image noise further complicates the issue. The role of the

image prior is to disambiguate the set of possible solutions and to reduce over-fitting to the noise.

A common approach is to assume that the image is smooth or piecewise smooth, resulting in

priors on image gradients. In the following section, we discuss the limitations of gradient priors

and present a novel prior derived from image colors statistics.

4.3.1 Gaussian and Sparse Gradient Priors

Gradient priors are typically enforced between neighboring pixels in an image. These

interactions can be modeled using a Markov Random Field (MRF) in which the value of an

individual pixel is conditionally dependent on the pixel values in a local neighborhood. One

possible prior on the gradients is a smoothness prior in which large image gradients are penalized.
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Thus, neighboring pixels are favored to have values similar to their neighbors:

L(I ) =λ||∇I ||2. (4.6)

The value ∇I indicates the spatial gradients of the image, and λ is a regularization parameter that

controls the weight of the smoothness penalty. While this prior does disambiguate the solution,

it can result in an overly-smooth solution and introduce ringing artifacts [Levin et al., 2007].

This occurs as a result of the quadratic penalty term, which enforces a Gaussian distribution on

gradients. Unfortunately, “natural” images have a decidedly non-Gaussian gradient distribution.

Levin et al. [2007] address this by modifying the gradient penalty to enforce a hyper-

Laplacian distribution on gradients:

L(I ) =λ||∇I ||q , (4.7)

where q < 1 makes the distribution hyper-Laplacian. Levin et al. use q = 0.8. This “sparse”

gradient prior better models the zero-peaked and heavy tailed gradient distributions seen in

natural images. As the penalty function is no longer a quadratic, the minimization is performed

using iterative re-weighted least-squares [Stewart, 1999].

4.3.2 Limitations of Gradient Priors

Deconvolution using a sparse gradient prior is a significant step towards producing more

pleasing results, as it reduces ringing artifacts and noise relative to more traditional techniques.

However, this prior has some limitations. While it biases the deconvolution to produce images

with a hyper-Laplacian distribution on gradients, this prior is implemented as a penalty on

gradient magnitudes. Thus, it is essentially a “smoothness prior” with a robust penalty function.

Using this function, larger gradients still incur larger penalties. This results in a preference for

finding the lowest intensity edges that are consistent with the observed blurred image. This is

particularly an issue with “bar” type edges and high-frequency texture, as illustrated in Figure 4.2.

The second limitation of the sparse gradient prior arises in the presence of significant

image noise. The implication of the Levin et al.’s [2007] sub-linear gradient penalty function is

that a single large gradient is preferred over many small gradients when accounting for intensity
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Figure 4.2: (a) There are many sharp edges that can blur to match the observed blurred (and potentially
noisy) edge (shown in tan). The sparse prior always prefers the smallest intensity gradient that is consistent
with the observation (shown in red). We use local color statistics to disambiguate the potential sharp edges,
i.e., our method picks the edge that is more likely given the dominant primary and secondary colors in
the pixel’s neighborhood. (b) The thin gray areas between the tan letters are deconvolved to a mid-level
tan/gray when using the sparse prior. Our results produce noticeably sharper results. High-frequency
texture can be thought of as a series of bar edges and exhibits similar artifacts.

variations. This can result in the preservation and sharpening of the noise. As illustrated in

Figure 4.3, the presence of high-frequency noise that varies on a per-pixel level produces mid-

frequency texture patterns, Figure 4.3(top right), that can be more objectionable than the original

noise. The noise may be removed by increasing the weight of the sparse gradient prior, but this

produces an over-smoothed result (Figure 4.3(bottom left)).

4.4 Color Priors

The sparse gradient model is a reasonable model of images; however, as we have shown,

it is not always sufficient and can introduce unwanted artifacts. This is partially caused by the use

of a generic gradient prior that is not fit to specific images. In this chapter, we use a color model

built from local colors statistics of the sharp latent image itself as an additional constraint.

The majority of photographs, whether they contain nature, people, or man-made objects

are globally composed of a relatively limited set of colors. This property is well studied and has

been exploited across numerous imaging applications. For instance, image compression uses

this observation to create a small set of indexed color palettes. Recently, researchers have further

noted that images can locally be described as a mixture of as few as two colors for use in alpha-

matting [Levin et al., 2006], image denoising [Liu et al., 2006], and Bayer demosaicing [Bennett
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et al., 2006].

4.4.1 The Two-Color Model

The two -color model states that any pixel color can be represented as a linear combi-

nation of two colors, where these colors are piecewise smooth and can be derived from local

properties:

I =αP + (1−α)S. (4.8)

P and S are the respective primary and secondary colors and α is the linear mixing parameter. For

notational convenience, the primary color Pi is always assigned to the color that lies closest to

the pixel i ’s color Ii . Some pixels may only be described by a single color, in which case Pi = Si .

The two-color model has several benefits when used to provide an image prior for de-

convolution. First, given the two colors for a pixel, the space of unknowns is reduced from three

dimensions (RGB) to one (α). The second benefit is that the α parameter provides an alternative

for parameterizing edges, where the edge sharpness is decoupled from edge intensity—a single

pixel transition in α from 1 to 0 indicates a step edge (a single step from primary to secondary)

regardless of the intensity of the edge. Thus, we can control an edge’s strength with a prior on α

while maintaining local smoothness using a separate prior on P and S.

A significant benefit of the two-color model is the ability to capture local color statistics.

We observe that local color statistics can provide a strong constraint during deconvolution. These

constraints help reduce over-smoothing around “bar edges” and high-frequency texture as shown

in Figure 4.2b. In contrast with a gradient prior, which prefers the lowest intensity edges that

are consistent with the observed blurred image, a two-color model can result in higher intensity

edges if such edges are more consistent with local color statistics.

The two-color model is built from local image statistics and estimates two dominant

colors in a neighborhood around each pixel. We estimate primary and secondary colors for each

pixel by using a robust EM clustering algorithm in a local neighborhood around each pixel that

is a modified version of the approach used by Bennett et al. [2006]. The model consists of 2 3D

Gaussians to model the primary and secondary clusters and a 1D oriented Gaussian to capture
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BLURRY SPARSE PRIOR – LOW WEIGHT

SPARSE PRIOR – LARGER WEIGHT GROUND TRUTH

Figure 4.3: Over-smoothing and noise texturing with the sparse gradient prior: (top left) blurred, high-noise
image (the PSF is 31x31 pixels and σ= 0.05); (top right and bottom left) deconvolution using a smaller and
larger weight on the sparse gradient penalty; (bottom right) the ground-truth. To remove the “textured”
noise effect in the second image, it is necessary to increase the gradient penalty, which over-smooths the
image.

the likelihood of colors lying between the primary and secondary. We also incorporate a small

uniform distribution to model outliers. The primary and secondary Gaussians are initialized by

first performing 10 iterations of k-means clustering (with k=2). In the maximization step, when

each Gaussian’s standard deviation is recomputed, we clamp the minimum for the primary and

secondary Gaussians to be the noise’s standard deviation σ. As a result, after several iterations the

Gaussians will merge if the standard deviation is less than the noise’s standard deviation. In this

case, we consider the pixel to be modeled by one color, otherwise it is marked as a being a two

color pixel. A binary variable indicating one vs. two colors is stored for each pixel. We use a 5×5

window around each image pixel and perform 10 iterations of EM clustering.

4.4.2 Using the Two-Color Model for Deconvolution

The two color model provides a significant constraint for deblurring; there are two ways

such a model can be used for deconvolution. The first is to use the model as a hard constraint,
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Figure 4.4: Using the two-color prior: (a) One prior is on the perpendicular distance from a sharp pixel’s
color value to the (3D) line defined by the two colors, and a second prior is on the distribution of α, i.e.
the normalized distance along the line; (b) the measured negative log probability distributions of alpha
values measured for the shown ground-truth sharp images and our piecewise linear and quadratic penalty
function fit to the shape of the distribution of the aggregated data. The function is symmetric about α= 0.5
(not shown).

where the sharp image I must always be a linear combination of the primary and secondary colors

P and S. The second is to use a soft-constraint to encourage I to lie on the line connecting P and

S in RGB space (Figure 4.4a). We believe that the hard-constraint is too limiting and therefore use

the soft-constraint.

Our image negative log-likelihood term is defined as:

L(I |P,S) =λ1||I − [αP + (1−α)S]||2 +λ2ρ(α)+λ3||∇I ||0.8. (4.9)

The first likelihood term minimizes the distance between the recovered intensity I and the line

defining the space of the two color model (Figure 4.4a). In the above equation, α is not a free

variable and is computed as:

α=
(

(P −S)

(P −S)T (P −S)

)T

(I −S). (4.10)

For the “one-color” model, in which P = S, we do not use the two color model and the negative
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SECONDARY ALPHAPRIMARY

Figure 4.5: Primary, secondary, and alpha maps for the peppers image in Figure 4.4.

log likelihood falls back to using the sparse prior only:

L(I ) = L(I |P ) =λ3||∇I ||0.8. (4.11)

The second likelihood term, ρ(α), allows us to enforce a prior on the distribution of alpha

values that are a function of the normalized distances from I to P and S. The shape of this prior

plays a crucial role in enforcing sharpness during deconvolution. We bias the alpha distribution

to be peaked around 0 and 1, which enforces sharp transitions between colors by minimizing the

number of pixels with partial α values.

To confirm this expectation and to recover the exact shape for the alpha distribution, we

measured the distribution of α values for several images. We computed P and S for a set of sharp

images and then fit a penalty function to the shape of the negative log likelihood of the measured

alpha distributions. Our measured distributions and recovered penalty function ρ(α) are shown

Figure 4.4b. As expected, the penalty prefers that α be close to 0 or 1.

Note that in Equation 4.9, we retain the sparse prior of Levin et al., i.e., we find an image

with sparse gradients that is most consistent with the two-color model. For both equations, we

set λ1 = 10, λ3 = 0.5, and λ2 in the range of [0.8,1.5].

4.5 Solving for the Final Image

In the previous sections, we derived negative log-likelihood terms that when minimized

allow us to recover a latent image using a prior derived from a two-color model. Unfortunately,

minimizing this error function in one step is not straightforward due to the interdependence
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of I , P , and S. Fortunately, the problem can be decomposed into two more easily solvable

sub-problems.

For each of the operations we perform: deblurring, denoising, up-sampling, and demo-

saicing we perform an EM-style minimization consisting of the following two steps:

• Estimate Pi and Si from Ii−1 by local EM clustering (using an NxN window around each

pixel).

• Deconvolve the blurred image using Pi and Si to get Ii by minimizing Equation 4.2 with

Equation 4.9 as the prior on Ii using Ii−1 as an initial guess.

Deblurring and denoising with the two-color model estimate the initial image color model

P1 and S1 in slightly different ways.

Deblurring: The minimization is initialized by computing a deconvolution of the image B to get

I0 using the sparse gradient prior alone. We then estimate P1 and S1 from this initial deconvo-

lution. After this initialization, we reduce the amount of regularization used by the sparse prior

for this initialization to preserve sharpness (λ3 = 0.25 for this initialization step and λ3 = 0.5 for

the subsequent steps). The noise artifacts that result from the reduced regularization are later

suppressed when the color model is built.

Denoising: The denoising case is simpler as the color model can be built directly from the

input image. Thus the input image is I0 and we estimate P1 and S1 from this image.

Since our α penalty function has two minima—one at 0 and the other at 1—allowing

for colors to be close to the primary or secondary color, the deconvolution step listed above

is non-linear. We solve this non-linear optimization using Matlab’s fminunc function, which

performs a Quasi-Newton’s algorithm.

We have found that two to three EM-style iterations (between color estimation and

deconvolution) are sufficient for convergence. In most cases the perceptual difference after the

second iteration is minimal.
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Figure 4.6: Deblurring Text: Blurred, noisy image (the PSF is 31x31 pixels and σ= 0.01), deconvolution with
Lucy-Richardson, the sparse prior, our result using the two-color prior, and the groundtruth for two images.
Note how the two “G’s” in the first set of images are more distinctly seperate when using our method. In
these results λ2 = 1.5.

BLURRY LR SPARSE OURS GT

BLURRY LR SPARSE OURS GT

Figure 4.7: Peppers: Blurred, noisy image (the PSF is 31x31 pixels and σ = 0.01), deconvolution with
Lucy-Richardson, the sparse prior, our result using the two-color prior, and the groundtruth for two images.
The results using the two-color model appear sharper with few artifacts due to noise. In these results
λ2 = 0.8.

4.6 Results

4.6.1 Deblurring

To validate our deconvolution algorithm, we tested our method on several images, includ-

ing both synthetic cases, where the blur kernel and ground-truth sharp image are known, as well

as several real images, where the blur kernel was estimated using previously developed methods

[Fergus et al., 2006; Yuan et al., 2007] and our methods presented in Chapter 3. For each result,

we compare our method to Lucy-Richardson and deconvolution using the sparse-prior alone. For

the sparse prior, we used the code available online by Levin et al. [2007].

Figure 4.6 shows results for the SIGGRAPH logo and text synthetically blurred with a
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Figure 4.8: Three Colors Meeting at a Point: Even when the two color model does not strictly hold within a
neighborhood, the perceptual artifacts in this failure case are minimal.

horizontally elongated Gaussian kernel. These images exhibit numerous “bar edge” type features

between the letters. Our method separates and sharpens the letters much more than the Lucy-

Richardson and the sparse prior alone. Figure 4.7 shows a similar result for a more natural

image.

Figure 4.8 shows an example for a failure case for the two color model where three colors

meet at a point. Even though the two color model does not strictly hold here, the perceptual

artifacts are minimal since the color model is used as a soft-constraint.

In Figure 4.1, we show a result using a map image and corresponding PSF recovered using

our method presented in Chapter 3. Our result has the sharpness of the Lucy-Richardson result

and is not overly smoothed, as in the result when using the sparse-prior alone. If the regularization

weight for using the sparse prior alone is reduced, more textured noise appears creating an effect

similar to that in Figure 4.3. Our result has minimal noise artifacts and no ringing.

In Figure 4.9, we show results for three real images. The first two blurry images and blur

kernels are from the work by Yuan et al. [2007] and were provided to us by the authors. In their

work, the authors obtain accurate PSFs for blurry images using a sharp, noisy image and a blurry

image. We have used their PSFs for deblurring the blurry images alone. The third result is using an

image and PSF from the work of Fergus et al. [2006] that is publicity available. As in the previous

results, in comparison with the other methods, our results are sharper.

In Figure 4.12, we show a result where we have deconvolved the image in Figure 4.1 on

a 2× up-sampled grid, which our formulation naturally allows for (as discussed in Section 4.2).

For comparison, we show the 1× result up-sampled and the 2× down-sampled using bi-cubic
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Figure 4.9: A dragon (the PSF is 60x60 pixels and the noise level is estimated per-pixel the medianσ= 0.004)
and sweater (the PSF is 30x30 pixels and and the median estimated σ = 0.0127) from Yuan et al. and a
fountain (the PSF is 39x39 pixels and the noise level is estimated per-pixel the median σ= 0.0104) from
Fergus et al. For each result we show the blurred, noisy image, deconvolution with Lucy-Richardson, the
sparse prior, and our result using the two-color prior for both images. We deblur the blurry images from
Yuan et al.and Fergus et al. using their recovered PSFs. For the dragon and sweater λ2 = 1.2 and for the
fountain λ2 = 0.8.
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22013113009 65010 105053 108073

Figure 4.10: Images from the Berkeley Image Database

interpolation and decimation. For both comparisons, the 2× up-sampled grid produces crisper

results.

4.6.2 Denoising

To test the performance of our algorithm for denoising, we added 5% and 10% additive

gaussian noise to several images from the Berkeley Image Database, shown in Figure 4.10, and

ran our algorithm on the resulting images.

PSNR = 31.69 PSNR = 31.68 PSNR = 31.27 PSNR = 32.345% AWGN

PSNR = 30.63 PSNR = 31.95 PSNR = 31.41 PSNR = 31.6110% AWGN

NOISY LIU ET AL. (0TH ORDER) LIU ET AL. (1ST ORDER) OURS GROUNDTRUTHWAVELET

Figure 4.11: Denoising: Visual comparison of our denoising results with previous work. The fur in the bear
is sharper in our result. For the lion image, our result has the sharpness of the Liu et al. results in the face
region, but does not have the blocking artifacts in the low-frequency background region. For all images
λ2 = 0.8.
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Table 4.1 shows a comparison of the PSNR values for our denoising results compared

to the results of using Liu et al.’s [2006] and Portilla et al.’s [2003] methods. Figure 4.11 shows

a visual comparison for two images. Figure 4.1 also compares our work to denoising using the

sparse prior alone. (Note that while denoising using the sparse prior alone is the same as Levin

et al. [2007]’s deconvolution with the data term in Equation 4.5, Levin et al. never specifically

address denoising.) Our PSNR values are consistently higher than those of Portilla et al.’s method,

Liu et al.’s 0th order denoising, and the sparse prior in the higher noise case. Liu et al.’s 1st order

method results in slightly higher PSNR values than our method for the 10% noise images; however,

Liu et al.’s results show significant blocking artifacts which our method does not suffer from, as

shown in Figure 4.11.

4.6.3 Up-Sampling

Given our formulation, it is also possible to do more traditional up-sampling. We up-

sample a low-resolution image by deconvolving it on an up-sampled grid where the PSF is a

down-sampling anti-aliasing filter (we use a 7-tap binomial filter).

We use the same EM-style iterative optimization for denosing and deblurring; however,

the minimization is initialized by computing a bicubic up-sampling of the low resolution image

to estimate the initial guess I0. We then estimate P1 and S1 from this image.

Table 4.1: Denoising PSNR Comparisons: Our PSNR value are consistently higher than those of Portilla et
al.’s method, Liu et al.’s 0th order denoising, and the sparse prior in the higher noise case. Liu et al.’s 1st
order method results in slightly higher PSNR values than our method for the 10% noise images; however,
Liu et al.’s results show significant blocking artifacts which our method does not suffer from as shown in
Figure 4.11. For all of our results λ2 = 0.8.

σ= 5% σ= 10%
File name 0th 1st Wavelet Sparse Ours 0th 1st Wavelet Sparse Ours

22013 32.17 32.33 31.31 32.50 32.56 27.14 28.84 27.12 27.53 27.98
23084 32.04 32.64 32.14 33.01 33.10 27.04 29.23 27.24 27.20 27.93
35008 34.84 35.97 35.74 35.88 35.69 30.24 33.27 31.23 32.16 32.30
65010 31.99 32.18 30.95 32.26 32.42 27.18 28.41 26.73 27.07 27.60

100075 31.69 31.68 31.27 32.36 32.34 28.14 28.96 28.31 28.51 28.77
105053 33.77 34.02 34.01 34.79 34.57 30.63 31.95 31.41 31.73 31.61
108073 31.94 31.98 31.48 32.49 32.65 28.33 29.21 27.94 27.94 28.70
113009 32.31 32.61 32.89 33.62 33.56 28.89 30.19 29.91 29.87 30.07
134052 32.58 32.88 32.09 33.01 33.02 28.61 29.55 28.20 28.15 28.95
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1X 2X DOWN‐SAMPLED 2X1X UP‐SAMPLED

Figure 4.12: Deconvolution on an up-sampled grid . We show our method run on a 1× and 2× grid. For
comparisons, we show the 1× result up-sampled and the 2× down-sampled both as a post-process using bi-
cubic interpolation. The deconvolution directly on the 2× up-sampled grid is sharper than the up-sampled
1×. The down-sampled 2× is crisper than the solution at the native 1× resolution.

The application of our method to up-sampling shares similarities with the work of Fat-

tal [2007] and Dai et al. [2007], in that we all consider alpha priors. In Figure 4.13, we show two 4x

up-sampling results using data from Fattal. Our result is significantly sharper than the result of

bi-cubic interpolation and is of similar quality to Fattal’s result with some qualitative differences.

4.6.4 Demosaicing

It is also possible to modify our formulation to perform Bayer demosaicing similar to

the method by Bennett et al. [2006]. The error function for demosaicing is slightly different than

for deconvolution and deblurring. For demosaicing to goal is to interpolate the missing color

samples, but to retain the sampled values. Thus we add a spatially varying mask that ensures this.

The data negative log likelihood for demosaicing is thus:

L(B |I ) = M ∗||B − I ||2. (4.12)

The mask M is one for where the Bayer pattern sampled a particular color channel and is zero

otherwise.

The image prior is modified in a similar way where the masking function is inverted. Thus

the mask M is zero for where a the Bayer pattern sampled a particular color channel and is one

otherwise:

L(I |P,S) = M ∗ (λ1||I − [αP + (1−α)S]||2 +λ2ρ(α)+λ3||∇I ||0.8), (4.13)
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4 N N 4 B 4 F 4 O4X NEAREST NEIGHBOR 4X BICUBIC 4X FATTAL 4X OURS

4X NEAREST NEIGHBOR 4X BICUBIC 4X FATTAL 4X OURS

4X NEAREST NEIGHBOR 4X BICUBIC 4X FATTAL 4X OURS

4 N N 4 B 4 F 4 O4X NEAREST NEIGHBOR 4X BICUBIC 4X FATTAL 4X OURS

Figure 4.13: Up-sampling low-resolution images. Our formulation also allows us to perform more tradi-
tional up-sampling of low-resolution images. We show our result for 4× up-sampling using images from
the work of Fattal [2007]. Our result is significantly sharper than bi-cubic interpolation and is similar to
Fattal’s result.

and

L(I ) = L(I |P ) = M ∗ (λ3||∇I ||0.8) (4.14)

for the one “one-color” regions.

We use the same EM-style iterative optimization for denosing and deblurring; however,

the minimization is initialized by computing a demosaicing of the bayer image to get I0. We then

estimate P1 and S1 from this image. We have tried various demosaicing algorithms for the initial

estimation and found the method by Li [2005] to work quite well.

To test our formulation we have used the Kodak true color image dataset commonly used

for evaluating demosaicing algorithms. These images are scanned prints that have true RGB



96

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 4.14: Kodak true color images used for demosaicing experiments.

color per-pixel. In table 4.2 we show PSNR comparisons of Li [2005] output and our result seeded

with Li’s method as the initial estimate. Our method shows improvements for the green channel.

The red and blue channels do not show a consistent improvement. We believe this is due to

the red and blue channels being too sparsely sampled (by a factor of two less than the green) to

estimate the color model in a way that removes demosaicing artifacts, i.e., the artifacts in initial

demosaicing are captured by out EM clustering and propagated through as part of our color prior.

We encourage the reader to visit http://graphics.ucsd.edu/~neel/dissertation/

for full-resolution comparisons for all of the results discussed here and a couple of additional

results.

http://graphics.ucsd.edu/~neel/dissertation/
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4.7 Alpha Distribution Measurements

To better understand and model alpha distributions we have conducted a larger study

of alpha distributions for a larger, broader range of images. Just as discussed in Section 4.4.2

we measured α distributions for a set of natural images, 300 images from the Berkeley Image

Database, and 160 “text” images from the ICDAR (International Conference on Document Analysis

and Recognition) 2003 dataset; images from both sets are shown in Figure 4.15.

These plots of negative log likelihoods of the alpha measurements, shown in Figure 4.15

show a range of distributions where the more bitonal, text image as opposed to highly-textured

Table 4.2: Demosaicing. With the two color prior. For experiments run with the images in Figure 4.14 our
method shows slight improvements for the green channel and no consistent improvements for the red and
blue channels.

R G B
Image Number sucessive two color sucessive two color sucessive two color

1 36.66 36.96 37.64 38.04 40.88 40.77
2 35.54 35.15 39.05 38.48 40.08 40.13
3 39.13 39.07 39.44 39.32 42.30 42.42
4 36.19 36.19 40.85 40.96 42.66 42.50
5 35.59 35.36 35.34 35.10 38.27 38.25
6 37.97 38.12 37.17 37.39 41.64 41.52
7 40.09 39.96 39.39 39.19 42.70 42.69
8 34.44 34.51 35.00 35.17 38.74 38.62
9 40.64 40.85 41.42 41.29 43.49 43.62

10 40.07 40.15 40.48 40.58 43.90 43.77
11 37.50 37.61 38.54 38.91 41.65 41.42
12 41.07 41.26 41.37 41.45 44.76 44.57
13 34.70 35.08 33.35 33.63 37.90 37.63
14 33.33 32.98 34.39 34.02 36.74 37.07
15 35.31 35.11 38.72 38.76 40.59 40.31
16 38.60 38.97 39.34 39.80 43.35 42.96
17 40.63 40.55 39.82 39.86 43.13 43.03
18 35.51 35.28 36.43 36.44 38.61 38.55
19 38.53 38.64 39.59 39.89 42.39 42.21
20 38.71 38.83 37.20 37.32 41.74 41.81
21 38.47 38.56 37.43 37.57 41.80 41.78
22 36.93 36.70 36.91 36.91 39.72 39.55
23 38.05 37.91 40.53 40.74 41.88 42.23
24 34.79 34.30 32.80 32.92 37.59 37.37
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or shaded image, have a sharper dip near α = 1. Our experiments show that this difference in

sharpness is reasonably well modeled by scaling the penalty function, i.e. the λ2 parameter.

To better understand the qualitative affect of different priors we clustered the measured

distributions into two clusters to represent “natural” vs. “text” images and fit piecewise cubic

penalty functions to each, shown in Figure 4.16. We then performed deconvolution for the image

shown in Figure 4.1 with only the alpha and two-color prior for regularization, i.e. no sparse prior.

In Figure 4.16 we show the result of using the penalty function shown in Figure 4.4, which was

used for the rest of our results, compared with the penalty functions shown in Figure 4.15. We

normalized the penalty function to have the same value at α= 1.5, such that only the difference

in the shape of the functions would affected the optimization results (shown in Figure 4.16).

By deconvoling without the sparse prior, the results in Figure 4.16 illustrate the affect of

the sparse prior when used with the two color prior. In the two color regions, the sparse prior

helps remove small spatial variations in alpha that are otherwise not heavily penalized with the

penalty function in Figure 4.4, as the area near α= 1.0 is relatively shallow and allows for some

fluctuation. The sharper bimodal priors minimize the need for the sparse prior as it minimizes

these small fluctuations and there are fewer noise artifacts.

4.8 Discussion and Future Work

We have shown how to deblur images by developing a novel prior that incorporates local

color statistics into the deconvolution process using a local two-color model. We have additionally

shown how to use the same formulation for denoising an image. Our method produces sharper

results with visibly less noise than current algorithms.

There are several areas for future work where our methods can be improved. Perhaps the

largest limitation of our method is not in its theory, but in its practice. For deblurring, recovering

both the color model and deconvolving the image is a non-linear problem. Furthermore, the error

function we use can suffer from local minima due to the necessary existence of two minima in the

alpha prior. Two obvious routes exist for improvement, the first being to investigate alternative

optimization techniques. The second is to improve the initialization for the color model; we
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Figure 4.15: Measurements of alpha distributions. We measured α distributions for 300 images from the
Berkeley Image Database (top left) and 160 “text” images from the ICDAR (International Conference on
Document Analysis and Recognition) 2003 dataset (top middle). The α distributions for these images
overlayed on one plot (top right). We clustered the distributions into two clusters (bottom left and middle)
to represent “natural” vs. “text” images and fit penalty functions to each (bottom right).

have experimented with both the Lucy-Richardson algorithm and using the sparse prior alone.

We found that using the sparse prior alone with a low weighting provides a good initial guess;

however, due to our current optimization method, the quality of our results is somewhat bound

by this initialization. Other choices may yield improved results.

In our experience, we have found that varying the weighting of the alpha priors can help

create qualitatively better results. Our alpha measurements described in the previous section show

that most often, text-like images require a higher weight than natural images. We are interested in

exploring the alpha prior and weighting values in a more class-specific way. We believe that there

may be a consistent, but different, set of weights for text versus natural images, and we believe

that this parameter could be learned, eliminating the need for hand tuning the λ2 parameter.

Using some of the ideas from Fattal [2007] and Dai et al. [2007] may also be a way to improve our

prior on α.

Another area for improvement is noise-level estimation, as the weighting of the data

likelihood is directly dependent on this. We have found that errors in the estimation of σ2 can
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(SHOWN IN FIGURE 4.4)
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(CLUSTER 1 IN FIGURE 4.14)
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Figure 4.16: Comparing alpha penalty functions. In the two color regions, the sparse prior helps remove
small spatial variations in alpha. Without the sparse prior, with a more shallow penalty function (left
column) small fluctuations near α= 1.0 are not heavily penalized and the deconvolution is noisier. The
sharper bimodal priors minimize the need for the sparse prior as it minimizes these small fluctuations and
there are fewer noise artifacts (middle and right column). There is minimal difference between the penalty
function fit to “natural” vs. “text” images.

cause the priors to be weighed too heavily. Thus, we believe that improved methods for noise

estimation could benefit our algorithm.

Lastly, we are investigating incorporating other image statistics. Currently, we use a

fixed-size window around each pixel. While this works quite well, an interesting future direction

would be to use local color statistics over increasingly larger windows and to also measure global

statistics. Priors that minimize color entropy could provide additional constraints that would be
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valid for a larger range of images and could be a useful addition to our algorithm.
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Image Correction using Identify-Specific Priors

“It is the common wonder of all men, how among so many millions of faces, there should be none alike.”

—Sir Thomas Browne

The previous chapters have focused on two specific image corrections: deblurring and

denoising using image models and statistical priors tuned to the content of an image. In this

chapter, we take a different approach toward image correction. Specifically, instead of developing

corrections for general images using tuned models, we impose content restriction and look at

a very specific, yet large class of images. We note that many consumer photographs are of a

personal nature, e.g., holiday photographs and vacation snapshots are mostly populated with the

faces of the camera owner’s friends and family. Flaws in these types of photos are often the most

noticeable and disconcerting. In this chapter, we present methods that seek to improve these

types of photos and focus specifically on images containing faces. Our approach is to “personalize”

the photographic process by using a person’s past photos to improve future photos. By narrowing

the domain to specific, known faces we can obtain high-quality results and perform a broad range

of operations.

We implement this personalized correction paradigm as a post-process using a small

set of examples of good photos. The operations are designed to operate independently, so that

a user can choose to transfer any number of image properties from the examples to a desired

photograph, while still retaining certain desired qualities of the original photo. Our methods are

automatic, and we believe this image correction paradigm is much more intuitive and easier to

102
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use than current image editing applications.

The primary challenges involved in developing our “personal image enhancement” frame-

work are 1) decomposing images such that a number of image enhancement operations can be

performed independently from a small number of examples, 2) defining transfer functions so that

only desired properties of the examples are transferred to an image, and 3) correcting non-face

areas of images using the face and the example images as calibration objects. In order to accom-

plish this, we use an intrinsic image decomposition into shading, reflectance and color layers

and define transfer functions to operate on each layer. In this chapter, we show how to use our

framework to perform the following operations:

• Deblurring: removing blur for images when the blur function is unknown by solving for

the blur of a face,

• Lighting transfer and enhancement: transferring lighting color balance and correcting

detail loss in faces due to under exposure or saturation,

• Super-resolution of faces: creating high-resolution sharper faces from low resolution im-

ages.

We integrate our system with face detection [Viola and Jones, 2001] to obtain an auto-

mated system for performing the personalized enhancement tasks.

To summarize, the contributions of this chapter are 1) the concept of the personal “prior”:

a small, identity specific collection of good photos used for correcting flawed photographs, 2)

a system that realizes this concept and corrects a number of the most of common flaws in

consumer photographs, and 3) a novel automatic multi-image deblurring method that can deblur

photographs even when the blur function is unknown.

5.1 Related Work

A discussed in Chapter 2, digital image enhancement dates back to the late 60s. There

are many applications and approaches in this area. The most relevant work to the contributions

of this chapter are those methods that use image-derived priors. The use of image-derived
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PRIOR IMAGES ORIGINAL BLURRY IMAGE OUR AUTOMATICALLY DEBLURRED OUTPUT

Figure 5.1: Automatically correcting personal photos. We automatically enhance images using prior
examples of “good” photos of a person. Here we deblur a blurry photo of a person where the blur is
unknown. Using a set of other sharp images of the same person as priors (left), we automatically solve for
the unknown blur kernel and deblur the original photo (middle) to produce a sharp image (right) – the
recovered blur kernel is shown in the top right enlarged 3×.

priors is a relatively recent development. Image-based priors have been exploited for super-

resolution [Baker and Kanade, 2000; Freeman et al., 2002; Liu et al., 2007], deblurring [Fergus

et al., 2006], denoising [Roth and Black, 2005; Liu et al., 2006; Elad and Aharon, 2006], view-

interpolation [Fitzgibbon et al., 2005], inpainting [Levin et al., 2003], video matting [Apostoloff

and Fitzgibbon, 2004], and fitting 3D models [Blanz and Vetter, 1999].

These priors range from statistical models to data-driven example sets, such as a face prior

for face hallucination, a gradient distribution prior for natural images, or an example set of high

and low resolution image patches; they are specific to a domain, but general within that domain.

To the best of our knowledge, most work using image-based priors is derived from a large number

of images that may be general or class/object specific, but there has been very little work in 2D

image enhancement using identity specific priors. Most work using identity-specific information

is in the realm of detection, recognition, and tracking in computer vision and face animation and

modeling in computer graphics. In the latter realm, recent work by Gross et al. [2005] has shown

that there are significant advantages to using person-specific models over generic ones.

A related area of work is photomontage and image compositing [Agarwala et al., 2004;

Levin et al., 2004; Rother et al., 2006]. In the work of Agrawala et al., user interaction is combined

with automatic vision methods to enable users to create composite photos that combine the best

aspects of each photo in a set. Another related area of work is digital beautification. Leyvand et
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Figure 5.2: Personal image enhancement pipeline. First we use face detection to find faces in each image
and align the prior images to the person in the target photo. The images are then decomposed into intrinsic
images: color, texture, and lighting. First global image corrections are performed and then face-specific
enhancements. We combine the global and face-specific results using gradient domain fusion.

al. [2006] use training data for the location and size of facial features for “attractive” faces as a

prior to improve the attractiveness of an input photo of an arbitrary person. We see our work as

complementary the work of Agrawala et al. and Leyvand et al., as while we all share similar goals

of improve the appearance of people in photographs, we focus more on overcoming photographic

artifacts and do not seek to change the overall appearance of a subject.

Our individual corrections use gradient domain operations pioneered by Perez et al. [2003].

Our work also share similarities with image fusion methods and transfer methods [Reinhard et al.,

2001; Eisemann and Durand, 2004; Petschnigg et al., 2004; Agrawal et al., 2005; Bae et al., 2006] in

that we use similar image decompositions and share similar goals of transferring photographic

properties.

Our face specific enhancements are inspired by the face-hallucination work of Liu et

al. [2007]. Liu et al. use a set of generic faces as training data that are pre-aligned, evenly lit, and

grayscale. Where our work differs, is that we use identify-specific priors, automatic alignment,

and a multi-layered image decomposition that enables operating on a much wider range of

images, where the images can vary in lighting in color, and we perform operations in the gradient

domain. These extensions enable using a more realistic set of images (with varied lighting and
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color), improve matching, and give higher quality results. Furthermore, Liu et al. do not address

in-painting and hallucinating entire missing regions, as we show in Figure 5.8.

Our deblurring algorithm is related to the work of Fergus et al. [2006] and multi-image

deblurring methods [Bascle et al., 1996; Rav-Acha and Peleg, 2005; Yuan et al., 2007]. Fergus et al.

recover blur kernels assuming a prior on gradients on the unobserved sharp image and in essence

only assume “correspondence” between the sharp image and prior information in the loosest

sense, in that they assume the two have the same global edge content. Multi-image deblurring is

on the other end of the spectrum. These methods use multiple images of a scene acquired in close

sequence and generally assume strong correspondence between images. Our method resides

between the these two approaches with some similarities and several significant differences.

Relative to multi-image methods, we assume moderate correspondence, by using an

aligned set of an identify-specific images; however, we allow for variations in pose, lighting, and

color. To the best of our knowledge, deblurring using any type of face-space as a prior, let alone

our proposed identity-specific one, is novel. Both our method and Fergus et al.’s are in the general

(and large) class of EM style deblurring methods. Where they differ in the specific nature of the

prior and that our method is completely automatic given a set of prior images. Fergus et al.’s work

on the other hand requires user input to select a region of an image for computing a PSF. In our

experience, this user input is not simple as it often requires several tries to select a good region

and must be done for every image. Furthermore, our work is computationally simpler using an

maximum a posteriori estimation instead of Variational Bayes, which leads to a ten to twenty

times speedup.

5.2 Overview

We present several image enhancement operations enabled by having a small number of

prior examples of good photos of a person. The enhancements are grouped into two categories:

global image corrections and face-specific enhancements. Global corrections are performed on

the entire image by using the known faces as calibration objects. We perform global exposure

and white-balancing and deblurring using a novel multi-image deconvolution algorithm. For
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Figure 5.3: Mask computation and layer decomposition. We perform our corrections on a “intrinsic image”
style decomposition of an image into color, lighting, and texture layers. This enables a small set of example
images to be used to correct a broad range of input images. In addition, it allows us to modify image
characteristics independently. We also automatically compute a mask for the face that we use as part of
our face specific corrections.

faces in the image we can go beyond global correction and perform per-pixel operations that

transfer desired aspects the of example images. We in-paint saturated and underexposed regions,

correct lighting intensity variation, and perform face-hallucination to sharpen and super-resolve

faces. Our system operates on base/detail image decomposition [Eisemann and Durand, 2004]

and therefore these operations can be performed independently. As illustrated in Figure 5.2, our

system proceeds as follows:

1. Automatically detect faces on target images and prior images.

2. Align and segment faces in target and prior images.

3. Decompose images into color, texture, and lighting layers.

4. Perform global image corrections.

5. Perform face-specific enhancements.

Step 1 outputs a set of nine feature points for each target and prior face and step 2

produces a set of prior images aligned to the target image with masks indicating the face on each

image. Both steps are discussed in detail in Section 5.2.3. Step 3 is discussed in the next section,

step 4 in Section 5.3, and step 5 in Section 5.4.

5.2.1 Prior Representation and Decomposition

In this work, we derived priors from a small collections of person-specific images. In

contrast with previous work using large image collections [Hays and Efros, 2007], our goal is to
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use data that is easily collected by even the most casual photographer, who may not have access

to large databases of images.

Researchers have noted that the space spanned by the appearance of faces is relatively

small [Turk and Pentland, 1991]. This observations has been used for numerous tasks including

face recognition and face hallucination [Liu et al., 2007]. We make the additional observation

that the space spanned by images of a single person is significantly smaller – when examining a

personal photo collection the range of photographed expressions and poses of faces is relatively

limited. Thus we believe the use of a small set of person-specific photos to be a relatively powerful

source for deriving priors for image corrections.

While expression and pose variations may be limited, lighting and color can vary signifi-

cantly between photos. As a result, a central part of our framework is the use of a base/detail layer

decomposition [Eisemann and Durand, 2004] that we use as an approximate “intrinsic image” de-

compostion [Barrow and Tenenbaum, 1978; Land and McCann, 1971; Finlayson et al.; Weiss, 2001;

Tappen et al., 2006]. In such as decomposition, an image is represented as a set of constituent

images that capture intrinsic scene characteristics and extrinsic lighting characteristics. Intrinsic

images are an ideal construct as they a) allow us to use a small set of prior images to correct a

broad range of input images and b) they enable modifying image characteristics independently.

We adopt the base/detail layer decomposition used by Eisemann and Durand [2004]

that makes this separation based on the Retinex assumption and uses an edge-preserving filter

to decompose lighting from texture. We decompose an RGB image I into a set of four images

[r, g ,L, X ] , where Y = R +G +B represents luminance and r = R/Y and g = G/Y are red and

green chromaticity. L, the lighting (or base) image, is a bilaterally filtered version of luminance

Y . X , the shading image, is computed as X = Y /L. For the sake of simplicity of terminology, for

the remainder of this chapter, we will refer to the (r, g ) chromaticity reflectance images as “color

layers”, L, the base image as the “lighting layer”, and X , the shading layer, as the “texture layer”.

The layers from our example set are used for direct example-based techniques and to

derive statistical priors. To achieve this, we follow the hybrid model of Liu et al. [2007] and perform

corrections using both a linear eigenspace and a patch-based non-parametric approach.
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Figure 5.4: Eigenfaces Constraint. We use linear feature spaces built from an aligned set of good images of
a person as a constraint in our image enhancement algorithms. Here we show the eigenfaces used as a
prior for the delurring result shown in Figure 5.1.

5.2.2 Enhancement Framework

We create a desired processed image I with layers I = [Ir , Ig , IL , IX ] from a given observed

image O = [Or ,Og ,OL ,OX ] and an aligned set of prior images where one prior image is P =
[Pr ,Pg ,PL ,PX ]. We automatically align the prior images P to O and compute a mask, F , for each

face automatically. Alignment and mask computation is discussed in the next section.

The aligned, intrinsic prior layers are used directly for a patch-based method, and we

also create eigenspaces for these layer. From each aligned and cropped intrinsic prior layers we

create a set of orthogonal basis vectors using SVD. We denote P as matrix of basis vectors and Pµ

as the mean vector that describe a feature space for the examples. An example of this is shown in

Figure 5.4. Unlike previous work in this area, since our set of examples is small we do not use a

subspace – our basis vectors capture all the variation in the data, and thus we are simply using

SVD to orthogonalize the data. Another method such as Gram-Schmidt could be used. Thus, our

“personal prior” is the entire set of aligned layers and basis and mean vectors for each space.

As illustrated in Figure 5.2, we perform image enhancement by creating a desired image I ,

by first performing global corrections to obtain the image I G , and then we perform face-specific
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corrections to obtain the final result I .

Face-specific enhancements are performed in the gradient domain using Poisson image

editing techniques [Pérez et al., 2003], where an image is constructed from a specified 2D guidance

gradient field, v , by solving a Poisson equation: ∂I /∂t = ∇I −di v(v). Specifically, this can be

formed as a simple invertible linear system: LI = di v(v), where L is the Laplacian matrix. We

refer the reader to paper by Perez et al. [2003] for more details on gradient domain editing.

5.2.3 Face Alignment and Mask Computation

To align faces in examples to a face in the input image, we use an extended implementa-

tion of the automatic face detection method of Viola and Jones [2001]. The detector outputs the

locations of faces in an image along with nine facial features, the outside corner of each eye, the

center of each eye, bridge and tip of the nose, and the left, right, and center of the mouth. From

these features we align the faces using an affine transformation.

When performing face-specific enhancement, it is also necessary to have a mask for the

face in the input and prior images. We automatically compute these by using the feature locations

to initially compute a rough mask labeling face and non-face areas of the image. First our system

creates a “trimap” by labeling the image as foreground, background and unknown regions. The

foreground area is marked as the pixel inside the convex hull of the nine detected features. The

edge is labeled as background and the remaining pixels are in unknown region. We compute an

alpha-matte using the method of Levin et al. [2006] and threshold this soft-segmentation into a

mask. The threshold is 50% and we eroded the mask pixels by ten pixels to get the final mask. An

example of a mask is shown in Figure 5.3.

In the following sections, we describe our enhancement and correction functions and

how each uses our prior.

5.3 Global Correction Operations

Many aspects of a person’s facial appearance, particularly skin color, albedo, and the

location of features, such as the eyes and nose, remain largely unchanged over the course of time.
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By leveraging their relative constancy, one can globally correct a number of aspects of an image.

We consider global corrections to be those that are calculated using the face area of an

image and are applied to the entire image. Our global corrections use basis and mean vectors

constructed from the example images as a prior within a Bayesian estimation framework. Our

goal is to find the most likely estimate of the uncorrupted image I given an observed image O.

This is found by maximizing the probability distribution of the posterior using Bayes’ rule – also

known as maximum a posteriori (MAP) estimation. The posterior distribution is expressed as the

probability of I given O:

P (I |O) = P (O|I )P (I )

P (O)
. (5.1)

I can then be recovered by maximizing this posterior or minimizing of a sum of negative log

likelihoods:

I = argmax
I

P (I |O) (5.2)

= argmax
I

P (O|I )P (I ) (5.3)

= argmin
I

L(O|I )+L(I ). (5.4)

L(O|I ) is the “data” term and L(I ) is the image prior. The specific form of each value is different

for each correction. In our system, we correct for overall lighting intensity and color balance and

perform multi-image deconvolution to deblur an image.

5.3.1 Image Deblurring

We deblur an image of a person using our personal prior as a constraint during image

deconvolution. While pixel-wise alignment of the blurred image and the prior images is difficult,

a rough alignment is possible as facial feature detection on down-sampled blurred images is

reliable. The feature space for texture layers from our personal prior is then used to constrain the

underlying sharp image during deconvolution. We rely on the variation across the prior images to

span the range of facial expressions and poses.

We only consider blur parallel to the image plane and solve for a shift-invariant kernel. We
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model image blur as the convolution of a unknown sharp image with a unknown shift-invariant

kernel plus additive white Gaussian noise:

O = I ⊗K +N , (5.5)

where N ∼N(0,σ2).

We formulate the image deconvolution problem using the Bayesian framework discussed

above, except that we now have two unknowns I and K . We continue to minimize a sum of

negative log likelihoods:

L(I ,K |O) = L(O|I ,K )+L(I )+L(K ) (5.6)

Given the blur formation model (Equation 5.5):

L(O|I ,K ) = ||O − I ⊗K ||2/σ2. (5.7)

We consider O =OF
X OF

L , which is the observed image’s luminance, where the superscript

F indicates that only the masked face region is considered (we will drop the F notation is later

sections for the sake of readability). The sharp image I we recover is the deblurred luminance.

The negative log likelihood term for the image prior is:

L(I ) =λ1L(I |P,Pµ)+||∇I ||q , (5.8)

which maintains that the image lies close to the examples’ feature space by penalizing distance

between the image and its projection onto the space, which is modeled by the eigenvectors and

mean vector (P,Pµ)). The term also includes the sparse gradient prior of Levin et al. [2007]: ||∇I ||q .

The feature-space used in the prior is built from the examples’ texture layers times the

observation’s lighting layer, i.e., P i = P i
X OL , for each example i . This implicity assumes that the

blurring process does not affect the lighting layer, i.e. the priors examples and the observation

have the same low-frequency lighting. While this assumption may not always be true, it holds in
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practice as lighting changes tend to be low frequency.

To use this feature space, we define a negative log likelihood term using a robust distance-

to-feature space metric:

L(I |P,Pµ) = ρ (
[P′P(I −Pµ)+Pµ]− I

)
, (5.9)

P represents the matrix whose columns are the eigenvectors of the feature-space, and P′ is the

transpose of this matrix. Thus term enforces that the residual between the latent image I and the

robust projection of I on to the feature-space [P,Pµ] should be minimal. ρ(.) is a robust error

function described below.

We use a robust norm (rather than L2 norm) to make this projection more robust to

outliers (e.g., specular reflections and deep shadows on the target face or feature variations not

well-captured by the examples ). For ρ(.) we use the Huber norm:

ρ(r ) =
 1

2 r 2 |r |5 k

k|r |− 1
2 k2 |r | > k

. (5.10)

k is estimated using the standard “median absolute deviation” heuristic. We use a iterative

reweighed least squares approach to minimize the error function.

For the sparse gradient prior, instead of using q = 0.8, as Levin et al. use, we recover the

exponent by fitting a hyper-laplacian to the histogram of gradients of the prior images’ faces. To

fit the exponent, consider that p-norm distribution is y = ce(x)−p (c is a constant) , taking the

log of both sides results in: log (y) = l og (c)+−pl og (e(x)). If y = ||∇I F || and x is the probability

of different gradient values (as estimated using a histogram normalized to sum to one), p is the

slope of the line fit to this data. By fitting the exponent in this way we constrain the gradients

of the sharp image in a way that is consistent with the prior examples – in our experience, the

recovered p is always between 0.5 and 0.6.

The prior on the kernel is modeled as a sparsity prior on the values and a smoothness

prior on the kernel, which are common priors used during kernel estimation. The likelihood L(K )

is:

L(K ) =λ2||K ||p +λ3||∇K ||2, (5.11)
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ORIGINAL

PRIOR IMAGES EXPOSURE AND COLOR CORRECTED

Figure 5.5: Exposure and color correction. Using the same set of prior images our system automatically
corrects exposure and white-balance for three different images containing the same person.

where p < 11.

Blind deconvolution is then performed using a multi-scale, alternating minimization,

where we first solve for I using an initial assumption for K (we use a 3x3 gaussian) by minimizing

L(I |B ,K ) and then use this I to solve for K by minimizing L(K |B , I ). Each sub-problem is solved

using iterative re-weighted least-squares.

In performing debluring, we recover only the sharp image data for the face and the kernel

describing the blur for the face. If the person in target photograph did not move relative to the

scene, this blur describes the camera-shake and we use the method of Levin et al. [2007] to deblur

the whole image. A result from our method is shown in Figure 5.1.

5.3.2 Exposure and Color Correction

The goal of this part of our framework is to adjust the overall intensity and color-balance

of the target photograph such that they are most similar to that of well-exposed, balanced prior

images. We model this adjustment with scaling parameters for the lighting and color layers.

We robustly match the target face’s lighting and color to mean lighting and color vec-

tor from the prior feature-spaces. We again formulate this using the Bayesian framework and

1We have found our method is relatively insensitive to the value of p as long as it is < 1. p = 0.8 seems to work well.
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minimize a sum of negative log likelihoods. For exposure correction, the data term is:

L(O|I ) = ||OL −ωL IL ||2, (5.12)

where ωL is a scalar value. The image prior is:

L(I ) = L(IL |PLµ) = ρ (
PLµ− IL

)
. (5.13)

For white-balancing, we use an equation of the same form to compute scaling values ωr and ωg

using the respective Ir , Ig , Prµ, and Pgµ values.

In practice, ifωL > 1 we set it equal to 1, so we do not scale down image exposure. For color-

balancing, as skin tones do not span a large color gamut we perform a simple white-balance, i.e.

independent scaling of the color layers, as we have found it to be the only reliable transformation

we can perform. In particular, we have found that a full linear transformation or a non-linear

transform, such as histogram matching, often has too many degrees of freedom and produces

undesired results. Examples of global exposure and white-balancing are shown in Figure 5.5.

5.4 Face-Specific Enhancement

In many cases, global corrections will not remove all the flaws in an image. While short-

comings of the corrections will generally be unnoticed for non-face regions, they are likely to be

objectionable for faces as people are much more sensitive to their appearance. Thus, we perform

local corrections on faces.

5.4.1 Modifying Lighting and Texture

We address several image corrections under the umbrella of hallucinating high-frequency

texture. Lack of detail due to defocus blur or over-smoothing during deconvolution, lack of

resolution, or saturation of an image can be corrected by transferring high-frequency information

from the aligned texture layers of the personal prior. In the case of over and under-exposure,

saturated and clipped areas can be in-painted by hallucinating parts of all intrinsic image layers.



116

Restoring High-Frequency Texture: For this process, we decouple hallucinating a sharp-texture

layer I into making global and local estimates, I L and I G respectively, where the I = I L + I G . The

global component I G captures the lower-frequencies of the image and the local component I L

captures the highest-frequency data. This is the same decomposition used by Liu et al. [2007].

When the blur is unknown, such as for defocus and motion blur, I G is the result of the

blind-deconvolution method in Section 5.3.1. When the blur is known, such as with super-

resolution, we minimize this equation:

L(I G |O,K ) = ||O − I G ⊗K ||2/σ2 +λ1L(I |P,Pµ)+||∇I ||q . (5.14)

When performing super-resolution, K is an anti-aliasing filter.

To recover I L we use a patch-based non-parametric Markov network that is a combination

of the method of Liu et al. and Freeman et al. [2002]. We model I L = I − I G , thus I L is the highest

frequency component and depends on the low frequency component I G .

We compute training pairs from the prior texture layers of (P Li ,PGi
M ) for all priors i , where

PG
M = PG − f ⊗PG , where f is a gaussian filter. We seek to find patches around each point that

maximizes the compatibility function:

φ(I L(m,n) = P Li (m,n), I G
M (m,n)) = ||I G

M (m,n)−PGi
M (m,n)||2. (5.15)

Where I L(m,n) denotes a patch centered at (ms + s/2,ns + s/2). With patch s +2 we use a patch

size of 10x10 pixels with a 2 pixel overlap. We have an additional affinity function that states that

the overlapping region of patches must be similar:

ψ(I L(m,n), I L(m + i ,n + j )) = ||Ω(I L(m,n))− I L(m + i ,n+ j ))||2, (5.16)

whereΩ returns the over-lapping regions on the two patches given the patch size. We refer the

reader to the paper by Liu et al. [2007] for more details on this derivation.

Intuitively, maximizing the function above says that on a patch by patch basis, we predict



117

PRIOR IMAGES ORIGINAL BLURRY IMAGE ORIGINAL BLURRY FACE SHARPENED FACE OVERLAY SHOWING PATCHESPRIOR IMAGES ORIGINAL BLURRY IMAGE ORIGINAL BLURRY FACE SHARPENED FACE OVERLAY SHOWING PATCHES

Figure 5.6: Defocus blur. A set of sharp, in-focus priors (first image). An image suffering from blur due to
mis-focus (second image). A close of on original image (third image) and the corrected face after removing
the defocus blur by hallucinating texture from priors (fourth image), and a visualization showing which
parts of the face came from different patches (fifth image).

the highest frequency data based on how the mid-frequencies of the target and priors match each

other. Just as in Liu et al.’s work, our priors are roughly aligned, so we only consider patches at

the same location in the priors, and use a raster-scan technique to perform the energy minimiza-

tion [Freeman et al., 2002; Hertzmann et al., 2001].

Where our method differs from the previous techniques, is that we perform this patch-

based prediction on separate color, lighting, and texture layers. An additional difference is that

to assemble the final locally corrected image I L , we composite the gradients of the P L(i ) into

OL , which is the local component of the observed image O relative to the global correction:

OL =O − I G . We have found the gradient domain process to generate much cleaner composites.

Examples of the methods presented here are shown in Figure 5.6 and Figure 5.7, where

we add texture lost due to defocus blur and perform super-resolution.

PRIOR IMAGES ORIGINAL BLURRY IMAGE ORIGINAL LOW RES SUPER-RESOLVED OVERLAY SHOWING PATCHES

Figure 5.7: Super-resolution. A set of sharp, in-focus priors (first image). An image with blur and JPEG
artifacts at a low resolution (second image). A close of on original image up-sampled 2 times using bicubic
interpolation (third image), the corrected face after 2x up-sampling and hallucinating texture from priors
(fourth image), and a visualization showing which parts of the face came from different patches (fifth
image).
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Figure 5.8: Removing high-frequency shadows and uneven illumination. Prior images (on the left). A photo
with uneven illumination, hard high-frequency shadows, and saturation (top row, second image). Our
result (top row, third image). The shadow has been softened significantly and the saturated areas corrected.
The bottom row shows close-up for the input image, our intermediate result after estimating the global
texture layer, and the final result after using the patch based-method.

Restoring Clipped Data: When over or under-exposure causes pixel values to be clipped, there

is a complete loss of texture, high and low-frequency, in those regions. Thus, to in-paint these

regions we use the algorithm described above with a few modifications.

In the previous section, we discuss predicting a global estimate for the texture layer and

then local estimates for texture and color layers. When restoring clipped data, the process must

be altered slightly. This is because all of the data in the saturation region is unreliable. Thus, we

must predict global estimates for all layers within the saturation region.

We construct a saturation/shadow mask for the clipped face region, where clipped pixels

are those with original pixel values in any color channel above or below a threshold (we use <= 10

and >= 240 for images in the range [0,255]). The saturation/shadow mask is incorporated to

the global estimation process discussed previously, such that the algorithm fits the un-clipped

regions to the eigenspace and the masked out region is filled with data that is most consistent

with this fit to the unmasked regions. This is achieved using a simple masking function when

performing robust least squares. Note that consistency is enforced with a sparse gradient penalty
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across the whole image.

We compute the global high-frequency texture layer X g
I H and color layers r g

I H and g g
I H

using a joint eigenspace of texture and color. Specifically, we perform the same operation as when

“Restoring High-Frequency Texture", but instead of using an eigenspace for the texture layers

alone we build the eigenspace by orthogonalizing the stacked vectors of [X g
PH ,r g

PH , g g
PH ] of the

example high resolution images (indicated by the sub-script PH) and then solve Equation 5.14

with these values for the vector [X g
I H ,r g

I H , g g
I H ]. Note that for this application the kernel K in

Equation 5.14 is a delta function, since there is no blur. Before performing this correction, we

first perform a global white balance (discussed in Section 5.3.2) such that the colors are similar

between the examples and the target face. The global lighting correction is perform in a similar

way using the lighting-space separately, i.e. an eigenspace for the Lg
PH layers of the example

images.

To predict high-frequencies we then run our “Restoring High-Frequency Texture" algo-

rithm (described above) on the global estimates for the texture and color layers, [X g
I H ,r g

I H , g g
I H ].

For the lighting layer we only compute the global estimation and forgo the patch-based correction

as the lighting tends to contain only low frequency information, and it is generally undesirable to

transfer high-frequency lighting (such as hard shadows and specularities).

An example of the method presented here is shown in Figure 5.8.

5.5 Personal Photo Correction Application

We have implemented a prototype application and user interface for performing the

corrections discussed in the previous sections. In addition to the correction features, we have

a “suggestion” system, where the application can suggest that the user performs a particular

correction on a loaded photograph after computing some simple image statistics and comparing

these to the statistics of the priors images.

For deblurring suggestions, our system compute the standard deviation of the magnitudes

gradients for face region of all priors. The standard deviation of these values is computed. Similarly,

our system compute the magnitude and standard deviation of gradients in the face region. If
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Figure 5.9: Personal photo correction application. Here we show a screenshot of an initial prototype of our
personal photo correction application. Currently the system performs automatic deblurring and automatic
exposure and white-balancing. It can also suggest corrections by using the statistics of the personal-prior.

the latter value is less than 90% of the former, the system suggests performing deblurring. For

the color and exposure suggestion, the application simply computes the correction discussed in

Section 5.3.2, as this is a fast operation, and if the scalar adjustment for color or lighting is > 1.1 or

< 0.9 (more than a 10% change) it suggests the correction. Currently, a photo must be actively

loaded for a suggestion to be made; however, the process could easily be run off-line as a way to

automatically tag a collection of new photos with suggested corrections.

Figure 5.9 shows a screen-capture of the GUI, and we encourage the reader to visit http:

//graphics.ucsd.edu/~neel/dissertation/ for a video that shows several sequences of the

application being used.

5.6 Results

We will now briefly recap some of our results that were presented in the body of the

chapter and present several additional examples.

http://graphics.ucsd.edu/~neel/dissertation/
http://graphics.ucsd.edu/~neel/dissertation/
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Figure 5.10: Additional deblurring example. Our method automatically performs blind-deconvolution to
recover the blur kernel. The entire image is then deblurred using the method of Levin et al. – the recovered
blur kernel is shown enlarged 5× in the top right of the rightmost image.

OUR RESULTFERGUS ET AL 2006 OUR RESULTFERGUS ET AL 2006OUR RESULTFERGUS ET AL. 2006 OUR RESULTFERGUS ET AL. 2006

Figure 5.11: Comparison to Fergus et al.’s PSF estimation method. For the images in Figure 5.10, we
hand-picked the a good region for estimating the PSF using Fergus et al.’s code, run their method, and then
each image is then deblurred using the method of Levin et al.. Fergus et al.’s system took over an hour and
a half to recover the kernel. Our method recovers more accurate kernels and produce better deconvolution
results.

In Figures 5.1 and 5.10, we show two examples of our automatic blind deblurring method

using our personal-prior. In Figure 5.11 we compare our method to using Fergus et al.’s [2006]

method. We recovered a PSF using the authors’ code available online. The side-by-side compari-

son shows deconvolving the image using the method of Levin et al. [2007] with the PSF from our

method and Fergus et al.’s. For the woman in Figure 5.1, deblurring with the recovered PSF using

Fergus et al.’s method does not completely sharpen the image. For the man in Figure 5.10, the

PSF from the Fergus et al. method seems to be over-compensating, and thus the result is overly-

sharpened with halo artifacts. For both images, the kernel recovered by our method appears more

accurate and was recovered over ten times faster. Furthermore, our method does not require any

manual input.
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Figure 5.12: Face hallucination comparisons. We compare our result to performing hallucination using an
implementation of Liu et al.’s method and to using our enhancement algorithm with a set of (the 10 and 50
best matching) generic faces instead of faces of the same person. Compared to Liu et al.’s approach and
compared to using generic faces, our results have fewer artifacts and appear to retain the original look and
expression of the person in the input image.

In Figures 5.6 and 5.7 we show two examples of face hallucination to remove image blur.

Figure 5.6 shows a significant amount of defocus that is automatically removed using our method.

Figure 5.7 shows hallucination for a 2x up-sampling compared to up-sampling with bi-cubic

interpolation. For both results we show a visualization that indicates what regions of the final

results came from different prior images when performing patch-based local hallucination. Both

results are sharp with minimal artifacts. Furthermore, for the up-sampling result in Figure 5.7 our

method has removed some of the JPEG artifacts in the original image.

In Figure 5.12, we compare results in Figures 5.6 and 5.7, to the result of performing

hallucination using an implementation of Liu et al.’s [2007] method. Specifically, their work

predicts high-frequency texture image from mid-frequency image data. They use a generic set of

faces and use the raw image data directly (without an intrinsic layer decomposition or gradient

domain editing). We used images from the public Caltech and GeorgiaTech image databases as

our set of generic faces examples. The results with Liu et al. [2007] method has artifacts similar to

those shown in their paper. We believe our results are more convincing. Also in Figure 5.12 we

compare using our enhancement algorithm method with a set of generic faces instead of faces of
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BLURREDGROUNDTRUTH

Figure 5.13: Synthetic deblurring experiments. We blurred a sharp image with two different blur kernels,
added 0.5% noise, and then solved for the PSF using our deblurring method and the method of Fergus et al.
We then deconvolved the blurred image with the groundtruth kernel, our recovered kernel, and the kernel
resulting from running Fergus et al.’s code (shown in the top right corner of each image).

the same person. Thus instead of using 5 to 10 hand-selected good images of a person, we used

the 10 and 50 best matching generic faces as priors. We automatically selected these images by

first aligning the generic faces to the input image and then compute a match score that is the L2

norm of the difference of down-sampled/contrast-normalized versions of the image. For both

results, compared to using generic faces, our results have fewer artifacts and appear to retain the

original look and expression of the person in the input image. The woman’s face in Figure 5.12 is

particularly of note. When using generic faces and Liu et al.’s method, a mole is introduced into

the up-sampled result, even when the input image shows no mole. When using our method with

generic faces, the woman no longer looks completely like the same person, and the expression of

the woman is altered, as she no longer appears to be smiling as much.

Figure 5.13 shows the results of two synthetic deblurring experiments, where we blurred

a sharp image with a blur kernel, added 0.5% noise, and then solved for the PSF using our

deblurring method and the method of Fergus et al.. We then used the method of Levin et al. [2007]
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Figure 5.14: Synthetic upsampling experiments. We down-sampled a sharp image by 2× and 4× and then
up-sampled those images by 2× and 4×, respectively, using our enhancement algorithm, an implemen-
tation of Liu et al.’s method, and our enhancement algorithm with a set of (the 10 and 50 best matching)
generic faces.

to deconvolve the blurred image with the groundtruth kernel, our recovered kernel, and the

kernel resulting from running Fergus et al.’s code. The side-by-side comparisons shows that the

deconvolution results with our recovered kernels are fairly close to the quality of the results that

use the known kernels, which shows that our kernels are accurate. The results using Fergus et al.’s

method are not very accurate for these images.

Figure 5.14 shows the results of two synthetic up-sampling/halucination experiments,

where we down-sampled a sharp image by 2× and 4× and then up-sampled those images by 2×
and 4× using our enhancement algorithm, an implementation of Liu et al.’s method, and our

enhancement algorithm with a set of (the 10 and 50 best matching) generic faces. With the 2×
up-sampling result, our method produces a convincing result that is sharper than traditional

bi-cubic upsampling. Similar to the result in Figure 5.12, when using Liu et al.’s method, a mole is

introduced into the up-sampled result, and, when using our method with generic faces, there are

a number of artifacts including that woman’s identity and expression are significantly changed.

When performing 4× up-sampling, our method produces an image that is a bit sharper than the

others; however, this result shows the limits of our method–while we are able to hallucinate high-
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Figure 5.15: Face hallucination algorithms without using an intrinsic image decomposition and gradient
domain editing. The results without using an intrinsic image decomposition have more artifacts as the
effects of the lighting and color differences between the input image and examples are no longer factored
out of the matching process. The results without gradient domain edits show very noticeable seems.

frequencies, there is not enough mid-frequency information to predict the highest-frequencies

well, thus the result does not match the groundtruth image very closely.

In Figure 5.15, we show results of experiments of using our face hallucination algorithms

without using an intrinsic image decomposition and gradient domain editing operations – two of

our improvements over the work of Liu et al. [2007]. The results without using an intrinsic image

decomposition have more artifacts as the effects of the lighting and color differences between

the input image and examples are no longer factored out of the matching process. The results

without gradient domain edits show very noticeable seems. Our modifications create enhanced

images that are seemless and convincing.

In Figure 5.5, we show automatic exposure correction and white-balancing for three

images of one woman using the same set of prior images. In Figure 5.16, we compare our results

to using several current color constancy algorithms. Specifically, we compared to algorithms

discussed by van de Weijer et al. [2007] and use the author’s code and recommended parameters.
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Figure 5.16: Comparisons to color constancy. We compare our results to the color constancy algorithms
discussed by van de Weijer et al.. Our results are more consistent across images, appear better white-
balanced, and did not require any parameter tuning.

Our results are more consistent across images, appear better white-balanced, and did not require

any parameter tuning.

In Figure 5.8, we show an image of a woman in an apple orchard where her face has a

hard high-frequency shadow edge across it and our algorithm reduces the shadow and recovered

texture in the saturated region of the face.

5.7 Analysis of the Eigenspace Prior

The ideal constraint for blind deconvolution is one that only captures valid sharp images.

One potential limitation of an Eigenspace is that certain images in the space may not represent

valid images. In the case of an Eigenspace for deblurring, there is the additional problem that

some images may also not be very sharp, e.g., the mean face, which is a part of the Eigenspace.

This presents an additional difficulty, while the Eigenspace does restrict the space of valid sharp
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Figure 5.17: Edge strengths of images in the Eigenspace. (left) A visualization of the 3D space and a 2D
planar slice that contains three of the four images used to create the space. (right) We sampled this 2D slice
and for each sample, display the image and overlay it with a plot of the variance of the edge histograms.
Samples near the center of the space – the ones that are closer to the mean, have lower variance values, i.e.
they are smoother. The red “X” values shows the location of the three of the four input images to create the
Eigenspace.

images significantly, it still may not completely constrain the solution significantly, as it may not

constrain the high-frequencies well. In other words, one could imagine attempting to deblurring

an image where the blurry image is actually quite close to or even in the Eigenspace, even if it is

not close to one of the input images. In this case, the prior will help very little.

To further explore this we have sampled from the Eigenspace shown illustrated in Figure

5.4 and analyzed the edge content of images in this space. In Figure 5.17 we show a visualization

of the 3D space and a 2D planar slice that contains three of the four images used to create the

space. We sampled this 2D slice and for each sample, display the image and overlay it with a plot

of the variance of the edge histograms. As expected, the samples near the center of the space –

the ones that are closer to the mean, have lower variance values, i.e. they are smoother. With our

current prior, these image are equally valid, even though they do not represent the training data

as well nor are they very sharp. This visualization indicates that a prior over this space, one that

prefers sharp images close to the original images, might be worth investigating for future work.
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5.8 Discussion and Future Work

We have presented a powerful framework for improving personal images and shown

how to correct a number of the most common errors in photographs using what we believe is a

simple, yet powerful concept of a “personal prior”. While recent work in data-driven methods

for photograph correction has tended towards using large-generic databases and automated

methods for picking “good” photographs [Hays and Efros, 2007], we have taken a very different

approach. We have focused on correcting images with faces and have left the step of choosing

good photographs to the user and automated the difficult part of editing the photo. We believe

this is a very natural and intuitive way to think about correcting images of people.

A natural question for our work is how many example images are needed. We have found

that this depends on the type of the correction performed. Exposure and color correction are

not very sensitive to expression and pose changes and thus very few, even one photograph can

be enough. Deblurring can require more images, but often not very many due to the robust

estimation process we use – the algorithm will reject outlier regions of the face and favor matching

to the more invariant parts of the face that are well-captured by the eigenspace. Hallucination

is the most demanding, as it is not always an option to ignore parts of the face – however due

to our combined subspace and local patch approach, we have gotten good results with as few

as seven images. While some analysis has been done for the dimensionality of the generic “face

space” [Penev and Sirovich, 2000], we are not aware of an analysis for a specific individuals; as

future work, we are very interested in such an analysis.

A general limitation of facial appearance modification, which our work is susceptible to,

is the sensitivity of people to the appearance of faces. In our experience, with our system we have

found that users are very sensitive to even subtle changes of photographs of people, especially

when the person is known to the user. Generally the only pleasing and acceptable corrections

are subtle and small changes, and it is difficult to make significant changes to an image without

altering the fundamental mood or feel of the photograph. Often a large change sends a photo into

the “uncanny valley”. This concept states that aesthetic qualities related to modification of human

appearance are subject to a curve where improvements in appearance are positive until a point
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when suddenly there is a negative reaction when the modified appearance becomes disturbingly

“uncanny”. This is a danger with our methods just as with any other work that modifies images of

faces.

There are numerous possible avenues for future work. We think our system and methods

could be easily incorporated into commercial photo editing products and could leverage photo-

tagging and rating systems that are already available, such as image rating in Windows Vista,

ratings and labels in Adobe Bridge, or tags on websites like Flickr and Facebook. Our work could

be paired with a simple labeling/rating system so that users could mark images with tags such

as “good color", “sharp", “good lighting". Then images with these labels could be automatically

chosen as priors. We are very interested in integrating our system into such an application. We also

note that as an extension to our current “correction suggestion" system, we could use machine

learning techniques to try to automatically pick examples of good priors once the user has tagged

a few.

We note that our system is currently limited to mostly frontal photographs. This is

primarily due to our face-detector having been trained and tuned for frontal faces. Non-frontal

face detection is more difficult; however, there is much work in this area and we are interested

in investigating improvements that would allow non-frontal face detection. We could then have

a richer set pose-specific priors. A related and particular useful extension that would build on

our paradigm is to extend our personal prior concept to detection, whereby feature detectors are

tuned to a specific person. Our system also does not currently use recognition, thus if multiple

people are in an image, the user must perform the identification to pair the priors. We have

experimented with face reconginition in our framework and hope to add this shortly to our

application.

Another interesting question is what other forms of person-specific or class-specific prior

information could be used for image manipulation. In this work, we have used a set of images

– the main reason motivation being that everybody can easily acquire and select images that

they like. We believe that our framework could be extended to perform even better with full 3D

geometry, detailed reflectance properties (e.g., spatially varying BRDF and subsurface scattering

properties), or a linear morphable face model. One could include priors for the whole body rather
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than the faces only, and in principle, it would be also possible to store and use the priors about

the environment (e.g., the places where the photos are typically taken). An obvious disadvantage

of using such information is that, at least currently, it can be difficult to acquire this type of data;

however, using more sophisticated datasets presents several directions for future work.

Lastly, while we have focused on improving images of faces, we note that our framework

is actually more general. Our fundamental framework could be applied to any object specific

appearance enhancement where one has detectors and example images for a specific object.
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Conclusions and Future Work

“I may not have gone where I intended to go, but I think I have ended up where I intended to be.”

—Douglas Adams

Photography is integral to many aspects of business and home life. Cameras are increas-

ingly important in areas from automotives, to medicine, security, and entertainment. As a result,

photography is being used in new scenarios and by new users whose needs are not best met by

current photographic methods. In many cases photographs lack the quality needed for a desired

application. Additionally, with the proliferation of low-cost cameras, i.e., point-and-shoots and

camera-phones, combined with the significant growth in the number of casual photographers,

there is strong need for simple, automatic, and accurate methods to correct image artifacts.

In this dissertation, we have explored the problem of image correction and enhancement

by using image models that incorporate prior information. In contrast with previous work that

has used generic image priors, we presented methods that use priors and models that are tuned

to the content of a specific image.

We presented three areas of work. We first discussed “PSF Estimation using Sharp Edge

Prediction”, where by making the under-lying assumption that all edges in a sharp image are

step-edges, our algorithm predicts the ”sharp” version of a blurry input image and uses the two

images together to solve for a PSF.

We then discussed “Image Enhancement using Color Statistics”, where we have investi-

gated using local-color statistics of an image to improve the debluring, denoising, up-sampling,

131
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and demosaicing of images using a single framework.

Lastly, we discussed “Image Correction using Identify-Specific Priors”, where we developed

methods that use identity-specific example images to provide the guidance needed to perform

deblurring, up-sampling, and color and exposure adjustments automatically.

While there has been significant advancement in photography in recent years, the majority

of photographers continue to follow a traditional process: photos are taken one at a time with

a single camera, developed and/or processed using extensive manual methods or relatively

rudimentary automatic techniques, and viewed as static images. Research in computer vision and

graphics has begun to break this mold, and in this dissertation we have addressed some specific

aspects of this endeavor.

There are several future directions for related work, and there are three specific high-level

directions that seem promising.

6.0.1 Building more “Intelligence” into the Photographic Process

Traditionally, photography is a serial process consisting of image acquisition, processing,

and display. As photographers become more experienced, they learn and refine their process

and the quality of their images improve, but the process itself is un-evolving and memory-less. A

promising area for further research is how to create a processing pipeline that learns from the

results generated by a particular photographer or from the properties of more general image

collections. This dissertation has touched on a several facets of this; however, there are interesting

avenues for future work. For instance, other types of domain specific knowledge could be used for

image correction, such as priors or models for different types of images, i.e. portraits vs. text vs.

landscapes. Alternatively, more extensive machine learning approaches could be used to model a

particular photographer’s preferences and habits.

6.0.2 Video Enhancement using Content Specific Priors

The work in this dissertation has focused on still images, yet videos suffer from many

similar artifacts. However, while many artifacts are similar, extensions of still image methods

to include a temporal component for video are not trivial. An interesting direction is to adapt
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and extend the work in this dissertation from still image corrections to video. Due to the large

amounts of data and time involved in processing videos, automatic correction methods have even

more potential to improve current video processing pipelines.

6.0.3 Enhancement using Images and Video

Another aspect of the digital camera boom is not only are there more still cameras in

peoples’ hands, but there are also many more video cameras, as virtually all point-and-shoots and

increasingly more camera-phones have video modes. As it is becomes easier to acquire both forms

of these media in quick succession or even simultaneously, their are increasing opportunities for

combined image and video correction.
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