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ABSTRACT OF THE DISSERTATION

Energy-Efficient Node Deployment in Wireless Sensor Networks

By

Saeed Karimi-Bidhendi

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2022

Chancellor’s Professor Hamid Jafarkhani, Chair

With recent advances in communication, sensing, computing, and battery capacity, wireless

sensor networks (WSNs) have emerged as a viable technology for monitoring and surveillance

purposes in numerous applications such as precision agriculture, healthcare monitoring, and

industrial monitoring. However, battery power depletion has remained the most pivotal

factor in network failure since sensors are driven by battery that are infeasible to replenish,

especially in hostile environments. This calls for innovative approaches for improving the

energy-efficiency of WSNs and extending their lifetime.

Empirical measurements have demonstrated that wireless communication dominates the net-

work’s energy consumption. Node deployment plays a crucial role in energy-efficiency of the

WSN since electromagnetic wave propagation dampens as a power law function of the dis-

tance between the transmitter and receiver. In this dissertation, by making a resemblance

between network nodes/cells and quantization points/regions, I aim to find the optimal

deployment, cell partitioning, and data routing that minimizes the wireless communication

power consumption of these networks. In particular, I considered the effect of both large-scale

path-loss signal attenuation and small-scale signal fading and modeled the node deployment

problem as an optimization problem with the total power consumption of the network as its

cost function. To tackle the resulting NP-hard optimization problem, I derived the necessary

xiii



conditions for optimal deployment, cell partitioning, and data routing under various network

setups and environmental conditions. My theoretical results are then embedded in iterative

algorithms to yield energy-efficient deployment and optimal intercommunication protocol for

network nodes.

One of key contributions in this dissertation is addressing challenges that arise under various

hardware settings, such as homogeneous versus heterogeneous and static versus mobile nodes,

in addition to various network architectures, such as two-tier versus multi-hop. Simulation

results show that, regardless of the distribution of events to be sensed by sensor nodes,

the proposed deployment algorithms outperform previous state-of-the-art methods in the

literature by a significant margin. In particular, the proposed algorithms improved these

networks’ energy efficiency and lifetime by up to a factor of two compared to existing work

in the literature. This, in turn, reduces the cost of such networks and demonstrates their

potential as a sustainable, rigorous, and cost-effective monitoring system.
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Chapter 1

Using Quantization to Deploy

Heterogeneous Nodes in Two-Tier

Wireless Sensor Networks

1.1 Introduction

Wireless sensor networks (WSNs) have been widely used to gather data from the environment

and transfer the sensed information through wireless channels to one or more fusion centers.

Based on the network architecture, WSNs can be classified as either non-hierarchical WSNs in

which every sensor node has identical functionality and the connectivity of network is usually

maintained by multi-hop wireless communications, or hierarchical WSNs where sensor nodes

play different roles as they are often divided into clusters and some of them are selected

as cluster head or relay. WSNs can also be divided into either homogeneous WSNs [41,

21, 20, 10], in which sensors share the same capacity, e.g., storage, computation power,

antennas, sensitivity etc., or heterogeneous WSNs where sensors have different capacities
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[51, 38, 42, 79].

Energy consumption is a key bottleneck in WSNs due to limited energy resources of sensors,

and difficulty or even infeasibility of recharging the batteries of densely deployed sensors.

The energy consumption of a sensor node comes from three primary components: commu-

nication energy, computation energy and sensing energy. The experimental measurements

show that, in many applications, the computation energy is negligible when it is compared

to communication energy[4, 87]. Furthermore, for passive sensors, such as light sensors and

acceleration sensors, the sensing energy is significantly small. Therefore, wireless communica-

tion dominates the sensor energy consumption in practice. There are three primary methods

to reduce the energy consumption of radio communication in the literature: (1) topology

control[64, 107], in which unnecessary energy consumption is avoided by properly switching

awake and asleep states, (2) energy-efficient routing protocols [10, 48], that are designed to

find an optimal path to transfer data, (3) power control protocols [58, 78], that save com-

munication energy by adjusting the transmitter power at each node while keeping reliable

communications. Another widely used method, Clustering [112, 58], attempts to balance

the energy consumption among sensor nodes by iteratively selecting cluster heads. Unfortu-

nately, above MAC protocols bring about a massive number of message exchanges because

the geometry and/or energy information are required during the operation [112]. Also, the

node deployment is known and fixed in the aforementioned energy saving approaches while

it plays an important role in energy consumption of the WSNs.

In this paper, we study the node deployment problem in heterogeneous two-tier WSNs

consisting of heterogeneous APs and heterogeneous FCs, with distortion defined as the total

wireless communication power consumption. The optimal energy-efficient sensor deployment

in homogeneous WSNs is studied in [41]. However, the homogeneous two-tier WSNs in [41]

do not address various challenges that exist in the heterogeneous two-tier WSNs, e.g., unlike

regular Voronoi diagrams for homogeneous WSNs, the optimal cells in heterogeneous WSNs
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may be non-convex, not star-shaped or even disconnected, and the cell boundaries may

not be hyperplanes. Another challenge that exists in the heterogeneous two-tier networks

is that unlike the homogeneous case [41], or heterogeneous one-tier case [60], some nodes

may not contribute to the energy saving. To the best of our knowledge, the optimal node

deployment for energy efficiency in heterogeneous WSNs is still an open problem. Our main

goal is to find the optimal AP and FC deployment to minimize the total communication

energy consumption. By deriving the necessary conditions of the optimal deployments in

such heterogeneous two-tier WSNs, we design a Lloyd-like algorithm to deploy nodes.

The rest of this paper is organized as follows: In Section 1.2, we introduce the system model

and problem formulation. In Section 1.3, we study the optimal AP and FC deployment. A

numerical algorithm is proposed in Section 1.4 to minimize the energy consumption. Section

1.5 presents the experimental results and Section 1.6 concludes the paper.

1.2 System Model and Problem Formulation

Here, we study the power consumption of the heterogeneous two-tier WSNs consisting of

three types of nodes, i.e., homogeneous sensors, heterogeneous APs and heterogeneous FCs.

The power consumption models for homogeneous WSNs are discussed in details in [41]. The

main difference in this work is the heterogeneous characteristics of the APs and FCs. For the

sake of completeness, we describe the system model for heterogeneous WSNs here in details.

Given the target area Ω ⊂ R2 which is a convex polygon including its interior, N APs and

M FCs are deployed to gather data from sensors. Throughout this paper, we assume that

N ≥M . Given the sets of AP and FC indices, i.e., IA = {1, 2, ..., N} and IB = {1, 2, ...,M},

respectively, the index map T : IA −→ IB is defined to be T (n) = m if and only if AP n is

connected to FC m. The AP and FC deployments are then defined by P = (p1, ..., pN) and

Q = (q1, ..., qM), where pn, qm ∈ R2 denote the location of AP n and FC m, respectively.
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Throughout this paper, we assume that each sensor only sends data to one AP. For each

n ∈ IA, AP n collects data from sensors in the region Rn ⊂ Ω; therefore, for each AP

deployment P , there exists an AP partition R = (R1, ...,RN) comprised of disjoint subsets

of R2 whose union is Ω. The density of the data rate from the densely distributed sensors is

denoted via a continuous and differentiable function f : Ω −→ R+, i.e., the total amount of

data gathered from the sensors in region Rn in one time unit is
∫
Rn
f(w)dw [41].

We focus on the power consumption of sensors and APs, since FCs usually have reliable

energy resources and their energy consumption is not the main concern. First, we discuss

the APs’ total power consumption. According to [51], power at the receiver of AP n is

modeled as PA
rn = ρn

∫
Rn
f(w)dw, n ∈ IA, where ρn is AP n’s power consumption coefficient

for receiving data. For simplicity, we assume APs share the same receiving coefficient, i.e.,

ρn = ρ. Therefore, the sum of power consumption at receivers is a constant and does

not affect the energy optimization and can be ignored in our objective function. In what

follows, we focus on power consumption at AP transmitters. The average-transmitting-power

(Watts) of AP n is defined to be PA
tn = EA

tnΓ
A
n ,∀n ∈ IA, where E

A
tn denotes the instant-

transmission-power (Joules/second) of AP n, and ΓA
n denotes the channel-busy-ratio for the

channel of AP n to its corresponding FC, i.e., the percentage of time that the transmitter

forwards data. According to [37, (2.7)], the instant-receive-power through free space is

PA
rn =

PA
rn
GtGrλ2

16π2d2
, where Gt is the transmitter antenna gain, Gr is the receiver antenna

gain, λ is the signal wavelength, and d is the distance between the transmit and receive

antennas. Let N0 be the noise power. In order to achieve the required SNR threshold

γ at the receivers, i.e.,
PA
rn

N0
= γ, the instant-transmission-power from AP n to FC T (n)

should be set to EA
tn = ηAn,T (n)||pn − qT (n)||2, where ||.|| denotes the Euclidean distance,

ηAn,T (n) is a constant determined by the antenna gain of AP n and the SNR threshold of

FC T (n). Since AP n gathers data from the sensors in Rn, the amount of data received

from sensors in one time unit, i.e. the average-receiver-data-rate, is
∫
Rn
f(w)dw. It can be

reasonably assumed that the AP transmitters only forward sensing data when the collected
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data comes into the buffer. Therefore, the channel-busy-ratio is proportional to the average-

receiver-data-rate, and can be written as ΓA
n =

∫
Rn

f(w)dw.T/ζA
T (n)

T
=

∫
Rn

f(w)dw

ζA
T (n)

, where ζAT (n) is

the AP n’s instant-transmitter-data-rate which is determined by the SNR threshold at the

corresponding FC T (n). Hence, we can rewrite the average-transmitter-power of AP n as

PA
tn = EA

tnΓ
A
n =

ηA
n,T (n)

ζA
T (n)

||pn − qT (n)||2
∫
Rn
f(w)dw, and the total power consumption at AP

transmitters is calculated by summing the average-transmitter-powers of APs:

PA
(P,Q,R, T ) =

N∑
n=1

PA
tn (1.1)

=
N∑
n=1

∫
Rn

ηAn,T (n)
ζAT (n)

||pn − qT (n)||2f(w)dw

Second, we consider sensors’ total transmitting power consumption. The total amount of

data collected from the sensors inside the region [w,w + dw] in one time unit is equal to

f(w)dw since the density of data rate f(.) is approximately uniform on the extremely small

region [w,w + dw]. Therefore, the sum of channel-busy-ratios of sensors in the infinitesimal

region [w,w+dw] is ΓS
n = f(w)dw.T/ζSn

T
= f(w)dw

ζSn
, where ζSn is sensors instant-transmitter-data-

rate. We only consider the homogeneous sensors, i.e., sensors’ antenna gains are identical.

Moreover, sensors within [w,w + dw] have approximately the same distance to the corre-

sponding AP pn, and thus have the same instant-transmission-power ES
tn = ηSn ||w − pn||2,

where ηSn is a constant determined by sensors’ common transmitter antenna gain, AP n’s

receiver antenna gain, and the SNR threshold of AP n. Therefore, the sum of average-

transmitter-powers within the region [w,w + dw] is equal to ηSn
ζSn
||pn − w||2f(w)dw. Since

sensors in the region Rn send their data to AP n, the sum average-transmitter-powers of

sensors in the target area Ω can be written as:

PS
(P,R) =

N∑
n=1

∫
Rn

ηSn
ζSn

||pn − w||2f(w)dw (1.2)

The two-tier distortion is then defined as the Lagrangian function of Eqs. (1.1) and (1.2):
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D (P,Q,R, T ) = PS
(P,R) + βPA

(P,Q,R, T ) = (1.3)

N∑
n=1

∫
Rn

(
an||pn − w||2 + βbn,T (n)||pn − qT (n)||2

)
f(w)dw

where an = ηSn
ζSn

and bn,T (n) =
ηA
n,T (n)

ζA
T (n)

. Our main objective in this paper is to minimize the

two-tier distortion defined in Eq. (1.3) over the AP deployment P , FC deployment Q, cell

partition R and index map T .

1.3 Optimal Node Deployment in Two-Tier WSNs

Let the optimal AP and FC deployments, cell partitions and index map be denoted by P ∗ =

(p∗1, ..., p
∗
N), Q

∗ = (q∗1, ..., q
∗
M), R∗ = (R∗

1, ..., R
∗
N) and T ∗, respectively. In what follows, we

determine the properties of such an optimal node deployment (P ∗, Q∗,R∗, T ∗) that minimizes

the two-tier distortion in (1.3). Note that the index map only appears in the second term of

Eq. (1.3); thus, for any given AP and FC deployment P and Q, the optimal index map is

given by:

T[P,Q](n) = argmin
m

bn,m||pn − qm||2 (1.4)

Eq. (1.4) implies that an AP may not be connected to its closest FC due to heterogeneity

of the APs and FCs, and to minimize the two-tier distortion, AP n should be connected to

FC m that minimizes the weighted distance bn,m||pn − qm||2. Inspired by definition of the

two-tier distortion in (1.3), for each n ∈ IA, the Voronoi cell Vn for AP and FC deployments

P and Q, and index map T is defined as:
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Vn(P,Q, T ) ≜ {w : an||pn − w||2 + βbn,T (n)||pn − qT (n)||2

≤ ak||pk − w||2 + βbk,T (k)||pk − qT (k)||2,∀k ̸= n} (1.5)

Ties are broken in favor of the smaller index to ensure that each Voronoi cell Vn is a Borel

set. When it is clear from context, we write Vn instead of Vn(P,Q, T ). The collection

V(P,Q, T ) ≜ (V1, V2, ..., VN) (1.6)

is referred to as the generalized Voronoi diagram. Note that unlike the regular Voronoi

diagrams, the Voronoi cells defined in Eq. (1.5) may be non-convex, not star-shaped or even

disconnected. The following proposition establishes that the generalized Voronoi diagram in

(1.6) provides the optimal cell partitions, i.e., R∗(P,Q, T ) = V(P,Q, T ).

Proposition 1. For any partition of the target area Ω such as U , and any AP and FC node

deployments such as P and Q and each index map T we have:

D (P,Q, U, T ) ≥ D (P,Q,V(P,Q, T ), T ) (1.7)

The proof is provided in Appendix A.1. Note that given AP and FC deployments P and Q,

the optimal index map and cell partitioning can then be determined by Eqs. (1.4) and (1.6).

The following lemma demonstrates that in any optimal node deployment (P ∗, Q∗,R∗, T ∗),

each FC contributes to the total distortion, i.e., adding an additional FC results in a strictly

lower optimal two-tier distortion regardless of its weights bn,M+1 as long as M < N holds.

Lemma 1. Let (P ∗, Q∗,R∗, T ∗) be the optimal node deployment for N APs and M FCs.

Given an additional FC with parameters bn,M+1 for every n ∈ IA, the optimal AP and FC

deployments, index map and cell partitioning are denoted via P ′ = (p′1, p
′
2, ..., p

′
N), Q

′ =
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(
q′1, q

′
2, ..., q

′
M+1

)
, T ′ and R′, respectively. Assuming M < N , we have:

D (P ′, Q′,R′, T ′) < D (P ∗, Q∗,R∗, T ∗) (1.8)

The proof is provided in Appendix A.2. While Lemma 1 indicates that each FC contributes

to the distortion, same may not hold for some APs. As an example to show the existence of

useless APs in the optimal deployment, consider two APs and one FC and one-dimensional

target region Ω = [0, 1] with parameters a1 = b1 = 1, a2 = b2 = 100, β = 1 and a uniform

density function. We search the optimal deployments by Brute-force search. According to

our simulation, the optimal deployments share the following properties: (i) Both FC and AP

1 are placed at the centroid of the target region, i.e., q∗1 = p∗1 = 0.5; (ii) AP 2’s partition is

empty, i.e., V2(P
∗, Q∗, T[P ∗,Q∗]) = ∅. Property (ii) implies that AP 2 does not contribute to

the two-tier distortion of optimal node deployment. Let v∗n(P,Q, T ) =
∫
R∗
n
f(w)dw be the

Lebesgue measure (volume) of the region R∗
n, and c

∗
n(P,Q, T ) =

∫
R∗
n
wf(w)dw∫

R∗
n
f(w)dw

be the geometric

centroid of the region R∗
n. When there is no ambiguity, we write v∗n(P,Q, T ) and c

∗
n(P,Q, T )

as v∗n and c∗n, respectively. Lemma 1 immediately leads to the following corollary.

Corollary 1. Let (P ∗, Q∗,R∗, T ∗) be the optimal node deployment for N APs and M FCs.

If M ≤ N , then for each m ∈ IB,
∑

n:T ∗(n)=m v
∗
n > 0.

The proof can be found in Appendix A.3. The following proposition provides the necessary

conditions for the optimal AP and FC deployments in the heterogeneous two-tier WSNs.

Proposition 2. The necessary conditions for optimal deployments in the heterogeneous two-

tier WSNs with the distortion defined in (1.3) are:

p∗n =
anc

∗
n + βbn,T ∗(n)q

∗
T ∗(n)

an + βbn,T ∗(n)

q∗m =

∑
n:T ∗(n)=m bn,mp

∗
nv

∗
n∑

n:T ∗(n)=m bn,mv
∗
n

(1.9)
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The proof is provided in Appendix A.4. Corollary 1 implies that the denumerator of the

second equation in (1.9) is positive; thus, q∗m is well-defined. According to Eq. (1.9), the

optimal location of FC m is the linear combination of the locations of its connected APs,

and the optimal location of AP n is on the segment c∗nq
∗
T ∗(n). In the next section, we use

the properties derived in Propositions 1 and 2 and in Eq. (1.4), and design a Lloyd-like

algorithm to find the optimal node deployment.

1.4 Node Deployment Algorithm

First, we quickly review the conventional Lloyd algorithm. Lloyd algorithm iterates between

two steps: In the first step, the node deployment is optimized while the partitioning is

fixed and in the second step, the partitioning is optimized while the node deployment is

fixed. Although the conventional Lloyd Algorithm can be used to solve one-tier quantizers

or one-tier node deployment problems as shown in [38], it cannot be applied to two-tier WSNs

where two kinds of nodes are deployed. Inspired by the properties explored in Section III, we

propose a heterogeneous two-tier Lloyd (HTTL) algorithm to solve the optimal deployment

problem in heterogeneous two-tier WSNs and minimize the two-tier distortion defined in

(1.3). Starting with a random initialization for node deployment (P,Q,R, T ) in the target

area Ω, our algorithm iterates between four steps: (i) Update the index map T according

to Eq. (1.4); (ii) Obtain the cell partitioning according to Eq. (1.5) and update the value

of volumes vn and centroids cn; (iii) Update the location of FCs according to Eq. (1.9);

(iv) Update the location of APs according to Eq. (1.9). The algorithm continues until

convergence. In Appendix A.5, we prove that the two-tier distortion will converge with

HTTL algorithm. This procedure is summarized in Algorithm 1 below.
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Algorithm 1: HTTL Algorithm

Input: Weights {an}n∈IA and {bn,m}n∈IA,m∈IB . ϵ ∈ R+.
Output: Optimal node deployment (P ∗, Q∗,R∗, T ∗).
1: Randomly initialize the node deployment (P,Q,R, T ).
2: do
3: Compute the two-tier distortion Dold = D(P,Q,R, T ).
4: Update the index map T according to Eq. (1.4).
5: Update the AP partitioning R by selecting its nth region as the generalized Voronoi

region in (1.5).
6: Calculate the volumes {vn}n∈IA and centroids {cn}n∈IA of the AP partitioning R.

7: For each m ∈ IB, move the FC m to
∑
n:T (n)=m bn,mpnvn∑
n:T (n)=m bn,mvn

.

8: For each n ∈ IA, move the AP n to
ancn+βbn,T (n)qT (n)

an+βbn,T (n)
.

9: Update the two-tier distortion Dnew = D(P,Q,R, T ).
10: While Dold−Dnew

Dold
≥ ϵ

11: Return: The node deployment (P,Q,R, T ).

1.5 Experiments

We provide the experimental results in two heterogeneous two-tier WSNs: (i) WSN1: A

heterogeneous WSN including 1 FC and 20 APs; (ii) WSN2: A heterogeneous WSN including

4 FCs and 20 APs. We consider the same target domain Ω as in [41, 42], i.e., Ω = [0, 10]2. The

data rate density function is set to a uniform function, f(ω) = 1∫
Ω dA

= 0.01. To evaluate the

performance, 10 initial AP and FC deployments on Ω are generated randomly, i.e, every node

location is generated with uniform distribution on Ω. In order to make a fair comparison to

prior works, similar to the experimental setting in [41, 42], the maximum number of iterations

is set to 100, FCs, APs, and geometric centroid of AP cells are denoted, respectively, by

colored five-pointed stars, colored circles, and colored crosses. Other parameters are provided

in Table 1.1. According to the parameters in Table 1.1, we divide APs into two groups: strong

APs (n ∈ {1, . . . , 10}) and weak APs (n ∈ {11, . . . , 20}). Similarly, FCs are divided in strong
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Table 1.1: Simulation Parameters
Parameters a1:10 a11:20 b1:4,1:2 b1:4,3:4 b5:20,1:2 b5:20,3:4

Values 1 2 1 2 2 4

FCs (m ∈ {1, 2}) and weak FCs (m ∈ {3, 4}). To distinguish strong APs (or FCs) and weak

APs (or FCs), we denote strong and weak nodes by solid and hollow symbols, respectively.

Like the experiments in [41], we compare the weighted power of our proposed algorithm

with Minimum Energy Routing (MER) [37], Agglomerative Clustering (AC) [47], and Divi-

sive Clustering (DC) [47] algorithms. AC and DC are bottom-up and top-down clustering

algorithms, respectively. MER is a combination of Multiplicatively weighted Voronoi Parti-

tion [11] and Bellman-Ford algorithms [8, Section 2.3.4]. More details about MER, AC, and

DC can be found in [41].

(a) (b)

(c) (d)

Figure 1.1: AP and FC deployments of different algorithms with β = 0.25 in WSN1. (a) MER.
(b) AC (c) DC. (d) HTTL.
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(a) (b)

(c) (d)

Figure 1.2: AP and FC deployments of different algorithms with β = 0.25 in WSN2. (a) MER.
(b) AC (c) DC. (d) HTTL.

Figs. 1.1a, 1.1b, 1.1c, and 1.1d show final deployments of the four algorithms (MER, AC,

DC, and HTTL) in WSN1. The multi-hop paths are denoted by blue dotted lines. As

expected from Proposition 2, every AP is placed on the line between the connected FC and

geometric center of its cell by running HTTL Algorithm. In addition, the HTTL Algorithm

deploys weak APs close to the FC while strong APs are placed on outer regions. Figs. 1.2a,

1.2b, 1.2c, and 1.2d illustrate the final deployments of MER, AC, DC, and HTTL, in WSN2,

respectively. Intuitively, strong FCs provide service to more APs compared to weak FCs in

both AC and HTTL Algorithms. Moreover, by HTTL Algorithm, strong APs cover larger

target regions compared to weak APs in Fig. 1.2d.

Figs. 1.3a and 1.3b show the weighted power comparison of different algorithms in WSN1 and
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Figure 1.3: The weighted power comparison of different Algorithms. (a) WSN1. (b) WSN2.

WSN2. Obviously, our proposed algorithm, HTTL, outperforms the other three algorithms

in both WSN1 and WSN2. In particular, the energy consumption gap between HTTL and

other three algorithms increases as the FC energy consumption becomes more important (β

increases).

1.6 Conclusion

A heterogeneous two-tier network which collects data from a large-scale wireless sensor to

heterogeneous fusion centers through heterogeneous access points is discussed. We studied

the minimum power that ensures reliable communication on such two-tier networks and

modeled it as a quantization problem. Different from the homogeneous two-tier networks, a

novel Voronoi Diagram is proposed to provide the best cell partition for the heterogeneous

network. The necessary conditions of optimal node deployment imply that every access

point should be placed between its connected fusion center and the geometric center of its

cell partition. By defining an appropriate distortion measure, we proposed a heterogeneous

two-tier Lloyd Algorithm (HTTL) to minimize the distortion. Simulation results show that

HTTL algorithm greatly saves the weighted power or energy in a heterogeneous two-tier

network.
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Chapter 2

Energy-Efficient Node Deployment in

Heterogeneous Two-Tier Wireless

Sensor Networks with Limited

Communication Range

2.1 Introduction

Wireless sensor networks (WSNs) have been widely used to gather data from the environment

and transfer the sensed information through wireless channels to one or more fusion centers.

Based on the network architecture, WSNs can be classified as either hierarchical or non-

hierarchical WSNs. In hierarchical WSNs, sensors play different roles as they are often

divided into clusters and some of them are selected as cluster heads or relays. In non-

hierarchical WSNs every sensor has identical functionality and the connectivity of network

is usually maintained by multi-hop wireless communications. WSNs can also be divided into
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either homogeneous WSNs [40, 41, 21, 20, 10], in which sensors share the same capacity,

e.g., storage, computation power, antennas, sensitivity etc., or heterogeneous WSNs where

sensors have different capacities [51, 38, 42, 79].

Energy consumption is a key bottleneck in WSNs due to limited energy resources of sensors,

and difficulty or even infeasibility of recharging the batteries of densely deployed sensors. The

energy consumption of a sensor node comes from three primary components: communication

energy, computation energy [114] and sensing energy. The experimental measurements show

that, in many applications, the computation energy is negligible compared to communication

energy[4, 87]. Furthermore, for passive sensors, such as light sensors and acceleration sen-

sors, the sensing energy is significantly small. Therefore, wireless communication dominates

the sensor energy consumption in practice. There are three primary methods to reduce the

energy consumption of radio communication in the literature: (i) topology control[64, 107],

in which unnecessary energy consumption is avoided by properly switching awake and asleep

states, (ii) energy-efficient routing protocols [10, 48], that are designed to find an optimal

path to transfer data, and (iii) power control protocols [58, 78], that save communication

energy by adjusting the transmitter power at each node while keeping reliable communica-

tions. Another widely used method, Clustering [112, 58], attempts to balance the energy

consumption among sensor nodes by iteratively selecting cluster heads. Unfortunately, the

above MAC protocols bring about a massive number of message exchanges because the

knowledge of geometry and/or energy is required during the operation [112, 61]. Also, the

node deployment is known and fixed in these approaches while it plays an important role in

energy consumption of the WSNs.

While WSNs provide a bridge between the physical and virtual information world, the col-

lected data is not useful if it cannot be transmitted from sensors to access points and even-

tually to base stations. Connectivity, as a prominent necessity in WSNs, is widely studied

under the binary communication model in [21] and [68, 106, 7, 98, 52, 113]. In the binary
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communication model, each node can only communicate to other nodes within a certain

range due to the limited transmission power. Note that connectivity is guaranteed when

nodes are linked by wire lines; however, the same is not true for WSNs due to the limited

available power in wireless communication. Many distributed sensor deployment algorithms,

such as Lloyd Algorithm, do not take both power consumption and connectivity into account;

therefore, they usually converge to a sub-optimal deployment in which nodes are divided into

several disconnected components. For a one-tier WSN, the design of optimal deployment

algorithms that consider connectivity and coverage is studied in [38]. While we consider a

2D deployment in this work, the case of 3D optimal deployment has been studied in [62, 43],

and the applicability of the evolutionary algorithms to solve UAV deployment problems has

been introduced in [93].

In this paper, we study the node deployment problem in heterogeneous two-tier WSNs con-

sisting of heterogeneous APs and heterogeneous FCs, with and without communication power

constraints. We consider the total wireless communication power consumption as the cost

function. The optimal energy-efficient sensor deployment in homogeneous WSNs is studied

in [41]. However, the homogeneous two-tier WSNs in [41] do not address various challenges

that exist in the heterogeneous two-tier WSNs, e.g., unlike regular Voronoi diagrams for

homogeneous WSNs, the optimal cells in heterogeneous WSNs may be non-convex, not star-

shaped or even disconnected, and the cell boundaries may not be hyperplanes. Another

challenge in the heterogeneous two-tier networks is that unlike the homogeneous case [41],

or heterogeneous one-tier case [60], some nodes may not contribute to the energy saving.

To the best of our knowledge, the optimal node deployment for energy efficiency in het-

erogeneous WSNs is still an open problem. Our main goal is to find the optimal AP and

FC deployment to minimize the total communication power consumption. By deriving the

necessary conditions of the optimal deployments in such heterogeneous two-tier WSNs, we

design Lloyd-like algorithms to deploy nodes. In addition, we update the designed deploy-

ment algorithms to consider the effects of limited communication range. We also study the
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trade-off between AP and sensor power consumption.

The rest of this paper is organized as follows: In Section 2.2, we introduce the system model

and problem formulation. In Section 2.3, we study the optimal AP and FC deployment

and provide the corresponding necessary conditions. A numerical algorithm is proposed

in Section 2.4 to minimize the energy consumption. An analysis of AP and sensor power

trade-off is provided in Section 2.5. In Section 2.6, an algorithm is proposed to maximize the

network coverage and minimize the power consumption, simultaneously. Section 2.7 presents

the experimental results and Section 2.8 concludes the paper.

2.2 System Model and Problem Formulation

Here, we study the power consumption of the heterogeneous two-tier WSNs consisting of

three types of nodes, i.e., homogeneous sensors, heterogeneous APs and heterogeneous FCs.

The power consumption models for homogeneous WSNs are discussed in details in [41]. The

main difference in this work is the heterogeneous characteristics of the APs and FCs. For the

sake of completeness, we describe the system model, as shown in Fig. 2.1, for heterogeneous

WSNs here in details. Given the target area Ω ⊂ R2 which is a convex polygon including

its interior, N APs and M FCs are deployed to gather data from densely deployed sensors.

Throughout this paper, we assume that N ≥ M . Given the sets of AP and FC indices,

i.e., IA = {1, 2, ..., N} and IB = {1, 2, ...,M}, respectively, the index map T : IA −→ IB is

defined to be T (n) = m if and only if AP n is connected to FC m. If AP n has no associated

FC, we set T (n) = −1. Conversely, T−1(m) is defined to be the set of all AP indices n

such that T (n) = m, and |T−1(m)| denotes the cardinality of this set. The AP and FC

deployments are then defined by P = (p1, ..., pN) and Q = (q1, ..., qM), where pn, qm ∈ R2

denote the location of AP n and FC m, respectively. Throughout this paper, we assume that

each sensor only sends data to one AP. For each n ∈ IA, AP n collects data from sensors
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in the region Rn ⊂ Ω; therefore, for each AP deployment P , there exists an AP partition

R = (R1, ...,RN) comprised of disjoint subsets of R2 whose union is Ω. The density of sensors

is denoted via a continuous and differentiable function f : Ω −→ R+. The total amount of

data gathered from the sensors in region Rn in one time unit is g
∫
Rn
f(w)dw, where g is the

bit-rate of the sensors. Due to the homogeneity of sensors, g is a constant [41].

Figure 2.1: System model.

We focus on the power consumption of sensors and APs, since FCs usually have reliable

energy resources and their energy consumption is not the main concern. First, we discuss

the sensors’ power consumption. As shown in [41], because of the path-loss, the instant

transmission power is proportional to the square of the distance between the two nodes

and a constant that depends on the characteristics of the two nodes, i.e., a × ∥pn − w∥2

for a sensor located at w that sends its data to AP n. According to [49], the parameter

a is given as a = Pr−th(4π)
2

GtGrλ2
, where Pr−th is the minimum receiver power threshold, Gt and

Gr are the transmitter and receiver antenna gains, respectively, and λ is the carrier signal

wavelength. For homogeneous WSNs, all nodes in each tier have the same characteristics

and therefore, the parameter a is the same and will not affect the optimization. However,

in a heterogeneous WSN, the heterogeneity of APs causes nodes to have different antenna

gains and SNR thresholds; therefore, the parameter a will be a function of the node index.

Hence, the sensors’ power consumption can be written as
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PS
(P,R) =

N∑
n=1

∫
Rn

an∥pn − w∥2f(w)dw. (2.1)

Similarly, for the AP’s power consumption, the instant transmission power between AP n and

FC T (n) can be written as b× ∥pn − qT (n)∥2 where the parameter b depends on the antenna

gain and SNR threshold of FC T (n) and antenna gain of AP n [49]. Hence, it is the same

for homogeneous WSNs and will not affect the optimization. However, in a heterogeneous

WSN, the heterogeneity of APs and FCs causes the parameter b to be a function of the node

indices. Therefore, the APs’ power consumption can be written as

PA
(P,Q,R, T ) =

N∑
n=1

∫
Rn

bn,T (n)∥pn − qT (n)∥2f(w)dw. (2.2)

Our goal in this work is to minimize the power consumptions in (2.1) and (2.2). However, as

will be shown later, there is a trade-off between the two power consumptions. As such, one

objective is to minimize the AP transmission power in (2.2) given a constraint on the sensor

transmission power in (2.1). Mathematically, this results in the AP-Sensor power function

defined as

A(s) ≜ inf
(P,Q,R,T ):PS

(P,R)≤s
PA

(P,Q,R, T ) . (2.3)

Similarly, one can define the Sensor-AP power function to minimize the sensor power in (2.1)

given a constraint on the AP transmission power in (2.2) as follows:

S(a) ≜ inf
(P,Q,R,T ):PA

(P,Q,R,T )≤a
PS

(P,R) . (2.4)

The two-tier power consumption is then defined as the Lagrangian function of (2.2) and

(2.1):
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P (P,Q,R, T ) = PS
(P,R) + βPA

(P,Q,R, T ) (2.5)

=
N∑
n=1

∫
Rn

(
an∥pn − w∥2 + βbn,T (n)∥pn − qT (n)∥2

)
f(w)dw.

Our main objective in this paper is to minimize the two-tier power consumption defined in

(2.5) over the AP deployment P , FC deployment Q, cell partition R and index map T and

study the behavior of the AP-Sensor power function.

2.3 Optimal Node Deployment in Two-Tier WSNs

As it is shown in (2.5), the two-tier power consumption depends on four variables P , Q, R

and T . Therefore, our goal is to find the optimal AP and FC deployments, cell partitioning

and index map, denoted by P ∗ = (p∗1, ..., p
∗
N), Q

∗ = (q∗1, ..., q
∗
M), R∗ = (R∗

1, ..., R
∗
N) and

T ∗, respectively, that minimizes the two-tier power consumption. Note that not only the

variables P , Q, R and T are intertwined, i.e., the best value for each of them depends on

the value of the other three variables, but also this optimization problem is NP-hard. Our

approach is to design an iterative algorithm that optimizes the value of one variable while

the other three variables are held fixed. To this end, first we derive the necessary conditions

for optimal deployment at each step.

Note that the index map only appears in the second term of (2.5); thus, for any given AP

and FC deployment P and Q, the optimal index map is given by:

T (n) = argmin
m

bn,m∥pn − qm∥2. (2.6)

Ties are broken in favor of the smaller index for a unique mapping. Eq. (2.6) implies that

20



an AP may not be connected to its closest FC due to heterogeneity of the APs and FCs,

and to minimize the two-tier power consumption, AP n should be connected to FC m that

minimizes the weighted distance bn,m∥pn − qm∥2.

Next, we study the properties of optimal cell partitioning. For each n ∈ IA, we define the

Voronoi cell Vn for AP and FC deployments P and Q, and index map T as:

Vn(P,Q, T ) ≜ {w : an∥pn − w∥2 + βbn,T (n)∥pn − qT (n)∥2

≤ ak∥pk − w∥2 + βbk,T (k)∥pk − qT (k)∥2,∀k ̸= n}. (2.7)

Ties are broken in favor of the smaller index to ensure that each Voronoi cell Vn is a Borel

set. When it is clear from the context, we write Vn instead of Vn(P,Q, T ). The collection

V(P,Q, T ) ≜ (V1, V2, ..., VN) (2.8)

is referred to as the generalized Voronoi diagram. Note that unlike the regular Voronoi

diagrams, the Voronoi cells defined in (2.7) may be non-convex, not star-shaped or even

disconnected. The following proposition establishes that the generalized Voronoi diagram in

(2.8) provides the optimal cell partitions, i.e., R∗(P,Q, T ) = V(P,Q, T ) for a given P,Q, T .

Proposition 3. For any partition of the target area Ω such as U , and any AP and FC node

deployments such as P and Q and each index map T we have:

P (P,Q, U, T ) ≥ P (P,Q,V(P,Q, T ), T ) . (2.9)

The proof is provided in Appendix B.1.

Next, we aim to derive the necessary condition for optimal locations of APs and FCs. For this

purpose, first we need to show that each FC contributes to the total power consumption in
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an optimal node deployment, i.e., adding an additional FC results in a strictly lower optimal

two-tier power consumption regardless of its weights bn,M+1 as long as M < N holds.

Lemma 2. Let (P ∗, Q∗,R∗, T ∗) be the optimal node deployment for N APs and M FCs.

Given an additional FC with parameters bn,M+1 for every n ∈ IA, the optimal AP and FC

deployments, index map and cell partitioning are denoted via P ′ = (p′1, p
′
2, ..., p

′
N), Q

′ =(
q′1, q

′
2, ..., q

′
M+1

)
, T ′ and R′, respectively. Assuming M < N , we have:

P (P ′, Q′,R′, T ′) < P (P ∗, Q∗,R∗, T ∗) . (2.10)

The proof is provided in Appendix B.2.

Let v∗n(P,Q, T ) =
∫
R∗
n
f(w)dw be the Lebesgue measure (volume) of the region R∗

n, and

c∗n(P,Q, T ) =
∫
R∗
n
wf(w)dw∫

R∗
n
f(w)dw

be the geometric centroid of the region R∗
n. When there is no

ambiguity, we write v∗n(P,Q, T ) and c
∗
n(P,Q, T ) as v

∗
n and c∗n, respectively. Lemma 2 imme-

diately leads to the following corollary.

Corollary 2. Let (P ∗, Q∗,R∗, T ∗) be the optimal node deployment for N APs and M FCs.

If M ≤ N , then for each m ∈ IB,
∑

n:T ∗(n)=m v
∗
n > 0.

The proof is provided in Appendix B.3.

Lemma 2 and Corollary 2 are technical results that we need to prove the following proposi-

tion that provides the necessary conditions for the optimal AP and FC deployments in the

heterogeneous two-tier WSNs.

Proposition 4. The necessary conditions for optimal deployments in the heterogeneous two-

tier WSNs with power consumption defined in (2.5) are:
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p∗n =
anc

∗
n + βbn,T ∗(n)q

∗
T ∗(n)

an + βbn,T ∗(n)
,

q∗m =

∑
n:T ∗(n)=m bn,mp

∗
nv

∗
n∑

n:T ∗(n)=m bn,mv
∗
n

.

(2.11)

The proof is provided in Appendix B.4.

Corollary 2 implies that the denominator of the second equation in (2.11) is positive; thus, q∗m

is well-defined. According to (2.11), the optimal location of FC m is the linear combination

of the locations of its connected APs, and the optimal location of AP n is on the segment

c∗nq
∗
T ∗(n). While Lemma 2 indicates that each FC contributes to the power consumption, the

same result may not hold for some APs. To show that under certain settings, an AP may

not be useful, i.e., no sensor sends data to it, we use the sensor network in the following

lemma as an example.

Lemma 3. Consider two APs and one FC within the target region Ω = [0, 1] with parameters

b1,1 = κ × a1, b2,1 = κ × a2 where κ is a positive constant, and a uniform density function.

The necessary and sufficient condition for both APs to be useful is

√
4β′ + 1

β′ + 1
− 1 ≤

√
a1
a2

≤ 1√
4β′+1
β′+1

− 1
, (2.12)

where β′ = β × κ. If the above condition holds, both APs are useful and the optimal two-tier

power consumption is given by:

P =
(4β′ + 1)

12 (β′ + 1)
×
( √

a1a2√
a1 +

√
a2

)2

. (2.13)

Otherwise, all sensors send their data to the stronger AP and we have:
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P =
min (a1, a2)

12
. (2.14)

The proof is provided in Appendix B.5.

In the next section, we use the properties derived in Propositions 1 and 2 and in (2.6), and

design a Lloyd-like algorithm to find the optimal node deployment.

2.4 Node Deployment Algorithm

First, we quickly review the conventional Lloyd algorithm. Lloyd Algorithm iterates between

two steps: In the first step, the node deployment is optimized while the partitioning is fixed

and in the second step, the partitioning is optimized while the node deployment is fixed.

Although the conventional Lloyd algorithm can be used to solve one-tier quantizers or one-tier

node deployment problems as shown in [38], it cannot be applied to two-tier WSNs where two

kinds of nodes are deployed. Inspired by the properties explored in Section III, we propose

a heterogeneous two-tier Lloyd (HTTL) algorithm to solve the optimal deployment problem

in heterogeneous two-tier WSNs and minimize the two-tier power consumption defined in

(2.5). Starting with a random initialization for node deployment (P,Q,R, T ) in the target

area Ω, our algorithm iterates between four steps: (i) Update the index map T according to

(2.6); (ii) Obtain the cell partitioning according to (2.7) and update the value of volumes

vn and centroids cn; (iii) For each m ∈ IB, if T
−1(m) is not empty, update the location of

FC m according to (2.11); otherwise, randomly select an index m′ ∈ IB according to the

distribution P (m′) =
|T−1(m′)|

N
, and move FC m to a random location within

⋃
n:T (n)=m′ Rn;

(iv) Update the location of APs according to (2.11). The algorithm continues until the stop

criterion, Pold−Pnew

Pold
≥ ϵ is satisfied (Pold and Pnew are the average powers in the previous
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and current iterations, respectively.).

Proposition 5. HTTL Algorithm is an iterative improvement algorithm, i.e., the Lagrangian

function in (2.5) is non-increasing and the algorithm converges.

The proof is provided in Appendix B.6.

2.5 AP-Sensor Power Function

Note that the Lagrangian two-tier power consumption defined in (2.5) is the unconstrained

version of the constrained optimization problems defined in (2.3) and (2.4). Since the AP-

Sensor power function and the Sensor-AP power function are dual of each other, in this

section, we only study the properties of the AP-Sensor power function A(s). An AP-Sensor

power pair (s, a) is achievable if and only if there is a node deployment (P,Q,R, T ) such that

PA
(P,Q,R, T ) = a while PS

(P,R) ≤ s. Moreover, a deployment (P,Q,R, T ) is a feasible

solution for the power pair (s, a) if and only if PA
(P,Q,R, T ) = a while PS

(P,R) ≤ s.

By definition, it is evident that every point above the curve A(s) is also achievable. In

what follows, we analyze the properties of the AP-Sensor power function. Without loss of

generality, we assume that a1 ≤ a2 ≤ . . . ≤ aN holds. A K−level one-tier quantizer is a tuple

(X,R), i.e. the location of points X = (x1, · · · , xK) and the partitioning R = (R1, · · · , RK)

of the target region, such that xi is the quantization point for all ω ∈ Ri and K is the

number of sub-regions. Let DK be the minimum distortion of a heterogeneous K−level

one-tier quantizer in the space Ω with parameters a1, . . . , aK , i.e., we have:

DK = min
X,R

K∑
i=1

∫
Ri

ai∥xi − w∥2f(w)dw, (2.15)

where the minimum is over all node deployments X = (x1, . . . , xK) and partitioning R =

(R1, . . . , RK) of Ω.
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Lemma 4. Let N and M be the number of APs and FCs where N > M . Then, the AP-

Sensor power function A(s) is a non-increasing function with the domain [DN ,+∞) such

that A(s) > 0 for s ∈ [DN , DM) and A(s) = 0 for s ∈ [DM ,+∞).

The proof is provided in Appendix B.7.

Lemma 4 characterizes the non-increasing property of A(s) in addition to defining its domain

based on the properties of a regular quantizer. For a fixed partitioning R = (R1, . . . , RN), let

H(R) =
∑N

i=1

∫
Ri
ai∥ci − w∥2f(w)dw where ci is the centroid of the region Ri, i.e., H(R) is

the minimum one-tier power consumption with parameters a1, . . . , aN for a fixed partitioning

R. For the special case of M = 1, the following lemma derives a closed-form solution for the

AP-Sensor power function for any fixed partitioning of Ω.

Lemma 5. For Q = (q), P = (p1, . . . , pN), and fixed R, define A(s,R) to be:

A(s,R) ≜ inf
(P,Q,T ):PS

(P,R)≤s
PA

(P,Q,R, T ) . (2.16)

We have:

(i) The domain of A(s,R) is {(s,R)
∣∣s ≥ H(R)}.

(ii) If bi,1 = κai for κ ∈ R+ and each i ∈ IA, when (s,R) ∈ {(s,R)
∣∣H(R) ≤ s ≤ J (R)}, we

have:

A (s,R) = κ
[√

J (R)−H(R)−
√
s−H(R)

]2
, (2.17)

and A (s,R) = 0 for s ≥ J (R) where J (R) is defined as:

J (R) =
N∑
n=1

∫
Rn

an

∣∣∣∣∣∣∣∣∑N
i=1 aivici∑N
i=1 aivi

− w

∣∣∣∣∣∣∣∣2f(w)dw, (2.18)

where vi and ci are volume and centroid of the region Ri, respectively.
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The proof is provided in Appendix B.8.

In Section 2.7, we experimentally plot the AP-Sensor power function defined in (2.3) and

verify the above properties. We conclude this section by deriving a closed-form formula for

the AP-Sensor power function for the same setting used in Lemma 3.

Lemma 6. Consider two APs and one FC within the target region Ω = [0, 1] with parameters

b1,1 = κ× a1, b2,1 = κ× a2, and a uniform density function. If (2.12) holds, we have:

A(s) = κ

[
1

2

( √
a1a2√

a1 +
√
a2

)
−

√
s− 1

12

( √
a1a2√

a1 +
√
a2

)2
]2
, (2.19)

for 1
12

( √
a1a2√

a1+
√
a2

)2
≤ s < min(a1,a2)

12
and A(s) = 0 for s ≥ min(a1,a2)

12
. If (2.12) does not hold,

we have A(s) = 0 for any s.

The proof is provided in Appendix B.9.

Lemma 6 shows that A(s) is not continuous at s∗ = min(a1,a2)
12

for this example. In addition,

A(s) is convex in the intervals [0, s∗) and [s∗,+∞).

2.6 Limited Communication Range

Note that when sensors or APs have limited transmission power, not all APs can com-

municate with FCs. Similarly, only sensors within the sensing range of APs in the set{
n
∣∣T (n) ̸= −1

}
can transmit their collected information to fusion centers. We consider a

common power constraint σ2 for homogeneous densely deployed sensors, and power con-

straints σ2
n, n ∈ IA for the heterogeneous APs. In other words, to maintain the connectivity

of the network, a sensor at position w can forward its collected data to AP n, and AP n can
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in turn sends the data to FC m if and only if:

an∥pn − w∥2 ≤ σ2 , bn,m∥pn − qm∥2 ≤ σ2
n, (2.20)

or equivalently:

∥pn − w∥ ≤ σ
√
an

, ∥pn − qm∥ ≤ σn√
bn,m

. (2.21)

Hence, we use the coverage defined by:

C(P, T ) =

∫
⋃
n:T (n)̸=−1 B

(
pn,

σ√
an

)
∩Ω
f(w)dw (2.22)

as a performance measure along with the two-tier power consumption in (2.5) when com-

munication range is limited, where B(c, r) = {ω|∥ω − c∥ ≤ r} is a disk centered at c with

radius r. Note that HTTL Algorithm described in Section 2.4 can converge to a deployment

in which (2.21) may not hold. Our main goal in this section is to find a proper deployment

that not only minimizes the two-tier power consumption P(P,Q,R, T ) in (2.5), but also

maximizes the total coverage C(P, T ) in (2.22). In what follows, we describe our approach

in details.

Starting with an initial deployment (P,Q,R, T ), if

{
m
∣∣∣m ∈ IB, qm ∈ B

(
pn,

σn√
bn,m

)}
̸= ∅,

then the index map T is updated as

T (n) = argmin

m:qm∈B
(
pn,

σn√
bn,m

) bn,m∥pn − qm∥2, (2.23)

otherwise, we set T (n) = −1, indicating that AP n has no associated FC. Note that although

some sensors in the region Rn, n ∈ IA, may not be able to transmit their data to AP n due

to their limited transmission power, we still partition the target region using the generalized
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Voronoi diagram in (2.7) and (2.8) since it minimizes the two-tier power consumption given

a fixed node deployment and index map. But instead of using all N APs for generalized

Voronoi partitioning, we only use APs in the set
{
n
∣∣T (n) ̸= −1

}
.

(a) (b)

(c) (d)

Figure 2.2: Optimal AP and FC movement. (a) Desired region for AP. (b) Optimal positioning of
AP. (c) Desired region for FC. (d) Optimal positioning of FC.

For each AP in the set
{
n
∣∣T (n) = −1

}
, we randomly move AP inside the target region.

Similarly, for each FC in the set
{
m
∣∣∣T−1(m) = ∅

}
, we randomly relocate the FC inside

Ω. For those APs that have an associated FC, Proposition 4 indicates that their current

locations should be updated according to (2.11), as we did in Step 8 of the HTTL algorithm;

however, as it is illustrated in Fig. 2.2a, the optimal location p′n =
ancn+βbn,T (n)qT (n)

an+βbn,T (n)
for AP

n may lie outside the communication range of its corresponding FC, that we refer to as the
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desired region for AP n. In that case, AP n is moved to the closest point to p′n within its

desired region, denoted by p̂n, as it is shown in Fig. 2.2b. Similarly, (2.11) implies that FC m

should be relocated to the position q′m =
∑
n:T (n)=m bn,mpnvn∑
n:T (n)=m bn,mvn

, as we did in Step 7 of the HTTL

algorithm; however, as it is illustrated in Fig. 2.2c, q′m may lie outside the region, that we

refer to as the desired region for FC m, in which all its associated APs can communicate. In

that case, we move FC m to the closest point to q′m within its desired region, denoted by q̂m,

as it is shown in Fig. 2.2d. Note that in order to find q̂m, we only need to consider a finite

number of points. The entire process to optimize the power for a limited communication

range is summarized in Algorithm 1. Similar to HTTL Algorithm, each AP lies on the

segment connecting its corresponding FC to the centroid of its region once the Limited-

HTTL algorithm converges. The following lemma shows that Limited-HTTL Algorithm is

an iterative improvement algorithm and converges.

Proposition 6. Limited-HTTL Algorithm is an iterative improvement algorithm, i.e., the

Lagrangian function in (2.5) is non-increasing and the algorithm converges.

The proof is provided in Appendix B.10.

2.7 Experiments

Simulations are carried out for both synthetic and real-world datasets. For the synthetic

data, we provide the experimental results in two heterogeneous two-tier WSNs: (i) WSN1:

A heterogeneous WSN including 1 FC and 20 APs; (ii) WSN2: A heterogeneous WSN

including 4 FCs and 20 APs. We consider the same target domain Ω as in [41, 42], i.e.,

Ω = [0, 10]2. Simulations are performed for two different data rate density functions, i.e., a

uniform distribution f(ω) = 1∫
Ω dw

= 0.01, and a mixture of Gaussian distribution:
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Algorithm 2: Limited-HTTL Algorithm

Input: Weights {an}n∈IA and {bn,m}n∈IA,m∈IB , β ∈ R+, powers σ2 and σ2
n, n ∈ IA and

ϵ ∈ R+.
Output: Optimal node deployment (P ∗, Q∗,R∗, T ∗).
1: Randomly initialize the node deployment (P,Q,R, T ).
2: do
3: Compute the two-tier power consumption Pold = P(P,Q,R, T ).
4: Update the index map T according to (2.23).
5: Use APs in the set

{
n
∣∣T (n) ̸= −1

}
for generalized Voronoi partitioning of Ω.

6: Calculate the volumes {vn} and centroids {cn} for each n ∈
{
n
∣∣T (n) ̸= −1

}
.

7: For each m ∈ IB:
– if T−1(m) ̸= ∅:

• move FC m to the nearest point to q′m =
∑
n:T (n)=m bn,mpnvn∑
n:T (n)=m bn,mvn

inside its desired

region.
– else:

• randomly select an index m′ ∈ IB according to the distribution P (m′) =
|T−1(m′)|

N
.

• move FC m to a random location within the region
⋃
n:T (n)=m′ Rn.

8: ∀n ∈ IA, move AP n to the nearest point to p′n =
ancn+βbn,T (n)qT (n)

an+βbn,T (n)
inside its desired

region.
9: Update the two-tier power consumption Pnew = P(P,Q,R, T ).

10: While Pold−Pnew

Pold
≥ ϵ

11: Return: The node deployment (P,Q,R, T ).
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
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
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2 0

0 2




+
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4
× N


7.5
2.5

,
1 0

0 1


 . (2.24)

To evaluate the performance, 10 initial AP and FC deployments on Ω are generated randomly,

i.e, every node location is generated with uniform distribution on Ω. In order to make a

fair comparison to prior work, similar to the experimental setting in [41, 42], the maximum

number of iterations is set to 100, FCs and APs are denoted, respectively, by black and

red circles. Other parameters are provided in Table 2.1. According to the parameters in

Table 2.1, we divide APs into two groups: strong APs (n ∈ {1, . . . , 10}) and weak APs

(n ∈ {11, . . . , 20}). Similarly, FCs are divided into strong FCs (m ∈ {1, 2}) and weak FCs

(m ∈ {3, 4}).

Table 2.1: Simulation Parameters

WSN1 WSN2
a1:10 a11:20 b1:4,1 b5:20,1 a1:10 a11:20 b1:4,1:2 b1:4,3:4 b5:20,1:2 b5:20,3:4

1 2 1 2 1 2 1 2 2 4

Like the experiments in [41], we compare the weighted power of our proposed algorithm

with Minimum Energy Routing (MER) [37], Agglomerative Clustering (AC) [47], Divisive

Clustering (DC) [47] algorithms, and Particle Swarm Optimization (PSO) [83]. PSO is a

population-based stochastic algorithm for non-linear optimization. AC and DC are bottom-

up and top-down clustering algorithms, respectively. MER is a combination of Multiplica-

tively weighted Voronoi Partition [11] and Bellman-Ford algorithms [8, Section 2.3.4]. More

details about MER, AC, and DC can be found in [41]. When the communication range is

limited, we further compare our method with two other algorithms, i.e., Improved Relay

Node Placement (IRNP)[115], and Relay Node placement in Double tiered Wireless Sensor
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Network (RNDWSN)[94]. IRNP and RNDWSN are node placement algorithms designed to

maximize the network coverage. Note that if a small portion of sensors are covered by a

particular node placement, since not many sensors will transfer data to fusion centers, the

resulting power consumption will be small too. Therefore, our primary goal in node deploy-

ment with limited transmission power is to maximize the network coverage and minimize

the power consumption, simultaneously.
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Figure 2.3: Weighted power versus iteration for different algorithms (β = 0.25). (a)
WSN1/Uniform pdf, (b) WSN2/Uniform pdf, (c) WSN1/Mixture of Gaussian pdf, (d)
WSN2/Mixture of Gaussian pdf.

The weighted power consumption over the iterations of MER, AC, DC, PSO and HTTL

algorithms in WSN1 and WSN2 for β = 0.25 are shown in Figs. 2.3a and 2.3b for uniform

data rate density function, and in Figs. 2.3c and 2.3d for the Gaussian mixture given
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Figure 2.4: Power consumption of different two-tier WSNs/data rate density functions.
(a) WSN1/Uniform pdf, (b) WSN2/Uniform pdf, (c) WSN1/Mixture of Gaussian pdf, (d)
WSN2/Mixture of Gaussian pdf.

in (2.24). Weighted power consumption of MER, AC, DC, PSO and HTTL algorithms

in WSN1 and WSN2 are illustrated in Figs. 2.4a and 2.4b for uniform data rate density

function, and in Figs. 2.4c and 2.4d for the Gaussian mixture given in (2.24). Obviously,

our proposed algorithm, HTTL, outperforms the other four algorithms in both WSN1 and

WSN2. For instance, HTTL Algorithm yields the power consumption of 2.351 for WSN2,

β = 0.25 and uniform data rate, which is lower than the values 4.371, 3.113, 3.253 and

4.063 obtained from MER, AC, DC and PSO algorithms, respectively. Similarly, for the

case of WSN2 and mixture of Gaussian, HTTL Algorithm yields the power consumption of
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0.058 which is lower than the values 15.484, 0.074, 7.677 and 2.301 obtained from MER, AC,

DC and PSO algorithms, respectively. Unlike other methods, HTTL Algorithm exploits the

trade-off between Sensor and AP power consumptions; hence, the energy consumption gap

between HTTL and other algorithms increases as the AP energy consumption becomes more

important (β increases). For β = 0.25, the final node deployment for WSN2 and the mixture

of Gaussian data rate density function given in (2.24) is shown in Fig. 2.5 where APs, FCs

and centroid of regions are denoted via red squares, black circle and crosses, respectively.

(a) (b) (c)

(d) (e)

Figure 2.5: Node deployment for different algorithms with β = 0.25 in WSN2 and the mixture of
Gaussian data rate density function. (a) MER (b) AC (c) DC (d) PSO (e) HTTL.

Note that the two-tier power consumption defined in (2.5) represents a trade-off between

the Sensor power PS
and AP power PA

, and this trade-off is illustrated as the AP-Sensor

power functions for WSN1 and WSN2 in Figs. 2.6a and 2.6b for uniform data rate, and in

Figs. 2.6c and 2.6d for the mixture of Gaussian data rate density function, respectively. For
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(a) (b)

(c) (d)

Figure 2.6: AP-Sensor power trade-off for HTTL Algorithm (a) WSN1/Uniform pdf, (b)
WSN2/Uniform pdf, (c) WSN1/Mixture of Gaussian pdf, (d) WSN2/Mixture of Gaussian pdf.

small values of β, sensor power contributes to the two-tier power consumption more than AP

power; hence, the optimal deployment tends to minimize PS
, while PA

tends to be minimized

in an optimal node placement for large values of β. Intuitively, moving APs towards the

FCs, usually, will increase the average distance between sensors and APs, resulting in the

increase of the sensor power. On the other hand, moving APs toward geometric centroids

of their corresponding regions, usually, will increase their distances to the FCs, which leads

to an increase in the AP power. This is shown in Fig. 2.6 where the AP-Sensor power

function A(s) decreases as s increases. Lemma 4 indicates that A(s) is non-zero on the
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intervals [D20, D1) and [D20, D4) for WSN1 and WSN2, respectively. Simulations show that

AP-sensor power function is a piece-wise continuous convex function, as we demonstrated

earlier for the setting in Lemma 6.

Table 2.2: Power Constraint Parameters

Parameters σ2 σ2
1:4 σ2

5:10 σ2
11:20

Values 4 25 16 9

Next, we consider a transmission power constraint on sensors and APs. The value of parame-

ters σ2 and σ2
n, n ∈ IA in (2.20) are provided in Table 2.2. According to Table 2.2, strong APs

(n ∈ {1, . . . , 10}) also tend to have more available power than weak APs (n ∈ {11, . . . , 20}).

(a) (b) (c)

(d) (e) (f)

Figure 2.7: Node deployment for different algorithms with β = 0.25 in WSN1 and uniform data
rate density function. (a) MER (b) AC (c) DC (d) RNDWSN (e) IRNP (f) Limited-HTTL.

37



Table 2.3: Coverage and power comparison for uniform data rate density function.

MER AC DC RNDWSN IRNP Limited-HTTL

WSN1
Power 1.1287 2.1812 1.3972 4.0105 4.4258 3.2151

Coverage 33.90% 53.01% 40.31% 74.13% 80.04% 78.26%
WSN2
Power 0.8843 2.3309 2.6340 3.9463 4.7733 2.1305

Coverage 38.55% 82.26% 91.79% 81.48% 95.09% 94.66%

(a) (b) (c)

(d) (e) (f)

Figure 2.8: Node deployment for different algorithms with β = 0.25 in WSN2 and uniform data
rate density function. (a) MER (b) AC (c) DC (d) RNDWSN (e) IRNP (f) Limited-HTTL.

Figs. 2.7 and 2.8 illustrate the optimal node deployment and covered area for different

algorithms in WSN1 and WSN2, respectively, with β = 0.25 and uniform data rate density

function. The two-tier power consumption and coverage of different algorithms for β = 0.25

and uniform data rate density function are summarized in Table 2.3. IRNP Algorithm

38



Table 2.4: Coverage and power comparison for the mixture of Gaussian data rate.

MER AC DC RNDWSN IRNP Limited-HTTL

WSN1
Power 1.6810 2.3428 1.5385 4.9187 4.4630 2.2659

Coverage 43.24% 75.72% 63.04% 92.45% 92.12% 91.68%
WSN2
Power 1.5285 1.6436 1.6676 4.0627 3.5923 1.1565

Coverage 46.43% 98.64% 97.13% 95.34% 99.32% 98.11%

(a) (b) (c)

(d) (e) (f)

Figure 2.9: Node deployment for different algorithms with β = 0.25 and the mixture of Gaussian
data rate density function in WSN1. (a) MER (b) AC (c) DC (d) RNDWSN (e) IRNP (f) Limited-
HTTL.

yields the maximum coverage in WSN1; however, the 1.78% improvement in the coverage

over our proposed Limited-HTTL Algorithm comes at the cost of 38% increase in power

consumption. Our algorithm also outperforms RNDWSN Algorithm in terms of both power

and coverage. Similarly, although IRNP Algorithm results in less than 1% improvement
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: Node deployment for different algorithms with β = 0.25 and the mixture of Gaussian
data rate density function in WSN2. (a) MER (b) AC (c) DC (d) RNDWSN (e) IRNP (f) Limited-
HTTL.

in coverage compare to Limited-HTTL Algorithm in WSN2, it consumes more than twice

power used by our proposed algorithm. Limited-HTTL Algorithm also outperforms the other

algorithms in terms of both coverage and power consumption in WSN2.

Figs. 2.9 and 2.10 show the optimal node deployment and covered area for different algo-

rithms in WSN1 and WSN2, respectively, with β = 0.25 and data rate density function given

in (2.24). The two-tier power consumption and coverage of different methods for β = 0.25

and Gaussian mixture data rate density function given in (2.24) are summarized in Table 2.4.

RNDWSN and IRNP algorithms result in less than 1% improvement in coverage compare to

Limited-HTTL Algorithm in WSN1; however, their power consumption is about twice that

of our proposed algorithm. Similar results for AC and IRNP algorithms in WSN2 show that
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Table 2.5: Simulation Parameters

Parameters
(
pWatt/m2)

a1:20 a21:40 b1:8,1:4 b1:8,5:8 b9:40,1:4 b9:40,5:8

1 2 1 2 2 4
Power Constraints (milliWatt)

σ2 σ2
1:8 σ2

9:20 σ2
21:40

6.4 19.6 14.4 10.0

Table 2.6: Coverage and power (Watt) comparison for the climate data.

MER AC DC RNDWSN IRNP Limited-HTTL

Power 0.7052 1.0169 0.8846 1.1978 1.3788 0.9151
Coverage 60.14% 82.17% 78.32% 76.57% 89.51% 96.15%

about 1% increase in the coverage obtained over Limited-HTTL Algorithm leads to 42%

and 210% increase in power consumption, respectively. Finally, our proposed algorithm out-

performs DC and RNDWSN methods in terms of both coverage and power consumption in

WSN2. Note that when communication range is limited, MER Algorithm usually yields poor

performance since many APs fall outside the communication range of their corresponding

FC, and they cannot transfer their collected data from sensors to fusion centers.

To evaluate the performance of our method in real world applications, we conduct experi-

ments on the daily weather data of the Colorado state, i.e. precipitation, relative humidity,

temperature etc. Sensory data is obtained with the same rate from 286 locations that form

a 13× 22 grid across Colorado. We consider a heterogeneous WSN with 40 APs and 8 FCs.

The power constraints and other parameter values are provided in Table 2.5 [49].

Table 2.6 summarizes the two-tier power consumption and coverage of different methods.

Our method outperforms AC, RNDWSN and IRNP algorithms in terms of both total cov-

erage and power consumption. While providing lower power, MER Algorithm yields poor

performance since many sensory locations fall outside the communication range of their

nearby APs. Finally, DC Algorithm yields 3% improvement in power consumption although

it provides a significantly lower coverage value compared with our algorithm.
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2.8 Conclusion

A heterogeneous two-tier network which collects data from a large-scale wireless sensor to

heterogeneous fusion centers through heterogeneous access points is discussed. We stud-

ied the minimum power that ensures reliable communication on such two-tier networks and

modeled it as an optimization problem. Different from the homogeneous two-tier networks,

a novel Voronoi Diagram is proposed to provide the best cell partition for the heterogeneous

network. The necessary conditions of optimal node deployment imply that every access point

should be placed between its connected fusion center and the geometric center of its cell par-

tition. By defining an appropriate power consumption measure, we proposed a heterogeneous

two-tier Lloyd Algorithm (HTTL) to minimize the power consumption. Simulation results

show that HTTL Algorithm greatly saves the weighted power or energy in a heterogeneous

two-tier network. When communication range is limited, our novel Limited-HTTL Algo-

rithm ensures that all APs are active. Simulation results show that our algorithms provide

superior results, in terms of both power consumption and network coverage.
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Chapter 3

Energy-Efficient Node Deployment in

Wireless Ad-hoc Sensor Networks

3.1 Introduction

Recent developments in wireless communications, digital electronics and computational power

have enabled a large number of applications of wireless ad-hoc sensor networks (WASNs) in

various fields such as agriculture and industry to name a few. In a general WASN, spatially

dispersed sensors collect data, e.g. temperature, sound, pressure and radio signals from

the physical environment, and then forward the gathered information to one or more fusion

centers (FCs).

In order to collect accurate data from the physical surroundings, high sensing quality or

sensitivity is required. In general, sensing quality diminishes as the distance between the

sensor and its target point increases [73, 74, 45, 13, 50, 108]. Thus, two distance-dependent

measures, i.e., sensing coverage [73, 92, 120, 111, 106] and sensing uncertainty [13, 60, 38, 39,

98, 22, 63] are widely studied in the literature to evaluate the sensing quality. In the binary
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coverage model [73, 92, 120, 111, 106], each sensor node can only detect the events within its

sensing radius. Then, sensing coverage represents the percentage of events that is covered by

at least one sensor [73, 92, 120, 111]. Another common model, centroidal Voronoi tessellation,

formulates the sensing quality as a source coding problem with sensing uncertainty as its

distortion [13, 60, 38, 39, 98, 22, 63]. Sensing uncertainty reflects the distortion of a quantizer,

and provides a distance-based measure of sensing quality [22, 63, 41, 21].

Energy efficiency is another key metric in WASNs as it is inconvenient or even infeasible to

recharge the batteries of numerous and densely deployed sensors. In general, wireless com-

munication, sensing and data processing are three primary energy consumption components

of a static node. However, in many WASN applications, wireless communication dominates

the node energy consumption [4, 87]. There are four primary energy saving methods for

WASNs in the literature: (i) topology control [64, 107], in which unnecessary energy con-

sumption is reduced by properly switching the nodes’ states between sleeping and working;

(ii) clustering [112, 58] which is used to balance the energy consumption among nodes in

one-hop communication models by iteratively selecting cluster heads; (iii) energy-efficient

routing [15, 34, 9], a widely used method that attempts to find the optimal routing paths

to forward data to FCs while the communication cost between two nodes are held fixed;

and (iv) deployment optimization that plays an important role in the energy consumption

of WASNs since the communication cost between two nodes depends on their distance. Our

previous works [41, 55] proposed Lloyd-like algorithms to save communication energy in ho-

mogeneous and heterogeneous WASNs by optimizing the node deployment. Nonetheless, a

pre-existing network infrastructure, which only includes two-hop communications, is a basic

assumption in [41, 55]. Compared to one-hop and two-hop communications, the general-

ized multi-hop communications can, on average, reduce the transmission distance and save

more energy. However, to the best of our knowledge, the optimal node deployment with

generalized multi-hop communications in WASNs is still an open problem.
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In this paper, we study the node deployment problem in WASNs with arbitrary multi-hop

routing algorithms. Our primary goal is to find the optimal FC and sensor deployment to

minimize both sensing uncertainty and total energy consumption of the network. By deriving

the routing-dependent necessary conditions of the optimal deployments in such WASNs, we

design a Lloyd-like algorithm to deploy nodes.

The rest of this paper is organized as follows: In Section 3.2, we introduce the system model

and problem formulation. In Section 3.3, we study the optimal FC and sensor deployment for

a given routing algorithm. A numerical algorithm is proposed in Section 3.4 to optimize the

node deployment. Section 3.5 presents the experimental results and Section 3.6 concludes

the paper.

3.2 System model and problem formulation

We consider a wireless ad-hoc sensor network consisting of M homogeneous FCs and N

homogeneous sensors over a target region Ω ∈ R2. Let IS = {1, . . . , N} and IF = {N +

1, . . . , N + M} denote the set of node indices for sensors and FCs, respectively. When

i ∈ IS, Node i refers to Sensor i; however, when i ∈ IF , Node i refers to FC (i − N).

Let P = (p1, . . . , pN , pN+1, . . . , pN+M)T ∈ R(N+M)×2 be the node deployment, where pi ∈ Ω

denotes the location of Node i. Throughout this paper, we assume that each event within

the target region is sensed by only one sensor. Therefore, for each i ∈ IS, Sensor i monitors

the events occurred in the cell Wi ⊆ Ω, and W = (W1, . . . ,WN) provides a cell partitioning

of Ω. According to [41], the frequency of random events taking place over Ω is modeled

via a continuous and differentiable spatial density function f(ω) : Ω → R+. Therefore, the

amount of data generated at Sensor i during a unit of time is given by Γ(Wi) = κ
∫
Wi
f(ω)dω

where κ is a positive constant, [41]. The data collected by each sensor node is forwarded to

other nodes in the network until it eventually reaches to one or more fusion centers.
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According to [15], this WASN can be modeled as a directed acyclic graph G(IS
⋃
IF , E)

where E is the set of directed links (n, k) such that n ∈ IS and k ∈ IS
⋃
IF . In particular,

sensors and FCs are source nodes and sink nodes of this network, respectively, and there

is no cycle in the flow network since each cycle can be eliminated by reducing the flows

along the cycle without influencing the in-flow and out-flow links to that cycle. We define

F = [Fi,j]N×(N+M) to be the flow matrix, where Fi,j is the amount of data transmitted

through the link (i, j) in the unit time. Since F depends on the cell partitioning W, we can

define the normalized flow matrix as follows:

S =

N+M︷ ︸︸ ︷

s1,1 s1,2 · · · s1,N+M




N,

s2,1 s2,2 · · · s2,N+M

...
...

. . .
...

sN,1 sN,2 · · · sN,N+M

(3.1)

where si,j ≜
Fi,j∑N+M

j=1 Fi,j
is the ratio of in-flow data to Node i that is transmitted to Node j.

The normalized flow matrix S satisfies the following properties:

(a) si,j ∈ [0, 1];1

(b)
∑N+M

j=1 si,j = 1, ∀i ∈ {1, . . . , N};

(c) No cycle: if there exists a path l0 → l1 → · · · → lK , i.e.,
∏K

k=1 slk−1,lk > 0, then we have

slK ,l0 = 0. In particular, sii = 0,∀i ∈ {1, . . . , N}.

Since the flow Fi,j can be determined by the cell partitioning W and normalized flow ma-

1For time-invariant routing algorithms, such as Bellman-Ford Algorithm [34, 9], the flows construct a tree-
structured graph in which each node has only one successor. Under such a circumstance, the normalized
flow from Node i to Node j is either 0 or 1, i.e., si,j ∈ {0, 1}. However, the time-variant routing algorithms,
such as Flow Augmentation Algorithm [15], will generate different flows during different time periods. As
a result, the overall normalized flow from Node i to Node j can be a real number between 0 and 1, i.e.,
si,j ∈ [0, 1].
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trix S, in the remaining of this paper we use F(W,S) instead of F. Let Fi(W,S) ≜∑N+M
j=1 Fi,j(W,S) be the total flow originated from Node i. Since the in-flow to each sensor,

say i, should be equal to the out-flow, we have
∑N

j=1 Fj,i(W,S)+Γ(Wi) =
∑N+M

j=1 Fi,j(W,S).

In what follows, we provide an example to elucidate how to calculate F (W,S) in terms of

W and S.

Example 1. We consider a WASN with three sensor nodes and one FC, i.e., N = 3 and

M = 1. The parameter κ is set to 4. For a cell partitioning W with cell volumes v(W1) =

v(W2) = 0.25, v(W3) = 0.5, and the normalized flow matrix S =


0 0.5 0.5 0

0 0 0.4 0.6

0 0 0 1

,

the corresponding flow network is illustrated in Fig. 3.1.

Figure 3.1: Example 1

The amount of data generated from each sensor node can be calculated as: Γ(W1) =

κv(W1) = 1, Γ(W2) = κv(W2) = 1, and Γ(W3) = κv(W3) = 2. As a leaf node, Sensor 1

does not receive data from any other sensor nodes, and only transmits its sensed data; thus,

F1(W,S) = Γ(W1) = 1. The flows from Sensor 1 are then F1,2(W,S) = s1,2×F1(W,S) = 0.5

and F1,3(W,S) = s1,3×F1(W,S) = 0.5, respectively. Sensor 2’s flows come from F1,2(W,S)

and the data gathered from the region W2. Hence, F2(W,S) = Γ(W2) + F1,2(W,S) = 1.5.
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Therefore, the flows from Sensor 2 are F2,3(W,S) = s2,3×F2(W,S) = 0.6 and F2,4(W,S) =

s2,4 × F2(W,S) = 0.9. Similarly, for Sensor 3, we have F3(W,S) = Γ(W3) + F1,3(W,S) +

F2,3(W,S) = 3.1; hence, the unique flow from Sensor 3 is F3,4(W,S) = s3,4×F3(W,S) = 3.1.

We focus on power consumption of sensors since FCs are usually equipped with reliable

energy sources and their power consumption is not the main concern. The average power

consumption through link (i, j) consists of two components: (i) average transmitter power,

PT

i,j; and (ii) average receiver power, PR

i,j. As shown in [41], because of the free-space path-

loss, the instant transmission power is proportional to the square of distance between nodes

i and j. Therefore, Sensor i’s average transmitter power through link (i, j) is modeled as

PT

i,j = β∥pi − pj∥2Fi,j(W,S) where the coefficient β depends on the characteristics of nodes

i and j [41]. In homogeneous WASNs, all nodes share the same characteristics; thus, the

coefficient β is the same for all links (i, j). According to [51], Sensor j’s average receiver power

through link (i, j) can be modeled as PR

i,j = ρFi,j(W,S), where ρ is a constant coefficient

for receiving data. In sum, the average power consumption over link (i, j) can be written as

P i,j(P,W,S) = PT

i,j + PR

i,j

=


(β∥pi − pj∥2 + ρ)Fi,j(W,S), j ∈ IS

(β∥pi − pj∥2)Fi,j(W,S), j ∈ IF

(3.2)

and the total power consumption can be written as

P(P,W,S) =
N∑
i=1

N+M∑
j=1

P i,j(P,W,S)

=
N∑
i=1

[
N+M∑
j=1

β∥pi − pj∥2Fi,j(W,S) + ρ

N∑
j=1

Fi,j(W,S)

]
.

(3.3)

According to [13, 60, 38, 39, 98, 22, 63], for a given node deployment P and cell partitioning

W, the sensing uncertainty can be formulated as:
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H(P,W) =
N∑
n=1

∫
Wn

∥pn − ω∥2f(ω)dω. (3.4)

Our main goal is to minimize the power consumption and sensing uncertainty defined in

(3.3) and (3.4), respectively. However, as will be shown in Section 3.5, there is a trade-

off between sensing uncertainty and power consumption. Intuitively, sensing uncertainty is

minimized when sensors are located on the centroid of their corresponding regions; however,

this will usually increase the pair-wise distance between nodes which leads to an increase in

power consumption. Therefore, one objective is to minimize the sensing uncertainty given

a constraint on the total power consumption, or vice versa. This constrained optimization

can equivalently be formulated as the following Lagrangian cost function:

D(P,W,S) = H(P,W) + λP(P,W,S)

=
N∑
i=1

∫
Wi

∥pi − ω∥2f(ω)dω + λρ
N∑
i=1

N∑
j=1

Fi,j(W,S)

+
N∑
i=1

N+M∑
j=1

(
λβ∥pi − pj∥2

)
Fi,j(W,S),

(3.5)

where λ ≥ 0, i.e. the Lagrangian multiplier, makes a trade-off between sensing uncertainty

and total power consumption. Our main goal in this paper is to minimize the cost function

defined in (3.5) over the node deployment P, cell partitioning W, and the normalized flow

matrix S.

3.3 Optimal node deployment in WASNs

As it is shown in (3.5), the cost function depends on three variables P, W and S. Therefore,

our goal is to find the optimal node deployment, cell partitioning and the normalized flow

matrix, denoted by P∗ =
(
p∗1, . . . , p

∗
N+M

)
, W∗ = (W ∗

1 , . . . ,W
∗
N) and S∗ =

[
s∗i,j
]
N×(N+M)

,
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respectively, that minimizes the cost function. Note that not only the optimal values of

these variables depend on each other, but also the optimization problem is NP-hard. We

aim to design an iterative algorithm that optimizes the value of one variable while the other

two variables are held fixed. To accomplish this goal, we study the necessary conditions for

optimal deployment at each step. Let

ei,j(P) ≜
P i,j(P,W,S)

Fi,j(W,S)
=


β∥pi − pj∥2 + ρ, j ∈ IS

β∥pi − pj∥2, j ∈ IF
(3.6)

be the Link (i, j)’s energy cost (Joules/bit). Without loss of generality, we assume that

Sensor i’s collected data goes through Ki paths {L(i)
k (S)}k∈{1,...,Ki}, where L

(i)
k (S) = l

(i)
k,0 →

l
(i)
k,1 → · · · → l

(i)

k,J
(i)
k

, l
(i)
k,0 = i, l

(i)

k,J
(i)
k

∈ IF , and J
(i)
k is the number of nodes on the k-th path

except Node i. Then, the data rate (bits/s) and the path cost (Joules/bit) corresponding to

the k-th path can be written as

µ
(i)
k (W,S) = Fi(W,S)

J
(i)
k∏
j=1

s
l
(i)
k,j−1,l

(i)
k,j
, (3.7)

and

e
(i)
k (P,S) =

J
(i)
k∑
j=1

e
l
(i)
k,j−1,l

(i)
k,j
(P), (3.8)

respectively. Note that
∑

k µ
(i)
k (W,S) = Fi(W,S) which means the data from Node i

eventually reaches one or more FCs. Sensor i’s power coefficient, denoted by gi(P,S), is

then defined to be the energy consumption (Joules/bit) for transmitting 1 bit data from

Sensor i to the FCs, i.e, we have:
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gi(P,S) =

∑Ki
k=1 µ

(i)
k (W,S)e

(i)
k (P,S)

Fi(W,S)

=

Ki∑
k=1

J(i)
k∏
j=1

s
l
(i)
k,j−1,l

(i)
k,j

 J
(i)
k∑
j=1

β
∥∥∥p

l
(i)
k,j−1

− p
l
(i)
k,j

∥∥∥2 + ρ
(
J
(i)
k − 1

) . (3.9)

Note that the term Fi(W,S) is canceled in (3.9), indicating that power coefficient gi(P,S)

is independent of W. In what follows, we provide an example to clarify how to calculate the

sensor power coefficients.

Example 2. Consider the WASN described in Fig. 3.1, and letP = ((0, 0), (0, 1), (1, 0), (1, 1)),

β = 1 and ρ = 1. We aim to find Sensor 1’s power coefficient g1(P,S). The link energy

costs for this network can be calculated as e1,2(P) = e1,3(P) = 2, e2,3(P) = 3, and e2,4(P) =

e3,4(P) = 1. Note that Sensor 1’s data goes through the following 3 paths: L
(1)
1 (S) =

1 → 2 → 4, L
(1)
2 (S) = 1 → 3 → 4, and L

(1)
3 (S) = 1 → 2 → 3 → 4. The data rate

through the above paths are, respectively, µ
(1)
1 (W,S) = F1(W,S)×s1,2×s2,4 = 0.3F1(W,S),

µ
(1)
2 (W,S) = F1(W,S) × s1,3 × s3,4 = 0.5F1(W,S), and µ

(1)
3 (W,S) = F1(W,S) × s1,2 ×

s2,3 × s3,4 = 0.2F1(W,S). Moreover, we can calculate the path costs using (3.8) as follows:

e
(1)
1 (P) = e1,2(P) + e2,4(P) = 3, e

(1)
2 (P) = e1,3(P) + e3,4(P) = 3, and e

(1)
3 (P) = e1,2(P) +

e2,3(P) + e3,4(P) = 6. Then, Sensor 1’s power coefficient is g1(P,S) = 0.3 × 3 + 0.5 × 3 +

0.2× 6 = 3.6.

Note that the average power consumption for transmitting Sensor i’s data is gi(P,S)Γ(Wi) =

gi(P,S)κ
∫
Wi
f(ω)dω. Thus, the total power consumption (3.3) can be rewritten as:

P(P,W,S) =
N∑
i=1

gi(P,S)κ

∫
Wi

f(ω)dω. (3.10)

Therefore, the cost function in (3.5) can be rewritten as:
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D(P,W,S) = H(P,W) + λP(P,W,S)

=
N∑
i=1

∫
Wi

(
∥pi − ω∥2 + λκgi(P,S)

)
f(ω)dω.

(3.11)

Now, given the node deployment P and normalized flow matrix S, the optimal cell parti-

tioning is equal to:

Vi(P,S) = {ω| ∥pi − ω∥2 + λκgi(P,S) ≤ ∥pj − ω∥2 + λκgj(P,S),∀j ̸= i}, i ∈ IS. (3.12)

Moreover, given the link costs {eij(P)}s and generated sensing data rates {Γ(Wi)}s, the total

power consumption can be minimized by Bellman-Ford Algorithm [34, 9]. For convenience,

we represent the functionality of Bellman-Ford Algorithm by R(P,W), where P and W are

inputs and S is the output, i.e., R(P,W) = argminS P(P,W,S). Since sensing uncertainty

H(P,W) is independent of S, we have:

R(P,W) = argmin
S

H(P,W) + λP(P,W,S)

= argmin
S
D(P,W,S).

(3.13)

The optimal flow matrix for a given P and W is then F(W,R(P,W)). The following

theorem provides the necessary conditions for the optimal deployment.

Theorem 3.1. The necessary conditions for the optimal deployments in the WASNs with

the cost defined in (3.5) are

p∗i =

c∗i v
∗
i + λβ

(
N+M∑
j=1

F ∗
i,jp

∗
j +

N∑
j=1

F ∗
j,ip

∗
j

)

v∗i + λβ

(
N+M∑
j=1

F ∗
i,j +

N∑
j=1

F ∗
j,i

) , ∀i ∈ IS (3.14)
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p∗i =

N∑
j=1

F ∗
j,ip

∗
j

N∑
j=1

F ∗
j,i

, ∀i ∈ IF (3.15)

W∗ = V(P∗,S∗), (3.16)

S∗ = R(P∗,W∗), (3.17)

where v∗i =
∫
Vi(P∗,S∗)

f(ω)dω and c∗i =

∫
Vi(P∗,S∗) ωf(ω)dω∫
Vi(P∗,S∗) f(ω)dω

are the Lebesgue measure (volume)

and geometric centroid of the region Vi(P∗,S∗), respectively, and F ∗
i,j = Fi,j(W

∗,S∗) is the

optimal flow from Node i to Node j.

The proof of Theorem 3.1 is provided in Appendix C.1. Let N P
i (S) ≜ {j|Fj,i(W,S) > 0}

be the set of Node i’s predecessors, and N S
i (S) ≜ {j|Fi,j(W,S) > 0} be the set of Node i’s

successors. Hence, (3.14) and (3.15) can be simplified as

p∗i =

c∗i v
∗
i + λβ

( ∑
j∈NS

i (S∗)

F ∗
i,jp

∗
j +

∑
j∈NP

i (S∗)

F ∗
j,ip

∗
j

)

v∗i + λβ

( ∑
j∈NS

i (S∗)

F ∗
i,j +

∑
j∈NP

i (S∗)

F ∗
j,i

) (3.18)

for each i ∈ IS, and

p∗i =

∑
j∈NP

i (S∗)

F ∗
j,ip

∗
j∑

j∈NP
i (S∗)

F ∗
j,i

(3.19)

for each i ∈ IF , respectively. In other words, Sensor i’s optimal location is a linear combi-

nation of its geometric centroid, predecessors, and successors while FC i’s optimal location

is a linear combination of its predecessors.
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3.4 Routing-aware Lloyd Algorithm

First, we quickly review Lloyd Algorithm [69]. Lloyd Algorithm iterates between two steps:

(i) Voronoi partitioning and (ii) Moving each node to the geometric centroid of its cor-

responding Voronoi region. Although the conventional Lloyd Algorithm can be used for

one-tier quantizers or one-tier node deployment tasks, it cannot be applied to WASNs with

multi-hop wireless communications. Based on the properties explored in Section 3.3, we

design a Routing-aware Lloyd (RL) Algorithm to optimize the node deployment in WASNs

and minimize the cost function in (3.5). To avoid a poor initial deployment, first, we design

a quantizer with N (M) points for the spatial density function f(ω) and place the sensors

(FCs) on the corresponding centroids. This results in an even distribution of sensors among

FCs as the initial deployment. RL Algorithm then iterates between three steps: (i) Update

the node deployment P according to (3.14) and (3.15); (ii) run Bellman-Ford Algorithm to

update the normalized flow matrix S and obtain the sensor power coefficients gi(P,S) and

the flow matrix F(W,S); and (iii) update the cell partitioning W according to (3.16) and

update the value of volumes vn and centroids cn. The algorithm continues until the stop

criterion, Dold−Dnew

Dold
≥ ϵ is satisfied (Dold and Dnew are the cost functions in the previous and

current iterations, respectively).

Theorem 3.2. RL Algorithm is an iterative improvement algorithm, i.e., the cost function

is non-increasing and the algorithm converges.

The proof of Theorem 3.2 is provided in Appendix C.2.

3.5 Performance Evaluation

We provide the experimental results for two WASNs: (i) WASN1: A WASN including 1

FC and 20 sensors; (ii) WASN2: A WASN including 4 FCs and 40 sensors. To make a
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fair comparison, we use the same target region and density function as in [41, 55], i.e.,

Ω = [0, 10]2 and f(ω) = 1∫
Ω dω

= 0.01. Other parameters are set as follows: β = 1, ρ = 0.1,

κ = 1, ϵ = 10−6.

To the best of our knowledge, this is the first work to consider both sensing uncertainty

and power consumption in WASNs. Bellman-Ford Algorithm [34, 9] is the best routing

algorithm to minimize the total energy consumption, but it does not take node deployment

into account. To compare with Bellman-Ford Algorithm, we apply random deployment and

Lloyd Algorithm [69] for the node deployment part. Random deployment + Bellman-Ford

(RBF) employs Bellman-Ford Algorithm on 100 random node deployments and selects the

best one. Similarly, Lloyd + Bellman-Ford (LBF) first applies Lloyd Algorithm to both FCs

and Sensors to obtain a node deployment with small cost, and then employs Bellman-Ford

Algorithm to reduce the average power. Furthermore, we compare RL with Combining Lloyd

(CL) [41] which combines two Lloyd-like algorithms to optimize the node deployment with

one-hop communications.

(a) (b)

Figure 3.2: Performance comparison for different algorithms: (a) WASN1 (B) WASN2.

Performance results for different values of λ ∈ {0, 0.05, 0.15, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 7, 10, 16}

are provided in Fig. 3.2. Note that the trade-off between sensing uncertainty and power

consumption, represented by the constant parameter λ, is taken into account in both CL
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and RL algorithms. However, RBF and LBF algorithms are independent of λ. In particular,

since LBF determines the node deployment by Lloyd Algorithm before employing Bellman-

Ford Algorithm, LBF’s performance is almost independent of the initial deployments, and

its experimental results in Fig. 3.2 converge to a point with small sensing uncertainty but

large power consumption. For small values of λ, the cost function in (3.5) favors the sensing

uncertainty over power consumption, which leads to the points on the left-hand side of the

RL curve in Fig. 3.2. Similarly, large values of λ results in points on the right-hand side of

the RL curve. Overall, the proposed RL algorithm outperforms other algorithms by saving

more power and reducing more sensing uncertainty, in addition to providing a trade-off.2

The node deployments of the four algorithms (RBF, LBF, CL, and RL) in WASN1 with

λ = 0.25 are illustrated in Figs. 3.3a, 3.3b, 3.3c, and 3.3d. FCs and sensors are denoted

by five-pointed stars and circles, respectively. Flows are denoted by black dotted lines.

As shown in Fig. 3.3, cell partitions in LBF, CL and RL algorithms tend to have similar

shapes; however, RBF does not result in a similar pattern. Moreover, sensors in Fig. 3.3b

are placed on top of their corresponding centroids while sensors in Fig. 3.3c are placed

between their corresponding FC and centroid. However, in Fig. 3.3d, location of each sensor

depends on its centroid, predecessors, and successors, as provided in Theorem 3.1. Note

that in Figs. 3.3b, 3.3c and 3.3d, sensors inside each cluster tend to be close to each other

with their FC in the middle; however, the same relationship does not appear in Fig. 3.3a.

Besides, CL only uses one-hop communications, i.e., sensors are directly connected to the

FC while other algorithms utilize multi-hop communications to reduce the average power.

The corresponding cost function given λ = 0.25 for RBF, LBF, CL, and RL are, respectively,

3.82, 3.25, 4.00, 2.59; thus, our RL Algorithm achieves a lower cost function and outperforms

other algorithms.

Similar results for WASN2 can be found in Fig. 3.4. The distortion of RL in WASN2, i.e.,

2To better exhibit the performance of LBF, CL, RL, we do not show the results of RBF with excessive
powers (P > 6) in Fig. 3.2.
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(a) (b)

(c) (d)

Figure 3.3: Node deployments of different algorithms with λ = 0.25 in WASN1: (a) RBF (b) LBF
(c) CL (d) RL.

1.01, is smaller than that of RBF, LBF and CL (1.87, 1.25, 1.17). Note that in Figs. 3.4b,

3.4c and 3.4d, sensors inside each cluster tend to be close to each other with their FC in the

middle; however, the same relationship does not appear in Fig. 3.4a.

3.6 Conclusions and Discussion

In this paper, we formulated the node deployment in WASNs as an optimization problem

to make a trade-off between sensing uncertainty and energy consumption. The necessary

conditions for the optimal deployment imply that each sensor location should be a linear
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(a) (b)

(c) (d)

Figure 3.4: Node deployments of different algorithms with λ = 0.25: (a) RBF (b) LBF (c) CL (d)
RL.

combination of its centroid, predecessors and successors. Based on these necessary condi-

tions, we proposed a Lloyd-like algorithm to minimize the total cost. Our experimental

results show that the proposed algorithm significantly reduces both sensing uncertainty and

energy consumption. Although we only considered Bellman-Ford Algorithm as the routing

algorithm in this paper, the proposed system model in Section 3.2 can be applied to ar-

bitrary routing algorithms, such as Flow Augmentation Algorithm [15] (a network lifetime

maximization routing algorithm). The optimal deployment with maximum network lifetime

will be our future work.
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Chapter 4

Energy-Efficient Deployment in Static

and Mobile Heterogeneous Multi-Hop

Wireless Sensor Networks

4.1 Introduction

Wireless sensor networks (WSNs) consist of small and low-cost sensor devices used to monitor

the environment and transfer the sensed information through wireless channels to dedicated

fusion centers. WSNs can be classified into either homogeneous WSNs [40, 41, 21, 20, 10], in

which network nodes share the same characteristics such as storage, antennas, sensitivity etc.,

or heterogeneous WSNs where network nodes have different characteristics [55, 51, 56, 79, 42,

38]. Based on the network architecture, WSNs can be divided into either hierarchical WSNs,

where network nodes are often grouped into clusters with some of them chosen to be cluster

heads, or non-hierarchical WSNs where sensors have identical functionality and multi-hop

wireless communication is used to maintain the connectivity of the network. Wireless sensor
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nodes can also be classified as either static [56, 38], in which each network node remains at

its deployed position, or mobile where network nodes can move to their optimal locations to

improve the energy efficiency and sensing quality of WSNs [39, 98, 120, 19]. In general, there

are three fundamental elements to specify for a WSN: (i) node deployment, i.e., the location

of network nodes; (ii) cell partitioning, i.e., the region that each network node monitors; and

(iii) data routing, i.e., the path that each sensory data takes to reach fusion centers. Not

only should a proper network design algorithm jointly optimize over node deployment, cell

partitioning, and data routing, but also it should be applicable to heterogeneous WSNs and

be extendable to both static and mobile network nodes.

In [40, 41], we studied the optimal deployment in homogeneous WSNs; however, the ho-

mogeneous setting does not address many challenges that are inherent in heterogeneous

WSNs, e.g., unlike regular Voronoi diagrams in homogeneous WSNs, the optimal cells in

heterogeneous WSNs may be non-convex, not star-shaped, or even disconnected and the cell

boundaries may not be hyperplanes. In [55, 56, 42, 38, 39], we studied the energy-efficient

deployment for heterogeneous WSNs; however, the network is restricted to a one-tiered or

two-tiered architecture while an efficient data routing through multi-hop communication can

substantially improve the total energy consumption. Thus, our prior studies along with the

majority of the work in the literature, as we will explore in the next section, fall short on

one or more of the desired properties discussed above; namely, they may not consider the

heterogeneous nature of network nodes, lack a rigorous radio energy model for the commu-

nication energy consumption, assume a specific network architecture, and consider only a

static or mobile setting.

The primary motivation and key characteristic of this work over the existing literature is

that not only do we incorporate the heterogeneity of network nodes into our system model

and make no assumption about the network’s architecture, but also we consider a radio

energy model, where the electromagnetic wave propagation dampens as a power law function
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of the distance between the transmitter and receiver, and develop deployment algorithms

that are applicable to both static and mobile WSNs. In particular, we study the optimal

deployment in heterogeneous multi-hop WSNs consisting of homogeneous densely deployed

sensors, heterogeneous APs, and heterogeneous FCs, to minimize the wireless communication

power consumption with and without movement energy constraints. Our contributions in

this paper are multifold:

• We consider a radio energy model based on large scale fading and line-of-sight path

loss signal attenuation that incorporates the heterogeneous characteristics of network

nodes without any a priori assumption about the network’s architecture, location of

nodes, etc;

• We provide theoretical necessary conditions for an optimal deployment, cell parti-

tioning, and data routing design for both static and mobile heterogeneous WSNs to

minimize the power consumption;

• We design energy-efficient algorithms to jointly optimize node deployment, cell parti-

tioning, and data routing that satisfy the necessary conditions and prove their conver-

gence.

The rest of the paper is organized as follows: In Section 4.2, we present an overview of the

existing literature on WSN deployment. In Section 4.3, we provide the system model. In

Section 4.4, we study the optimal deployment in static heterogeneous multi-hop WSNs and

propose an iterative algorithm based on the derived necessary conditions. The analysis of

optimal deployment with network’s total movement energy constraint is provided in Section

4.5. In Section 4.6, we study an energy-efficient deployment that guarantees a given network’s

lifetime in mobile WSNs. Experimental results are provided in Section 4.7 and Section 4.8

concludes the paper.
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4.2 Related Work

Energy efficiency is a key determinant in longevity of the WSNs since sensors have limited

energy resources and it is difficult or infeasible to recharge the batteries of densely deployed

sensors. In general, many factors contribute to the energy consumption of the WSNs, e.g.,

communication energy, movement energy, sensing energy, and computation energy [114, 49].

Empirical measurements have shown that the data processing and computation energy as

well as sensing energy for passive sensors are negligible compared to communication energy

[87]. Thus, wireless communication dominates the energy consumption in static sensors in

practice while movement energy dominates the energy consumption in mobile wireless sensor

networks [56, 105].

Several methods have been proposed in the literature to reduce the energy consumption of

wireless communication in WSNs. Examples include methods that circumvent the excess en-

ergy consumption by appropriately switching sensors between awake and asleep states [107],

calibrating the transmission power of sensors while a reliable communication is maintained

[58], and finding optimal paths to transfer data from sensors to fusion centers [10]. The

common drawback of these approaches is that the deployment is assumed to be known and

fixed; however, because the required transmission power is polynomially proportional to the

distance between the transmitter and the receiver, a proper deployment can significantly

affect the energy consumption of WSNs.

There are two types of deployment techniques proposed in the literature to optimize the

energy consumption of WSNs: random deployment and deterministic deployment. Random

deployment is often used in harsh or inaccessible environments where deterministic deploy-

ment is not feasible. Examples include Constant Diffusion [110], Hybrid Diffusion [91], and

Discontinuous Diffusion [90] in which network nodes are scattered in the target region ac-

cording to a given probability density function. Since network nodes are not usually placed
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at their optimal locations due to the stochastic nature of these methods, the performance

of random-based deployment falls short compared to the deterministic deployment. Deter-

ministic deployment approaches aim to calculate the optimal location of network nodes that

achieves a desired objective. These methods can be classified into four different categories,

as we have summarized below:

1. Grid-based methods: Examples include [97, 86, 31, 71] in which the locations of network

nodes are determined based on a grid shape such as triangular, rectangular, or hexag-

onal grid pattern. These methods are favorable due to their simplicity; however, they

consider a homogeneous setting and do not account for the heterogeneity of network

nodes; thus, they perform poorly when the WSN is comprised of nodes with different

characteristics [31, 24]. In addition, they do not account for connectivity and are only

applicable to static nodes.

2. Force-based methods: Examples include [117, 26, 66] in which a set of attractive, repul-

sive or null virtual forces act on network nodes based on their distance from each other.

These methods offer adequate coverage and are applicable to mobile nodes; however,

they suffer from nodes’ oscillations problem [12], shortened network lifetime due to

invalid movements [119], high computational complexity, and do not scale well with

the number of nodes. Moreover, they yield undesirable performance for heterogeneous

WSNs since virtual forces do not consider the heterogeneity of nodes.

3. Geometry-based methods: Examples include Delaunay triangulation and Voronoi-based

algorithms such as [2, 104, 36, 99, 70] in which the target region is partitioned into

a set of unique polygons, one for each network node, such that each point within

a polygon is closest to that network node compared to any other node residing in

other polygons. While the intuition of closeness in the sense of Euclidean distance

makes sense for homogeneous nodes, it has been shown to fail for heterogeneous WSNs

in which the best partitioning heavily depends on nodes’ characteristics [56]. Our
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proposed algorithms in this paper fall into this category of deployment methods.

4. Meta-heuristic methods: Examples include ant colony optimization [25, 65], artificial

bee colony [80], particle swarm optimization [14], genetic algorithm [116, 44], and

simulated annealing [28] in which various optimization tools are used to find nodes’

locations. These methods are designed to achieve high coverage rates, but they are sen-

sitive to node failure and suffer from high power consumption [32], high computational

complexity, and low convergence rate. Additionally, fine-tuning the hyperparameters

for these algorithms is very challenging since a slight variation can result in different

network behavior.

To the best of our knowledge, the energy-efficient deployment in heterogeneous multi-hop

WSNs is still an open problem. In the remainder of this paper, we study such networks in

details.

4.3 System Model

In this section, we study the system model of heterogeneous multi-hop WSNs, as shown in

Fig. 4.1, consisting of three types of nodes: homogeneous sensors, heterogeneous APs and

heterogeneous FCs. Given the target region Ω ∈ R2 which is a convex polygon including

its interior, N APs and M FCs are deployed to collect information from densely deployed

sensors. Let IA = {1, · · · , N} and IF = {N +1, · · · , N +M} denote the set of node indices

for APs and FCs, respectively. If n ∈ IA, Node n refers to AP n; however, when n ∈ IF ,

Node n refers to FC (n−N). The location of Node n is denoted by pn ⊂ Ω and collectively

the node deployment is denoted by P = (p1, · · · , pN , pN+1, · · · , pN+M). Throughout this

paper, we assume that each sensor only sends data to one AP; therefore, for each n ∈ IA,

AP n gathers data from sensors within the regionWn ⊆ Ω, and W = (W1, · · · ,WN) provides
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a set partitioning of the target region. The density of sensors is denoted via a continuous and

differentiable function f : Ω −→ R+. The total amount of data collected from sensors within

the region Wn in one time unit is Rb

∫
Wn

f(ω)dω, where the bit-rate Rb is a constant due to

the homogeneity of sensors [41]. For each n ∈ IA, the volume and centroid of the region Wn

is defined as v(Wn) ≜
∫
Wn

f(ω)dω and c(Wn) ≜
∫
Wn

ωf(ω)dω∫
Wn

f(ω)dω
, respectively. The data gathered

from each sensor is forwarded to other nodes in the network until it eventually reaches to

one or more FCs.

Figure 4.1: System model.

As shown in Fig. 4.1, the network can be regarded as a directed acyclic graph G(IA
⋃
IF , E)

where APs and FCs are source and sink nodes, respectively, and E is the set of directed edges

(i, j) such that i ∈ IA and j ∈ IA
⋃
IF [15]. Note that any cycle in the network’s graph

can be removed by reducing the flow of data along the cycle without changing the in-flow

and out-flow links to that cycle. Let F = [Fi,j]N×(N+M) be the flow matrix, where Fi,j is the

amount of data transmitted through the link (i, j) in one time unit. Since the in-flow to each

AP, say i, should be equal to the out-flow, we have
∑N

j=1 Fj,i+Rb

∫
Wi
f(ω)dω =

∑N+M
j=1 Fi,j.

For i ∈ IA, we define Fi ≜
∑N+M

j=1 Fi,j to be the total flow originated from AP i. Let

S = [si,j]N×(N+M) be the normalized flow matrix, where si,j ≜
Fi,j∑N+M

j=1 Fi,j
is the ratio of the

in-flow data to AP i that is transmitted to node j. The normalized flow matrix S satisfies the
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following properties: (a) si,j ∈ [0, 1];1 (b)
∑N+M

j=1 si,j = 1, ∀i ∈ {1, · · · , N}; (c) No cycle: if

there exists a path in the network’s graph such as l0 → l1 → · · · → lK , i.e.,
∏K

k=1 slk−1,lk > 0,

then we have slK ,l0 = 0. In particular, we have si.i = 0, ∀i ∈ {1, · · · , N}. Since the flow

matrix F can be uniquely determined by the set partitioning W and the normalized flow

matrix S, in the remaining of this paper, we use the notation F (W,S) instead of F. The

following example describes how to calculate F (W,S) in terms of W and S.

Example 1. We consider a heterogeneous multi-hop WSN with three APs and one FC, i.e.

N = 3 and M = 1, and the bit-rate Rb = 20. For a cell partitioning W with cell volumes

v(W1) = v(W2) = 0.3, v(W3) = 0.4, and the normalized flow matrix S = [si,j]N×(N+M)

with non-zero entries s1,2 = 0.4, s1,3 = 0.6, s2,3 = 0.25, s2,4 = 0.75 and s3,4 = 1, the

corresponding flow network is illustrated in Fig. 4.1. The amount of data generated from

sensors within each cell can be calculated as: Γ(W1) =Rbv(W1) = 6, Γ(W2) =Rbv(W2) = 6,

and Γ(W3) = Rbv(W3) = 8. AP 1 does not receive data from any other AP, and only

transmits its collected sensed data; thus, F1(W,S) = Γ(W1) = 6. The flows from AP 1 are

then F1,2(W,S)= s1,2×F1(W,S)= 2.4 and F1,3(W,S)= s1,3×F1(W,S)= 3.6, respectively.

AP 2’s flows come from F1,2(W,S) and the data gathered from the region W2. Hence,

F2(W,S) = Γ(W2)+F1,2(W,S) = 8.4. Therefore, the flows from AP 2 are F2,3(W,S) =

s2,3×F2(W,S) = 2.1 and F2,4(W,S) = s2,4×F2(W,S) = 6.3. Similarly, for AP 3, we have

F3(W,S) = Γ(W3)+F1,3(W,S)+F2,3(W,S) = 13.7; hence, the unique flow from AP 3 is

F3,4(W,S)=s3,4 × F3(W,S)=13.7.

In what follows, we formulate the wireless communication power consumption of the network.

Also, we focus on the power consumption of sensors and APs, since FCs are usually supplied

with reliable energy sources and their power consumption is not the main concern. First, we

1For time-invariant routing algorithms, such as Bellman-Ford Algorithm [34, 9], the flows construct a
tree-structured graph in which each node has only one successor. Under such circumstances, the normalized
flow from Node i to Node j is either 0 or 1, i.e., si,j ∈ {0, 1}. However, the time-variant routing algorithms,
such as Flow Augmentation Algorithm [15], generate different flows during different time periods. As a result,
the overall normalized flow from Node i to Node j can be a real number between 0 and 1, i.e., si,j ∈ [0, 1].
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focus on the sensor’s power consumption. According to [41], due to the path-loss, the instant

transmission power is equal to the square of the distance between the two nodes multiplied

by a constant that depends on the characteristics of both nodes, i.e., η×∥pn−ω∥2 for a sensor

positioned at ω that transmits its data to AP n, n ∈ IA. As shown in [49], the parameter η

is given by η = Pth(4π)
2

RbGtGrλ2c
, where Pth is the minimum receiver power threshold for successful

reception, Rb is the bit-rate, Gt and Gr are the antenna gains of the transmitter and receiver,

respectively, and λc is the carrier signal wavelength. In the homogeneous setting, all nodes

have the same characteristics; thus, the parameter η is the same and will not affect the

optimization. However, in a heterogeneous multi-hop WSN, AP nodes can have different

antenna gains and SNR thresholds; hence, the parameter η will be a function of the node

index. Therefore, the sensors’ transmission power consumption can be written as

PT

S (P,W) =
N∑
n=1

∫
Wn

ηn∥pn − ω∥2Rbf(ω)dω. (4.1)

Similarly, the instant transmission power from Node i to Node j can be written as β×∥pi−

pj∥2 where the parameter β depends on the antenna gain and SNR threshold of Node j and

the antenna gain of Node i [49]. Therefore, it is the same for the homogeneous setting and will

not affect the optimization. However, in a heterogeneous multi-hop WSN, the heterogeneity

of the nodes causes the parameter β to be a function of the node indices. Hence, the average

transmission power through link (i, j) is equal to βi,j∥pi−pj∥2Fi,j(W,S), and the APs’ total

transmission power consumption can be written as

PT

A (P,W,S) =
N∑
i=1

N+M∑
j=1

βi,j∥pi − pj∥2Fi,j (W,S) . (4.2)

According to [51], power at the receiver of AP n can be modeled as
∑N

i=1 ρnFi,n(W,S) +

ρnRb

∫
Wn

f(ω)dω, where ρn is the power consumption coefficient for receiving data at AP

n, and depends on digital coding, modulation and filtering of the signal before transmission
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[49]. Therefore, the APs’ total receiver power consumption can be written as:

PR

A (W,S) =
N∑
n=1

ρn

[
N∑
i=1

Fi,n (W,S) +Rb

∫
Wn

f(ω)dω

]
. (4.3)

Thus, the total communication power consumption of the multi-hop WSN can be written

as:

D (P,W,S) = PT

S (P,W) + λ
[
PT

A (P,W,S) + PR

A (W,S)
]
, (4.4)

where the Lagrangian multiplier λ ≥ 0 provides a trade-off between the sensor and AP

power consumption. Our main objective in this paper is to minimize the multi-hop power

consumption defined in (4.4) over the node deployment P, cell partitioning W, and the

normalized flow matrix S in both static and mobile WSNs with constrained movement energy.

4.4 Optimal Node Deployment in Static Heterogeneous

Multi-Hop WSNs

As shown in (4.4), the total power consumption depends on three variables P, W and S.

Thus, our goal is to find the optimal AP and FC deployments, cell partitioning and normal-

ized flow matrix, denoted by P∗ =
(
p∗1, · · · , p∗N , p∗N+1, · · · , p∗N+M

)
, W∗ = (W ∗

1 , · · · ,W ∗
N) and

S∗ =
[
s∗i,j
]
N×(N+M)

, respectively, that minimizes the multi-hop power consumption. Note

that not only the variables P, W and S are interdependent, i.e., the optimal value for each

of them depends on the value of the other two variables, but also this optimization problem

is NP-hard. Our aim is to design an iterative algorithm that optimizes the value of one

variable while the other two variables are held fixed. For this purpose, first we introduce a

few concepts, and then we derive the necessary conditions for optimal deployment at each
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step.

Without loss of generality, we assume that AP n’s gathered data goes through Kn paths in

the network’s graph before it reaches to one or more fusion centers. We denote these paths

by
{
L
(n)
k (S)

}
k∈{1,··· ,Kn}

, where L
(n)
k (S) = l

(n)
k,0 → l

(n)
k,1 → · · · → l

(n)

k,J
(n)
k

, l
(n)
k,0 = n, l

(n)
k,i ∈ IA for

i ∈ {0, · · · , J (n)
k −1}, l(n)

k,J
(n)
k

∈ IF and J
(n)
k is the number of nodes on the k-th path excluding

Node n. The portion of the total flow originated from AP n that goes through the k-th path

can then be calculated as

µ
(n)
k (W,S) = Fn (W,S)

J
(n)
k∏
i=1

s
l
(n)
k,i−1,l

(n)
k,i
. (4.5)

In particular, we have
∑Kn

k=1 µ
(n)
k (W,S) = Fn (W,S) that indicates the data from AP n

eventually reaches to one or more FCs. Next, for each link (i, j) in the network’s graph, we

define the energy cost (Watt/bit) to be:

ei,j (P) ≜


βi,j∥pi − pj∥2 + ρj, if j ∈ IA

βi,j∥pi − pj∥2, if j ∈ IF .

(4.6)

Hence, we define the path cost corresponding to the k-th path from AP n to FCs as:

e
(n)
k (P,S) =

J
(n)
k∑
i=1

e
l
(n)
k,i−1,l

(n)
k,i

(P) . (4.7)

Now, AP n’s power coefficient, denoted by gn (P,S) is defined to be the power consumption

(Joules/bit) for transmitting 1 bit data from AP n to the FCs, i.e., we have:

gn (P,S) =

∑Kn
k=1 µ

(n)
k (W,S) e

(n)
k (P,S)

Fn (W,S)
(4.8)

=
Kn∑
k=1

J(n)
k∏
i=1

s
l
(n)
k,i−1,l

(n)
k,i

J
(n)
k∑
j=1

β
l
(n)
k,j−1,l

(n)
k,j

∣∣∣∣∣∣p
l
(n)
k,j−1

− p
l
(n)
k,j

∣∣∣∣∣∣2 + J
(n)
k −1∑
j=1

ρ
l
(n)
k,j

 . (4.9)
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Note that the term Fn (W,S) is canceled in (4.8), implying that power coefficient gn (P,S)

is independent of W. Below we provide an example to clarify how to calculate the AP power

coefficients.

Example 2. Consider theWSN described in Example 1, and letP = ((0, 0), (0, 1), (1, 0), (1, 1)),

βi,j =1 and ρi=1 for all i ∈ IA and j ∈ IA
⋃
IF . We aim to find AP 1’s power coefficient

g1(P,S). The link energy costs for this network can be calculated as e1,2(P) = e1,3(P)=2,

e2,3(P) = 3, and e2,4(P) = e3,4(P) = 1. Note that AP 1’s data goes through the following 3

paths: L
(1)
1 (S)=1→ 2→ 4, L

(1)
2 (S)=1→ 3→ 4, and L

(1)
3 (S)=1→ 2→ 3→ 4. The data rate

through the above paths are, respectively, µ
(1)
1 (W,S)=F1(W,S)×s1,2×s2,4=0.3F1(W,S),

µ
(1)
2 (W,S)=F1(W,S)×s1,3×s3,4=0.6F1(W,S), and µ

(1)
3 (W,S)=F1(W,S)×s1,2×s2,3×s3,4=

0.1F1(W,S). Moreover, we can calculate the path costs using (4.7) as follows: e
(1)
1 (P) =

e1,2(P) + e2,4(P) = 3, e
(1)
2 (P) = e1,3(P) + e3,4(P) = 3, and e

(1)
3 (P) = e1,2(P) + e2,3(P) +

e3,4(P) = 6. Then, AP 1’s power coefficient is g1(P,S) = 0.3× 3 + 0.6× 3 + 0.1× 6 = 3.3.

To derive the necessary condition for an optimal cell partitioning, first, we need to rewrite

the objective function in (4.4).

Lemma 7. For the AP power coefficient defined in (4.8), we have:

N∑
n=1

gn (P,S)Rb

∫
Wn

f(ω)dω =
N∑
i=1

[
N+M∑
j=1

βi,j∥pi − pj∥2Fi,j (W,S) +
N∑
j=1

ρjFi,j (W,S)

]
.

(4.10)

The proof is provided in Appendix D.1. Using Lemma 7, the objective function is:

D (P,W,S) =
N∑
n=1

∫
Wn

(
ηn∥pn − ω∥2Rb + λgn (P,S)Rb + λρnRb

)
f(ω)dω. (4.11)

Now, we study the properties of the optimal cell partitioning. For each n ∈ IA, the Voronoi
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cell Vn for a node deployment P and normalized flow matrix S is defined to be:

Vn(P,S)≜
{
ω :ηn∥pn−ω∥2+λgn(P,S)+λρn ≤ ηk∥pk−ω∥2+λgk(P,S)+λρk,∀k ̸= n

}
.

(4.12)

Ties are broken in the favor of the smaller index to ensure that each Voronoi cell Vn is a

Borel set. For brevity, we write Vn instead of Vn (P,S) when it is clear from the context.

The collection

V (P,S) = (V1,V2, · · · ,VN) (4.13)

is referred to as the generalized Voronoi diagram [56]. Note that in contrast to the regular

Voronoi diagrams, the Voronoi cells defined in (4.12) can be non-convex, not star-shaped

and even disconnected. The following proposition indicates that given a node deployment

P and normalized flow matrix S, the generalized Voronoi diagram provides the optimal cell

partitioning.

Proposition 7. For any node deployment P, cell partitioning W and normalized flow matrix

S, we have:

D (P,W,S) ≥ D (P,V (P,S) ,S) . (4.14)

The proof is provided in Appendix D.2. Now, given the link costs {ei,j (P)}s and generated

sensing data rate from each cell partition, the total multi-hop power consumption can be

minimized by Bellman-Ford Algorithm [34, 9]. For convenience, we show the functionality of

Bellman-Ford Algorithm by R (P,W), where P and W are inputs and S is the output, i.e.,

R (P,W) = argminS

[
PT

A (P,W,S) + PR

A (W,S)
]
. Since the sensors’ power consumption

is independent of S, we have:
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R (P,W) = argmin
S

PT

S (P,W) + λ
[
PT

A (P,W,S) + PR

A (W,S)
]

= argmin
S

D (P,W,S) . (4.15)

Hence, the optimal flow matrix for a given P and W is F (W,R (P,W)). For notational

brevity, we define the point zi (P,W,S), or zi for short, to be:

zi =
ηiRbvici + λ

(∑N+M
j=1 βi,jFi,jpj +

∑N
j=1 βj,iFj,ipj

)
ηiRbvi + λ

(∑N+M
j=1 βi,jFi,j +

∑N
j=1 βj,iFj,i

) , ∀i ∈ IA (4.16)

zi =

∑N
j=1 βj,iFj,ipj∑N
j=1 βj,iFj,i

. ∀i ∈ IF (4.17)

The following theorem provides the necessary conditions for the optimal deployment.

Proposition 8. The necessary conditions for the optimal deployments in heterogeneous

multi-hop WSNs with communication power consumption defined in (4.4) are

p∗i = z∗i , ∀i ∈ IA
⋃

IF (4.18)

W∗ = V (P∗,S∗) , (4.19)

S∗ = R (P∗,W∗) , (4.20)

where z∗i = zi (P
∗,W∗,S∗) is given by Eqs. (4.16) and (4.17).

The proof of Proposition 8 is provided in Appendix D.3.

Note that depending on the cell partitioning and normalized flow matrix, there may not be

any flow through some links in the network’s graph. Let N P
i (S) ≜ {j|Fj,i(W,S) > 0} be

the set of Node i’s predecessors, and N S
i (S) ≜ {j|Fi,j(W,S) > 0} be the set of Node i’s
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successors. We can then simplify Eq. (4.18) as:

p∗i =

ηiRbv
∗
i c

∗
i + λ

( ∑
j∈NS

i (S∗)

βi,jF
∗
i,jp

∗
j +

∑
j∈NP

i (S∗)

βj,iF
∗
j,ip

∗
j

)

ηiRbv∗i + λ

( ∑
j∈NS

i (S∗)

βi,jF ∗
i,j +

∑
j∈NP

i (S∗)

βj,iF ∗
j,i

) , ∀i ∈ IA (4.21)

p∗i =

∑
j∈NP

i (S∗)

βj,iF
∗
j,ip

∗
j∑

j∈NP
i (S∗)

βj,iF ∗
j,i

, ∀i ∈ IF . (4.22)

In other words, AP i’s optimal location is a linear combination of its geometric centroid,

predecessors, and successors while FC i’s optimal location is a linear combination of its

predecessors.

In what follows, first, we quickly review the conventional Lloyd Algorithm [69], then we

propose an algorithm to optimize the communication power consumption defined in Eq. (4.4)

for heterogeneous multi-hop WSNs. Lloyd Algorithm iterates between two steps: (i) Voronoi

partitioning and (ii) Moving each node to the geometric centroid of its corresponding Voronoi

region. Although the conventional Lloyd Algorithm can be used for one-tier quantizers or

one-tier node deployment tasks [38], it cannot be applied to WSNs with multi-hop wireless

communications. Based on the properties explored in this section, we design a Routing-

aware Lloyd (RL) Algorithm, as outlined in Algorithm 3, to optimize the node deployment

in heterogeneous multi-hop WSNs and minimize the objective function in (4.4).

Proposition 9. RL Algorithm is an iterative improvement algorithm, i.e., the objective

function is non-increasing and the algorithm converges.

The proof of Proposition 9 is provided in Appendix D.4.
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Algorithm 3: Routing-aware Lloyd Algorithm

Result: Optimal node deployment P, cell partitioning W and normalized flow
matrix S.

Input: Convergence error threshold ϵ ∈ R+ ;
do

– Calculate the objective function Dold = D (P,W,S);
1. Update the cell partitioning W according to the Eq. (4.19);
2. Update the normalized flow matrix S using to the Bellman-Ford algorithm;
3. Update the node deployment P as follows:

pn =
ηnRbvncn + λ

(∑N+M
j=1 βn,jFn,jpj +

∑N
j=1 βj,nFj,npj

)
ηnRbvn + λ

(∑N+M
j=1 βn,jFn,j +

∑N
j=1 βj,nFj,n

) , ∀n ∈ IA

pn =

∑N
j=1 βj,nFj,npj∑N
j=1 βj,nFj,n

, ∀n ∈ IF

– Calculate the objective function Dnew = D (P,W,S);

while Dold−Dnew

Dold
≥ ϵ;

4.5 The Node Deployment with a Total Energy Con-

straint in Mobile WSNs

4.5.1 Problem formulation

In Section 4.4, we studied the scenario where nodes are directly placed at the optimal loca-

tions calculated via RL Algorithm. However, here we study mobile heterogeneous multi-hop

WSNs in which each node moves from its initial position to its optimal location that min-

imizes the communication power consumption in (4.4) while the total movement energy

consumption of the network is constrained. More precisely, given the linear model for move-

ment energy consumption in [102], for each n ∈ IA
⋃

IF , Node n’s movement energy can be

modeled as:
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En (P) = ζn∥pn − p̃n∥, (4.23)

where the moving cost parameter ζn depends on Node n’s energy efficiency, pn and p̃n are

its destination and initial locations, respectively. Therefore, the total movement energy

consumption of the network is

E (P) =
N+M∑
n=1

En (P) =
N+M∑
n=1

ζn∥pn − p̃n∥. (4.24)

Our main objective in this section is to minimize the multi-hop communication power con-

sumption in Eq. (4.4) while the total movement energy is limited, i.e., the constrained

optimization problem is defined as

minimize
P,W,S

D (P,W,S) , (4.25)

s.t. E (P) ≤ γ (4.26)

where γ ≥ 0 is the maximum movement energy consumption of the network.

4.5.2 The Optimal Node Deployment

Here, we aim to find the optimal node deployment P∗, cell partitioning W∗ and normalized

flow matrix S∗ that minimizes the total multi-hop communication power consumption while

the movement energy consumption is constrained. Note that the movement energy in (4.26)

is independent of the cell partitioning and normalized flow matrix; therefore, the general-

ized Voronoi diagram and Bellman-Ford Algorithm, represented in Eqs. (4.13) and (4.15),

respectively, still provide the optimal cell partitioning and normalized flow matrix. Now,

we discuss the optimal node deployment for the constrained optimization problem in Eqs.
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(4.25) and (4.26).

Lemma 8. Let P∗, W∗ and S∗ be the optimal node deployment, cell partitioning and nor-

malized flow matrix for the constrained optimization problem in Eqs. (4.25) and (4.26). We

have:

p∗i = δi × p̃i + (1− δi)× z∗i , ∀i ∈ IA
⋃

IF (4.27)

where δi ∈ [0, 1] and p̃i is the initial location of Node i.

The proof is provided in Appendix D.5.

Lemma 8 states that the optimal location for Node i is on the line connecting its initial

position to the point z∗i = zi (P
∗,W∗,S∗). Note that this is in contrast to the optimal node

deployment without movement energy constraint in Section 4.4, i.e., p∗i = z∗i , as shown in

Proposition 8. The difference is because of the constraint in Eq. (4.26). Intuitively, for

γ = 0 we have δi = 1 for all i ∈ IA
⋃
IF , i.e., each node will remain at its initial position

since there is zero total available movement energy. However, for sufficiently large enough

γ, we have δi = 0, i.e., p∗i = z∗i for all i ∈ IA
⋃
IF . In general, nodes can be classified into

two groups based on whether they have positive moving distance or they stand still. Let

Id = {n | ∥pn − p̃n∥ > 0, ∀n ∈ IA
⋃

IF} and Is = {n | ∥pn − p̃n∥ = 0,∀n ∈ IA
⋃
IF} be the

set of dynamic and static nodes, respectively. The following theorem provides the necessary

condition for the optimal node deployment in multi-hop WSNs with total movement energy

constraint:

Proposition 10. Let P∗,W∗ and S∗ be the optimal node deployment, cell partitioning and

normalized flow matrix for the constrained optimization problem in Eqs. (4.25) and (4.26).

Then:

χ∗
n = χ∗

m ≥ χ∗
k, ∀n,m ∈ Id, k ∈ Is (4.28)
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p∗n = p̃n + Γ∗
n ×

1− max
(
0,
∑

i∈Id ζi∥Γ
∗
i ∥ − γ

)
∥Γ∗

n∥ ×
ψ∗
n

ζn
×
∑

i∈Id
ζ2i
ψ∗
i

 , ∀n ∈ Id (4.29)

where Γ∗
n = z∗n − p̃n and ψ∗

n is defined to be

ψ∗
n ≜


ηnRbv

∗
n + λ

[∑N+M
k=1 βn,kF

∗
n,k +

∑N
k=1 βk,nF

∗
k,n

]
, if n ∈ IA

λ
∑N

k=1 βk,nF
∗
k,n, if n ∈ IF

(4.30)

and the moving efficiency χ∗
n is defined as

χ∗
n =

ψ∗
n∥p∗n − z∗n∥2

ζn∥p∗n − z∗n∥
=
ψ∗
n

ζn
∥p∗n − z∗n∥, ∀n ∈ IA

⋃
IF (4.31)

to reflect Node n’s ability to reduce the communication power consumption by movement.

The proof is provided in Appendix D.6. Proposition 10 captures the intuition in Lemma 8

that in an optimal deployment, Node n is located on the line connecting its initial position

p̃n to the point z∗n, for all n ∈ IA
⋃

IF . Furthermore, for a sufficiently large enough available

movement energy γ, say γ ≥
∑

i∈Id ζi∥Γ
∗
i ∥, we have p∗n = z∗n for all n ∈ Id. Based on

the necessary conditions in Proposition 10, we propose a Movement-Efficient Routing-aware

Lloyd (MERL) Algorithm, as outlined in Algorithm 4, to optimize the node deployment

in heterogeneous multi-hop WSNs with constrained movement energy, and minimize the

objective function in Eqs. (4.25) and (4.26).

Proposition 11. MERL Algorithm is an iterative improvement algorithm, i.e., the objective

function is non-increasing and the algorithm converges.

The proof of Proposition 11 is provided in Appendix D.7.
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Algorithm 4: Movement-Efficient Routing-aware Lloyd Algorithm

Result: Optimal node deployment P, cell partitioning W and normalized flow
matrix S.

Input: Initial node deployment P̃, convergence error threshold ϵ ∈ R+ ;
do

– Calculate the objective function Dold = D (P,W,S);
1. Update the cell partitioning W according to the Eq. (4.19);
2. Update the normalized flow matrix S using to the Bellman-Ford algorithm;

3. Set Id = {1, · · · , N +M} and calculate rn ≜

[
1−

max(0,
∑
i∈Id

ζi∥Γi∥−γ)

∥Γn∥×ψn
ζn

×
∑
i∈Id

ζ2
i
ψi

]
,

∀n ∈ Id;
4. while ∃n ∈ Id such that rn ≤ 0 do

4.1. Update Id = Id −
⋃
rn≤0 n;

4.2. Update {rn}n∈Id ;
5.

pn = p̃n + Γn ×

[
1−

max(0,
∑
i∈Id

ζi∥Γi∥−γ)

∥Γn∥×ψn
ζn

×
∑
i∈Id

ζ2
i
ψi

]
× 1Id(n), ∀n ∈ IA

⋃
IF ;

– Calculate the objective function Dnew = D (P,W,S);

while Dold−Dnew

Dold
≥ ϵ;

4.6 The Node Deployment with a Network Lifetime

Constraint in Mobile WSNs

4.6.1 Problem formulation

In Section 4.5, we studied the node deployment with a total movement energy constraint,

which can be seen as a resource allocation problem. This is because we can calculate how

much movement energy each node requires once an optimal deployment is obtained. In this

section, we focus on minimizing the communication power consumption given a constraint

on the network lifetime. Let νn be the residual movement energy on Node n, and αn be

the power consumption for Node n after relocation. To ensure a network lifetime of T , the
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following condition

νn − En (P) ≥ αnT, ∀n ∈ IA
⋃

IF (4.32)

has to be satisfied. Hence, the network lifetime of T can be achieved by setting a maximum

individual movement energy consumption for each node. Here, our main objective is to find

the optimal node deployment for the following constrained optimization problem:

minimize
P,W,S

D (P,W,S) (4.33)

s.t. En (P) ≤ γn, ∀n ∈ IA
⋃

IF (4.34)

where γn = νn− αnT is the maximum individual movement energy consumption of Node n.

4.6.2 The Optimal Node Deployment

Here, our goal is to find the optimal node deployment P∗, cell partitioning W∗ and normal-

ized flow matrix S∗ that minimizes the multi-hop communication power consumption while

each individual movement energy consumption is constrained. The following theorem pro-

vides the necessary condition for optimal node deployment in the constrained optimization

problem in Eqs. (4.33) and (4.34).

Proposition 12. Let P∗, W∗ and S∗ be the optimal node deployment, cell partitioning and

normalized flow matrix for the constrained optimization problem in Eqs. (4.33) and (4.34).

Then,

p∗n = p̃n + Γ∗
n ×min

(
1,

γn
ζn∥Γ∗

n∥

)
, ∀n ∈ IA

⋃
IF (4.35)

where Γ∗
n = z∗n − p̃n.
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The proof of Proposition 12 is provided in Appendix D.8. Based on the optimal condition in

Proposition 12, we design the Lifetime-Optimized Routing-aware Lloyd (LORL) Algorithm,

as outlined in Algorithm 5, to optimize the node deployment in heterogeneous multi-hop

WSNs with network lifetime constraint, and minimize the objective function in Eqs. (4.33)

and (4.34).

Algorithm 5: Lifetime-Optimized Routing-aware Lloyd Algorithm

Result: Optimal node deployment P, cell partitioning W and normalized flow
matrix S.

Input: Initial node deployment P̃, convergence error threshold ϵ ∈ R+ ;
do

– Calculate the objective function Dold = D (P,W,S);
1. Update the cell partitioning W according to the Eq. (4.19);
2. Update the normalized flow matrix S using to the Bellman-Ford algorithm;

3. pn = p̃n +Γn ×min
(
1, γn

ζn∥Γn∥

)
, ∀n ∈ IA

⋃
IF ;

– Calculate the objective function Dnew = D (P,W,S);

while Dold−Dnew

Dold
≥ ϵ;

Proposition 13. LORL Algorithm is an iterative improvement algorithm, i.e., the objective

function is non-increasing and the algorithm converges.

The proof of Proposition 13 is provided in Appendix D.9.

4.7 Experiments

Simulations are carried out for a heterogeneous wireless sensor network consisting of 30

APs and 3 FCs. We consider a square field of size 10km × 10km, i.e., Ω = [0, 10000]2.

Simulations are performed for two different sensor density functions, a uniform distribution

f (ω) = 1∫
Ω dω

= 10−8 and a mixture of Gaussian where sensors are distributed according to:
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f(ω) =
1

2
×N


µ(1)

1

µ
(1)
2

 ,
Σ(1)

1,1 0

0 Σ
(1)
2,2


+

1

4
×N


µ(2)

1

µ
(2)
2

 ,
Σ(2)

1,1 0

0 Σ
(2)
2,2




+
1

4
×N


µ(3)

1

µ
(3)
2

 ,
Σ(3)

1,1 0

0 Σ
(3)
2,2


 ,

where µ
(1)
1 = 3, 000, µ

(1)
2 = 3, 000, Σ

(1)
1,1 = 1.5 × 106, Σ

(1)
2,2 = 1.5 × 106, µ

(2)
1 = 6, 000, µ

(2)
2 =

7, 000, Σ
(2)
1,1 = 2× 106, Σ

(2)
2,2 = 2× 106, µ

(3)
1 = 7, 500, µ

(3)
2 = 2, 500, Σ

(3)
1,1 = 106, Σ

(3)
2,2 = 106. All

homogeneous densely deployed sensors share the transmitter antenna gain of Gtsensor = 1. We

consider a radio bit-rate of Rb = 1Mbps and assume that the wavelength of the carrier signal

is λc = 0.3m. In order for APs and FCs to receive the signal without error, the received

power at each point n ∈ IA
⋃

IF should be greater than some threshold Pthn . Moreover, the

transceiver electronics in each AP n consumes ρn J/bit for digital coding, modulation, and

filtering before signal transmission. Table 4.1 summarizes the values of Pthn and ρn for all

APs and FCs [49].

Let us denote the transmitter antenna gain of AP n by Gtn . In addition, for each point

n ∈ IA
⋃

IF , let Grn be its receiver antenna gain. Table 4.2 summarizes the values of the

transmitter and receiver antenna gains for all nodes [49].

Note that parameters ηi and βi,j, for all i ∈ IA and j ∈ IA
⋃
IF , can be calculated using the

explained experimental setup. For example, we have η7 =
Pth7×(4π)2

RbGtsensorGr7λ
2
c
= 10−8×(4π)2

106×1×2×(0.3)2
=

8.77 pJ/bit/m2 and β10,20 =
Pth20×(4π)2

RbGt10Gr20λ
2
c
= 6×10−9×(4π)2

106×2×2×(0.3)2
= 2.63 pJ/bit/m2. For performance

evaluation, 10 initial AP and FC deployments are generated randomly on Ω, i.e., the location

of each node is generated according to a uniform distribution on Ω. The maximum number

of iterations for all algorithms is set to 200 and the Lagrangian multiplier is set to λ = 0.25.
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Table 4.1: Simulation parameters

minimum received power (nW) electronics energy dissipation (nJ/bit)
Pth1:15 Pth16:30 Pth31 Pth32:33 ρ1:7 ρ8:16 ρ17:30
10 6 6 10 40 50 60

Table 4.2: Transmitter and receiver antenna gains

transmitter antenna gain receiver antenna gain
Gt1:7,15:22 Gt8:14,23:30 Gr1:3,8:11,15:18,23:26,31:32 Gr4:7,12:14,19:22,27:30,33

1 2 1 2

4.7.1 Static Heterogeneous Multi-Hop WSNs

We compare the total weighted communication power consumption of our proposed RL Al-

gorithm with Cluster-Formation (CF) Algorithm [17], Global Algorithm [100], Gradient-SA

(GSA) Algorithm [28], HTTL Algorithm [56], MWCDS Algorithm [27], PSO Algorithm [23],

Rhombus Algorithm [97], and SHMS Algorithm [54]. To reduce the number of hops that data

packets have to travel to reach the fusion centers, the Cluster-Formation algorithm employs

a graph theoretic approach to optimize both the number of clusters and their corresponding

diameters. The Global algorithm deploys network nodes such that the average Euclidean

distance between access points and their corresponding fusion centers is minimized. Start-

ing with a dense triangular grid deployment, the GSA algorithm first removes those nodes

with least coverage; then, it moves the boundary nodes toward the gradient direction that

maximizes the covered area. For a two-tier hierarchy of APs and FCs, the HTTL algorithm

iteratively updates the deployment, cell partitioning, and connections between APs and FCs

while the flow of data from each sensor to its corresponding FC is mediated by exactly one

access point. MWCDS Algorithm aims to deploy the minimum number of network nodes

such that the resulting network is both connected and energy efficient. PSO is a population-

based iterative algorithm for finding the optimal deployment and minimizing the non-linear
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Table 4.3: Weighted power comparison for the uniform sensor density function

CF Global GSA HTTL MWCDS PSO Rhombus SHMS RL
15.49 14.98 17.28 12.80 17.12 19.98 16.21 22.39 10.12

Table 4.4: Weighted power comparison for the mixture of Gaussian sensor density function

CF Global GSA HTTL MWCDS PSO Rhombus SHMS RL
7.07 6.81 9.49 6.23 9.38 9.97 14.65 16.62 5.58

objective function. Rhmobus Algorithm uses a rhombus-based grid search for an energy-

aware deployment that maximizes the coverage as well. For a given deployment, the SHMS

algorithm determines the connections between APs and FCs such that the maximum energy

consumed by each network node is minimized.

The weighted power consumption of Cluster-Formation, Global, GSA, HTTL, MWCDS,

PSO, Rhombus, SHMS, and RL algorithms for the uniform sensor density function are

summarized in Table 4.3. The RL algorithm outperforms other algorithms and achieves a

lower weighted communication power consumption. Note that although the HTTL algorithm

proposed in [56] deploys nodes based on the necessary conditions of optimality, the network

architecture is restricted to a two-tier hierarchy while the RL algorithm simultaneously

optimizes over the deployment and data routing. As a result, the deployment based on the

RL algorithm results in a WSN that saves about 21% of the energy compared to that of the

HTTL Algorithm.

Table 4.4 summarizes the weighted communication power consumption of Cluster-Formation,

Global, GSA, HTTL, MWCDS, PSO, Rhombus, SHMS, and RL algorithms for the mixture

of Gaussian sensor density function. The RL algorithm results in a power consumption

of 5.58 Watts and outperforms other methods. Furthermore, the RL algorithm leads to a

network architecture that exhaust its available communication energy in a time period that

is longer by about 10% of that of HTTL Algorithm, the second best algorithm. Fig. 4.2
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Node deployment for different algorithms and the mixture of Gaussian sensor density
function. (a) Cluster-Formation (b) Global (c) HTTL (d) MWCDS (e) PSO (f) Rhombus (g)
SHMS (h) RL.

shows the optimal deployment for different algorithms where APs and FCs are denoted by

red squares and black circles, respectively.

4.7.2 Mobile Heterogeneous Multi-Hop WSNs with a Total Move-

ment Energy Constraint

The underlying assumption in all deployment strategies studied in Section 4.7.1 is that the

optimal locations are calculated offline and then APs and FCs are placed at the corresponding

positions. However, in many applications, e.g., when the target region is a hostile environ-

ment, static deployment is not feasible. Instead, network nodes are initially deployed in the

target region, e.g., by airdropping them using drones or manual placement in an accessible

sub-region of the field and then each AP or FC moves to its optimal location based on

the initial deployment and available movement energy. When the total available movement
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Table 4.5: Moving cost parameters (J/m)

ζ1:8 ζ9:22 ζ23:30 ζ31 ζ32 ζ33
2 4 6 4 5 6

energy is limited, which is the focus of this section, the optimization problem is translated

into a resource allocation problem where the optimal energy supply for each AP or FC is

determined such that the resulting total communication power consumption after optimal

deployment is minimized. In Section 4.7.3, we study the performance evaluation when the

available movement energy is predetermined and the optimization problem is translated to

that of enhancing the network lifetime.

The same experimental setup described at the beginning of Section 4.7 and in Tables 4.1 and

4.2 is used for the simulations. Furthermore, Table 4.5 provides the moving cost parameters

ζn for all n ∈ IA
⋃

IF . We consider a total available movement energy of γ = 40, 000 Joules

for the constrained objective function in Eqs. (4.25) and (4.26).

We compare the total weighted communication power consumption of our proposed MERL

Algorithm with BCBS Algorithm [30], Lloyd-α Algorithm [98], OMF Algorithm [19], VCOND

Algorithm [36], and VFA Algorithm [120]. BCBS Algorithm augments the iterative proce-

dure of Lloyd Algorithm to maximize the network’s coverage and minimize network nodes’

movement. The Lloyd-α algorithm applies a penalty term to the Lloyd algorithm to reduce

the movement steps and save traveling energy while guaranteeing the convergence property.

The OMF algorithm optimizes the movement plan for nodes such that each region in the

network has a minimum number of nodes to relay the data to fusion centers while the sum

of network nodes’ traveling distances is minimized. The VCOND algorithm iteratively par-

titions the target region according to the Voronoi diagram and relocates each network node

based on the net virtual force coming from vertices and edges of its corresponding Voronoi

cell. The VFA algorithm uses attractive and repulsive virtual forces on nodes such that not

only every two network nodes in the final deployment maintain a minimum distance from
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Table 4.6: Weighted power comparison

Sensor Density Function BCBS Lloyd-α OMF VCOND VFA MERL
uniform 24.35 29.12 27.35 27.92 27.85 14.49

mixture of Gaussian 15.94 17.38 17.29 15.32 18.76 7.64

each other, but also the communication distances are minimized by avoiding network nodes

to be located very far from each other. For a fair comparison, the same initial deployment

is used for all algorithms.

The weighted communication power consumption of BCBS, Lloyd-α, OMF, VCOND, VFA,

and MERL algorithms for the uniform sensor density function are summarized in Table 4.6.

All algorithms exhausted the available movement energy γ to move the AP and FC nodes

from their initial deployment to their designated optimal locations. The MERL algorithm

leads to a deployment that consumes communication energy in a rate that is almost half of

other algorithms. The superior performance of the MERL algorithm is due to the optimal

energy allocation among APs and FCs, as it is implicit in Eq. (4.29). Note that if the total

movement energy γ is large enough, e.g., γ ≥
∑N+M

i=1 ζi∥p̃i − z∗i ∥, then the performance of

the MERL algorithm will converge to that of the RL algorithm. However, since the value of

γ in our experiments is not large enough, some APs and FCs will run out of their allocated

movement energy and MERL algorithm leads to a communication power consumption that

is larger than that of the RL algorithm in Section 4.7.1.

Table 4.6 also summarizes the weighted communication power consumption of BCBS, Lloyd-

α, OMF, VCOND, VFA, and MERL algorithms for the mixture of Gaussian sensor density

function. The MERL algorithm significantly outperforms other methods and leads to a

communication power consumption that is less than half of what other algorithms achieve.

This is because the MERL algorithm can optimally adapt to any underlying sensor density

function f(ω) and deploy APs and FCs accordingly, as we studied in Section 4.5. Fig. 4.3

shows the final deployment for different algorithms where APs and FCs are denoted by red

squares and black circles, respectively.
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(d) (e)

Figure 4.3: Node deployment for different algorithms and the mixture of Gaussian sensor density
function. (a) BCBS (b) Lloyd-α (c) OMF (d) VFA (e) MERL.

4.7.3 Mobile Heterogeneous Multi-Hop WSNs with a Network

Lifetime Constraint

While we studied the performance evaluation of mobile WSNs under a total movement

energy constraint in Section 4.7.2, here, we focus on enhancing the network lifetime, which

necessitates APs and FCs to have individual movement energy constraints, as formulated in

Eqs. (4.33) and (4.34). We use the same experimental setup as described at the beginning

of Section 4.7 and in Tables 4.1, 4.2, and 4.5 for performance evaluation. In addition, Table

4.7 provides the maximum individual movement energy consumption γn for all n ∈ IA
⋃
IF .
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Table 4.7: Movement energy constraints (J)

γ1:8 γ9:22 γ23:30 γ31 γ32 γ33
800 1100 1400 2000 2400 2600

We compare the weighted communication power consumption of our proposed LORL Al-

gorithm with those of BCBS Algorithm, Lloyd-α Algorithm, OMF Algorithm, and VFA

Algorithm described in Section 4.7.2. For a fair comparison, the same initial deployment as

in Section 4.7.2 is used for all algorithms.

The weighted communication power consumption of BCBS, Lloyd-α, OMF, VCOND, VFA,

and LORL algorithms for the uniform sensor density function are provided in Table 4.8.

The LORL algorithm outperforms other methods and achieves a significantly lower power

consumption. For instance, the LORL algorithm leads to a deployment in which the network

consumes its residual energy with a rate that is less than 70% of that of the VFA algorithm.

This in turn prolongs the network lifetime, which is a prominent factor in wireless sensor

networks.

Table 4.8: Weighted power comparison

Sensor Density Function BCBS Lloyd-α OMF VCOND VFA LORL
uniform 28.74 27.64 30.12 29.78 25.24 17.33

mixture of Gaussian 20.21 17.24 20.12 16.55 14.60 9.59

Table 4.8 also summarizes the power consumption of different algorithms for the mixture of

Gaussian sensor density function. LORL Algorithm achieves a power consumption of 9.59

Watts and outperforms other methods. Fig. 4.4 shows the final deployment of different

algorithms where APs and FCs are denoted by red squares and black circles, respectively.

The sum of individual movement energies in Table 4.7, i.e.
∑N+M

i=1 γi, is equal to the value

of γ in Section 4.7.2. In other words, Table 4.7 represents one exemplary distribution of

the total movement energy γ among APs and FCs; however, it is different from the optimal

energy allocation provided by the MERL algorithm in Section 4.7.2. The results in Tables 4.6
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Figure 4.4: Node deployment for different algorithms and the mixture of Gaussian sensor density
function. (a) BCBS (b) Lloyd-α (c) OMF (d) VCOND (e) VFA (f) LORL.

and 4.8 verify that the MERL algorithm achieves a lower total power consumption compared

to the LORL algorithm although it does not guaranttee any individual power constraint.

4.8 Conclusion

In this work, a heterogeneous multi-hop wireless sensor network is discussed where data is

collected from densely deployed sensors and transferred to heterogeneous fusion centers us-

ing heterogeneous access points as relay nodes. We modeled the minimum communication

power consumption of such networks as an optimization problem, and studied the necessary
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conditions of optimal deployment under both static and mobile network settings. A novel

generalized Voronoi diagram is proposed to provide the best cell partition for the heteroge-

neous multi-hop network. When manual deployment is feasible, the necessary conditions of

optimal deployment are explored under the static network setup, and accordingly a Routing-

aware Lloyd algorithm is proposed to deploy nodes. However, when static placement is not

doable, the necessary conditions of the optimal deployment are studied under a mobile net-

work setting where nodes move from their initial locations to their optimal positions. We

consider both total and individual movement energy constraints and formulate them as re-

source allocation and lifetime optimizations, respectively. Based on the derived necessary

conditions, we propose Movement-Efficient Routing-aware Lloyd and Lifetime-Optimized

Routing-aware Lloyd algorithms to deploy nodes under total and individual energy con-

straints, respectively. Simulation results show that our proposed RL, MERL, and LORL

algorithms significantly save communication power in such networks and provide superior

results compared to other methods in the literature.
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Chapter 5

Node Deployment in Heterogeneous

Rayleigh Fading Sensor Networks

5.1 Introduction

With recent technological advances in communication, sensing, computing, and battery ca-

pacity, wireless sensor networks (WSNs) have attracted widespread attention and have been

used is numerous applications such as military applications [33], precision agriculture [1],

healthcare monitoring [16], and industrial monitoring [5]. The primary utilization of WSN

is to monitor physical phenomena such as environmental conditions, target positions, etc.

inside a field of interest. Equipped with sensing and communication units, sensor nodes

provide an interface with the physical environment and transmit the sensed information to

dedicated base stations (BSs) through wireless radios [109, 118]. Sensor nodes are suscepti-

ble to failure due to factors such as adverse environmental condition and breakdown in the

onboard electronics; however, battery power depletion is the most pivotal factor since sensors

are driven by battery that are infeasible to replenish, especially in hostile environments [32].
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Therefore, energy efficiency is considered the most crucial quality-of-service (QoS) metric

for functionality of WSNs and longevity of their life span [72]. The network’s energy con-

sumption consists of different parts including the communication, computation, and sensing

energy components [114, 67, 95]; however, empirical measurements have demonstrated that

the dominating element is the communication energy [103]. Thus, once sensor nodes are

placed in their predetermined positions for monitoring purposes, access points (APs) are

deployed to facilitate the communication and connect sensor nodes to their corresponding

base stations using various routing schemes [29].

Improving the energy-efficiency of WSNs is an active area of research and various methods

have been proposed for this purpose. Some methods, like flat routing, hierarchical routing,

and location-based routing, aim at finding the optimal path to reach a base station for sensory

data [89, 10, 76, 75, 88]. Another strategy to improve the energy-efficiency and lifetime of

WSNs is scheduling active and sleep modes for sensors [101, 85, 59]. One line of research that

has attracted significant attention in the literature is energy-efficient node deployment due to

its critical role in resource utilization and network lifetime. This is because electromagnetic

wave propagation diminishes as a power law function of the distance between the transmitter

and receiver; thus, the required transmission energy to guarantee a certain signal-to-noise

ratio (SNR) at the receiver node highly depends on the distance and placement of network

nodes.

Node deployment algorithms can be categorized in many different ways. Some techniques

are developed offline and executed in a centralized manner [2] while others are distributed

and are based on the assumption that each node has only local information about the state of

other nodes [18, 3]. Based on nodes’ mobility, WSNs can also be categorized as either static

or mobile where a rich set of node deployment algorithms is developed for each category.

Static node deployment methods aim to calculate optimal node positions a priori and assume

that nodes will be placed at their predetermined locations [56, 55, 38, 57]; however, mobile
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node deployment techniques assume that starting from an initial location, each node moves

toward its optimal position [57, 98, 19, 39, 2, 120]. Node deployment algorithms can also

be viewed based on whether they are stochastic or deterministic. Random deployment

is preferable in hostile and inaccessible environments or when the network’s size is very

large [6] while deterministic methods are favorable for smaller networks, especially when

manual placement is feasible since deterministic deployment algorithms often outperform

their stochastic counterparts [6, 84].

The optimal node deployment in WSNs highly depends on the hardware setup. WSNs can be

identified as either homogeneous WSNs [10, 21, 41, 40], where network nodes share the same

hardware properties such as the antenna gain, storage, sensitivity, etc., or heterogeneous

WSNs [79, 51, 56, 55, 38, 57] for which nodes, in general, have different characteristics. The

optimal deployment in homogeneous WSNs is studied in [41, 40]; however, homogeneous

WSNs do not represent inherent challenges that exist in their heterogeneous counterparts,

namely, unlike Voronoi regions in homogeneous settings, the optimal regions in heterogeneous

WSNs may not be convex, star-shaped, or connected. Node deployment in heterogeneous

WSNs is studied in [56, 55, 38]; however, these studies along with the majority of the work

in the literature consider a very simplistic radio energy model that does not reflect the real-

world characteristics of the environment in which these networks are deployed. In addition,

the randomness of the communication channel due to the fading process is usually ignored.

Consequently, the resulting node deployment underestimates the actual energy consumption

of the network which can significantly diminish the sustainability and durability of these

networks.

With energy-efficiency being a major design concern in most WSNs, finding the optimal node

deployment is an active area of research. In this work, we study heterogeneous Rayleigh

fading sensor networks in details and aim to provide state-of-the-art algorithms to deploy

nodes. The main motivation of this work is to take into account the small-scale fading and
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the exponential dependence of the required transmission energy on the rate in heterogeneous

WSNs. The main contributions of the paper are summarized below:

• We consider a communication energy model that incorporates both large-scale path-

loss signal attenuation and small-scale signal variation due to Rayleigh fading, and

takes the heterogeneous characteristics of network nodes into account;

• Having an outage probability constraint on all communication channels, we provide

theoretical necessary conditions for an optimal deployment, cell partitioning, and data

routing protocol, and design an iterative algorithm to deploy nodes such that not only

is the communication power consumption minimized in the resulting WSN, but also

all communication channels are guaranteed to have an outage probability below the

given threshold;

• By marginalizing the stochasticity of the channel capacity due to the Rayleigh fading

process and considering the ergodic capacity for all wireless links, we derive the nec-

essary conditions of optimal deployment and design an energy-efficient algorithm to

deploy nodes.

The rest of the paper is organized as follows. The system model and problem formulation are

discussed in Section 5.2. In Section 5.3, the optimal deployment in heterogeneous Rayleigh

fading WSNs under outage probability constraints on communication channels is studied and

an iterative algorithm based on the obtained necessary conditions is provided. The optimal

deployment in heterogeneous WSNs given ergodic capacity constraints on all wireless links

and the corresponding deployment algorithm are studied in Section 5.4. Simulation results

and concluding remarks are provided in Sections 5.5 and 5.6, respectively.
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5.2 System Model

We consider a heterogeneous WSN that consists of homogeneous sensors, N heterogeneous

APs, and M heterogeneous BSs. The target region Ω ⊆ R2 is a convex polygon including its

interior. In particular, each sensor transmits its data to an AP which acts as a relay node

and forwards the collected information to BSs. We denote the set of node indices for APs

and BSs by IAP = {1, · · · , N} and IBS = {1, · · · ,M}, respectively. While access points and

base stations are characterized as a set of (N +M) discrete points within the target region,

the distribution of densely deployed sensors are described via a continuous and differentiable

function f : Ω −→ R+ such that
∫
W
f(ω)dω is the total number of sensors within the region

W ⊆ Ω. Thus, the total amount of data gathered by sensors within the regionW in one time

unit is equal to Rb

∫
W
f(ω)dω in which the bit-rate Rb is a constant due to the homogeneity

of sensors [41]. Throughout this paper, we assume that each sensor only transmits its

data to one AP. Consequently, the target region Ω is partitioned into N disjoint regions

W = (W1, · · · ,WN) ⊆ ΩN such that for each n ∈ IAP , AP n collects data from sensors

within the region Wn ⊆ Ω. For any n ∈ IAP and m ∈ IBS, let pn ∈ Ω and qm ∈ Ω denote

the location of AP n and BS m, respectively. In addition, let P = (p1, · · · , pN) ∈ RN×2 and

Q = (q1, · · · , qM) ∈ RM×2 denote the collective deployment of APs and BSs, respectively.

In addition to AP deployment P, BS deployment Q, and cell partitioning W, the perfor-

mance of a WSN heavily depends on the routing protocol by which data is transferred from

sensors to base stations. Our network in this paper can be regarded as a directed bipartite

graph where the vertex set can be partitioned into two disjoint subsets containing access

points and base stations, respectively, and each edge from AP n to BS m is associated with

a non-negative value Fn,m (bits/s) denoting the flow of data from AP n to BSm. An example

of one such graph is depicted in Fig. 5.1. Thus, the routing protocol can be characterized by

a flow matrix F = [Fn,m]N×M where Fn,m denotes the amount of data transmitted from AP

n to BS m in one time unit. Since each AP, say n, transmits all the received data, the in-flow
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Figure 5.1: The system model and network architecture.

value should be equal to the out-flow value, i.e., Rb

∫
Wn

f(ω)dω =
∑M

m=1 Fn,m. Note that

instead of directly specifying the flow Fn,m from AP n to BS m, we can specify the ratio of

out-flow from AP n that goes to BS m, i.e., rn,m = Fn,m∑M
j=1 Fn,j

. By definition, it readily follows

that rn,m ∈ [0, 1] and
∑M

m=1 rn,m = 1 since the in-flow to each AP is equal to its out-flow.

In particular, the flow matrix F can be uniquely determined by the cell partitioning W and

the normalized flow matrix R = [rn,m]N×M .

In this paper, we consider a slow fading channel in which the channel gain is stochastic but

remains constant in each frame. We also assume that the receiver can track the fading pro-

cess, i.e., coherent reception and the transmitter has no knowledge of the channel realization

except for its statistical properties. For a channel realization h, the maximum communica-

tion rate with arbitrarily small error probability is given by log (1 + |h|2γ) bits/s/Hz, where γ

represents the received signal-to-noise ratio (SNR) due to large-scale propagation effects. For

a Rayleigh fading channel, the fading gain is a standard complex normal random variable,

i.e., h ∼ CN (0, 1); therefore, |h|2 has an exponential distribution with parameter 1. Due

to stochasticity of the channel realization, the decoding error probability cannot become

arbitrarily small regardless of the code used by the transmitter [53]. Hence, the primary

objective in this paper is to find an optimal deployment that minimizes the wireless trans-

96



mission power consumption of the WSN subject to a given outage probability threshold. For

a given data flow Fn,m, the outage probability is given by [53]:

poutn,m (Fn,m) = P
{
B log

(
1 + |h|2γn,m

)
< Fn,m

}
. (5.1)

Similarly, the outage probability for the link between a sensor located at ω ∈ Ω and AP n

is:

poutω,n (Rb) = P
{
B log

(
1 + |h|2γω,n

)
< Rb

}
. (5.2)

The received SNR is proportional to the transmit power, i.e., γ ∝ Pt × d−α where d is the

distance between the transmitter and receiver, and 2 ≤ α ≤ 5 is the large-scale path loss

exponent [46]. We consider the Friis free space loss equation, i.e., α = 2. More precisely, if

AP n sends a signal with transmission power P
(n,m)
transmit, the received signal power at BS m,

i.e., P
(n,m)
receive, is

P
(n,m)
receive = P

(n,m)
transmit ×

GtnGrmλ
2
c

(4π)2 ∥pn − qm∥2Ln
, (5.3)

where Gtn is the transmitter antenna gain of AP n, Grm is the receiver antenna gain of BS m,

λc is the wavelength of the carrier signal, and Ln denotes all other losses that are not related

to the propagation loss such as loss at the antennas, filters, transmission line attenuation,

etc. Therefore, for the spectral noise density of σ Watts/Hz, the received SNR γn,m is given

by:

γn,m =
P

(n,m)
receive

σB
= P

(n,m)
transmit ×

GtnGrmλ
2
c

σB (4π)2 ∥pn − qm∥2Ln
. (5.4)

Similarly, for a sensor located at ω ∈ Ω, sending a signal with transmission signal power

P
(ω,n)
transmit, the received SNR γω,n at AP n is given by:
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γω,n =
P

(ω,n)
receive

σB
= P

(ω,n)
transmit ×

GtsensorGrnλ
2
c

σB (4π)2 ∥pn − ω∥2Lsensor

, (5.5)

where Gtsensor and Lsensor are the common transmitter antenna gain and system loss of the

homogeneous sensors, respectively. For a given outage probability threshold of ϵ, our goal is

to find the optimal WSN deployment that minimizes the total wireless transmission power

consumption of the network subject to all channels having an outage probability of less than

or equal to ϵ. Hence, our primary objective function can be written as:

D1 (P,Q,W,R) =
N∑
n=1

∫
Wn

P
(ω,n)
transmitf(ω)dω + λ

N∑
n=1

M∑
m=1

P
(n,m)
transmit (5.6)

s.t. poutn,m (Fn,m) ≤ ϵ and poutω,n (Rb) ≤ ϵ, ∀n ∈ IAP , m ∈ IBS, (5.7)

where the Lagrangian multiplier λ ≥ 0 provides a trade-off between the sensor transmis-

sion power
∑N

n=1

∫
Wn

P
(ω,n)
transmitf(ω)dω and AP transmission power

∑N
n=1

∑M
m=1 P

(n,m)
transmit. Our

primary goal is to minimize the constrained objective function in Eqs. (5.6) and (5.7) over

node deployments P and Q, cell partitioning W, and normalized flow matrix R.

An alternative way to address the stochasticity of the channel is to think of the channel as

allowing B log (1 + |h|2γ) bits/s flow of data to pass when the fading gain is h and solve for

the ergodic capacity of all wireless links in the network. More precisely, our secondary goal

is to find the optimal transmission power values for each sensor and AP node such that the

transmission power in each wireless link can, on average, allow the flow of data in that link

to pass through.

For a Rayleigh flat-fading wireless link from AP n to BS m with an average received SNR

γn,m, the ergodic capacity admits the following closed-form formula [96]:
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Cerg = B log2(e)× e
1

γn,m × E1

( 1

γn,m

)
, (5.8)

where E1(.) is the exponential integral of order 1 defined as:

E1(z) =

∫ ∞

1

e−zx

x
dx, (5.9)

for Re{z} > 0. Therefore, using Eq. (5.8), the transmission power that, on average, allows

the flow Fn,m bits/s to pass through this wireless link can be calculated as

Fn,m = B log2(e)× e
1

γn,m × E1

( 1

γn,m

)
, (5.10)

γn,m =
1

U−1
(

Fn,m
B log2(e)

) , (5.11)

where U(x) = ex × E1(x). Hence, the AP transmission power is given by:

P
(n,m)
erg. trans. =

σB (4π)2 ∥pn − qm∥2Ln
GtnGrmλ

2
c × U−1

(
Fn,m

B log2(e)

) . (5.12)

Similarly, the sensor transmission power that can, on average, allow the flow Rb bits/s to

pass through the wireless link from sensor ω to AP n is given by:

P
(ω,n)
erg. trans. =

σB (4π)2 ∥pn − ω∥2Lsensor

GtsensorGrnλ
2
c × U−1

(
Rb

B log2(e)

) . (5.13)

Thus, the total wireless power consumption under the ergodic capacity assumption is

D2 (P,Q,W,R) =
N∑
n=1

∫
Wn

P
(ω,n)
erg. trans.f(ω)dω + λ

N∑
n=1

M∑
m=1

P
(n,m)
erg. trans., (5.14)

where λ ≥ 0 is the Lagrangian multiplier. Our secondary goal is to minimize the objective
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function in Eq. (5.14) over node deployments P, Q, cell partitioning W, and normalized

flow matrix R. In the next section, we focus on our primary objective function and study the

optimal node deployment under outage probability constraint on wireless links. In Section

5.4, we consider our secondary objective function and study the optimal node deployment

that minimizes the average network transmission power consumption under ergodic capacity

assumption.

5.3 Optimal Deployment under Outage Probability Con-

straint

In this section, we focus on our primary objective function and aim to minimize the wireless

power consumption D1 in Eq. (5.6) subject to outage probability constraints given in Eq.

(5.7). Our goal is to find the optimal deployment P∗ = (p∗1, · · · , p∗N) and Q∗ = (q∗1, · · · , q∗M),

cell partitioning W∗ = (W ∗
1 , · · · ,W ∗

N), and the normalized flow matrix R∗ =
[
r∗n,m

]
N×M

that minimize the wireless transmission power consumption of the network. Note that the

optimal value for each of the four variables P, Q, W, and R depends on the value of the

other three and this optimization problem is NP-hard. Our aim is to derive the necessary

conditions of optimality and devise an algorithm that iteratively optimizes the value of each

variable while the other variables are held fixed. We accomplish this goal in the following

three steps:

Step 1 [optimizing P and Q while W and R are fixed]: First, we rewrite the objective

function D1 according to the constraints given in Eq. (5.7). For a wireless link with flow

Fn,m from AP n to BS m, we have:

P
{
|h|2 < 2

Fn,m
B − 1

γn,m

}
≤ ϵ. (5.15)
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Since |h|2 has an exponential distribution with parameter 1, Eq. (5.15) can be simplified to:

γn,m ≥ 2
Fn,m
B − 1

ln
(

1
1−ϵ

) . (5.16)

Using Eq. (5.4), we can rewrite Eq. (5.16) as follows:

P
(n,m)
transmit ≥

σB (4π)2 Ln × ∥pn − qm∥2 ×
(
2
Fn,m
B − 1

)
GtnGrmλ

2
c × ln

(
1

1−ϵ

)
=

bn,m

ln
(

1
1−ϵ

)∥pn − qm∥2 ×
(
2
Fn,m
B − 1

)
, (5.17)

where bn,m = σB×(4π)2×Ln
Gtn×Grm×λ2c

. Hence, Eq. (5.17) yields a lower bound on the required transmis-

sion power at AP n that guarantees an outage probability no greater than ϵ at the corre-

sponding base station. Note that the minimum transmission power occurs when P
(n,m)
transmit is

equal to its lower bound in Eq. (5.17) which corresponds to having an outage probability of

poutn,m (Fn,m) = ϵ. Similarly, for a sensor located at ω that transmits its data to AP n, we

have:

P
(ω,n)
transmit ≥

σB (4π)2 Lsensor × ∥pn − ω∥2 ×
(
2
Rb
B − 1

)
GtsensorGrnλ

2
c × ln

(
1

1−ϵ

)
=

an

ln
(

1
1−ϵ

)∥pn − ω∥2
(
2
Rb
B − 1

)
, (5.18)

where an = σB×(4π)2×Lsensor

Gtsensor×Grn×λ2c
. Using Eqs. (5.17) and (5.18), we can rewrite the objective

function D1 in Eq. (5.6) as follows:

D1 (P,Q,W,R) =
N∑
n=1

∫
Wn

an

ln
(

1
1−ϵ

)∥pn − ω∥2
(
2
Rb
B − 1

)
f(ω)dω

+ λ

N∑
n=1

M∑
m=1

bn,m

ln
(

1
1−ϵ

)∥pn − qm∥2
(
2
Fn,m
B − 1

)
. (5.19)

Now, for a fixed W and R, the optimal deployment is given by the following proposition.
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Proposition 14. The necessary conditions for the optimal AP and BS deployment P∗ and

Q∗ in a heterogeneous WSN with wireless transmission power consumption defined in Eq.

(5.6) and outage probability constraint ϵ on all wireless links are given by:

p∗n =
an

(
2
Rb
B − 1

)
vncn + λ

∑M
m=1 bn,m

(
2
Fn,m
B − 1

)
q∗m

an

(
2
Rb
B − 1

)
vn + λ

∑M
m=1 bn,m

(
2
Fn,m
B − 1

) , ∀n ∈ IAP , (5.20)

q∗m =

∑N
n=1 bn,m

(
2
Fn,m
B − 1

)
p∗n∑N

n=1 bn,m

(
2
Fn,m
B − 1

) , ∀m ∈ IBS, (5.21)

where vn =
∫
Wn

f(ω)dω and cn =
∫
Wn

ωf(ω)dω∫
Wn

f(ω)dω
are the volume and centroid of the region Wn,

respectively. The proof of Proposition 14 is provided in Appendix E.1.

Step 2 [optimizing W while P, Q, and R are fixed]: First, we study the properties

of region boundaries in an optimal cell partitioning W∗. Note that while F can be uniquely

determined by W and R, it only depends on the volumes of regions and not their actual

geometric shape. More precisely, if we let V = (v1, · · · , vN) where vn is the volume of

region Wn, then F can be uniquely calculated by V and R as well. Therefore, Eq. (5.19)

indicates that APs’ transmission power only depends on the volume of regions and not their

geometrical shape. In other words, we can manipulate region boundaries in order to reduce

the sensors’ power consumption in Eq. (5.19) and by extension the total power consumption

D1 since by keeping the region volumes fixed, APs’ power consumption remains unchanged.

Using this intuition, we have:

Lemma 9. Let W∗ = (W ∗
1 , · · · ,W ∗

N) be an optimal cell partitioning that minimizes the

constrained objective function D1 in Eqs. (5.6) and (5.7) for a given node deployment and

data routing. Let δ∗i,j = W ∗
i ∩W ∗

j be the boundary between neighboring regions W ∗
i and W ∗

j .

Then, δ∗i,j is either a segment perpendicular to the line pipj if ai = aj or an arc with its

center placed at c =
aipi−ajpj
ai−aj if ai ̸= aj.
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The proof of Lemma 9 is provided in Appendix E.2.

Let h∗i,j be the intersection point between the optimal boundary δ∗i,j and the segment pipj in

Lemma 9. The following proposition provides the necessary condition on the location of h∗i,j.

Proposition 15. Let W∗ = (W ∗
1 , · · · ,W ∗

N) be an optimal cell partitioning that minimizes

the constrained objective function D1 in Eqs. (5.6) and (5.7) for a given node deployment

P, Q, and data routing R. Let δ∗i,j = W ∗
i ∩W ∗

j be the boundary between neighboring regions

W ∗
i and W ∗

j which intersects the line pipj at point h
∗
i,j. Then we have:

ai
∣∣∣∣pi − h∗i,j

∣∣∣∣2 (2RbB − 1
)
+ λ

M∑
t=1

ln(2)

B
×Rb × ri,t × bi,t

∣∣∣∣pi − qt
∣∣∣∣2 × 2

ri,tRbv
∗
i

B

=aj
∣∣∣∣pj − h∗i,j

∣∣∣∣2 (2RbB − 1
)
+ λ

M∑
t=1

ln(2)

B
×Rb × rj,t × bj,t

∣∣∣∣pj − qt
∣∣∣∣2 × 2

rj,tRbv
∗
j

B . (5.22)

The proof of Proposition 15 is provided in Appendix E.3.

Step 3 [optimizing R while P, Q, and W are fixed]: Note that for a given deployment

P, Q, and cell partitioning W, the sensor power consumption is fixed and R only affects the

AP power consumption in Eq. (5.19). Since the cell partitioning W is fixed and each AP

directly transmits its data to base stations, the optimization problem can be split into N

objective functions, one for each AP, and they can be optimized separately. More specifically,

for AP n, we need to optimize the following objective function:

argmin
Fn,1···Fn,M

M∑
m=1

bn,m

ln
(

1
1−ϵ

)∣∣∣∣pn − qm
∣∣∣∣2 × (2Fn,mB − 1

)
, (5.23)

s.t.
M∑
m=1

Fn,m =

∫
Wn

Rbf(ω)dω = Rbvn, (5.24)

Fn,m ≥ 0 for all m ∈ IBS. (5.25)

Note that when the sum of exponents is fixed, the minimum of the sum of exponentials
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Algorithm 6: Optimal routing in heterogeneous WSNs with outage probability
constraint
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with the same base occurs when all exponents are equal. For instance, if for three variables

x, y, and z we have x + y + z = c, then the minimum of 2x + 2y + 2z occurs when x =

y = z = c
3
. Using this intuition and the fact that all elements of the flow matrix are

non-negative, we propose the following algorithm that yields the optimal solution to the

constrained optimization problem in Eqs. (5.23)-(5.25) for each AP n. Note that once the

optimal flow matrix F∗ is obtained, the corresponding normalized flow matrix R∗ can be

calculated from the definition.

Proposition 16. For a given node deployment P, Q, and cell partitioning W, Algorithm 6

yields the optimal normalized flow matrix R∗ = argminR D1 (P,Q,W,R) for the heteroge-

neous WSN under the outage probability constraints in Eq. (5.7).

The proof of Proposition 16 is provided in Appendix E.4.

Now, inspired by the Lloyd Algorithm [69], we propose Algorithm 7, named Power-Optimized

Outage-aware Lloyd (POOL) Algorithm, to optimize node deployment, cell partitioning, and

data routing in our heterogeneous WSN and minimize the wireless communication power

consumption in Eq. (5.6) under outage probability constraints given in Eq. (5.7).

Proposition 17. The POOL algorithm is an iterative improvement algorithm, i.e., the

objective function D1 is non-increasing and the algorithm converges.

The proof of Proposition 17 is provided in Appendix E.5.

5.4 Optimal Deployment under Ergodic Capacity As-

sumption

In this section, we consider our secondary objective function and aim to minimize the wireless

communication power consumption D2 in Eq. (5.14) over node deployment, cell partitioning,
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Algorithm 7: Power-Optimized Outage-aware Lloyd Algorithm
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and data routing. We fulfill this aim by deriving the necessary conditions for an optimal

deployment, cell partitioning, and data routing that minimize the network’s power con-

sumption under ergodic capacity assumption. Then, based on these necessary conditions,

we design an iterative algorithm to find such an optimal deployment. This goal is realized

in the following three steps.

Step 1 [optimizing P and Q while W and R are fixed]: We begin by rewriting the

objective function in Eq. (5.14) as

D2 (P,Q,W,R) =
N∑
n=1

∫
Wn

an

U−1
(

Rb
B log2(e)

)∥pn − ω∥2f(ω)dω

+ λ
N∑
n=1

M∑
m=1

bn,m

U−1
(

Fn,m
B log2(e)

)∥pn − qm∥2, (5.26)

where an = σB×(4π)2×Lsensor

Gtsensor×Grn×λ2c
and bn,m = σB×(4π)2×Ln

Gtn×Grm×λ2c
. Now, for a fixed cell partitioning and

data routing, the necessary condition for an optimal deployment is given by the following

proposition.

Proposition 18. For a fixed W and R, the necessary conditions for the optimal AP and BS

deployment P∗ and Q∗ in a heterogeneous WSN with wireless transmission power consump-

tion defined in Eq. (5.14) and ergodic capacity assumption on all wireless links are given

by:

p∗n =

anvn

U−1
(

Rb
B log2(e)

) × cn + λ
∑M

m=1
bn,m

U−1
(

Fn,m
B log2(e)

) × q∗m

anvn

U−1
(

Rb
B log2(e)

) + λ
∑M

m=1
bn,m

U−1
(

Fn,m
B log2(e)

) , ∀n ∈ IAP , (5.27)

q∗m =

∑N
n=1

bn,m

U−1
(

Fn,m
B log2(e)

) × p∗n∑N
n=1

bn,m

U−1
(

Fn,m
B log2(e)

) , ∀m ∈ IBS, (5.28)

where vn and cn are the volumes and centroid of Wn, respectively. The proof of Proposition

18 is provided in Appendix E.6.
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Step 2 [optimizing W while P, Q, and R are fixed]: The cell partitioning W

affects the sensor power consumption in Eq. (5.26) through integrating over cells Wn for n ∈

{1, · · · , N}; thus, both volume and shape of each cell influence the sensor power consumption.

In contrast, the cell partitioning affects the AP power consumption through the flow matrix

F which only depends on the volume of regions and not their shape. Hence, by keeping

the volumes constant, one can adjust the region boundaries to reduce the sensor power

consumption while the AP power consumption is held fixed. This leads to the following

property of optimal region boundaries.

Lemma 10. For a given node deployment and data routing, let W∗ = (W ∗
1 , · · · ,W ∗

N) be

an optimal cell partitioning that minimizes the objective function D2 in Eq. (5.14). If

δ∗i,j = W ∗
i ∩W ∗

j is the boundary between neighboring regions W ∗
i and W ∗

j , then δ
∗
i,j is either

a segment if ai = aj or an arc with its center placed at c =
aipi−ajpj
ai−aj if ai ̸= aj.

The proof of Lemma 10 is provided in Appendix E.7.

Using Lemma 10, the necessary condition for an optimal deployment is derived as follows.

Proposition 19. Let W∗ = (W ∗
1 , · · · ,W ∗

N) be the optimal cell partitioning that minimizes

the objective function D2 in Eq. (5.14) for a given node deployment P, Q, and data routing

R. Let δ∗i,j = W ∗
i ∩W ∗

j be the boundary between neighboring regions W ∗
i and W ∗

j and let h∗i,j

be the intersection point of the line pipj with δ
∗
i,j. Then, we have:

ai

U−1
(

Rb
B log2(e)

)∥pi − h∗i,j∥2 + λ

M∑
t=1

bi,t∥pi − qt∥2 × ri,tRb
B log2(e)

U−1
(
ri,tRbv

∗
i

B log2(e)

)[
1− ri,tRbv

∗
i

B log2(e)
× U−1

(
ri,tRbv

∗
i

B log2(e)

)]
=

aj

U−1
(

Rb
B log2(e)

)∥pj − h∗i,j∥2 + λ

M∑
t=1

bj,t∥pj − qt∥2 × rj,tRb
B log2(e)

U−1
(
rj,tRbv

∗
j

B log2(e)

)[
1− rj,tRbv

∗
j

B log2(e)
× U−1

(
rj,tRbv

∗
j

B log2(e)

)] .
(5.29)

The proof is provided in Appendix E.8.

108



Step 3 [optimizing R while P, Q, and W are fixed]: Note that the data routing

R only affects the AP power consumption in Eq. (5.26) and it does not change the sensor

power consumption. Since the cell partitioning, and thus the total volume of data that each

AP transmits is fixed, optimizing R translates into each AP adjusting its data transmission

independent of other AP nodes. For each AP, say n, we have the following objective function:

argmin
Fn,1···Fn,M

M∑
m=1

bn,m

U−1
(

Fn,m
B log2(e)

)∥pn − qm∥2, (5.30)

s.t.
M∑
m=1

Fn,m =

∫
Wn

Rbf(ω)dω = Rbvn, (5.31)

Fn,m ≥ 0 for all m ∈ IBS. (5.32)

To make the above optimization problem tractable, we resort to a common optimization

strategy that seeks to minimize the upper bound on the objective function instead of directly

optimizing the objective function itself. For this purpose, first, we aim to provide an upper

bound on the AP n’s power consumption in Eq. (5.30).

Lemma 11. Let U(x) = ex×E1(x) where E1(x) is the exponential integral of order 1 defined

in Eq. (5.9). Then, we have:

ex − 1 <
1

U−1(x)
<
e2x − 1

2
. (5.33)

The proof is provided in Appendix E.9.

Using Lemma 11, we have the following upper bound on the objective function in Eq. (5.30).

argmin
Fn,1···Fn,M

M∑
m=1

bn,m∥pn − qm∥2 ×
e

2Fn,m
B log2(e) − 1

2
, (5.34)

s.t.
M∑
m=1

Fn,m =

∫
Wn

Rbf(ω)dω = Rbvn, (5.35)
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Fn,m ≥ 0 for all m ∈ IBS. (5.36)

The following algorithm provides a systematic approach to yield the optimal solution to the

constrained optimization problem in Eqs. (5.34)-(5.36).

Proposition 20. For a given node deployment P, Q, and cell partitioning W, Algorithm 8

yields the optimal normalized flow matrix that minimizes the upper bound in Eq. (5.34) on

the AP n’s power consumption under ergodic capacity assumption.

The proof is provided in Appendix E.10.

Using properties we obtained in this section, a Power-Efficient Ergodic-based Lloyd (PEEL)

Algorithm, as outlined in Algorithm 9, is proposed to minimize the wireless communication

power consumption in Eq. (5.14) over node deployment, cell partitioning, and data routing.

Proposition 21. The PEEL algorithm is an iterative improvement algorithm and converges.

The proof is provided in Appendix E.11.

5.5 Experiments

Simulations are performed for a heterogeneous Rayleigh fading sensor network consisting

of 15 APs, 3 BSs, and 1000 sensors. The sensors are uniformly distributed over the target

region Ω which is a square area of size 10km×10km. The bit-rate and the carrier wavelength

are set to Rb = 30Kbps and λc = 3m, respectively. We consider no system loss, i.e.,

Lsensor = Ln = 1 for all n ∈ IAP , and a transmitter antenna gain of Gtsensor = 1 for all

homogeneous sensors. We denote the transmitter and receiver antenna gains of AP n by

G
(AP)
tn and G

(AP)
rn , respectively, and the receiver antenna gain of BS m by G

(BS)
rm . Let us denote
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Algorithm 8: Optimal data routing in two-tier WSNs under ergodic capacity as-
sumption
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Algorithm 9: Power-Efficient Ergodic-based Lloyd Algorithm
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S1 = {1, 2, 3, 4, 8, 9, 10}, S2 = {1, 2, 5, 6, 8, 9, 12, 13}, and S3 = {1, 2}. Then, we set:

G
(AP)
tn =


2 if n ∈ S1

4 otherwise

, G(AP)
rn =


2 if n ∈ S2

4 otherwise

, G(BS)
rm =


2 if m ∈ S3

4 otherwise.

(5.37)

We assume that all communication channels have a spectral width of B = 500KHz and a

spectral noise density of σ = 2 × 10−17 Watts/Hz. Note that the parameters an and bn,m

can be calculated from the experimental setup that is outlined above. For instance, we have

b6,2 =
σB×(4π)2×L6

G
(AP)
t6

×G(BS)
r2

×λ2c
≃ 2.19×10−11 Watts/m2. The Lagrangian multiplier is set to λ = 0.25.

In Section 5.5.1, we carry out the simulations for our primary objective function D1 in Eqs.

(5.6) and (5.7) where we have imposed an outage probability constraint of ϵ = 1% on all

wireless links. Subsequently, in Section 5.5.2, we perform the simulations for our secondary

objective function D2 in Eq. (5.14) and compare our proposed algorithms with state-of-the-

art methods in the literature.

5.5.1 Heterogeneous WSNs with Outage Probability Constraints

In this section, we compare our proposed POOL Algorithm with cluster formation (CF)

Algorithm [17], heterogeneous two-tier Lloyd (HTTL) Algorithm [56], particle swarm opti-

mization (PSO) Algorithm [23], and virtual force (VFA) Algorithm [120]. The main moti-

vation behind choosing these methods for comparison purposes is that they represent state-

of-the-art methods in different strategy categories used by researchers for node deployment

problems. The CF algorithm falls within the category of methods that take a graph-theoretic

approach for load balancing and energy efficiency. The HTTL algorithm belongs to the fam-

ily of geometric-based methods in which the target region is partitioned into several regions,

one for each network node, based on a predefined measure of closeness. The PSO algorithm

represents the class of meta-heuristic node deployment techniques in which optimization
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tools are used to find optimal node positions. Finally, the VFA algorithm is a prominent

example of force-based techniques and has inspired numerous methods that achieve opti-

mal deployment by applying virtual forces to relocate nodes. Table 5.1 summarizes the

weighted transmission power consumption of the heterogeneous WSN outlined above for the

CF, HTTL, POOL, PSO, and VFA algorithms. The POOL algorithm leads to a 590mW

weighted power consumption value and outperforms all other methods. Notably, the POOL

algorithm achieves a power consumption value that is less than half of the second best algo-

rithm, i.e., the HTTL algorithm. This in turn prolongs the network lifetime by more than a

factor of 2.

Table 5.1: Weighted power (W) comparison between different methods (D1)

Method CF HTTL POOL PSO VFA

Weighted Power Consumption 3.11 1.27 0.59 4.61 1.95

Fig. 5.3 shows the final node deployment results where APs and BSs are denoted by red

squares and black circles, respectively. Next, we study the trade-off between sensors’ and

APs’ power consumption that is parameterized by λ in Eq. (5.6). For small values of λ,

sensor power consumption is the dominant component of D1; thus, it is more paramount to

reduce the sensors’ power consumption rather than APs’ power consumption to minimize

D1. However, increasing λ puts more weight on the APs’ power consumption. This effect

is demonstrated in Fig. 5.2a where for the same initial node deployment, we increase the

value of λ from 0 to 1. As expected, increasing λ reduces the APs’ power consumption

but increases the sensors’ power consumption. Eq. (5.20) provides an alternative intuitive

explanation for this observation because as λ increases, APs tend to be closer to BSs and

farther away from centroids and sensors.
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(a) (b)

Figure 5.2: AP-Sensor power trade-off for (a) POOL Algorithm (b) PEEL Algorithm.

(a) (b) (c)

(d) (e)

Figure 5.3: Node deployment for different algorithms. (a) CF (b) HTTL (c) POOL (d) PSO
(e) VFA.
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5.5.2 Heterogeneous WSNs under Ergodic Capacity Assumption

Here, we compare our proposed PEEL algorithm with the CF, HTTL, PSO, and VFA algo-

rithms introduced in Section 5.5.1. However, instead of restricting all wireless links to have

an outage probability below ϵ = 1%, we consider the ergodic capacity for all communication

channels. The result for each method can then be interpreted as the amount of power that

can, on average, allow the flow of data in each link to pass through.

The weighted power consumption of these methods for the heterogeneous WSN under con-

sideration is provided in Table 5.2. The PEEL algorithm outperforms other methods and

achieves a total weighted power consumption of 8.61mW. In particular, the PEEL algorithm

improves the performance of the second best algorithm by more than a factor of 2 and yields

a more sustainable WSN architecture. The AP-sensor power trade-off for the PEEL algo-

rithm is depicted in Fig. 5.2b where for a fixed initial node deployment, λ is increased from

0 to 1. Similar to what we observed for the POOL algorithm in Fig. 5.2a, increasing λ

puts more weight on the APs’ power consumption and makes it more important to optimize.

This can also be inferred from Eq. (5.27) where APs become closer to BSs and farther from

centroids as λ increases.

Table 5.2: Weighted power (mW) comparison (D2)

Method CF HTTL PEEL PSO VFA

Weighted Power Consumption 177.56 17.94 8.61 96.37 22.62

Some key factors contributing to the superior performance of both POOL and PEEL algo-

rithms are worth noting: While according to the Shannon’s capacity formula, the required

SNR for an error-free information transmission grows exponentially with the required bit-

rate, most methods in the literature consider a linear approximation to this exponential

behavior. Such a linear approximation results in an underestimation of the actual power
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consumption. In contrast, our approach in this work takes the exponential relationship be-

tween SNR and bit-rate into account. Another contributing factor is that this exponential

relationship between the required transmission power and the flow of data is exploited in

finding the optimal routing for data transfer in Algorithms 6 and 8 using Lemma 16.

5.6 Conclusion

A heterogeneous Rayleigh fading sensor network is presented and discussed in which a set

of access points act as relay nodes to facilitate the transfer of sensory data from sensors to

base stations by the means of wireless communication. By considering both large-scale and

small-scale propagation effects on the communication channels, our goal is to minimize the

wireless transmission power consumption of the network for two different perspectives on

the stochasticity of the channel: First, we impose a threshold on the outage probability of

all wireless links and aim to minimize the network’s power consumption under such outage

probability constraints. Second, we consider the ergodic capacity for all channels and aim

to determine the optimal required transmission power for each sensor or access point such

that the allocated transmission power to each channel can, on average, allow the flow of data

in that channel to pass through. For each perspective, we derive the theoretical necessary

conditions for the optimal deployment, cell partitioning, and data routing that minimizes the

network’s power consumption and devise an iterative algorithm accordingly to deploy nodes.

Simulation results show that our proposed node deployment algorithms significantly reduce

the communication power consumption in such networks and achieve superior performance

compared to other techniques in the literature.
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Appendix A

Supplementary Proofs for Chapter 1

A.1 Proof of Proposition 1

For U = (S1, S2, ..., SN), The left hand side of (1.7) can be written as:

D(P,Q, U, T ) =
N∑
n=1

∫
Sn

(an||pn − w||2 + βbn,T (n)||pn − qT (n)||2)f(w)dw

≥
N∑
n=1

∫
Sn

min
j
(aj||pj − w||2 + βbj,T (j)||pj − qT (j)||2)f(w)dw

=

∫
Ω

min
j
(aj||pj − w||2 + βbj,T (j)||pj − qT (j)||2)f(w)dw

=
N∑
n=1

∫
Vn

min
j
(aj||pj − w||2 + βbj,T (j)||pj − qT (j)||2)f(w)dw

=
N∑
n=1

∫
Vn

(an||pn − w||2 + βbn,T (n)||pn − qT (n)||2)f(w)dw

= D(P,Q,V, T ) (A.1)

Hence, the generalized Voronoi diagram is the optimal partition for any given deployment

(P,Q, T ). ■
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A.2 Proof of Lemma 1

Given N APs and M FCs (M < N), first we demonstrate that there exists an optimal node

deployment such as
(
P̂ , Q̂, R̂, T̂

)
in which each FC has at most one connected AP at the same

location, i.e., for each m ∈ IB, the cardinality of the set {n|T̂ (n) = m, p̂n = q̂m} is less than

or equal to 1. For this purpose, we consider an optimal node deployment (P ∗, Q∗,R∗, T ∗)

and assume that there exist at least two distinct indices n1, n2 ∈ IA and an index m ∈ IB

such that T ∗(n1) = T ∗(n2) = m, and p∗n1
= p∗n2

= q∗m. Without loss of generality, we can

assume that an1 ≤ an2 . We have:

Dn1 =

∫
R∗
n1

(an1||p∗n1
− w||2 + βbn1,m||p∗n1

− q∗m||2)f(w)dw

=

∫
R∗
n1

(
an1||p∗n1

− w||2
)
f(w)dw (A.2)

Dn2 =

∫
R∗
n2

(an2 ||p∗n2
− w||2 + βbn2,m||p∗n2

− q∗m||2)f(w)dw

=

∫
R∗
n2

(
an2||p∗n2

− w||2
)
f(w)dw (A.3)

Hence, we have:

Dn1 +Dn2 =

∫
R∗
n1

(
an1||p∗n1

− w||2
)
f(w)dw +

∫
R∗
n2

(
an2 ||p∗n2

− w||2
)
f(w)dw

≥
∫
R∗
n1

(
an1||p∗n1

− w||2
)
f(w)dw +

∫
R∗
n2

(
an1||p∗n1

− w||2
)
f(w)dw

=

∫
R∗
n1

⋃
R∗
n2

(
an1 ||p∗n1

− w||2
)
f(w)dw (A.4)

Eq. (A.4) implies that if we update the cell partition for AP n1 to be R∗
n1

⋃
R∗
n2
, and place

the AP n2 to an arbitrary location different from q∗m with a corresponding zero volume cell

partition, the resulting distortion will not increase, and the obtained node deployment is
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also optimal. Note that in this newly obtained optimal distortion, AP n2 is not in the

same location as FC m anymore. This procedure is continued until we reach an optimal

deployment in which each FC has at most one connected AP upon it. Let us denote this

optimal node deployment via
(
P̂ , Q̂, R̂, T̂

)
.

Since M < N and each FC has at most one AP upon it, there exists an index k ∈ IA

such that p̂k ̸= q̂T̂ (k). In order to show that the optimal two-tier distortion with N APs

and M + 1 FCs is less than that of N APs and M FCs, it is sufficient to construct a

node deployment with N APs and M + 1 FCs such as (P ′′, Q′′,R′′, T ′′) that achieves lower

distortion than D
(
P̂ , Q̂, R̂, T̂

)
. For each n ∈ IA, let v̂n denote the volume of the region R̂n,

i.e., v̂n =
∫
R̂n
f(w)dw. We consider two different cases: (i) If v̂k > 0, then we set P ′′ = P̂ ,

Q′′ =
(
q̂1, q̂2, ..., q̂M , q

′′
M+1 = p̂k

)
, R′′ = R̂ and T ′′(n) = T̂ (n) for n ̸= k and T ′′(k) = M + 1.

Note that

∫
R̂k

(
ak||p̂k − w||2 + βbk,T̂ (k)||p̂k − q̂T̂ (k)||

2
)
f(w)dw

>

∫
R̂k

(
ak||p̂k − w||2

)
f(w)dw (A.5)

=

∫
R̂k

(
ak||p̂k − w||2 + βbk,M+1||p̂k − q′′M+1||2

)
f(w)dw

implies that in the new deployment (P ′′, Q′′,R′′, T ′′), the contribution of the AP k to the

total distortion has decreased. Since the contribution of other APs to the distortion has

not changed, we have D (P ′′, Q′′,R′′, T ′′) < D
(
P̂ , Q̂, R̂, T̂

)
and the proof is complete. (ii)

If v̂k = 0, then AP k does not contribute to the optimal distortion D
(
P̂ , Q̂, R̂, T̂

)
, and it

can be placed anywhere within the target region Ω. Since the set {p̂1, ..., p̂N , q̂1, ..., q̂M} has

zero measure, clearly there exists a point x ∈ Ω and a threshold δ ∈ R+ such that B (x, δ) =

{w ∈ Ω|∥x− w∥ ≤ δ} does not include any point from the set {p̂1, ..., p̂N , q̂1, ..., q̂M}. Since

f(.) is positive, continuous and differentiable over Ω, for each 0 < ϵ < δ the region B(x, ϵ) ={
w ∈ Ω

∣∣||w − x|| ≤ ϵ
}
has positive volume, i.e.,

∫
B(x,δ) f(w)dw > 0. Given 0 < ϵ < δ, assume
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that:

B(x, ϵ) ⊂ R̂n (A.6)

for some n ∈ IA; therefore, the contribution of the region B(x, ϵ) to the total distortion

D
(
P̂ , Q̂, R̂, T̂

)
is equal to:

∫
B(x,ϵ)

(
an||p̂n − w||2 + βbn,T̂ (n)||p̂n − q̂T̂ (n)||

2
)
f(w)dw (A.7)

As ϵ −→ 0, (A.7) can be approximated as:

∆n ×
∫
B(x,ϵ)

f(w)dw (A.8)

where ∆n =
(
an||p̂n − x||2 + βbn,T̂ (n)||p̂n − q̂T̂ (n)||2

)
. If we set p′′k = q′′M+1 = x and R′′

k =

B(x, ϵ) and T ′′(k) =M +1, then the contribution of the region B(x, ϵ) to the total distortion

D (P ′′, Q′′,R′′, T ′′) is equal to:

∫
B(x,ϵ)

(
ak||p′′k − w||2 + βbk,M+1||p′′k − q′′M+1||2

)
f(w)dw

= ak

∫
B(x,ϵ)

(
||x− w||2

)
f(w)dw (A.9)

The below equation for the ratio of distortions in (A.8) and (A.9)

lim
ϵ−→0

ak
∫
B(x,ϵ) (||x− w||2) f(w)dw
∆n ×

∫
B(x,ϵ) f(w)dw

= 0 (A.10)

implies that there exists an ϵ∗ ∈ (0, δ) such that the contribution of the region B(x, ϵ∗) to

the total distortion in D (P ′′, Q′′,R′′, T ′′) will be less than that of D
(
P̂ , Q̂, R̂, T̂

)
. Hence,

we set P ′′ = (p′′1, p
′′
2, ..., p

′′
N) where p′′i = p̂i for i ̸= k, and p′′k = x. Also, we set Q′′ =(

q̂1, q̂2, ..., q̂M , q
′′
M+1 = x

)
. The partitioning R′′ = (R′′

1, ..., R
′′
N) is defined as R′′

i = R̂i for i ̸= k
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and i ̸= n, R′′
k = B(x, ϵ∗) and R′′

n = R̂n−B(x, ϵ∗). Finally, we set T ′′(i) = T̂ (i) for i ̸= k and

T ′′(k) =M +1. As mentioned earlier, the two-tier distortion D (P ′′, Q′′,R′′, T ′′) is less than

D
(
P̂ , Q̂, R̂, T̂

)
. Note that if the region B(x, ϵ) is a subset of more than one region, Eqs.

(A.6) to (A.8) and (A.10) can be modified accordingly and a similar argument can be made

to show that the resulting distortion will be improved in the new deployment, and the proof

is complete. ■

A.3 Proof of Corollary 1

Assume that there exists an index m ∈ IB in the optimal node deployment (P ∗, Q∗,R∗, T ∗)

such that
⋃
n:T ∗(n)=mR

∗
n has zero volume. Consider the node deployment (P ′, Q′,R′, T ′)

where P ′ = P ∗, Q′ =
(
q∗1, ..., q

∗
m−1, q

∗
m+1, ..., q

∗
M

)
, R′ = R∗ and T ′(i) = T ∗(i) for indices

i ∈ IA such that T ∗(i) ̸= m. Note that for indices i ∈ IA such that T ∗(i) = m, we can define

T ′(i) arbitrarily because the corresponding regions R′
i have zero volume. Since

⋃
n:T ∗(n)=mR

∗
n

has zero volume, we have:

D (P ′, Q′,R′, T ′) = D (P ∗, Q∗,R∗, T ∗) (A.11)

which is in contradiction with Lemma 1 since the optimal node deployment (P ∗, Q∗,R∗, T ∗)

for N APs and M FCs has not improved the node deployment (P ′, Q′,R′, T ′) for N APs

and M − 1 FCs in terms of distortion. Hence the proof is complete. ■

A.4 Proof of Proposition 2

First, we study the shape of the Voronoi regions in (1.5). Let B(c, r) = {ω|∥ω − c∥ ≤ r} be

a disk centered at c with radius r in two-dimensional space. In particular, B(c, r) = ∅ when
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r ≤ 0. Let HS = {ω|Aω+B ≤ 0} be a half space, where A ∈ R2 is a vector and B ∈ R is a

constant. For i, j ∈ IA, we define

Vij(P,Q, T ) ≜ {ω|ai||pi − w||2 + βbi,T (i)||pi − qT (i)||2 ≤

aj||pj − w||2 + βbj,T (j)||pj − qT (j)||2}
(A.12)

to be the pairwise Voronoi region of AP i where only AP i and j are considered. Then,

AP i’s Voronoi region can be represented as Vi(P,Q) =
[⋂

j ̸=i Vij(P,Q)
]⋂

Ω. Let (ωx, ωy),

(pix, piy), and (pjx, pjy) be the coordinates of ω, pi and pj, respectively. Expanding the

inequality in (A.12) results in

(ai − aj)(ω
2
x + ω2

y)− 2(aipix − ajpjx)ωx

− 2(aipiy − ajpjy)ωy + ai∥pi∥2 − aj∥pj∥2

+ βbi,T (i)∥pi−qT (i)∥2 − βbj,T (j)∥pj−qT (j)∥2≤0

(A.13)

When ai = aj, the pairwise Voronoi region is a half space, i.e., Vij = {Aijω+Bij ≤ 0}, where

Aij = ajpj − aipi and Bij =
(ai||pi||2−aj ||pj ||2+βbi,T (i)||pi−qT (i)||2−βbj,T (j)||pj−qT (j)||2)

2
. When ai > aj,

Vij is represented as:

(ω − cij)
2 ≤ Lij. (A.14)

When ai < aj, Vij is represented as:

(ω − cij)
2 ≥ Lij, (A.15)

where

cij =

(
aipix − ajpjx
ai − aj

,
aipiy − ajpjy
ai − aj

)
=
aipi − ajpj
ai − aj

(A.16)
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Lij =
aiaj∥pi − pj∥2

(ai − aj)
2 − β ×

bi,T (i)∥pi−qT (i)∥2 − bj,T (j)∥pj−qT (j)∥2

(ai − aj)
(A.17)

For Lij ≥ 0, we define the radius rij as:

rij =


√
Lij, Lij ≥ 0

0, Lij < 0

(A.18)

Therefore, the pairwise Voronoi region Vij is derived:

Vij = Ω ∩



HS(Aij, Bij) , ai = aj

B(cij, rij) , ai > aj, Lij ≥ 0

∅ , ai > aj, Lij < 0

Bc(cij, rij) , ai < aj, Lij ≥ 0

R2 , ai < aj, Lij < 0

, (A.19)

where Bc(cij, rij) is the complementary of B(cij, rij). Note that for two distinct indices such

as i, j ∈ IA, if ai > aj and Lij < 0, then two regions Ω ∩ B(cij, rij) and ∅ differ only in one

point, i.e., cij. Similarly, for ai < aj and Lij < 0, two regions Ω ∩ Bc(cij, rij) and Ω differ

only in one point cij. Hence, if we define:

V k =

[ ⋂
i:ak>ai

B(cki, rki)

]⋂[ ⋂
i:ak=ai

HS(Aki, Bki)

]⋂[ ⋂
i:ak<ai

Bc(cki, rki)

]⋂
Ω (A.20)

then two regions V k and Vk differ only in finite number of points. As a result, integrals

over both V k and Vk have the same value since the density function f is continuous and

differentiable, and removing finite number of points from the integral region does not change

the integral value. Note that if Vk is empty, the Proposition 1 in [38] holds since the integral

over an empty region is zero. If Vk is not empty, the same arguments as in Appendix A of
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[38] can be replicated since V k in (A.20) is similar to Eq. (31) in [38].

Using parallel axis theorem, the two-tier distortion can be written as:

D (P,Q,V, T ) =
N∑
n=1

∫
Vn

(
an||pn − w||2 + βbn,T (n)||pn − qT (n)||2

)
f(w)dw

=
N∑
n=1

(∫
Vn

an||cn − w||2f(w)dw + an||pn − cn||2vn

+ βbn,T (n)||pn − qT (n)||2vn
)

(A.21)

Using Proposition 1 in [38], since the optimal deployment (P ∗, Q∗) satisfies zero gradient,

we take the partial derivatives of Eq. (A.21) as follows:

∂D

∂p∗n
= 2

[
an(p

∗
n − c∗n) + βbn,T ∗(n)(p

∗
n − q∗T ∗(n))

]
v∗n = 0

∂D

∂q∗m
= 2

∑
n:T ∗(n)=m

βbn,m(q
∗
m − p∗n)v

∗
n = 0 (A.22)

By solving Eq. (A.22), we have the following necessary conditions:

p∗n =
anc

∗
n + βbn,T ∗(n)q

∗
T ∗(n)

an + βbn,T ∗(n)
(A.23)

q∗m =

∑
n:T ∗(n)=m bn,mp

∗
nv

∗
n∑

n:T ∗(n)=m bn,mv
∗
n

(A.24)

and the proof is complete. ■

A.5 Proof of Convergence for the HTTL algorithm

In what follows, we demonstrate that none of the four steps in the HTTL algorithm will

increase the two-tier distortion. Given P , Q and R, updating the index map T according to

(1.4) minimizes the total distortion, i.e., the two-tier distortion will not increase by the first
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step. Moreover, given P , Q and T , Proposition 1 indicates that updatingR according to (1.5)

and (1.6) gives the best partitioning; thus, the second step of the HTTL algorithm will not

increase the distortion. Below equality follows from straightforward algebraic calculations

and we omit the proof here:

∑
n:T (n)=m

bn,mvn||pn − qm||2 =
∑

n:T (n)=m

bn,mvn(||pn − q′m||2 + ||qm − q′m||2) (A.25)

for q′m =
∑
n:T (n)=m bn,mpnvn∑
n:T (n)=m bn,mvn

. The contribution of FC m to the total distortion can then be

rewritten as:

∑
n:T (n)=m

∫
Rn

(
an||pn − w||2 + βbn,m||pn − qm||2

)
f(w)dw

=
∑

n:T (n)=m

∫
Rn

an||pn − w||2f(w)dw + β

 ∑
n:T (n)=m

bn,mvn

 ||qm − q′m||2

+ β

 ∑
n:T (n)=m

bn,mvn||pn − q′m||2
 (A.26)

Now, given P , R and T , the first and third terms in right hand side of (A.26) are constant

and moving qm toward q′m will not increase the distortion in (A.26). Therefore, the third

step of the HTTL algorithm will not increase the total two-tier distortion as well.

The following equation can be easily verified using straightforward algebraic computations

and we omit the proof here:

an||pn − w||2 + βbn,m||pn − qm||2

= (an + βbn,m)

∣∣∣∣∣∣∣∣pn − (anw + βbn,mqm)

an + βbn,m

∣∣∣∣∣∣∣∣2
+

βanbn,m
an + βbn,m

||w − qm||2 (A.27)

For each index n ∈ IA and the corresponding index m = T (n), we can rewrite the contribu-
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tion of AP n to the total distortion as:

∫
Rn

(
an||pn − w||2 + βbn,m||pn − qm||2

)
f(w)dw

=

∫
Rn

[
(an + βbn,m)

∣∣∣∣∣∣∣∣pn − (anw + βbn,mqm)

an + βbn,m

∣∣∣∣∣∣∣∣2 + βanbn,m
an + βbn,m

||w − qm||2
]
f(w)dw

=

∫
Rn

[
a2n

an + βbn,m

∣∣∣∣∣∣∣∣(an + βbn,m) pn − βbn,mqm
an

− w

∣∣∣∣∣∣∣∣2
+

βanbn,m
an + βbn,m

||w − qm||2
]
f(w)dw

=

∫
Rn

[
a2n

an + βbn,m

(∣∣∣∣∣∣∣∣(an + βbn,m) pn − βbn,mqm
an

− cn

∣∣∣∣∣∣∣∣2
+ ||cn − w||2

)
+

βanbn,m
an + βbn,m

||w − qm||2
]
f(w)dw

=

∫
Rn

[
a2n

an + βbn,m
||cn − w||2 + (an + βbn,m)

∣∣∣∣∣∣∣∣pn − ancn + βbn,mqm
an + βbn,m

∣∣∣∣∣∣∣∣2
+

βanbn,m
an + βbn,m

||w − qm||2
]
f(w)dw

=
a2n

an + βbn,m

∫
Rn

||cn − w||2f(w)dw + (an + βbn,m)||pn − p′n||2vn

+
βanbn,m
an + βbn,m

∫
Rn

||w − qm||2f(w)dw (A.28)

where p′n = ancn+βbn,mqm
an+βbn,m

. Note that the first equality in (A.28) comes from (A.27), and the

third equality follows from the parallel axis theorem. Now, given Q, R and T , the first and

third terms in (A.28) are constant and moving pn toward p′n will not increase the second

term in (A.28). Hence, the fourth step of the HTTL algorithm will not increase the total

distortion either. So, the HTTL algorithm generates a sequence of positive non-increasing

distortion values and thus, it converges. Note that if distortion remains the same after an

iteration of the algorithm, it means that non of the four steps have decreased distortion and

the algorithm has already reached an optimal deployment. ■

137



Appendix B

Supplementary Proofs for Chapter 2

B.1 Proof of Proposition 3

For U = (S1, S2, ..., SN), the left-hand side of (2.9) can be written as:

P(P,Q, U, T ) =
N∑
n=1

∫
Sn

(an∥pn − w∥2

+βbn,T (n)∥pn−qT (n)∥2)f(w)dw≥
N∑
n=1

∫
Sn

min
j
(aj∥pj − w∥2

+ βbj,T (j)∥pj − qT (j)∥2)f(w)dw =

∫
Ω

min
j
(aj∥pj − w∥2

+βbj,T (j)∥pj−qT (j)∥2)f(w)dw =
N∑
n=1

∫
Vn

min
j
(aj∥pj − w∥2

+ βbj,T (j)∥pj − qT (j)∥2)f(w)dw =
N∑
n=1

∫
Vn

(an∥pn − w∥2

+ βbn,T (n)∥pn − qT (n)∥2)f(w)dw = P(P,Q,V, T ).

Hence, the generalized Voronoi diagram is the optimal partition for any deployment (P,Q, T ).■
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B.2 Proof of Lemma 2

Given N APs and M FCs (M < N), first we demonstrate that there exists an optimal node

deployment such as
(
P̂ , Q̂, R̂, T̂

)
in which each FC has at most one connected AP at the same

location, i.e., for each m ∈ IB, the cardinality of the set {n|T̂ (n) = m, p̂n = q̂m} is less than

or equal to 1. For this purpose, we consider an optimal node deployment (P ∗, Q∗,R∗, T ∗)

and assume that there exist at least two distinct indices n1, n2 ∈ IA and an index m ∈ IB

such that T ∗(n1) = T ∗(n2) = m, and p∗n1
= p∗n2

= q∗m. We have:

Pn1 =

∫
R∗
n1

(an1∥p∗n1
− w∥2 + βbn1,m∥p∗n1

− q∗m∥2)f(w)dw

=

∫
R∗
n1

an1∥p∗n1
− w∥2f(w)dw, (B.1)

Pn2 =

∫
R∗
n2

(an2∥p∗n2
− w∥2 + βbn2,m∥p∗n2

− q∗m∥2)f(w)dw

=

∫
R∗
n2

an2∥p∗n2
− w∥2f(w)dw. (B.2)

Without loss of generality, we can assume that an1 ≤ an2 . Hence, we have:

Pn1 + Pn2 =

∫
R∗
n1

an1∥p∗n1
− w∥2f(w)dw +

∫
R∗
n2

an2∥p∗n2
− w∥2f(w)dw

≥
∫
R∗
n1

an1∥p∗n1
− w∥2f(w)dw +

∫
R∗
n2

an1∥p∗n1
− w∥2f(w)dw

=

∫
R∗
n1

⋃
R∗
n2

an1∥p∗n1
− w∥2f(w)dw,

which implies that if we update the cell partition for AP n1 to be R
∗
n1

⋃
R∗
n2
, and place the AP

n2 to an arbitrary location different from q∗m with a corresponding zero volume cell partition,

the resulting power consumption will not increase, and the obtained node deployment is also

optimal. Note that in this newly obtained optimal power consumption, AP n2 is not in the
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same location as FC m anymore. This procedure is continued until we reach an optimal

deployment, denoted via
(
P̂ , Q̂, R̂, T̂

)
, in which each FC has at most one connected AP

upon it.

Since M < N and each FC has at most one AP upon it, there exists an index k ∈ IA such

that p̂k ̸= q̂T̂ (k). In order to show that the optimal two-tier power consumption with N

APs and M + 1 FCs is less than that of N APs and M FCs, it is sufficient to construct a

node deployment with N APs and M + 1 FCs such as (P ′′, Q′′,R′′, T ′′) that achieves lower

power consumption than P
(
P̂ , Q̂, R̂, T̂

)
. For each n ∈ IA, let v̂n =

∫
R̂n
f(w)dw denote

the volume of the region R̂n. We consider two cases: (i) If v̂k > 0, then we set P ′′ = P̂ ,

Q′′ =
(
q̂1, q̂2, ..., q̂M , q

′′
M+1 = p̂k

)
, R′′ = R̂ and T ′′(n) = T̂ (n) for n ̸= k and T ′′(k) = M + 1.

Note that

∫
R̂k

(
ak∥p̂k − w∥2 + βbk,T̂ (k)∥p̂k − q̂T̂ (k)∥

2
)
f(w)dw

>

∫
R̂k

(
ak∥p̂k − w∥2

)
f(w)dw =

∫
R̂k

(
ak∥p̂k − w∥2 + βbk,M+1∥p̂k − q′′M+1∥2

)
f(w)dw

(B.3)

implies that in the deployment (P ′′, Q′′,R′′, T ′′), the contribution of the AP k to the to-

tal power consumption has decreased. Since the contribution of other APs to the power

consumption has not changed, we have P (P ′′, Q′′,R′′, T ′′) < P
(
P̂ , Q̂, R̂, T̂

)
and the proof

is complete. (ii) If v̂k = 0, then AP k does not contribute to the optimal power con-

sumption P
(
P̂ , Q̂, R̂, T̂

)
, and it can be placed anywhere within the target region Ω. Since

the set {p̂1, ..., p̂N , q̂1, ..., q̂M} has zero measure, there exists a point x ∈ Ω and a thresh-

old δ ∈ R+ such that B (x, δ) = {w ∈ Ω|∥x− w∥ ≤ δ} does not include any point from

the set {p̂1, ..., p̂N , q̂1, ..., q̂M}. Since f(.) is positive, continuous and differentiable over Ω,

for each 0 < ϵ < δ the region B(x, ϵ) =
{
w ∈ Ω

∣∣∥w − x∥ ≤ ϵ
}

has positive volume, i.e.,∫
B(x,δ) f(w)dw > 0. Given 0 < ϵ < δ, assume that:
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B(x, ϵ) ⊂ R̂n, (B.4)

for some n ∈ IA; therefore, the contribution of the region B(x, ϵ) to the total power con-

sumption P
(
P̂ , Q̂, R̂, T̂

)
is equal to:

∫
B(x,ϵ)

(
an∥p̂n − w∥2 + βbn,T̂ (n)∥p̂n − q̂T̂ (n)∥

2
)
f(w)dw. (B.5)

As ϵ −→ 0, (B.5) can be approximated as:

∆n ×
∫
B(x,ϵ)

f(w)dw, (B.6)

where ∆n =
(
an∥p̂n − x∥2 + βbn,T̂ (n)∥p̂n − q̂T̂ (n)∥2

)
. If we set p′′k = q′′M+1 = x and R′′

k =

B(x, ϵ) and T ′′(k) = M + 1, then the contribution of the region B(x, ϵ) to the total power

consumption P (P ′′, Q′′,R′′, T ′′) is equal to:

∫
B(x,ϵ)

(
ak∥p′′k − w∥2 + βbk,M+1∥p′′k − q′′M+1∥2

)
f(w)dw

= ak

∫
B(x,ϵ)

(
∥x− w∥2

)
f(w)dw. (B.7)

The below equation for the ratio of power consumption in (B.6) and (B.7)

lim
ϵ−→0

ak
∫
B(x,ϵ) (∥x− w∥2) f(w)dw
∆n ×

∫
B(x,ϵ) f(w)dw

= 0 (B.8)

implies that there exists an ϵ∗ ∈ (0, δ) such that the contribution of the region B(x, ϵ∗)

to the total power in P (P ′′, Q′′,R′′, T ′′) will be less than that of P
(
P̂ , Q̂, R̂, T̂

)
. Hence,

we set P ′′ = (p′′1, p
′′
2, ..., p

′′
N) where p′′i = p̂i for i ̸= k, and p′′k = x. Also, we set Q′′ =(

q̂1, q̂2, ..., q̂M , q
′′
M+1 = x

)
. The partitioning R′′ = (R′′

1, ..., R
′′
N) is defined as R′′

i = R̂i for i ̸= k
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and i ̸= n, R′′
k = B(x, ϵ∗) and R′′

n = R̂n−B(x, ϵ∗). Finally, we set T ′′(i) = T̂ (i) for i ̸= k and

T ′′(k) =M +1. As mentioned earlier, the two-tier power consumption P (P ′′, Q′′,R′′, T ′′) is

less than P
(
P̂ , Q̂, R̂, T̂

)
. Note that if the region B(x, ϵ) is a subset of more than one region,

(B.4) to (B.6) and (B.8) can be modified accordingly and a similar argument shows that

the resulting power consumption will be improved in the new deployment, and the proof is

complete. ■

B.3 Proof of Corollary 2

Assume that there exists an index m ∈ IB in the optimal node deployment (P ∗, Q∗,R∗, T ∗)

such that
⋃
n:T ∗(n)=mR

∗
n has zero volume. Consider the node deployment (P ′, Q′,R′, T ′)

where P ′ = P ∗, Q′ =
(
q∗1, ..., q

∗
m−1, q

∗
m+1, ..., q

∗
M

)
, R′ = R∗ and T ′(i) = T ∗(i) for indices

i ∈ IA such that T ∗(i) ̸= m. Note that for indices i ∈ IA such that T ∗(i) = m, we

can define T ′(i) arbitrarily because the corresponding regions R′
i have zero volume. Since⋃

n:T ∗(n)=mR
∗
n has zero volume, we have P (P ′, Q′,R′, T ′) = P (P ∗, Q∗,R∗, T ∗) which is in

contradiction with Lemma 1 since the optimal node deployment (P ∗, Q∗,R∗, T ∗) for N APs

and M FCs has not improved the node deployment (P ′, Q′,R′, T ′) for N APs and M − 1

FCs in terms of power consumption. ■

B.4 Proof of Proposition 4

First, we study the shape of the Voronoi regions in (2.7). Let B(c, r) = {ω|∥ω − c∥ ≤ r}

be a disk centered at c with radius r in two-dimensional space. In particular, B(c, r) = ∅

when r ≤ 0. Let HS(A,B) = {ω|Aω +B ≤ 0} be a half space, where A ∈ R2 is a vector

and B ∈ R is a constant. For i, j ∈ IA, we define
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Vij(P,Q, T ) ≜ {w|ai∥pi − w∥2 + βbi,T (i)∥pi − qT (i)∥2

≤ aj∥pj − w∥2 + βbj,T (j)∥pj − qT (j)∥2} (B.9)

to be the pairwise Voronoi region of AP i where only AP i and j are considered. Then,

AP i’s Voronoi region can be represented as Vi(P,Q) =
[⋂

j ̸=i Vij(P,Q)
]⋂

Ω. By expanding

(B.9) and straightforward algebraic calculations, the pairwise Voronoi region Vij is derived

as:

Vij = Ω ∩



HS (Aij, Bij) , ai = aj

B (cij, rij) , ai > aj, Lij ≥ 0

∅ , ai > aj, Lij < 0

Bc (cij, rij) , ai < aj, Lij ≥ 0

R2 , ai < aj, Lij < 0

, (B.10)

where Aij = ajpj−aipi, Bij =
(ai∥pi∥2−aj∥pj∥2+βbi,T (i)∥pi−qT (i)∥2−βbj,T (j)∥pj−qT (j)∥2)

2
, cij =

aipi−ajpj
ai−aj ,

Lij =
aiaj∥pi−pj∥2

(ai−aj)2
− β × bi,T (i)∥pi−qT (i)∥2−bj,T (j)∥pj−qT (j)∥2

(ai−aj) , rij =
√

max (Lij, 0), and Bc(cij, rij) is

the complementary of B(cij, rij). Note that for two distinct indices such as i, j ∈ IA, if

ai > aj and Lij < 0, then two regions Ω ∩ B(cij, rij) and ∅ differ only in the point cij.

Similarly, for ai < aj and Lij < 0, two regions Ω ∩ Bc(cij, rij) and Ω differ only in the point

cij. If we define:

V k =

[ ⋂
i:ak>ai

B(cki, rki)

]⋂[ ⋂
i:ak=ai

HS(Aki, Bki)

]⋂[ ⋂
i:ak<ai

Bc(cki, rki)

]⋂
Ω, (B.11)

then two regions V k and Vk differ only in finite number of points. As a result, integrals

over both V k and Vk have the same value since the density function f is continuous and
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differentiable, and removing finite number of points from the integral region does not change

the integral value. Note that if Vk is empty, the Proposition 1 in [38] holds since the integral

over an empty region is zero. If Vk is not empty, the same arguments as in Appendix A of

[38] can be replicated since V k in (B.11) is similar to (31) in [38].

Using parallel axis theorem [82], the two-tier power consumption can be written as:

P (P,Q,V, T ) =
N∑
n=1

∫
Vn

(
an∥pn − w∥2 + βbn,T (n)∥pn − qT (n)∥2

)
f(w)dw

=
N∑
n=1

(∫
Vn

an∥cn − w∥2f(w)dw + an∥pn − cn∥2vn + βbn,T (n)∥pn − qT (n)∥2vn
)
. (B.12)

Using Proposition 1 in [38], since the optimal deployment (P ∗, Q∗) satisfies zero gradient,

we take the partial derivatives of (B.12) as follows:

∂P
∂p∗n

= 2
[
an(p

∗
n − c∗n) + βbn,T ∗(n)(p

∗
n − q∗T ∗(n))

]
v∗n = 0,

∂P
∂q∗m

= 2
∑

n:T ∗(n)=m

βbn,m(q
∗
m − p∗n)v

∗
n = 0. (B.13)

By solving (B.13), we have the following necessary conditions:

p∗n =
anc

∗
n + βbn,T ∗(n)q

∗
T ∗(n)

an + βbn,T ∗(n)
,

q∗m =

∑
n:T ∗(n)=m bn,mp

∗
nv

∗
n∑

n:T ∗(n)=m bn,mv
∗
n

,

(B.14)

and the proof is complete. ■
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B.5 Proof of Lemma 3

Using Lemma 3 in [42], it can be easily shown that the optimal quantization regions are

two closed intervals. Without loss of generality, let R = {R1, R2}, where R1 = [0, r] and

R2 = [r, 1] be the optimal partitioning. Thus, we have c1 = r
2
and c2 = 1+r

2
. Using (2.11),

we have:

p1 =
a1c1 + βb1,1q

a1 + βb1,1
=

r + 2β′q

2 (1 + β′)
,

p2 =
a2c2 + βb2,1q

a2 + βb2,1
=

1 + r + 2β′q

2 (1 + β′)
,

(B.15)

where β′ = β × κ. Therefore, the two-tier power in the regions R1 and R2 are given by:

P1=a1

∫ r

0

[(
r + 2β′q

2 (1 + β′)
− w

)2

+ β′ (r − 2q)2

4 (1 + β′)2

]
dw, (B.16)

P2=a2

∫ 1

r

[(
1 + r + 2β′q

2 (1 + β′)
− w

)2

+ β′ (1 + r − 2q)2

4 (1 + β′)2

]
dw,

and P(r, q) = P1 + P2 is the total two-tier power consumption. Simplifying (B.16) yields:

P1 =
a1r

4 (1 + β′)2
×
(
β′ (r − 2q)2 +

1

3
×
[
(r + 2β′q)

2

+ (r + 2β′q) (2β′(q − r)− r) + (2β′(q − r)− r)
2
])
,

P2 =
a2(1− r)

4 (1 + β′)2
×
(
β′ (1 + r − 2q)2 +

1

3
×
[
((1− r) + 2β′(q − r))

2

+ ((1− r) + 2β′(q − r)) ((r − 1) + 2β′(q − 1)) + ((r − 1) + 2β′(q − 1))
2
])
. (B.17)

Since both P1(r, q) and P2(r, q) are continuous and differentiable functions of r and q, the

minimum occurs either at zero gradients, given by:

∂P
∂q

= 0 ,
∂P
∂r

= 0. (B.18)
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or at the boundaries, i.e., q, r ∈ {0, 1}. First, we focus on the zero gradient equations.

Simplifying (B.18) yields the following:

q =
a1r

2 + a2(1− r2)

2 (a1r + a2(1− r))
, (B.19)

3 (4β′ + 1) (a1 − a2) r
2 + 12β′ (a1 − a2) q

2

− 24β′ (a1 − a2) qr + 3a2(2r − 1) = 0. (B.20)

If a1 = a2, then the unique solution to (B.19) and (B.20) is q = r = 1
2
; otherwise, by

substituting (B.19) in (B.20) we have the following fourth order polynomial equation:

(a1−a2)3 (β′+1) r4 + 4a2 (a1−a2)2 (β′+1) r3 (B.21)

+
[
(4β′+5) a22 (a1−a2)− (2β′+1) a2 × (a1−a2)2

]
r2

+ 2a22 [a2−(2β′+1) (a1−a2)] r + a22 [β
′ (a1−a2)−a2] = 0.

Solving (B.21) and substituting the roots into (B.19) gives the following pairs of solutions

to (B.18):

r1 =
1

1 +
√

a1
a2

, q1 =
1

1 +
√

a1
a2

,

r2 =
1

1−
√

a1
a2

, q2 =
1

1−
√

a1
a2

, (B.22)

r3 =
1−

√
β′

β′+1

√
a1
a2

1− a1
a2

, q3 =

1−
(√

β′
β′+1

+
√
β′+1
β′

2

)√
a1
a2

1− a1
a2

,

r4 =
1 +

√
β′

β′+1

√
a1
a2

1− a1
a2

, q4 =

1 +

(√
β′
β′+1

+
√
β′+1
β′

2

)√
a1
a2

1− a1
a2

,
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which in turn, leads to the four possible power consumption values P(ri, qi) for i ∈ {1, 2, 3, 4}.

By comparing all four feasible powers, it can be shown via straightforward algebraic calcula-

tions that P(r1, q1) is always the minimum among the four candidate solutions. Therefore,

the optimal FC location and partitioning are given by q1 and R = {R1 = [0, r1], R2 = [r1, 1]},

respectively. Using (B.15), the optimal AP locations can be calculated accordingly. Now,

we consider the boundary case of q, r ∈ {0, 1}. Note that r ∈ {0, 1} means that one of the

regions is empty, i.e., the whole target region Ω = [0, 1] sends its data to the stronger AP. As

a result, we can achieve the optimal power consumption of min(a1,a2)
12

by placing the stronger

AP and the FC at the centroid of Ω. The weaker AP will be used only if:

P(r1, q1) <
a1
12

, P(r1, q1) <
a2
12
. (B.23)

Solving (B.23) yields the necessary and sufficient condition given in (2.12). Therefore, if the

condition in (2.12) holds, both APs are useful and the optimal power consumption is given

by P(r1, q1) as it is given in (2.13); otherwise, using only the stronger AP yields a lower

power consumption value given in (2.14) and the proof is complete. ■

B.6 Proof of Proposition 5

In what follows, we demonstrate that none of the four steps in the HTTL algorithm will

increase the two-tier power consumption. Given P , Q and R, updating the index map T

according to (2.6) minimizes the total power consumption, i.e., the two-tier power consump-

tion will not increase by the first step. Moreover, given P , Q and T , Proposition 3 indicates

that updating R according to (2.7) and (2.8) provides the best partitioning; thus, the second

step of the HTTL algorithm will not increase the power consumption either. We need the

following equality, which can be derived from simple algebra, to continue the proof.
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∑
n:T (n)=m

bn,mvn∥pn − qm∥2 =
∑

n:T (n)=m

bn,mvn(∥pn − q′m∥2 + ∥qm − q′m∥2), (B.24)

where q′m =
∑
n:T (n)=m bn,mpnvn∑
n:T (n)=m bn,mvn

. Now, the contribution of FCm to the total power consumption

can then be rewritten as:

∑
n:T (n)=m

∫
Rn

(
an∥pn − w∥2 + βbn,m∥pn − qm∥2

)
f(w)dw

=
∑

n:T (n)=m

∫
Rn

an∥pn − w∥2f(w)dw + β

 ∑
n:T (n)=m

bn,mvn

 ∥qm − q′m∥2

+ β

 ∑
n:T (n)=m

bn,mvn∥pn − q′m∥2
 . (B.25)

Now, given P , R and T , the first and third terms in the right hand side of (B.25) are constant

and moving qm toward q′m will not increase the power consumption in (B.25). Therefore, the

third step of the HTTL algorithm will not increase the total two-tier power consumption as

well. We use the following equality to simplify the calculation:

an∥pn − w∥2 + βbn,m∥pn − qm∥2 = (an + βbn,m)×∣∣∣∣∣∣∣∣pn − (anw + βbn,mqm)

an + βbn,m

∣∣∣∣∣∣∣∣2+ βanbn,m
an+βbn,m

∥w − qm∥2. (B.26)

Using (B.26), for each index n ∈ IA and the corresponding index m = T (n), we can rewrite

the contribution of AP n to the total power consumption as:

∫
Rn

(an∥pn − w∥2 + βbn,m∥pn − qm∥2)f(w)dw

(a)
=

∫
Rn

[
(an + βbn,m)

∣∣∣∣∣∣∣∣pn − (anw + βbn,mqm)

an + βbn,m

∣∣∣∣∣∣∣∣2 + βanbn,m
an + βbn,m

× ∥w − qm∥2
]
f(w)dw
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(b)
=

∫
Rn

[
a2n

an + βbn,m
×
∣∣∣∣∣∣∣∣(an+βbn,m)pn − βbn,mqm

an
− w

∣∣∣∣∣∣∣∣2
+

βanbn,m
an + βbn,m

∥w − qm∥2
]
f(w)dw

(c)
=

∫
Rn

[
a2n

an+βbn,m
×
(∣∣∣∣∣∣∣∣(an+βbn,m)pn−βbn,mqman

−cn
∣∣∣∣∣∣∣∣2

+ ∥cn − w∥2
)
+

βanbn,m
an + βbn,m

∥w − qm∥2
]
f(w)dw

(d)
=

∫
Rn

[
a2n

an + βbn,m
∥cn − w∥2 + (an + βbn,m)×∣∣∣∣∣∣∣∣pn− ancn+βbn,mqm

an+βbn,m

∣∣∣∣∣∣∣∣2+ βanbn,m
an+βbn,m

∥w−qm∥2
]
f(w)dw

(e)
=

a2n
an + βbn,m

∫
Rn

∥cn − w∥2f(w)dw + (an + βbn,m)∥pn − p′n∥2vn

+
βanbn,m
an + βbn,m

∫
Rn

∥w − qm∥2f(w)dw, (B.27)

where p′n = ancn+βbn,mqm
an+βbn,m

. Note that Equality (a) in (B.27) comes from (B.26), and Equality

(c) follows from the parallel axis theorem. Now, given Q, R and T , the first and third

terms in the right hand side of Equality (e) in (B.27) are constants and moving pn toward p′n

will not increase the second term in (B.27). Hence, the fourth step of the HTTL algorithm

will not increase the total power consumption either. So, the HTTL algorithm generates a

sequence of positive non-increasing power consumption values and thus, it converges. Note

that if power consumption remains the same after an iteration of the algorithm, it means

that none of the four steps has decreased the power consumption and the algorithm has

already reached an optimal deployment. ■

B.7 Proof of Lemma 4

Note that PS
(P,R) defined in (2.1) is the distortion of a one-tier quantizer with parameters

a1, . . . , aN , node positioning P = (p1, . . . , pN) and partitioning R = (R1, . . . , RN); thus, the
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minimum value that PS
(P,R) can achieve is DN given in (2.15), i.e., PS ∈ [DN ,+∞) which

is the domain of the function A(s).

Let F(s) be the set of all feasible solutions for the power pair (s, A(s)). We can rewrite (2.3)

as:

A(s) = inf
(P,Q,R,T )∈F(s)

PA
(P,Q,R, T ) . (B.28)

It is self-evident that for two values of s1 and s2 such that DN ≤ s1 < s2, we have F(s1) ⊆

F(s2), which implies that A (s1) ≥ A (s2), i.e., A(s) is a non-increasing function.

Without loss of generality, we assume that a1 ≤ a2 ≤ . . . ≤ aN . If s ∈ [DM ,+∞), then

A(s) = 0 since if X∗ = (x∗1, . . . , x
∗
M) and R∗ = (R∗

1, . . . , R
∗
M) is the optimal deployment that

achievesDM in (2.15), then the deployment (P,Q,R, T ) where P = (x∗1, . . . , x
∗
M , x

∗
1, x

∗
1, . . . , x

∗
1),

Q = (x∗1, . . . , x
∗
M), R = (R∗

1, ..., R
∗
M ,∅,∅, . . . ,∅) and T ∗(i) = i for each i ∈ IB and T ∗(i) = 1

for each i ∈ IA − IB is a feasible solution for which PS
(P,R) = DM ≤ s and A(s) = 0. If

s ∈ [DN , DM), then the inequality PS
(P,R) ≤ s implies that PS

(P,R) < DM , i.e., optimal

APs should have at least M + 1 different positions; therefore, the optimal AP power cannot

be zero and the proof is complete. ■

B.8 Proof of Lemma 5

Note that the pair (s,R) belongs to the domain of A (s,R) if and only if there exists a

node positioning P such that PS
(P,R) ≤ s. Since we have PS

(P,R) ≥ H(R) for any fixed

partitioning R, the domain of the function A (s,R) is
{
(s,R)

∣∣s ≥ H(R)
}
.

First, we show that J (R) is the minimum value of the quantity
∑N

n=1

∫
Rn
an∥x−w∥2f(w)dw

for a fixed R. Using parallel axis theorem, we have:

150



N∑
n=1

∫
Rn

an∥x− w∥2f(w)dw =

N∑
n=1

an∥x − cn∥2vn +
N∑
n=1

∫
Rn

an∥cn − w∥2f(w)dw, (B.29)

where cn is the centroid of the region Rn. Taking the derivative of (B.29) yields:

∂

∂x

N∑
n=1

∫
Rn

an∥x− w∥2f(w)dw =
N∑
n=1

2an(x− cn)vn = 0, (B.30)

i.e., x∗ =
∑N
n=1 anvncn∑N
n=1 anvn

where vn is the volume of Rn. Substituting x
∗ into (B.29) yields:

J (R) = min
x

N∑
n=1

∫
Rn

an∥x− w∥2f(w)dw. (B.31)

If s ∈ [J (R),+∞) then A(s,R) = 0 because for the deployment P = (p1, . . . , pN) =

(x∗, . . . , x∗) and Q = (q) = (x∗), we have PS
(P,R) = J (R) ≤ s and PA

(P,Q,R, T ) = 0.

Now, we determine the value of A(s,R) for s ∈ [H(R),J (R)). We have:

PA
(P,Q,R, T ) =

N∑
n=1

∫
Rn

bn,1∥pn − q∥2f(w)dw

=
N∑
n=1

bn,1∥pn − q∥2vn

= κ
N∑
n=1

an∥pn − q∥2vn

= κ

N∑
n=1

∥pn
√
anvn − q

√
anvn∥2

= κ× ∥p̃− q̃∥2, (B.32)

where p̃ =
(
p1
√
a1v1, . . . , pN

√
aNvN

)
and q̃ =

(
q
√
a1v1, . . . , q

√
aNvN

)
. Similarly, we can
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rewrite the Sensor-power function as:

PS
(P,R) =

N∑
n=1

∫
Rn

an∥pn − w∥2f(w)dw

=
N∑
n=1

an∥pn − cn∥2vn +H(R)

=
N∑
n=1

∥pn
√
anvn − cn

√
anvn∥2 +H(R)

= ∥p̃− c̃∥2 +H(R),

(B.33)

where c̃ =
(
c1
√
a1v1, . . . , cN

√
aNvN

)
. Note that H(R) is a constant since R is fixed. There-

fore, we have:

A(s,R) = inf
(p̃,q̃):∥p̃−c̃∥2≤(s−H(R))

κ× ∥p̃− q̃∥2. (B.34)

Note that for any fixed value of q̃, (B.34) implies that we want to minimize the distance

from the point p̃ to q̃ while it remains within a radius of
√
s−H(R) of the point c̃. By

using a simple geometric reasoning, it can be shown that p̃ lies on the segment connecting

c̃ to q̃, i.e., there exists a coefficient λ ≥ 0 for which we have:

p̃ =
q̃+ λc̃

1 + λ
, (B.35)

i.e., for any q̃, the constraint in (B.34) is equivalent to:

λ : (1 + λ)2 ≥ ∥q̃− c̃∥2

s−H(R)
. (B.36)

Therefore, (B.34) can be rewritten as:

A(s,R) = inf
Q

inf
λ:(1+λ)2≥ ∥q̃−c̃∥2

s−H(R)

κ×
∣∣∣∣∣∣∣∣ q̃+ λc̃

1 + λ
− q̃

∣∣∣∣∣∣∣∣2
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= inf
λ:(1+λ)2≥

∑N
n=1 an∥q−cn∥2vn

s−H(R)

inf
q
G(q, λ), (B.37)

where:

G(q, λ) = κ×
N∑
n=1

an

∣∣∣∣∣∣∣∣q + λcn
1 + λ

− q

∣∣∣∣∣∣∣∣2vn
= κ×

(
λ

1 + λ

)2 N∑
n=1

an∥cn − q∥2vn. (B.38)

Taking the derivative of G(q) w.r.t. the FC location q yields:

∂G(q, λ)

∂q
= κ×

(
λ

1 + λ

)2 N∑
n=1

2anvn (q − cn) = 0, (B.39)

i.e., q∗ =
∑N
n=1 anvncn∑N
n=1 anvn

. By substituting q∗ into (B.37), we have:

A(s,R) = inf

λ:λ≥
√∑N

n=1 an∥q∗−cn∥2vn
s−H(R)

−1

G(q∗, λ). (B.40)

Since G(q∗, λ) depends on λ through the coefficient
(

λ
1+λ

)2
that increases with λ, the infimum

in (B.40) occurs for:

λ∗ =

√∑N
n=1 an∥q∗ − cn∥2vn

s−H(R)
− 1

=

√
J (R)−H(R)

s−H(R)
− 1,

(B.41)

where the second equality follows from the parallel axis theorem. Substituting λ∗ into (B.40)

yields the formula in (2.17) for A(s,R) and the proof is complete. ■
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B.9 Proof of Lemma 6

Note that the constrained optimization in (2.3) is equivalent to the unconstrained optimiza-

tion in (2.5). As we showed earlier in Appendix B.5, if the condition in (2.12) holds, the

optimal partitioning is two closed intervals [0, r∗] and [r∗, 1] where the FC is located at

r∗ = q∗ = 1

1+
√
a1
a2

, in which case we have:

J (R)−H(R) =
2∑

n=1

an∥q∗ − cn∥2vn

=
1

4
×
[
a1q

∗3 + a2 (1− q∗)3
]
, (B.42)

s−H(R) = s−
∫ q∗

0

a1

∣∣∣∣∣∣q∗
2

− w
∣∣∣∣∣∣2f(w)dw −

∫ 1

q∗
a2

∣∣∣∣∣∣1 + q∗

2
− w

∣∣∣∣∣∣2f(w)dw
= s− 1

12

[
a1q

∗3 + a2 (1− q∗)3
]
.

(B.43)

Substituting (B.42) and (B.43) into (2.17) yields (2.19) for 1
12

( √
a1a2√

a1+
√
a2

)2
≤ s ≤ 1

3

( √
a1a2√

a1+
√
a2

)2
.

However, if the condition in (2.12) does not hold, the optimal partitioning is when the re-

gion corresponding to the weaker AP is empty, and both FC q and the stronger AP are

located at the centroid of the target space; hence, A(s) = 0 and PS
(P,R) = min(a1,a2)

12
.

Since min(a1,a2)
12

≤ 1
3

( √
a1a2√

a1+
√
a2

)2
with equality if and only if a1 = a2, (2.19) is only valid for

1
12

( √
a1a2√

a1+
√
a2

)2
≤ s < min(a1,a2)

12
, and A(s) = 0 for s ≥ min(a1,a2)

12
. ■

B.10 Proof of Proposition 6

In what follows, we prove that none of the four steps in the Limited-HTTL algorthim will

increase the two-tier power consumption. Note that APs in the set {n
∣∣T (n) = −1} are nei-
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ther used for target region partitioning, nor they contribute to the total power consumption;

hence, given P , Q and R, updating the index map T according to (2.23) will not increase the

power consumption. Furthermore, partitioning the target region according to the generalized

Voronoi diagram is the best partitioning according to Proposition 3, and the two-tier power

consumption will not be increased by the second stage of Limited-HTTL Algorithm.

Next, for a given P , R and T , (B.25) indicates that decreasing the distance between qm

and q′m =
∑
n:T (n)=m bn,mpnvn∑
n:T (n)=m bn,mvn

will decrease the two-tier power consumption. Note that moving

FC m to q̂m will not increase the power consumption since ∥q̂m − q′m∥ ≤ ∥qm − q′m∥, and

q̂m is still in the communication range of APs associated to FC m. Finally, (B.27) implies

that decreasing the distance between pn and p′n = ancn+βbn,mqm
an+βbn,m

will decrease the two-tier

power consumption. Note that moving AP n to p̂n will not increase the power consumption

since ∥p̂n − p′n∥ ≤ ∥pn − p′n∥, and p̂n is still in the communication range of the FC qT (n).

Since none of the above four stages will increase the power consumption, Limited-HTTL

Algorithm generates a sequence of positive non-increasing power consumption values and

thus, it converges. ■
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Appendix C

Supplementary Proofs for Chapter 3

C.1 Proof of Theorem 3.1

Using parallel axis theorem, we can rewrite the cost function in (3.5) as:

D(P,W,S) =
N∑
i=1

∫
Wi

∥ci − ω∥2f(ω)dω + ∥pi − ci∥2vi

+λρ
N∑
i=1

N∑
j=1

Fi,j + λβ

N∑
i=1

N+M∑
j=1

||pi−pj||2Fi,j,
(C.1)

where Fi,j = Fi,j(W,S), vi =
∫
Wi
f(ω)dω is the Lebesgue measure (volume) of Wi and

ci =

∫
Wi

ωf(ω)dω∫
Wi

f(ω)dω
is the centroid of Wi. Let P∗ = (p∗1, . . . , p

∗
N+M)T , W∗ = (W ∗

1 , . . . ,W
∗
N)

T ,

and S∗ = [s∗i,j] denote, respectively, the optimal node deployment, cell partitioning and

normalized flow matrix. According to [11], each cell in the power diagram is either empty or

a convex polygon; thus, we can take the gradient of the objective function D (P,W,S) using

Proposition A.1. in [21]. It is self-evident that the cost function in (3.5) is continuously
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differentiable. Therefore, D(P,W,S) achieves zero-gradient at the optimal point (P∗, W∗,

S∗). The partial derivative of (C.1) with respect to pi is provided in (C.2), on top of the

next page. By solving the zero-gradient equation, we obtain:

∂D(P,W,S)

∂pi
=


2(pi − ci)vi + 2λβ

N+M∑
j=1

(pi − pj)Fi,j + 2λβ
N∑
j=1

(pi − pj)Fj,i, ∀i ∈ IS

2λβ
N∑
j=1

(pi − pj)Fj,i, ∀i ∈ IF

(C.2)

p∗i =



c∗i v
∗
i+λβ

N+M∑
j=1

F ∗
i,jp

∗
j+λβ

N∑
j=1

F ∗
j,ip

∗
j

v∗i+λβ

(
N+M∑
j=1

F ∗
i,j+

N∑
j=1

F ∗
j,i

) , i ∈ IS

N∑
j=1

F ∗
j,ip

∗
j

N∑
j=1

F ∗
j,i

, i ∈ IF

(C.3)

where v∗i and c∗i are, respectively, the volume and centroid of W ∗
i , and F

∗
i,j = Fi,j (W

∗,S∗).

As shown at the beginning of Sec. 3.3, given the optimal deployment P∗ and the optimal

normalized flow matrix S∗, the optimal cell partitioning is given by the power diagram W∗ =

V(P∗,S∗), indicating (3.16). Similarly, given the optimal deployment P∗ and the optimal

cell partitioning W∗, the optimal normalized flow matrix is S∗ = R(P∗,W∗), indicating

(3.17). Substituting (3.16) and (3.17) into (C.3), we get (3.14) and (3.15) and the proof is

complete. ■
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C.2 Proof of Theorem 3.2

Note that when W, S, and {pj}j ̸=i are fixed, the cost function in (C.1) is a convex function

of pi; thus, by solving the zero-gradient equation, we have the following unique minimizer:

pi =



civi+λβ
N+M∑
j=1

Fi,jpj+λβ
N∑
j=1

Fj,ipj

vi+λβ

(
N+M∑
j=1

Fi,j+
N∑
j=1

Fj,i

) , i ∈ IS

N∑
j=1

Fj,ipj

N∑
j=1

Fj,i

, i ∈ IF

(C.4)

where ci and vi are centroid and volume of Wi, respectively. Therefore, moving sensors

and FCs according to Lines 10 and 13 of Algorithm 1 does not increase the cost function.

Since R(P,W) is the optimal normalized flow matrix for a given node deployment P and

cell partitioning W, updating S according to Line 15 of Algorithm 1 does not increase the

cost function either. As mentioned earlier, given the node deployment P and normalized

flow matrix S, the optimal cell partitioning is given by the power diagram V (P,S); hence,

updating the cell partitioning according to Line 17 of Algorithm 1 also does not increase the

cost function. Since the parameters P, W and S are updated only in Lines 10, 13, 15 and 17

of RL Algorithm, the cost function is non-increasing. In addition, the cost function is lower

bounded by 0, i.e., D (P,W,S) ≥ 0. As a result, RL Algorithm is an iterative improvement

algorithm and it converges. ■
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Appendix D

Supplementary Proofs for Chapter 4

D.1 Proof of Lemma 7

The AP power coefficient gn (P,S) defined in Eq. (4.8) is the power consumption for trans-

mitting 1 bit data from AP n to the FCs. This includes both the transmission power at each

node, including AP n, on the paths connecting AP n to the FCs, and the receiver power at

each node, excluding AP n, on the paths connecting AP n to the FCs. Since Rb

∫
Wn

f(ω)dω

is the total amount of data collected by AP n from sensors within the region Wn in a unit

time, the term gn (P,S)Rb

∫
Wn

f(ω)dω is the required communication power for transmit-

ting the sensory data collected within the region Wn from AP n to the FCs. Hence, the

left-hand-side of Eq. (4.10) is the required communication power for transmitting the sen-

sory data collected within the target region from APs to FCs. This can be decomposed into

the APs’ total transmission power in addition to the required receiver power for the data to

reach FCs from AP nodes. This proves Eq. (4.10) since the right-hand-side of Eq. (4.10)

can be rewritten as PT

A +
∑N

i=1

∑N
j=1 ρjFi,j (W,S), i.e. the sum of APs’ total transmission

power and the receiver power for all links (i, j) connecting AP i and AP j. ■
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D.2 Proof of Proposition 7

Using Eq. (4.11), we have:

D (P,W,S) =
N∑
n=1

∫
Wn

(
ηn∥pn − ω∥2Rb + λgn (P,S)Rb + λρnRb

)
f(ω)dω

≥
N∑
n=1

∫
Wn

min
j

(
ηj∥pj − ω∥2Rb + λgj (P,S)Rb + λρjRb

)
f(ω)dω

=

∫
Ω

min
j

(
ηj∥pj − ω∥2Rb + λgj (P,S)Rb + λρjRb

)
f(ω)dω

=
N∑
n=1

∫
Vn

min
j

(
ηj∥pj − ω∥2Rb + λgj (P,S)Rb + λρjRb

)
f(ω)dω

=
N∑
n=1

∫
Vn

(
ηn∥pn − ω∥2Rb + λgn (P,S)Rb + λρnRb

)
f(ω)dω

= D (P,V (P,S) ,S) . (D.1)

Hence, the generalized Voronoi diagram provides the optimal cell partitioning for any given

node deployment P and normalized flow matrix S. ■

D.3 Proof of Proposition 8

Eq. (4.19) is a direct implication of Proposition 7. Eq. (4.20) is directly followed from

Eq. (4.15). Here, we prove Eq. (4.18) for the optimal locations of APs and FCs. First, we

study the shape of the Voronoi regions in (4.12). Let B(c, r) = {ω|∥ω − c∥ ≤ r} be a disk

centered at c with radius r in two-dimensional space. In particular, B(c, r) = ∅ when r < 0.

Let HS(a, b) = {ω|a · ω + b ≤ 0} be a half space, where a ∈ R2 is a vector and b ∈ R is a

constant. For i, j ∈ IA, we define

Vij(P,S) ≜ {ω|ηi∥pi − ω∥2 + λgi (P,S) + λρi ≤ ηj∥pj − ω∥2 + λgj (P,S) + λρj} (D.2)
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to be the pairwise Voronoi region of AP i where only APs i and j are considered. Then,

AP i’s Voronoi region can be represented as Vi(P,S) =
[⋂

j ̸=i Vij(P,S)
]⋂

Ω. By expanding

(D.2) and straightforward algebraic calculations, the pairwise Voronoi region Vij is derived

as:

Vij = Ω ∩



HS (aij, bij) , ηi = ηj

B (cij, rij) , ηi > ηj, Lij ≥ 0

∅ , ηi > ηj, Lij < 0

Bc (cij, rij) , ηi < ηj, Lij ≥ 0

R2 , ηi < ηj, Lij < 0

, (D.3)

where aij = ηjpj − ηipi, bij =
(ηi∥pi∥2−ηj∥pj∥2+λgi(P,S)+λρi−λgj(P,S)−λρj)

2
, cij =

ηipi−ηjpj
ηi−ηj , Lij =

ηiηj∥pi−pj∥2

(ηi−ηj)2
−λ×gi(P,S)+ρi−gj(P,S)−ρj

(ηi−ηj) , rij =
√

max (Lij, 0), and Bc(cij, rij) is the complementary

of B(cij, rij). Note that for two distinct indices such as i, j ∈ IA, if ηi > ηj and Lij < 0,

then two regions Ω ∩ B(cij, rij) and ∅ differ only in the point cij. Similarly, for ηi < ηj and

Lij < 0, two regions Ω ∩ Bc(cij, rij) and Ω differ only in the point cij. If we define:

V k =

[ ⋂
i:ηk>ηi

B(cki, rki)

]⋂[ ⋂
i:ηk=ηi

HS(aki, bki)

]⋂[ ⋂
i:ηk<ηi

Bc(cki, rki)

]⋂
Ω, (D.4)

then two regions V k and Vk differ only in finite number of points. As a result, integrals

over both V k and Vk have the same value since the density function f is continuous and

differentiable, and removing finite number of points from the integral region does not change

the integral value. Note that if Vk is empty, the Proposition 1 in [38] holds since the integral

over an empty region is zero. If Vk is not empty, the same arguments as in Appendix A of

[38] can be replicated since V k in (D.4) is similar to (31) in [38].

Using parallel axis theorem [81], the heterogeneous multi-hop communication power con-
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sumption can be written as:

D (P,W,S) =
N∑
n=1

∫
Wn

ηn∥cn − ω∥2Rbf(ω)dω

+
N∑
n=1

ηn∥pn − cn∥2Rbvn

+ λ

N∑
i=1

N+M∑
j=1

βi,j∥pi − pj∥2Fi,j (W,S)

+ λ
N∑
n=1

ρn

[
N∑
i=1

Fi,n (W,S) +Rb

∫
Wn

f(ω)dω

]
, (D.5)

where vn = v (Wn) and cn are the volume and centroid of the region Wn, respectively. Using

Proposition 1 in [38], since the optimal deployment P∗ should have a zero gradient, we take

the partial derivatives of (D.5) with respect to node locations. For each i ∈ IA, we have

∂D
∂p∗i

= 2ηi(p
∗
i − c∗i )Rbv

∗
i + 2λ

N+M∑
j=1

βi,j(p
∗
i − p∗j)F

∗
i,j + 2λ

N∑
j=1

βj,i(p
∗
i − p∗j)F

∗
j,i = 0, (D.6)

and for each i ∈ IF , we have

∂D
∂p∗i

= 2λ
N∑
j=1

βj,i(p
∗
i − p∗j)F

∗
j,i = 0. (D.7)

By solving Eqs. (D.6) and (D.7), we obtain Eq. (4.18) and the proof is complete. ■

D.4 Proof of Proposition 9

Note that RL Algorithm iterates between three steps. In what follows, we show that none

of these steps will increase the objective function D (P,W,S). For a fixed node deployment

P and normalized flow matrix S, the cell partitioning W is updated according to Eq. (4.19)

which was shown to be optimal for a given P and S in Proposition 7. Therefore, the first
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step of RL Algorithm does not increase the objective function. Next, since R (P,W) is the

optimal normalized flow matrix for a given node deployment P and cell partitioning W, the

second step of RL Algorithm does not increase the objective function either. Finally, note

that when W, S and {pj}j ̸=i are fixed, the objective function D (P,W,S) in Eq. (4.4) is a

convex function of the node position pi; hence, by solving the zero-gradient equations and

updating the node locations according to the Eq. (4.18), the objective function does not

increase. Therefore, the objective function of RL Algorithm is nonincreasing. In addition, the

objective function is lower bounded by 0, i.e., D (P,W,S) ≥ 0. As a result, RL Algorithm

is an iterative improvement algorithm and it converges. ■

D.5 Proof of Lemma 8

Before going through the proof, we state the following lemma:

Lemma 12. Given a set of points qi ∈ R2 and non-negative scalar weights ai for i ∈

{1, · · · , K}, and a scalar m, the geometric locus of the point p ∈ R2 such that the equality

K∑
i=1

ai∥p− qi∥2 = m (D.8)

holds, is either an empty set, a single point, or a circle centered at the point c =
∑K
i=1 aiqi∑K
i=1 ai

.

Proof: Let p = (px, py) and qi = (qi,x, qi,y). Then, we can rewrite Eq. (D.8) as

(
K∑
i=1

ai

)(
p2x + p2y

)
− 2

(
K∑
i=1

aiqi,x

)
px − 2

(
K∑
i=1

aiqi,y

)
py = m−

K∑
i=1

ai∥qi∥2. (D.9)

By manipulating both sides, we can rewrite Eq. (D.9) as follows:
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px −
K∑
i=1

aiqi,x

K∑
i=1

ai


2

+

py −
K∑
i=1

aiqi,y

K∑
i=1

ai


2

=

m−
K∑
i=1

ai∥qi∥2

K∑
i=1

ai

+

(
K∑
i=1

aiqi,x

)2

+

(
K∑
i=1

aiqi,y

)2

(
K∑
i=1

ai

)2 .

(D.10)

Hence, the geometric locus of the point p = (px, py) is an empty set or a single point if the

right-hand-side of Eq. (D.10) is negative or zero, respectively; otherwise, the geometric locus

is a circle centered at the point c with the radius r where

c =

∑K
i=1 aiqi∑K
i=1 ai

, (D.11)

r =

√√√√√√m−
∑K

i=1 ai∥qi∥2∑K
i=1 ai

+

(∑K
i=1 aiqi,x

)2
+
(∑K

i=1 aiqi,y

)2
(∑K

i=1 ai

)2 , (D.12)

and Lemma 12 is proved. ■

Corollary 3. If the geometric locus in Lemma 12 is a circle centered at c with radius r,

then for any point p within this circle we have
∑K

i=1 ai∥p− qi∥2 < m, i.e. moving the point

p inside this circle reduces the weighted squared sum in Eq. (D.8).

Now, assume that there exists at least one node, say n, for which Eq. (4.27) in Lemma 8 does

not hold for an optimal node deploymentP∗, cell partitioningW∗ and normalized flow matrix

S∗, i.e. p∗n does not lie on the segment z∗np̃n. We aim to find another deployment such as

P′, W′ and S′ so that E (P′) ≤ γ and D (P′,W′,S′) < D (P∗,W∗,S∗); hence, contradicting

the optimality assumption of P∗, W∗ and S∗, and concluding that Eq. (4.27) holds for all

nodes. For this purpose, let W′ = W∗, S′ = S∗ and p′i = p∗i for all i ∈ IA
⋃
IF\{n}. We

aim to determine the node location p′n accordingly. Using the parallel axis theorem [81], we

164



can rewrite D (P∗,W∗,S∗) as:

D (P∗,W∗,S∗) =
N∑
i=1

∫
W ∗
i

ηi∥c∗i − ω∥2Rbf(ω)dω +
N∑
i=1

ηiRbv
∗
i ∥p∗i − c∗i ∥2

+ λ

N∑
i=1

N+M∑
j=1

βi,j∥p∗i − p∗j∥2Fi,j (W∗,S∗) + λPR

A (W∗,S∗) , (D.13)

where v∗i and c
∗
i are the volume and centroid of the region W ∗

i , respectively. In what follows,

we assume that n ∈ IA, i.e. node n is an AP. Similar proof can be carried out for n ∈ IF .

Note that Eq. (D.13) can be split as D (P∗,W∗,S∗) = D1 (P
∗,W∗,S∗) + D2 (P

∗,W∗,S∗),

where

D1(P
∗,W∗,S∗)=ηnRbv

∗
n∥p∗n−c∗n∥2 +

N+M∑
j=1

λβn,jF
∗
n,j∥p∗n−p∗j∥2 +

N∑
j=1

λβj,nF
∗
j,n∥p∗n−p∗j∥2,

(D.14)

i.e. D1 includes those terms in Eq. (D.13) that involve p∗n. In particular, regardless of

the node n’s position, we have D2 (P
∗,W∗,S∗) = D2 (P

′,W′,S′). According to Lemma

12, the geometric locus of points such as p∗n for which the value of D1 (P
∗,W∗,S∗) in Eq.

(D.14) remains the same is a circle Φ∗
n centered at the point z∗n = zn (P

∗,W∗,S∗) defined

in Eq. (4.16), with radius r∗n = ∥z∗n − p∗n∥. Note that if ∥z∗n − p̃n∥ < ∥z∗n − p∗n∥, then

setting p′n = p̃n not only leads to the movement energy E (P′) < E (P∗), but also results in

D1 (P
′,W′,S′) < D1 (P

∗,W∗,S∗) since p′n lies inside Φ
∗
n. Therefore, we haveD (P′,W′,S′) <

D (P∗,W∗,S∗) which is in contradiction with the optimality of P∗, W∗ and S∗; hence, we

have ∥z∗n−p̃n∥ ≥ ∥z∗n−p∗n∥. Let p̂n be the intersection point of the circle Φ∗
n and segment z∗np̃n.

Since ∥p̃n− p̂n∥ < ∥p̃n−p∗n∥, there exists an ϵn ∈ R+ such that ∥p̃n− p̂n∥+ ϵn < ∥p̃n−p∗n∥. If

p′n = p̂n+ϵn× z∗n−p̂n
∥z∗n−p̂n∥

, then not only we have E (P′) < E (P∗) since E (P∗)−E (P′) > ζnϵn >

0, but also D1 (P
′,W′,S′) < D1 (P

∗,W∗,S∗) since p′n lies inside the circle Φ∗
n. Therefore,

we have D (P′,W′,S′) < D (P∗,W∗,S∗) which contradicts the optimality of P∗, W∗ and S∗

and concludes the proof. ■
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D.6 Proof of Proposition 10

If p∗i = z∗i for all i ∈ Id, then Eq. (4.26) implies that E (P∗) =
∑

i∈Id ζi∥Γ
∗
i ∥ ≤ γ; hence, Eq.

(4.29) reduces to the trivial statement p∗n = p̃n+Γ∗
n and the proof is complete. Therefore, we

assume that there exists at least one node, say n, for which p∗n ̸= z∗n. Note that if any residual

movement energy is left in the optimal deployment, i.e. E (P∗) < γ, then there exists an

ϵ ∈ R+ such that E (P∗) + ϵ < γ and pn = p∗n + ϵ × z∗n−p∗n
∥z∗n−p∗n∥

lies inside the circle centered

at z∗n and radius ∥z∗n − p∗n∥. Then, according to Lemma 12 and Corollary 3, by fixing the

cell partitioning, normalized flow matrix and the location of all nodes except Node n, and

placing Node n at pn we can achieve a lower total multi-hop communication power without

exhausting the available movement energy, which contradicts the optimality of P∗, W∗ and

S∗. Therefore, p∗n ̸= z∗n implies that E (P∗) = γ. Now, given the optimal node deployment

P∗, W∗ and S∗, we construct the node deployment P′, W′ and S′ as follows. Let W′ = W∗,

S′ = S∗ and p′i = p∗i for all i ∈ IA
⋃
IF\{m,n}. Let ϵm, ϵn ∈ R+ be small values and define

p′m = p∗m − ϵm × z∗m − p̃m
∥z∗m − p̃m∥

, p′n = p∗n + ϵn ×
z∗n − p̃n
∥z∗n − p̃n∥

. (D.15)

To satisfy the equality E (P′) = γ, we have ζnϵn = ζmϵm. Now, we calculate the change

in the multi-hop communication power, i.e. D (P′,W′,S′) − D (P∗,W∗,S∗). Assume that

Node m is fixed at p∗m and we move Node n from p∗n to p′n. Note that this movement only

changes the term D1 defined in Eq. (D.14); thus, according to Lemma 12 and Eq. (D.10),

this change is proportional to the difference between the squared radii, i.e.

∆1 =
[
∥p′n − z∗n∥2 − ∥p∗n − z∗n∥2

]
× ψ∗

n, (D.16)

where ψ∗
n is defined in Eq. (4.30). Now, with Node n placed at p′n, we move Node m from

p∗m to p′m. Similar to the above argument, the term ∆2 defined as
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∆2 =
[
∥p′m − z∗m∥2 − ∥p∗m − z∗m∥2

]
× ψ∗

m (D.17)

captures the change in D with the assumption that Node n was located at p∗n. Now, we take

into account that Node n was located at p′n instead of p∗n during Node m’s movement.

∆3 = λβn,mF
∗
n,m ×

[(
∥p′n − p′m∥2 − ∥p′n − p∗m∥2

)
−
(
∥p∗n − p′m∥2 − ∥p∗n − p∗m∥2

)]
(D.18)

= λβn,mF
∗
n,m ×

[ (
∥p′n − p∗m∥2 + ϵ2m − 2ϵm∥p′n − p∗m∥ cos∡p′np∗mp′m − ∥p′n − p∗m∥2

)
−
(
∥p∗n − p′m∥2 − ∥p∗n − p′m∥2 − ϵ2m − 2ϵm∥p∗n − p′m∥ cos∡p∗np′mp̃m

) ]
(D.19)

= λβn,mF
∗
n,m ×

[
2ϵ2m − 2ϵm (∥p′n − p∗m∥ cos∡p′np∗mp′m − ∥p∗n − p′m∥ cos∡p∗np′mp̃m)

]
(D.20)

= λβn,mF
∗
n,m ×

[
2ϵ2m − 2ϵm (ϵm − ϵn cos θ)

]
(D.21)

= λβn,mF
∗
n,m ×

[
2
ζm
ζn
ϵ2m cos θ

]
, (D.22)

where s and θ = ∡z∗nsz
∗
m are the intersection point and the angle between the lines z∗np̃n and

z∗mp̃m, respectively. Note that in Eq. (D.18), without any loss of generality, we have assumed

that the direction of the flow of data, if any, is from Node n to Nodem. Moreover, Eq. (D.19)

follows from the law of cosines and Eq. (D.22) follows from the equation ζnϵn = ζmϵm. Hence,

we have:

D (P′,W′,S′)−D (P∗,W∗,S∗) = ∆1 +∆2 +∆3 (D.23)

=

[
ζ2m
ζ2n
ϵ2m − 2

ζm
ζn
ϵm∥p∗n − z∗n∥

]
× ψ∗

n

+
[
ϵ2m + 2ϵm∥p∗m − z∗m∥

]
× ψ∗

m

+ 2λβn,mF
∗
n,m

ζm
ζn
ϵ2m cos θ.

Due to the optimality of P∗, W∗ and S∗, Eq. (D.23) should be non-negative, or equivalently:
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ϵm

(
ζ2m
ζ2n
ψ∗
n + ψ∗

m + 2λβn,mF
∗
n,m

ζm
ζn

cos θ

)
≥ 2

(
ζm
ζn
ψ∗
n∥p∗n − z∗n∥ − ψ∗

m∥p∗m − z∗m∥
)
. (D.24)

According to Eq. (4.30), the term λβn,mF
∗
n,m is included in both ψ∗

n and ψ∗
m, i.e. ψ∗

n ≥

λβn,mF
∗
n,m and ψ∗

m ≥ λβn,mF
∗
n,m; therefore, we have:

ζ2m
ζ2n
ψ∗
n + ψ∗

m + 2λβn,mF
∗
n,m

ζm
ζn

cos θ ≥ ζ2m
ζ2n
λβn,mF

∗
n,m + λβn,mF

∗
n,m + 2λβn,mF

∗
n,m

ζm
ζn

cos θ

(D.25)

≥ λβn,mF
∗
n,m

(
ζm
ζn

− 1

)2

≥ 0, (D.26)

thus, the term inside the parentheses on the left hand side of Eq. (D.24) is always non-

negative. Note that if the right hand side of Eq. (D.24) is strictly positive, then we can

choose a small enough ϵm such that the inequality in Eq. (D.24) is contradicted. Hence, we

have:

ζmψ
∗
n∥p∗n − z∗n∥ ≤ ζnψ

∗
m∥p∗m − z∗m∥. (D.27)

By swapping the indices m and n in Eq. (D.15) and repeating the same argument, we have:

ζmψ
∗
n∥p∗n − z∗n∥ ≥ ζnψ

∗
m∥p∗m − z∗m∥. (D.28)

Eqs. (D.27) and (D.28) imply that:

ζmψ
∗
n∥p∗n − z∗n∥ = ζnψ

∗
m∥p∗m − z∗m∥. (D.29)
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Note that Eq. (D.15) indicates that Eq. (D.27) holds for any n but only for a dynamic index

m ∈ Id, and similarly Eq. (D.28) holds for any m but only for a dynamic index n ∈ Id.

Hence, Eqs. (D.27) and (D.29) imply that χ∗
m ≥ χ∗

n if n ∈ Is,m ∈ Id and χ∗
m = χ∗

n if

n,m ∈ Id, and Eq. (4.28) is proved. Now, by using Eq. (D.29) and the equality E (P∗) = γ,

we can write:

∑
i∈Id

ζi∥Γ∗
i ∥ − γ =

∑
i∈Id

ζi∥p∗i − z∗i ∥ =
∑
i∈Id

ζ2i ψ
∗
n

ζnψ∗
i

∥p∗n − z∗n∥ =
ψ∗
n

ζn
∥p∗n − z∗n∥

∑
i∈Id

ζ2i
ψ∗
i

, (D.30)

or equivalently:

∥p∗n − z∗n∥ =

∑
i∈Id ζi∥Γ

∗
i ∥ − γ

ψ∗
n

ζn

∑
i∈Id

ζ2i
ψ∗
i

. (D.31)

Hence, we have:

p∗n = p̃n +
Γ∗
n

∥Γ∗
n∥

(∥Γ∗
n∥ − ∥p∗n − z∗n∥) = p̃n + Γ∗

n

1−
∑

i∈Id ζi∥Γ
∗
i ∥ − γ

∥Γ∗
n∥ ×

ψ∗
n

ζn
×
∑

i∈Id
ζ2i
ψ∗
i

 , (D.32)

and the proof is complete. ■

D.7 Proof of Proposition 11

We show that none of the steps in MERL Algorithm increases the multi-hop communication

power D (P,W,S). Since the movement energy constraint in Eq. (4.26) does not depend

on the cell partitioning and normalized flow matrix, same reasoning as in Appendix D.4

shows that updating W and S according to the generalized Voronoi diagram and Bellman-

Ford Algorithm, respectively, does not increase D (P,W,S). In what follows, we show that

updating the node deployment according to steps 4 and 5 in Algorithm 4 will not increase

the objective function as well. To show this, we first need the following concepts:
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Let Pk =
(
pk1, · · · , pkN , pkN+1, · · · , pkN+M

)
denote the node deployment after the k-th iteration.

In particular, P0 = P̃ is the initial deployment. We define the energy allocation after the

k-th iteration as Ek =
(
ek1, · · · , ekN , ekN+1, · · · , ekN+M

)
where ekn = ζn∥pkn − p̃n∥ is node n’s

movement energy consumption. Note that after the cell partitioning using the generalized

Voronoi diagram, the partitions are fixed as V
(
Pk−1,Sk−1

)
. Moreover, let vkn and ckn denote

the volume and centroid of Vn
(
Pk,Sk

)
, respectively, and define Γkn = zkn − p̃n where zkn is

expressed as in Eqs. (4.16) and (4.17). We denote the energy consumed by moving node

n from its initial location to zkn by τ kn = ζn∥Γkn∥, and define κkn = κn
(
Pk,Sk

)
= ζ2n

ψkn
where

ψkn is given by Eq. (4.30). Finally, we define an auxiliary function χ̂kn : RN+M −→ R to

be χ̂kn (E) =
τkn−en
κkn

. Note that χ̂kn differs from χn defined in Eq. (4.31) in the sense that it

depends on the energy allocation E rather than the node deployment and data routing.

Lemma 13. Let Ikd and Iks denote the set of dynamic and static nodes after the k-th iteration

of the MERL algorithm, respectively. Then, we have:

χ̂k−1
i

(
Ek
)
= χ̂k−1

j

(
Ek
)
, ∀i, j ∈ Ikd (D.33)

χ̂k−1
i

(
Ek
)
≥ χ̂k−1

j

(
Ek
)
, ∀i ∈ Ikd , j ∈ Iks (D.34)

Proof: At the end of the deployment step, dynamic node n’s location in the k-th iteration is:

pkn = p̃n + Γk−1
n

1−
∑

i∈Ikd
ζi∥Γk−1

i ∥ − γ

∥Γk−1
n ∥ × ψk−1

n

ζn
×
∑

i∈Ikd
ζ2i

ψk−1
i

 , (D.35)

thus, its movement energy consumption is:

ekn = ζn∥pkn − p̃n∥ = ζn∥Γk−1
n ∥ ×

∣∣∣∣∣∣
∣∣∣∣∣∣1−

∑
i∈Ikd

ζi∥Γk−1
i ∥ − γ

∥Γk−1
n ∥ × ψk−1

n

ζn
×
∑

i∈Ikd
ζ2i

ψk−1
i

∣∣∣∣∣∣
∣∣∣∣∣∣ (D.36)
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=

∣∣∣∣∣∣
∣∣∣∣∣∣τ k−1
n −

κk−1
n

(∑
i∈Ikd

τ k−1
i − γ

)
∑

i∈Ikd
κk−1
i

∣∣∣∣∣∣
∣∣∣∣∣∣ , ∀n ∈ Ikd (D.37)

where Ikd is the set of dynamic nodes in the k-th iteration, determined by the inner loop in

steps 3 and 4 of the MERL algorithm. According to this inner loop, the term inside the

vertical bars in Eq. (D.37) is positive; hence, we have:

ekn = τ k−1
n −

κk−1
n

(∑
i∈Ikd

τ k−1
i − γ

)
∑

i∈Ikd
κk−1
i

, ∀n ∈ Ikd . (D.38)

Now, by substituting Eq. (D.38) into the definition of χ̂kn, we have:

χ̂k−1
n

(
Ek
)
=
τ k−1
n − ekn
κk−1
n

=

[∑
i∈Ikd

τ k−1
i

]
− γ∑

i∈Ikd
κk−1
i

, ∀n ∈ Ikd . (D.39)

Therefore, all χ̂k−1
n

(
Ek
)
for dynamic nodes are the same and Eq. (D.33) is proved.

In order to prove Eq. (D.34), we assume that Lk inner iterations are performed in steps 3

and 4 of the MERL algorithm to determine the dynamic node set in the k-th iteration of the

algorithm. For l ∈ {1, · · · , Lk}, let J k
l be the dynamic node set after the l-th inner iteration,

where k is the iteration index of the MERL algorithm. In particular, we have J k
0 = IA

⋃
IF

and:

Ikd = J k
Lk

⊊ J k
Lk−1 ⊊ · · · ⊊ J k

0 (D.40)

In other words, in the l-th inner iteration, nodes within the set J k
l−1 −J k

l are removed from

J k
l−1 due to their non-positive energy allocation, i.e., we have:

ekj = τ k−1
j −

κk−1
j

(∑
i∈J k

l−1
τ k−1
i − γ

)
∑

i∈J k
l−1
κk−1
i

≤ 0, ∀j ∈ J k
l−1 − J k

l (D.41)
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hence, by rearranging the terms in Eq. (D.41), and summation over all j ∈ J k
l−1 − J k

l , we

have: ∑
j∈J k

l−1−J k
l

τ k−1
j

 ∑
i∈J k

l−1

κk−1
i

 ≤

 ∑
j∈J k

l−1−J k
l

κk−1
j

 ∑
i∈J k

l−1

τ k−1
i − γ

 . (D.42)

Let the auxiliary function χ̃k (J ) =
(
∑
i∈J τki )−γ∑
i∈J κki

be a mapping from the node set J to the real

numbers. For an inner iteration index l ∈ {1, · · · , Lk}, we have:

χ̃k−1
(
J k
l

)
− χ̃k−1

(
J k
l−1

)
(D.43)

=

(∑
i∈J k

l
τ k−1
i

)
− γ∑

i∈J k
l
κk−1
i

−

(∑
i∈J k

l−1
τ k−1
i

)
− γ∑

i∈J k
l−1
κk−1
i

(D.44)

=

(∑
i∈J k

l−1
κk−1
i

) [(∑
i∈J k

l
τ k−1
i

)
− γ
]
−
(∑

i∈J k
l
κk−1
i

) [(∑
i∈J k

l−1
τ k−1
i

)
− γ
]

(∑
i∈J k

l
κk−1
i

)(∑
i∈J k

l−1
κk−1
i

)
(D.45)

=

(∑
i∈J k

l−1
κk−1
i

) [(∑
i∈J k

l−1
τ k−1
i

)
−
(∑

i∈J k
l−1−J k

l
τ k−1
i

)
− γ
]

(∑
i∈J k

l
κk−1
i

)(∑
i∈J k

l−1
κk−1
i

) (D.46)

−

[(∑
i∈J k

l−1
κk−1
i

)
−
(∑

i∈J k
l−1−J k

l
κk−1
i

)] [(∑
i∈J k

l−1
τ k−1
i

)
− γ
]

(∑
i∈J k

l
κk−1
i

)(∑
i∈J k

l−1
κk−1
i

) (D.47)

=

( ∑
i∈J k

l−1−J k
l

κk−1
i

)[( ∑
i∈J k

l−1

τ k−1
i

)
− γ

]
−

( ∑
i∈J k

l−1−J k
l

τ k−1
i

)( ∑
i∈J k

l−1

κk−1
i

)
(∑

i∈J k
l
κk−1
i

)(∑
i∈J k

l−1
κk−1
i

) (D.48)

≥ 0, (D.49)

where the last inequality follows from Eq. (D.42). Thus, we have the following ordered

sequence:

χ̃k−1
(
J k

0

)
≤ χ̃k−1

(
J k

1

)
≤ · · · ≤ χ̃k−1

(
J k
Lk

)
= χ̃k−1

(
Ikd
)
= χ̂k−1

n

(
Ek
)
, ∀n ∈ Ikd . (D.50)
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Let the tentative energy allocation in the l-th inner iteration be Ẽk(l) =
(
ẽk1(l), · · · , ẽkN+M(l)

)
.

The tentative movement energy consumption of node n in the l-th inner iteration is given

by:

ẽkn(l) = τ k−1
n −

κk−1
n

[(∑
i∈J k

l
τ k−1
i

)
− γ
]

∑
i∈J k

l
κk−1
i

, ∀n ∈ J k
l (D.51)

hence, we can rewrite χ̃k−1
(
J k
l

)
as:

χ̃k−1
(
J k
l

)
=

[(∑
i∈J k

l
τ k−1
i

)
− γ
]

∑
i∈J k

l
κk−1
i

=
τ k−1
n − ẽkn(l)

κk−1
n

, ∀n ∈ J k
l . (D.52)

Note that each node j ∈ J k
l−1 − J k

l is removed from the dynamic node set in the l-th inner

iteration of the MERL algorithm due to its non-positive tentative energy ẽkj (l) ≤ 0; therefore,

we have j ∈ Iks and its allocated movement energy consumption is ekj = 0. Then, we have:

χ̂k−1
j

(
Ek
)
=
τ k−1
j − ekj

κk−1
j

=
τ k−1
j

κk−1
j

≤
τ k−1
j − ẽkj (l)

κk−1
j

= χ̃k−1
(
J k
l

)
, ∀j ∈ J k

l−1−J k
l . (D.53)

Using Eqs. (D.50) and (D.53), we have:

χ̂k−1
j

(
Ek
)
≤ χ̂k−1

i

(
Ek
)
, ∀i ∈ Ikd , j ∈ J k

l−1 − J k
l , l ∈ {1, · · · , Lk}. (D.54)

Note that the static node set Iks consists of all nodes that are removed in the inner loop, i.e.

Is =
⋃
l∈{1,··· ,Lk}

(
J k
l−1 − J k

l

)
; hence, Eq. (D.34) follows from Eq. (D.54) and the proof is

finished. ■

Lemma 14. For a fixed cell partitioning and normalized flow matrix, the node deployment

Pk given by the k-th iteration of MERL Algorithm is the unique minimizer to the objective

function in Eqs. (4.25) and (4.26).
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Proof: Using parallel axis theorem [81], the objective function in the k-th iteration is:

D =
N∑
i=1

∫
Vk−1
i

ηi∥ck−1
i − ω∥2Rbf(ω)dω +

N∑
i

ηiRbv
k−1
i ∥pi − ck−1

i ∥2

+ λ

N∑
i=1

N+M∑
j=1

βi,j∥pi − pj∥2F k−1
i,j + λPR

A
(
Wk−1,Sk−1

)
. (D.55)

For a fixed partitioning and routing, a similar reasoning as in the proof of Lemma 8 shows

that node n’s optimal location at the end of k-th iteration should be placed on the segment

connecting its initial location p̃n to the point zk−1
n given in Eqs. (4.16) and (4.17), i.e., if we

denote the node n’s movement energy by en, we have:

pn(en) = p̃n +
en
ζn

× Γk−1
n

∥Γk−1
n ∥

, ∀n ∈ IA
⋃

IF . (D.56)

By substituting the Eq. (D.56) into Eq. (D.55), we can rewrite the objective function as:

minimize
E

D(E)

s.t.

(
N+M∑
n=1

en

)
≤ γ, 0 ≤ en ≤ ζn∥Γk−1

n ∥, ∀n ∈ IA
⋃

IF . (D.57)

where:

D(E) =
N∑
i=1

∫
Vk−1
i

ηi∥ck−1
i − ω∥2Rbf(ω)dω

+
N∑
i

ηiRbv
k−1
i

∣∣∣∣∣∣∣∣p̃i + ei
ζi

× Γk−1
i

∥Γk−1
i ∥

− ck−1
i

∣∣∣∣∣∣∣∣2
+ λ

N∑
i=1

N+M∑
j=1

βi,j

∣∣∣∣∣∣∣∣p̃i + ei
ζi

× Γk−1
i

∥Γk−1
i ∥

− p̃j −
ej
ζj

×
Γk−1
j

∥Γk−1
j ∥

∣∣∣∣∣∣∣∣2F k−1
i,j

+ λPR

A
(
Wk−1,Sk−1

)
, (D.58)

Note that the objective function in Eq. (D.57) and its constraints are convex; hence, it has a
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unique minimizer for a fixed partitioning and routing. If
(∑N+M

n=1 ζn∥Γk−1
n ∥

)
≤ γ, then the

MERL algorithm moves each node n to zk−1
n without violating the total energy constraint,

indicating an optimal deployment. On the other hand, if
(∑N+M

n=1 ζn∥Γk−1
n ∥

)
> γ, then nodes

will run out of movement energy before they can reach to their corresponding zk−1
n , and the

same reasoning as in Appendix D.6 shows that
(∑N+M

n=1 en

)
= γ. For the fixed partitioning

and routing, let E∗ =
(
e∗1, · · · , e∗N+M

)
be the optimal energy allocation for the constrained

objective function in Eq. (D.57), and let P∗ =
(
p∗1, · · · , p∗N+M

)
be the corresponding optimal

deployment. Assume that the movement energy allocation Ek in the k-th iteration is different

from the optimal one, i.e., E∗ ̸= Ek. Since
(∑N+M

n=1 e∗n

)
=
(∑N+M

n=1 ekn

)
= γ, there exist two

distinct indices i and j such that 0 ≤ eki < e∗i and 0 ≤ e∗j < ekj . Note that ekj > 0 indicates

that j ∈ Ikd , i.e., node j is a dynamic node in the k-th iteration. Therefore, using Lemma

13 we have:

ζi∥Γk−1
i ∥ − e∗i
ζ2i

ψk−1
i

<
ζi∥Γk−1

i ∥ − eki
ζ2i

ψk−1
i

≤
ζj∥Γk−1

j ∥ − ekj
ζ2j

ψk−1
j

<
ζj∥Γk−1

j ∥ − e∗j
ζ2j

ψk−1
j

. (D.59)

Now, we consider a new energy allocation E = (e1, · · · , eN+M), where ei = e∗i − ϵ, ej = e∗j + ϵ

and et = e∗t for all t ∈ IA
⋃

IF\{i, j}. Note that
(∑N+M

n=1 en

)
= γ, and for a sufficiently

small positive value of ϵ, we have 0 ≤ e∗i − ϵ = ei < e∗i ≤ ζi∥Γk−1
i ∥ and 0 ≤ e∗j < ej =

e∗j + ϵ ≤ ekj ≤ ζj∥Γk−1
j ∥, i.e., E satisfies the constraints in Eq. (D.57) and it is a valid energy

allocation. Similar argument as in Appendix D.6, that led to the Eq. (D.27), shows that

in order for the energy allocation E not to achieve a lower objective function value in Eq.

(D.57) than D (E∗), which contradicts the optimality of the movement energy allocation E∗,

we should have:

ζiψ
k−1
j ∥p∗j − zk−1

j ∥ ≤ ζjψ
k−1
i ∥p∗i − zk−1

i ∥, (D.60)

or equivalently:
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ζj∥p∗j − zk−1
j ∥

ζ2j

ψk−1
j

≤ ζi∥p∗i − zk−1
i ∥

ζ2i
ψk−1
i

. (D.61)

According to Eq. (D.56), each node n ∈ IA
⋃
IF is located on the segment connecting p̃n to

zk−1
n ; hence: we can rewrite the Eq. (D.61) as:

ζj∥Γk−1
j ∥ − e∗j
ζ2j

ψk−1
j

≤ ζi∥Γk−1
i ∥ − e∗i
ζ2i

ψk−1
i

. (D.62)

But Eq. (D.62) is in contradiction with Eq. (D.59); thus, the assumption E∗ ̸= Ek is wrong

and we have E∗ = Ek, i.e. the deployment given by the MERL algorithm is the unique

minimizer of the constrained objective function and the proof is complete. ■

Now, we have enough materials to prove the convergence of the MERL algorithm. As

mentioned in the beginning of the Appendix D.7, updating the partitioning and normalized

flow matrix using the generalized Voronoi diagram and Bellman-Ford Algorithm, respectively,

does not increase the objective function. Now, for a fixed partitioning and routing, Lemma

14 indicates that the deployment given by the MERL algorithm is the unique minimizer of

the constrained objective function, i.e., the deployment step in the MERL algorithm does

not increase the objective function either. Hence, the MERL algorithm generates a sequence

of positive non-increasing values for the objective function D; thus, it converges. ■

D.8 Proof of Proposition 12

If p∗n = z∗n is an optimal deployment P∗, W∗ and S∗, then Eq. (4.34) implies that En (P
∗) =

ζn∥Γ∗
n∥ ≤ γn. Therefore, Eq. (4.35) reduces to the trivial statement p∗n = p̃n + Γ∗

n and the

proof is complete. Hence, we assume that p∗n ̸= z∗n. Now, if any residual movement energy is
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left in Node n, i.e. if En (P
∗) < γn, then there exists an ϵn ∈ R+ such that En (P

∗)+ ϵn < γn

and the point pn = p∗n+ϵn×
z∗n−p∗n

∥z∗n−p∗n∥
lies inside the circle centered at z∗n with radius ∥z∗n−p∗n∥.

Then, according to Lemma 12, by fixing the cell partitioning, normalized flow matrix and

the location of all nodes except Node n, and placing Node n at pn, we can achieve a lower

total multi-hop communication power without exhausting the available movement energy in

Node n, which contradicts the optimality of P∗, W∗ and S∗. Therefore, p∗n ̸= z∗n implies that

En (P
∗) = γn, that is

ζn∥p∗n − p̃n∥ = γn. (D.63)

According to Lemma 8, we have

p∗n = δnp̃n + (1− δn) z
∗
n, (D.64)

where δn ∈ [0, 1], which indicates that

∥p∗n − p̃n∥ = (1− δn) ∥z∗n − p̃n∥. (D.65)

Eqs. (D.63) and (D.65) imply that δn = 1− γn
ζn∥z∗n−p̃n∥

. Therefore, Eq. (D.64) can be written

as:

p∗n =

(
1− γn

ζn∥z∗n − p̃n∥

)
p̃n +

(
γn

ζn∥z∗n − p̃n∥

)
z∗n (D.66)

= p̃n +

(
γn

ζn∥z∗n − p̃n∥

)
(z∗n − p̃n) (D.67)

= p̃n +
γn

ζn∥Γ∗
n∥

Γ∗
n. (D.68)

Eqs. (D.63) and (D.64) imply that γn = ζn∥p∗n− p̃n∥ ≤ ζn∥z∗n− p̃n∥ = ζn∥Γ∗
n∥, i.e.

γn
ζn∥Γ∗

n∥
≤ 1.

Therefore, Eq. (D.68) can be rewritten as p∗n = p̃n +min
(
1, γn

ζn∥Γ∗
n∥

)
Γ∗
n which concludes the

proof. ■
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D.9 Proof of Proposition 13

In what follows, we show that none of the three steps in LORL Algorithm will increase

the communication power D (P,W,S). Note that the movement energy constraint in Eq.

(4.34) does not depend on the cell partitioning and normalized flow matrix. Hence, it can be

shown via the same argument as in Appendix D.4 that updating W and S according to the

generalized Voronoi diagrams and Bellman-Ford Algorithm, respectively, does not increase

D (P,W,S). Note that for a fixed W, S and {pi}i ̸=n, according to Lemma 12, the geometric

locus of node n for which the objective function D (P,W,S) remains the same is a circle

Φn centered at zn with radius ∥zn − pn∥. Note that the update rule in Eq. (4.35) always

keeps node n in its valid region determined by its limited movement energy, which is a circle

centered at p̃n and radius γn
ζn
. A simple geometric reasoning indicates that by updating the

position of node n according to Eq. (4.35), node n will either remain the same or move

to the point inside its valid region that is closest to the point zn, i.e., node n will either

remain on the circle Φn or move inside it, and the objective function D (P,W,S) does not

increase. Since the objective function has a lower bounded, i.e. D (P,W,S) ≥ 0, and it is

nonincreasing, LORL Algorithm is in iterative improvement algorithm and it converges. ■
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Appendix E

Supplementary Proofs for Chapter 5

E.1 Proof of Proposition 14

For a fixed cell partitioning W and data routing R, we can rewrite the objective function

D1 in Eq. (5.19) using the parallel axis theorem [81] as follows:

D1(P,Q,W,R) =
N∑
n=1

∫
Wn

an

ln
(

1
1−ϵ

)∥cn − ω∥2
(
2
Rb
B − 1

)
f(ω)dω

+
N∑
n=1

an

ln
(

1
1−ϵ

)∥pn − cn∥2
(
2
Rb
B − 1

)
vn

+ λ

N∑
n=1

M∑
m=1

bn,m

ln
(

1
1−ϵ

)∥pn − qm∥2
(
2
Fn,m
B − 1

)
, (E.1)

where vn and cn are the volume and centroid of region Wn, respectively. Since the optimal

deployment satisfies the zero gradient condition, we take the partial derivatives of Eq. (E.1)

with respect to AP and BS locations as follows. For each n ∈ IAP , we have:
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∂D1

∂p∗n
=

2an

ln
(

1
1−ϵ

)(p∗n − cn
)(

2
Rb
B − 1

)
vn + λ

M∑
m=1

2bn,m

ln
(

1
1−ϵ

)(p∗n − q∗m
)(

2
Fn,m
B − 1

)
= 0.

(E.2)

By solving Eq. (E.2), we directly obtain Eq. (5.20). Now, for each m ∈ IBS, we have:

∂D1

∂q∗m
= λ

N∑
n=1

2bn,m

ln
(

1
1−ϵ

)(q∗m − p∗n
)(

2
Fn,m
B − 1

)
= 0. (E.3)

By solving Eq. (E.3), we obtain Eq. (5.21) and the proof is complete. ■

E.2 Proof of Lemma 9

First, we prove the following lemma.

Lemma 15. For a constant d ∈ R, the geometric locus of points ω ∈ R2 that satisfy the

equation

ai∥pi − ω∥2 − aj∥pj − ω∥2 = d, (E.4)

is a line perpendicular to pipj in case ai = aj, and either a circle centered at c =
aipi−ajpj
ai−aj or

an empty set in case ai ̸= aj.

Proof: First, we consider the case where ai = aj = a. Let h be the projection of the point ω

on the line pipj. Using Pythagoras’ theorem, we can rewrite Eq. (E.4) as follows:

(
∥pi − h∥2 + ∥h− ω∥2

)
−
(
∥pj − h∥2 + ∥h− ω∥2

)
=
(
∥pi − h∥2 − ∥pj − h∥2

)
=
d

a
, (E.5)

thus, any point ω whose projection on the line pipj is h satisfies Eq. (E.4). Therefore, the

180



geometric locus of the point ω is a line perpendicular to the line pipj. Now, we consider the

case where ai ̸= aj. Let p = (px, py) and ω = (ωx, ωy). We can rewrite Eq. (E.4) as:

(ai−aj)
(
ω2
x + ω2

y

)
− 2 (aipix−ajpjx)ωx − 2 (aipiy−ajpjy)ωy = d−

(
ai∥pi∥2 − aj∥pj∥2

)
(E.6)

or equivalently:

[
ωx −

aipix − ajpjx
ai − aj

]2
+

[
ωy −

aipiy − ajpjy
ai − aj

]2
= d′, (E.7)

where d′ =
d−(ai∥pi∥2−aj∥pj∥2)

ai−aj +
(aipix−ajpjx)2+(aipiy−ajpjy)2

(ai−aj)2 . Hence, the geometric locus of the

point ω is either an empty set if d′ < 0 or a circle centered at c =
aipi−ajpj
ai−aj with radius

κ =
√
d′ and Lemma 15 is proved. ■

Now, we use proof by contradiction to establish Lemma 9. Let v∗i and v∗j be the volume of

the neighboring regions W ∗
i and W ∗

j , respectively, and assume that the optimal boundary

δ∗i,j is neither a segment if ai = aj, nor an arc in case ai ̸= aj. Let mi,j(α) = αpi + (1− α)pj

and let li,j(α) be either a line perpendicular to pipj at mi,j(α) in case ai = aj, or a circle

centered at ci,j =
aipi−ajpj
ai−aj and radius κi,j(α) = ∥ci,j − mi,j(α)∥ in case ai ̸= aj. Now, we

define:

W ′
i =

{
ω | ω ∈ Ω∗

i,j, ai∥pi−ω∥2 − aj∥pj−ω∥2 ≤ ai∥pi−mi,j(α)∥2 − aj∥pj−mi,j(α)∥2
}
,

(E.8)

W ′
j =

{
ω | ω ∈ Ω∗

i,j, ai∥pi−ω∥2 − aj∥pj−ω∥2 ≥ ai∥pi−mi,j(α)∥2 − aj∥pj−mi,j(α)∥2
}
,

(E.9)

where Ω∗
i,j = W ∗

i ∪ W ∗
j , and let v′i(α) and v′j(α) be the volume of regions W ′

i and W ′
j ,

respectively. Note that since the sensor density function f(ω) is a continuous and differ-

entiable function, both v′i(α) and v′j(α) are continuous functions of α. As an intuition,
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note that the geometric locus of points ω ∈ R2, such that ai∥pi−ω∥2 − aj∥pj −ω∥2 =

ai∥pi−mi,j(α)∥2−aj∥pj−mi,j(α)∥2 holds, is li,j(α) according to Lemma 15. It readily follows

from simple geometric reasoning that for ai ≤ aj, we have v′i = 0 for large enough values of

α, and v′j = 0 for α = ai
ai−aj that leads to κi,j(α) = 0. Similarly, for ai > aj, we have v′i = 0

for α = ai
ai−aj that leads to κi,j(α) = 0, and v′j = 0 for large enough values of α.

Using the above argument and the fact that v′i(α) + v′j(α) = v∗i + v∗j , it readily follows that

there exists an α∗ for which we have v′i(α
∗) = v∗i and v′j(α

∗) = v∗j . Now, we define a new

cell partitioning W′′ = (W ′′
1 , · · · ,W ′′

N) where W ′′
t = W ∗

t for t /∈ {i, j}, W ′′
i = W ′

i (α
∗), and

W ′′
j = W ′

j(α
∗). Then, substituting W∗ with W′′ will increase the objective function by:

∆ =

[
N∑
n=1

∫
W ′′
n

an

ln
(

1
1−ϵ

)∥pn − ω∥2
(
2
Rb
B − 1

)
f(ω)dω

+ λ
N∑
i=1

M∑
j=1

bi,j

ln
(

1
1−ϵ

)∥pi − qj∥2
(
2
ri,j×Rb×v

′′
i

B − 1
)]

−

[
N∑
n=1

∫
W ∗
n

an

ln
(

1
1−ϵ

)∥pn − ω∥2
(
2
Rb
B − 1

)
f(ω)dω

+ λ
N∑
i=1

M∑
j=1

bi,j

ln
(

1
1−ϵ

)∥pi − qj∥2
(
2
ri,j×Rb×v

∗
i

B − 1
)]
. (E.10)

Note that W ′′
t = W ∗

t for t /∈ {i, j} and v′′t = v∗t for all t ∈ {1, · · · , N}. Hence, we have:

∆× ln
(

1
1−ϵ

)(
2
Rb
B − 1

) =

[ ∫
W ′′
i

ai∥pi − ω∥2f(ω)dω +

∫
W ′′
j

aj∥pj − ω∥2f(ω)dω
]

−
[ ∫

W ∗
i

ai∥pi − ω∥2f(ω)dω +

∫
W ∗
j

aj∥pj − ω∥2f(ω)dω
]
. (E.11)

Let V1 = W ′′
i ∩W ∗

j and V2 = W ′′
j ∩W ∗

i . Note that both V1 and V2 are non-empty; otherwise,

we have W ′′
i = W ∗

i and W ′′
j = W ∗

j which contradicts the assumption that the optimal

boundary δ∗i,j is not a segment or an arc. Now, we can rewrite Eq. (E.11) as follows:
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∆× ln
(

1
1−ϵ

)(
2
Rb
B − 1

) =

[ ∫
V1

ai∥pi − ω∥2f(ω)dω +

∫
V2

aj∥pj − ω∥2f(ω)dω
]

−
[ ∫

V2

ai∥pi − ω∥2f(ω)dω +

∫
V1

aj∥pj − ω∥2f(ω)dω
]

(E.12)

=

∫
V1

(
ai∥pi − ω∥2 − aj∥pj − ω∥2

)
f(ω)dω

+

∫
V2

(
aj∥pj − ω∥2 − ai∥pi − ω∥2

)
f(ω)dω (E.13)

<

∫
V1

(
ai
∣∣∣∣pi −mi,j(α

∗)
∣∣∣∣2 − aj

∣∣∣∣pj −mi,j(α
∗)
∣∣∣∣2) f(ω)dω

+

∫
V2

(
aj
∣∣∣∣pj −mi,j(α

∗)
∣∣∣∣2 − ai

∣∣∣∣pi −mi,j(α
∗)
∣∣∣∣2) f(ω)dω (E.14)

=
(
ai
∣∣∣∣pi−mi,j(α

∗)
∣∣∣∣2 − aj

∣∣∣∣pj−mi,j(α
∗)
∣∣∣∣2)×(∫

V1

f(ω)dω −
∫
V2

f(ω)dω

)
(E.15)

= 0, (E.16)

where the inequality in (E.14) follows from Lemma 15 and the fact that both V1 and V2 are

non-empty. Also, Eq. (E.16) follows from the fact that V1 and V2 have the same volume

because v′′i = v∗i and v
′′
j = v∗j . Since 0 < ϵ < 1 and Rb > 0, it follows from Eqs. (E.12)−(E.16)

that

∆× ln
(

1
1−ϵ

)(
2
Rb
B − 1

) < 0 =⇒ ∆ < 0, (E.17)

that is, the increase in the objective function is negative. Therefore, W′′ yields a lower

objective function than that of W∗ which contradicts the optimality of W∗ and the proof is

complete. ■
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E.3 Proof of Proposition 15

According to Lemma 9, the optimal boundary δ∗i,j, which intersects the line pipj at h
∗
i,j, is

either a segment if ai = aj, or an arc with its center placed at c =
aipi−ajpj
ai−aj if ai ̸= aj. Let α

∗

be the scalar that satisfies the equation α∗pi + (1− α∗)pj = h∗i,j. For an infinitesimal γ > 0,

let α′ = α∗ − γ. Then, we define a new cell partitioning W′ =
(
W ′

1, · · · ,W ′
N

)
as follows:

W ′
i =

{
ω | ω ∈ Ω∗

i,j, ai∥pi − ω∥2 − aj∥pj − ω∥2 ≤ ai∥pi − h′i,j∥2 − aj∥pj − h′i,j∥2
}
,

(E.18)

W ′
j =

{
ω | ω ∈ Ω∗

i,j, ai∥pi − ω∥2 − aj∥pj − ω∥2 ≥ ai∥pi − h′i,j∥2 − aj∥pj − h′i,j∥2
}
,

(E.19)

andW ′
t = W ∗

t for t /∈ {i, j}, where Ω∗
i,j = W ∗

i ∪W ∗
j and h′i,j = α′pi+(1−α′)pj. Note that the

infinitesimal difference between α∗ and α′ leads to an infinitesimal difference between volumes

of these new regions, i.e., v′i = v∗i + dv and v′j = v∗j − dv, where v′i and v
′
j are the volume of

W ′
i and W

′
j , respectively, and dv is the volume of the region dW = W ′

i −W ∗
i = W ∗

j −W ′
j .

By substituting W∗ with W′, the increase in sensor power consumption can be written as:

∆1=

∫
W ′
i

ai

ln
(

1
1−ϵ

)∥pi−ω∥2(2RbB −1
)
f(ω)dω +

∫
W ′
j

aj

ln
(

1
1−ϵ

)∥pj−ω∥2(2RbB −1
)
f(ω)dω

−
∫
W ∗
i

ai

ln
(

1
1−ϵ

)∥pi−ω∥2(2RbB −1
)
f(ω)dω −

∫
W ∗
j

aj

ln
(

1
1−ϵ

)∥pj−ω∥2(2RbB −1
)
f(ω)dω

(E.20)

which can be simplified as follows:

∆1=

∫
dW

ai

ln
(

1
1−ϵ

)∥pi−ω∥2(2RbB −1
)
f(ω)dω −

∫
dW

aj

ln
(

1
1−ϵ

)∥pj−ω∥2(2RbB −1
)
f(ω)dω

(E.21)

=

∫
dW

1

ln
(

1
1−ϵ

)[ai∥pi − ω∥2 − aj∥pj − ω∥2
](

2
Rb
B − 1

)
f(ω)dω. (E.22)
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It follows from Lemma 15 and the definition of W ′
i and W

′
j in Eqs. (E.18) and (E.19) that

for an infinitesimal region dW , we have:

∆1 =

∫
dW

1

ln
(

1
1−ϵ

)[ai∥pi − h∗i,j∥2 − aj∥pj − h∗i,j∥2
](

2
Rb
B − 1

)
f(ω)dω +O(dv2) (E.23)

=
1

ln
(

1
1−ϵ

)[ai∥pi − h∗i,j∥2 − aj∥pj − h∗i,j∥2
](

2
Rb
B − 1

)
dv +O(dv2). (E.24)

Now, substituting W∗ with W′ results in the following increase in AP power consumption:

∆2 =
M∑
t=1

bi,t

ln
(

1
1−ϵ

)∥pi − qt∥2
(
2
ri,tRbv

′
i

B − 1
)
+

M∑
t=1

bj,t

ln
(

1
1−ϵ

)∥pj − qt∥2
(
2
rj,tRbv

′
i

B − 1
)

−
M∑
t=1

bi,t

ln
(

1
1−ϵ

)∥pi − qt∥2
(
2
ri,tRbv

∗
i

B − 1
)
−

M∑
t=1

bj,t

ln
(

1
1−ϵ

)∥pj − qt∥2
(
2
rj,tRbv

∗
i

B − 1
)
(E.25)

=
M∑
t=1

bi,t

ln
(

1
1−ϵ

)∥pi − qt∥2 × 2
ri,tRbv

∗
i

B ×
(
2
ri,tRbdv

B − 1
)

+
M∑
t=1

bj,t

ln
(

1
1−ϵ

)∥pj − qt∥2 × 2
rj,tRbv

∗
j

B ×
(
2

−rj,tRbdv
B − 1

)
, (E.26)

where Eq. (E.26) follows from the relations v′i = v∗i + dv and v′j = v∗j − dv. Using the Taylor

series expansion, we can write Eq. (E.26) as follows:

∆2 =
M∑
t=1

bi,t

ln
(

1
1−ϵ

)∥pi − qt∥2 × 2
ri,tRbv

∗
i

B × ln (2)× ri,tRbdv

B

−
M∑
t=1

bj,t

ln
(

1
1−ϵ

)∥pj − qt∥2 × 2
rj,tRbv

∗
j

B × ln (2)× rj,tRbdv

B
+O(dv2), (E.27)

where O(dv2) contains terms of second and higher order in Taylor series approximation. By

combining Eqs. (E.24) and (E.27), the total increase in objective function due to substituting

W∗ with W′ is given by ∆ = ∆1 + λ∆2, that is:

∆ =
1

ln
(

1
1−ϵ

)[ai∥pi − h∗i,j∥2 − aj∥pj − h∗i,j∥2
](

2
Rb
B − 1

)
dv
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+ λ

M∑
t=1

bi,t

ln
(

1
1−ϵ

)∥pi − qt∥2 × 2
ri,tRbv

∗
i

B × ln (2)× ri,tRbdv

B

− λ

M∑
t=1

bj,t

ln
(

1
1−ϵ

)∥pj − qt∥2 × 2
rj,tRbv

∗
j

B × ln (2)× rj,tRbdv

B
+O(dv2) ≥ 0, (E.28)

where the last inequality follows from the optimality of W∗. By dividing ∆ by dv and taking

the limit dv −→ 0, the term O(dv2) vanishes and we have:

[
ai∥pi − h∗i,j∥2 − aj∥pj − h∗i,j∥2

](
2
Rb
B − 1

)
+ λ

M∑
t=1

bi,t∥pi − qt∥2 × 2
ri,tRbv

∗
i

B × ln (2)× ri,tRb

B

− λ
M∑
t=1

bj,t∥pj − qt∥2 × 2
rj,tRbv

∗
j

B × ln (2)× rj,tRb

B
≥ 0. (E.29)

By defining α′′ = α∗ + γ for an infinitesimal γ > 0 and repeating the same procedure, we

obtain:

[
ai∥pi − h∗i,j∥2 − aj∥pj − h∗i,j∥2

](
2
Rb
B − 1

)
+ λ

M∑
t=1

bi,t∥pi − qt∥2 × 2
ri,tRbv

∗
i

B × ln (2)× ri,tRb

B

− λ
M∑
t=1

bj,t∥pj − qt∥2 × 2
rj,tRbv

∗
j

B × ln (2)× rj,tRb

B
≤ 0. (E.30)

By combining Eqs. (E.29) and (E.30), we obtain Eq. (5.22) and the proof is complete. ■

E.4 Proof of Proposition 16

First, we prove the following lemma.

Lemma 16. Let g(x) = ax + aC−x where x ∈ [0, C] for a, C ∈ R+ and a > 1. Then, g(.) is

symmetric around the point x = C
2
and strictly decreasing in the interval

[
0, C

2

)
.
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Proof: The function g(.) is symmetric because g(x) = g(C − x). Now, by taking the

derivative w.r.t. x, we have d
dx
g(x) = ln(a)×

(
ax − aC−x). Since a > 1, we have d

dx
g(x) < 0

for x ∈
[
0, C

2

)
and the proof is complete. ■

Lemma 16 readily leads to the following conclusion.

Corollary 4. Let x1 and x2 be two non-negative real numbers such that x1 + x2 = C is a

constant. Then, for a > 1, decreasing |x1 − x2| results in smaller ax1 + ax2 values.

Now, we proceed to establish Proposition 16. Note that the constrained objective function

formulation in Eqs. (5.23)−(5.25) is equivalent to

argmin
Fn,1,··· ,Fn,M

M∑
i=1

2

[
Fn,i
B

+log2

(
bn,i∥pn−qi∥2

)]
, (E.31)

s.t.
M∑
i=1

Fn,i =

∫
Wn

Rbf(ω)dω = Rbvn, and Fn,i ≥ 0 for all i ∈ IBS, (E.32)

which is equivalent to the following constrained objective function formulation:

argmin
xn,1,··· ,xn,M

M∑
i=1

2xn,i , (E.33)

s.t.
M∑
i=1

xn,i =
Rbvn
B

+
M∑
i=1

log2
(
bn,i∥pn − qi∥2

)
= C, (E.34)

xn,i ≥ log2
(
bn,i∥pn − qi∥2

)
for all i ∈ {1, · · · ,M}, (E.35)

where xn,i =
Fn,i
B

+ log2
(
bn,i∥pn − qi∥2

)
. Corollary 4 indicates that for any two indices i

and j, we can decrease the objective function in Eq. (E.33) by decreasing |xn,i − xn,j| while

keeping their summation constant. Thus, the minimum occurs when we have xn,1 = · · · =

xn,M = C
M
. However, this may contradict the constraint in Eq. (E.35) for some indices

i ∈ {1, · · · ,M}. Therefore, we can always improve the objective function in Eq. (E.33)

and achieve a lower value by decreasing the distance between any pair of xn,i and xn,j while
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keeping their summation constant as long as the constraints in Eq. (E.35) is not contradicted.

This observation results in

Corollary 5. Let X∗
n = (x∗n,1, · · · , x∗n,M) be the optimal solution to the constrained objective

function in Eqs. (E.33)−(E.35). Then, there exist unique sets I∗L and I∗U such that

x∗n,i = x∗n,j = x∗ for ∀i, j ∈ I∗U , and x∗n,i = log2
(
bn,i∥pn − qi∥2

)
for ∀i ∈ I∗L,

(E.36)

and x∗n,i > x∗ for all i ∈ I∗L.

To see why the last property holds, first, let us assume that we have x∗n,j = log2
(
bn,j∥pn−qj∥2

)
for all j ∈ I∗U . Since vn > 0, it follows that

M∑
t=1

x∗n,t =
∑
t∈I∗U

x∗n,t +
∑
t∈I∗L

x∗n,t =
M∑
t=1

log2
(
bn,t∥pn − qt∥2

)
< C, (E.37)

which is in contradiction with Eq. (E.34). Hence, there exists an index j′ ∈ I∗U for which

x∗n,j′ > log2
(
bn,j′∥pn − qj′∥2

)
. Now, assume that there exists an index i such that x∗n,i =

log2
(
bn,i∥pn − qi∥2

)
< x∗ = x∗n,j′ . Then, according to Corollary 4, we can achieve a lower

objective function by replacing x∗n,i and x∗n,j′ with x∗n,i + η and x∗n,j′ − η for any 0 < η <

x∗n,j′ − log2
(
bn,j′∥pn−qj′∥2

)
, which contradicts the optimality of X∗. Thus, we have x∗n,i > x∗

for all i ∈ I∗L.

Corollary 5 indicates that in an optimal solution, all x∗n,t values should be equal to some

value x∗ except for those that cannot get close enough to x∗ without contradicting Eq.

(E.35). Hence, the optimal solution can be found using a water filling algorithm as follows.

By initializing IL to an empty set and starting from the case in which all xn,t values are

equal to the mean value x = C
M
, we can identify those indices such as i ∈ I for which

xn,i < log2
(
bn,i∥pn − qi∥2

)
. Thus, I provides the first series of indices for which the value of

xn,i cannot be reduced enough to the mean value x without contradicting the constraint in
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Eq. (E.35). Therefore, the optimal value for each i ∈ I is x∗n,i = log2
(
bn,i∥pn − qi∥2

)
and we

update the set IL by taking its union with the set I. Now, we can update the mean value x

such that
∑

i∈IBS\IL x+
∑

i∈IL x
∗
n,i or equivalently

(
M−|IL|

)
×x+

∑
i∈IL log2

(
bn,i∥pn−qi∥2

)
still sums to C. By using the new mean value x, we can determine the next series of

indices that would belong to IL and the same procedure can be repeated. Note that in

each iteration, the mean value x either decreases or stays the same and the set IL either

increases in size or stays the same. If IL stays the same, meaning that there has been no

other index that would contradict Eq. (E.35), then we have found the optimal solution and

the algorithm terminates. Since |IL| ≤ M , the process of IL increasing in size can continue

for at most M iterations and the algorithm will finally converge to the optimal value X∗
n

that satisfies Eq. (E.36) in Corollary 5. The above procedure is summarized in Algorithm

6. Note that the optimal values F ∗
n,1, · · · , F ∗

n,M in Eqs. (E.31) and (E.32) can then be found

as F ∗
n,i = B ×

[
x∗n,i − log2

(
bn,i∥pn − qi∥2

)]
and the proof is complete. ■

E.5 Proof of Proposition 17

First, we aim to prove the convergence of the initialization step that is outlined in Algorithm

7. Note that the generalized Voronoi diagram V in Algorithm 7 provides the optimal cell

partitioning for the following cost function:

D′(P,W) =
N∑
n=1

∫
Wn

an∥pn − ω∥2f(ω)dω. (E.38)

Thus, for a fixed AP deployment P, updating W according to V does not increase the cost

function D′. Now, using the parallel axis theorem, we can rewrite Eq. (E.38) as follows:

D′(P,W) =
N∑
n=1

∫
Wn

an∥pn − cn∥2f(ω)dω +
N∑
n=1

∫
Wn

an∥cn − ω∥2f(ω)dω. (E.39)
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Hence, for a fixed cell partitioningW, updating P according to the rule pn = cn =
∫
Wn

ωf(ω)dω∫
Wn

f(ω)dω

does not increase the cost function D′ in Eq. (E.39) as well. Therefore, by iterating this

process, a sequence of non-increasing D′ values are generated and since D′ ≥ 0, it will

converge.

Note that base stations are initialized by applying the Lloyd algorithm to the set of AP

points, which is known to converge. Finally, the normalized flow matrix R is updated by

applying Algorithm 6, which we showed to converge in Appendix E.4. Thus, the initialization

step which is outlined in Algorithm 7 will eventually converge.

Now, to establish the convergence of the POOL algorithm, we show that none of the three

steps corresponding to updating the node deployment, cell partitioning, and normalized flow

matrix will increase the objective function D1. Note that when W, R, Q, and {pj}j ̸=i are

fixed, the objective function D1 is a convex function of pi; thus, updating pi acccording to Eq.

(5.20), which is the solution to the zero-gradient equation, does not increase the objective

function. Similarly, once W, R, P, and {qj}j ̸=i are fixed, D1 is a convex function of qi.

Therefore, updating qi according to Eq. (5.21), which is the solution to the zero-gradient

equation, does not increase D1. Hence, the node deployment step of the POOL algorithm

does not increase the objective function. Note that the cell partitioning is updated through

an iterative process where at each step, two neighboring regions such as Wi and Wj are

selected and their boundary is adjusted. More precisely, in each iteration, all Wt regions for

t /∈ {i, j} are held fixed and only the boundary δi,j between regions Wi and Wj is adjusted

to provide another partitioning of the region Ωi,j = Wi ∪ Wj. According to Proposition

15, this new partitioning is optimal; hence, the objective function D1 will not increase as a

result of updating δi,j. Finally, Proposition 16 indicates that updating the normalized flow

matrix according to Algorithm 6 yields the optimal value of R and as such, D1 will either

remain the same or decrease. Therefore, Algorithm 7 generates a non-increasing sequence of

D1 values in each iteration, i.e., the POOL algorithm is an iterative improvement algorithm
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and since D1 ≥ 0, it will converge. ■

E.6 Proof of Proposition 18

Using the parallel axis theorem, we can rewrite the objective function D2 in Eq. (5.26) as

D2 (P,Q,W,R) =
N∑
n=1

∫
Wn

an

U−1
(

Rb
B log2(e)

)∥cn − ω∥2f(ω)dω

+
N∑
n=1

an

U−1
(

Rb
B log2(e)

)∥pn − cn∥2vn

+ λ
N∑
i=1

M∑
j=1

bi,j

U−1
(

Fi,j
B log2(e)

)∥pi − qj∥2. (E.40)

Since the optimal deployment satisfies the zero-gradient equation, for each i ∈ IAP , we have

∂

∂p∗i
D2 =

2ai

U−1
(

Rb
B log2(e)

)(p∗i − ci
)
vi + λ

M∑
j=1

2bi,j

U−1
(

Fi,j
B log2(e)

)(p∗i − q∗j
)
= 0. (E.41)

Similarly, by taking the derivative with respect to the location of BS i ∈ IBS, we have

∂

∂q∗i
D2 = λ

N∑
j=1

2bj,i

U−1
(

Fj,i
B log2(e)

)(q∗i − p∗j
)
= 0. (E.42)

By solving these two zero-gradient equations, we obtain Eqs. (5.27) and (5.28) and the proof

is complete. ■
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E.7 Proof of Lemma 10

The proof closely follows that of Lemma 9; thus, we borrow the notations and definitions

outlined in Appendix E.2. More precisely, by using the proof by contradiction, we consider

W ′
i and W

′
j as defined in Eqs. (E.8) and (E.9), respectively, and define the cell partitioning

W′′ similarly. Now, we can rewrite Eq. (E.10) to calculate the increase in objective function

D2 due to substituting W∗ with W′′ as follows:

∆ =

[
N∑
n=1

∫
W ′′
n

an

U−1
(

Rb
B log2(e)

)∥pn − ω∥2f(ω)dω + λ
N∑
i=1

M∑
j=1

bi,j

U−1
(
ri,jRbv

′′
i

B log2(e)

)∥pi − qj∥2
]

−

[
N∑
n=1

∫
W ∗
n

an

U−1
(

Rb
B log2(e)

)∥pn − ω∥2f(ω)dω + λ
N∑
i=1

M∑
j=1

bi,j

U−1
(
ri,jRbv

∗
i

B log2(e)

)∥pi − qj∥2
]
.

(E.43)

Since W ′′
t = W ∗

t for t /∈ {i, j} and v′′t = v∗t for all t ∈ {1, · · · , N}, we have:

U−1

(
Rb

B log2(e)

)
×∆ =

[∫
W ′′
i

ai∥pi − ω∥2f(ω)dω +

∫
W ′′
j

aj∥pj − ω∥2f(ω)dω

]

−

[∫
W ∗
i

ai∥pi − ω∥2f(ω)dω +

∫
W ∗
j

aj∥pj − ω∥2f(ω)dω

]
. (E.44)

Note that the right-hand-side of Eq. (E.44) is the same as the right-hand-side of Eq. (E.11)

which is shown to be less than zero in Eqs. (E.12)−(E.16). Thus, since U−1(x) > 0 for all

x > 0, we have

U−1

(
Rb

B log2(e)

)
×∆ < 0 =⇒ ∆ < 0, (E.45)

which contradicts the optimality of W∗ and the proof is complete. ■
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E.8 Proof of Proposition 19

As shown in Lemma 10, the optimal boundary δ∗i,j is a segment if ai = aj, or an arc with its

center located at c =
aipi−ajpj
ai−aj if ai ̸= aj. Let h

∗
i,j be the intersection point of δ∗i,j and the line

pipj which corresponds to the scalar α∗ that satisfies the equation α∗pi + (1− α∗)pj = h∗i,j.

For a small and positive γ > 0, let α′ = α∗ − γ and define the new cell partitioning W′ =(
W ′

1, · · · ,W ′
N

)
as W ′

t = W ∗
t for t /∈ {i, j} and

W ′
i =

{
ω | ω ∈ Ω∗

i,j, ai∥pi − ω∥2 − aj∥pj − ω∥2 ≤ ai∥pi − h′i,j∥2 − aj∥pj − h′i,j∥2
}
,

(E.46)

W ′
j =

{
ω | ω ∈ Ω∗

i,j, ai∥pi − ω∥2 − aj∥pj − ω∥2 ≥ ai∥pi − h′i,j∥2 − aj∥pj − h′i,j∥2
}
,

(E.47)

where Ω∗
i,j = W ∗

i ∪W ∗
j and h′i,j = α′pi + (1 − α′)pj. The infinitesimal difference between

α∗ and α′ causes infinitesimal difference between volumes of regions W ′
i and W

′
j , i.e., v

′
i and

v′j, and volumes of regions W ∗
i and W ∗

j . In other words, if dv is the volume of the region

dW = W ′
i −W ∗

i = W ∗
j −W ′

j , we have v′i = v∗i + dv and v′j = v∗j − dv. The increase in the

sensor power consumption due to replacing W∗ by W′ is then given by

∆1=

∫
W ′
i

ai

U−1
(

Rb
B log2(e)

)∥pi − ω∥2f(ω)dω +

∫
W ′
j

aj

U−1
(

Rb
B log2(e)

)∥pj − ω∥2f(ω)dω

−
∫
W ∗
i

ai

U−1
(

Rb
B log2(e)

)∥pi − ω∥2f(ω)dω −
∫
W ∗
j

aj

U−1
(

Rb
B log2(e)

)∥pj − ω∥2f(ω)dω,

(E.48)

which can be simplified to

∆1 =

∫
dW

1

U−1
(

Rb
B log2(e)

)[ai∥pi − ω∥2 − aj∥pj − ω∥2
]
f(ω)dω. (E.49)
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Using Lemma 15 and the definition of W ′
i and W ′

j in Eqs. (E.46) and (E.47), it readily

follows that

∆1 =
1

U−1
(

Rb
B log2(e)

)[ai∥pi − h∗i,j∥2 − aj∥pj − h∗i,j∥2
]
dv +O(dv2), (E.50)

where O(dv2) includes terms of second and higher order. The increase in AP power con-

sumption due to substituting W∗ with W′ can be written as

∆2 =
M∑
t=1

bi,t

U−1
(
ri,tRbv

′
i

B log2(e)

)∥pi − qt∥2 +
M∑
t=1

bj,t

U−1
(
rj,tRbv

′
j

B log2(e)

)∥pj − qt∥2

−
M∑
t=1

bi,t

U−1
(
ri,tRbv

∗
i

B log2(e)

)∥pi − qt∥2 −
M∑
t=1

bj,t

U−1
(
rj,tRbv

∗
j

B log2(e)

)∥pj − qt∥2. (E.51)

For the function U(x) = exE1(x), we have d
dx
U(x) = exE1(x) + ex × −e−x

x
= U(x)− 1

x
and

d

dx

(
1

U−1(x)

)
=

−
(
U−1

)′
(x)[

U−1(x)
]2 =

−1[
U−1(x)

]2 × U ′
(
U−1(x)

) =
1

U−1(x)
[
1− xU−1(x)

] .
(E.52)

Now, using Taylor series expansion, we can rewrite ∆2 in Eq. (E.51) as follows:

∆2 =
M∑
t=1

[
bi,t∥pi − qt∥2 × ri,tRb

B log2(e)

U−1
(
ri,tRbv

∗
i

B log2(e)

)
×
[
1− ri,tRbv

∗
i

B log2(e)
× U−1

(
ri,tRbv

∗
i

B log2(e)

)]]dv
−

M∑
t=1

[
bj,t∥pj − qt∥2 × rj,tRb

B log2(e)

U−1
(
rj,tRbv

∗
j

B log2(e)

)
×
[
1− rj,tRbv

∗
j

B log2(e)
× U−1

(
rj,tRbv

∗
j

B log2(e)

)]]dv +O(dv2), (E.53)

whereO(dv2) contains terms of second and higher order in Taylor series expansion. Thus, the

total increase in the objective function is given by ∆ = ∆1+λ∆2. Since the cell partitioning

W∗ is optimal, the increase in the objective function due to replacing W∗ by W′ cannot be

negative; thus, we have ∆ ≥ 0. Therefore, by dividing ∆ by dv > 0 and taking the limit
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dv −→ 0, the term O(dv2) vanishes and we have

ai

U−1
(

Rb
B log2(e)

)∥pi − h∗i,j∥2 + λ
M∑
t=1

bi,t∥pi − qt∥2 × ri,tRb
B log2(e)

U−1
(
ri,tRbv

∗
i

B log2(e)

)[
1− ri,tRbv

∗
i

B log2(e)
× U−1

(
ri,tRbv

∗
i

B log2(e)

)]
≥ aj

U−1
(

Rb
B log2(e)

)∥pj − h∗i,j∥2 + λ
M∑
t=1

bj,t∥pj − qt∥2 × rj,tRb
B log2(e)

U−1
(
rj,tRbv

∗
j

B log2(e)

)[
1− rj,tRbv

∗
j

B log2(e)
× U−1

(
rj,tRbv

∗
j

B log2(e)

)] .
(E.54)

Now, by defining α′′ = α∗ + γ for an infinitesimal γ > 0 and repeating the same argument,

we obtain ∆ ≤ 0 and the inequality sign in Eq. (E.54) will be reversed, i.e., we have

ai

U−1
(

Rb
B log2(e)

)∥pi − h∗i,j∥2 + λ
M∑
t=1

bi,t∥pi − qt∥2 × ri,tRb
B log2(e)

U−1
(
ri,tRbv

∗
i

B log2(e)

)[
1− ri,tRbv

∗
i

B log2(e)
× U−1

(
ri,tRbv

∗
i

B log2(e)

)]
≤ aj

U−1
(

Rb
B log2(e)

)∥pj − h∗i,j∥2 + λ
M∑
t=1

bj,t∥pj − qt∥2 × rj,tRb
B log2(e)

U−1
(
rj,tRbv

∗
j

B log2(e)

)[
1− rj,tRbv

∗
j

B log2(e)
× U−1

(
rj,tRbv

∗
j

B log2(e)

)] .
(E.55)

The two inequalities in Eqs. (E.54) and (E.55) yield the equality in Eq. (5.29) and the proof

is complete. ■

E.9 Proof of Lemma 11

First, we show that the function U(x) is strictly decreasing. For this purpose, we have:

d

dx
U(x) = exE1(x) + ex ×

(
− e−x

x

)
= exE1(x)−

1

x
< 0, (E.56)

where the last inequality follows from the inequality xexE1(x) < 1 in [77]. Note that for

y > 0, the function U(y) = eyE1(y) satisfies the following inequalities [77, 35]:
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1

2
ln
(
1 +

2

y

)
< U(y) < ln

(
1 +

1

y

)
. (E.57)

It readily follows from Eq. (E.57) that both domain and range of the function U(y) is (0,∞).

Since U(y) is strictly decreasing, it is invertible and we define y = U−1(x). Substituting

y = U−1(x) and x = U(y) in Eq. (E.57), we obtain:

1

2
ln
(
1 +

2

U−1(x)

)
< x < ln

(
1 +

1

U−1(x)

)
. (E.58)

From Eq. (E.58) it readily follows that

1

2
ln
(
1 +

2

U−1(x)

)
< x =⇒ 1

U−1(x)
<
e2x − 1

2
, (E.59)

x < ln
(
1 +

1

U−1(x)

)
=⇒ ex − 1 <

1

U−1(x)
, (E.60)

which concludes the proof. ■

E.10 Proof of Proposition 20

The proof closely follows that of Proposition 16; thus, we borrow the notations and definitions

outlined in Appendix E.4. We can rewrite the constrained objective function formulation in

Eqs. (5.34)-(5.36) as

argmin
Fn,1,··· ,Fn,M

M∑
i=1

e

[
2Fn,i

B log2(e)
+ln
(
bn,i∥pn−qi∥2

)]
, (E.61)

s.t.
M∑
i=1

Fn,i =

∫
Wn

Rbf(ω)dω = Rbvn, and Fn,i ≥ 0 for all i ∈ IBS. (E.62)

The above constrained objective function formulation can be rewritten as
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argmin
xn,1,··· ,xn,M

M∑
i=1

exn,i (E.63)

s.t.
M∑
i=1

xn,i =
2Rbvn

B log2(e)
+

M∑
i=1

ln
(
bn,i∥pn − qi∥2

)
= S, (E.64)

xn,i ≥ ln
(
bn,i∥pn − qi∥2

)
for all i ∈ {1, · · · ,M}, (E.65)

where xn,i =
2Fn,i

B log2(e)
+ ln

(
bn,i∥pn − qi∥2

)
. According to Corollary 4, the objective function

in Eq. (E.63) can be decreased by reducing |xn,i − xn,j| while keeping their summation

unaltered. Hence, the minimum occurs when we have xn,1 = · · · = xn,M = S
M
. However, it

is crucial to make sure that the constraints in Eqs. (E.64) and (E.65) are not contradicted.

Hence, using the same argument as in Corollary 5, we have:

Corollary 6. Let X∗
n = (x∗n,1, · · · , x∗n,M) be the optimal solution to the constrained objective

function in Eqs. (E.63)−(E.65). Then, there exist unique sets J∗
L and J∗

U such that

x∗n,i = x∗n,j = x∗ for ∀i, j ∈ J∗
U , and x∗n,i = ln

(
bn,i∥pn − qi∥2

)
for ∀i ∈ J∗

L,

(E.66)

and x∗n,i > x∗ for all i ∈ J∗
L.

Corollary 6 indicates that all x∗n,i values are equal to some value x∗ in the optimal solution

except the ones that cannot get close enough to x∗ without contradicting the constraint

in Eq. (E.65). Hence, the same arguments and the water filling algorithm explained in

Appendix E.4, with the modification of replacing log2(.) with natural logarithm, can be used

to determine the optimal solution. This procedure is exactly what is outlined in Algorithm

8 which concludes the proof. ■
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E.11 Proof of Proposition 21

The proof of convergence for the initialization step is similar to that of Proposition 17 in

Appendix E.5 and is omitted here. In what follows, we demonstrate that none of the three

steps in the PEEL algorithm will increase the objective function D2. Note that the term

in Eq. (5.27) is the solution to the zero-gradient equation; thus, for a fixed W, R, Q,

and {pj}j ̸=i, updating pi according to Eq. (5.27) does not increase the objective function.

Similarly, updating qi according to Eq. (5.28) does not increase the objective function.

Therefore, updating node deployment according to the PEEL Algorithm will not increase

D2. Note that cell partitioning is updated iteratively in the PEEL algorithm as follows: in

each iteration, two adjacent regions are selected and their common boundary is adjusted

according to the optimal necessary condition; thus, the objective function either remains the

same or decreases at each iteration. In the last step, the optimal routing that minimizes

the upper bound on AP power consumption is calculated. If the resulting routing leads

to a decrease in the original objective function, it will be preserved; otherwise, it will be

discarded. Hence, the objective function does not increase as a result of the data routing

update rule. Hence, Algorithm 9 generates a non-increasing sequence of D2 values, which

proves its convergence since D2 is bounded from below by 0. ■
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