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ABSTRACT OF THE DISSERTATION

Towards Optimal 3D Reconstruction and Semantic Mapping

by

Guoxiang Zhang
Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2021

Professor YangQuan Chen, Chair

3D reconstruction and semantic mapping are of great importance for many tasks
and applications, such as consumer robots, augmented reality, digital heritage, and
autonomous vehicles. Despite the drastic advancements in solving the 3D reconstruction
problem, it is still challenging to reconstruct accurate 3D models and create semantic
maps. Within this dissertation, contributions are made to take steps closer towards
optimal 3D reconstruction and semantic mapping.

It is crucial to have an easy performance evaluationmethod for advancing 3Dmapping
systems. Thus, in Chapter 5, we propose dense map posterior (DMP) for 3D reconstruc-
tion and mapping performance evaluation that can work without any ground-truth data.
With this metric, one can evaluate 3D mapping systems on any public or new data
without worrying about the availability of ground-truth data captured by expensive and
bulky equipment. We also show that the DMP can be used beyond the evaluation of
final results. It can act as a supervisory figure-of-merit signal during 3D reconstruction
processes.

To improve 3D reconstruction results, we propose a novel 3D reconstruction system
that corrects surface loops with sparse feature-based bundle adjustment. In the system,
fast 3D surface-based loop detection is done by a GPU-accelerated random sample
consensus algorithmwith optimized randomness supported by fractional calculus, which
is in Chapter 3. Then, to solve a low-precision problem in surface loop detection, in
Chapter 4, an online method for loop sifting is proposed for real-time feedback to
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users. For the best 3D reconstruction performance, an offline method for loop sifting
and majorization is proposed in Chapter 6. State-of-the-art performance is observed in
experiments on public and our datasets.

In Chapter 7, an exploration of semantic mapping is carried out. A simple and
effective real-time 3D semantic mapping method is proposed. In addition, a benchmark
suite with a dataset derived from the KITTI dataset and three novel metrics are developed
for semantic mapping evaluation.

Finally, conclusions and future works are presented in the last chapter.
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Chapter 1

Introduction

3D reconstruction and semantic mapping are of great importance for many tasks
and applications, such as consumer robots, augmented reality, and autonomous vehicles.
For the 3D reconstruction problem, research has been done in the literature. Existing
methods can be classified into two categories based on their computational speed: online
3D reconstruction method and offline 3D reconstruction method.

1.1 Online 3D reconstruction

Visual simultaneous localization and mapping (Visual SLAM or vSLAM) can pro-
duce 3D reconstruction results in a real-time manner. It has been studied actively by
researchers from different fields, such as robotics, computer vision, and computer graph-
ics [14]. They solve this problem with their emphases and preferences, which lead to
diverse visual SLAM systems [80, 114, 108, 95]. Sparse feature-based SLAM sys-
tems [80, 107] are well developed because sparse features can be used to downsample
data from sensor reading (e.g. images) to sparse data representation as image keypoints
and feature vectors. This means less computation since data from different frames are
matched solely based on feature vectors of their keypoints. Extended Kalman filter or
particle filter-based filtering approaches [30, 79] can take keypoints as visual landmarks
and solve vSLAM as a data filtering process. A drawback of this approach is that the
filter cannot be re-optimized again based on all previous data. Then, maximum a poste-
riori (MAP) based approaches are used to optimize all observed camera data in a batch
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setting [80], which utilizes bundle adjustment (BA) from Structure fromMotion [17, 29],
to achieve a better accuracy [80]. In order to run BA for loop closure, the loops need to
be detected. In the sparse image feature setting, Bag-of-words (BoW) based loop closure
is widely used. But it gives a high portion of false loops, which may severely degrade the
performance of a vSLAM system, so very strict loop filtering is often used [80], where
many loops are rejected. This causes a big problem when there are many loopy motions
in camera movement.

Another line of vSLAM research focuses on surface reconstruction. With the par-
allel processing power of GPU, Newcombee et al. proposed KinectFusion [83], which
performs real-time dense 3D camera tracking and model fusion. It has a volumetric
scene representation, which can be rendered to a depth map at a given camera pose.
Tacking is done through a frame-to-model projective iterative closest point (ICP), which
is parallelized on GPU for real-time performance. Finally, new camera data is fused
into the volumetric model using a running average. KinectFusion can be considered of
fusing very local loops together using the model it maintains as a proxy, but it does not
close large loops. To close large loops, it is important to detect loops and find relative
poses between loop areas. In BoW, image keypoints and features are used for both loop
detection and relative pose generation, but in dense 3D systems, there is no such com-
parably reliable point cloud feature. Whelan et al. use BoW in a dense SLAM system
called Kintinuous [113], which is an extended KinectFusion system. Later, to better
solve the loop detection and optimization problem, ElasticFusion [114] was proposed
to use ICP to find relative poses of potential loops, which are proposed by using two
sources of information: spatial prior and appearance-based place recognition. After
surface loop detected, in Kintinous, a pose graph of keyframes was utilized, while the
authors mentioned that mesh deformation was required to get smooth 3D models, which
indicates loop correction is not done optimally. In ElasticFusion, the pose graph is
replaced by a deformation graph distributed inside the dense model. This deformation
graph does not have a backing physical meaning, because most of the scenes scanned are
not elastic. BundleFusion [29] used bundle adjustment to optimize loops, but they do
not close surface loops. Instead, they close sparse feature loops and only use the dense
surface for feature correspondence search and tracking.
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One important work in RGB-D-based 3D reconstruction literature is KinectFu-
sion [57], which first combines projective ICP and volumetric scene representation
to build a real-time dense 3D reconstruction system on a GPU. It first reveals the poten-
tial of a real-time dense 3D reconstruction system. Then Kintinuous [113] extends it so
that it works on a scale larger than a single room. Later, Whelan et al. propose Elastic-
Fusion [114], which is based on deformation graphs and can jointly minimize geometric
and photometric error. We discuss it in detail to get more insights into real-time 3D
reconstruction systems.

In ElasticFusion, surfels [92] are used as a data representation of 3D models. Each
surfel has seven attributes: position, normal, color, weight, radius, initialization times-
tamp, and last updated timestamp. With a radius property, a surfel can represent a locally
flat surface around a given a position p. After recovering the poses of a new RGB-D
frame, the new data is incrementally fused into the 3D model while minimizing visible
holes. It divides all the surfels inside the model into two parts: active area and inactive
area. The active area is the area that was most recently observed within a period of
time δt, and the inactive area is the rest part of the 3D model. They split the model
into two parts for the purpose of closing loops. For every new frame, it will try to
register incoming data to the active model using projective data association to projected
RGB-D data from the currently camera pose estimate. Then it minimizes a combination
of Euclidean distance error of corresponding points and photometric re-projection error
to update the camera pose estimate.

It also has two levels of loop closure: local loop closure and global loop closure.
Local loops aim to remove small mismatches between two model parts, while global
loops realign surfels that belong to the same place after a big drift. Local loops are
identified by attempting to register the observed part of the active model from the current
estimated camera pose with the underlaid observed portion of the inactive model. This
is done for each frame. If this registration is successful, a local loop is identified. Global
loops are recognized using appearance-based place recognition based on the randomized
fern encoding [45]. After a loop is identified, underlying deformation graphs will be
optimized to get a deform 3D model to minimize error while keeping deformation as
small as possible. Figure 1.1 is a result during the online processing of ElasticFusion.
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ElasticFusion like systems can provide reasonably good results. We can observe that
the processed results will fail in some situations, such as image blur during fast motion,
especially fast rotation, and flat areas without color variations.

Figure 1.1: Result of online 3D reconstruction of a mock-up cave [126].

1.2 Offline 3D reconstruction

Other than different approaches to improve real-time performance, another branch
of 3D reconstruction method is offline processing, which aims to achieve the best 3D
reconstruction result by considering all the information jointly [119, 18, 128]. Structure
frommotion (SfM) [2, 24] and multi-view stereo (MVS) [101, 38, 39] have been actively
explored, and they can be used to recover 3D models from sets of images. After the
emerging of RGB-D cameras, Xiao et al. [119] run 3D SfM on both depth and RGB
images. They extract and match image features across images and then get their 3D
coordinates from depth images. After that, SfM is conducted using 3D coordinates of
keypoints.

Choi et al. [18] produce good results among offline methods. They first use RGB-D
visual odometry from Kintinous [113] to merge several frames into a scene fragment.
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They do this under the assumption that RGB-D odometry is reliable in the short term,
and it has two advantages. First, multiple sensor reading can average out high-frequency
noise; Second, it can reduce the amount of computation by having fewer pieces of 3D
models. Then it runs pairwise point cloud registration between all the pairs using a
modified version of [100], which is the most time-consuming part of this method. This
process will produce a relative pose between each pair. Among these poses, most are
false positive ones, which means either that these pairs should not be register together
or the relative poses are far from ground truth ones. The authors propose to use line
processes to filter out these false positives by adding one weight term to each loop closure
during least-squares optimization, which utilizes [1] as a back end. Finally, loop closures
whose weights are smaller than a threshold are pruned. The remaining loop closures
are used to construct the final model. This process turns out to be very effective in
improving the precision of pairwise registration and quality of final 3D models. This
method can improve the overall 3D reconstruction in terms of surface root mean square
error (RMSE). We show one of the results of this method in Fig. 1.2.

Figure 1.2: An offline refined 3D model of a mock-up cave [126].
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1.3 Loop detection

1.3.1 Handcrafted feature-based approaches

Handcrafted features are first used for the loop closure detection problem. In 2007,
Cummins andNewman [25] proposed a probabilistic framework for navigation using only
appearance data, extended in [26, 27]. By learning a generative model of appearance,
they can compute not only the similarity of two observations, but also the probability
that they originate from the same location, and hence compute a probability density
function (PDF) over observer location. In 2005, Wang et al. [111] present a coarse-to-
fine global localization approach. Scale-invariant transformation feature descriptors as
natural landmarks are indexed into a location vector space model (LVSM) and a location
database. They are designed for two stages: coarse localization from the LVSM is fast,
but not accurate enough, whereas localization from the location database using a voting
algorithm is relatively slow, but more accurate. This system is tested in indoor and
outdoor environments. In 2006, Ho and Newman [52] proposed an approach that relies
instead upon matching distinctive ‘signatures’ of individual local scenes to prompt loop
closure. In this work, they started using scale-invariant feature transform (SIFT) [75]
image features and constructing visual vocabulary by clustering algorithms. They tested
their algorithm on a dataset collected from an outdoor environment, which contains 155
images and laser scans.

In 2008, Angeli et al. propose an online method to run visual words-based loop
detection within the framework of an online image retrieval task [3]. They made it
possible to detect when an image comes from an already perceived scene using local
shape and color information. Their approach extends the bag-of-words method used
in image classification to incremental conditions and relies on Bayesian filtering to
estimate loop-closure probability. Later, Angeli et al. [4] extend their work to be
real-time capable. In 2011, Williams et al. [115] describe a relocalization module, in
which relocalization is performed by first using a randomized lists classifier to establish
landmark correspondences in the image and then random sample consensus (RANSAC)
to determine the pose robustly from these correspondences.

Anotherwidely used approach, DBOW[40], is proposed byGalvez-Lopez andTardos
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in 2012, which use BoW for visual place recognition with FAST keypoint detector and
BRIEF features. For the first time, they build a vocabulary tree that discretizes a
binary descriptor space, and use the tree to speed up correspondences for geometrical
verification. It shows competitive results in very different datasets. After [40], there
are new attempts that try to make improvements on top of previous work, including
attempts to makemodifications on bag-of-words in [85, 43, 121, 3, 22], making improved
detection by image sequences [7, 49, 53, 76, 6]. There are also works that try to make
BoW run faster by working memory [67], visual memory using a Fuzzy ART [96],
online binary feature [42], online vocabulary building [85], Gaussian Mixture Model
with KD-tree [12], Sparsity-Cognizant with convex optimization [68] and online BoW
with group similar images close in time [43].

There are also attempt to detect loops with more than a single image, including topo-
logical loop closure [34], image-to-image link recovery [54], hypothesis verification [60],
object graph [89], and sequence-submap-based long-term [49, 48] loop detection. Some
works try to improve loop detection precision with loop verification threshold learning
in RANSAC based on geometric [69]. Others try to make improvements for special
environments, such as dynamic environment [122], very large scale environment with
20 million key locations [116].

1.3.2 Learning-based approaches

After convolutional neural networks (CNN) and CNN features became the dominat-
ing method in vision-related tasks, research works try to build loop detection systems
on top of CNN. The default way to try it is to use CNN features as the feature descriptor
for similarity search. [55] use a pre-trained CNN model as a method of generating
an image representation appropriate for visual loop closure detection. [117] utilizes
PCANet features, while CNN features are processed before matching in [127]. An SVM
is combined with CNN features in [118]. CNN features are weighted with hand-crafted
features in [48]. Combining covisibility graph with CNN features is proposed in [16].
Using CNN feature with submaps [94] is also experimented.

There is another line of work trying to build special CNN architecture for loop
detection. Siamese networks are adapted for similarity search in [74]. An end-to-end
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network is proposed in [74] to jointly optimize the two parts in a unified framework for
further enhancing the interworking between these two parts. First, a two-branch siamese
network is designed to learn respective features for each scene of an image pair. Then a
hierarchical weighted distance (HWD) layer is proposed to fuse the multi-scale features
of each convolutional module and calculate the distance between the image pair. Finally,
by using the contrastive loss in the training process, the effective feature representation
and similarity metric are learned simultaneously.

1.4 Challenges

Even though significant progress has been made to solve the 3D reconstruction
problem, it is still challenging to reliably and efficiently reconstruct accurate 3D models
and create semantic maps. First, sensors, such as RGB-D cameras, have a limited field of
view andworking range, which can bring in two problems: 1)more 3Dmodel pieces need
to be fused together; 2) each view only covers a small portion of the scene with limited
information. These two problems make tracking prone to failure, especially when some
areas of a scanned environment do not have enough shape and color variations. Second,
environments usually contain sophisticated geometric structures and objects, and must
be scanned from complex camera trajectories for better coverage, which means one place
may be observed multiple times from different view angles. In theory, this should give
more opportunities to minimize reconstruction error by detecting and optimizing loop
closures. However, in practice, it often causes problems due to false loops added.

1.5 Dissertation contribution

The major contributions of this dissertation include, but are not limited to the fol-
lowing:

1. Developed a novel 3D reconstruction system that corrects surface loops with sparse
feature-based bundle adjustment.

2. Proposed a fast 3D surface-based loop detection method, which is based on a new
CUDA-accelerated point cloud registration algorithm.
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3. Proposed a method that utilizes optimized randomness in random sample consen-
sus (RANSAC) for point cloud registration.

4. Proposed a novel objective function for surface loop sifting with a sparse fea-
ture-based optimization graph. This graph is more robust to different scan patterns
and can cope with tracking failure and recovery.

5. Proposed ametric, densemap posterior (DMP), for 3D reconstruction andmapping
performance evaluation that can work without any costly ground-truth data.

6. Proposed an offline algorithm that can sift loop detections based on their impact
on loop optimization results.

7. Proposed a simple and effective real-time 3D semantic mapping method. This
method takes per-frame bounding box detections and sensor (camera) extrinsic
transformation estimates as inputs and produces a set of static 3D bounding boxes
in a world coordinate system as 3D semantic mapping results.

8. Derived a new semantic mapping benchmark dataset from the KITTI object track-
ing dataset. In the new benchmark, ground-truth semantic maps are constructed
based on GPS-IMU data and labeled 3D bounding boxes of KITTI.

9. Proposed three novel semantic map-centered metrics for better evaluation of se-
mantic mapping methods.

1.6 Dissertation organization

This dissertation is structured as follows. The research motivations and contribu-
tions are introduced in Chapter 1. In Chapter 2, we introduce preliminaries for 3D
reconstruction.

In Chapter 3, a method that utilizes optimized randomness in RANSAC is proposed.
The proposed method samples data with a Lévy distribution on ranked data. In the
hypothesis sampling step of the method, data are ranked with a sorting metric we
proposed, which sorts data based on the likelihood of a data point being from the inlier
set. Then, hypotheses are sampled from the sorted data with Lévy distribution.
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In Chapter 4, we propose a novel 3D reconstruction system for 3D reconstruction of
caves. It corrects surface loops with sparse feature-based bundle adjustment. To build
such a system, we propose a novel objective function for surface loop filtering with a
sparse feature-based optimization graph. This graph is more robust to different scan
patterns and can cope with tracking failure and recovery.

In Chapter 5, we propose a metric, dense map posterior (DMP), for 3D reconstruction
and mapping performance evaluation that can work without any ground truth data.
Instead, it calculates a relative dimensionless value, reflecting amap posterior probability,
from dense point cloud observations.

In Chapter 6, an algorithm for offline sifting and majorization of loop detections is
proposed and presented. With this algorithm, only correct and essential loops are fed into
the following optimization steps. The proposed method highly couples with the dense
map posterior (DMP) metric presented in Chapter 5 that can evaluate 3D reconstruction
performance without ground truth measurement. Our proposed algorithm can compare
the usefulness and effectiveness of different loops and ultimately sifts out false and
unimportant loops.

In Chapter 7, a simple and effective real-time 3D semantic mapping method is
proposed. In addition, a benchmark suite with a dataset derived from the KITTI dataset
and three novel metrics are developed for semantic mapping evaluation.

Finally, Chapter 8 concludes the dissertation with discussions of future research
directions.

1.7 Results reproducibility

Code for the methods presented in this dissertation will be published here https:
//gzhang8.github.io/3DMapping/ so that readers can reproduce the results more
easily.

https://gzhang8.github.io/3DMapping/
https://gzhang8.github.io/3DMapping/


Chapter 2

Preliminaries

2.1 Camera model

2.1.1 Pinhole camera model

A pinhole camera model is shown in Fig. 2.1. A camera could be approximated by
a projective model, often called pinhole projection. The simplest representation of a
camera is a light sensible surface (sensor): an image plane, a lens (projective projection)
at a given position and orientation in space. The distance between the image plane and
the principal point O is the focal length f .

Let P = [X, Y, Z]T be a point on a 3D object visible to the pinhole camera. P will
be mapped or projected onto the image plane, resulting in point P ′ = [X ′, Y ′]T , which
follows

Z

F
=
X

X ′
=
Y

Y ′
. (2.1)

When considering that there is a translation and scale factor in order to convert to digital
image space {

u = αX ′ + cx = fx
X
Z

+ cx

v = βY ′ + cy = fy
Y
Z

+ cy,
(2.2)

which can be written in matrix form
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P = (X, Y, Z)

z = f
O

y

x

v

u

(u, v)

Figure 2.1: Pinhole camera model

K is the camera intrinsics, which can be obtained from a camera datasheet or calibration
process. p = [u, v, 1]T is a homogeneous coordinate for point [u, v]T , such that any point
[x, y]T becomes [x, y, 1]T . Similarly, any point [x, y, z]T becomes [x, y, z, 1]T . This
augmented space is referred to as the homogeneous coordinate system. For simplicity,
we define u = π(P ;K) as the camera projection function.

A camera can also have a camera extrinsic matrix T , which denotes the translation
between the camera and the world coordinate system. Applying both, one can obtain

p = KTPw, (2.4)

where Pw is a point in the world coordinate.
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2.1.2 Stereo camera model

With a single pinhole camera, it is difficult to get the precise position of a point
because depth z is unknown from only one image. One way to recover depth z is to
use more than one camera to get observations of the same point. A stereo camera is
one of these types of cameras. It has two pinhole cameras which usually share y and z
axes. Considering that a point P in space is observed by both cameras with observations
denoted as pR and pL. Since the two cameras are placed only differently on the x-axis,
pR and pL only have a difference on u readings in digital image space. We denote them
as uR and uL separately. Then we get

z − f
z

=
b− uL + uR

b
, (2.5)

which leads to
z =

fb

d
, (2.6)

where d = uL − uR is called disparity. b is the baseline between the two cameras.

2.2 Scene representation

One key component to high-quality 3D reconstruction is the choice of underlying
representation for fusing multiple sensor measurements. Approaches range from point-
based representations [119], surfels [92, 51, 114], to volumetric approaches [57, 18, 128].

There are two types of point clouds: organized or unorganized. An organized point
cloud is a point cloud with a structure in it, like a point cloud transferred from depth data.
In an organized point, nearby points can be easily found by its structure, which enables
projective ICP [99] for fast registration. One problem of point clouds is that when
merging multiple point clouds, even points in the overlapping region will not merge with
their neighbor points, so the data size of point-cloud models can be very large, which
makes it unpractical to use. Also, it is difficult to visualize, since points do not have a
size property.

Due to the aforementioned problems of point clouds, volumetric methods, which
are based on implicit truncated signed distance functions (TSDF), have become widely
used for high-quality 3D reconstruction [57, 18, 128]. These volumetric methods model
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continuous surfaces, regularize noise using running average, and efficiently perform
incremental updates. However, one major drawback of the volumetric representation is
that it is uniform for all places. Thus, it requires a huge amount of memory to be stored.

Another scene representation is surfels, where each surfel has the following attributes:
a position p∈R3, normal n∈R3, color c∈N3, weight w∈R, radius r∈ R. The radius
of each surfel is to represent the local surface area around a given point while minimizing
visible holes. Surfels can be used to optimize color consistency [51] andmodel reflection
and lighting conditions [114].

2.3 Camera tracking

In order to build a 3D model from a sequence of RGB-D frames, the first step is
usually to build an initial camera trajectory estimate from camera tracking [119, 18]. We
describe the basics of camera tracking in the following.

Sparse feature-based methods

Sparse feature-based camera tracking solves camera tracking by extracting image
keypoints and then matching keypoints by their feature vectors, such as Oriented FAST
and rotated BRIEF (ORB) [98] or SIFT [75] feature vectors. After feature points are
matched, a perspective-n-point (PnP) problem [36] is solved to get the relative trans-
formation from the previous frame to the current camera frame. The PnP problem can
be solved by direct linear transform, efficient PnP solvers, or bundle adjustment solvers.
The bundle adjustment formulation of the camera tracking problem is to minimize re-
projection errors between frames, as in:

E(T k,k−1, {P}) =
n∑
i=1

||ui − π(T k,k−1Pi;K)||2 (2.7)

where Pi is a point in the previously built sparse map, and ui is the observation of point
Pi. This objective function is a non-linear quadratic function, which can be minimized
by the Levenberg-Marquardt algorithm.
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Direct methods

Direct methods target to minimize a photometric error, in other words, the image
intensity difference between the current color image frame Ik and the predicted color
image from the frame Ik−1. The aim is to find the motion parameters T k,k−1 that
minimize the error E as in:

E(T k,k−1) =
∑
u∈Ik

||ik−1(u′)− ik(π(T k,k−1P ;K))||2, (2.8)

where ik(u) is a function that takes image intensity at a homogeneous point u from the
image Ik.

In the cases that both RGB and depth are available, (2.7) and (2.8) can be combined
to get better results.

2.4 Optimization

The bundle adjustment (BA) problem can be solved as a least-squares optimization
of an error function that can be represented by a graph, as in Fig. 2.2. When more than
one connection is added to the optimization of bundle adjustment, it can be solved by a
pose graph. Each node of the graph represents a state variable to optimize. Each edge
between two variables represents a pairwise observation of the two nodes it connects.
For a pose graph, it tries to solve the following minimization problem:∑

i,j∈ε

eTijΣ
−1
ij eij, (2.9)

where eij is an error term, and Σij is the covariance matrix.
It can also be formed as a factor graph, where the objective is to maximize a

posterior probability. A factor graph is a bipartite graph consisting of factors connected
to variables. The variables represent the unknown random variables: camera pose x
and landmarks l in the estimation problem, whereas the factors represent probabilistic
information on those variables, derived from measurements z or prior knowledge. This
can be written as

argmax
x0

∏
P (xk|xk−1, uk)

∏
P (zk|xi, li). (2.10)
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Figure 2.2: Bundle adjustment problem as a graph
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2.5 Point cloud registration

Point cloud registration has been extensively explored [58, 120, 100, 93], and its
definition is the following. Let two 3D point-sets P = {pi}, i = 1, ..., N and Q =

{qj}, j = 1, ...,M , where pi, qj ∈ R3 are point coordinates, be the data point-set and
the model point-set respectively. The goal is to estimate a rigid motion with rotation
R ∈ SO(3) and translation t ∈ R3, which locates the optimal value of the following
L2-error E,

E(R, t) =
N∑
i=1

ei(R, t)2 =
N∑
i=1

‖Rpi + t− qj∗‖2, (2.11)

where ei(R, t) is the per-point residual error for pi.
A popular and widely used method is the so-called iterative closet point (ICP) [5]

method, which uses alternate optimization. First, given R and t, the point qj∗ ∈ Q is
denoted as the optimal correspondence ofpi, which is the closest point to the transformed
pi inQ, i.e.

j∗ = argmin
j∈{1,..,M}

‖Rpi + t− qj‖. (2.12)

Note the notation used here: j∗ varies as a function of (R, t) and also depends on
pi. Second, equation (2.11) is minimized using correspondence found in previous
steps. Equations (2.11) and (2.12) actually form awell-known chicken-and-egg problem:
if the true correspondences are known a prior, the transformation can be optimally
solved in closed-form; if the optimal transformation is given, correspondences can also
be readily found. However, the joint problem cannot be trivially solved. Given an
initial transformation (R, t), ICP iteratively solves the problem by alternating between
estimating the transformation with (2.11), and finding closest-point matches with (2.12).
Such an iterative scheme only guarantees convergence to a local minimum [11].

Since ICP can produce an accurate result when initialized near the optimal pose, but
is unreliable without such initialization. Yang et al. [120] provide a globally optimal
solution by using a branch-and-bound (BnB) scheme that searches the entire 3D motion
space SE(3), which is much slower than standard ICP. Zhou et al. [128] use Fast Point
Feature Histogram feature descriptor to generate point correspondences and do not need
to update correspondences during iterations in order to reduce computational complexity.
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2.6 Chapter summary

In this chapter, we presented several key concepts in 3D reconstruction and semantic
mapping. They are camera projection models, 3D scene representation, camera tracking,
back-end least-squares optimization, and point cloud registration. Now we are ready to
present our key innovations in 3D reconstruction and semantic mapping. We start with
fractional order RANSAC for point cloud registration, a key technique used in our
proposed system for surface loop detection.



Chapter 3

Fractional Order Random Sample
Consensus

3.1 Introduction

Motivated by the fact that humans can notice mismatches in 3D models very easily
by looking at the spatial displacement of surfaces, we propose to detect surface loops
in addition to image loop detections. To formulate surface loop detection formally, we
denote a surface fragment as a set of points with their normal. Then the surface fragment-
based loop detection problem can be solved by point cloud registration methods. In a
3D reconstruction system, it is desired to get results quickly. In ElasticFusion [114],
Whelan et al. resort to projective ICP, which can be performed very quickly on GPU.
But, when surface mismatches are big, the initialization-dependent nature of ICP makes
it difficult to converge to the right solution. So we turn to global point cloud registration
in our framework, which does not depend on initial alignment at all. We find that a point
cloud registration method [18] has desired performance except that it does not run fast
enough for online SLAM methods. In order to solve this problem, improvements from
two aspects are made to make it faster: 1) algorithm level with better randomness in
random sample consensus (RANSAC), and 2) parallel implementation on GPU.

The RANSAC [36] is a robust model parameter estimation algorithm that can work
with data which contain a large proportion of outliers. Due to its robustness to out-
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liers, RANSAC is widely used in many fields including signal estimation [86], image-
stitching [19], visual odometry [63], pattern detection [59] and point cloud registra-
tion [125, 124].

However, the RANSAC algorithm requires long computation time [86] because it
needs to test a large number of hypotheses to find a good model. The number of
hypotheses is set by a formula that depends on the number of inliers. But, in practice,
the number of inliers is typically unknown. Thus RANSAC may be used with fewer
iterations. Also, the probability of getting a correct model estimation dramatically
decreases when the initial inlier ratio is low [71]. Moreover, it has been observed that
a noise-contaminated outlier-free hypothesis may lead to a bad model estimate, which
further requires more hypotheses to be tested [21].

In algorithm level, we propose a method that utilizes better randomness in RANSAC.
The proposed method samples data with a Lévy distribution on ranked data. In the
hypothesis sampling step of our method, data are ranked with a sorting metric we
proposed, which sorts data based on the likelihood of a data point being from the inlier
set. Then, hypotheses are sampled from the sorted data with Lévy distribution.

This Lévy distribution-based sampling strategy improves the probability of sampling
a good hypothesis thus increase the chance of finding correct solutions. On the other
hand, our method can converge to correct solutions with a similar probability with
a smaller number of iterations. Our experiments on simulation and real-world data
confirm the advantage of our method.

At the implementation level, we propose a new CUDA-accelerated acceleration of
the improved RANSAC algorithm. We accelerated the most time-consuming parts using
GPU programming with an efficient nearest neighbor search method. Traditionally,
RANSAC is formulated as an iterative process with proved convergence [36]. But
different iterations and different hypotheses can be considered to be totally independent
of each other. This means different hypotheses can be mapped to different processing
cores to be tested in parallel. Experiments show that it is fast enough for online use.
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3.2 Related work

After RANSAC [36] proposed by Fischler and Bolles, research has been done to
improve its performance. LO-RANSAC [21] proposes a local optimization step after
the minimal sample model, which is helpful in correcting an incorrect assumption
that a model computed from outlier-free samples is consistent with all inliers. In
MLESAC [109], Torr and Zisserman proposed a new way of accessing model quality by
choosing the solution that maximizes the likelihood rather than just the number of inliers.
It is reported to be superior to the inlier counting of the plain RANSAC and less sensitive
to threshold setting [8]. A differentiable RANSAC layer is introduced in [13] that can
be used in neural networks in an end-to-end manner, which provides promising results.
Latent RANSAC [65] presents an approach that can evaluate a hypothesis independent
of input size. This method is based on the assumption that correct hypotheses are tightly
clustered together in the latent parameter domain.

Among all the different improvements on RANSAC, a few of them are closely related
to our method. PROSAC [20] orders the set of correspondences by a similarity function.
Its samples are drawn from progressively larger sets of top-ranked correspondences.
EVSAC [37] proposes a probabilistic parametricmodel that allows assigning a confidence
value to each matching correspondence and thus accelerates iterations with hypothesis
models. In NAPSAC [81] a new sampling strategy is proposed under the assumption
that inliers tend to be closer to one another than outliers. GroupSAC [84] assumes that
there exists some grouping between features in data. The grouping can come from prior
information such as optical flow based clustering. To utilize this information, a binomial
mixture model is introduced for sampling. Compared with these previous works, our
method has a totally different sampling strategy with Lévy distribution.

3.3 The proposed method

The overall steps of our proposed fractional order RANSAC (FO-RANSAC) algo-
rithm, as shown in Algorithm 3 and Fig. 3.1, has a similar structure to RANSAC but
with additional ranking and nonuniform sampling steps. First, data association results
X of input data are ranked with a similarity metric. Then hypothesis samples are drawn
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Figure 3.1: Diagram of the proposed fractional order RANSAC. The FO-RANSAC has
a similar structure to RANSAC but with additional ranking and nonuniform sampling
steps.
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from ranked data with a nonuniform distribution rather than a uniform distribution as
in the plain RANSAC. These hypotheses are tested to get a set of inlier points. Finally,
the model which leads to the largest inlier set is selected as the result. For details of the
ranking and sampling steps, we describe them in Secs. 3.3.1 and 3.3.2 respectively.

Algorithm 1: Fractional order RANSAC algorithm
Input : X , kmax, τ
Output
:

θ∗, I∗

1 k ← 0, I∗ ← ∅
// Data ranking

2 X r ← rank(X , by = similarityMetric)
3 while k < kmax do

// Hypothesis generation

4 Sample a subset ofm points with Lévy distribution from X r

5 Estimate model parameters θk
// Verification

6 Ik ← findInliers(X , θk, τ)

7 if |Ik| < |Imax| then
8 θ∗ ← θk, I∗ ← Ik
9 end
10 k ← k + 1

11 end

3.3.1 Data association ranking

In many RANSAC use cases, input data are fed into a data association step, such as in
image matching and point cloud registration. For these cases, it is beneficial to explore
useful information for better convergence in an equal or fewer number of iterations. In
our proposed method, we rank these correspondence pairs in descending order in terms
of the likelihood to be an inlier pair. Ranking data helps to put good pairs of point
matches to the front and the ones that are more likely to be the wrong ones to the end.
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Different ranking methods may be chosen for different problems. In section 3.5, we
provide a simple yet efficient ranking metric for point cloud registration problem.

3.3.2 Nonuniform sampling

Lévy distribution is a probability distribution that is both continuous, for non-negative
random variables, and stable [46]. The Lévy distribution is a heavy-tailed distribution
because its tail probabilities decaymore slowly than those of any exponential distribution.
This heavy-tailedness of the Lévy distribution has a direct connection to fractional
calculus [88]. Thus, we call the proposed method fractional order RANSAC. The Lévy
distribution follows the probability distribution function as in (3.1).

f(x;µ, c) =

√
c

2π

e−
c

2(x−µ)

(x− µ)3/2
, (3.1)

where c is the scale parameter (c > 0) and µ is the location parameter. It is meaningful
when x ≥ µ.

We sample from Lévy distribution such that it can give more weight on top-ranked
correspondences while not leave the less likely ones behind. It can also approximate
uniform distribution so that it can degenerate to the plain RANSAC in the worst case.

A special step needs to be considered because hypothesis sampling is integer index
sampling. These indices are within a range. To solve this, we sample from truncated
Lévy distribution in range [0,m]. Then we scale the random numbers to [0, n] and
round them to the nearest integer. With the truncated Lévy distribution that follows a
probability distribution function (PDF) as (3.1), we can get PDFs of different shape if
they have different parameters. In Fig. 3.2, when we truncate and normalize the PDFs
within (0, sample range) with different µ, we get different curves. When µ → ∞, the
curve is flatter thus more similar to the PDF of a uniform distribution.

3.4 Simulation

In order to test the performance of different hypotheses sampling strategies, we
create a simulation that is informative and easy to perform. In this simulation, a vector of
Boolean is generated as input data. This vector simulates a set of feature correspondences
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Figure 3.2: PDFs of Lévy distribution within (0, 100) for c = 1 with different parameter
µ values. By adjusting µ, we can get different variations of nonuniform distribution.

with true as an inlier pair and false as an outlier pair. This vector is generated in a
way that the indices of true elements follow truncated Lévy distribution.

In our experiments, we create Boolean input vector data using Lévy distribution with
µ = −10 and c = 1. The Boolean vector will have true value on Lévy sampled index
positions and false on all the other locations. We use 3000 as the length of data and
300 is the number of inliers.

We evaluate eight different hypothesis sampling strategies:

• Uniform distribution

• µ = {−1,−50,−102,−103,−104,−105,−106}, c = 1 for Lévy distributions

We also change number of samples in a hypothesis from {2, 3, 4} and number of hy-
potheses from {102, 103, 104, 105, 106} to explore performance difference under different
coverage settings.

We run experiments with all the configurations specified above and plot results in
Fig. 3.3. Under all the different sampling strategies, the Lévy distribution with µ = −1

performs the best, much better than uniform sampling distribution. In Fig. 3.3 (a),
when the number of hypotheses goes up, the results become less diverge. But when
the hypothesis number is low, a more skewed distribution leads to a better result. More
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(a) Sample size 2 (b) Sample size 3

(c) Sample size 4

Figure 3.3: Number of unique outlier-free hypotheses under difference experiment
configurations
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interestingly, In Fig. 3.3 (c), the performance is better with 105 hypotheses tested when
u = −1 than the rest of u values even with an order of magnitude more hypotheses
tested.

3.5 Point cloud registration

We further evaluate our method on the point cloud registration problem. We use
the augmented ICL-NUIM point cloud registration dataset [18] to quantitatively analysis
performance of our method. This dataset has four sets of point clouds and groundtruth
rigid transformation between all possible point cloud pairs that overlap more than 30%.
The evaluation metrics are precision and recall defined as in (3.2):

precision =
TP

TP + FP

recall =
TP

TP + FN

(3.2)

where TP is true positive; TN is true negative; FP is false positive and FN is false
negative. Both precision and recall are the higher the better.

For data association ranking in point cloud registration, we use a simple yet efficient
ranking metric. Given a pair of feature vectors (x1, x2) from two points, we have

r =
∣∣{(x1, x2) : ‖(x1 − x2)‖2 < τ 2

d

}∣∣ . (3.3)

Equation (3.3) maps the feature vector pair to a metric space r ∈ R by counting
the number of data points that fall in the hypersphere spanned by radius τd such that
r > r′ when p(x1, x2) > p(x′1, x

′
2), where p(x1, x2) denotes the probability of the point

correspondence pair being a correct one. τd was set to an empirical value of 12 in all our
experiments. One may tune this parameter with training data on a new dataset.

3.5.1 Experiments on the Aug-ICL-NUIM dataset

We compare the performance of our proposed method to the baseline RANSAC that
samples from a uniform distribution. We run experiments on this dataset with different
sampling distributions. We first use the same setting as in section 3.4: eight Lévy
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(a) Recall

(b) Precision

Figure 3.4: Recall and precision of RANSAC on Aug-ICL-NUIM data with our hand-
crafted ranking method. All the performance results are from the average of 20 Monte
Carlo runs. For each subfigure, the marks on the right most axis are the performance of
the uniform distribution. One can see that there are a few µ values that lead to better
recall results than the baseline. There is consistency in the performance along µ. The
performance starts low when µ is very small. Then it goes up when µ is around −50.
Then converge to the performance of uniform distribution. From this figure, we can see
a clear performance benefit. More importantly, from the performance curves, we notice
that the best value for µ is consistent across all the data sequences, which means that the
method generalizes well on different data.
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(c) 4,000,000 iterations

Figure 3.5: Average recall results of 10 runs on the Aug-ICL-NUIM data. The matrix
plots are a visualization of recall performance of our nonuniform sampling strategy
subtracted by uniform baseline recall. For each matrix cell, green means nonuniform
sampling performing better and red means the uniform baseline method working better
andwhite colormeans two samplingmethods have a similar performance. Each subfigure
is for a total iteration number configuration. From the three subfigures, one can see that
the performance improvement of our method is greater when RANSAC runs a smaller
number of iterations.
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distributions and one uniform distribution. Experiments are repeated for 20 times to
remove the influence of randomness on the final results. Results are shown in Fig. 3.4.
Each curve is for a point cloud set.

In the results, we value more on a better recall because precision can be improved by
post-processing, but recall cannot. We can see that there are a few µ values that lead to
better recall results than the baseline. There is a consistency in the performance along
µ. The performance starts low when µ is very small. Then it goes up when µ is around
−50. Then converge to the performance of uniform distribution. From Fig. 3.4, we can
see a clear performance benefit. More importantly, from the performance curves, we
notice that the best value for µ is consistent across all the data sequences, which means
that the method generalizes well on different data.

We further evaluate the effect of different scale parameter values for Lévy distribution
by changing the sampling range. This sampling range was set to seven different values:
{1, 2, 6, 10, 102, 103, 104}. Combined with the seven µ values from section 3.4, we get
50 configurations: 49 Lévy distribution configurations plus uniform sampling. After
evaluation, the results, visualized as heatmaps in Fig. 3.5, show that there are several
configurations that can lead to better recall performance. Another interesting observation
is that these good configurations are continuous in an area. Thus applying a search
algorithm becomes possible. Also, when comparing with just one parameter Lévy as in
Fig. 3.4, the green area goes from top right to down left, which means it does not lose
too much improvement if we only search on the location parameter µ.

We also test the influence of number of iterations for RANSAC in Fig. 3.5. The
subfigures (a), (b), and (c) are from experiments with a different number of RANSAC
iterations: 104, 105, and 4×106 respectively. From the three subfigures, one can see that
the performance improvement of our method is greater when RANSAC runs a smaller
number of iterations. This agrees with the results of the simulations. It means that the
proposed method provides a way to lower the number of iterations with less performance
penalty.
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3.5.2 Experiments on the KITTI dataset

To evaluate the proposed method on real-world Lidar data in an autonomous driving
scenario, we run experiments on the 3D visual odometry / SLAM dataset of the KITTI
benchmarks [44] which is widely used for testing algorithms for autonomous vehicles.
This 3D visual odometry / SLAM dataset consists of 22 stereo sequences, with a total
length of 39.2 km. Each sequence contains images, LiDAR point clouds, and ground
truth camera trajectories generated from IMU-RTK GPS data.

Figure 3.6: KITTI scene fragments visualization. We merge every k = 50 consecutive
LiDAR frames into a scene fragment. Then these scene fragments are transformed to the
world frame with the ground-truth trajectory. Each color represents a scene fragment.

We further process this dataset to fit our point cloud registration evaluation purpose.
Similar to how the Aug-ICL-NUIM dataset [18] is generated, we merge every k = 50

consecutive frames into a scene fragment, then a transformation is generated from the
ground-truth camera trajectory. Registration ground truth data are generated when a
pair of fragment shares more than 50% of matched points, which are defined as nearest-
neighbor points within ε when they are transformed to the world frame. There are 11
sequences that have ground-truth trajectories publicly available. We use four sequences:
00, 02, 05, 08 because other sequences do not have enough number of frames for
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Figure 3.7: Average recall results of 10 runs on the selected KITTI sequences. The
matrix plots are visualization of recall performance of our nonuniform sampling strategy
subtracted by uniform baseline recall. For each matrix cell, green means nonuniform
sampling performing better and red means the uniform baseline method working better
and white color means two sampling methods have a similar performance. The results
in these subfigures show that the proposed method performs better than the uniform
baseline method in many cases for each sequence.
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meaningful evaluation.
We run experiments on our processed data with the 50 configurations specified in

section 3.5.1. The results in Fig. 3.7 shows that the proposed method performs better
than the uniform baseline method in many cases for each sequence.

To test generalization ability of selected Lévy parameters, we run experiments with
the best parameters from the Aug-ICL-NUIM dataset: (µ = −50, sample range(sr) =

100) and parameters for the best average result fromFig. 3.7: (µ = −106, sample range =

103), we get results in Table 3.1. We can see that even on a different dataset, the best
parameter selected on the Aug-ICL-NUIM dataset can provide a performance improve-
ment. This parameter generalization ability enables making parameter selection on a
dataset with ground truth and then gets improvements on a new dataset with no ground
truth information.

Table 3.1: Recall performance of selected Lévy parameters vs. uniform sampling.
Recall (%) 00 02 05 08 Average
Uniform 48.8 64.3 51.1 32.0 49.1
Ours (µ = −50, sr = 100) 48.5 67.1 51.9 31.6 49.8
Ours (µ = −106, sr = 103) 49.3 73.6 49.6 33.2 51.4

3.6 Fast GPU implementation

To make RANSAC run faster, we accelerated the most time consuming parts using
GPU programming with an efficient nearest neighbor (NN) search method, and that
normal checking is moved from pre-rejection part into hypotheses testing. Traditionally,
RANSAC is formulated as an iterative process with proved convergence [36]. But
different iterations and different hypotheses can be considered to be totally independent
to each other. This means different hypotheses can be mapped to different processing
cores to be tested in parallel.

As shown in Algorithm 2, point clouds are downsampled to the resolution of the
typical precision of RGB-D sensors to reduce unnecessary computation. Fast Point
Feature Histograms (FPFH) features are extracted for each point in P and Q for point
correspondence pairs generation. To make nearest neighbor search more efficient, we
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Algorithm 2: Global Registration on GPU
Input: A pair of point cloud P andQ
Output: TQP if P andQ can be aligned together

1 Downsample P andQ; Compute FPFH features F (Q) and F (Q);
2 TQP ← I; feature_NN_cache← ∅; Quadruple point set samples SP ← ∅ ,

SQ ← ∅
/* Parallel FPFH feature pre-matching */

3 parallel for i← 1 to P _count do on GPU cores
4 feature_NN_cache[i]← NN of F (pi) in F (Q);
5 end
/* Randomly sample hypotheses on GPU */

6 parallel for i← 1 to P _count do on GPU cores
7 SP [i]← randomly picked (p0,p1,p2,p3) from P ;
8 forall (p0,p1,p2,p3) do
9 qj ← NN of pj inQ using feature_NN_cache[j]

10 end

11 end
12 Stream compact non-rejected hypotheses;
/* Consensus for the remaining quadruple pairs */

13 parallel for i← 1 to remain_number do on GPU cores
14 Estimate transformation TQP from SP [i] to SQ[i] ;
15 Find all inliers under TQP hypothesis;
16 test_log ← inlier ratio, fitness score

17 end
/* Get final result from test_log */

18 Find the Hypothesis that has max inlier ratio and fitness score > threshold in
test_log.

19 if Hypothesis found then
20 return its TQP ;
21 end
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pre-cached all the nearest neighbors of P in Q using FPFH feature distance. Then, for
each hypothesis, 4 points are randomly sampled from P , and their correspondences are
found through the pre-cached nearest neighbors. After that, a pre-rejection step, which
rejects hypotheses whose point pairs cannot make a similar polygon, is performed. τ is
a similarity threshold and set to 0.9 in all our experiments. Then, hypotheses testing,
the most time consuming step, tests both inlier ratio and fitness score on GPU. When
implement it, we test each hypothesis on a thread block with efficient parallel reductions.
For the NN search during hypotheses testing, we utilized a 3D grid to replace the k-d
tree to fit special need of a GPU, since a GPU will slow down when different threads
go to different code branches during k-d tree search. We propose to use a 3D grid for
NN search, given that the point clouds to be searched only span in a limited area. This
guarantees that we can use a grid with limited size for NN searching without jeopardizing
searching accuracy. When a point is stored into the search grid, the ix, iy, iz indices of
its cell is calculated by (3.4).

ix = (xp − xc)/l,
iy = (yp − yc)/l,
iz = (zp − zc)/l,

(3.4)

where the xc, yc, zc are the coordinate of the center of target point cloud. l is the cell
edge length of the NN 3D grid. It is subtracted so that the translation of point cloud does
not affect searching. When a point wants to query its nearest neighbor, the searching is
accomplished through table looking up, which has a time complexity ofO(1), given cell
edge length the same as point cloud downsample resolution. It is faster than the k-d tree
which has a O(log n) time complexity. We observed speedup by only replacing k-d tree
with 3D search grid in CPU only code. More importantly, there is no branching during
searching, so it fits much better on a GPU than the k-d tree.

3.6.1 Results

We run experiments to compare speed performance against the CPU baseline method
implemented by CZK [18] on redwood pairwise registration evaluation dataset by Choi
et al. We report results in Table 3.2. For both methods, we use the same hyper-parameter
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values as in published code of [18]: 0.05 as point cloud downsampling leaf size, 0.1
m as normal estimate radius, 0.25 m as FPFH feature estimate radius, 4,000,000 as
hypotheses count and 0.075 m as maximum point correspondence distance. We use an
Intel i7-6850K clocked at 3.6 GHz and an NVIDIA Titan X Pascal for our evaluation.

Our global point cloud registration can finish in around 20 milliseconds, which is
around 366 times faster than CZK as in Table 3.2. With this speed, it can run at 50 Hz,
which means we can process more loop candidates.

Table 3.2: Computational performance evaluation of different point cloud registration
methods. Execution time in milliseconds per point cloud pair

CZK on CPU Ours
Living room 1 7606.20 24.71
Living room 2 7469.58 18.19
Office 1 7556.02 21.63
Office 2 7418.12 17.45
Average 7512.23 20.50

3.7 Chapter summary

In this chapter, we propose a RANSAC based algorithm that samples data with a Lévy
distribution after data ranking. The proposedmethod is evaluated on both simulation and
real-world public datasets. In experiments, our method shows better results compared
with the uniform baseline method.

In the future, data-driven approaches for the ranking algorithm can be explored
so that the ranking becomes more accurate, which enables more skewed nonuniform
distributions.

We also propose a new CUDA-accelerated acceleration of the improved RANSAC
algorithm. We accelerated themost time-consuming parts using GPU programmingwith
an efficient nearest neighbor search method. Experiments show that it is fast enough
for online use. The algorithm implementation can finish in around 20 milliseconds on a
NVIDIA Titan X Pascal GPU.



Chapter 4

Online Sifting of Loop Detections for
3D Reconstruction of Caves

4.1 Introduction

It has long been recognized that cave sites often contain the best-preserved material
in the archaeological record. Cave archaeology has developed its methodologies for
mapping and recording sites, yet few sites are mapped to true 3D models because it is a
slow and tedious process for archaeologists to record and book-keep caves. They need
to incrementally set up baseline along the cave and then measure the distance from the
baseline to cave walls or objects of interest and mark walls or objects in a 2D map by
hand [126]. This slow process has a major negative impact on cultural relic preservation.
Typically, archaeological teamswill visit a site and begin to record it in one year, but when
they come back to finish data collection it has been looted, artifacts stolen, architecture
destroyed and the archaeological record disturbed. Therefore, archaeologists need a
faster, more efficient method of surveying and recording the sites.

To accelerate cave mapping, a system that can automate the process needs to be
developed. In this system, we first focus on building globally consistent and accurate
3D models using RGB-Depth (RGB-D) data recorded with unmanned aerial vehicles
(UAVs).

Motivated by the fact that humans can notice mismatches in 3D models very easily

37



38

Figure 4.1: A photo shows that our team members are collecting RGB-D data in a cave
at Las Cuevas, Belize.

by looking at the spatial displacement of surfaces, we propose to resolve mismatches
directly by closing surface loops to get a consistent 3D model and a precise camera
trajectory estimate in the vSLAM system. After surface loops detected, instead of
optimizing surface directly to propagate correction introduced by surface loop, in this
chapter, the surface loop correction is done through sparse feature bundle adjustment,
so that all the past camera poses can be corrected based on their observations. By
running extensive experiments on different datasets, we observed that combining sparse
features with surface loop closure can produce better results. Not only 3D models get
improved, but also camera trajectories estimate becomes more accurate. This is because
our framework can detect loops in the dense surface domain and optimize loops in the
sparse feature domain. Note that our framework can detect surface loops, yet other
means of detecting loops can still be utilized.

In the following, we summarize the key contributions of our method:

1. We propose a novel 3D reconstruction system that corrects surface loops with
sparse feature-based bundle adjustment. We demonstrate that this novel system
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can give much-improved camera tracking and dense modeling results.

2. We propose a novel objective function for surface loop filtering with a sparse
feature-based optimization graph. This graph is more robust to different scan
patterns and can cope with tracking failure and recovery so that there is more
flexibility for UAVs to fly and record data. In addition to the flexibility, experiments
show that it performs better than state-of-art methods when only a limited number
of loops are detected.

4.2 Overview of the proposed system

The method proposed aims at producing accurate 3D models by detecting and opti-
mizing surface loops in sparse feature-based visual SLAM systems. By adding surface
loop closure into a vSLAM system, we can get globally consistent and optimal 3D mod-
els. With our proposed algorithms, we build a novel system with five components: 1)
tracking, 2) surface model fusion, 3) fast surface loop detection, 4) surface loop filtering,
5) loop optimization.

Tracking. We employ the tracking part from ORB-SLAM2 [80], which is a very
well implemented sparse feature-based SLAM system. Inside this tracking module, the
Oriented FAST and Rotated BRIEF (ORB) features are extracted for keypoint matching.
Then frames are tracked against keyframes with motion estimate and then refined with
a local sparse map. Keyframes are generated when tracking is weak, or the local
bundle adjustment thread is free. Local BA is used to correct the re-projection error
of feature correspondences among co-visible keyframes in a background thread. This
tracking module provides camera poses for each frame and a co-visibility graph across
keyframes.

Surface model fusion. We fuse surface models on a GPU using surfels as a map
representation similar to [61, 114]. Each surfel has a position p, normal vector n, radius
r, confidence c. We fuse keyframes within every k frames (k = 50 for all experiments)
into a surface fragment. These surface fragments are generated for two reasons. One
is to integrate out raw RGB-D data noise. Another one is to reduce the number of 3D
pieces, so that loop detection computation is accelerated. After each scene fragment is
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generated, for the later optimization process, it is linked to the keyframewhose timestamp
is closest to the first frame within the range.

Fast surface loop detection. The proposed surface loop detection is done by point
cloud registration on surface fragments. To detect surface loops effectively, the co-
visibility graph from tracking is utilized to pre-filter co-visible surface fragment pairs
that are already connected. Thus a majority of unnecessary computation can be avoided.
To detect surface loops efficiently, we propose using CUDA to accelerate point cloud
registration. Details of this acceleration is described in Chapter 3.

Surface loop sifting. After loop candidates are detected, They need to go through a
novel online loop sifting algorithm, so that false loops would not diverge the subsequent
optimization process. This is in section 4.3.

Loop optimization. After surface loops are detected and verified, the loop pairs are
used to connect pose graph vertices and also trigger more image loop detection, which
again uses spatial prior and ORB feature matching. Then, the pose graph is optimized to
give a coarse pose correction and then a full BA is performed in order to get optimally
fine-tuned camera trajectory estimate. Details are in section 4.4.

4.3 Online surface loop sifting

The results out of the surface loop detection algorithm in Chapter 3 have a low
precision problem. Choi et al. proposed to use a line process-based optimization to
solve it [18]. But that method requires scanning to be tracked fully successfully from the
beginning to the end, and each surface fragment cannot be empty. However, during a
long scanning session, it is almost impossible to guarantee that RGB-D cameras always
have surfaces observed within their effective range. A failure to maintain that will lead
to an empty surface fragment. Thus the graph vertices are potentially divided into more
than one sub-graph, which leads to erroneous optimization results. A similar problem
will occur when tracking failure is present in the tracking part, which will break the
optimization graph as well. To address this problem, we propose to minimize (4.1) in-
stead, which has a supporting optimization graph that is always fully connected whenever
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sparse features are matched from either tracking or failure recovery.

min
X,T,S

∑
c

∑
v∈V (c)

‖x̃cv −KT cwXv‖Σ

+ λ
∑
ij

f(T iw,T jw, sij|Kij)

s.t. 0 < sij < 1, for all i, j pairs,

(4.1)

where
f(T iw,T jw, sij|Kij)

=
∑

(pi,pj)∈Kij

∥∥Ψ(sij) · (pi − T iwT
−1
jwpj)

∥∥2

+ ||γij − sij||2Ωij .

(4.2)

The objective function is minimized over a set of point cloudX = {Xv ∈ E3} estimated
from sparse feature key points, camera trajectory T = {T cw ∈ SE(3)}, and a set
of switch variable S = {sij ∈ R}. The first term in (4.1) builds a least squares
optimization graph for bundle adjustment from sparse keypoint observations, whereXv

is the 3D coordinate of a point visible in the c-th camera. x̃cv is the 2D pixel observation
coordinate of the 3D pointXv. K is the camera intrinsics matrix. Σ is the covariance
matrix associated to the scale of the keypoint. The second term, weighted by a factor λ, is
surface loop connections with switchable constraints [105] with sij as a switch variable
for surface loop connection that connects keyframes i and j. Let Pi be the surface
fragment referred by keyframe i, Kij is the set of nearest neighbor correspondence pairs
between T−1

iwP i and T−1
jwP j that are within distance ε = 0.05 m, which is typical noise

level of RGB-D sensor.
In (4.2), Ψ(sij) is a switch function and we use a linear function Ψ(sij) = sij as

suggested in [105]. Ωij is information of switchable prior constraints. It controls the
influence of the loop candidate tested. Let T ij be the transformation that align all the pj
to related pi in Kij , i.e.

pi ≈ T ijpj, for all (pi,pj) ∈ Kij. (4.3)
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Then ∑
(pi,pj)∈Kij

∥∥Ψ(sij) · (pi − T iwT
−1
jwpj)

∥∥2

≈
∑

(pi,pj)∈Kij

∥∥Ψ(sij) · (pi − T iwT
−1
jwT

−1
ij pi)

∥∥2
.

(4.4)

To accelerate computation of (4.4), we follow an approximation proposed in [18]. The
local parameterization of T iwT

−1
jwT

−1
ij is represented with a 6D vector ξ = (ω, t)T =

(α, β, γ, x, y, z)T , which consists of three rotational angles α, β, γ and three translation
components x, y, z. Since its rotation is small under the assumption that the registration
result is good and camera pose estimates are not far away from the correct solution, the
approximations sin(θ) ≈ θ and cos(θ) ≈ 1 are utilized for all α, β, γ. Then

T iwT
−1
jwT

−1
ij pi ≈


1 −γ β x

γ 1 −α y

−β α 1 z

0 0 0 1

pi

=


1 −γ β

γ 1 −α
−β α 1

pi + t

=

I +


0 −γ β

γ 0 −α
−β α 0


pi + t

=pi + ω × pi + t

=pi − pi × ω + t.

(4.5)

Plug (4.5) into (4.4): ∑
(pi,pj)∈Kij

∥∥Ψ(sij) · (pi − T iwT
−1
jwpj)

∥∥2

≈
∑

(pi,pj)∈Kij

‖Ψ(sij) · (−pi × ω + t)‖2

=
∑

(pi,pj)∈Kij

‖Ψ(sij) · [−[pi]×|I] · ξ‖2

= ‖Ψ(sij) · ξ‖2
ΛL
,

(4.6)
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where
Λ2
L =

∑
(pi,pj)∈Kij

[−[pi]×|I]T · [−[pi]×|I] , (4.7)

where,

[−[pi]×|I] =


0 zpi −ypi 1 0 0

−zpi 0 xpi 0 1 0

ypi −xpi 0 0 0 1

 , (4.8)

where xpi, ypi, zpi are the three components of pi. Then our (4.2) becomes:

f(T iw,T jw, sij|Kij) = ‖Ψ(sij) · ξ‖2
ΛL

+ ||γij − sij||2Ωij . (4.9)

After optimizing (4.1), keyframes i and j should be connected as a loop if the optimized
value of switch variable sij is greater than a threshold.

4.3.1 Surface loop sifting evaluation

Experiment design. To understand the performance of the proposed method and
compare it with CZK, we run experiments on the Augmented ICL-NUIM dataset for
loop filtering evaluation. In the experiments, RGB-D frames are first fused into scene
fragments with implementation provided by CZK. Point cloud registration results from
CZK are used as loop detections. Two sets of experiments are conducted: One takes
all the successful point cloud registration results as loop detections, denoted as All pairs
in Table 4.1. Another set of experiments only consider point cloud pairs that are not
co-visible in ORB-SLAM2 tracking results as loop detections, which is denoted as Only
non-co-visible pairs in Table 4.1. A pair of scene fragments is co-visible if there are
any co-visible frames between two sets of frames contained in the two scene fragments.
This only non-co-visible set of loops is more close to practical use cases because the
co-visible pairs can be ignored for computational speed consideration and have been
well connected in SLAM systems, already.

Observations. When only non-co-visible pairs are presented, the proposed method
outperforms CZK in average precision, while recall is only 2% less. For office 1
sequence, our method gives better results in both precision and recall, while CZK output
only 62.5% precision. Such a low precision usually causes serious problems because
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too many false loops are wrongly involved in the loop optimization step. For the other
three sequences, our method gives competitive results. When all pairs are considered,
CZK performs so well that our method is closely under it. The difference is mainly in
recall, while precision difference is very small. Considering precision is more important
than recall for loop optimization, we would like to note that this minor difference rarely
impacts on the final loop optimization result.

In addition to the cases where our method performs better, note that our method
is less strict to use in practical scenarios, especially on a fast-moving UAV platform.
Because our method does not require maintaining RGB-D cameras facing surfaces all
the time, which it is required by CZK. This requirement difference is inherently implied
by underlying optimization pose-graphs.

4.4 Loop optimization

After a surface loop passing verification, map optimization is followed to reduce
mismatches and errors. We employ pose-graph optimization and new data association
and finally run a full bundle adjustment to get a maximum-a-posteriori (MAP)-based
optimization to correct the camera trajectory estimate and thus improve the 3D model.

When a surface loop pair {i, j} pass loop verification, we then try to find data
association in the sparse feature domain. This is done by first retrieve all the co-visible
keyframes for both keyframe i and j noted asFi andFj . Then collect all the local sparse
map points {Xp}i and {Xp}j that are observed by Fi and Fj respectively. Then data
association between {Xp}i and {Xp}j is constructed by both distance in image feature
space and Euclidean space. After that, we run RANSAC to filter out outliers in the
matches and also improve the transformation T ij . If this process converges with enough
inlier matches, we add a loop connection for keyframe i and j. And update keyframe
connections by merging the observations of matched sparse map points. These merged
map points will help improve during the final BA process. If it does not converge,
we still add a loop connection with the T ij . We do this because in some cases, even
though the areas related to keyframe i and j do not have enough sparse map points for a
good matching result, a loop connection can lead to a better initial start point for bundle
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adjustment.
Finally, a full bundle adjustment is performed for all the keyframes and observed

map points by optimizing:

min
∑
c

∑
v∈V (c)

∥∥x̃cp −KT cwXv

∥∥
Σ
. (4.10)

4.5 Evaluation of the full 3D reconstruction system

In addition to experiments in the fast surface loop detection section and surface loop
filtering section, extensive experiments are performed to evaluate the proposed full 3D
reconstruction system on multiple datasets: our Maya cave dataset, augmented ICL-
NUIM [18], TUM RGB-D dataset [104], SUN3D dataset [119] and some other public
data sequences. Comparisons are made with other online and offline methods. There
are many SLAM algorithms and implementations. Here, we choose baseline methods
in a way that they can best show the characteristics of our proposed system: We choose
ORB-SLAM2 [80] since we use the tracking part of it and offline method CZK [18]
because our loop filtering part is inspired by it. We denote the tracking part of ORB-
SLAM2 as tracking and full ORB-SLAM2 as ORB-SLAM2 in all experiments. Results
of baseline methods are from original papers or their authors when available.

4.5.1 Maya cave dataset

The Maya cave dataset is a dataset collected by a team of archaeologists using an
RGB-D sensor Kinect V1 in Maya caves at Las Cuevas, Belize. LED lights are used to
light up the environment as in Fig. 4.1. In this dataset, caves are scanned with a loopy
motion for more loop optimization.

Experiment design and baseline methods. We evaluate modules of both tracking
and loop closure from different approaches on the data we collected.

For RGB-D data, there are two major different camera tracking methods, which
are sparse feature-based and dense frame-to-model approaches. We choose the ORB-
SLAM2 as the implementation for the sparse feature tracking and the ElasticFusion for
the dense frame-to-model implementation. In experiments for tracking, both imple-
mentations have their loop closure disabled so that the difference can reflect tracking
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(a) ElasticFusion RGB-D tracking (b) ElasticFusion Depth tracking

(c) ORB-SLAM2 tracking

(d) ElasticFusion full (e) ORB-SLAM2 full

(f) Ours

Figure 4.2: Results on the chamber-floor-walking sequence. RGB-D (a) and depth (b)
tracking of ElasticFusion do not work reliably on cave data. Also, it is almost impossible
for them to recover from the errors in the full system (d), because there are no strong
data associations. The tracking part of ORB-SLAM2 (c) performs relativly well but
the full system (e) failed to connect a few important loops so that the cave floor gets
seperated into two layers. In (f), the proposed system produces the best result with no
major mismatch.
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(a) Ours (full view)

(b) ElasticFusion RGB-D
tracking (full view)

(c) ElasticFusion Depth tracking
(zoom in)

(d) ORB-SLAM2 tracking (zoom in)

(e) ElasticFusion full
(zoom in)

(f) ORB-SLAM2 full (zoom in) (g) Ours (zoom in)

Figure 4.3: Results on the chamber-entrance data sequence. A full view of the site is
shown in (a). RGB-D tracking in ElasticFusion failed to provide meaningful results as
in (b). For other methods, zoom in views of green region marked in (a) are compared.
Visually, the proposed system (g) provides similarly good results to depth tracking (c),
while full ElasticFusion (e), ORB-SLAM2 tracking (c) and full system (f) all have
mismatches in their results.
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(a) Our result on the chamber-alcove data sequence

(b) Our result on the chamber-cave-floor data sequence

Figure 4.4: Our results on other two data sequences. All methods can provide meanful
results with minor differences.
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performance. In tracking of ElasticFusion, there is one important parameter that controls
the weight of RGB in tracking. We use the default 10 for RGB-D tracking, and a number
greater than 100 that can disable RGB completely so that the tracking is totally based on
the depth. For loop closure, there are three different types. ElasticFusion is using Ferns-
ICP based approach. ORB-SLAM2 utilized BoW. Our point cloud registration-based
surface loop detection approach is the third type compared.

Observations on tracking. From Figs. 4.2 and 4.3, we can see that RGB-D tracking
of ElasticFusion does not work reliably on cave data, especially compared with the
case when it uses depth only. We think this is due to the moving light source. RGB-
D tracking calculates a transformation matrix partially by minimizing the intensity
difference of two aligned images, which assumes the lighting condition of scenes is
static. The ElasticFusion depth tracking working quite well in most cases excepts on the
chamber-floor-walking data sequence. We can see that, in Fig. 4.2 (b), a half of the floor
data get rotated around 90 degree clock-wise. It is almost impossible for a dense direct
tracking to recover from the error, due to that there are no strong correspondences. The
tracking of ORB-SLAM2 performed very well in all the data sequences, and it provides
the possibility of globally optimize the map. The robustness of feature-based tracking
implemented by ORB-SLAM2 is the reason that we use it as our tracking module.

Observations on loop detection and optimization. When we compare the per-
formance of loop closure, our surface-focused method performs the best. It connects
important loops in all the four sequences. The difficult data is the chamber-floor-walking
one, shown in Fig. 4.2. Neither ElasticFusion nor ORB-SLAM2 tracks the camera tra-
jectory correctly. Even after their loop closure, mismatches are still significant. Our
method shows its robustness by reconstructing consistent 3D models on all data.

4.5.2 Augmented ICL-NUIM dataset

We use the augmented ICL-NUIM dataset [18] to quantitatively analyze the per-
formance of our system. This dataset is a synthetic dataset with ground-truth surface
models and camera trajectories. It has two indoor scenes: a living room and an office,
and four RGB-D sequences, two sequences for each scene.

Experiment design. Evaluation metrics are camera trajectory translation RMSE
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(a) CZK (b) ORB-SLAM2

0.1m

0m(d) Tracking (e) Ours

Figure 4.5: Distance error map of reconstructed models from different methods against
ground-truth on Living room 1 data sequence. One can see our results have the lowest
error across the whole model.
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described by Handa et al. and the mean distance of the reconstructed surfaces to the
ground-truth surfaces in the same way as Whelan et al. We report them separately in
Table 4.2 and Table 4.3. Since different systems use different ways to fuse 3D models,
for a fair comparison, we fuse 3D models using ElasticFusion using the same parameters
with a camera trajectory estimate from each system. We use truncating depth distance
of 4 meter and 10 as the surfel confidence threshold for fusion.

Table 4.2: Mean surface reconstruction error (in meters) on augmented ICL-NUIM
sequences

Livingroom 1 Livingroom 2 Office 1 Office 2 Average

CZK 0.033 0.028 0.019 0.022 0.026
Tracking 0.031 0.022 0.019 0.014 0.022
ORB-SLAM2 0.017 0.010 0.015 0.013 0.014
Ours 0.007 0.007 0.013 0.010 0.009

Table 4.3: RMSE (in meters) of estimated camera trajectories

Livingroom 1 Livingroom 2 Office 1 Office 2 Average

CZK 0.10 0.13 0.06 0.07 0.09
Tracking 0.14 0.05 0.05 0.03 0.07
ORB-SLAM2 0.10 0.03 0.04 0.03 0.05
Ours 0.03 0.02 0.03 0.02 0.03

Observations. From Table 4.2 and Table 4.3, our system can give best results on
all data sequence in terms of both trajectory and surface estimation accuracy. To give
a more informative comparison, we report an error map of the reconstructed model in
Fig. 4.5 on Livingroom 1 data sequence. We can see our results have the lowest error
across the whole model. Our method performs better because more loops get detected
for improving the final loop optimization results. In ORB-SLAM2, the loop detector
has trouble detecting some important loops because its consistency check can hardly
be satisfied due to very local view overlappings. On the other hand, our surface loop
detector does not have this problem. Compared to CZK, the performance gain comes
from the advantage of sparse-feature based bundle adjustment optimization, which can
produce MAP results, thus more accurate camera trajectories and better reconstructed
3D models.
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(a) Tracking only

(b) With loop optimization

Figure 4.6: Results on sequence maryland_hotel3 of the SUN3Ddataset. We highlight
the mismatches in tracking results so that differences are easier to compare.
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(a) Tracking only

(b) With loop optimization

Figure 4.7: Results on sequence mit_dorm_next of the SUN3D dataset. We highlight
the mismatches in tracking results so that differences are easier to compare.
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(a) Tracking only

(b) With loop optimization

Figure 4.8: Results on sequence mit_lab_hj of the SUN3D dataset. We highlight the
mismatches in tracking results so that differences are easier to compare.
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(a) Tracking only

(b) With loop optimization

Figure 4.9: Results on sequence 76_studyroom of the SUN3D dataset. We highlight
the mismatches in tracking results so that differences are easier to compare.
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(a) Tracking only

(b) With loop optimization

Figure 4.10: Results on sequence mit_32_d507 of the SUN3D dataset. We highlight
the mismatches in tracking results so that differences are easier to compare.
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4.5.3 SUN3D dataset

The SUN3D dataset [119] is a large-scale RGB-D database that captures many
places. It containsmany data sequences. There are eight sequences http://sun3d.cs.
princeton.edu/listNow.html that are labeled with object annotations and widely
used for evaluating SLAM and 3D reconstruction systems. Since there is no ground truth
available, we follow this practice and run experiments on these sequences. We show
qualitative results in the form of screenshots of reconstructed 3D models in Figs. 4.6,
4.7, 4.8, 4.9 and 4.10.

For the sequences in Figs. 4.6, 4.7, 4.8, 4.9 and 4.10, we highlight the mismatches in
tracking results so that readers can better compare them with our results. For sequences
harvard_c5, harvard_c6 and harvard_c8, there is no loops detected on top of
tracking. So we do not include screenshots for them. Observations: SUN3D data
sequences are scanned with very loopy motion in some area but only once for some
other scene parts, thus is considered more difficult. Even though our method does
not produce perfect reconstructed 3D models, it dramatically removed some significant
mismatches. Also, our results are on par or better than other methods. Interested readers
may compare with the results of CZK on this webpage http://redwood-data.org/
indoor/models.html.

4.5.4 TUM RGB-D dataset

The TUM dataset [104] is an RGB-D dataset that is commonly used to evaluate
SLAM systems. This dataset has 39 RGB-D sequences recorded in office and industrial
environments with a large variety of camera motions and scenes. Along with RGB-D
sequences, ground truth camera trajectories that are recorded with a motion capture
system are also available. Following common practice, we run experiments only on
sequences that are commonly used for SLAM evaluation [80].

Observations. From the results listed in Table 4.4, it shows that for data sequence
fr1/desk, fr1/room, fr2/desk, and fr3/office our method makes improvement on
tracking and achieves competitive results comparing full ORB-SLAM2. Among these
sequences, fr1/room has high ATE error in tracking, and our surface loop significantly

http://sun3d.cs.princeton.edu/listNow.html
http://sun3d.cs.princeton.edu/listNow.html
http://redwood-data.org/indoor/models.html
http://redwood-data.org/indoor/models.html
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Table 4.4: TUM RGB-D dataset comparison absolute trajectory error (ATE) (m).

Sequence name ORB-SLAM2 Tracking Ours

fr1/desk 0.016 0.021 0.019
fr1/desk2 0.022 0.028 0.028
fr1/room 0.047 0.295 0.068
fr2/desk 0.009 0.016 0.015
fr2/xyz 0.004 0.011 0.011
fr3/office 0.010 0.025 0.013
fr3/nst 0.019 0.034 0.034

reduced the error. For the small performance difference, we think that it is due to the
implementation difference of the tracking part and that the difference only has only
marginal effects on reconstructed 3D models when ATE error is less than 0.02 as shown
in Table 4.5 and Fig. 4.3. For sequences fr1/desk2 and fr2/xyz, the tracking has
provided good enough results that most of the frames are connected in the co-visibility
graph such that there are no loops to be detected. The sequence fr3/nst is a scan of a
flat wall with rich texture but no geometry changes, so our method cannot detect surface
loops in it; thus, no improvement is made. The TUM dataset indicates that, even though
our method is designed for larger-scale environments with rich geometry changes, it can
produce competitive results for some small-scale environments.

4.6 Chapter summary

This chapter presents a novel 3D reconstruction system that maps both large archae-
ological caves and general indoor environments with RGB-D cameras. The proposed
system produces accurate 3Dmodels by detecting and optimizing surface loops in sparse
feature-based visual SLAM systems. By adding surface loop closure into a vSLAM
system, globally consistent and optimal 3D models are generated accurately. The pro-
posed system consists of five components: 1) sparse feature-based camera tracking from
ORB-SLAM2, 2) surface model fusion powered by Surfels, 3) a novel fast surface loop
detection algorithm, 4) a novel surface loop filtering method, and 5) loop optimization
based on sparse feature-based bundle adjustment.

In the surface loop filtering component part, a novel objective function is proposed
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to remove false-positive loops from entering the loop optimization step. The proposed
objective function formulates a least-squares pose-graphwith a bundle adjustment termas
the supporting backbone graph and robust least squares termswith switchable constraints
for surface loop detections. Due to the inherent difference in underlying optimization
pose-graphs, compared with its closely related work CZK, our method is less strict to use
in practical scenarios, especially on a fast-moving UAV platform. Because our method
does not require maintaining RGB-D cameras facing surfaces all the time, but CZK
requires it. In addition to the flexibility, the proposed method is benchmarked against
CZK on the Augmented ICL-NUIM dataset in terms of filtered loop detection precision
and recall. Experiments show that the proposed method performs better (with +37.5%

precision and equally better recall) than CZK when only a limited number of loops are
detected, and provides competitive performance on all other scenarios.

Moreover, experiments are conducted to evaluate the performance of the full novel
system on multiple datasets, including our Maya cave dataset, augmented ICL-NUIM,
TUM RGB-D dataset, SUN3D dataset, and some other public data sequences. The
results are evaluated with: absolute trajectory error or trajectory RMSE when ground-
truth camera trajectories are available, surface reconstruction error when ground-truth
3D models are accessible, and visual comparisons when no ground-truth is available.
The results show that sparse feature-based camera tracking performs the best in cave en-
vironments. The results also show that the proposed system produces the most reliable
and accurate 3D reconstruction performance when surface loops are detected, filtered,
and optimized on a sparse feature-based objective function. Other than in cave environ-
ments, experiments on other datasets show that the proposed system produces results
on-par or better than baseline methods.



Chapter 5

Dense Map Posterior: A Novel Quality
Metric for 3D Reconstruction

5.1 Introduction

Background andmotivation. Simultaneous localization and mapping (SLAM) [14,
80] and 3D reconstruction [124, 18, 41] methods have achieved dramatic advancements
recently due to the increasing need for autonomous vehicles and consumer robots. But,
it is still not an easy task to collect data for performance evaluation. Existing metrics
require additional ground truth data, such as ground truth camera trajectories or ground
truth 3D models, that need to be collected by special and expensive instruments, such
as motion capture systems, RTK-GPS, and LiDAR. This hardware requirement makes
it impossible to add ground truth to existing data. As a result, there are only a limited
number of datasets with ground truth information available [35].

To address this problem, some researchers turn to generate synthetic data from
graphical rendering on virtual scenes [78, 103]. This makes accessing ground truth
data easy, but it introduces new challenges to create realistic virtual environments and
camera trajectories. Some datasets [10, 28, 56] choose to use pseudo-ground truth
data which are generated by estimation algorithms, while some others resort to external
markers [62, 97].
Key contributions. In this chapter, we propose a metric, dense map posterior (DMP),

61



62

for 3D reconstruction and mapping performance evaluation that can work without any
ground truth data. Instead, it calculates a comparable value, reflecting a map posterior
probability, from dense point cloud observations. In our experiments, the proposed met-
ric is benchmarked against ground truth-based metrics. Results show that the proposed
DMP can provide a similar evaluation capability.
Significance. The proposed metric makes a broad impact to SLAM and 3D mapping.
We list a few major ones here:

1. It makes 3D mapping evaluation more flexible and easily accessible.

2. It provides a supervisory figure-of-merit signal for robust loop closure optimiza-
tion.

3. It helps build large real-world SLAM datasets with minimal effort.

4. It makes it possible to introduce self-supervised machine learning algorithms to
3D reconstruction methods.

5.2 Related work

When evaluating 3D mapping results, the common error metrics are the absolute
trajectory error (ATE) [80, 104, 114], the relative position error (RPE) [104], and
surface distance error [124, 18, 50, 114]. The ATE represents the difference between the
ground truth and an estimated trajectory in a common world frame. The RPE calculates
the relative relation differences between estimated and ground truth trajectories. The
surface distance error specifies themean andmedian of distances between a reconstructed
surface and a ground-truth surface. All these metrics require ground truth data that is
not trivial to collect.

The work closely related to ours is [90]. Olson and Kaess discussed using sparse
map posteriors for map evaluation, but they concluded that the posterior subjects to
over-fitting during the optimization process. Thus it is not reliable. In their formulation,
the sparse map posterior is calculated on a map of sparse landmarks. We agree that,
with sparse data only, it is not as reliable as ground truth-based metrics. However,
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in our method, we consider the posterior of a dense 3D map given geometry-related
observations. The over-fitting is no longer a problem.

5.3 Dense map posterior (DMP)

3D reconstruction and mapping methods usually take a set of sensor reading and
output both an estimated 3D model (e.g. mesh or surfels, etc.) M and an estimated
camera or LiDAR trajectory T. For simplicity, we denote M = {M,T} to include
both outputs. For the input sensor readings, we denote geometry related readings as Z,
where Z can be a set of depth images from RGB-D cameras or a set of point clouds from
LiDARs.

The idea behinds the proposed metric, dense map posterior (DMP), is to calculate a
value reflecting a posterior probability p(M |Z). For this calculation, DMP takes both
M and Z as evaluation input. Then, performance can be evaluated by comparing metric
values of different 3D reconstruction estimates {Mi}.

Because there is no direct way to calculate p(M |Z), derivations are made to get a
computable form. First, the Bayes’ rule is applied to get

p(M |Z) =
p(Z|M)p(M)

p(Z)
. (5.1)

Then, for the same set of observations Z, if there are two different 3D reconstruction
estimatesM1 andM2, we can get a ratio

p(M1|Z)

p(M2|Z)
=

p(Z|M1)p(M1)
p(Z)

p(Z|M2)p(M2)
p(Z)

. (5.2)

If we assume p(M1) = p(M2), we can simplify (5.2) to be

p(M1|Z)

p(M2|Z)
=
p(Z|M1)

p(Z|M2)
, (5.3)

where
p(Z|M) =

∏
Z∈Z

p(Z|M), (5.4)

where Z is a depth image or a single point cloud scan of LiDAR. Note that Z consists of
many independent observations (i.e., depth image pixels or 3D points). We denote each
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of them as z ∈ Z, then
p(Z|M) =

∏
z∈Z

p(z|M). (5.5)

Assume that z follows a Gaussian distribution:

p(z|M) ∼ N (z′, σ2) (5.6)

where z′ and σ are the mean and covariance of the Gaussian distribution. z′ is produced
by applying sensor model S(·) onM with the same observing configuration as z:

z′ = Sz(M) = Sz(M, Tz), (5.7)

where S(·) is a camera projection model for depth sensors and a range-bearing model
for LiDARs. Tz is the estimated sensor observing perspective for z. One can easily get
Tz from the estimated trajectory T. For numerical stability, we take log on both sides of
(5.3). We get a log-likelihood ratio (LLR)

LLR = log p(Z|M1)− log p(Z|M2). (5.8)

We define
r(M,Z) = − log p(Z|M). (5.9)

When LLR > 0, which equivalents to r(M1,Z) < r(M2,Z), M1 is more likely to be
better than M2 in terms of dense map posterior probability. This means that we can
compare different r(Mi,Z) directly. The lower, the better. To further simplify (5.9), one
can plug (5.4), (5.5), and (5.6) into (5.9) to get

− log p(Z|M) = − log

[∏
Z∈Z

∏
z∈Z

1

σ
√

2π
e−(z−z′)2/2σ2

]

=
∑
Z∈Z

∑
z∈Z

(z − z′)2

2σ2
+ L0,

(5.10)

where L0 is a constant. Since L0 is the same for the same set of Z, then (5.9) can be
simplified to be

r(M,Z) ∼ r(M,Z) =
∑
Z∈Z

∑
z∈Z

(z − z′)2
, (5.11)

where r(M,Z) is the proposed metric DMP, the lower, the better. To calculate its value,
one needs to provide a 3D reconstruction estimate M , sensor readings Z, and a sensor
model S(·).
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5.4 Evaluation of DMP – the proposed metric

To evaluate the proposed metric DMP, we conduct experiments to compare the
results of different metrics on multiple datasets: TUM RGB-D dataset [104] and Aug-
mented ICL-NUIM [18]. In all of our experiments, 3D models are fused using Surfels
implemented by ElasticFusion [114].

5.4.1 TUM RGB-D dataset

The TUM RGB-D dataset [104] is widely used for evaluating SLAM systems. The
dataset has RGB-D sequences with ground truth camera trajectories available. We run
experiments on a subset of sequences that are commonly used for SLAM evaluation [80].
Following [104], we adapt the absolute trajectory error (ATE) as the baseline metric.

For each data sequence, four 3D reconstruction estimates,M1,M2,M3, andM4 are
used as benchmarking data. These estimates are from SLAM systems with different
characteristics. The results are reported in Fig. 5.1. For better visualization,M1 toM4

are sorted with the ATE metric.
Key observation. In the results, the proposedmetric DMP can report the same ascending
order as the ATE metric in most cases. This means our metric can provide similar
evaluation results as the ATE.

5.4.2 Augmented ICL-NUIM dataset

The augmented ICL-NUIM (AIN) dataset [18] is a synthetic dataset with ground-
truth surface models and camera trajectories. Experiments are performed to quanti-
tatively compare performance of the proposed metric DMP with ground truth-based
metrics: trajectory RMSE and surface mean distance (SMD).

Results are reported in Fig. 5.2. Reconstruction estimates dataM1−M5 for evaluation
are from SLAM methods and ranked with the SMD metric. Key observations: Our
metric DMP positively correlates to SMD and Traj. RMSE, which means our metric
can provide almost the same ranking results as ground truth-based metrics. To further
visualize our metric, we include screen-shots of different 3D models and corresponding
DMP values in Fig. 5.3.
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Figure 5.1: Comparison of ATE and our metric DMP. For each sequence, curves of two
metrics follow almost the same ascending order, which means metrics have very similar
comparison results. The outlier case in (a) is discussed in section 5.4.3.
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Figure 5.2: Comparison of surface mean distance (SMD), trajectory RMSE (Traj.
RMSE), and the proposed metric DMP. Our metric DMP positively correlates to SMD
and Traj. RMSE, which means our metric can provide almost the same ranking results
as ground truth-based metrics. The two outliers can be avoided by overlapping scans.
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(a) M1, DMP: 14.9 (b) M2, DMP: 37.3

(c) M3, DMP: 48.5 (d) M4, DMP: 982.4

(e) M5, DMP: 2254.0

Figure 5.3: Visualization of estimated 3Dmodels of the livingroom 2 sequence and their
corresponding DMP values. In (a),M1 leads to the best 3D mapping quality among the
five estimates. There are not any noticeable mismatches. In (b), there are mismatches
at the upper right-hand corner. The lamp and sofa are not well reconstructed. In (c),
the sofa at the buttom of the image is not perfectly matched between frames. In (d), the
coffee table at the center is off. (e) shows a collapsed 3D model optimized with a false
positive loop.
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5.4.3 Ineffective cases

Among all the evaluations on the two datasets, there are rare cases where the pro-
posed metric DMP gives different results from ground truth-based metrics: M3 in
TUM/fr1/desk, M2 in AIN/office 1, and M2 in AIN/office 2. We believe that it
is because these data sequences have most of the space scanned only once without loopy
coverage. That is the case where our metric cannot handle perfectly. However, it is
simple to avoid this problem by adding overlapping scans.

5.5 Computational performance

Our metric can be efficiently parallelized using OpenGL and CUDA. In our imple-
mentation, on an NVIDIA Titan X Pascal, the average evaluation time is 2.7 s for a
TUM model and 4.2 s for an Augmented ICL-NUIM model. The speed can be further
improved if only a sampled subset of data frames are used for evaluation.

5.6 Chapter summary

In this chapter, we propose a metric, which can work without any ground truth data,
for evaluating 3D reconstruction and mapping performance. In our experiments, the
proposed metric DMP is benchmarked against ground truth based metrics. Results show
that DMP can provide a similar evaluation capability. The proposed metric not only
makes 3D mapping evaluation simpler, but also opens many new opportunities. We
envision that more can be done with this metric, such as self-supervised methods and
more available datasets.



Chapter 6

Offline Sifting and Majorization of
Loop Detections

6.1 Introduction

Due to rapid development in autonomous vehicles and consumer robots, there is
an increasing need for precise 3D maps for route and action planning and navigation.
Among 3D mapping methods, visual simultaneous localization and mapping (vSLAM)
and 3D reconstruction methods are very promising because they can map large-scale
environments such as cities and indoor environments without the need for much human
effort involved.

vSLAM and 3D reconstruction methods have gone through impressive progress.
In camera tracking, there are different methods, such as sparse keypoint point-based
methods [80, 32, 64, 29, 72], direct methods [131, 33], and dense surface-based meth-
ods [83, 114]. Additionally, IMU are added to methods [23, 110, 87, 130, 31, 73, 23]
to make tracking more accurate. Even though camera tracking algorithms have good
performance and low drift, the build-up error can still not be ignored [14]. To solve this
problem, loop closure detection [40, 26] and optimization [66] are often leveraged to
counter the problem, and it has provided plenty of improvements. However, the problem
is not fully solved yet. Intuitively, the more loops in data, the more information to recover
more precise camera trajectories and 3Dmodels. But, in practice, when running existing
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vSLAM systems on datasets with loopy motions, mismatches can always be found in the
final results. This means that loops are not successfully detected and utilized.

vSLAM systems tend to add the loops very conservatively to reduce the severe
influence of the false loops [14]. These conservative checks are the result of the non-
perfect precision performance of loop detection methods. There are high chances that
detected loops are incorrect ones.

To solve this challenging problem, we propose an algorithm that can sift and ma-
jorize loop detections so that only correct and essential loops are fed into the following
optimization steps. The proposed method highly couples with the dense map posterior
(DMP) metric [123] that can evaluate 3D reconstruction performance without ground
truth measurement. Our proposed algorithm can compare the usefulness and effective-
ness of different loops and ultimately sifts out false and unimportant loops. To the best
of our knowledge, the contributions of the proposed algorithm are:

1. The proposed algorithm can sift loop detections based on their impact on loop
optimization results.

2. It is the first algorithm that can marjorize loop detection only to keep the important
ones while ignoring the less relevant ones.

3. Experiments on public datasets show it outperforms state-of-the-art methods.

6.2 Related work

To avoid the severe consequence of optimizing with false loops, vSLAM and 3D
mapping systems tend to add the loops very conservatively. ORB-SLAM2 [80] requires
the presence of several consistent loops in consecutive keyframes to accept them, where
at least one keyframemust be shared in order to be classified as consistent. With this con-
sistency check, ORB-SLAM2 merely takes false loops into optimization but at the price
that plenty of correct loops are rejected. ElasticFusion [114] evaluates several character-
istics before taking a loop detection into optimization pipelines, including deformation
cost and final state of the Gauss-Newton system. Even after all the evaluations, a good
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loop is often rejected, and not rare to see that an incorrect loop is accepted. Bundle-
Fusion [29] filters loop correspondences with cascade checks including local geometric
and photometric consistency checks and check on correspondence residual after opti-
mization. The local depth discrepancy check shares a small similarity with our work.
However, the check is limited to a very local region with a downsampled depth resolution
together with a user-specified threshold. Thus it is not informed about the effect of loop
data correspondences impacting a full 3Dmodel. A requirement on a user parameter also
makes it ineffective and less adaptive. [32] do this by pruning edges after optimization
based on the discrepancy between the individual transformation estimates before and
after optimization. We share the idea of observing optimization consequences brought
in with a loop, but their impact is measured on a sparse graph while ours is observed on
a full 3D dense model.

Another approach to solving the problem is to treat false loops as outlier data and
decrease their impact on the optimization [70, 106, 1, 105]. They work well in some
cases, but the dependence on initial conditions and the ratio of outliers makes them prune
to failures. Choi et al. further develop this idea into an algorithm that is highly coupled
with the dense 3D reconstruction problemby specifying both pose graph construction and
least squares information calculation [18]. This method is very effective when a desired
camera scan pattern is followed but it requires keeping surface within camera range all
the time thus limiting its flexibility. It also suffers dependence on initial condition and
outlier ratio.

Due to the difficulty of balancing precision and recall of loop detections, SUN3D [119]
turns to a human-in-the-loop approach by labeling objects in scenes and connect the same
objects across frames. This method performs very well in terms of loop precision and
recall, but it requires too much effort in labeling; thus is not practical to process data on
a large scale.

6.3 The proposed method

To solve the loop sifting problem, we propose an algorithm specified in Algorithm 3.
In the algorithm, a given set of loop detections is denoted as O among which each
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individual one is denoted as O. The supporting optimization pose graph is denoted as
G. The sensor (e.g. camera and LiDAR) data are denoted as Z.

There are two parts in the algorithm. In the first part, all the loops are tested and
evaluated individually on the given initial pose graph. This step first runs optimization
with a single loop and then fuses a model with the optimized results Ti. Then a DMP
value r is evaluated for the fused 3D model M . This means that it tests each loop and
sees how much improvement it provides by itself. Finally, all these loops are ranked
by the calculated DMP value r in ascending order (more effective → less effective →
negative impacts).

In the second part, all the loops are tested and evaluated one more time, but in a
way that is different from the first time. In this part, the loops are tested in sorted order:
the ones that provide more improvements are tested first. When a loop can provide
performance improvement on the previous result, it will be added to an accepted set,
thus will also impact consequent loop tests. In this way, loops are accepted when they
can provide performance improvement on the current status. The first accepted one
should make an improvement to the original results from tracking.

6.4 Implementation

The proposed method is general and agnostic to loop detection and optimization
methods. Neither does it require a specific type of vSLAM system. For our experiments,
we choose several well know implementations.

6.4.1 Tracking and optimization pose graph

The proposed method requires an optimization pose graph as the input data. The only
requirement of the pose graph optimization is that it can handle loop closure optimization.
In our implementation, we use sparse image feature-based tracking and mapping method
implemented by ORB-SLAM2 [80] with loop detection disabled. The pose graph from
ORB-SLAM2 is utilized as the optimization graph for the proposed method. For the
purpose of loop sifting andmajorization, we find pose graph optimization is good enough;
thus, the more time-consuming full bundle adjustment is not included.
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Algorithm 3: Loop sifting and majorization algorithm
Input : O, G, Z
Output
:

filtered loops O∗

1 O∗ ← ∅, r∗ ← r(G,Z), r ← ∅
2 for i← 0 to len(O) do
3 Ti ← optimize(G,O[i])

4 M i ← fuseModel(Ti,Z)

5 r[i]← r(M i,Z)

6 end
// Ranking O by our metric

7 Or ← rank(O, by = r, order = descending)

// Try Or one by one and add the ones making improvements

8 for i← 0 to len(Or) do
9 O∗tmp ← union(O∗,O[i])

10 T′ ← optimize(G,O∗tmp)
11 M ′ ← fuseModel(T′,Z)

12 r′ ← r(M ′,Z)

13 if r′ > r∗ then
14 O∗ ← O∗tmp
15 r∗ ← r′

16 end

17 end
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The ORB-SLAM2 is a very well implemented sparse feature-based SLAM system.
Inside this tracking module, the Oriented FAST and Rotated BRIEF (ORB) features
are extracted for keypoint matching. Then frames are tracked against keyframes with
motion estimate and then refined with a local sparse map. Keyframes are generated
when tracking is weak, or the local bundle adjustment thread is free. Local BA is used to
correct the re-projection error of feature correspondences among co-visible keyframes
in a background thread. This tracking module provides camera poses for each frame and
a co-visibility graph across keyframes.

6.4.2 Model fusion

It is a important step to fuse camera reading data into dense 3D models . For this
step, surfels [92] are used as a data representation of 3D model. Each surfel has seven
attributes: a position p ∈ R3, normal n ∈ R3, color c ∈ N3, weight w ∈ R, radius
r ∈ R, initialization timestamp t0 and last updated timestamp t. With a radius property,
a surfel can represent a local flat surface around a given a position p.

Even though surfel fusion is fast with efficient implementation running on GPU,
it takes a considerable amount of time. To speed up the efficiency, we leverage the
advantage that surfels can easily be moved rigidly in space. We fuse k consecutive
frames scene fragments as basic blocks and transform them based on optimized camera
trajectories. In this way, the fusion of updated camera pose estimates is approximated
with transforming scene fragments to updated location. Thus final results are calculated
more efficiently.

6.4.3 Fragment loop to frame loop conversion

Since there are fewer scene fragments than frames, there is a need to convert scene
fragment matches to camera frame loops. We do this by connecting a reference frame in
one scene fragment and connecting it to all the frames of the other scene fragments and
repeat for the other direction.
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6.5 Experiments

Extensive experiments are performed to evaluate our proposed method on two
datasets: augmented ICL-NUIM [18] and SUN3D dataset [119]. SMD stands for
surface mean distance.

Table 6.1: Performance difference with only key loops vs. all correct loops agreed by
ground truth. SMD is short for surface mean distance.

Traj. RMSE SMD DMP
key loops all loops key loops all loops key loops all loops

livingroom 1 0.082 0.175 0.027 0.059 36.9 122.8
livingroom 2 0.037 0.203 0.012 0.080 19.5 85.2
office 1 0.051 0.096 0.020 0.046 143.5 200.9
office 2 0.036 0.085 0.014 0.024 110.5 373.2
Average 0.052 0.140 0.018 0.052 77.6 195.5

6.5.1 Augmented ICL-NUIM dataset

We run experiments on the Augmented ICL-NUIM dataset [18]. This dataset is a
synthetic dataset with ground-truth surface models and camera trajectories. The dataset
has four data sequences of RGB-D data. For each sequence, there are merged scene
fragments available with ground truth registration results. For this dataset, our baseline
method is CZK [18] which is published in the same work as the Augmented ICL-NUIM
dataset.

Table 6.2: Recall and precision performance on loops before and after loop filtering or
sifting.

Recall/Precision (%) Registration CZK Ours
livingroom 1 61.2 / 27.2 57.6 / 95.1 5.5 / 100
livingroom 2 49.7 / 17.0 49.7 / 97.4 3.9 / 100
office 1 64.4 / 19.2 63.3 / 98.3 2.8 / 100
office 2 61.5 / 14.9 60.7 / 100 0.7 / 100

Experiments are conducted to evaluate the loop sifting andmajorization performance
of the proposed method. Performance is evaluated based on precision and recall of loops
detected and remaining. Results are reported in Table 6.2. We can see that our method
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gets 100% percent precision, which is desired. You may notice that the recall reduced
dramatically after sifting. The decrease is not because of the strict requirement but
because many loops are not very useful. We note that the remaining loops are the
core ones that matter most for a better reconstruction quality, which we call it loop
majorization.

Many of the original loops are close to each other and connected accurately by
ORB-SLAM tacking already. We prove this in another experiment that evaluates the
trajectories and reconstructed 3D models of optimization with the key loops identified
by our method and all the loops that agree with ground truth. Results are shown in
Table 6.1. We can see that more loops do not improve performance instead decrease the
performance. This is because some of the loops are not very precise. It will decrease
accuracy if two loop regions are well connected originally.

To further understand the proposed method, we draw precision-recall curves of the
loop ranking results in the proposed algorithm in Fig. 6.1. In the results, we can see the
curves all starts from 100% precision. Then the curves keep on high precision values
when recall increases. There are a few drop points, which means false positive loops.
The majority of the false-positive loops are at the end of the list reflected by the sharp
drops when recall reaches 100%. These mean that the ranking has good performance
with exceptions. These false-positive loops that remained in the ranking are well handled
by the last part, which tests and decides acceptance of each ranked loop. It shows one
more strength of our method: it decides the acceptance of correct loops without a single
user parameter, even when the ratio of true/false positive loops are drastically different.

6.5.2 SUN3D dataset

The SUN3D dataset [119] is a large-scale RGB-D database. It contains many data
sequences captured at many places. Among them, there are eight sequences (listed here:
http://sun3d.cs.princeton.edu/listNow.html) that are labeled with object an-
notations and widely used for evaluating SLAM and 3D reconstruction systems. We
follow this common practice and run experiments on these sequences. For sequences
harvard_c5, harvard_c6 and harvard_c8, there is no loops detected on top of track-
ing. So we do not include results for them.

http://sun3d.cs.princeton.edu/listNow.html
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Figure 6.1: Precision and recall curves for ranking results of the proposed method.
The curves show a good ranking performance with a few exceptions. These exceptions
justifies the second pass on all the loops, so that they get removed properly. The locations
of the accepted loops are marked with red dots on the plots. None of the false positive
loops get passed. The system also do smart selection instead of choosing the top ranking
loop detections.

Table 6.3: DMP performance difference of different methods on different sequences
SUN3D ORB SLAM2 CZK BundleFusion Tracking Ours

mit_32_d507 573.95 750.60 334.17 441.15 904.25 296.59
maryland_hotel3 145.85 107.50 108.91 128.86 111.83 96.56
76_studyroom 448.84 1191.40 282.22 256.07 358.93 193.94
mit_dorm_next 46.38 51.88 734.50 944.81 87.04 30.16
mit_lab_hj 180.49 162.98 244.86 207.94 155.86 199.57
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Table 6.4: Number of loops before and after loop sifting and majorization
Number of loops before after
mit_32_d507 2135 34
maryland_hotel3 224 6
76_studyroom 442 7
mit_dorm_next 621 6
mit_lab_hj 219 7

Quantitatively, we evaluate the DMP metric of different methods and report them in
Table 6.3. We compared with four different methods: 1) CZK, which is an offlinemethod
that targets the best surface reconstruction quality; 2) SUN3D, which is an offline method
that adds manual object labeling as a source of loop closure; 3) ORB-SLAM2, which is
a well known good SLAM that also has a tracking part in our system; 4) BundleFusion
which is a well-engineered real-time dense SLAM system. The DMP metric evaluates
that the proposed method makes reliable improvements on its initial start point: tracking
result. Most importantly, it outperforms most methods. To understand the proposed
method, we also include the number of loop detections and the number of loops that pass
our algorithm, shown in Table 6.4.

Qualitative, we show results in the form of screenshots of reconstructed 3D models
in Figs. 6.2, 6.3 and 6.4. In these figures, we highlight the mismatches in tracking results
so that reader can better compare them with our results. SUN3D data sequences are
scanned with very loopy motion in some areas but only once for some other scene parts,
thus is considered difficult to process. Readers may refer to http://redwood-data.
org/indoor/models.html for results of the CZK method and https://graphics.
stanford.edu/projects/bundlefusion/recons.html for BundleFusion results
for visual comparison.

6.6 Chapter summary

In this chapter, an algorithm that can sift and majorize loop detections is proposed.
The algorithm tests and decides the acceptance of each loop without a single user-defined
threshold. Experiments are conducted on public datasets, including the Augmented
ICL-NUIM dataset and the SUN3D dataset. Results show that the proposed method

http://redwood-data.org/indoor/models.html
http://redwood-data.org/indoor/models.html
https://graphics.stanford.edu/projects/bundlefusion/recons.html
https://graphics.stanford.edu/projects/bundlefusion/recons.html
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outperforms the state-of-the-art methods. It can find key loops with 100% precision and
eliminate significant mismatches when processing SUN3D sequences.

(a) Tracking only

(b) With loop optimization

Figure 6.2: Results on sequence maryland_hotel3 of the SUN3Ddataset. We highlight
the mismatches in tracking results so that differences are easier to compare.
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(a) Tracking only

(b) With loop optimization

Figure 6.3: Results on sequence 76_studyroom of the SUN3D dataset. We highlight
the mismatches in tracking results so that differences are easier to compare.
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(a) Tracking only

(b) With loop optimization

Figure 6.4: Results on sequence mit_32_d507 of the SUN3D dataset. We highlight the
mismatches in tracking results so that differences are easier to compare.



Chapter 7

3D Semantic Mapping of Cities for
Autonomous Driving

7.1 Introduction

In previous chapters, we focus on the geometry aspect of 3D reconstruction and
mapping. In this chapter, explorations are made on how to create semantic maps and
benchmark semantic mapping methods. Semantic maps are important data abstraction
from 3D mapping results. With higher-level semantic information, robots and au-
tonomous vehicles can get better environmental awareness and do longer-term path and
motion planning. It may also make the storing, transmitting, and retrieving of 3D map-
ping results more feasible, because semantic information usually has better long-term
stability with smaller data footage.

At present, the concept of semantic mapping is not crystal clear yet [9] because it
is still under active exploration. Some research works define semantic mapping as per
3D point/surfel/voxel labeling on dense mapping results [77, 82, 47], which, we believe,
extends the idea of image segmentation to 3D space. Some others choose to build 3D
point cloud maps with only traffic lines, and signs remained [95]. In this chapter, we
focus on mapping 3D objects in the form of 3D bounding boxes for 3D semantic maps
that are easy to store and transmit. Another motivation is that 3D object detection has
shown promising performance improvements recently. Thus 3D bounding box input is
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increasingly accessible.
We list contributions of this chapter:

1. A simple and effective real-time 3D semantic mapping method is proposed. The
proposedmethod takes per-frame bounding box detections and sensor (camera) ex-
trinsic transformation estimates as inputs and produces a set of static 3D bounding
boxes in a world coordinate system as 3D semantic mapping results.

2. A new benchmark is derived from the KITTI object tracking evaluation, since
KITTI has no official ground truth semantic maps. In the new benchmark, ground-
truth semantic maps are constructed based on GPS-IMU data and labeled 3D
bounding boxes of KITTI.

3. Three novel semantic map-centered metrics are proposed for better evaluation of
semantic mapping methods.

7.2 Related work

3D Object Detection. The research of 2D object detection has been very mature.
Representative works can be divided into twomain categories: Region Proposal Network
(RPN) approaches, such as Faster R-CNN [91] and Mask R-CNN [129]. Single Shot
MultiBox Detector (SSD) approaches like YOLO v1-YOLO v5. Compared with 2D
object detection, there is a new requirement for 3D object detection. The 3D bounding
box has three more angles: pitch, yaw, and roll, in addition to the position and size.
In [102], PointRCNN for 3D object detection from raw point clouds is proposed. The
whole framework is composed of two stages: stage-1 for the bottom-up 3D proposal
generation and stage-2 for refining proposals in the canonical coordinates to obtain the
final detection results. Instead of generating proposals from RGB images or projecting
point clouds to bird’s views, the stage-1 sub-network directly generates a small number
of high-quality 3D proposals from point clouds in a bottom-up manner via segmenting
the point cloud of the whole scene into foreground points and background. The stage-2
sub-network transforms the pooled points of each proposal to canonical coordinates to
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learn better local spatial features, which is combined with global semantic features of
each point learned in stage-1 for accurate box refinement and confidence prediction.

3D Multi-Object Tracking. In [112], a 3D MOT system is proposed. An off-
the-shelf 3D object detector is used to obtain oriented 3D bounding boxes from the
LiDAR point cloud. Then, a combination of the 3D Kalman filter and Hungarian algo-
rithm is used for state estimation and data association. Although it is a straightforward
combination of standard methods, good results are observed on the KITTI dataset.

7.3 Semantic mapping benchmark dataset

It requires a large number of human efforts to annotate ground-truth labels for creating
ground-truth semantic maps. So, instead of labeling new datasets, we turn to existing
datasets and explore ways to convert feasible ones for semantic mapping evaluation.

Although there are several datasets with 3D bounding box annotations, as shown
in Table 7.1, the purpose of these annotations is to provide ground truth for 3D object
detection and 3D object tracking algorithms in autonomous driving scenes. For example,
although nuScenes [15] dataset has the most labels, most of them are dynamic vehicles
in highway scenes. For semantic mapping purposes, a large number of static objects
are required. After comparison, we found that the multi-object tracking benchmark in
the KITTI dataset meets the requirements and can be transformed for semantic mapping
evaluation. This benchmark in KITTI has multiple data sequences with color stereo
camera images, gray stereo camera images, LiDAR point clouds, GPS-IMU data together
with ground-truth 3D bounding boxes for objects, and ground-truth data association
among these objects.

Table 7.1: Datasets with ground-truth 3D bounding boxes available.
Dataset Year Sequence count RGB frame # LiDAR frame # 3D bounding box #
KITTI 2012 22 15K 15K 200K
AS lidar 2018 - 0 20K 475K
ApolloScape 2018 - 144K 0 70K
H3D 2019 160 83K 27K 1.1M
nuScenes 2019 1K 1.4M 400K 1.4M

Ground-truth camera trajectory. With the available GPS-IMU data, ground truth
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trajectory Twi in the GPS-IMU coordinate frame can be derived. In the KITTI dataset,
extrinsic parameters between sensors are also given. There are two transformation
matrices that are useful for transforming GPS-IMU trajectory to camera trajectory. One
is from the GPS-IMU coordinate to velodney coordinate Tvi. The another is from
velodney coordinate to camera coordinate Tcv. Thus, the transformation from the GPU-
IMU coordinate to the camera 0 frame is Tci = TP0 · Tcv · Tvi. With this transformation,
we can get the ground-truth trajectory of camera 0 with:

Twc = Tci · Ti0w · Twi · Tic, (7.1)

where Twc is the transformation matrix from the camera coordinate to the world coordi-
nate system.

Ground-truth semantic map. Considering that an object has several different 3D
bounding box labels across multiple frames, and these boxes will not overlap perfectly
due to a number of error factors. To address this problem, we fuse these boxes of the
same object in the world coordinate system. First, the center and size of a 3D bounding
box is computed by

Cw =

∑Nb
i=1Cwi
Nb

, (7.2)

where Cw is x or y or z, which represents the center of a object 3D bounding box. Nb is
the number of these boxes of the i-th object belongs to (0, Nb).

For the orientation of these bounding boxes, obviously, we can not use the same
method. In the KITTI dataset, the θ is used to represent the orientation of the object. It
can be converted to a rotation matrix

Rcb(θ) =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 . (7.3)

Then, orientation Rwb of the 3D bounding box in the world coordinate system can be
computed by

Rwb = RwcRcb, (7.4)

By converting the rotation matrix Rwb to the Euler angle representation, we have three
Euler angles. Then, we can use the same method as in equation (7.2).
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(a) sequence 01 (b) sequence 07

(c) sequence 09

(d) sequence 11

(e) sequence 14

Figure 7.1: Visualization of our generated ground-truth semantic maps. Each green box
is for a parked car.
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Table 7.2: Information of the generated ground-truth semantic maps. Storage is
caculated when stored in 64 bit floating point numbers.

Sequence Static object number Odometry (m) Storage (KB)
01 81 361 5.8
07 48 352 3.5
09 70 614 5.0
11 40 224 2.9
14 12 61 0.9

Finally, we get the 3D bounding boxes ground truth of each object in the world
coordinate system. These ground-truth semantic maps are visualized in Fig. 7.1. For
semantic mapping evaluation, we find five suitable sequences: 01, 07, 09, 11, 14 from
the KITTI multi-object tracking benchmark. The information of these maps is shown in
Table 7.2.

7.4 Semantic mapping method

The proposed semantic mapping method takes camera tracking and 3D object detec-
tion as input to process then generate 3D bounding boxes in world frames. This process
will then fuse observation of objects across different frames into a map of objects in the
form of 3D bounding boxes. The core of the mapping method is a Kalman filter for
model update and the Hungarian method as data association.

Wedefine states of aKalmanfilter for object fusion asx, y, z, ϕ, θ, ψ, l, w, h, vx, vy, vz,
which consists of bounding box location center x, y, z, the three angle that represents the
direction of a bounding box, length l, width w, height h, and speed of the movement of
the bounding box vx, vy, vz. For the defined state, the state transition function is
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xk+1 = xk + vkx + σx,

yk+1 = yk + vky + σy,

zk+1 = zk + vkz + σz,

ϕk+1 = ϕk + σϕ,

θk+1 = θk + σθ,

ψk+1 = ψk + σψ,

lk+1 = lk + σl,

wk+1 = wk + σw,

hk+1 = hk + σh,

vk+1
x = vkx + σvx

vk+1
y = vky + σvy

vk+1
z = vkz + σvz

(7.5)

where each σ represents state transition noise for a state dimension. The observation
functions are simpler since all the states except the velocities are directly observable.
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where underscript o denotes observation of the data dimension. Note that the abstracted
observation is in the world frame. Thus, the real observations need to be first transformed
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to the world frame. Given the detection bounding boxes set Bc, where each bound box
is denoted as Bc and camera pose Twci. Bc are transformed to world frame, denoted as

Bw = Twci(Bc), (7.7)

whereTwci(·) is a function that transforms bounding boxeswith the transformationTwci.
Given the abstracted observation Bw and bounding box predictions Bw, intersection over
union (IoU) of two set of bounding boxes are calculated and fed into the Hungarian
algorithm to find data association between them. If a Bw ∈ Bw is matched with
predicted bounding boxes, the observation will be used to update the corresponding
Kalman filter. Otherwise, it will be used to initialize a new object with a new Kalman
filter on the semantic map.

7.4.1 Object state transition

Figure 7.2: Visualization of noisy object detection input (in gray color) vs. the ground-
truth objects (in green) for sequence 01. The noisy object detection results are trans-
formed to the world frame with the ground-truth camera trajectory for a fair visual
comparision with true objects in the ground-truth map.
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There is noise in object detection results, as shown in Fig. 7.2, that are fed into
the pipeline. The false positive object detections would cause false objects in mapping
results if not handled. To deal with the issue, we propose adding object states to an object
in a map. The states are 1) unstable object, which is the entry state when a new object is
created for the map. An object will stay in the unstable state if the object is observed less
than h times. 2) dynamic object, which is an object that is moving. Any object that ever
moved with a velocity greater than vt will have this state. 3) static activate, which is an
object with a velocity smaller than vt all the time and observed at least in k frames. 4)
static inactivate, which is the destination of static activate object when not observed once
in the last k frames. 5) inactivate state, which will take unstable and dynamic objects that
are not observed once in the last k frames. The transition between the states is shown in
figure 7.3. With these states, we take all the static objects as the mapping results.
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Figure 7.3: State transition finite state machine
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7.5 Evaluation of semantic mapping

To evaluate semantic mappingmethods, existing metrics: intersection over union and
precision-recall are adopted. In addition to that, three additional map-focused metrics
are proposed to better evaluate the performance of semantic mapping methods. Two of
them, as in section 7.5.3, focus on full-map absolute distances between matched objects,
while the other one, as in section 7.5.5, focuses on frame-based relative error in virtual
observations.

We run simple baseline experiments to evaluate the performance of the proposed
method on the aforementioned KITTI sequences with the metrics.

7.5.1 Visual evaluation

Semantic mapping results of the proposed baseline method are visualized and re-
ported in Figs. 7.4, 7.5, 7.6, 7.7, and 7.8. To better understand mapping performance, the
input camera trajectories are also visualized comparing ground-truth camera trajectories.
In the figures, we can see that the estimated 3D bounding boxes in the estimated maps
are accurate relative to estimated camera trajectories. Most of the objects presented in
the ground-truth maps are detected in the estimated maps.

7.5.2 Precision and recall

For object detection, precision and recall are usually used to analyze the effectiveness
of the detection methods quantitatively. The true positive (TP) detections are the detec-
tions that agree with ground-truth labels with higher than threshold IoU values. False
positive (FP) represents the bounding boxes that are detected by an algorithm but do not
appear in the ground truth. False negative (FN) represents the number of ground-truth
bounding boxes that are missing from detection results. Precision and recall then can be
calculated as in (7.8) and (7.9), respectively.

Precision =
TP

TP + FP
, (7.8)

Recall =
TP

TP + FN
. (7.9)
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(a) Red: estimated map. Green: ground-truth map

(b) Red: estimated trajectory. Green: ground-truth trajectory

Figure 7.4: Visualization of estimated ground-truth semantic map and input camera
trajectory for sequence 01. We can see that the estimated 3D bounding boxes in the
estimated map are accurate relative to estimated camera trajectory. Most of objects
presented in the ground-truth map are detected in the estimated map.
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(a) Red: estimated map. Green: ground-truth map (b) Red: estimated trajectory. Green: ground-truth
trajectory

Figure 7.5: Visualization of estimated ground-truth semantic map and input camera
trajectory for sequence 07.

(a) Red: estimated map. Green: ground-truth map

(b) Red: estimated trajectory. Green: ground-truth trajectory

Figure 7.6: Visualization of estimated ground-truth semantic map and input camera
trajectory for sequence 09. We can see that the estimated 3D bounding boxes in the
estimated map are accurate relative to estimated camera trajectory. Most of objects
presented in the ground-truth map are detected in the estimated map.
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(a) Red: estimated map. Green: ground-truth map

(b) Red: estimated trajectory. Green: ground-truth trajectory

Figure 7.7: Visualization of estimated ground-truth semantic map and input camera
trajectory for sequence 11.

(a) Red: estimated map. Green: ground-truth map

(b) Red: estimated trajectory. Green: ground-truth trajectory

Figure 7.8: Visualization of estimated ground-truth semantic map and input camera
trajectory for sequence 14. We can see that the estimated 3D bounding boxes in the
estimated map are accurate relative to estimated camera trajectory. Most of objects
presented in the ground-truth map are detected in the estimated map.
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Table 7.3: The precision-recall results of proposed algorithm in terms of object detected
in maps.

Sequence 01 07 09 11 14
TP 71 47 68 35 8
FP 20 12 12 7 1
FN 10 1 2 5 4

Precision 78.0 79.7 85.0 83.3 88.9
Recall 87.7 97.9 97.1 87.5 66.7

Similarly, one can calculate the value of precision and recall for the proposed semantic
map algorithm, except that data associations are determined by IoU in virtual observation
space instead of in world coordinates. The results are shown in Table 7.3 ,which is based
on IOU3D not less than 35%. As we can see, the value of precision is no less than 78%,
and the recall is larger than 66%, which shows the good performance of our algorithms.

7.5.3 Absolute object distance

One key evaluation aspect of 3D mapping methods is to know the positional error
of 3D environments. For 3D object-centered semantic mapping methods, we propose
to evaluate absolute object distance (AOD) between. The AOD metric calculates as
follows. Given an estimated semantic map M e, a ground-truth semantic map MGT ,
and data association A that indicates the matched objects between the two maps, the
metric calculates the average distance between two sets of matches objects. There are
two variants of the metric. One calculates the distance directly, denoted as direct AOD
(DAOD), which is useful for cases when absolute position error is important. Another
one, denoted as aligned AOD (AAOD), first transfer estimated mapM e to be best aligned
with the ground-truth map then calculate distance between them. The AAOD is more
useful for cases where positioning between mapped objects is more important than the
absolute positioning of a single object in a map.

DAOD(M e,MGT , A) =

∑
a∈A ||M e

a −MGT
a ||2

|A| , (7.10)
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Table 7.4: DAOD and AAOD of the proposed method
Sequence DAOD (m) AAOD (m)

01 3.55 1.18
07 6.37 2.42
09 17.06 7.59
11 1.71 0.56
14 0.40 0.12

where || · ||2 is the L2 norm of a vector and Ma means taking center of an object from
M with index in data association a.

AAOD(M e,MGT , A) =

∑
a∈A ||TA ·M e

a −MGT
a ||2

|A| , (7.11)

where TA ∈ SE(3) is a 3D transformation that alignsM e withMGT by

TA = argmin
TA

∑
a∈A

||TA ·M e
a −MGT

a ||2. (7.12)

For the data association A, it can be calculated by matching IoUs between virtual
observations on both maps when both the estimated camera trajectory and the ground-
truth trajectory are available. In the worst case, it can be generated with human labeling.

7.5.4 Experiments

When evaluating absolute object distance metrics, data association between ground-
truth maps and estimated maps is done through IoU score in virtual observations as
stated in PRVO metric with IoU threshold of 60%. Results for the two AOD metrics are
in Table 7.4.

7.5.5 Precision and recall of virtual observations

To evaluate the performance of object detection fusion performance while isolating
the influence of camera trajectory estimation error from SLAM methods, we propose
another metric called precision and recall of virtual observations (PRVO). Inputs for
the PRVO metric are: an estimated semantic map M e with corresponding estimated
camera trajectory {T}e and ground-truth semantic mapMGT with ground-truth camera
trajectory {T}GT .
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Table 7.5: PRVO of the proposed method

Sequence PRVO
Precision (%) Recall (%)

01 50.0 59.9
07 36.6 47.4
09 44.1 48.7
11 58.5 62.6
14 61.1 74.0

For each data frame, virtual observations are generated for both the estimated map
and the ground-truth map by applying sensor model s(·)

{B}ev = s(M e, T e) for T e ∈ {T}e

{B}GTv = s(MGT , TGT ) for TGT ∈ {T}GT .
(7.13)

An IoU threshold is used to determine the number of false positive (fp), false negative
(fn), and true positive (tn) between {B}ev and {B}GTv for a frame. For all the frames,
aggregated total numbers are calculated as TN =

∑
tn, FN =

∑
fn, and TP =

∑
tp.

Finally, a pair of precision and recall values are computed from TN , FN , and TP .

Experiments

When evaluating PRVO metric, the IoU threshold is set to 50%. Results are reported
in Table 7.5.

7.6 Chapter summary

In this chapter, a simple and effective real-time 3D semantic mapping method is
proposed. The proposed method takes per-frame bounding box detections and sensor
(camera) extrinsic transformation estimates as inputs and produces a set of static 3D
bounding boxes in a world coordinate system as 3D semantic mapping results.

To evaluate the proposed method, a new benchmark is derived from KITTI object
tracking evaluation. Ground-truth semantic maps are constructed based on GPS/IMU
data of KITTI and the labeled 3D bounding box. By fusingmultiple annotation bounding
boxes of the same object from frames, we get one single 3D bounding box for each object
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in the world frame as ground-truth semantic maps. Three novel semantic map-centered
metrics: DAOD, AAOD, and PRVO are also proposed. Experiments are conducted to
evaluate the proposed method. The set of proposed method, metric and benchmarking
dataset will serve as a new benchmark platform for easier comparison of new methods.



Chapter 8

Conclusion and Future Opportunities

8.1 Concluding remarks

In this dissertation, various key contributions have been made and tested to make it
closer for a system that can optimally reconstruct and map 3D environments.

In Chapter 3, a RANSAC-based algorithm that samples data with a Lévy distribution
after data ranking is proposed. The proposed method is evaluated on both simulation and
real-world public datasets. In experiments, our method shows better results compared
with the uniform baseline method.

In Chapter 4, a novel 3D reconstruction system is presented. The system maps both
large archaeological caves and general indoor environments with RGB-D cameras. The
proposed system produces accurate 3Dmodels by detecting and optimizing surface loops
in sparse feature-based visual SLAM systems. By adding surface loop closure into a
vSLAM system, globally consistent and optimal 3D models are generated accurately.
The proposed system consists of five components: 1) sparse feature-based camera track-
ing from ORB-SLAM2, 2) surface model fusion powered by Surfels, 3) a novel fast
surface loop detection algorithm, 4) a novel surface loop filtering method, and 5) loop
optimization based on sparse feature-based bundle adjustment. Experiments on datasets
show that the proposed system produces results on-par or better than baseline methods.

In Chapter 5, we propose a metric, which can work without any ground truth data,
for evaluating 3D reconstruction and mapping performance. In our experiments, the
proposed metric DMP is benchmarked against ground truth-based metrics. Results
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show that DMP can provide a similar evaluation capability. The proposed metric not
only makes 3D mapping evaluation simpler, but also opens many new opportunities.
Our experiments show that it can evaluate loop detection results and lead to good
precision-recall performance. We envision that more can be done with this metric, such
as self-supervised methods and more available datasets.

In Chapter 6, an algorithm that can sift andmajorize loop detections is proposed. The
algorithm tests and decides the acceptance of each loop without a single user-defined
threshold. Experiments are conducted on public datasets, including the Augmented
ICL-NUIM dataset and the SUN3D dataset. Results show that the proposed method
outperforms the state-of-the-art method. It can find key loops with 100% precision and
eliminate significant mismatches when processing SUN3D sequences.

In Chapter 7, a simple and effective real-time 3D semantic mapping method is
proposed. The proposed method takes per-frame bounding box detections and sensor
(camera) extrinsic transformation estimates as inputs and produces a set of static 3D
bounding boxes in a world coordinate system as 3D semantic mapping results. To
evaluate the proposed method, a new benchmark is derived from KITTI object tracking
evaluation. Three novel semantic map-centered metrics: DAOD, AAOD, and PRVO are
also proposed. Experiments are conducted to evaluate the proposed method. The set
of proposed method, metric, and benchmarking dataset will serve as a new benchmark
platform for easier comparison of new methods.

8.2 Future challenges and opportunities

3D reconstruction and semantic mapping are still far from being matured. Based on
the current achievements, we present three directions for future investigation.

8.2.1 Machine learning methods with the DMP metric

We envision that the DMP metric, presented in Chapter 5, will open new opportu-
nities for 3D machine learning. Especially, it enables self-supervised machine learning
methods in 3D reconstruction and mapping research because the DMP metric can eval-
uate 3D reconstruction performance without costly ground-truth data. For example, one
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may use the DMP metric as the reward function to build reinforcement learning-based
methods. Or, the DMP metric may be used as a self-supervising loss to train machine
learning models. These new opportunities have the potential to create a brand new
branch for 3D machine learning methods.

8.2.2 More advanced semantic mapping

There are many possible improvements on the semantic mapping method presented.
A major one is to include object appearance into the data association step so that it will
be more robust for cluttered environments. There are other potential improvements, such
as reducing the influence of false-positive detections out of object detection methods,
and adding more information, object property, etc., to map objects.

In addition to the improvements on the proposed method in Chapter 7, there are in-
teresting works that can be done to feed information back to supporting object detections
and camera trajectory estimation methods so that they can perform better with additional
information made available.

8.2.3 Navigation and localization on saved semantic maps

One of themajor purposes of 3Dmapping is for navigation and localization. However,
rare usage has been noticed in practical systems. One reason is that the memory footage
of a traditional map is too big for practical storage and transmission. One advantage of
3D semantic mapping is that semantic maps are highly abstracted with only important
information. This can greatly reduce the memory pressure imposed on practical systems.
This lower memory requirement is great. However, this type of map is so abstracted
that much geometry information is missing. So new explorations have to be done for
reliable localization on such maps. For example, what information about objects need to
be stored in a semantic map. Also, it will be beneficial to figure out how to track camera
motion precisely over semantic maps for better localization accuracy.
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8.2.4 Multi-session map fusion and map update over time

There are many use cases that require the ability to fuse multiple maps or update
maps. For example, When mapping a large environment, such as large caves or city
scale environments, it is almost impossible to capture enough data in one session. A
reliable method for the multi-session map fusion method is highly desired. In addition
to simple map fusion for coverage, another important one is to update maps with new
data. Examples are: update a mapped city environment to reflect constructions of new
buildings and seasonal changes in environment appearances. It is crucial to be able to
efficiently identify and update changes in maps while preserving unchanged portions.
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Appendix A

List of Abbreviations

AAOD aligned absolute object distance

AOD absolute object distance

ATE absolute trajectory error

BA bundle adjustment

BnB branch-and-bound

BoW bag-of-words

BRIEF binary robust independent elementary features

CNN convolutional neural networks

CZK Choi, Zhou, and Koltun

DAOD direct absolute object distance

DMP dense map posterior

FAST features from accelerated segment test

FO-RANSAC fractional order RANSAC

FPFH fast point feature histograms
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GPS global positioning system

GPU graphics processing unit

ICP iterative closest point

IMU inertial measurement unit

IoU intersection over union

LiDAR light detection and ranging

MAP maximum a posteriori

MOT multi-object tracking

MVS multi-view stereo

NN nearest neighbor

ORB oriented FAST and rotated BRIEF

PDF probability density function

PnP perspective-n-point

PRVO precision and recall of virtual observations

RANSAC random sample consensus

RGB-D RGB-Depth

RMSE root mean square error

RPE relative position error

RPN region proposal network

RTK-GPS real-time kinematic GPS

SfM structure from motion
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SIFT scale-invariant feature transform

SLAM simultaneous localization and mapping

SMD surface mean distance

TSDF truncated signed distance function

UAV unmanned aerial vehicle

vSLAM visual simultaneous localization and mapping



Appendix B

Code and Data

Code and datawill bemade available herehttps://gzhang8.github.io/3DMapping/.
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