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ABSTRACT   

 

ELLIS, J.T.; SHERMAN, D.J. and BAUER, B.O., 2003. Depth Compensation for Pressure Transducer 
Measurements of Boat Wakes.  Journal of Coastal Research, SI 39 (Proceedings of the 8th International Coastal 
Symposium), pg – pg. Itajaí, SC – Brazil, ISSN 0749-0208. 

Boat-generated waves are exceedingly difficult to parameterize because every wave in a wake has a slightly 
different period and size. In this study, several different sets of boat waves were measured using a vertical array 
of three pressure transducers (mounted at 0.44 m (PT 1), 1.44 m (PT 2), and 2.44 m (PT 3) below the mean water 
surface in 3.0 m water depth) and a capacitance-type wave gage ("wave wire"). Linear theory was used to correct 
the pressure signals for depth attenuation. The results were compared to surface fluctuations measured by the 
wave wire, which were presumed to be accurate. Wave period was estimated by calculating the period of the 
largest boat-generated wave (the “maximum” wave) and by obtaining average periods for the largest pair, trio, 
quartet (and so on) of consecutive waves in a given wake. Average instrument depth-to-wavelength (d/L) ratios 
were 0.15 (PT 1), 0.22 (PT 2), and 0.27 (PT 3), indicating that the use of linear wave theory should be 
applicable. Regression analysis indicated that the average r2 values decrease with increasing instrument depth: 
0.92 at PT 1, 0.59 at PT 2, and 0.40 at PT 3. The slope of the regression equation is closest to unity when the 
shortest wave period is used for depth-compensation. Average wave height underestimations for the corrected 
pressure transducer records are 15% at PT 1, 48% at PT 2, and 53% at PT 3. If only the shortest wave periods are 
considered, the maximum wave height underestimations are 6%, 31%, and 41% for PTs 1-3, respectively.  

  
ADDITIONAL INDEX WORDS: linear wave theory, study design 

 
 
 

INTRODUCTION 
 
Pressure transducers are widely used to measure water surface 

fluctuations in lakes, oceans, and navigable waterways. It is well 
known that the pressure signals associated with the passage of 
short wavelength waves are attenuated with depth (SEIWELL, 
1947). A compensatory correction is often necessary to reproduce 
the magnitude of surface fluctuation, especially when instrument 
depth is large relative to the wave length of the waves being 
measured (USACE, 1984). 

According to linear wave theory, pressure records can be 
corrected to yield estimates of surface fluctuations, zc, as follows: 

p
c K

zzz −
=                                       (1) 

where z is the calibrated pressure transducer reading (transducer 
depth below the water level), overbar indicates a time average, 
and Kp is the pressure response factor: 
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where k is wave number and h is total water column depth. 
The following sequence of equations presented by DEAN and 
DALRYMPLE (1984) and KAMPHUIS (2000) are used to obtain Kp:   

Lk π2=                                        (3) 

where L is wavelength and is calculated using: 
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where L∞  is deep water wave length calculated using:  

π2

2gTL =∞                                       (5) 

where g is acceleration due to gravity and T is wave period. 
DRAPER (1957) suggested that short period waves attenuate 

more than Eqn. 1 predicts. Others (e.g. HOM-MA et al., 1966) have 
also recommended that Eqn. 1 be modified to include an empirical 

correction factor, N: 
p

c K
zzNz −

=  and present formulas to 

calculate N. If linear theory is assumed a value of unity for N is 
appropriate (DEMIRBILEK and VINCENT, 2002).  

There has been much debate in the literature about the accuracy 
of Eqn. 1 and the determination of N (c.f. BISHOP and DONELAN, 
1987; KUO and CHIU, 1994). GRACE (1978) presented results from 
ocean- and laboratory-generated waves that show N is close to 
unity for instrument depth-to-wavelength ratios (d/L) between 
about 0.10 and 0.23, respectively. SIMPSON (1969) found that Eqn. 
1 adequately reproduced surface fluctuations when d/L was less 
than 0.40. ESTEVA and HARRIS (1970) compared the root-mean-
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square wave heights of two corrected pressure sensors with a 
wave wire, and found that the corrected records were on average 
2% larger and 4% smaller than wave wire wave heights for the 
‘upper’ and ‘lower’ mounted instruments, respectively. FOLSOM 
(1947) found that corrected pressure records were 10% smaller 
than electric point gage wave heights using Eqn. 1. TSAI et al. 
(2001) compared linear corrections with methods presented by 
KUO and CHIU (1994) and HASHIMOTO et al. (1997) and found that 
pressure records corrected using linear theory had wave heights 
closest to those measured with a wave wire.  

All of this previous work has considered corrections for ocean 
or laboratory waves, usually with an assumption of a 
monochromatic wave field. Our concern is with boat wakes. The 
correction process for boat wakes is complicated because period 
and height are different for each wave in a wake. One approach 
has been to identify an “index” wave as representative of the 
entire wake event, where the index wave is usually the largest 
wave within a given wake (PARNELL, 1996; BAUER et al., 2002). It 
has been the practice to use linear wave theory to correct pressure 
transducer measurements of boat wakes (e.g., ELLIS et al., 2002), 
but the accuracy of the surface-equivalent estimates is unknown. 
The boat wake variable that is critical for the application of Eqn. 1 
is the local wavelength, which in turn depends on wave period and 
water depth. A challenge for characterizing boat wake wavelength 
and wave period is that there is a different period for each wave 
within the wake. The purpose of this study is to compare the depth 
corrected pressure records from an array of transducers to 
measurements obtained with a capacitance wave gage, and also to 
recommend a protocol for such corrections. Of particular 
importance is the selection of a representative wave period for the 
multiple waves in a boat wake.  

 
METHODS 

 
A vertical array of three pressure transducers (KPSI model 

720T, 0-5 psi) were mounted on galvanized water pipe and 
suspended vertically from a bridge crossing Telephone Cut in the 
Sacramento River Delta near Stockton, California on 6 January 
2003. Sensors were mounted 2.66 (PT 1), 1.66 (PT 2), and 0.66 
(PT 3) meters above the bed where the total water depth averaged 
3.0 meters. A co-located Brancker WG-50 capacitance-type wave 
wire was deployed to capture the water surface fluctuations 
directly. Wakes were generated with a 22-foot boat traveling at 
various speeds and distances from the array. Each wake was 
monitored for 40 seconds, a duration longer than the time required 
for the wake to pass the instrument array, at a sampling rate of 50 
Hz. Four wake events, representative of the different wake forms 
generated during the study, are examined in this paper. 

Instruments were calibrated in situ via progressive stepwise 
submergence. Output voltages at fixed water depths were recorded 
for one minute and averaged. Regression coefficients for the 
calibration relations were greater than 99.9% for all instruments. 

Boat wakes within the 40-second pressure transducer time 
series were isolated by selecting only sequences of wave peaks 
and troughs that were greater than or equal to one standard 
deviation of the 40-second record. Wake records were extended 
temporally so that each wake begins and ends with a zero 
crossing. These wakes were matched with the same time span in 
the wave wire record.   

Several estimates of wave period were derived for each wake. 
First, the maximum wave was identified as either a crest-trough-
crest (CTC) or a trough-crest-trough (TCT) wave, whichever was 
larger. If the CTC and TCT maximum wave heights were 
equivalent, the single portion of the wave (i.e., crest or trough) 

that deviated the most from mean water level governed the 
selection. All other waves in a wake were characterized as CTC or 
TCT in accordance with the selection of the maximum wave. The 
heights of consecutive waves within the specific wake were then 
ranked from largest to smallest. Wave periods were then 
calculated for the maximum wave and from the average periods 
for the largest pair, trio, quartet (and so on) of consecutive waves 
in a given wake.  

Eqn. 1 was applied to each pressure transducer record for the 
four wakes using the different estimates of wave period. Linear 
regression was used to compare the corrected pressure sensor 
(dependent) and wave wire (independent) records. Maximum 
wave height, because of its common usage, was selected as the 
basis for comparing the pressure transducer data with the wave 
wire measurements by calculating a ratio (expressed as a 
percentage) between the wave wire and pressure transducer values 
(Hm ratio). A ratio of zero percent indicates equal wave height. A 
positive ratio indicates that the wave wire value is greater than the 
pressure transducer value, and vice versa.  

 
RESULTS 

 
Table 1 summarizes the results for wave period (T), wavelength 

(L), instrument depth-to-wavelength ratio (d/L), maximum wave 
height (Hm), and maximum wave height difference (Hm ratio). 
Wave periods for the four boat wakes range from 1.52 to 3.42 s.  
Generally, longer periods are associated with PT 3, the deepest 
instrument. Wavelength (L), calculated using Eqn. 4, vary from 
3.51 to 16.06 m. Wavelength increases with increasing instrument 
depth, as does instrument depth to wave length ratios (d/L). 
Maximum wave height from the wave wire data varied from 0.180 
m to 0.239 m. Values of Hm, obtained from the pressure 
transducer records, were all smaller than the corresponding wave 
wire measurements, with the differences increasing with water 
depth, even after depth correction. This is made apparent in the 
wave height ratios that indicate that the uncorrected pressure 
transducers underestimate maximum wave height by at least 
39.5%, and up to a maximum of 84.1%. Hm ratios for the 
uncorrected records average 46%, 80%, and 82% for PT 1, 2, and 
3, respectively. Correcting the PT records improves the results 
substantially, reducing the range of underestimation to between 
0.2% and 71.5%. Evaluation of Hm shows that the pressure 
transducer estimates for the maximum wave height are smaller 
than those measured by the wave wire by about 15% at PT 1, 48% 
at PT 2, and 53% at PT 3. Depth corrections made using the 
shortest wave period in a wake consistently yield the largest Hm 
ratio values for that record, even though the surface fluctuations 
measured by the wave wire are underestimated by 6% at PT 1, 
31% at PT 2, and 41% at PT 3. 

Table 2 shows the results of the regression analysis. The values 
for r2 and the y-intercept (b) are nearly identical for all cases, 
while the values of slope (m) change substantially. This implies 
that the latter is the most sensitive indicator of the effect of using 
different values for wave period in Eqn. 1. Depth corrections 
made using the shortest wave period within a wake always 
correspond to the slope (m) closest to 1.0, except in the case of 
Run 3 with PT 1, where the period of the maximum wave provides 
slightly better results.  

 
DISCUSSION 

 
This analysis demonstrates that uncorrected pressure transducer 

records will yield estimates of maximum wave height that are 
always substantially smaller than the actual water surface  
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Table 1. Summary statistics showing the wave period (T), wavelength (L), instrument depth-to-wavelength ratio (d/L), maximum wave 
(Hm) and percent difference of the wave wire and corrected PT maximum waves (Hm ratio). Values less than 0% indicate wave wire 
waves are smaller that those estimated by the PT. UnCOR indicates un-corrected wave heights and corrected wave heights are shown 
according to the period used (e.g., T1 used the period of the maximum wave).   
 

  PT 1   PT 2   PT 3 

  
T 
(s) 

L 
(m) d/L 

Hm 
(m) 

Hm 
ratio 
(%)   

T 
(s) 

L 
(m) d/L 

Hm 
(m) 

Hm 
ratio 
(%)   

T 
(s) 

L 
(m) d/L 

Hm 
(m) 

Hm 
ratio 
(%) 

RUN 1                  
wire    0.239      0.239      0.239  
UnCOR    0.132 -45.0     0.054 -77.5     0.043 -81.8 
T1 1.82 5.16 0.12 0.209 -12.4  2.42 8.99 0.18 0.132 -44.6  3.10 13.82 0.19 0.089 -62.7 
T2 1.78 4.94 0.12 0.214 -10.5  2.09 6.79 0.24 0.189 -20.9  2.68 10.82 0.24 0.125 -47.9 
T3 2.19 7.43 0.08 0.181 -24.5             

RUN 2                                   
wire    0.194      0.152      0.152  
UnCOR    0.100 -48.4     0.036 -76.5     0.027 -82.0 
T1 1.50 3.51 0.16 0.182 -6.3  2.34 8.44 0.19 0.091 -40.0  3.32 15.37 0.17 0.050 -67.3 
T2 1.79 5.00 0.11 0.159 -17.9  2.81 11.75 0.13 0.066 -57.0  2.86 12.11 0.21 0.066 -56.9 
T3 1.95 5.92 0.10 0.142 -26.8  2.55 9.92 0.16 0.077 -49.6  2.58 10.11 0.25 0.086 -43.4 
T4 1.83 5.22 0.11 0.149 -23.2             
T5 2.11 6.91 0.08 0.135 -30.4             

RUN 3                                   
wire    0.180      0.180      0.132  
UnCOR    0.085 -52.6     0.029 -84.1     0.025 -81.3 
T1 1.60 3.99 0.16 0.161 -10.8  2.42 8.99 0.18 0.071 -60.5  2.90 12.40 0.21 0.050 -61.8 
T2 1.56 3.80 0.16 0.166 -7.8  2.77 11.47 0.14 0.055 -69.3  2.69 10.89 0.24 0.061 -53.9 
T3 1.65 4.23 0.15 0.155 -13.9  2.56 9.97 0.16 0.064 -64.7  2.50 9.55 0.27 0.076 -42.3 
T4 1.77 4.86 0.13 0.143 -20.4  2.42 8.95 0.18 0.071 -60.4  2.42 8.95 0.29 0.086 -35.0 
T5 1.90 5.62 0.11 0.134 -25.9  2.25 7.84 0.21 0.084 -53.5       
T6 1.81 5.11 0.12 0.140 -22.4  2.13 7.06 0.23 0.096 -46.5       
T7 2.04 6.49 0.10 0.126 -30.3             

RUN 4                                   
wire    0.190      0.190      0.172  
UnCOR    0.115 -39.4     0.035 -81.6     0.028 -83.6 
T1 1.64 4.20 0.13 0.189 -0.2  2.08 6.72 0.23 0.117 -38.4  3.42 16.06 0.16 0.049 -71.5 
T2 1.72 4.61 0.12 0.181 -4.6  1.88 5.51 0.28 0.157 -17.3  2.97 12.90 0.20 0.062 -63.9 
T3 1.67 4.37 0.13 0.185 -2.2  2.03 6.39 0.24 0.125 -33.9  2.73 11.15 0.23 0.076 -56.1 
T4 1.77 4.89 0.11 0.176 -7.1  2.18 7.40 0.21 0.103 -45.7  2.60 10.25 0.25 0.086 -49.9 
T5 1.88 5.51 0.10 0.168 -11.5  2.40 8.85 0.18 0.083 -56.0  2.42 8.96 0.29 0.109 -36.6 
T6 1.82 5.18 0.11 0.172 -9.3  2.28 8.03 0.19 0.093 -50.9       
T7 1.94 5.84 0.10 0.164 -13.5  2.21 7.57 0.21 0.100 -47.2       
T8 2.09 6.76 0.08 0.156 -17.7                         

 
 
 
fluctuation (as indicated by the wave wire). The use of the shortest 
wave period within each wake produces the largest increase in Hm, 
but the resulting magnitude is still smaller than those measured by 
the wave wire. Moreover, Fig. 1, that illustrates what we consider 
to be the “best case” scenario, shows that the effects of correcting 
the pressure records are not uniform within the wake. At the 
beginning of each wake, the corrected estimates are greater than 

the actual surface fluctuations. The match is best toward the 
middle of the records (i.e., at wave 2 in Runs 1 and 2, wave 3 in 
Run 3 and at wave 4 in Run 4), but the quality of matching 
degrades substantially as the wake passes, especially for the deep 
pressure transducers (e.g., PT 3).  

Maximum wave height ratios (Table 1) show that the shortest 
estimated wave period most accurately estimates the maximum 
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Table 2. Least-squares best fit line results for Runs 1-4: slope (m), y-intercept (b), and coefficient (r2). The period used in the 
correction equations are signified with a T. The numbers following ‘T’ indicate the number of waves considered. 
 

  PT 1   PT 2   PT 3 
  T (s) r2 m b   T (s) r2 m b   T (s) r2 m b 
RUN 1               
T1 1.82 0.909 0.917 0.002  2.42 0.580 0.523 0.000  3.10 0.351 0.252 0.000 
T2 1.78 0.910 0.937 0.002  2.09 0.581 0.747 0.001  2.68 0.351 0.352 0.000 
T3 2.19 0.907 0.787 0.001                     
RUN 2               
T1 1.50 0.894 1.049 0.002  2.34 0.606 0.549 0.000  3.32 0.268 0.166 0.000 
T2 1.79 0.894 0.915 0.001  2.81 0.606 0.394 0.000  2.86 0.268 0.219 0.000 
T3 1.95 0.893 0.813 0.001  2.55 0.606 0.461 0.000  2.58 0.268 0.287 0.000 
T4 1.83 0.893 0.854 0.001           
T5 2.11 0.893 0.772 0.001                     
RUN 3               
T1 1.60 0.913 0.991 0.001  2.42 0.517 0.380 0.000  2.90 0.410 0.325 0.000 
T2 1.56 0.913 1.024 0.001  2.77 0.517 0.296 0.000  2.69 0.410 0.392 0.000 
T3 1.65 0.913 0.956 0.001  2.56 0.517 0.339 0.000  2.50 0.410 0.490 0.000 
T4 1.77 0.913 0.884 0.001  2.42 0.517 0.382 0.000  2.42 0.410 0.553 0.000 
T5 1.90 0.913 0.823 0.001  2.25 0.517 0.448 0.000      
T6 1.81 0.913 0.862 0.001  2.13 0.517 0.514 0.000      
T7 2.04 0.912 0.773 0.001                     
RUN 4               
T1 1.64 0.949 1.006 0.002  2.08 0.639 0.694 0.000  3.42 0.482 0.274 0.000 
T2 1.72 0.949 0.962 0.002  1.88 0.639 0.933 0.001  2.97 0.481 0.348 0.000 
T3 1.67 0.949 0.987 0.002  2.03 0.639 0.746 0.000  2.73 0.481 0.423 0.000 
T4 1.77 0.949 0.937 0.001  2.18 0.639 0.612 0.000  2.60 0.481 0.482 0.000 
T5 1.88 0.949 0.893 0.001  2.40 0.639 0.496 0.000  2.42 0.481 0.611 0.000 
T6 1.82 0.949 0.915 0.001  2.28 0.639 0.554 0.000      
T7 1.94 0.949 0.873 0.001  2.21 0.639 0.595 0.000      
T8 2.09 0.948 0.831 0.001                     

 
 

 

wave as measured by the wave wire. Use of the shortest period 
also produces the best regression statistics. However, even the best 
case values of r2 and the Hm ratios decrease substantially as the 
depth of the pressure transducers increases. For example, the 
average r2 values for the best results in each run decrease from 
0.92 at PT 1 to 0.59 at PT 2, and to 0.40 at PT 3.  The average 
values for the Hm ratios decreases with decreasing instrument 
depth: -15% at PT 1, -48% at PT 2, and -53% at PT 3.   

The average instrument depth-to-wave length ratio (d/L) for PTs 
1-3 calculated using the shortest periods for each wake are: 0.15, 
0.22, and 0.27, respectively. The d/L ratios are all well within the 
limit of 0.4 recommended by SIMPSON (1969) as being acceptable 
for the applicability of linear theory-based corrections. The ratios 
for PTs 1 and 2 are also within the stricter 0.23 criterion suggested 
by GRACE (1978). Our study indicates that errors exceeding 10% 
of the maximum wave height occur with a ratio of 0.15 found at 
PT 1. 
 

SUMMARY AND CONCLUSIONS 
 
Regression analysis indicates that the best corrections for depth 

attenuation, based on linear wave theory (Eqn. 1-5), are produced 
when using the shortest boat wake wave period. A comparison of 

maximum wave heights between the corrected pressure records 
and the wave wire records also indicates that the best results are 
obtained when using the shortest period. As the depth-to-
wavelength ratio increases, the ratio between the corrected PT and 
wave wire wave heights decreases, implying increasingly greater 
underestimate of the actual surface fluctuations.  

This study suggests that the short wavelength waves that are 
typical of boat wakes generated by small recreational watercraft 
mandate that a depth correction be used with pressure transducer 
records, even when the instruments are installed close to the mean 
water surface. Even then, the corrected records will underestimate 
actual wave heights, despite values of d/L were well within the 
limits commonly ascribed for linear wave theory. This suggests 
that the waves within a boat wake are not easily amenable to 
analysis using linear theory, or alternatively, that values of N 
larger than unity, although not otherwise indicated, might be 
necessary for boat wake analysis.  
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Figure 1. Estimated surface fluctuations from PT 1 (dash), PT 2 (black), PT 3 (gray), and wave wire (bold).  
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