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Abstract

DESIGN ENHANCEMENTS AND A VALIDATION FRAMEWORK FOR ARM

EMULATOR

by

Himabindu Thota

Processor emulators allow micro-architecture researchers to evaluate research ideas

quickly and at no extra cost. Micro-architecture Santa Cruz (MASC) Laboratory is developing

an ARM processor emulator to execute ARM binaries. To ensure correctness of the emulator,

it is expected that at the end of every instruction execution the modified registers, their con-

tents, condition codes and any modified values in memory match that of the program execution

on a computer with ARM processor. To this end, this work has three parts - first, to design

and implement a validation infrastructure for the emulator ISA and the second, to improve the

emulator functionality. Interestingly, these two goals go hand-in-hand. Having a validation

infrastructure exposes incorrectly implemented or not yet implemented instructions while cer-

tain instructions prompt design enhancements in the validation infrastructure. Furthermore, we

developed a methodology to generate Random Instruction Tests (RIT) to facilitate regression

testing of the ARM emulator.

viii



Acknowledgments

Most importantly, I would like to thank my advisor Professor Jose Renau for his invaluable

guidance and academic support. I am grateful for the enriching experience working at the

MASC lab.

I would also like to thank my committee members Professor Matthew Guthaus and

Professor Anujan Varma for their time reviewing my thesis and providing valuable feedback.

I must give special thanks to Ehsan K. Ardestani for engaging in long and productive

design discussions, and all my friends and colleagues at the MASC lab.

More personally I would like to thank my husband Sai for his immense patience,

support and his constant encouragement to do my best, and my son Hrishikesh and daughter

Anagha for always cheering me.

Furthermore, I would like to thank my parents, in-laws, brother, sister and all my

friends who have positively influenced my life.

ix



Chapter 1

Introduction

1.1 Motivation

Ever-increasing complexity of microprocessor design with many functional units and

complex Instruction Set Architectures (ISA) has prompted the development of high quality soft-

ware processor emulators to validate design ideas and performance optimizations before the ac-

tual microprocessor is fabricated. Even on an in-production microprocessor, evaluating design

changes in real hardware is infeasible, as it not only is expensive but is also time-consuming.

Designers and researchers often develop and use microprocessor emulators to eval-

uate research ideas [7]. Emulators provide a software platform, where functionality can be

added and modified with ease and, design choices and optimizations can be evaluated within a

reasonable amout of time at no extra cost.

The goal of this work is to develop a high quality ARM processer emulator for use

in the Micro-Architecture Santa Cruz (MASC) Research lab. At the beginning of this work,

the MASC ARM emulator was able to decode and execute most of the ARM and Thumb-2

instructions. However, the emulator was not ready to execute a complete ARM binary as some

of the functions, such as program loading and handling some of the system calls, were not

available in the emulator. In addition, not all the implemented instructions were producing the

correct results and some instructions were not implemented.

Consequently, as part of this work, first we designed and developed a validation

framework to identify the missing emulator functions, incorrectly working and not implemented

instructions. Second, by developing the missing emulator functions, fixing incorrectly working
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instructions and implementing not implemented instructions, we are able to execute complete

ARM binaries through the emulator. Furthermore, we developed a methodology to generate

test assembly programs with random instruction sequences to facilitate regression testing of the

emulator.

The overall structure of the thesis is as follows. Chapter 2 details the design and

implementation of the validation framework. Chapter 3 describes the implemented emulator

functionalities. Chapter 4 presents the approach for generating regression tests using random

instruction sequences and finally, Chapter 5 summarizes our conclusions, results and opportu-

nities for future work.

1.2 ARM Architecture

The following sections provide a summary of the ARM architecture [3].

1.2.1 ARM, A RISC Architecture

ARM incorporates typical features of a Reduced Instruction Set Computer (RISC)

architecture such as a large uniform register file, simple addressing modes and a load/store

architectural approach where data processing instructions operate only on register contents, but

not directly on memory contents. Small implementation size, high performance and very low

power consumption are key attributes of this architecture.

ARM instruction set is a set of 32-bit instructions providing data-processing and con-

trol functions. Thumb instruction set was introduced as a set of 16-bit instructions with a subset

of the functionality to provide improved code size. For example, a particular compute function-

ality, which may require two 32-bit ARM instructions may be acheived by using three 16-bit

Thumb instructions, leading to a space savings of 16-bits. However, this comes at a slight re-

duction in performance as the processor now has to execute one additional instruction in Thumb

mode.

ARM supports a switch between the ARM and Thumb states, which allows for as-

sembling performance critical segments using the ARM instruction set. The ARM and Thumb

instructions can interwork freely, that is, different procedures can be assembled to different

instruction sets.
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The Thumb-2 instruction set was developed to extend the original 16-bit Thumb in-

struction set with many 32-bit instructions. Much of the functionality available is identical in

ARM and Thumb-2 instruction sets. 16-bit Thumb instructions can be interleaved with 32-bit

Thumb instructions within the same procedure resulting in an optimal combination of code size

and performance.

1.2.2 Memory Organization

ARM instructions are word-aligned and Thumb instructions are halfword-aligned.

For data, ARMv7 architecture supports unaligned data access, which is significantly different

from the earlier versions of the ARM architecture. Table 1.1 shows the facilities provided by

the ARM architecture memory model.

Address Space A single flat address space of 232 8-bit bytes

Addressability Byte addressable

Facilities Faulting unaligned memory access.
Restricting access by applications to specified areas of memory.
Translating virtual addresses provided by executing instructions into
physical addresses.
Altering the interpretation of word and halfword data between big-endian
and little-endian.
Optionally preventing out-of-order access to memory.
Controlling caches.
Synchronizing access to shared memory by multiple processors.

Table 1.1: ARM Architecture - Memory.

1.2.3 Core Registers

ARM registers are 32-bits in size. To hold a doubleword, two consecutive registers

are used and, to hold a quadword, four consecutive registers are used. Refer to Table 1.2 for a

list of ARM registers.

1.2.4 Data Types

ARM architecture supports many data types for data held in memory and registers

and, for data used in Load/Store operations. See Table 1.3 for a list of data types supported.

3



Registers Function
R0 - R12 General Purpose Registers
R13 Stack Pointer (SP)
R14 Link Register (LR)
R15 Program Counter (PC)
APSR Application Program Status Register with N, C, Z, V condition code flags

ISETSTATE

A set of J, T bits to determine instruction set used by processor
J T
0 0 ARM
0 1 Thumb

ITSTATE 8-bits wide with top 3 bits indicate If-Then execution condition
for Thumb IT instruction.

ENDIANSTATE 0 Little-Endian
1 Big-Endian

Table 1.2: ARM Architecture - Registers.

Data Supported
Location DataTypes

In Memory
Byte 8 bits
Halfword 16 bits
Word 32 bits
Doubleword 64 bits

In Registers

32-bit pointers
Unsigned or Signed 32-bit integers
Unsigned 16-bit or 8-bit integers, held in zero-extended form
Signed 16-bit or 8-bit integers, held in zero-extended form
Two 16-bit integers packed into a register
Four 8-bit integers packed into a register
Unsigned or signed 64-bit integers held in two registers

For Load & Store Operations

Byte 8 bits
Halfword 16 bits
Word 32 bits
Doubleword 64 bits
Two or more words

Table 1.3: ARM Architecture - Data Types.

1.2.5 Addressing modes

Address for a Load/Store operation is formed from two parts - a Base Register and an

Offset. See Table 1.4 for supported addressing modes in ARM.
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Base Register For Loads R0 - R12, PC
For Stores R0 - R12

Offset Type Immediate
Register
Scaled Register

Addressing Modes Offset MemAddr = Base Register +/- Offset
Pre-indexed MemAddr = Base Register +/- Offset

Base Register = MemAddr
Post-indexed MemAddr = Base Register

Base Register = MemAddr +/- Offset

Table 1.4: ARM Architecture - Addressing modes.

1.2.6 Instruction Set

ARM and Thumb-2 architectures support a rich set of instruction types [3]. This

section provides a summary of the instruction types with a few examples.

• Branch Instructions, See Table 1.11.

• Data-processing Instructions, See Table 1.5.

• Status Register Access Instructions. See Table 1.8.

• Load/Store Instructions, See Table 1.6.

• Load/Store Multiple Instructions. See Table 1.7

• Advanced Single Command Multiple Data (SIMD) and Vector Floating Point (VFP)

Load/Store Instructions. See Table 1.9

• Advanced SIMD and VFP Data-processing Instructions. See Table 1.10
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Table 1.5: ARM Architecture - Data Processing Instructions.

Instruction Examples

Class

Register

AND{S}<Rd>,<Rn>,<Rm>{<shift>}
Instruction performs a bitwise AND of a

register value Rn with an optionally-shifted

register value Rm and writes the result to

the destination register Rd.

ADD{S}<Rd>,<Rn>,<Rm>{<shift>}
Instruction performs a bitwise AND of a

register value Rn with an optionally-shifted

register value Rm and writes the result to

the destination register Rd.

Register Shifted Register

EOR{S}
<Rd>,<Rn>,<Rm><type><Rs>

Instruction performs a bitwise Exclusive

OR of a register value Rn and a register

shifted register value Rn, Rm and writes the

result to the destination register Rd.

CMN<Rd>,<Rm><type><Rs>

Compare Negative Instruction adds a

register value Rn and a register-shifted

register value Rm, Rs. It updates the

condition flags based on the result, and

discards the result.

Immediate

SUB{S}<Rd>,<Rn>,#<const>

Instruction subtracts an immediate value

Continued on next page

6



Table 1.5 – continued from previous page

Instruction Examples

Class

#const from a register value Rn

writes the result to the destination register

Rd.

Immediate ADR <Rd>,<label>

Instruction adds an immediate value to

the PC to form a PC-relative address, and

writes the result to the destination register

Rd.

Multiply & Multiply Accumulate

MUL{S}<Rd>,<Rn>,<Rm>

Multiplies two register values Rn, Rm.

The least significant 32-bits of the

result are written to the destination register.

SMULL <RdLo>,<RdHi>,<Rn>,<Rm>

Signed Multiply Long multiplies two

32-bit signed register values Rn, Rm

to produce a 64 bit result saved in RdLo,

RdHi.

Saturating Addition & Subtraction

QADD<Rd>,<Rn>,<Rm>

Instruction adds two register values

Rm, Rn, saturates the result to the 32-bit

signed integer range and writes the result to

the destination register Rd. If saturation

occurs, it sets the Q flag in the APSR.

Halfword Multiply & Multiply Accumulate

SMLABB<Rd>,<Rn>,<Rm>

Signed Multiply Accumulate performs a

Continued on next page
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Table 1.5 – continued from previous page

Instruction Examples

Class

signed multiply-accumulate operation on

two 16-bit signed quantities taken from

bottom 16-bits of Rn, Rm. The 32-bit

product is added to a 32-bit accumulate

and the result is written to the destination

register Rd.

1.2.7 Conditional Execution

Most ARM instructions and, most Thumb instructions can be conditionally executed

based on the values of the APSR condition code flags N, Z, C, V.

Bits [31:28] of the ARM instruction contain the condition and if this condition satis-

fies APSR condition code flags, the instruction is executed, otherwise the instruction acts as a

NOP. See Table 1.12 for a list of condition code flags.

Thumb instructions can be made conditional by a preceeding IT instruction which

encodes the condition. This 16-bit IT instruction provides an If-Then-Else functionality and

makes upto four following instructions conditional. For example, an ITTTE EQ instruction

imposes the EQ condition on the first three following instructions and NE condition on the next

instruction. The instructions that are made conditional by an IT instruction are called its IT

block.

1.3 The MASC ARM Emulator

Micro-architecture Santa Cruz (MASC) Laboratory is developing an emulator re-

search infrastructure to execute ARM, SPARC and x86 binaries. The emulator can run on

both x86 and ARM processors with Linux operating system.
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Figure 1.1: Steps To Run The ARM Emulator.

Fig. 1.1 shows the three steps to run the emulator. The first step is to compile the

application program with static libraries and gdb symbols on a computer with ARM processor.

The second step is to attach gdb to the binary to dump stack memory around the stack pointer to

a file and, the third step is to run the emulator on a computer with x86 or ARM based processor.

The emulator requires certain input parameters to run. Mandatory parameters include

stack specific information and ARM binary. Optional parameters, which are implemented as

part of the validation framework, include an execution trace file and a system call trace file. See

Appendix A, Running the ARM Emulator.
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1.3.1 The Emulator Components

As shown in Fig. 1.2, the execution loop of the emulator fetches an instruction, then

cracks the instruction into multiple emulator instructions and executes the cracked instructions.

Validate component was developed as part of validation framework. Every instruction passes

through Fetch, Crack and Execute stages mandatorily and Validate component optionally. In

other words, user has an option to run the emulator with or without validation turned on.

Figure 1.2: The Emulator Components.

During the Fetch stage, instruction associated with the current PC is fetched from the

text section of the application program’s simulated virtual memory 1.3.4.

In the Crack stage, the instruction is checked for type - ARM, Thumb-16 and Thumb-

32, and then cracked into two or more emulator instructions accordingly 1.3.2.

During the Execute stage, each of the cracked emulator instructions is executed using

the SCOORE execution engine being developed at the MASC lab 1.3.3. The only exception

to this case is when an instruction belongs to an IT block and does not satisfy the IT block

condition. In this scenario, not all the cracked instructions may execute.

Validate is responsible for validating the current PC, instruction, modified registers,

modified memory and condition codes for every instruction.

10



1.3.2 Cracked Emulator Instructions

In the emulator, an ARM instruction is cracked into multiple scinsts - Santa Cruz

Instructions instructions during the Crack stage. Emulator class scuop is an abstraction for each

of these emulator instructions with members shown in Table 1.13.

1.3.2.1 scuop - Santa Cruz Micro Operation

Format of the scuop is as follows:

• CrackInst::setup(RAWDInst *rinst, InstOpcode iop, Scopcode sop,

uint8 t srcA,uint8 t srcB, uint32 t immA, uint8 t dstA,

unsigned seticc, unsigned setRND, unsigned getRND);

Where:

• rinst - ARM instruction abstraction in the emulator

• iop - Operation type, examples

– iRALU, iAALU for ALU operations

– iBALU BRANCH for control operations ]item iBALU JUMP for jump

– iBALU CALL, iBALU RET for sub-routine call and return

• sop - OPCode used by sccore engine to execute scinst, examples

– OP S32 ADD: Performs 32-bit Arithemetic ADD.

– OP S64 ADD: Performs 64-bit Arithemetic ADD.

– OP U16 ADD: Performs 16-bit unsigned ADD.

– OP S08 SUB: Performs 8-bit SUB.

• srcA: An abstraction for Rn, the Source Register.

• srcB: An abstraction for Rm, the Second Source Register.

• immA: An abstraction for immediate field.

• dstA: An abstraction for Destination Register, Rd.

• seticc: Flag to set condition codes.
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1.3.2.2 How Crack Works

In this section, we show a step by step how-to on cracking an ARM instruction into

multiple emulator instructions.

Our example ANDS<c ><Rd >, <Rn >, <Rm >,<shift > instruction performs a

bitwise AND of a register value and an optionally-shifted register value, and writes the result to

the destination register.

Figure 1.3: AND (Register) Instruction.

Fig. 1.3 shows a bit-level detail of AND (register) instruction. Bits [5:6] - type and

Bits [7:11] - imm5 determine the type of shift applied on register Rm, as shown in Table 1.14.

The result of bitwise AND of shifted Rm and, Rn is saved to the destination register Rd. Here

is the crack implementation for this instruction. Note that the code is shown only for type bits

[5:6] ’00’ (LSL).

if(imm5 != 0) {

if(type == 0) {

CrackInst::setup(rinst, iAALU, OP_S32_SLL, RM, 0, SHIFT_IMM,

RM, 0, 0, 0);

}

}

CrackInst::setup(rinst,iAALU,OP_S32_AND,RM,RN,0,RD,0,0,0);

1.3.3 SCOORE execution engine

SCOORE, the Santa Cruz Out-Of-Order RISC Engine, is a high-performance out-of-

order execution engine being developed at the MASC research lab at UCSC to execute each of

the scinsts generated during the crack stage. The goal of the MASC emulator research infras-

tructure is to support multiple ISAs, namely SPARC, X86 and ARM architectures. Instructions
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from these ISAs are cracked into emulator scinsts and the SCOORE execution engine executes

these instructions independent of the ISA type.

1.3.4 Application Program’s Virtual Memory Simulation

The ARM emulator allocates memory using malloc() to simulate application pro-

gram’s virtual memory sections stack, text and heap. Note that initialized data section and heap

are maintained together by the same memory block in the emulator.

The simulated stack is initialized with the stack dump file which is passed in to the

emulator as one of the input parameters.

The ARM binary is encoded in standard ELF format [8] [2] which allows the use of

programming interface provided by BFD package [5] to read the input ARM binary sections to

initialize text, data and heap segments. In addition, this package provides an API to return the

start PC of the instruction execution sequence of the ARM binary, which is used by the emulator

to start executing the instruction at this PC.

1.3.5 SCOORE Address Space Translation

Since the application program is compiled on one computer and is executed through

simulation on another computer, there is a need to translate addresses from the guest machine to

the host machine. The guest machine refers to the computer with ARM processor on which we

compile the application program and the host machine refers to the x86 computer where we run

the emulator. A guest address refers to an address in the application program’s virtual memory

space on the guest machine and a host address refers to an address of the application program’s

simulated virtual memory space on the host machine.

As shown in Fig. 1.4, the first step to translate a guest address to a host address is to

find the segment to which this address belongs to and then find the offset of the address from

the start of the segment. Note that the start address of the segments in the application program

binary are known and saved in the emulator at the time of program loading, see section 3.2

for details. This offset is then used to compute the corresponding address on the host machine.

This computation is valid for any guest adress in stack, text and heap segments.
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Figure 1.4: SCOORE Address Translation.

1.3.6 System Calls

The emulator handles most of the system calls by calling the underlying Linux system

call interface with the same arguments. Some system calls require special handling, see section

3.3 for details.
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Instruction Examples
Class

Register

STR
<Rt>,[<Rn>, +/-<Rm >{, <shift>}]
Store Register calculates an address from
a base register Rn and an offset register Rm value,
stores a word from register Rt to memory

LDR
<Rt>,[<Rn>, +/-<Rm >{, <shift>}]
Load Register calculates an address from
a base register Rn and an offset register Rm value,
loads a word from memory to register Rt

Immediate

STR
<Rt>,[<Rn>{,#+/-<imm12 >}]
Store Register calculates an address from a base
register Rn and an immediate offset imm12, and
stores a word from register Rt to memory

LDR
<Rt>,[<Rn>{,#+/-<imm12 >}]
Load Register calculates an address from a base
register Rn and an immediate offset imm12,
loads a word from memory to register Rt

Literal LDR
<Rt>, <label>
Store Register calculates an address from
PC and an immediate offset,
and loads a word from memory to register Rt

Unprivileged

STRT
<STRT Rt>,[<Rn>, +/-<Rm >{, <shift>}]
Store Register Unprivileged stores a word
from register Rt to memory. The memory access
is restricted as if the processor were running in
User mode

LDRT
<LDRT Rt>,[<Rn>, +/-<Rm >{, <shift>}]
Store Register Unprivileged stores a word
from register Rt to memory. The memory
access is restricted as if the processor were
running in User mode

Table 1.6: ARM Architecture - Load/Store Instructions.
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Instruction Examples
Class

LDM/LDMIA/LDMFD LDM<Rn>!,<registers>,
Load Multiple Increment After loads multiple
registers from consecutive memory locations
using an address from a base register.

POP POP<registers>
Pop multiple loads multiple registers from
the stack, loading consecutive memory locations
starting at the address in SP, and updates SP
to point just above the loaded data.

STMDB/STMFD STMDB<Rn>!,<registers>,
Store Multiple Decrement Before stores
multiple registers to consecutive memory
locations using an address from a base register.
The consecutive memory locations end just
below this address, and the address of the first of
those locations can optionally be written back to
the base register.

PUSH PUSH<registers>
Push Multiple Registers stores multiple registers
to the stack, storing to consecutive memory locations
ending just below the address in SP, and updates SP
to point to the start of the stored data.

Table 1.7: ARM Architecture - Load/Store Multiple Instructions.

Instruction Description
Class

MRS Moves the contents of the Application Program Status
Register (APSR) to a general purpose register.

MSR Moves the contents of a general purpose register
to APSR register.

Table 1.8: ARM Architecture - Status Register APSR Access Instructions.

16



Instruction Description
Class

VLDM VLDM <Rn>!, <list>
Vector Load Multiple loads multiple extension registers from
memory locations using an address from an ARM core register.

VSTR VSTR <Sd>!, [<Rn >, #+/-<imm >]
This instruction stores a single extension register to memory, using an
address from an ARM core register, with an optional offset.

Table 1.9: ARM Architecture - Advanced SIMD and VFP Load/Store Instructions.

Example Instructions Description
Class

VADD VADD <dt>, <Qd>, <Qn>, <Qm>
Vector Add adds corresponding elements in two vectors, and
places the results in the destination vector.

VPADAL VPADAL <dt>, <Qd>, <Qm>
Vector Pairwise Add and Accumulate Long adjacent pairs of
elements of a vector, and accumulates the results into the
elements of the destination vector.

VDIV VDIV <Dd>, <Dn>, <Dm>
This instruction divides one floating-point value by another
floating-point value and writes the result to a third floating-point
register.

VNEG VNEG <dt >, <Qd >, <Qm >
Vector Negate negates each element in a vector, and places the results
in a second vector. The floating-point version only inverts the sign
bit.

Table 1.10: ARM Architecture - Advanced SIMD and VFP Data-Processing Instruc-
tions.
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Instruction Examples
Class

Branch to target address B <label>
Branch causes a branch to a target address

Call a subroutine BL <label>
Branch with Link calls a subroutine at a
PC-relative address

Call a subroutine, change instruction set

BLX <label>
Branch with Link Exchange Instruction Sets calls
a subroutine at a PC-relative address, and changes
instruction set from ARM to Thumb, or from Thumb
to ARM

Block Data Transfer

STMDA <Rn>,<registers>
Store Multiple Decrement After stores multiple registers
to consecutive memory locations using address from
base register Rn

LDM <Rn>,<registers without PC >
In exception mode, this loads multiple user mode registers
from consecutive memory locations using an address from
a register Rn. This instruction is unpredictable in User or
System modes

Table 1.11: ARM Architecture - Branch And Block Data Transfer Instrictions.

Cond Mnemonic Extension Meaning(Integer) Condition Flags
1110 None(Al) Always Any
0000 EQ Equal Z == 1
0001 NE Not Equal Z == 0
0010 CS Carry Set C == 1
0011 CC Carry Clear C == 0
0100 MI Minus, Negative N == 1
0101 PL Plus, Positive or Zero N == 0
0110 VS Overflow V == 0
1000 HI Unsigned Higher C == 1 & Z == 0
1001 LS Unsigned Lower or Same C == 0 & Z== 1
1010 GE Signed Greater Than or Equal N == V
1011 LT Signed Less Than N != V
1100 GT Signed Greater Than Z == 0 & N == V
1101 LE Signed Less Than or Equal Z == 1 — N != V

Table 1.12: ARM Architecture - Condition Codes.
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Member Description
op SCOORE operation type
src1 First Source Register of the instruction
src2 Second Source Register of the instruction
useImm A flag to indicate if immediate is used
imm Value of the immediate
dst Destination Register
seticc A flag to set condition codes N,Z,C,V

Table 1.13: MASC ARM Emulator - Santa Cruz Micro Operation (scuop) Class Mem-
bers.

Type Field Shift Shift
Bits [5:6] Type Value
00 LSL(Logical Shift Left) UInt(imm5)
01 LSR(Logical Shift Right) if imm5 == ’00000’

then 32 else UInt(imm5)
10 ASR(Arithmetic Shift Right) if imm5 == ’00000’

then 32 else UInt(imm5)
11 imm5 == ’00000’ then RRX(Rorate Right With Extend) 1

else ROR(Rotate Right) UInt(imm5)

Table 1.14: Register Shift Using Type and Imm5 Field Values.
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Chapter 2

Design And Implementation Of A Validation

Framework

Having a validation framework for the ARM emulator serves two purposes. First, it

helps identify incorrectly implemented or not yet implemented instructions and second, it helps

find regression bugs quickly and easily. Regression bugs refer to those bugs that are introduced

unintentionally into already working code during new feature development or while trying to

fix other bugs. This chapter describes the design and implementation of a validation framework

for the ARM emulator.

2.1 Overview

Every instruction execution in the ARM emulator may result in modified register or

memory values and condition codes. Emulator results need to be validated against expected

results obtained from the same program execution on ARM processor. Generation of the ex-

pected results and validation of the emulator results against the expected results are automated

and are discussed in detail in the subsequent sections. While validating regular instructions is

straightforward, handling system calls in the emulator is a bit more involved and is dealt with

on a case by case basis. We make the following contributions

• Auto generate expected results.

• Validate the emulator results against the expected results.
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With validation, the sequence of three steps to run the emulator shown in Fig. 1.1

slightly changes to the steps shown in Fig. 2.1.

Figure 2.1: Steps To Run The ARM Emulator With Validation.

2.2 Generate Expected Results

The program to generate the expected results first attaches gdb to the program, steps

through each instruction (with one exception, as described in section 2.3.5), sends commands

21



to gdb to dump register values and, processes the output returned by gdb. In summary, the

program has two distinct but equally important tasks -

• Interact with GDB

• Process GDB Output

The program generates -

• An instruction trace file,

• A system call trace file and

• A file with 64kB binary dump of memory around the stack pointer.

2.2.1 Generating Expected Results Using Python - Version I

At first, to generate expected results, a Python Program ’generateARMLog.py’ was

implemented. It uses the ’pexpect’ Python module to interactively communicate with gdb to

step through each instruction. It imports the standard Python package ’re’ to use regular expres-

sion symantics of the language to process the output.

Even though the Python program ’generateARMLog.py’ generates expected results

reliably and was used extensively over the last few months, there is a need to speedup its exe-

cution time. With its current processing speed of about 100 instructions per minute, generating

expected results for even a simple ’hello world’ program takes about 4 hours of time.

2.2.2 Generating Expected Results Using Two-threaded Implementation - Ver-
sion II

As outlined earlier, generating expected results has two tasks. The first task is to

interact with gdb process to step through instructions and the second task is to process the gdb

output and generate expected results.

To utilize the multi-core ARM processor in MASC lab, our first attempt at speeding

up involved implementing a two threaded parallel program with one thread interacting with gdb

and the other thread processing gdb output and generating expected results. But with bulk of

the time spent on interaction with gdb, this technique did not yield favourable speedup.
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2.2.3 Generating Expected Results In Chunks - Version III

This strategy was not so much to speedup the generation of expected results but to

alleviate the long wait time before they are generated. In this method, the Python program

generates multiple files with each file containing expected results for a predefined number of

instructions. This allows the user to start running the emulator to validate a subset of instructions

while the expected results for the rest of the instructions are being generated. This strategy

works well when the emuator is still under development with the assumption that validation

usually finds bugs in the subset and finding the root cause and fixing the bugs usually take time.

Fixing bugs in one subset while generating expected results for another subset can happen in

parallel. Unfortunately, this strategy does not work well for regression tests.

2.2.4 100x Speedup of Generating Expected Results Using C, GDB MI interface

Looking further into the issue of speeding up expected results generation, the key

thing to note is that by speeding up the interaction with gdb the overall speedup of the program

can be acheived. Python being an interpreted language with pexpect module processing every

line returned from gdb considerably slows down the expected results generation.

Our third attempt at speeding up involved implementing a C program using gdb ma-

chine interface (MI) library to interact with gdb and process output. Gdb MI [1] is a line based

machine oriented text interface to gdb. The library provides interfaces to spawn gdb process

in interpreter mode, step through instructions and parse gdb output. With this implementation,

generating expected results is significantly faster, with under 2 minutes for the simple ’hello

world’ program as opposed to 4 hours with the earlier version of the Python program.

2.3 Compiling And Running The Program generateARMTrace.c

Compile and run this program on an ARM processor. This program requires ’gdbmi’

library. On masca1(an ARM computer in MASC lab), gdbmi library is installed at /root/gdbmi.

To compile the program on masca1:

--------------------------------

cc -O0 -Wall -gstabs+3 -I /root/gdbmi/libmigdb/src
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generateARMTrace.c /root/gdbmi/libmigdb/src/libmigdb.a

-o generateARMTrace

To run:

------

./generateARMTrace

Example:

-------

arm-shell# ./generateARMTrace

Usage: generateARMTrace <binary> <results_dir>

arm-shell# ./generateARMTrace hello logs > output

This program generates the following files...

logs/scmain_cmd scmain (emulator) command

usage help

logs/stack_mem_dump.bin stack memory dump

logs/syscall_trace system call trace

logs/inst_trace instruction trace

2.3.1 Instruction Trace File

This file provides a trace of instruction execution sequence. Every instruction has

a dedicated section in this file. Useful information about the executed instruction such as pc,

instruction, modified single/double word registers and modified condition codes are saved in

the section. Let us look at a couple of sections in detail in this file.

----------------
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Instruction number: 3

pc: 0x8790

inst: 0x1b04f85d

r2=0x1

r14=0xbeffe9b4

----------------

Instruction number: 4

pc: 0x8794

inst: 0xf84d466a

r3=0xbeffe9b4

----------------

Instruction number: 5

pc: 0x8796

inst: 0x2d04f84d

r14=0xbeffe9b0

----------------

Instruction number: 6

pc: 0x879a

inst: 0x0d04f84d

r14=0xbeffe9ac

----------------

The first line line of any section is the instruction sequence number in the program

execution. The second line is the PC value and the rest of the lines are for the modified registers

and their contents. In the above example, for instruction 3, modified registers are R2 and R14

while for instruction 4, modified register is R3.

Note that in the emulator, the register numbering starts from R1 while on the ARM

processor, the register numbering starts from R0. We take care of this by incrementing the

modified register number before writing to the instruction trace file.
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2.3.2 System Call Trace File

System calls are a means by which a user program can request for the underlying

operating system services. Some system calls provide a pointer to a memory buffer as one of the

input arguments and request the operating system to populate it with some specific information.

The uname() is one such system call, it provides a pointer to the utsname structure and the

operating system updates the memory buffer with name and other information about the kernel.

Subsequent instructions may load values from this section of the memory to carry out their

operations.

In the emulator, system calls are serviced by calling the underlying operating system

system call interface. In such scenarios as explained above, where a section of the memory is

changed when a system call is executed, the validator can yield false negative results for the

subsequent instructions that use the information in the changed memory buffer. This is due to

the fact that the validator validates the results by comparing the ’expected results’ obtained from

the program execution on ARM computer and ’emulator results’ obtained from the emulator

execution on x86 computer. Obviously, the information returned by the kernels of these two

computers will not match in most of the cases. For such system calls, for the validator to work

correctly, when generating the system call trace file on ARM computer, the system call resulting

memory contents are copied over to the system call trace file. When the emulator finds such

system calls, when validation is turned on, the emulator reads the system call results from the

system call trace file and copies to the corresponding emulator virtual memory section. Note

that this matching is not needed when validation is turned off and in that case, the emulator

system call execution falls back to calling the underlying Linux system call interface.

The system call trace file records the sequence of system calls in the program. Every

system call has a dedicated section in this file. Each section records the PC, instruction and the

system call number for a system call. For system calls that modify the memory, the resulting

memory contents are copied to this file as well.

In the current implementation, the resulting memory contents of the uname() and

fstat64() system calls are copied to the system call trace file.

Here is an example contents of system call trace file highlighting three different types

of information saved in system call trace file depending on the system call.

----------

26



pc: 0x25988

syscall: 122 // uname

Linux

masca1

3.0.0-1205-omap4

#10-Ubuntu SMP PREEMPT Thu Sep 29 03:57:24 UTC 2011

armv7l

----------

pc: 0x8de4

syscall: 45

----------

pc: 0x8de4

syscall: 197 // fstat64

000000000000000b

0000000400000000

0000000100002190

0000000500000dca

0000000000008801

0000000000000000

0000000000000000

0000000000000400

0000000000000000

20b585ad50636548

20b585ad50636548

37fdfc0150635fd5

0000000000000004

ffffffff00068128

00009dc500068128

0002101700068128

0000000c0004981c

000205e100068128
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----------

pc: 0x10f04

syscall: 192

----------

2.3.3 Stack Dump File

The file ’stack mem dump.bin’ provides a binary dump of the memory around the

stack pointer. The binary dump is obtained using the gdb command ’dump binary memory

mem start addr end addr’with start addr being SP & 0xFFFF0000 and end addr

being SP | 0x0000FFFF, where SP is the stack pointer.

2.3.4 Scmain Command Usage Help File

The file ’scmain cmd’ provides the command to run the scmain (ARM) emulator.

This file is useful as it eliminates the need to note down the values of stack pointer and start of

the stack buffer which are both required to run the emulator.

2.3.5 Special handling of ldrex/strex Instructions

Load Register Exclusive ldrex and Store Register Exclusive strex instructions

require the processor to have an exclusive access to memory. Stepping through either of these

two instructions using gdb violates this exclusivity and the instruction execution waits in a tight

loop for the lock, which never becomes available. To overcome this situation, a lookahead logic

is implemented to not to step through these instructions.

89f6: f3bf 8f5f dmb sy // First data barrier instruction

89fa: e852 1f00 ldrex r1, [r2] // LDREX

89fe: 4299 cmp r1, r3

8a00: d105 bne.n 8a0e <__libc_start_main+0x1ce>

8a02: e842 0100 strex r1, r0, [r2] // STREX

8a06: f091 0f00 teq r1, #0

8a0a: d1f6 bne.n 89fa <__libc_start_main+0x1ba>

8a0c: 4619 mov r1, r3
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8a0e: f3bf 8f5f dmb sy // Second data barrier instruction

8a12: 428b cmp r3, r1

The lookahead logic takes advantage of the use of two Data Memory Barrier dmb

instructions that enclose the instruction sequence containing ldrex/strex instructions to provide

the exclusivity. The logic looks ahead at the instruction next to dmb to determine if it is an

ldrex instruction. If so, it finds the corresponding strex instruction and the closing dmb in-

struction. Once it is determined that the block of instructions is ldrex/strex, instead of stepping

through each instruction, a break point is set for the second dmb instruction and gdb execution is

continued using the command continue instead of stepping using the command si through

individual instructions.

A similar look ahead logic is implemented in the validate component of the emulator

as well.

2.4 Validate Component Of The Emulator

Now comes the time to validate the emulator. After every instruction execuiton in

the emulator, if the user choses to validate, the validate component reads one section of the

instruction trace file to get the expected PC, instruction, modified register contents, condition

codes. Then compares these results to the results generated by the emulator and prints pass/fail

results with some useful debug information about what was expected and what was generated

by the emulator in case the validation fails for that instruction.

When the emulator encounters a system call in the program execution, it reads a

section of information from the system call trace file to validate the PC, instruction, system call

number. Those system calls for which the resulting memory contents are copied, emulator reads

this information and copies over to the corresponding application program’s virtual memory

space.

If the instruction belongs to ldrex/strex block, the lookahead logic similar to that

described in section 2.3.5 is implemented in the emulator to not to validate the set of instructions

in ldrex/strex block.

The following is shows examples of the emulator output when an instruction passes

validation and another instruction that fails validation.
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1) Instruction execution with no failures

Th[0] next PC=0X8b8c

// CRACK Expansion

expanded:

+: TMP3 = ZERO OP_S64_COPYPCL ZERO useImm=1 imm=35732 seticc=0

setrnd=0 getrnd=0

+: TMP2 = TMP3 OP_U32_ADD ZERO useImm=1 imm=12 seticc=0 setrnd=0

getrnd=0

+: R3 = TMP2 OP_U32_LD_L ZERO useImm=0 imm=0 seticc=0 setrnd=0

getrnd=0

// Execution information

executed:

Th[0] -: modified state

rf[78]=0x8b94 ccrf=0x0

Th[0] -: modified state

rf[77]=0xc00008ba0 ccrf=0x0

addr(ldu32) 0x00008ba0

ldu32 [0x8ba0] -> 0x00009428

Th[0] -: modified state

rf[4]=0x9428 ccrf=0x0

// Validation information

inITBlock 0, NOPStatus 0, flushDecode 0

inst num: emul Instruction number: 10, trace file Instruction

number: 10

reg_val 9428

reg_num 4 reg_val 9428 f_reg_val 0x00009428
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2) Instruction execution with failures

Th[0] next PC=0X8d10

// CRACK Expansion

expanded:

+: R10 = R3 OP_S32_ADD ZERO useImm=0 imm=0 seticc=0 setrnd=0

getrnd=0

// Execution information

executed:

Th[0] -: modified state

rf[11]=0x9428 ccrf=0x0

// Validation information

inITBlock 0, NOPStatus 0, flushDecode 0

inst num: emul Instruction number: 17, trace file Instruction

number: 17

FAIL: pc values do not match

expected_pv_val 0x8d12 emul_pc_val 0x8d10

reg_val 9428

reg_num 11 reg_val 9428 f_reg_val 0x00009428

FAIL: register values don’t match

reg_num 11. exp_reg_val 0x00009428. emul_reg_val 0x00009000
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Chapter 3

Enhancements To The ARM Emulator

While the first part of the thesis work is to design and implement a validation frame-

work, the second, equally important part, is to improve the ARM Emulator functionality inorder

to facilitate executing ARM binaries through the emulator. This chapter describes the enhance-

ments made to ARM emulator functionality in various areas.

3.1 Overview

At the beginning of this work, the emulator was capable of interpreting most of the

instructions. However, the emulator was not ready to execute ARM binaries. To facilitate

executing ARM binaries through the emulator, we make the following contributions:

• Implement Program Loader Functionality.

• Implement System Calls.

• Fix incorrectly-working instructions.

• Implement VFP load/store instructions using a rapid development technique.

3.2 Program Loading

The Loader is a part of the operating system responsible for loading the program

binary from disk to memory and making it ready for execution. The ARM binary follows the
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standard ELF format [8] [2] and contains sections such as .text, .data and .bss etc. One

of the loader’s function is to combine two or more sections of the binary into a segment and pad

the segment to align it to the page size, which is 4k by default for ARM binaries.

In the emulator, the loader function is implemented by a software routine. This rou-

tine uses BFD programming package [5] to read the application binary sections, follows the

guidelines specified in ELF standard [2] to create segments, pads the segments to align to the

page boundaries and allocates memory for the segments using malloc().

3.2.1 Loader Implementation

After examining the readelf output of a few program binaries, the following as-

sumptions are made about the ARM program binary sections

• The first page of the ELF formated application binary contains .text section.

• The first data section is either .tdata or .bss whichever has the lower virtual memory

address.

• The last data section, which is also a part of heap, is either .bss or libc freeres ptrs

These assumptions are working well for binaries compiled with static libraries. Pro-

gram Loading for binaries with dynamic libraries was not studied as part of this work and may

be considered future work.

In the emulator, the loader routine combines sections to creates two segments - text

and data. Data segment contains initialized data and also heap. In other words, data and heap

of the application program are maintined as one memory block in the emulator.

3.2.2 Emulator Virtual Memory Space and Application Program Simulated Vir-
tual Memory Space

Fig. 3.1 shows a pictorial representation of the application program’s simulated vir-

tual memory space with respect to the ARM emulator program’s virtual memory space. As

shown, the application program’s simulated text and data segments live in the heap space of the

emulator’s virtual memory.
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Figure 3.1: The Application Program Simulated Virtual Memory With Respect To
The Emulator Program’s Virtual Memory.

3.3 Emulator System Calls

In the emulator, depending on the system call functionality, its implementation falls

into one of the three categories.

• The first type of system calls are serviced by simply calling the underlying Linux system

call interface with the same arguments.

• The second type of system calls are serviced by calling the underlying Linux call interface

just like in the first case, but the memory contents updated by OS are copied to the system

call trace file and this content is copied over to the virtual memory of the application

program during emulator validation, see section 2.3.2.
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• The third type of implementation is to handle the system calls locally using malloc().

3.3.1 Calling The Underlying Linux System Call Interface

The system calls read(), write(), exit() are some of the examples of the

system calls for which the emulator calls the undelying Linux system call interface to get the

work done.

3.3.2 Copying Contents From System Call Trace File To Application Program
Virtual Memory Space Heap

When emulator encounters system calls in the program execution, it reads a section

of information from the system call trace file for pc, instruction and system call number. For the

system calls uname() and fstat64(), saved memory buffer information (refer to section

2.3.2) from the system call trace file is copied over to the application program’s virtual memory

space at the corresponding location.

3.3.3 Handling system calls locally using malloc()

The emulator needs to handle some of the system calls locally using malloc()

without calling the underlying Linux system call API. These system calls are usually associated

with application program’s virtual memory space, specifically heap.

3.3.4 The brk() System Call

The system call brk() changes the data segment size by changing the location of

the program break address. Calling the underlying Linux system call API changes the em-

ulator program’s break address, which is not the intended result, what we intend to change

is the application program’s break address. This is simulated by computing the heap space

required by application program aligned up to the page size 4k and reallocating the memory us-

ing realloc(). Note that realloc, in addition to allocating the needed memory space, copies

the contents from old memory block to the newly allocated one. The emulator keeps track of

program break address throughout the program, it is first initialized to the top of heap during
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program loading (refer to section 3.2) and adjusted to the top of new memory segment allocated

to heap everytime this system call is executed.

3.3.5 The mmap() System Call

The system call mmap() creates a new mapping in the virtual address space of the

calling process. One of the input arguments is the ’size’ of the mapping. This system call is

simulated in the emulator by allocating memory of ’size’ using malloc(). There may be

multiple such memory blocks allocated during the life of an application program and all the

blocks are maintained and looked up just as text and heap.

3.4 Crack Code Optimization

An IT instruction is a feature only of Thumb instruction set and provides if-then-else

functionality by having an associated condition upon which the next four instructional execu-

tion becomes conditional. As shown in Fig. 1.2, the emulator files Thumb16Crack.cpp and

Thumb32Crack.cpp implement crack code for 16 and 32-bit Thumb instructions. By reorga-

nizing code and making simple optimizations, these file sizes were reduced considerably, about

20k lines reduction in each of these two files. The following describes the details of the opti-

mizations.

• Each instruction implementation separately checked to see if the instruction belonged to

an IT block. Since there are hundreds of instructions, this consumes a lot of lines of code.

One of the optimizations is to remove this check from every instruction implementation

and have a common code block to determine if an instruction belonged to an IT block.

• Earlier, the cases for an instruction not-in-IT-block and in-IT-block&cond=Always are

handled separately. Again by merging these two cases for hundreds of instructions, we

were able to remove a lot of redundant lines in the code.

3.5 Bug Fixes

Using the validation framework a number of bugs were found in the ARM emulator.

Subsequent sections describe the categories of issues found and fixed in the process.
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3.5.1 Clear LSB of PC

Most of the data-processing and control instructions are capable of changing the pro-

gram flow by changing the PC register i.e. these instructions have Rd, the destination register,

set to R15 which is the PC register.

LSB of PC register value indicates the processor mode. A value of 0 indicates the

instruction execution in ARM mode and a value of 1 indicates the instruction execution in

Thumb mode.

However, the instruction itself is aligned to halfword (for Thumb-16 instruction) or

word (ARM or Thumb-32 instructions).

As part of this bug fix, once it is determined that the instruction is an ARM/Thumb,

we clear the LSB to access the correct instruction.

3.5.2 Issues With Instruction Decode

In these types of issues, the instruction decoding is wrong:

• The registers Rn, Rm and Rd are decoded incorrectly.

• Opcodes are decoded incorrectly.

• IT condition code is decoded incorrectly.

• Other fields such as register lists, immediate fields are decoded incorrectly.

3.5.3 Issues With Instruction Cracking

In these types of issues, the instructions are implemented with a wrong set of scinsts:

• Instructions with one or two wrong scinsts

• Instructions for which the Crack functionality needed to be implemented completely.

3.5.4 Increment/Decrement Subsequent Memory Addresses

The instructions that perform block data transfers, usually transfer data to/from mul-

tiple registers from/to memory. This class of issues include:
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• Not incrementing the register to subsequent registers in the list.

• Not incrementing the memory location for subsequent Load/Store operations.

3.5.5 Issues With Conditional Execution

The following items describe the types of issues fixed in the conditional execution of

the instructions.

• An instruction is executed when its condition does not satisfy the condition code.

• An instruction is NOT executed when it satisfies the condition codes correctly.

• An instruction which belongs to an IT block and does not satisfy the IT block condition,

is executed.

• An instruction which belongs to an IT block and satisfies the IT block condition, is NOT

executed.

3.5.6 Size mismatch of structures defined in unistd.h between 32 and 64-bit
architectures

The unistd.h header file defines the POSIX system calls and the structures used

by the system calls.

Recall that system calls in the emulator, when validation is off, are handled by calling

the underlying Linux system call interface with the same arguments. The system call fstat()

provides a pointer to the stat structure and operating system fills this structure with relevant

information.

One of the issues we ran into with this approach was the mismatch of the stat

structure size on the 32-bit ARM architecture, where the application binary is compiled and

the 64-bit x86 architecture, where the emulator is compiled. The size of the stat structure on

32 and 64-bit architectures is 88 and 144 bytes respectively. So when the application binary

compiled for 32-bit ARM architecture is executed through emulator compiled for 64-bit x86

architecture and calls Linux system call interface, 144 bytes of the memory are modified leading

to 144-88 = 56 bytes of memory corruption.
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To overcome this issue, to run the emulator on x86 architecture, we compile the em-

ulator on an x86 processor for 32-bit architecture.

3.6 Automatic Code Generation of VFP Load/Store Instructions

This section describes a rapid development technique to auto-generate code for a class

of instructions. All the instructions that belong to a particular class of instructions generally per-

form a common set of operations. By exploiting this commonality, we are able to mass-produce

code for a class of instructions rapidly. Specifically, we make the following contributions:

1. Programmatically parse ARM CPU specification manual.

2. Auto generate code for VFP Load/Store instructions.

Table 3.1 shows VFP Load/Store operations. Subsequent sections describe systematic

parsing of the CPU specifications and auto generating the code for these instructions. The

proposed methodology has proved its usefulness in:

1. Reduced development time at no extra cost.

2. Opportunity to generate optimized number of scuops in the crack stage for a class of

instructions.

3. Ability to find and fix bugs across multiple instructions.

4. Opportunity to reuse parts of this code for another class of instructions, thus, speeding up

the emulator development.

3.6.1 Programatic Parsing of the CPU Specification manual

In this section, we implement a rapid prototyping technique [10] to auto generate

code for ARM and Thumb-2 Vector Floating Point (VFP) instructions. Table 3.2 shows the

instruction operation psedocode taken directly from the ARM CPU specification manual. We

grouped syntactically similar looking lines and designed match templates to facilitate effective

parsing. We even make use of the psedocode indentation to remember the scope of the code

and generate curly braces in the auto generated code. Match templates have optional values are

enclosed in <>. Extracted values are enclosed in ( ).
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3.6.1.1 Mining Rules

First mining rule:

(<if wback then>) Dest = if (OP) then (then val) else (else val)

Here are some example matching lines and their extracted fields using the template:

• address = if add then R[n] else R[n]-imm32;

– <if wback then >= false

– OP = add

– then val = R[n]

– else val = R[n]-imm32

• if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;

– <if wback then >= true

– OP = add

– then val = R[n]+imm32

– else val = R[n]-imm32

• MemA[address,4] = if BigEndian() then D[d+r]<63:32>else D[d+r]<31:0>;

– <if wback then >= false

– OP = BigEndian()

– then val = D[d+r]<63:32>

– else val = D[d+r]<31:0>

• MemA[address+4,4] = if BigEndian() then D[d+r]<31:0>else D[d+r]<63:32>;

– <if wback then >= false

– OP = BigEndian()

– then val = D[d+r]<31:0>

– else val = D[d+r]<63:32>
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Second mining rule:

for counter = (start) to (end)

Here are some example matching lines and extracted fileds matching this template:

• for r = 0 to regs-1

– iteration start = 0

– iteration end = regs-1

• for e = 0 to elements-1

– iteration start = 0

– iteration end = regs-1

Third set of mining rules:

• if (single regs) then

• else

These templates are examples for handling special cases where certain lines cannot

be grouped together with others to match a common template and need individual treatment.

These templates match the following lines:

• if single regs then

• else

Fourth mining rule:

lval = rval

This is an important template because it not only matches the psedocode lines but also is used

to process the extracted fields from other templates. Every computational line is convered into

a line matching this template and code is generated to compute the ’rval’ and saved to ’lval’.

• Here is an example to show how this template is used on an extracted field,

else val = R[n]-imm32 is one of the extracted fields after applying the first mining rule.
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• These are the example lines that come directly from the CPU manual psedocode:

– MemA[address,4] = S[d+r];

– address = address+8;

Fifth set of mining rules to handle Load/Store operations:

• MemA(addr) = (Register) // For Store

• (Register) = MemA(addr) // For Load

• (S[d+r])

• D[d+r]<31:0>

• D[d+r]<63:32>

Here are some examples of lines matching these templates and their extracted fields

using the templates:

• MemA[address,4] = S[d+r];

– Operation = Store

– Memory Address = address

– Source Register = Singleword register

• MemA[address+4] = D[d+r]<63:32>

– Operation = Store

– Memory Address = address+4

– Source Register = Top 32-bits of the doubleword register
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Instruction Description

VSTM Vector Store Multiple (Increment After, no writeback)

VSTM Vector Store Multiple (Increment After, writeback)

VSTR Vector Store Register

VSTM Vector Store Multiple (Decrement Before, writeback)

VPUSH Vector Push Registers

VLDM Vector Load Multiple (Increment After, no writeback)

VLDM Vector Load Multiple (Increment After, writeback)

VPOP Vector Pop Registers

VLDR Vector Load Register

VLDM Vector Load Multiple (Decrement Before, writeback)

Table 3.1: ARM Architecture - VFP Load/Store Instructions.

3.6.2 Auto-generating The Crack Code

The parser 3.6.1 generates statements of type ’left value = right value’. The ’left value’

and ’right value’ can be simple expressions like R[n], imm32, address, S[d+r] or complex ex-

pressions like R[n] + imm32, R[n] - imm32, address + 8.

As shown before, generated simple and complex expressions have operands like R[n],

imm32, address. These operands are of two types - for first type of operands, the values come

from the instruction itself. Examples include imm32, R[n] etc. And the second type of operands

are the temporary variables, like ’address’. In our implementation, we use a hash table to keep

track of a mapping of temporary variables and the corresponding temporary registers to hold

their values.

Here are some examples of how a statement of type ’left value = right value’ is used

to auto-generate the scuops.

• address = R[n]+imm32
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– CrackInst::setup(rinst, iAALU, OP S32 ADD, RN, 0, imm32, LREG TMP2, 0, 0,

0) // LREG TMP2 is a temporary register which is anonymous for ’address’, the

destination register.

• address = R[n]+R[m]

– CrackInst::setup(rinst, iAALU, OP S32 ADD, RN, RM, 0, LREG TMP2, 0, 0, 0)

// LREG TMP2 is a temporary register which is anonymous for ’address’, the des-

tination register.

• S[d+r] = MemA[address, 4]

– CrackInst::setup(rinst, iLALU LD, OP U32 LD L,LREG TMP3 , 0, 0, DV, 0, 0, 0)
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VSTM

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
address = if add then R[n] else R[n]-imm32;
if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
for r = 0 to regs-1

if single regs then
MemA[address,4] = S[d+r]; address = address+4;

else
// Store as two word-aligned words in the correct order for current endianness.
MemA[address,4] = if BigEndian() then D[d+r]<63:32>else D[d+r]<31:0>;
MemA[address+4,4] = if BigEndian() then D[d+r]<31:0>else D[d+r]<63:32>;
address = address+8;

VLDR

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
NullCheckIfThumbEE(n);
base = if n == 15 then Align(PC,4) else R[n];
address = if add then (base + imm32) else (base - imm32);
if single reg then

S[d] = MemA[address,4];
else

word1 = MemA[address,4]; word2 = MemA[address+4,4];
// Combine the word-aligned words in the correct order for current endianness.
D[d] = if BigEndian() then word1:word2 else word2:word1;

VLDM

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
NullCheckIfThumbEE(n);
address = if add then R[n] else R[n]-imm32;
if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
for r = 0 to regs-1
if single regs then

S[d+r] = MemA[address,4]; address = address+4;
else

word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
// Combine the word-aligned words in the correct order for current endianness.
D[d+r] = if BigEndian() then word1:word2 else word2:word1;

Table 3.2: ARM Architecture - Psedocode Specification From The CPU Manual.
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Chapter 4

Random Instruction Test Sequence Generation

This chapter describes a framework for regression testing of the ARM processor emu-

lator by generating RIT (Random Instruction Tests). Human intervention is limited to copying

the assembly syntax of all the instructions to an instruction macro library. An instruction is

picked at random and an intelligent parser expands the instruction with all possible combina-

tions of the options from its assembly syntax. By testing all the instructions thus generated, it

can be guaranteed that all the code paths associated with that instruction are exercised.

4.1 Related Work

Instruction Randomization Self Test (IRST) [4] is a test methodology to acheive

stuck-at-fault coverage for embedded processors. IRST has a test hardware and a test soft-

ware function. Test hardware function performs three functions - it prompts the test software

to provide a pseudo random sequence of instructions, monitors the data to determine if the be-

havior indicates faulty logic and it provides a source of randomized seed data which the test

software uses to randomize register operands. Test software executes a variety of control and

data path logic in the processor core. Test software provides observability on the central bus as

the program executes.

Random test program generation for the class of microprocessors embedded inside a

SOC (System-on-a-chip) [6] uses an evolutionary paradigm to generate automatic test programs

and provides for auto-updating internal parameters of the optimizer. This work proposes an

instruction library and a genetic algorithm to evolve random test programs. Test programs are
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internally represented as directed acyclic graphs and evolved to maximize the attained fault

coverage.

System Validation (SV) [9], a post silicon functional validation methodology to meet

aggressive deadlines, is based on two approaches, random instruction testing (RIT) and direct

testing. Using Compatibility validation (CV), the goal is to validate components (processors and

chipset) at the platform level by using commercially available operating systems, application

software and hardware in a manner that is consistent with the usage by the end user.

4.2 Our Approach To Generating RITs

Fig. 4.1 Shows a sequence of steps involved in regression testing of the emulator.

Figure 4.1: End-to-end Sequence Of Steps For The ARM Emulator Testing.

To ensure that an instruction in the ARM emulator is exercised through all code paths, the
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following componets of its execution must be tested:

• Instruction Type i.e., the same instruction execution in ARM, Thumb-32 and Thumb-16

ISAs.

• Setting condition codes, if applicable for that instruction.

• Conditional execution.

To accomplish these goals, we make the following contributions:

• An Instruction Macro Library.

• An Intelligent Parser.

• A Random Test Generator.

The following sections describe these functionalities in detail.

4.3 Instruction Macro Library

Macro Library contains assembly syntax of all the instructions as specified in the CPU

specification manual. Human intervention is limited to copying and pasting assembly syntax to

this file.

The instructions are grouped by their type of instructions, see section 1.2.6 for all the

instruction types.

The library provides methods to return a random instruction from a class of instruc-

tions. The caller functions have the option to provide an instruction class. The following shows

some of the entries from the Instruction Macro Library.

ARM_data_processing_register =

["AND{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}",

"EOR{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}",

"SUB{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}",

"RSB{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}",

"ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}",
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"ADC{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}"}

ARM_data_processing_immediate =

["AND{S}<c> <Rd>,<Rn>,#<const>",

"EOR{S}<c> <Rd>,<Rn>,#<const>",

"SUB{S}<c> <Rd>,<Rn>,#<const>",

"ADR<c> <Rd>,<label>"}

ARM_load_store_word_unsigned_byte =

["STR<c> <Rt>,[<Rn>{,#+/-<imm12>}]",

"STR<c> <Rt>,[<Rn>],#+/-<imm12>",

"STR<c> <Rt>,[<Rn>,#+/-<imm12>]!",

"STR<c> <Rt>,[<Rn>,+/-<Rm>{, <shift>}]{!}",

"STR<c> <Rt>,[<Rn>],+/-<Rm>{, <shift>}",

"STRT<c> <Rt>, [<Rn>] {, +/-<imm12>}"]

4.4 Random Test Generator

The Random Test Generator generates Random Instruction Sequences using Instruc-

tion Macro Library and Intellignet Parser.

For a given run, it generates two programs. A first program with assembly instruc-

tions encoded with ARM 32-bit instructions and a second program with assembly instructions

encoded with Thumb 32-bit and 16-bit instructions.

The programs are generated with three sections. The first section contains ARM

assembler directives to control the type of instructions being generated. The second section

contains the instruction sequences and the third section contains data declarations that can be

loaded into registers and used throughout the program.

Directives to generate ARM instructions

.syntax unified
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.global main

Directives to generate Thumb instructions

.syntax unified

.global main

.code 16

.thumb_func

An example third section of the program that declares data

data1:

double 2.0, 3.0

To load this data,

adr r0, data1

vldm r0, {d10-d11}

The Random Test Generator has a main loop which aims to generate about 1000

instructions for each of the ARM and Thumb test programs.

This module provides the Instruction Macro Library with an instruction class and

requests for a random instruction. And the Library provides the random instruction to the intel-

ligent parser. Parser, in turn, expands the assembly instruction with all the options and generates

multiple instructions to cover all code paths associated with that instruction. Intelligent parser,

thus, returns two sets of instructions for every request made by the Random Test Generator. The

following shows psedocode of the Random Test Generator execution loop.

total_inst_count = 0

while total_inst_count < 1000
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Pick an instruction class at random

Request Instruction Macro Library

Library selets an instruction and notifies Intelligent Parser

Intelligent Parser generates two sets of instructions

set1 with ARM instructions

count1 = number of instructions generated in set1

set2 with Thumb instructions

count2 = number of instructions generated in set2

total_inst_count += (count1 or count2 whichever is more)

4.5 Intelligent Parser

The assembly syntax of the ARM instructions as specified in the ARM specification

manual follows a common pattern which allows us to parse the instruction for various fields.

Here are some example assembly syntax of the instructions.

Format: INST<{s}><c> operands

ADD{s}<c> <Rd>,<Rn>,<Rm>{<shift>}

EOR{s}<c> <Rd>,<Rn>,<Rm><type><Rs>

SUB{s}<c> <Rd>,<Rn>,#<const>

STR <Rt>,[<Rn>[#+/-imm12]

POP <registers>

VLDM <Rn>!<list>

As shown in the instruction format above, the first field of the test vector is the name

of the instruction. Option {s} is a flag to set the condition codes. <c >indicates conditional

execution. The rest of the operands indicate registers, shift values and immediate constants.
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Option {s} produces two versions of the instruction - first instruction to set the condi-

tion codes and the second instruction not to set the condition codes. For those instructions that

have no {s} flag option, only one instruction is generated, without {s} option.

<c > indicates that the instruction is capable of executing conditionally. Here we aim

to test that the instruction works correctly for all 14 condition codes specified in Table 1.12. We

also test the combinations where the condition codes do not satisfy the condition. This generates

14*2 = 28 instructions.

Registers with syntax <REG >Ex: <Rd >, <Rn >, <Rm >, <RS >: Parser picks

any of the registers R0-R11 at random (PC register R15 is included for Rd, destination register

selection).

<type >indicates the type of shift. One of the supported shifts (ASR, LSR, ROR,

RRX etc.) is picked at random.

<shift >, <imm12 >, <const >generate a random value in the range of values sup-

ported by that field.

B <label >, BL, BLX, the label is generated with addresses of one of the instructions

generated by the Random Test Generator. The address can belong to one of the previous or later

instructions. Random Test Generator adds intelligence to not result in an infinite loop while

generating these instructions.

4.6 Generating Random Instruction Tests (RITs)

This section describes how to generate Random Instruction Tests (RITs) using the

framework.

shell# ls MacroLibrary.py MacroParser.py generateRIT.py

generateRIT.py MacroLibrary.py MacroParser.py

shell# ./generateRIT.py

Usage: generateRIT.py out_RIT_file

shell# ./generateRIT.py test_rit.s
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Alternatively, here is a Makefile which generates a RIT file

and compiles it to make a binary (Run this makefile on an

ARM computer to generate ARM binary).

shell# more Makefile

rit.s: rit

objdump -d rit > rit.s

rit: test_rit.s

gcc -g -static test_rit.s -o rit

test_rit.s:

./generateRIT.py test_rit.s

clean:

rm test_rit.s rit rit.s

shell# make clean

rm test_rit.s rit rit.s

shell# make

./generateRIT.py test_rit.s

gcc -g -static test_rit.s -o rit

objdump -d rit > rit.s

shell#
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Chapter 5

Conclusion

Processor emulators allow researchers and designers evaluate design ideas quickly at

no extra cost. To evaluate research ideas at MASC lab, we are developing an ARM processor

emulator to execute ARM binaries.

5.1 Contributions

First, we developed a validation infrastructure to identify any functionality gaps in

the emulator. Second, by implementing the needed functionalities and fixing problem areas,

we are able to execute complete ARM binaries through the emulator. Finally, we developed a

methodology for facilitating regression testing of the emulator.

5.2 Results

As a result of this work, we are able to:

• Execute ARM binaries through the emulator.

• Acheive a 100x speedup of the validation process since our original design.

• Reduce about 20k lines each from Thumb-16 and Thimb-32 Crack Implementation.

• Implement support for some system calls.
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• Use a CPU spec mining technique to auto generate code for a class of instructions (VFP

Load/Store instructions).

• Implement a framework to generate Random Instruction Sequence Tests to facilitate re-

gression testing of the emulator.

5.3 Future Work

With validation framework and emulator functionalities in place, we can run longer

programs including SPECInt and PARSEC benchmark programs through the emulator.

Another area of work would be to see if CPU spec mining can be used to auto generate

Crack code for x86, SPARC instruction sets.

Crack code for ARM/Thumb instructions use scinsts. As part of this work, we

would like to optimize the number of scinsts for the instructions.
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Appendix A

Running the ARM Emulator

mada0:˜/project/build$main/scmain

Usage:

main/scmain stack_start stack_buffer_start stackdump.bin binary

<arm_log syscall_trace>

Mandatory arguments -

stack_start Stack Pointer

stack_buffer_start Start address of the stack dump

(SP && 0xFFFF0000)

stackdump.bin Path to the stack dump binary file

binary Application binary

Optional arguments -

arm_log Path to the instruction trace file

syscall_trace Path to the system call trace file

----------------------------------------------------------------------

Here is a step-by-step example to show how to run the emulator.

1) Clone the Project

56



> CONNECT TO YOUR X86 Linux machine (ubuntu or archlinux are fine)

shell> mkdir ˜/projs

shell> cd ˜/projs

shell> git clone ESESC repo (instructions may vary)

2) Now, you have cloned the project. Now, make a build directory to

compile the code.

shell> mkdir ˜/build

shell> cd ˜/build

shell> cmake -DCMAKE_HOST_ARCH=x86_64 -DENABLE_SCQEMU=1 -

DESESC_QEMU_ISA=armel -DCMAKE_BUILD_TYPE=Debug

˜/projs/esesc/

shell> make scmain -j 16

To run the emulator, call

shell> ./main/scmain

and here is the message that you should get:

shell> Usage:

main/scmain stack_start stack_buffer_start stackdump.bin

binary <arm_log syscall_trace>

We have the emulator setup working. We will come back to running

the emulator.

3) Now, let us see how to compile an example Application (hello.c)

for ARM.

Open a new terminal.

> ssh YOUR ARM Machine (something like pandaboard or Samsung

chomebook)

armshell> cd build/
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armshell> mkdir kernels

armshell> cd kernels

armshell> vim hello.c

#include<stdio.h>

int main() {

printf("hello world \n");

return 0;

}

armshell> gcc -g -static hello.c -o hello

Now, we have the simulator (scmain) and the application (hello)

compiled for ARM.

We should be able to call the "scmain" and pass the "hello" to

start the emulation. However, since we want the emulator to match

exactly the native execution, we try to reproduce the stack memory.

It means that we dump the stack from the native ARM machine while

running the application, and then pass it to the emulator.

4) Dump stack memory to a file

armshell> python2 ˜/projs/esesc/conf/generateARMLog.py hello

Reading symbols from /home/cmpe202/build/helloworld_sccore/hello...

(no debugging symbols found)...done.

(gdb) b *_start

b *_start

Breakpoint 1 at 0x80f0

(gdb) run

run

Starting program: /home/cmpe202/build/helloworld_sccore/hello

Breakpoint 1, 0x000080f0 in _start ()

(gdb) p /x $sp

p /x $sp
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$1 = 0x7efffcb0

(gdb) stack starts at 0x7efffcb0

dump binary memory hello.stack_0x7efffcb0 0x7efff000L 0x7effffff

dump binary memory hello.stack_0x7efffcb0 0x7efff000L 0x7effffff

(gdb) scmain usage:

./main/scmain 0x7efffcb0 0x7efff000L hello.stack_0x7efffcb0 hello

Now, we have the memory dump of the stack.

while we are on the ARM computer, objdump command in

Linux is very useful:

armshell> objdump -d hello > hello.s

hello.s contains the assembly of the application now. You will

need it for debugging to see what instruction is at what

address, etc.

5) Now, to run the emulator, go back to the previous terminal where

you logged in to your X86 Linux and compiled scmain.

shell> ./main/scmain 0x7efffcb0 0x7efff000L hello.stack_0x7efffcb0 hello
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