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ABSTRACT 

Abstract 
Measuring Biochemical Possibility Spaces in Evolutionary Engineering 

 

by 

 

Abe Daniel Pressman 

 
At the molecular level, artificial selection—controlling the forces of evolution to improve or 

design new biochemical functions— makes up one of our strongest tools for finding better 

biocatalysts, pharmaceuticals, and biosensors, as well as for studying the history and process 

of evolution itself. But fully harnessing evolution requires knowledge of the shape and 

dynamics of complete evolutionary spaces. Prior to this work, very little research existed 

comparing the real dynamics of artificial selection to any of the theoretical work that has 

been written to support it. By updating the classical theory of simple selections towards an 

engineering focus, and combining this with direct observations of direct evolving 

populations, my work has shown the first mathematical descriptions of how whole 

populations evolve during the selection of novel biocatalysts. 

This work seeks to address the analysis of evolutionary fitness and chemical activity 

spaces at several levels. First, we offer a broad-ranging theoretical approach to mapping the 

distribution of fitness effects in any system under driven selection. Through both simulations 

and recent experimental data, we show that it is possible to estimate the initial distribution of 

fitness for nearly any selected population. In addition to potential applications in automated 
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gene engineering, this theoretical solution also makes it possible to approximate the overall 

distribution of any selectable chemical function across random molecular space, a necessary 

condition for theoretical optimization of nearly any in vitro selection. 

Zooming in, we next develop tools to view an entire population of active catalysts 

and how it dynamically changes over the course of an entire selection. Working with a model 

selection for de novo RNA triphosphorylation catalysts, we develop a new high-throughput 

method to measure many active catalysts in parallel, building the first portrait of how tens of 

thousands of different functional molecules enrich or disappear over the course of an entire 

artificial selection. New heuristics for assessing the effectiveness of various activity-

estimation methods allowed us to efficiently identify highly active ribozymes, as well as 

estimating catalytic activity without performing any additional experiments. We also present 

the first picture of non-ideality during a real selection, demonstrating that stochastic effects 

can be a powerful and quantifiable confounding factor on predicted selection dynamics. 

Finally, this analysis allows us to build the highest-resolution extant picture of a biocatalyst 

activity distribution, showing a catalytic activity that is log-normal, consistent with a 

mechanism for the emergence of activity as the product of many independent contributions.  

 Finally, we design our own model selection to investigate the evolution of a 

theoretical aminoacylase RNA whose existence may have been crucial to the origin of the 

genetic code. Using this system, we have developed techniques for Sequencing to determine 

Catalytic Activity Paired with Evolution (SCAPE), a comprehensive workflow that allows 

complete mapping of large, dynamic landscape of chemical activity. By measuring catalytic 

activity of millions of evolved biomolecules simultaneously, we pair kinetic variations with 

genetic sequence at single nucleotide resolution, building the first complete map of all 
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evolutionary pathways to an engineered function from anywhere in genetic space. The 

resulting map contains approximately six orders of magnitude more data than any previously-

measured landscape of catalytic data, and suggests features of genetic epistasis and 

evolutionary ruggedness may be remarkably consistent across many unrelated biocatalysts 

with similar function. Our methods and results suggest general applicability to more 

complicated systems, as a viable alternative to the heuristic methods typically used to 

evaluate molecular selections, as well as validating a suite of capable tools for quantifying 

and optimizing the emergence of a wide range of evolvable biocatalytic functions. 
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Glossary of Terms, Abbreviations, and Symbols 
As this is a highly-interdisciplinary work, covering a field filled with poorly-defined and 
overlapping terminology, this list errs towards the side of comprehensive. Where some terms 
may have multiple meanings in the literature, the specific definition used in this work is 
supplied. 

 

Abundance (𝜶𝑹,𝒊). The fraction of a population at selection round R made up entirely of 
sequence i. 

Activity landscape. Similar to a fitness landscape, but with direct chemical activity used as 
the “phenotype” instead of evolutionary favorability. Can be converted into a fitness 
landscape, and vice-versa, only if the dynamics of the system are sufficiently 
understood. 

Alphabet. The set of different monomers that can be used in the construction of a sequential 
biopolymer. RNA and DNA are each constructed from a library of four nucleotides, 
while proteins are polypeptides constructed from a library of twenty amino acids. 

Amino-oxazolone. A prebiotically-plausible source of activated amino acids, used in the 
selection for oxazolone aminoacylation ribozymes described in Figure 1.1E and 
carried out and analyzed in Chapter 4. 

Aptamers. RNA or DNA affinity reagent that binds to a specific ligand. While usually found 
through in vitro selection, examples of aptamers do exist in nature. 

Artificial selection. The use of specific evolutionary pressure to evolve a molecule or 
organism towards one specific purpose. 

BTO. Biotinylated methyl tyrosine oxazolone, the amino-oxazolone substrate used in the 
aminoacylation ribozyme selection described in Chapter 4. 

Catalytic ratio (ri). The catalytic enhancement of initial rate over an uncatalyzed sequence, 
calculated as ri = kiAi/k0A0. 

Coverage. In the context of in vitro selection, this refers to the expected number of copies 
expected to be present in the initial pool for any specific molecular sequence. 

Cumulant-generating function (CGF; Kt(x)). A function derived from a variable’s PDF, 
such that its successive derivates at s = 0 give the cumulants of that PDF. Described 
in equation (2.7). 

Deep mutational scanning (DMS). A technique for completely probing a local fitness 
space, in which all possible single- or double-mutants of a wild-type sequence are 
present in the same starting population.  

Directed evolution. Artificial selection that involves a mutagenesis step, either at the 
beginning or during selection, to drive a molecule or organism across local fitness 
space and towards a functional optimum. 

Dissociation constant (kD,i). The ligand concentration of ligand at which half of an antibody 
or aptamer i is expected to bind. Lower value indicates higher binding affinity. 
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Distribution of Fitness Effects (DFE). A probability distribution describing the ratio of 
different fitness values present across an entire population of non-homogenous 
organisms mutated from a wild-type sequence. Effectively, the localized fitness 
distribution of variations to a core sequence. 

Enrichment noise. The fraction by which a particular sequence’s enrichment in one round 
differs from what is expected. Abundance-dependent noise follows a pattern of 
increasing noise (and enrichment unpredictability) at decreasing abundance; 
abundance-independent noise is the component of enrichment noise that appears 
constant in a selection system, regardless of sequence abundance. 

Epistasis (𝛆𝐚,𝐛). An interaction between multiple sites in a biopolymer sequence such that the 
effect of one mutation depends on the state of another. Epistasis as defined in this 
work is calculated as in equation (6.1), with specific classes of epistasis defined in 
Table 6.1. 

Epistatic correlation (γd). The average correlation activity effects of single mutations 
between sequences at evolutionary distance d of each other, as described in Appendix 
A.3. A general ruggedness parameter. 

Estimated enrichment, fitness (Ee, Fe). An estimate of ER,i or Fi, derived from a multi-
round HTS fitting process, as described in section 3.3. Ee values are expected to be 
rescaled by an unknown factor; calculating Fe requires a kinetic fit from selection 
under multiple selection conditions in order to find the correct rescaling factor. 

Exponential distribution. A probability distribution P(x) which decays exponentially. P(x) 
appears as a straight line on logarithmic-y-axis plot. 

Family. A collection of sequences all within a certain evolutionary distance of each other, 
function as a suspected fitness/activity peak. In this work, families are grouped by 
similarity across their entire randomized sequence region; can be further split into 
sequence clusters. 

Fisher’s Theorem (FT). Hyperbolically termed the “Fundamental theorem of natural 
selection” by R.A. Fisher, Fisher’s theorem describes how a population’s fitness 
mean and variance interact over time, described in equation (2.3). Can be used as a 
test of how ideally the shape of a fitness distribution is evolving. 

Fitness (x). A quantitative measure of evolutionary favorability. Traditionally, can refer to 
various specific measurements. In this work, especially the mathematics of Chapter 2, 
we use the term “Fitness” or the variable x to denote reproductive fitness — that is, 
an organism or molecule’s overall rate of reproduction relative to a wild-type or 
uncatalyzed baseline. 

Fitness distribution (pt(x) or pR(x)). A probability distribution describing the ratio of 
different fitness values (x) present across an entire population at some point during a 
selection. Over the course of a selection, its fitness distribution continually changes as 
a function of time or generation. Initial Fitness Distribution describes the 
distribution of fitness at the start of a selection; in the case of selection for a de novo 
function from a randomized pool, it also represents the total distribution of chemical 
activity over the random biopolymer space in question. 
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Fitness landscape. A mapping of sequence space “genotype” to a fitness value “phenotype,” 
describing evolutionary favorability of all possible sequences in an evolutionary 
system. 

Fitness peak. A group of sequences with elevated fitness, centered around a local optimum, 
and physically close to each other in terms of evolutionary distance. The most 
favorable sequence in a peak is called the peak center. 

Generalized Fisher’s Theorem (GFT). The application of Fisher’s Theorem to higher-order 
cumulants, described in equation (2.4). GFT analysis refers to applying a further-
generalized form of this, described in equation (2.11), towards the prediction of initial 
fitness distributions. 

High-Throughput Sequencing (HTS). Any of the many DNA sequencing techniques 
formerly called “Next-Generation”; typically capable of reading on the order of 106-
108 individual DNA sequences. 

k-Seq. The “kinetic sequencing” protocol used to quantify ribozyme kinetics through a 
“virtual array” approach at the endpoint of our aminoacylation ribozyme selection. 
The k-Seq methodology uses multiple rounds of parallel selection, under different 
chosen selection conditions, to build a model of chemical activity for every single 
sequence. 

Kinetic rate constant (ki). As used in this work, refers to the reaction rate of a catalytic first-
order, self-modifying ribozyme or enzyme. 

Log-normal distribution. A probability distribution P(x) in which ln(x) is normally 
distributed. P(x) appears as a parabola on a log-log plot. In certain cases, can collapse 
into a Pareto distribution. 

Maximum activity constant (Ai). The fraction of molecules of a ribozyme or enzyme i 
expected to fold and function correctly. 

Mean fitness (µ(t) or µ(R)). The average fitness of all organisms after a period of growth 
corresponding to t wild-type generations or R fixed cycles of selection. 

Motif. A pattern of conserved sites, repeated across many sequences in a selected pool. May 
be substantially shorter than the overall randomized region. In this work, refers to 
sequence patterns that may be found across multiple families; each motif is suspected 
to correspond to a specific reaction mechanism. 

mRNA Display. A cell-free translation method that uses in vitro enzymes to couple 
synthesized polypeptides directly to their own mRNA, allowing proteins to be used as 
a pulldown tag for the genetic information that synthesized them. This, along with 
other similar methods, can be used to effectively implement SELEX experiments in 
protein-based systems. 

Notable mutations. In this analysis, describes a sequence that “takes over” an evolving 
fitness peak, by displacing another sequence as the most prominent. Used here to 
subdivide families into smaller sequence clusters. 

Pareto distribution. Also known as the scale-free distribution; a probability distribution 
P(x) which displays self-similarity. P(x) appears as a straight line on a log-log plot.  
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Peptide aptamer. Short, protein-based biopolymer selected to bind strongly to a single 
target. Functionally similar to antibodies, but often designed for more in vitro uses, 
and easier to select for. 

Phage display. A common procedure for in vitro directed evolution of antibodies and other 
proteins. Bacteriophage populations are transformed with vectors expressing a 
specific protein, then separated by affinity to a specific target, in a process similar to 
(but with more complex biology and kinetics than) SELEX or mRNA display. 

Polymerase Chain Reaction (PCR). A method for rapidly copying DNA sequences, using 
in vitro polymerase enzymes in a cell-free environment. 

Probability distribution function (PDF). The distribution function of a random variable, 
integrating to 1 over the range of that variable.  

Reaction probability/fraction (Fi). The fraction of all copies of sequence i expected to 
undergo successful binding or chemical modification during the selection step of a 
SELEX or other similar in vitro selection experiment. Ranges between 0 and 1; also 
known as selection fitness, and exists as a linear rescaling of reproductive fitness x. 

Relative enrichment (ER,i). The rate at which a sequence i increases in abundance from 
selection round R to R + 1. Exists as equal to Fi divided by the mean reaction 
probability of the population at round R. 

Reverse Transcription (RT). A tool that uses specialized reverse transcriptase enzymes to 
convert RNA sequences into DNA sequences, optionally regenerating promoter sites 
through the use of overhanging primers. In RT-PCR, can be coupled with PCR and 
transcription to rapidly copy a population of RNA sequences. 

Ribozymes. RNA polymer sequence that catalyzes a specific reaction. Related to 
deoxyribozymes, i.e. DNA catalysts, which are far rarer in both living organisms and 
laboratory settings. 

Round (R). The number of selection cycles that have occurred, in an artificial selection with 
fixed cycles of selection and copying (such as any SELEX-type in vitro selections). 
R=0, or “Round 0,” refers to the initial population before selection begins. 

Ruggedness. The property of an epistatic, uncorrelated landscape in which many small local 
peaks and valleys are present. 

SCAPE. Sequencing to measure catalytic activity paired with in vitro evolution. A workflow 
combining high-coverage selection with an HTS-based screen, in order to identify 
and measure the chemical kinetics of all high-activity sequences present in an entire 
sequence space. 

Selection coefficient (1 – x). An organism’s fitness advantage over the wild-type. In 
population genetics, this is often confusingly also referred to as fitness. 

SELEX. Selection of Ligands by Exponential Enrichment: an in vitro, cell-free selection 
scheme originally used to select novel aptamers, where a population of sequences is 
separated via binding to a fixed substrate and the survivors are then exponentially 
copied through PCR. 
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Sequence cluster. In Chapter 3, describes a subdivision of some sequence families. Here, it 
refers to all sequences closer to a specific center than to any other centers, within a 
maximum distance. 

Sequence count (nR,i). Also referred to as copy number. The absolute number of copies of a 
sequence i detected by HTS in a population at selection round R. 

Sequence space. The set of possible variations of a biopolymer, forming a space of N 
dimensions and MN complexity, where N is the number of variable sites and M is the 
size of the variable alphabet. 

Sequence. In the context of templated biopolymers, a molecule’s sequence is its specific 
ordering of biological monomers, which can be easily compared through sequencing 
or used to synthesize specific molecules. As nucleotides serve as a template to their 
own replication, an individual molecule’s sequence can be preserved across many 
rounds of copying. In the case of in vitro selection, can also be used to refer to a 
specific molecular “genotype.” 

Substrate concentration ([S]). The concentration of ribozyme/enzyme substrate or 
antibody/aptamer ligand present in a reaction. 

Time (t). In the context of a continuously growing population (Chapter 2), refers to the 
number of wild-type generations that have elapsed. In the context of ribozyme 
kinetics (Chapters 3-5), refers to the length of time a reaction is allowed to incubate. 

Trimetaphosphate (TMP). A prebiotically-plausible triphosphate source, used in the 
selection for TMP triphosphorylation ribozymes described in Figure 1.1D, carried out 
by collaborators, and analyzed in Chapter 3. 

Uncatalyzed rate (k0A0). In the case of selection from a random library, the initial reaction 
rate of a random, non-catalytic sequence.  

Uniform stepwise distribution. A probability distribution P(x) consisting of multiple equal-
width “steps,” each with a fixed height. 

Wild-type (wt). The un-mutated version of an organism or sequence. In the case of local 
fitness effects or distribution, we use this term to refer to a central sequence, with 
fitness set to 1, whose activity is used as a baseline for comparison to other sequence 
variants. 
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1. Introduction: Directed evolution and fitness landscapes  
“Be sparing in publishing theory. It makes persons doubt your observations.”   

– Charles Darwin, Letter to John Scott, 6 June 1863 

 

1.1. Motivation and Overview 

Over the past few decades, the use of evolution on-demand to design and improve specific 

functional biomolecules has become an important tool in medicine and the life sciences.2-4 

But as engineers find new ways to harness artificial selection, our understanding of the 

chemical and biological dynamics involved have lagged far behind. While the concept of 

controlling and directing evolution is not a new one, going back all the way to the invention 

of agriculture, it has radically changed in the 21st century. Methods like Polymerase Chain 

Reaction (PCR), high-throughput sequencing (HTS) and cell-free translation have allowed 

artificial selection to move from breeding populations of living organisms with specific traits 

to directly evolving populations of functional molecules. But much of our understanding of 

artificial selections at the molecular level is based on untested theory, or on math tailored to 

the study of traditional evolving organisms. This work aims to change that, by shining a light 

into what specific evolutionary spaces actually look like during controlled evolution of a 

single given biomolecule. 

Artificial selection, as it is used by biochemical engineers, usually involves either 

single-celled organisms selected for a specific purpose or molecules selected entirely in vitro. 

Cell-free in vitro selections, which generally involve only a handful of biochemical reagents 

and catalysts, represent the simplest possible case of evolution. And while this simplicity 

makes such selections ideal model systems for studying evolutionary design, that does not 
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mean they lack usefulness. In addition to improving the activity of many functional proteins, 

in vitro selection has discovered novel peptide and nucleotide biopolymers with useful 

properties for catalysis,5-11 diagnostics,12-15 targeted drug therapies,3,16-19 and custom gene 

modulation.5,20 Introducing mutation to selections in a controlled manner gives directed 

evolution, which can improve or change the functionality of a variety of biological 

molecules10,20-24 and give insight into possible evolutionary pathways over the history of 

life25,26 or the development of antibiotic resistance,27,28 allowing such synthetic approaches to 

answer questions related to both traditional biochemistry and biochemical engineering. But 

selections often fail to produce molecules of improved activity, require more time than 

predicted to reach such a state, or simply behave erratically; existing theory does little to 

anticipate such difficulties or offer solutions. Research combining selection theory with 

actual observations of molecular populations evolving was virtually nonexistent my research 

began, and is still extremely sparse, even though physical measurements derived from such 

studies should be able improve predictions of selection success and optimize conditions for a 

particular set of selections.25,29,30 The goal of my thesis research is to 1) invent and improve 

methods for mapping out the fitness distributions and landscapes on which evolutions 

occur; 2) develop the first extremely large landscape of chemical activity for a 

biopolymer catalyst (estimating the activity of a space with ~1012 molecular variations vs 

previous work limited to around 104 variations); and 3) use this and other data to find 

general insight into the evolvability of biomolecular catalysts, as well as to find 

mathematical approximations necessary to update existing models of in vitro selection, such 

as the starting distribution and non-ideality effects that may be present in common selections. 

Broadly, our data also form a quantitative framework to 4) address how evolutionary 
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landscapes constrain de novo emergence of catalytic function, providing the first map 

and likely pathways for all possible routes by which a biocatalyst can evolve from 

random molecular space. 

The bulk of this work has been broken down into four chapters of this thesis (chapters 

2, 3, 4, and 6) roughly representing a set of four first-author publications, two of which are 

complete or submitted and two of which I expect to see completed shortly after my PhD is 

finished. While not strictly presented in the order that research was carried out, these chapters 

are instead intended to create a narrative, and presented in order of decreasing mathematical 

abstraction and increasing experimental complexity.  

To meaningfully accomplish what might otherwise be overly-broad goals, the 

experimental focus of my work is on two selections for specific RNA-based catalytic 

functions. These examples are chosen not for specific bioengineering applications but instead 

because they are reactions potentially important to the origin of life on earth: even basic 

knowledge about their evolutionary landscapes and possibilities provides valuable insight 

into the pathways and speed with which early life might have evolved. And early-earth 

ribozymes make attractive model systems for directed evolution, as their biology and kinetics 

are both extremely simple. But the analysis and tools involved in this report should be 

equally applicable to any self-modifying biocatalyst. With a few changes to the kinetics, 

described at relevant points in the text, the entire body of work should be easy to extrapolate 

to most aptamer, riboswitch, or cell-free protein selections, as well as to some cell-based 

selections of sufficient simplicity. Very little is known about the shapes of real, large fitness 

landscapes for any biochemical function, and while this research finds and describes one 

specific example, repeating the process for many different types of reactions may give a 
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better understanding of what is “normal” for the selection and study of novel bio-reagents. 

To that end, one remaining goal of this project, which I hope to finish in the near future (with 

help from other researchers who will be taking over the project) is development of all 

involved analyses into a set of packaged software tools to distribute. 

 

1.2. Functional biopolymers and where to find them 

Roughly, most molecules targeted by evolution fall into one of four categories: antibodies, 

aptamers, enzymes, and ribozymes. (Section 3.1. presents simple equations for the kinetics of 

aptamer and first-order ribozyme selections, which may be seen as analogous to those for 

similar antibodies and aptamers selected through cell-free methods such as mRNA display. 

The mathematics for more complicated selections, while likely still tractable, fall beyond the 

scope of this work.) 

Antibodies, a natural component of the vertebrate immune system, are highly 

specialized proteins diversified through a recombination process, with the goal of binding 

and recognizing one specific molecule. As a functional protein, antibodies consist of peptide 

polymers containing a long fixed structural region and several shorter, variable regions which 

can bind to their target. Due to their (often) high affinity and specificity, antibodies are 

common and popular biological stains and detector molecules, as well as making up a large 

and growing component of the pharmaceutical market.2 Originally, all biologically relevant 

antibodies were generated by model organisms, whose natural immune systems often 

improve their own antibodies through an evolutionary process called antibody maturation; in 

the past several decades, technologies such as phage display have managed to hijack 

antibody evolution, allowing the improvement or de novo selection of antibodies without a 
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host organism.31 Antibodies are some of the most profitable biomolecules; for context, one 

single antibody pharmaceutical, Adalimumab, accounts for approximately $5 billion in 

yearly sales, and is a product of in vitro evolution.2,32 Other, simpler binding proteins have 

also been selected, such as “peptide aptamers” in which a small polypeptide is partially or 

entirely randomized, then selected for binding activity; these are usually much smaller and 

far more flexible in their structural requirements than antibodies.33 Antibody selections 

generally require expression by engineered cells, leading to selections that require a delicate 

living component; peptide aptamer selections often use cell-free translation machinery, but 

the selection schemes involved are still more complicated than those for nucleotide aptamers. 

Enzymes, as protein-based catalysts, are perhaps the most functionally diverse of 

biological molecules, varying widely in many features, including post-transcriptional 

modifications or chaperoned folding. The latter can be difficult to preserve in evolutionary 

experiments, and so directed evolution of proteins often involves small changes or 

experimental schemes tailored towards a single molecule.34 Enzyme selections are often 

fairly complex, and can vary widely in their reaction kinetics and chemical function. Still, 

fairly simple enzymes can often be modeled with basic first-order kinetics, and in vitro 

selection methods such as mRNA display can closely mirror simpler ribozyme selections.34,35 

Aptamers and ribozymes, as the nucleotide-based analogs of antibodies and enzymes, 

provide slightly simpler examples of molecular evolution. DNA and RNA aptamers, as 

nucleotide polymers with a partially or completely-random sequence, need only to bind a 

fixed molecular target; a wide variety of washing and pulldown methods exist to separate 

bound sequences from unbound ones, with DNA polymerases and reverse transcriptases used 

to easily copy the surviving molecules. Unlike in proteins, the ability of functional 
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nucleotides to template their own reproduction has led to in vitro selections with a minimal 

number of steps. And nucleic acids contain a much smaller polymer alphabet (4 monomers 

vs. peptides’ 20 monomers), leading to fewer possible molecules to study, in a 

combinatorically-smaller possibility space, than for similarly-sized peptides. Aptamers were 

the first main products of Systematic Evolution of Ligands by Exponential Enrichment 

(SELEX), a general scheme where selection requires repeated cycles of two broad steps. In 

the selection step of SELEX, a large sequence pool is subjected to a winnowing process 

where aptamers that bind a target are retained while the rest are discarded; in the replication 

step, the remaining sequences are amplified to regenerate a full population through DNA 

replication (Figure 1.1).36,37 In this way, higher-fitness sequences “enrich” themselves in the 

pool, growing in number from one round to the next, while lower-fitness sequences are 

selected against, decreasing in number and eventually disappearing entirely.  SELEX 

methods have effectively served as a template for methods like mRNA display that have 

simplified certain peptide aptamer and enzyme selections. 

And finally, ribozymes, as nucleic acid-based catalysts, likely served as the first 

functional biomolecules on earth, providing special relevance in the study of how de novo 

functions evolve.38 Due to the wide repertoire of enzymes already available in nature, 

engineered ribozymes have seen fairly limited use, as selection for novel ribozyme function 

is often a riskier bet than optimizing an existing biocatalyst. While ribozyme selections can 

be as complex as those for equivalent enzymes, many benefit from modified SELEX 

methods, by attaching an affinity tag or nucleic acid primer sequence necessary for their own 

copying.39 Thus, the primary use of ribozymes may be as targets of academic study: a 

multitude of chemical functions allows them to answer more questions about evolution than 
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single-function aptamers, while ribozymes are often far easier to evolve and characterize than 

similar proteins. As some ribozymes can contain extremely small catalytic motifs,40 these are 

also an ideal target system for studies that wish to analyze polymer configuration spaces of 

limited complexity.  

 

 

Figure 1.1. General overview of in vitro selection protocols and their similarities 
Schematic demonstrating the parallels between various methods of artificial selection mentioned in this report. 
(A) In the central scheme of in vitro selection, selections proceed through a cycle of selection and amplification 
steps. (B) In phage display techniques, proteins are expressed in a viral vector, selected for binding ability, and 
replicated within cells. (C) In traditional SELEX, aptamers or modified ribozymes are selected based on 
binding to a substrate, with DNA PCR or RT-PCR and translation used to replicate sequences. (D) In the TMP 
selection (Chapter 3), triphosphorylated ribozymes were a valid substrate for ligation to a biotinylated primer, 
allowing affinity-based partitioning of triphosphorylating sequences. (E) In the oxazolone aminoacylase 
selection, sequences covalently linked to an amino acid precursor display biotin, allowing a biotin-affinity 
Streptavidin column to isolate aminoacyl-RNA sequences displaying a biotin tag. 
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1.3. Fitness distributions and fitness landscapes 

In principle, it would be possible to map out the trajectory of any directed evolution 

experiment if one knew how each new mutation would affect the activity of the targeted 

organism or molecule. (Such a prediction would be fundamentally probabilistic, and would 

also depend on experimental parameters such as population size and mutation rate). With 

such knowledge, it would be possible to design and optimize selection conditions for nearly 

any desired biomolecule. But this is fundamentally self-defeating: knowing the kinetics of 

every possible variant of a biocatalyst or affinity reagent would also make it possible to 

instantly select the best one for a given task, eliminating the need for evolutionary design or 

selection. 

Of course, such perfect knowledge would also require kinetic testing of a staggering 

number of different molecules. For an RNA-based catalyst of 20 nucleotides, there are 420 » 

1012 possible monomer arrangements, each with unique chemical properties; for an enzyme 

of 20 amino acids, there are 2020 » 1026—simply synthesizing one copy of each possible 20-

mer would result in approximately 500 metric tonnes of protein. Obviously, such knowledge 

quickly becomes impossible for all but the smallest functional biopolymers. Instead, we turn 

to approximate measurements of the shape of evolutionary spaces, which—based on the 

chosen level of abstraction—let us predict what evolution may look like when carried out for 

a specific function, or for related functions which we expect to evolve similarly. Broadly, 

these approximations can be characterized as fitness distributions, fitness landscapes, and 

epistatic approaches. 

First, we must define some terms. Central to all of biology is “fitness,” an organism’s 

ability to survive and reproduce. Essentially, fitness is a single quantitative value—how well 
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a selected molecule does its job and thus survives selection—that can be used as the 

“phenotype” of an artificially selected species. In classical evolutionary biology, fitness is a 

product of an organism’s environment and community; in ideal artificial selection 

environments, survival is usually closely tied to its ability to carry out one specific chemical 

reaction or bind to a particular substrate. Unfortunately, in the study of artificial selection, the 

term “fitness” has been used to describe a range of specific measurements, from a species’s 

direct activity to its rate of survival at the end of a selection.41-43This work specifically 

defines fitness as a species or sequence’s reproductive rate relative to some standard, as will 

be discussed further in sections 2.1 and 3.1, but the mathematics of fitness landscapes can be 

applied to any definition that provides a single-variable measurement of molecular activity or 

effectiveness.  

For selection on a single molecule or gene, every possible configuration of monomers 

corresponds to exactly one sequence. A “sequence” is the specific ordering of nucleic acids 

or amino acids that give proteins and functional nucleic acids their structure and chemical 

activity, and is easily represented by a string of characters. Often, directed evolution 

experiments only target one specific portion of a biomolecule for randomization and 

evolution, and sometimes a species’s “sequence” refers specifically to this variable region. 

The set of possible variations of a biopolymer are referred to as its “sequence space,” 

forming a space of N dimensions and MN complexity, where N is the number of variable sites 

and M is the size of the variable “alphabet” (M=4 for most nucleic acid and =20 for most 

peptide selections). 

As sequence space is unfathomably vast for all but the smallest biomolecules, 

abstractions are needed to study whole possible evolutionary spaces. The simplest of these is 
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perhaps the distribution of fitness effects (DFE)1, a probability distribution describing the 

ratio of different fitness values present across an entire population of non-homogenous 

organisms. In artificial selections, we can simplify this further, to a “fitness distribution,” 

which is simply the rate at which different fitness values appear across an evolving 

population. The fitness distribution at the start of a selection for de novo function is an 

“initial fitness distribution” the rate at which different fitness values appear across the 

entirety of a single functional molecule’s sequence space. Initial fitness distributions are 

necessary to optimize the parameters of in vitro selection44, but prior to the start of this work 

remained a purely theoretical consideration. From a more chemical concern, fitness 

distributions can be converted into and back from distributions of chemical activity, if the 

kinetic relationship between fitness and activity is sufficiently understood. Advances over the 

past few years have allowed measurement over extremely small fitness and activity spaces, 

as described in section 1.4, but so far our only measures of any initial distributions over 

spaces larger than 106 sequences come from estimation methods presented in chapters 3 and 

4 of this work. Selection theorists, meanwhile, have proposed a variety of possible functions 

that may describe how catalytic function is distributed across biopolymer space; section 3.6 

of this work describes several of these proposals, and how they line up with actual data from 

a large-scale measured distribution of chemical activity.  

A more detailed way to study evolutionary spaces is fitness landscapes, which are the 

direct mapping of sequence space to fitness, taking the form of a single-valued function of N 

variables.45,46 The mutation and selection components of evolution can effectively be seen as 

a random walk on a fitness landscape with a bias toward climbing hills of high fitness. 47 

Mapping a fitness landscape perfectly means measuring the kinetics of every possible 
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molecular variation, and has historically only been possible for extremely small sequence 

spaces. As discussed in the next section, developments in DNA sequencing technology have 

begun to slowly expand this capacity, but it is still possible to extrapolate features from 

partial or sparsely-sampled fitness landscapes. Typically, fitness distributions consist of one 

or many “peaks,” each centered around a different high-activity chemical mechanism, with 

locally-maximal ribozymes surrounded by similar sequences whose fitness decreases with 

increasing sequence distance. (Distance, across sequence space, is usually measured as the 

number of single mutations or “edits” required to change one sequence into another). A 

general overview of the number and width of peaks in a given sequence space could quickly 

inform whether a selection over that space is likely to fail, and ways to offset such an 

outcome.44,48 As with fitness distributions, fitness landscapes can theoretically be converted 

into activity landscapes, which describe the direct chemical kinetics of every sequence, allow 

understanding of fitness over a wider range of chemical conditions. The shape, steepness, and 

smoothness/ruggedness of such peaks in any such landscape and the shortest pathways 

between them are parameters that can be used to address classic questions such as: How 

repeatable are evolutionary outcomes? Do there exist neutral evolutionary pathways 

connecting different mechanisms with the same chemical activity?  Landscape approaches, 

though still in their infancy, are thus applicable to almost every evolutionary process ranging 

from the simplest possible life to complex functional aptamers and ribozymes. 

Finally, a third major way in which evolutionary spaces are often described is 

epistatic analysis. Epistasis is a measure of the combinatorial effects of multiple mutations, 

while ruggedness is any general metric of local landscape topography, often based on 

summed epistasis data. Taken together, these form a set of measurable parameters which can 
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describe the level of smoothness and interconnectivity of sites across an entire fitness 

landscape, or across individual peaks within a landscape. Knowledge of epistasis and 

ruggedness in a fitness landscape could be used to fine-tune parameters such as the mutation 

rate necessary for a given function to optimally evolve.29,49,50 Such analysis is discussed 

further in Chapter 6—while it is not a primary concern in this report, our large fitness 

landscape approach may allow epistatic analysis at an unprecedented new level, as suggested 

by preliminary epistasis study. Currently, it is not known to what extent epistasis and 

ruggedness remain conserved or vary across different portions of any evolutionary landscape, 

but section 6.4 describes how the question of homogeneity in fitness landscape topography 

may be answered. 
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Figure 1.2. General schematic of fitness landscape shapes and properties 
Cartoon demonstrating the basic fitness landscape features discussed in this section. (A) A fitness “peak” 
consists of sequences close together along a theoretical sequence space pseudo-coordinate, usually defined as 
edit distance between polymer sequences. The peak center or local maximum is the sequence of highest fitness. 
(B) The “width” of a peak generally refers to how quickly fitness drops away with distance from the maximum. 
(C) “Ruggedness” refers to how rough the surface of a peak is; a rugged peak will show many smaller increases 
and decreases in fitness while moving along a straightforward trajectory. (D) In the approach described in 
Chapter 3, it is impossible to fully sample a large fitness landscape; instead, we can sample many points from a 
wide range of unrelated peaks, in order to get a general overview of the landscape’s properties. (E) In the 
approach described in Chapter 4, we can generate a full fitness landscape by measuring the kinetics of all 
possible sequences (or at least all sequences with enhanced activity), but are limited to acting over smaller 
fitness landscapes. 
 

 

1.4. High-throughput measurements of evolutionary space 

To a scientist outside the field of artificial selection, the idea of measuring the kinetics of tens 

of millions of catalysts simultaneously might seem staggering, and yet in the study of fitness 
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landscapes it remains an unfortunately-low restriction. To wit, the combinatorial nature of 

nucleic acids allows a large sequence space to be defined by a small number of nucleotides. 

Typical nucleic acid selection procedures allow a starting pool of 1014-1015 randomized 

sequences; this provides 100x coverage for a 20-mer random nucleotide region, but less than 

one hundredth of a percent of sequence space for a 30-mer random region. Here, functional 

nucleic acids present certain advantages compared to more complicated protein selections, as 

an alphabet of only four nucleotides allows far higher coverage of random sequence libraries 

for de novo functional ribozymes and aptamers. But even the highest-throughput sequencing 

(HTS) methods, when used at the endpoint of a selection, can observe only on the order of 

107-109 sequences. While the depth of sequencing now available is far higher than even five 

years ago, it still constrains measurement to only the smallest or sparsest-sampled sequence 

spaces. 

Thus, to improve landscape coverage and interrogate larger sequence spaces, the 

limitation is not pool size (typically 1014-1016 molecules) but analytical capability, i.e. 

measurement throughput. Predominantly in silico approaches have shown some usefulness 

here, such as in the effective generation of an anti-HIV aptamer landscape using only a small 

number of tested molecules,51 but such study requires the assumption of an extremely simple 

relationship between fitness and sequence. Instead, the focus of most fitness landscape 

research has been on small, manageable landscapes. 

Historically, the most direct measurements of functional biochemical landscapes 

come from microarray systems, which tile thousands of copies of each of many sequences on 

a slide for optical measurement of reagent production or substrate binding. Approximately 

105-106 sequences can be studied in reasonable copy number in a single microarray study, 
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equivalent to full coverage of DNA/RNA sequence space with N=10. Nucleic acid 

microarrays have been used to investigate double and triple-mutational scans of aptamers,52 

used with rational truncation to investigate the importance of structural constraints on 

aptamer activity,53 and combined with in silico approaches to interrogate putative high-

activity regions of larger evolutionary spaces in array-based directed evolution.24 A 2010 

study was able to use array techniques to measure DNA-protein binding over all possible 10-

nucleotide sequences, showing that although the fitness landscape contained only a single 

conserved active motif, the landscape contained sufficient ruggedness to produce many 

separate local fitness optima.54 

But microarray approaches have been somewhat limited in their scope and adoption 

for multiple reasons, including their reliance on reactions or binding events producing a 

fluorescent signal and limitations stemming from attachment of the nucleic acid to a surface. 

Instead, HTS-based approaches have increasingly come to dominate RNA and DNA fitness 

landscape studies.55 In 2010, Pitt and Ferré-D’Amaré demonstrated the ability of HTS to 

measure sequence enrichment during in vitro selection as an estimate of sequence fitness, 

generating a local landscape of approximately 107 mutant variants of a ligase ribozyme 

(catalytic RNA).42 The increasing scale and affordability of HTS technology has made such 

measurements an accessible option. Further development of HTS measurement of fitness 

landscapes has focused on techniques to improve either landscape coverage or measurement 

of fitness. 

It should be noted that sparse sampling of fitness landscapes limits the applicability of 

epistasis and ruggedness analysis. For example, if the mutants are not selected at random 

(e.g., survived a selection), epistasis values for that subpopulation would likely underestimate 
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those for random mutants unless negative information is taken into account. At the same 

time, sparse but fully random sampling can also lead to patterns of inaccuracy in epistasis 

and ruggedness 56, and the prevalence of indirect evolutionary pathways that bypass local 

valleys 57 could lead to underestimates of evolvability if the explored space is too small. 

To improve landscape coverage and interrogate larger sequence spaces, it is possible 

to overcome the limit of with in vitro selection – if selection can isolate nearly all of the high-

activity sequences, complete mapping of an RNA fitness landscape becomes possible for 

short sequences.43 As described in Section 4.1, such an approach has been limited in its 

ability to assign useful and accurate fitness values, a limitation which this work seeks to 

overcome. 

For in vitro selection experiments, fitness is taken to reflect chemical activity, and can 

be estimated (or defined) in multiple ways, such as: abundance at the end of selection, 

enrichment over a single round, a specific kinetic parameter, or functional activity under 

selection conditions. Ideally, all of these should be correlated as they are related to the true 

chemical activity of a given selected species. Abundance, however, can be surprisingly 

poorly correlated to chemical activity,43,58 likely due to experimental noise and biases related 

to sequencing (e.g., PCR). When this research project was started, no alternative methods for 

using HTS to measure activity existed; in the past several years, parallel development to that 

described in sections 3 and 4 has led to new approaches that use HTS to perform direct 

activity screens, functioning as a “virtual array” (but limited to measuring far smaller 

evolutionary spaces).59,60 The newest methods in optimizing biomolecules, including those 

described in this work, seem to be those that thus turn evolutionary selections directly into 

screening assays that directly measure chemical function. 



17 
 

While high-throughput techniques for measuring larger fitness distributions have 

occurred mostly in the study of functional nucleic acids, similar techniques are beginning to 

emerge in the study of protein fitness landscapes, suggesting that nucleic acids may continue 

to function as a useful model system for the study of more complicated selections. The study 

of protein fitness landscapes, which tend to focus on mutational analysis of existing proteins 

rather than de novo functions, has also transitioned to HTS. In a technique known as deep 

mutational scanning (DMS), the activity of a mutant library is linked to organismal (cell or 

virus) fitness by the survival of different genetic variants, similar to HTS analysis of different 

sequence’s survival in in vitro nucleotide selections.61-63 The survival of cells (or viruses) 

harboring the mutant library is measured by HTS, allowing assay of the fitness effect of 105-

106 protein variants. DMS has proven effective for creating high coverage, highly local 

fitness landscapes centered around a wild-type protein, and can identify sites of conserved 

function.64 While such protein methods have generally been limited to screening basic 

variants of a wild-type protein, they should be equally viable for studying the endpoint of 

functional-protein selections, allowing the methods this work develops from studying 

ribozyme selections to be equally applicable in analysis of enzyme or even antibody 

evolution. 

 

1.5. The origin of life as a model system for engineering evolution 

Understanding how the earliest life arose is a fundamental problem of biology, and one 

fundamental to our understanding of what alternate forms life could take, either on another 

planet or through progress in bioengineering. Much of the progress that has been made in this 

area astrobiology has been due to a synthetic and mechanistic perspective on the origin of 
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life. In short, while we may never be able to tell exactly how life began on Earth, engineering 

prebiotic analogs can tell us what pathways to the earliest organisms are possible (and which 

are less or more likely), as well as how such pathways might evolve.38  

The earliest life on Earth likely consisted mostly or entirely of functional ribozymes, 

reacting and copying within a primordial soup,65-67 and these prebiotic life-analogs show 

great potential as a model system for studying engineered evolution. Specifically, such 

ribozymes are small, with catalytic functions often carried out by only a few nucleotides,40 

leading to tractable sequence spaces that can still contain a diversity of active mechanisms 

and genetic motifs.27,68 And unlike other toy biological systems, prebiotic ribozymes allow 

both the study of fundamental evolutionary steps and the mechanisms necessary to encode 

orthogonal information storage69 or translation machinery26,70-72 within engineered cells. 

Basic functional RNA studies have also provided significant insight into what larger fitness 

landscapes might look like, as extensive studies of the fitness landscapes of various 

functional RNAs have shown mostly isolated, sharp peaks with distinct structural motifs 

linked by generally unfavorable paths of mutation.25,43,50 

As a particular focus of study, we choose aminoacylation ribozymes, which catalyze a 

simple40,73 and important74-76 function whose evolvability has been relatively unstudied.77 To 

build proteins, the ribosomes of all life on earth require primed tRNAs, which are loaded 

with an activated amino acid by an aminoacylase. Before such proteins could evolve, 

however, early life would likely have required an RNA-based system for aminoacylating its 

tRNA analogs, making aminoacylation ribozymes a key step in the origin of life. It remains 

an open question whether ribozymes specific for different amino acids would evolve 

independently versus from a single promiscuous ancestor. The observed similarity among 
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modern tRNAs has been suggested to be the result of diversification from a single ancestral 

ribozyme evolving specificity to a number of different amino acids.78-80 Unfortunately, 

existing aminoacylation ribozymes have been selected primarily with AA-AMP 

precursors,7,81 which are unlikely to have been present in an early earth environment as they 

break down quickly in the presence of CO2;82 prior to this work, no research had successfully 

identified a prebiotically-plausible aminoacylase ribozyme, leaving a major missing link in 

the evolution of the genetic code. Oxazolone-amino acids (Figure 1.1E), which can be 

prebiotically produced, show more reactivity than thioesters along with more stability than 

AMP-amino acids, and have been proposed as a realistic prebiotic source of activated amino 

acids.83 Thus, oxazolone-based aminoacylation ribozymes were chosen as an ideal model 

system for studying the generation of full fitness landscapes as part of a de novo functional 

selection. The results of such landscape analysis of an oxazolone-based aminoacylation 

ribozyme system are presented and discussed in Chapter 4. 

The other ribozyme system presented and described in this work is that of RNA 

capable of TMP-based self-triphosphorylation (further discussed in Chapter 3). This selection 

was previously carried out in Ulrich Müller’s lab at UCSD, and thus does not represent new 

experimental work; however, it presented a useful data set for studying round-to-round 

enrichment of an evolving aptamer. TMP is a biological relevant molecule potentially 

produced through geological processes, while triphosphorylation of dephosphorylated 

nucleotide ends would be a potentially useful function in RNA world scenarios. Previously, 

the selection had identified and tested a number of individual ribozyme sequences through 

bacterial cloning and sequencing, but it was decided that HTS analysis might provide a better 

understanding of the range of kinetics achievable by such a ribozyme. It was also hoped that 
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HTS would do better at analyzing the shape of fitness space and the relative effects that small 

mutations might have on such a ribozyme’s evolution, including whether or not it would be 

more likely to evolve through neutral mutation paths or individual beneficial mutations. 
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2. Novel theoretical approaches to studying fitness distributions 
The work presented in this chapter primarily corresponds to Pressman and Chen, 2019, an in-

progress publication for which analysis has been completed. 

 

2.1. Background: Mathematical models of simple evolutionary selection 

As discussed in section 1.3, fitness distributions—whether as the DFE of a population 

adapting to a new environment, the initial fitness distribution of a de novo catalytic function, 

or anything in between—are one of the most important parameters needed to optimize 

evolution, but are also extremely difficult to measure. Short of actually measuring the fitness 

of a million different organisms or sequences, there exists in the literature no way but 

guesswork to actually measure how fitness effects are distributed over a random molecular 

space. In this chapter, we describe a theoretical approach that can estimate fitness 

distributions without requiring more than a handful of fitness measurements (on the order of 

ten, rather than tens of thousands), as well as related novel mathematical approaches that may 

be directly useful in the optimization or automation of evolution. 

Studying directed evolution at or near the molecular level means generally limiting 

ourselves to simple, single-celled organisms or entirely cell-free replication systems, which 

has the side benefit of greatly simplifying the necessary genetic models. In the simplest of 

these cases, we assume that mutation is not a constant process, but one introduced at a single 

point—either with a mutagenized wild-type population, a targeted molecule with a 

randomized region, or an entirely random molecule pool used to search for de novo function. 

We also assume our system reproduces asexually, which further lets us treat its genome as 

effectively haploid. 
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Overall, each unique genotype in our starting population has a fixed proportional 

reproductive fitness, which we call x. The system has a fixed carrying capacity; the actual 

value of this is arbitrary, but we assume that the system is only allowed to replicate up to a 

certain consistent maximum population. We can assign baseline fitness x = 1 to a “wild-type” 

organism, as under fixed capacity only species’ relative fitness matters. (This simplifies the 

math, assigning a value of x = 0 to a species incapable of reproducing and x = 2 to one that 

reproduces twice as fast as the wild-type, a simplified concept of fitness that can be traced 

back all the way to the initial mathematical descriptions of evolution.84 A sequence’s 

selection coefficient s, as frequently used in population genetics, is thus s = x – 1).  

In the initial state (time t=0, before selective pressure is applied), the fitness 

distribution of the population follows some function p0(x). At time t, this function evolves as 

pt(x), such that 

∂p+ x
∂t

= p+ x x − µ t 2.1  

where µ t = xp+(x)dx
6
7  is the mean fitness x at time t. This evaluates as  

p+ x =
e9+p7 x
e9+p7 x dx

6
7

2.2  

One useful tool here for studying evolving populations is Fisher’s Theorem (FT), 

originally proposed in 1930 by its author as the “Fundamental theorem of natural selection”85 

and promptly ignored for its limited applicability to only simple asexual, haploid systems. 

Fisher’s Theorem states that the change in average fitness of a population should equal the 

variance of sequence fitness in the population (in the case of reproduction falling into 

discrete rounds, this is normalized by mean fitness). In other words, 
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∂µ t
∂t

= σ; t = p+ x x − µ t ;dx
6

7
2.3  

where σ;(t) is the variance of x at time t. 

It has been previously noted86 that in a case with continuous reproduction (that is, 

higher fitness genotypes reproduce faster, live longer, or otherwise have correspondingly 

more reproductive cycles), FT can be generalized as the nth cumulants 𝜅>(𝑡) of the 

probability distribution at time t pt(x) such that  

𝜕𝜅> 𝑡
𝜕𝑡

= 𝜅>AB 𝑡 2.4  

As µ t = κB(t), we can equivalently say  

∂Eµ t
∂tE

= κEAB t 2.5  

FT describes only the change in allele frequency driven by evolutionary selection, 

and does not account for genetic drift or other non-selective changes to a population’s fitness 

distribution. Thus, it can be used as an effective test for the extent to which changes in a 

population are driven by selective pressure as opposed to other factors.85,87,88 

In general, µ(t) is a fairly easy quantity to measure for most artificial selections,1 as it 

is simply the average activity (either catalytic, binding, or uncapped growth) of an sample 

taken from the general population. As typically applied, this idea of a generalized Fisher’s 

Theorem (GFT) approach is of limited use. Measuring the change in mean fitness over time 

can give additional data on how the variance, skewness, etc. of a fitness distribution is 

changing, but requires a large number of data points to provide a small amount of further 

interpretation. 
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2.2. Theory: A further-generalized Fisher’s Theorem can calculate initial fitness 

distributions 

Historically, a lack of attention paid to Fisher’s Theorem and its general case have led to 

some rather interesting relations being overlooked, which my work seeks to address. If we 

assume that x is bounded—satisfied, as all species present will have finite positive fitness—

the distribution p0(x) is uniquely defined by the set of its moments from n = 0 to infinity, 

which in turn can be uniquely defined by the set of its cumulants from n = 0 to infinity. In 

turn, assuming µ(t) is analytic, each potential trajectory of mean fitness can also be uniquely 

defined by its derivatives, which correspond to the same set of cumulants. Thus, any bounded 

initial distribution p0(x) uniquely corresponds to µ(t), its population mean fitness as a 

function of time. (Fitting µ(t) to predictions from a hypothetical p0(x) has some slight basis in 

the literature,89 though only as a way to differentiate between two proposed initial fitness 

distributions and not as a way to specifically fit a starting distribution). 

Here, though, things get even more interesting. For a given Probability Distribution 

(PDF) f(x) whose domain is x≥0, its cumulant-generating function (CGF) (if it exists) can be 

calculated as ln ℒ 𝑓 (−𝑠), where ℒ 𝑓 −𝑠  is the Laplace transform of f(x) with transform 

variable -s. Thus, a PDF of population fitness pt(x) has corresponding CGF Kt(s) following 

K+ s = ln ℒ p+ x −s 2.6  

and so 

∂K+ s
∂s

=
ℒO p+ x −s
ℒ p+ x −s

2.7  
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One property of a CGF is that its derivatives, evaluated at zero, equal the cumulants of the 

original PDF. Thus, at time t, we have pt(x) with the corresponding Kt(s) whose derivative at 

s = 0 is µ(t), or 

µ t =
∂K+ s
∂s QR7

=
ℒO p+ x −s
ℒ p+ x −s QR7

2.8  

But we note that 

ℒO p+ x −s
ℒ p+ x −s QR7

=
ℒO e9+p7 x

e9+p7 x dx
6
7

−s

ℒ e9+p7 x
e9+p7 x dx

6
7

−s
QR7

2.9  

and by  properties of the Laplace transform, ℒ e9+p7 x −s = ℒ p7 x −s − t ; thus, 

equation (2.9) is equivalent to 

ℒO 𝑝7 𝑥 −𝑠 − 𝑡
ℒ 𝑝7 𝑥 −𝑠 − 𝑡

•
𝑒YZ𝑝7 𝑥 𝑑𝑥

6
7

𝑒YZ𝑝7 𝑥 𝑑𝑥
6
7 \R7

=
𝜕𝐾7 𝑠 + 𝑡
𝜕 𝑠 + 𝑡 \R7

=
𝜕𝐾7 𝑡
𝜕 𝑡

=
𝜕𝐾7 𝑠
𝜕𝑠 \RZ

2.10  

That is, mean fitness is equal to the derivative of the initial-time CGF evaluated at s = t.  

By equations (2.5) and (2.10) above, we can then define a further-generalized FT as 

follows: 

κE t =
∂E`Bµ t
∂tE`B

=
∂EK7 s
∂sE QR+

=
∂E ln ℒ p7 x −s

∂sE QR+
2.11  

as well as the more obviously-useful relation 

p7 x = ℒ`B exp µ t dt −t 2.12  

which allows us to calculate the starting distribution of evolutionary fitness (or the 

distribution at any point during a course of constant selective pressure) via the inverse 

Fourier transform of the exponent of mean fitness. 
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This is fairly significant, as we now have a way to convert a relatively easy-to-

measure quantity (the evolution of mean fitness over the course of a selection) into an 

extremely difficult-to-measure parameter (the distribution of fitness at the beginning of a 

selection). In practice, the Inverse Laplace transforms are often difficult to calculate, proving 

extremely complicated for all but the simplest functions. Thus, it is not necessarily ideal to 

calculate 𝑝7 𝑥  for an unknown evolutionary case simply by inverse Laplace transformation 

of the exponent of integrated mean fitness. Instead, a more practical approach is to compare 

the transformed quantity ℒ 𝑝7 𝑥 −𝑠  to exp 𝜇 𝑠 𝑑𝑠 for a variety of proposed functional 

approximations of p0(x). Laplace transformations are unique, and exist for a variety of 

common probability distributions, as well as for a stepwise-defined function with an arbitrary 

number of histogram bins. 

Towards that end, however, ℒ 𝑝7 𝑥 −𝑠  tends to be a rapidly-growing exponential 

or polynomial function for most common probability distributions; the extremely high 

resulting slopes of these curves make it hard to fit	ℒ 𝑝7 𝑥 −𝑠  to exp 𝜇 𝑠 𝑑𝑠. Instead, 

we consider log-derivative space. The mean-fitness growth curves µ(t) for a variety of initial 

distributions tend to be fairly distinct in their shape (Figure 2.2), making it easiest to fit µ(t) 

to c dE ℒ ef Y `\
c\ \RZ

 for various proposed p0(x) functions. 

 

 

2.3. Theory: Generalized Fisher’s Theorem under discrete growth 

The case of Fisher’s theorem described so far in this work describes continuous growth, 

where organisms duplicate more or less continuously and randomly without specific 



27 
 

generational pauses. In the case of growth that follows a generational cycle with a specific 

length, this is may not be a valid approximation. The continuous growth assumption involves 

higher-fitness organisms replicating faster; if instead all organisms replicate at the same rate, 

with fitness describing number or survival rate of offspring, then doubling x should produce 

a population increase of 2t over t wild-type generations, while under the continuous 

assumption it produces a population increase of e2t. In the case of selective pressure over 

such separable generations (such as is the case in many in vitro selections), a discrete-time 

approach is needed. 

In the discrete-time case, we note that  

𝑝g 𝑥 =
𝑥g𝑝7 𝑥
𝑥g𝑝7 𝑥 𝑑𝑥

6
7

2.13  

where n is the number of generational/selection “rounds” that have elapsed. In the discrete 

case, we consider the central moments E[xn]R — that is, the nth central moment after R 

rounds of selection, and additionally consider that  

E xE iAB =
xiAEABp7 x dx

6
7

xiABp7 x dx
6
7

=
xiAEABp7 x dx
xip7 x dx

6
7

xip7 x dx
6
7

xiABp7 x dx
6
7

=
E xEAB i

µ R
2.14  

so thus 

E xE 7 = µ 0 xE`B B = µ 0 µ 1 xE`; ; = ⋯ = µ k
E

mR7

2.15 	

becomes our discrete-case analog to GFT, and the central moments (and standardized 

moments and cumulants) of p0(x) can be uniquely defined as products of µ(R) across 

multiple generations. 

Unlike in the continuous case, there is no easy mathematical transformation to turn 

this µ(R) into p0(x), as the relevant properties of Laplace transforms no longer apply. 
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However, for a given proposed PDF for p0(x), we can still calculate a µ(R) trajectory and thus 

fit a variety of potential initial distributions to the observed increase in mean fitness. Instead 

of a Laplace transform, the equation for µ(R) resembles a Mellin transform, as follows: 

µi x =
xiABp7 x dx

6
7

xip7 x dx
6
7

2.16  

which we term “Discrete Method 1.” 

But an easy workaround also exists to convert some cases from the discrete growth 

model here to the continuous one. Define x’ = ex–1; then 

pi xO =
e9nie`ip7 xO

e9nie`ip7 xO dx
6
7

=
e9nip7 xO

e9nip7 xO dx
6
7

2.17  

and 

p7 xO = ℒ`B exp xO t dt −t 2.18  

From here, the math appears similar to the continuous case, with the caveat that we cannot 

directly measure x′ t 	. However, if the domain of p7 is relatively small, e.g. 0.5 < x < 1.5 

(or most species have fitness close to a wild-type of 1), we can assume that the first-order 

approximation ex ≈ 1 + x is sufficiently valid that x′ t ≈ x t . Then we expect x  to 

increase following the same curve as x′ , and 

p7 x ≈ ℒ`B exp µ R dR −R 2.19  

which we term “Discrete Method 2.” 

 

2.4. Theory: Selection under changing environmental conditions 

While we focus our GFT examples and analysis on cases of fixed selection/growth 

conditions, the same methods can be applied more complexly to a scenario in which 
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conditions vary. The simplest example of this is that of a single change in selective 

pressure—how will scaling the effects of a selection condition up or down affect the 

distribution of fitness effects at a given time point? Here, we can assume two selection 

conditions, with respective (and related) fitness x1 and x2, such that x2 = f (x1). Then, a 

starting distribution of fitness can be adjusted by variable transformation as follows: 

p7,9q x; =
df`B x;
dx;

estu 9q +up7,9u f
`B x; 2.20  

As a slightly more complicated case, we can consider a selection in sequential phases, 

where the a biological function is selected for at one selective pressure and then in later 

generations at a different pressure. In the initial phase, from t = t0 to t1, we assign each 

species a fitness x1; in the second phase, from t = t1 to t2, we assign fitness x2, such that x2 = f 

(x1). At t < t1, we observe 

p+,9B xB =
e9u+p7,9B xB
e9u+p7,9B xB dxB

6
7

2.21  

 at t = t1, we see 

p+B,9B xB =
e9u+up7,9B xB
e9u+up7, x1 xB dxB

6
7

2.22  

and by variable transformation,  

p+B,9; x; =

df`B x;
dx;

estu 9q +up7,9B f`B x;
df`B x;
dx;

estu 9q +up7,9B f`B x; dx;
6
7

2.23  

 Then, at t > t1, we have  

p+,9; x; =
e9q +`+u p+B,9; x;
e9q +`+u pB,9; x; dx;

6
7

2.24  
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The same premise can be applied when investigating a selection performed multiple 

times under varying conditions, or when choosing a selective pressure for a selection with a 

known variation of biological parameters. Assume p(x) represents the starting distribution of 

a biochemical parameter, such as the activity of a catalyst or the binding coefficient of a 

receptor or affinity molecule. Let x = f–1(y) be the fitness resulting from a gene with 

parameter value y at a chosen concentration of substrate or ligand. Then 𝑝7,Y 𝑥 =

vw(Y)
vY

𝑝7,x 𝑓(𝑥) , and 

𝑝 𝑥 =
𝑑𝑓 𝑥
𝑑𝑥 𝑒YZ𝑝7,x 𝑓 𝑥
𝑑𝑓 𝑥
𝑑𝑥 𝑒YZ𝑝7,x 𝑓 𝑦 𝑑𝑥6

7

2.25  

While elaborate, this is tractable in simple cases. For instance, in the in vitro selection 

of an active first-order catalyst (or any other selection where fitness is tied primarily to the 

result of a simple catalytic activity), we can assume fitness x follows x = 1 – exp(– K y), 

where K equals substrate concentration times reaction time, and y is catalytic rate. Then y = – 

(log(1-x))/K = f(x), and vw(Y)
vY

 = 1/[K(1–x)]; thus, 

𝑝 𝑥 =
𝑒YZ𝑝7,x − Log	 1 − xK /𝐾 1 − 𝑥

𝑒YZ𝑝7,x − Log	 1 − xK /𝐾 1 − 𝑥 𝑑𝑥6
7

2.26  

The case of simple aptamer or antibody selection, using Langmuir-model binding, 

follows x = [S]/(y + [S]), where [S] is substrate concentration and y is an individual gene’s 

dissociation constant. Then y = [S] (1–x)/x, and f’(x) = -1/x2, giving  

𝑝 𝑥 =
𝑒YZ𝑝7,x

S 1 − x
x /𝑥;

𝑒YZ𝑝7,x
S 1 − x

x /𝑥;𝑑𝑥6
7

2.27  
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Such considerations make it theoretically possible to optimize control of an 

automated or semi-automated genetic engineering system. Unfortunately, we are limited in 

our ability to treat evolution as analogous to a normal circuit component; while the evolution 

of mean fitness or the population of a specific species are time-invariant functions, neither 

behave in a linear fashion. Finding a way to present such optimization simply presents an 

intriguing further question, but one beyond the scope of this work.  

 

2.5. Theory: Deconvoluting fitness distributions and measurement noise 

As explained in chapters 3 and 4, the effect of stochastic noise in measuring activity of 

individual sequences can be significant, and thus such noise could theoretically present a 

challenge to accurately measuring underlying fitness distributions. Luckily, it is also a 

phenomenon that can easily be accounted for mathematically, as follows: 

Assume that every species in a fitness distribution p0(x) can have its fitness 

approximately measured, but with random noise applied to the measurement. We further 

assume this noise of measurement is predictable and consistent across all individual 

genomes, appearing as a random variable with distribution noise(x). Then, in attempting to 

measure p0(x), we can only actually observe a blurry version of the real distribution, with 

blurring following the convolution  𝑝7,���\���v 𝑥 = (𝑝7 ∗ 𝑛𝑜𝑖𝑠𝑒)(𝑥) = 𝑝7 𝑧 𝑛𝑜𝑖𝑠𝑒 𝑥 −
�
7

𝑧 𝑑𝑧. In GFT analysis, it becomes surprisingly easy to remove this kind of noise effect 

through an interesting property of the Laplace transform: specifically, we note that  

ℒ 𝑎 ∗ 𝑏 𝑥 −𝑠 = ℒ 𝑎 𝑥 −𝑠 ℒ 𝑏 𝑥 −𝑠 2.28  

Thus, if our initial distribution is mistakenly measured as (p7 ∗ noise)(x), this impacts our 

analysis as follows: 
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𝜅> 𝑡 =
𝜕> ln ℒ 𝑝7,���\���v 𝑥 −𝑠

𝜕𝑠E \RZ
=
𝜕> ln ℒ 𝑝7 𝑥 −𝑠 ℒ 𝑛𝑜𝑖𝑠𝑒 𝑥 −𝑠

𝜕𝑠> \RZ
 

=
𝜕> ln ℒ 𝑝7 𝑥 −𝑠

𝜕𝑠> \RZ
+
𝜕> ln ℒ 𝑛𝑜𝑖𝑠𝑒 𝑥 −𝑠

𝜕𝑠> \RZ
2.29  

That is, each predicted cumulant (mean, variance, etc.) of fitness will be off by a specific 

amount that depends only on the shape and magnitude of noise with which we measured p0. 

If the approximate shape of this noise is known, it can be completely and easily subtracted 

out from our predictions of how the fitness distribution changes as the population evolves. 

The simplest case occurs when we expect noise to follow a normal distribution: if 

noise(x) is normally distributed with mean m and variance s2, then  

ℒ 𝑛𝑜𝑖𝑠𝑒 𝑥 −𝑠 = exp 𝑡	𝑚 +
1
2
𝜎;𝑡; 2.30  

𝜅>,>��\� 𝑡 =
𝜕> 𝑡𝜇 + 12𝜎

;𝑡;

𝜕𝑠>
\RZ

2.31  

Thus, mean fitness µ(t) would be off from our prediction by a linear m + s2t, our 

variance in fitness would be off by a constant error of s2, and all higher-order cumulants of 

the distribution would behave as expected. 

Of course, if the shape of noise(x) is known, we can also simply perform a 

deconvolution, such that p0 is equal to p0,measured deconvoluted by noise(x). 

 

 



33 
 

2.6. Testing generalized Fisher’s Theorem approach with simulated data 

To test the ability of the generalized Fisher’s Theorem approach to fit initial distributions, 

simulations were conducted on a number of “test” distributions. Test distributions consisted 

of starting histograms generated from a normal distribution, log-normal distribution, Pareto 

distribution, and bimodal normal distribution, with the latter chosen specifically as a tricky 

distribution which we expected would be difficult to fit. Two sets were created of each of 

these four distributions. In the “low fitness” set, the initial distribution ranged over 0.75 ≤ x ≤ 

1.25, with mean µ(0) = 1 and p0(1.25) ≈	10-6. In the “high fitness” set, the initial distributions 

were centered around x = 1, but µ(0) was slightly effected by cropping as distributions 

ranged over 0 ≤ x ≤ 6. Fitness distributions evolved over 20 time intervals, with maximum t 

= 100 and 5 for the high and low fitness sets respectively. 

First, we sought to quantify the effect of selection noise on mean fitness trajectories 

and the resulting initial fitness distributions. For our simulation set, at each time interval, 

each histogram bin was multiplied by a normally-distributed random variable with a mean of 

1 and variable standard deviation; Figure 2.1A,B show the case of a low-fitness normal 

distribution evolving with 0%, 10%, and 50% enrichment noise per step. A large number of 

evolving distributions were similarly tested. In general, enrichment noise in the 10-20% 

range (similar to that expected in later rounds of the selection analyzed in Chapter 4) did not 

have a noticeable effect on initial distribution fit; enrichment noise in the 50% range (similar 

to that expected in the selection analyzed in Chapter 3) substantially interfered with initial 

distribution fit, providing predicted distributions with roughly the correct mean fitness but of 

incorrect shape and with. 
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Next, we sought to evaluate methods for fitting the mean fitness trajectories of 

populations that evolve following discrete replication cycles. The discrete case is expected to 

better mirror the reality in selections following an artificial replication step, such as many in 

vitro selections; to categorize all artificial selections, we need methods that address both 

discrete and continuous cases, as explained in section 2.3. From that section, we describe two 

methods for doing so. Discrete Method 1 simply evaluates a prediction based on the 

mathematics of the discrete case; this is more computationally-intensive, but still tractable for 

fits to simple distributions of only a few parameters. This method proved robust, showing 

little distortion of initial distribution fit over a range of cases (with examples provided in 

Figure 2.1 C,D). Discrete Method 2 treats the discrete case as identical to the continuous 

case, an assumption expected to hold for distributions covering only a narrow range of fitness 

values, which in simulations was demonstrated to be the case (Figure 2.1 E,F). 

In order to evaluate the robustness of the GFT approach, rather than fitting initial 

distributions to the initial distribution, µ(t) curves were intentionally fit to two different 

curves, testing the approach’s ability to fit distributions of unknown shape: the gamma 

distribution, a highly-flexible two-parameter distribution, and a stepwise distribution with 10 

bins (whose large number of parameters made fitting somewhat difficult). Evolution occurred 

with 10% of randomness per time step. Gamma distribution fits were used to estimate a 

rough starting distribution for 10-bin distribution fits, which otherwise had difficulty 

converging. Overall, these simulations (Figure 2.2) suggest that this approach can fit at least 

a rough estimate of a variety of different simple distributions. They also show that fitting to 

an exact equation appears to be more successful when that equation is more similar to the 

actual initial distribution; and that fitting a multi-bin uniform distribution does a better job 
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reproducing the evolutionarily-important upper tail and mean of a distribution, while 

potentially struggling to accurately gauge the space in between. 
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Figure 2.1. Testing the general robustness of GFT fitness distribution predictions 
(A-B) Initial fitness distribution as a normal distribution centered around 1, with standard deviation of 0.5. 
Distribution was allowed to evolve with 0 error per time step (blue), 10% error (magenta), or 50% error (red). 
(A) denotes the resulting mean fitness trajectories over the first 20 time steps; (B) denotes an attempt to fit the 
final trajectories to a normal initial distribution by a GFT approach. (C-D) For the case of a fitness distribution 
evolving following discrete selection rounds (as should be the case with many in vitro selection methods), we 
test Discrete Method 1 in both low and high-fitness normal initial distributions. GFT-predicted distribution 
(orange) shows good agreement with real initial distribution. (E-F) As C-D, but we test Discrete Method 2 in 
both low and high-fitness normal initial distributions. GFT-predicted distribution (orange) shows good 
agreement with real initial distribution for a low-fitness initial distribution, but not for one with a wider fitness 
range, as predicted. 
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Figure 2.2. Using GFT approach to build initial fitness distributions of test cases 
The evolution and fitness distributions for narrow-range “low fitness” (A-B) normal distribution, (C-D) log-
normal distribution, (E-F) Pareto distribution, (G-H) bimodal normal distribution. Left column of panels shows 
the change over time of mean fitness; right column of panels shows original and fitted initial fitness 
distributions. Dots (left) and black dash (right) show original fitness distribution. Orange line is the result of a 
Gamma distribution fit, carried out with the standard Mathematica nonlinear curve-fitting tool. Black line is the 
fit to an initial distribution consisting of a 10-bin uniform distribution. Overall, the Gamma distribution has an 
easier time fitting more similarly-shaped distributions, but captures the general tail of fitness effects well; the 
10-bin distribution shows similar difficulty, predicting the evolutionarily-significant mean and upper tail of 
initial distributions but tends to leave slight holes in the Pareto case. 
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Figure 2.2 continued. Using GFT approach to build initial fitness distributions of test cases 
The evolution and fitness distributions for wide-range “high fitness” (A-B) normal distribution, (C-D) log-
normal distribution, (E-F) Pareto distribution, (G-H) bimodal normal distribution. Left column of panels shows 
the change over time of mean fitness; right column of panels shows original and fitted initial fitness 
distributions. Dots (left) and black dash (right) show original fitness distribution. Orange line is the result of a 
Gamma distribution fit, carried out with the standard Mathematica nonlinear curve-fitting tool. Black line is the 
fit to an initial distribution consisting of a 10-bin uniform distribution. Overall, fitting behaves similarly to the 
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low fitness case; once again the 10-bin distribution has difficulty with the middle region of the Pareto case but 
effectively captures the more-important tail and mean, showing the same issues with the bimodal case. 
 

 

 

2.7. Generalized Fisher’s Theorem approach and real experimental data 

Actually testing the GFT approach to estimating real fitness distributions proved somewhat 

challenging due to a simple lack of existing data; very few experiments have been carried out 

which both a fitness distribution and mean fitness curve has been measured. As test cases, we 

use data from the work described later in this report, specificially from the selections 

analyzed in Chapter 3 and Chapter 4. 

For both the TMP triphosphorylase ribozyme and oxazolone aminoacylase ribozyme 

selections, we chose the highest-abundance sequence as a control; using this sequence’s 

enrichment ratio in various rounds, we were able to calculate very rough estimates of µ(R). 

These data are likely to be less accurate than actual chemical quantification of mean pool 

fitness at every round, as noise in the top sequence’s enrichment may add noise to the mean 

fitness trajectory. But as the goal of this analysis is to estimate fitness distributions from 

available data we were curious of the extent to which this would still lead to an effective 

estimate of initial distribution. For comparison, initial fitness distributions under selection 

conditions were calculated as described in sections 3.6 and 4.3 (Figures 2.3A, 2.4A). Both 

distributions appeared roughly log-normal, so this distribution was used as an approximation; 

a Pareto distribution was also fit for the triphosphorylase data, as it appeared to resemble 

both distributions. We expected the vast majority of sequences in both selections to have no 

catalytic activity over the base reaction rate of RNA with their substrates. Thus, the actual 
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distribution used for fitting consisted of a log-normal distribution added to a Dirac delta 

function of variable magnitude centered at x = 1. 

In the case of the triphosphorylase selection (Figure 2.3), only the first five rounds of 

data were used, as after this point the selection was expected to be dominated by mutational 

effects. Here, the GFT-predicted distribution does not fit well with the HTS-estimated 

distribution of fitness values found in Chapter 3. Specifically, the distribution predicted from 

mean fitness shows a much shallower drop off in abundance with increasing fitness, 

especially at the upper end of the fitness distribution. It is notable that the best-fit mean 

fitness curve (Figure 2.3B) is still increasing at Round 5, despite the data suggesting that it 

should have leveled off by this point. This lack of better curve fit at high µ, likely resulting 

from the selection’s high enrichment noise propagating into noisy measurement of µ(R), may 

be responsible for the inconsistencies seen between the two distributions. We see that the 

middle range (10 < x < 100 or so) agrees fairly well with the HTS-predicted initial fitness 

distribution, suggesting that we may be able to roughly estimate p0(x) with some accuracy 

while x falls in the range in which we have decent µ(R) values. 

In the aminoacylation selection data (Figure 2.4), we have an interesting case. As the 

substrate concentration during selection was high enough to saturate many high-activity 

sequences, the distribution of fitness values is expected to be substantially different from the 

distribution of kinetic activity. (While we may expect the distribution of initial rates to follow 

a log-normal distribution, the shape of the selection fitness distribution is substantially 

different). Here, the GFT-estimated distribution does fit well with the HTS-estimated 

distribution of fitness values found in Chapter 4, for both a Pareto and log-normal fit. While 

the log-normal distribution appears a better fit overall, the Pareto fit is closer to the HTS-
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derived distribution at low fitness (x < 10 or so), which corresponds to the Pareto distribution 

better fitting the mean fitness curve at low mean fitness around R = 3 (Figure 2.4B). It is 

worth noting here that the aminoacylase selection was carried out with significantly less 

noise and more controlled conditions vs. the triphosphorylase selection, potentially indicating 

that keeping selection as close to ideal as possible may also improve the accuracy of GFT-

estimated of fitness distributions. 

All together, these data sets suggest that we may be able to roughly estimate p0(x) 

(and by extension pt(x) at any t) with enough accuracy to be insightful, for cases where x falls 

in the range in which we have decent µ(R) values. The key limitations of a GFT approach to 

estimating fitness distributions appear to be A) obtaining an accurate time-course of mean 

fitness, as the population evolves over a relevant range of fitness values, B) choosing an 

initial distribution model fairly similar to the real distribution, with a tractable number of 

parameters, and possibly C) keeping the selection itself carefully controlled and consistent in 

its parameters. The full usefulness of this method is probably yet to be realized, as an 

experiment engineered to take these factors into account from the start may result in cleaner 

data and a better prediction. As the most obvious application of this analysis may be 

controlling automated gene and phage engineering, future experiments should perhaps be 

tailored to investigate such systems. 
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Figure 2.3. Testing GFT approach with TMP triphosphorylase selection 
(A) Initial predicted fitness distribution for a selection for triphosphorylation ribozymes, found through analysis 
described in Chapter 3. (B) The mean fitness for the same population evolving over time. Points indicate mean 
fitness predicted from enrichment of the top sequence. Blue is a log-normal distribution fit, using Discrete 
Method 1. (C) The fit found in B, displayed as fitness distributions, and scaled to the same expected integrated 
curve as data shown in A. Assuming the highest Fe sequences to roughly correlate to the highest expected value 
of x, we see little direct correlation with the curve in A, as the drop-off here is significantly lower.  
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Figure 2.4. Testing GFT approach with oxazolone aminoacylase selection 
(A) Initial predicted fitness distribution for a selection for aminoacylation ribozymes, found through analysis 
described in Chapter 4. (B) The mean fitness for the same population evolving over time. Points indicate mean 
fitness predicted from enrichment of the top sequence. Blue is a log-normal distribution fit and orange is a 
Pareto distribution fit, using Discrete Method 1. (C) The fit found in B, displayed as fitness distributions, and 
scaled to the same expected integrated curve as data shown in A. Blue is log-normal distribution, orange is 
Pareto. Assuming the highest Fe sequences to roughly correlate to the highest expected value of x, we see little 
significant similarity to the curve in A, with log-normal distribution fitting much better at all but the lowest end, 
and Pareto distribution fitting better over this region.  
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3. Estimating biocatalyst kinetics from high-throughput selection data 
Parts of this section were adapted from Pressman, A., Moretti, J. E., Campbell, G. W., 

Muller, U.F., Chen, I.A., Nucleic Acids Res, 45, Copyright 2017.58 Reprinted with permission 

from Oxford University Press. 

 

3.1. Background/Theory: Estimating chemical activity from selection enrichment 

Traditionally, in vitro selections give little information on their inner workings, with no way 

to observe selection dynamics and endpoint cloning used to test sequence and function of 

only a small number of sequences per experiment. Virtually no research has actually 

compared the theory of directed evolution with actual observation of whole populations as 

they evolve, despite affordable high-throughput sequencing (HTS) making this a possibility. 

The work in this chapter focuses on analyzing and understanding HTS-selection data from 

many rounds of a single selection, using an enrichment-based approach that combines model 

evolutionary dynamics with analysis of sequences’ informational uncertainty as it changes 

between rounds. 

In addition to addressing the variability and non-ideality present in an actual 

selection, estimated chemical activity of a large number of sequences could also build a 

picture of an evolving fitness distribution. As discussed in section 1.3, knowing the 

distribution of catalytic activity over biopolymer sequence space is a necessary condition for 

optimizing and understanding the limits of artificial selection. 90,91 This may be especially 

important in nucleic acid selections (i.e. aptamers and ribozymes), because these experiments 

typically investigate larger and far more randomized sequence spaces. But as we discuss in 

section 1.4, actual measurements of fitness landscapes for any biochemical function are 
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extremely limited; that same lack of experimental data extends even to observed fitness and 

activity distributions, which should in principle be simpler to measure. Where these data do 

exist, they tend to show very different arguments for how aptamer and ribozyme 

fitness/activity distributions might be shaped. Studies on selections from starting pools with 

different sequence complexity have suggested a power-law relation between pool size and 

aptamer affinity or ribozyme activity, though only a small number of measurement points are 

available.90,91 In contrast, theoretical considerations have suggested a log-normal distribution 

of kD values (and a normal distribution of binding energies) in sequence space for most 

nucleic acid aptamers,92,93 as well as a normal distribution of activation energies of RNA 

melting.94 

Extracting distributions from in vitro evolution was historically hampered by the low 

throughput of sequencing data, though this concern has been somewhat addressed by 

increased reliance on HTS to analyze artificial selections. To estimate fitness, HTS analyses 

typically count sequences present at a selection endpoint, although more recent analyses use 

the relative enrichment of sequences before and after a final round,95-97 or follow a specific 

ribozyme and its variants over several rounds.98 Recent progress has also developed 

screening approaches that directly measure sequence activity via sequencing reactions carried 

out under a range of selection conditions, 59,60 as discussed in Chapter 4—but those 

approaches, both in our lab and others, had not yet been fully developed when the work 

described in this chapter was carried out. 

As selection abundance can be a poorly predictor chemical activity,43,58 especially in 

the case of selection with mutagenesis, we sought to investigate, and hopefully improve on, 

the ability to predict the activity of a population of ribozymes from multiple rounds of 
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enrichment data. Critically, prior to the beginning of this work, little research existed 

comparing the real evolution of selected populations to what would be predicted by theory. 

In the work described in this chapter, we sought to directly investigate the consistency of a 

large and diverse ribozyme population’s evolution. Rather than simply laying out our best 

guesses for ribozyme activity, we also developed a set of heuristic tools that we hoped could 

analyze how accurate any such prediction scheme actually is, as well as characterizing the 

amount of non-ideality “noise” present in a real selection. 

In principle, the mathematics involved in estimating chemical activity from selection 

enrichment should be fairly simple. In practice, some of the terminology can vary in its 

specific definition, so we define a set of terms here for later clarification. We assume, at 

round R of a selection, a population of NR total sequences. An individual biopolymer 

sequence, i, occurs as a subpopulation of nR,i
  observations. Then we define the abundance 

𝛼g,� of sequence i at round R as 

𝛼g,� =
𝑛g,�
𝑁g

3.1  

Each individual molecule in a population under selection, as described in section 1.2, 

goes through two steps: a selection step, and a replication step. In the selection step, 

molecules are either discarded or retained based on their ability to bind a substrate or 

undergo a specific reaction. We assign each molecule has a probability of Fi to carry out this 

necessary reaction and survive selection, where Fi is a number between 0 and 1.  

From a population of nR,i molecules, the number expected to survive is a binomially-

distributed random variable with number of trials nR,i and success probability Fi; at 

sufficiently high n, this can be approximated by a normal distribution with mean nR,iFi and 
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variance             nR,i Fi (1 – Fi ). If we assume the replication step of each selection round 

regenerates the selected population to the same total number of sequences, with all molecules 

replicated at an equal rate, the abundance after one round of selection and replication should 

follow 

𝛼gAB,� = 𝛼g,�
𝐹�
𝐹g

3.2  

where 𝐹g  is the average population reaction probability F at round R. In comparison 

to the math described in section 2.1, it is clear that Fi is somewhat analogous to sequence 

fitness x but capped at a maximum value of 1, since no sequence can survive the selection 

step at greater abundance than it began with. 

For a population of different sequences, it is relatively easy to estimate relative values 

of Fi for each sequence. We define relative enrichment ER,i as the rate at which sequence i 

increases in abundance from round R to round R + 1, such that 

𝐸g,� =
𝐹�
𝐹g

=
𝛼gAB,�
𝛼g,�

3.3  

which can be easily calculated if 𝐹g  is known for the round in question. 

Theoretically, 𝐹g  values could be measured by comparison to a sequence of known activity 

or quantitative estimates of the sequence population surviving each selection step; we suggest 

several more complicated, but possibly also more accurate, methods to estimate it in the next 

section. Notably, if we compare two different rounds R and R’, we expect to see 

𝐸gn,� = 𝐸g,�
𝐹g
𝐹gO

3.4  

as Fi is an unknown but constant “hidden value” for each sequence i; plotting Er 

against ER would be expected to give a strong linear correlation. 
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In the case of a first-order ribozyme selection, 𝐹� ≈ 𝐴�𝑘� 𝑆 𝑡, for sufficiently low 

values of Aiki[S]t. This is the rationale by which ER has been used as a proxy for sequence 

activity; assuming most sequences have low enough activity under selection conditions to fall 

into this roughly linear regime.  

If, however, observations are performed at multiple different t or [S] values, data 

points for first-order ribozyme catalysis can be fit to the equation  

𝐹� = 𝐴� 1 − em� � Z (3.5) 

where, for a given sequence i, the reacted fraction Fi indicates reacted fraction, Ai is a 

maximum activity constant (which accounts for both sequence-dependent folding and 

stability, as well as any loss during recovery), ki is a sequence’s catalytic rate, [S] is substrate 

concentration, and t is reaction time. For a cell-free in vitro enzyme selection, we would use 

the same math, with Ai representing the rate of proper protein expression. In the case of an 

aptamer or in vitro antibody or peptide aptamer selection, we would instead use 

𝐹� = 𝐴�
[𝑆]

𝑘�,� + [𝑆]
(3.6) 

where kD,i is an individual biopolymer’s dissociation constant (assuming substrate 

concentration is significantly greater than aptamer/antibody concentration). In a cell-based 

selection or more complicated catalytic mechanism, the equations become somewhat more 

specialized to a specific biochemical mechanism, but the same process can be used if there 

exists any predicted equation for the dependence of selection fitness on a varying substrate 

concentration or other varying reaction parameter. 



49 
 

 

 

3.2. Triphosphorylation selection shows surprising enrichment variability   

Just what, exactly, happens in an actual in vitro selection? To answer this, we sought to 

examine an existing selection for which many rounds of sequence abundance data could be 

available, allowing us to track the enrichment of each of 104-106 sequences over many 

rounds of selection. In this, we sought the first attempt to observe and compare compare 

population dynamics in real in vitro selection to that suggested by theory. We chose the 

selection of TMP triphosphorylation ribozymes, carried out by a collaborator (as described in 

section 1.5) for this investigation. 

This ribozyme selection began with a random pool (N150), whose effective 

complexity (1.7 x 1014
 starting sequences from a theoretically possible set of 2.0 x 1090) far 

exceeded the capacity of HTS. The selection thus illuminates many random 'pinpoints' in 

sequence space 68, giving a picture of how catalytic activity may be distributed across an 

extremely large and randomly-sampled RNA sequence space. Although the complexity of 

this pool prevents detailed mapping of the complete fitness landscape 99, our selection 

yielded hundreds of high-fitness sequence clusters, which provided data suitable for 

generating a potential overall probability distribution of fitness. 

Ribozymes capable of self-triphosphorylating a 5’-OH end using a trimetaphosphate 

(TMP) substrate were selected as described in a previous study99 Following incubation with 

50 mM of trisodium TMP under buffered conditions, a ligase ribozyme was used to 

regenerate full-length sequences from triphosphorylated 5’-OH ends. Due to the dependence 
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of selection on a successful ligation event, the constant Ai  described in equation (3.5) was 

expected to contain both a stability-related and ligase-favorability component, thus varying 

more widely between sequences than in a simple one-step ribozyme. The first four rounds of 

selection were carried out with 3-hour TMP incubation, while the pool at Round 4 was 

separated into two branches; the 3h branch continued these conditions, while the 5m branch 

underwent TMP incubation for only 5 minutes. Both branches, after round 4, were subjected 

to mutagenic PCR, causing the pool to undergo directed evolution in later rounds. All rounds 

of selection were sequenced via Illumina MySeq, with 1.6-4.8x106 sequences counted per 

round. 

Sequences from each round were grouped by similarity using Chen lab tools, into 

unique ribozyme families, with the highest-abundance sequence in each family defined as the 

center. All families were separated by large edit distances from each other due to the long 

length of the random region, allowing unambiguous assignment of sequences to families. 

Some families displayed a shift in center sequence across rounds, typically consisting of 1-2 

nucleotide mutations (termed 'notable' mutations). For some analyses, similarity to one of 

multiple variant centers was used to “split” families into two or more new smaller “clusters” 

of sequences, treated independently, as the notable mutations impacted fitness. Sequence 

families could not be reliably identified in Rounds 1 and 2 due to the large number of unique 

sequences, but 829 ribozyme families were identified in Round 3. These were gradually 

winnowed over subsequent rounds. Over a hundred unique families were present at the end 

of Round 8 of both branches of selection, and several of the major families were best 

analyzed after splitting into clusters based on the presence or absence of notable mutations 

(see below). The top 20 families comprised approximately 80% of the pool (Figure 3.1.A,B). 
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The presence of many ribozyme families indicated that a low-throughput approach would not 

be sufficient to identify the fittest sequences (Figure 3.1.C), and sequences from previous 

analysis of the selection (in which approximately 40 colonies selected from transformants 

from various selection rounds were Sanger sequenced and assayed for activity) belonged to 

some, but not all, high-abundance families. As described in Section 3.4, these previously-

determined sequences were for the most part far less active than those chosen through HTS 

methods to have high activity. 

One striking feature that emerged from calculated enrichment data was the sheer lack 

of correlation between most sequences’ enrichment in any two rounds. As all sequences 

should increase/decrease at a rate directly proportional to a fixed constant (equation (3.3)), 

we expected sequences’ enrichment values to be linearly correlated from one round to the 

next. Instead, when plotting all sequences’ enrichment across two separate rounds of 

selection, all combinations of rounds produced a graph with effectively zero linear 

correlation; plotting the enrichment of entire sequence clusters gave only a slight correlation 

(figure 3.2). This suggests a significant variability in the round-to-round enrichment of 

individual sequences under in vitro selection, an effect far more significant than any 

previously reported, with the potential to throw into question single-round enrichment as a 

tool for estimating a sequence’s selection fitness.  
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Figure 3.1. Identified triphosphorylase families and clusters 
(A) The abundance of clusters over time in the 5m branch of selection: red areas represent clusters close to the 
original centers of the top 20 families of Round 8(5m), blue areas represent new clusters whose central 
sequence diverged from the original family center. (B) The 5m and 3h selection branches were separated after 
Round 4; some sequence families remained present in both selection branches, but more sequeneces 
disappeared in the 5m branch than the 3h branch. Even at the end of selection, hundreds of unique sequence 
families were present. C) Previously identified clones were distributed among HTS-identified families in a 
manner consistent with family abundances measured by sequence reads (i.e., clones were mostly derived from 
higher-abundance families). Blue bar chart (and left y-axis) shows the distribution of clones obtained in the 
previous study in round 8 (5m); red (and right bar) shows the distribution obtained from HTS in that round. 
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Figure 3.2. Enrichment correlation over clusters, across multiple rounds 
(A-G) Cluster-based enrichment tracked across the 3-hour-incubation selection branch for Rounds 5-8, with dot 
area corresponding to cluster abundance (For ER and ER+1, cluster area corresponds to round R abundance AR). 
(H-N) Cluster-based enrichment similarly tracked for the 5-minute-incubation selection branch. “WMSS” cases 
(B,D,F,G,I,K,M,N) indicate fitness estimate from Method 4, showing somewhat higher correlation values 
across all rounds. 
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Figure 3.2. continued: Enrichment correlation over sequences, across multiple rounds 
(O-V) Individual sequence enrichment in the 3-hour branch for the same rounds, with dot area corresponding to 
sequence abundance and dot color corresponding to local sequence density (based on the total sequence count 
present in each bin of a 50x50 grid, with blue corresponding to lowest sequence density and orange to highest 
density). (W-BB) Individual sequence enrichment in the 5-minute branch. “WMSS” cases 
(P,R,T,U,W,Y,AA,BB) indicate fitness estimate from Method 4, showing somewhat higher correlation values 
across all rounds. 
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3.3. Theory: Heuristic evaluation of methods for estimating activity  

Prior to this analysis, while existing work had attempted to estimate fitness of aptamers and 

ribozymes through high-throughput selection, no work had sought to categorize the accuracy 

or consistency of more than a few of the estimates. As discussed in section 1.4, simple 

metrics such as abundance can be a poor estimate of chemical activity. We instead sought a 

heuristic method to evaluate the “goodness of fit” for various fitness estimation methods, as 

well as a specific way to calculate expected error of estimation from multiple-round selection 

data. From these, we sought to categorically determine the best method (of both described 

methods and new ones) to estimate the activity of a large number of ribozyme sequences 

from the provided data, which consisted of multiple rounds’ sequence abundances in two 

separate selection branches. 

 With the ability to evaluate the best fitting method over a given selection, we believe 

such evaluative criteria could be applied to a large range of selection/molecule types in order 

to determine what is an appropriate fitness estimation, and what range of error to expect, in 

other experimental systems. 

We tested six methods of calculating “estimated fitness” Fe, an estimate each 

sequence’s “true” (but hidden) fitness value Fi. Although the ideal metric for evaluating Fi 

would be the correlation between Fi and Fe, it is not possible to independently determine Fi 

without testing individual ribozymes, which is infeasible for the large number of unique 

sequences involved in the selection. Therefore, because Fi should be proportional to ER,i for 

each round (equation (3.3)), the methods for calculating Fe were evaluated by correlating the 

round-scaled estimated overall enrichment (ER,e) to (ER,i)  for the same sequences at different 

rounds of selection, where 𝐸g,� =
��
��

 . For a correlation metric evaluating the constancy of 
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the estimations across rounds, we used the weighted coefficient of determination (r2) 

constant. As abundance in the first of two consecutive rounds represents the number of 

individual times the sequence is observed undergoing selection, we used sequence/cluster 

abundance of each molecular species as weights  in calculating r2. While each ER,e estimation 

differs from Fe by a scaling factor of 1/ 𝐹g , the r2 correlation between two data sets is 

unaffected by linear scaling of either set, allowing comparison of Ee and ER,e without regard 

to normalization. Thus rescaling was only performed for the method chosen for further 

analysis (Method 4), with which we can calculate Fe by comparison of ER,e at multiple 

incubation times, as described later in this section.  

Single enrichment ratios have been used as a rough predictor of sequence fitness 

previously.95-97 Therefore, Method 1 of fitness estimation used the previous round (PR) 

enrichment as an estimate of overall fitness (thus picking one round and comparing it to the 

others to give our heuristically-chosen correlation metric r2). Here, enrichment ER-1,e 

(normalized by average enrichment for round R-1) is a predictor of ER (normalized by 

average enrichment for round R) as a baseline against which the correlation of other fitness 

predictors could be measured, such that Ee(PR) = ER-1 at round R.  

Information from multiple rounds of selection can be integrated in several possible 

ways, and we expected that the additional information would lead to increased accuracy of 

estimation. In other words, E5, E6, E7, and E8 could be used together to estimate an 

underlying Ee that does not correspond to any one specific round (but is then scaled by an 

unknown constant). The simplest multi-round method tested, Method 2, uses the geometric 

mean (GM) of ER,e over the selection rounds, an approach previously used in population 

genetic studies of artificial selection.87 The geometric mean is a natural choice when 
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populations are sampled only every several generations, effectively allowing only a 

geometric mean of enrichment to be observed; the result, Ee(GM), would be Fe(GM) scaled 

by the geometric mean of B
�  … �¢

 . Ee(GM) is calculated, for a sequence i, with ER measured 

from Round I to Round J, as: 

𝐸� 𝐺𝑀 = 𝐸g,�

¥

gR¦

¥`¦AB

3.7  

Methods 3-5 were based on multivariable least squares estimation. In each method, 

estimated overall enrichment Ee of a sequence or cluster was calculated as a linear 

combination of E5, E6, E7, and E8. Coefficients CR were chosen to minimize squared residual 

values of Ee vs CRER for each sequence, summed across R from 5 to 8, and weighted by 

sequence observation, as in equation 3. Weighting parameters were chosen to maximize 

weighted r2 values summed across all rounds of comparison, with Methods 3-5 varying by 

different approaches to the importance of each round’s contribution. 

In Method 3, which we term Weighted Multiple Sum of Squares (WMSS), Ee of 

sequence i was calculated as 

𝐸� 𝑊𝑀𝑆𝑆 = 𝐶g𝐸g,�

¥

gR¦

𝐽 − 𝐼 + 1 3.8  

essentially providing an average of observed enrichment ratios at rounds I=5 through J=8. 

Constants CR were chosen to minimize the weighted sum of squared residuals (with each 

sequence's contribution weighted by its abundance), as follows: 

𝐶¥ = 1;	𝐶¦ …𝐶¥`B = argmin 𝛼g`B,� 𝐶g𝐸g,� − 𝐸� 𝑊𝑀𝑆𝑆
;

¥

gR¦¯dd	�

3.9  
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That is, the contribution to the summation of squared residuals from Ee(WMSS) for sequence 

(or cluster) i was weighted by the normalized abundance aR-1,i of that sequence (or cluster) 

during each round. The rationale for this weighting is that the more abundant sequences 

represent a greater number of observations, and therefore offer greater accuracy in estimation 

of Ee. As each round’s contribution to this summation function is an independent function of 

CR with a single inflection point, gradient descent was used to find minimizing CR values for 

each data set, using code written in MATLAB. 

In Method 4, which we refer to as Population-Weighted Multivariable Sum of 

Squares (PWMSS), for sequence i, each round’s contribution to Ee(PWMSS) was weighted 

by its abundance in that round (and thus observational certainty) instead of using an identical 

set of round-specified factors for each sequence as in WMSS. As we expected greater 

stochasticity in selection than sequencing, observational certainty and total real information 

was expected to correlate with abundance rather than raw sequence counts. The coefficients 

in the linear combination estimate varied from sequence to sequence, following: 

𝐸� 𝑃𝑊𝑀𝑆𝑆 = 𝐶g𝛼g`B,�𝐸g,�

¥

gR¦

𝛼g`B,�

¥

gR¦

3.10  

with CR again chosen by minimizing weighted square residuals as in WMSS (equation (3.9), 

replacing WMSS with PWMSS). Method 4 resembles Method 3, but also takes into account 

the difference in round-dependent appearance of each individual sequence or cluster. Here 

we also note that we no longer expect equal contributions from every round, as many 

sequences appeared at lower count in earlier rounds. 

In Method 5, termed Scedasticity-Consistent Multivariable Sum of Squares 

(SCMSS), Ee(SCMSS) was calculated as in Method 4 (Equation (3.10)) but with information 
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present in observations weighted by the expected variance of each observation. In a 

scedasticity-consistent modified sum of squares, squared residual values are divided by 

expected variance of each data point. After a round of selection, we expect sequence variance 

equal to mean next-round abundance (that is, abundance times viability), as in equation (3.2), 

but note that the variance of each individual round contribution’s impact should scale with its 

mean of 𝐶g𝐸�. Thus, we divide weighting terms in Equation 3 by 𝐶g𝐸�, giving Method 5 

following equation (3.10) but with CR chosen as: 

𝐶¥ = 1;	𝐶¦ …𝐶¥`B = argmin
𝐶g𝐸g,� − 𝐸� 𝑆𝐶𝑀𝑆𝑆

;

𝐶g𝐸� 𝑆𝐶𝑀𝑆𝑆

¥

gR¦¯dd	�

3.11  

The last method of fitness prediction (Method 6) evaluated here used a Maximum-Likelihood 

Estimator (MLE) for each sequence’s fitness. As described previously, we expect NF to be 

high enough for most sequences persisting through the end of selection to be approximated 

with a normal distribution. As this incarnation of the MLE method requires an initial estimate 

of the average sequence fitness for each round, the PWMSS estimate was used, with a 

conditional probability distribution P E²(MLE) = Ei,´|E²(PWMSS), αi`B,´ , as a normal 

distribution whose variance scaled with abundance 

𝐸� 𝑀𝐿𝐸 = argmax 𝑃 𝐸� 𝑀𝐿𝐸 = 𝐸g,�|𝐸�(𝑃𝑊𝑀𝑆𝑆), 𝛼g`B,�	
¥

>R¦

3.12  

This probability assumption P(..) used normal distributions for expected population after 

selection and PCR, based on the distribution of scale-dependent noise observed with Method 

4 (as described in noise analysis below). For each i, a range of 1000 Ee values were chosen 

ranging from the highest to lowest suggested by each round, scaled by the round-weight 



60 
 

parameters generated by Method 3 (as these were assumed to be the best easily-obtainable 

approximations of the relative scaling between enrichment in each round).  

Overall, Methods 4 and 5 showed the highest correlation to most rounds, for both 

individual sequences and clusters of similar sequences (which in the clustered approach were 

assumed to share a single activity). Figure 3.3 shows how the weighted r2 metric stacks up 

for rounds 5-8, while Figure 3.2 shows how method 4 provided a more consistent estimate of 

ER than sing a single round’s enrichment. For the round 5-8 triphosphorylation enrichment 

data, Method 2 had a tendency to over-fit to round 5 enrichment, while Method 6 over-fit 

round 8 enrichment, with both fitting poorly to all other round. Method 4 was chosen as the 

“best” method for this particular analysis, as it was mathematically simpler than method 5 

while showing similar goodness of fit across the population. 

As the triphosphorylation selection occurred in two separate selection branches with 

different time, the relationship between these two was used to normalized Ee(5m) and Ee(3h). 

We note that 𝐹� = 𝐴� 1 − 𝑒`¹º[�]Z  and thus 𝐸�/𝐶� = 𝐴� 1 − 𝑒`¹º[�]Z , where Ce is a 

fundamentally unknown scaling constant resulting from any of our fitting methods, though in 

this case specifically Method 4. Then we note that, for each individual sequence, 

𝐸� 𝑡B
𝐴�

= 𝑆� 𝑡B 1 − 1 −
𝐸� 𝑡; /𝐴�
𝐶� 𝑡;

Zu
Zq

3.13  

a relation derived from setting ki[S] equal at two different incubation times, with Ee being a 

linear rescaling of Fe for all sequences. 

The relationship of Ee(t1)/Ai to Ee(t2)/Ai over many sequences was used to determine 

the constants Ce(t1) and Ce(t2), for t1 = 5 min and t2 = 180 min. Curve fitting analysis between 

Ee for the two pools was performed with the Matlab curve fitting toolbox, using standard 
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settings for a nonlinear weighted fit to Equation 7 and weighting each sequence by a 

geometric average of total counts in 5m and 3h pools (summed over rounds 4-7). 

 

Figure 3.3. Fit correlation of multi-round fitness estimates 
Correlations were greater between Ee and ER when measuring the propagation of clusters and families (A-D) 
than when measuring individual sequences (E-F). Additionally, splitting into clusters based on the presence or 
absence of notable mutations (A and B) gave higher correlations than families grouped solely by similarity (C 
and D). Nevertheless, trends in the effectiveness of fitness estimation methods were similar for both sequence 
and cluster analysis, for both selection branches. r2 correlation does not depend on scaling or normalization. 
Black: Method 1; Blue: Method 2; Red: Method 3; Green: Method 4; Orange: Method 5; Gray: Method 6. 
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3.4. High-throughput activity estimation finds better ribozymes  

We sought to determine whether the HTS fitness analysis could identify higher 

activity ribozymes than those previously identified through the arbitrary sampling and Sanger 

sequencing of 36 clones from Rounds 5 and 8. We chose eight sequences with high Fe and 

high prediction confidence (see Appendix Table A.1 for details), and tested their activities by 

reaction with TMP and ligation of the triphosphorylated ribozyme by a ligase ribozyme, thus 

mimicking the conditions of the selection procedure 99. Importantly, conditions were chosen 

to precisely represent those of the in vitro selection, thereby measuring fitness as experienced 

during the evolution procedure. Each experimentally-measured reaction was done in 

triplicate, with multiple calculated values used to obtain average and standard deviation, as 

fit to equation (4.2). Several sequences from the previous publication were chosen and tested 

alongside these for comparison. 

New sequences reached considerably higher experimental activity than the ribozymes 

previously identified from the same selection (Figure 3.4, Appendix Table A.1); by contrast, 

sequence activity showed no correlation to abundance. Overall, this approach identified 

ribozymes with substantially greater activity while testing fewer individual sequences; six of 

the eight high-Fe sequences showed activity greater than or equal to the best of 36 

previously-tested ribozymes, by a factor of up to 10-20-fold. 

Most of the clusters of highest estimated fitness carried notable mutations, in that they 

contained sequences that outcompeted the original highest-count sequence in the family 

between Rounds 4 and 8. In the more stringent 5m selection branch, 34 out of the 59 highest-

abundance peaks at Round 8 displayed at least one notable mutation from the central 

sequence of Round 4, such that a large portion of the pool consisted of sequences similar to 
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these mutants. In such cases, the notable mutation appeared to demonstrate significantly 

increased survival fitness, with the new cluster rapidly enriching to outpace the old sequence 

center, with one such sweep shown in Figure 3.5. For clusters with high abundance at Round 

4, notable mutations (that would dominate in later rounds) typically each accounted for less 

than 1% of the cluster population at Round 4; thus, out-competing the original center over the 

next four rounds of selection would require a mutation with at least 1001/4 times (~3x) the 

fitness of the original center. To determine the effect of notable mutations on ribozyme 

activity, four sequences (1-S, 2-S, 6-S, 11-S) that clustered with previously tested clones, but 

also possessed notable mutations, were among those assayed experimentally. Three of the 

four mutants exhibited higher activity compared to the best previously identified clone from 

the same cluster (up to a five-fold increase), indicating that the notable mutations were 

usually beneficial. One sequence (2-S) showed a five-fold increase in activity despite a 

difference of only a single nucleotide (Appendix Table A.2). 

Overall, understanding the effects and prevalence of mid-selection mutations falls 

outside the main scope of this project, although chapter 6 describes epistatic analyses that 

may give insight into directed evolution during a selection. That said, our predictive methods 

here appear to estimate the activity of both high-count and rarer, mid-selection-mutation-

derived sequences with similar accuracy. This suggests that similar high-throughput 

approaches may be useful for understanding or optimizing mutational steps and parameters in 

addition to the selection-driven portion of controlled evolution. 

 

 



64 
 

 

Figure 3.4. Estimating catalytic rates for triphosphorylation ribozymes 
(A) Comparison of fitness estimated from the 5m and 3h branches (weighted r2 = 0.87), fit by setting k equal at 
two time points according to equation (3.13); the fitted parameters provide scaling constants Ce(5m) and Ce(3h). 
The area of each dot is proportional to relative abundance of each cluster. (B) Comparison of keAe estimated 
from HTS fitness (Method 4, split clusters along 5m branch), with kiAi observed as experimental chemical 
activity of individual sequences, for sequences described in Appendix Table A.1. Black points correspond to 
previously identified and tested sequences; red points correspond to eight new sequences expected to have high 
fitness and tested biochemically in the present study. Observed values of kiAi were obtained in triplicate, with 
error bars corresponding to standard deviation. The error ranges for keAe for individual sequences are expected 
to be on the order of ±50% (Figure 3.6). Overall, these points (with the linear trend line shown as a dotted black 
line) show an r2 correlation of 0.52. 
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Figure 3.5. Emergence of a notable mutation within a ribozyme family 
 (A) Relative abundance of sequences within a split family (Family 1, with clusters 1-O and 1-S), the highest-
abundance cluster at Round 8(5m). The cluster originated from in Round 1, consisting of a single center 
sequence (dark red), with similar mutants (light red) appearing in subsequent rounds. At Round 4, a notable 
mutation arose and swept through the family (center sequence in dark blue), accompanied by its mutants (light 
blue, consisting of all sequences closer in edit distance to the new cluster) as the original cluster center was 
outcompeted. Note that Rounds 4-8 experienced mutagenic PCR, resulting in sequence mutants appearing far 
more frequently. (B) The proportion of sequences clustered with the original center or shifted center over 
rounds. Red points/line show the fraction of the non-mutant cluster (cluster 1-O) that is composed of the 
original center sequence; blue shows the fraction of the new split cluster (cluster 1-S) composed of the new 
center sequence. The green line shows the ratio of new cluster sequences divided by old cluster sequences in the 
population. (C-F) Observed enrichment for Rounds 4-8 for all identified sequences within this family. On each 
graph, the x-axis denotes ER, and the y-axis denotes ER+1, with dot area corresponding to abundance at Round R. 
Blue dots denote sequences with an identified notable mutation (with the new center sequence in a darker blue); 
red dots lack that notable mutation (with the original center sequence in a darker red). This family underwent a 
clear shift toward the mutant cluster.  
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3.5. Consistency and noise in multiple-round selection enrichment 

 To analyze the noise present in observations of fitness during the selection experiments, Ee 

values were calculated for sequences and split clusters using Method 3. As Method 3 weighs 

contributions from all rounds of selection equally, its weighting constants CR (calculated as 

part of the linear combination estimate) were used as estimates of average round-by-round 

total enrichment and used to normalize ER for each round to the same scale as Ee. An 

approximate distribution of noise was generated from the absolute difference between Ee and 

ER/CR in each round, using proportional error »¼`»½,�/¾½
»¼

 for each sequence. Plotting 

abundance against this proportional error, we calculated a sliding standard deviation across 

the distribution, using a sliding window of width ±10 clusters or ±200 sequences. This 

analysis was also intended to judge the impact of abundance on fitness estimation error. In a 

selection behaving as ideally as possible, genetic drift would still be expected to contribute 

abundance-driven noise, as a normal distribution with mean and variance both equal to the 

ratio of sequenced pool size to real pool size.100 

Analysis showed that lower-abundance sequences enriched with greater noise, but 

enrichment noise did not drop below a certain proportional threshold for high-abundance 

sequences. This suggests that abundance-dependent noise (e.g., genetic drift) dominated the 

early rounds of selection and abundance-independent noise or error (e.g., experimental 

variations) had a greater effect on the enrichment of high-abundance sequences in later 

rounds of selection. Scale-dependent noise impacted individual sequences more than clusters, 

suggesting that in this case of isolated, narrow sequence clusters with long conserved motifs, 

enrichment of sequence clusters might be a better predictor of the fitness of individual 

sequences (Figure 3.6). 
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Notably, the proportional magnitude of abundance-independent noise was similar to 

the variation observed in experimental activity measurements. Such variation in sequence 

enrichment from round to round may be the result of experimental variation or sensitivity to 

minute changes in reaction conditions; over many rounds of selection, it may also have been 

responsible for some of the lack of agreement between sequence abundance and kinetic 

activity. 

To evaluate whether the evolution experiment would be suitable for retrospective 

analysis (described below), we measured the extent to which the selection as a whole 

followed ideal behavior as predicted by a basic Fisher’s Theorem (FT) analysis (see section 

2.1). In the case of discrete selection rounds, FT states that, assuming each allele’s fitness 

does not change, the change in average fitness of a population should equal the variance of 

sequence fitness in the population (normalized by mean fitness). While FT can predict 

general changes to a population’s fitness distribution, we used it here as an accuracy test. 

Specifically, FT was used to gauge the self-consistency of fitness estimation with actual 

changes in population composition, made possible by the multiple rounds of selection data. 

Obedience to FT by an evolving population would imply that the evolutionary dynamics are 

well-behaved and governed by rules of natural selection, and this was the case for 

evolutionary dynamics with fitness estimates for both clusters and individual sequences 

(Figure 3.7 A,B), suggesting that selection was the primary factor driving changes in the 

estimated fitness distribution of the triphosphorylase ribozyme pool. This concurrence 

indicates that that the selection behaved predictably and confirms that fitness mean and 

variance were accurately estimated. Sequence clusters followed FT more closely than 
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individual sequences, consistent with our earlier observation that a cluster-based analysis is 

subject to less noise.  

As expected, mean expected fitness 𝐹g  increased during the selection, with the 

higher stringency 5m selection branch resulting in approximately 2-fold greater 𝐹g   than the 

3h branch by Rounds 7-8. Interestingly, the variance of fitness also increased over time in 

both selection branches. Intuitively, this increase is expected during a selection from random 

sequence space, as the distribution of fitness is initially sharply centered near zero, and then 

spreads to include higher fitness values. To quantify this effect, we used the generalized 

discrete form of Fisher’s Theorem at the level of third moments, which can be reconfigured 

to state that that the change in fitness variance 𝜎;g between rounds is expected to equal the 

mean-scaled skewness ¿ ��` �� 	 À

��
 of the fitness distribution minus the change in average 

fitness squared: (𝜎;gAB − 𝜎
;
g) =

¿ ��` �� 	 À

��
− 𝐹gAB − 𝐹g ;, derived from equation 

(2.14). The fit of the data to this equation reflects whether the shape of the fitness 

distribution, as captured by the first through third moments, obeys expected dynamics. As 

skewness is a higher-order shape factor than mean or variance, this relation is expected to be 

more sensitive to noise or inaccuracies in the estimated shape of the fitness distribution. 

Clusters followed this corollary well, although individual sequences did not (Figure 3.7 C,D). 

Therefore, Fe based on sequence clusters gave a reasonably accurate estimate of skewness 

over the course of selection, and the shape of the fitness distribution based on clusters 

behaved in a predictable manner. Overall, these results suggest that Fisher’s theorem analysis 

may be a useful second tool for evaluating the consistency and usefulness of fitness 

estimation, in cases where multiple rounds of good selection data are present. 
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Figure 3.6. Distribution of enrichment noise across TMPase selection 
The distribution of noise present in this evolution experiment. All panels calculate a moving standard deviation 
for proportional error »¼`»½/¾½

»¼
, (red line) shown above the scatter plot of the absolute value of proportional 

error, 	 »¼`»½/¾½
»¼

, for all sequences (blue dots), plotted against abundance. (A-D) show error/noise for all split 
clusters in the 5m selection branch; (E-H) show 3h branch clusters. (I-L) show all sequences in the 5m 
selection branch, and (M-P) all sequences in the 3h branch. For the moving standard deviation, a sliding 
window of ±10 points was used for cluster distributions, and ±200 points for individual sequence distributions 
(this may potentially underfit the long distribution tail). 
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Figure 3.7. Fisher’s Theorem analysis of TMP selection 
(A) Cluster-based analysis shows good conformity to FT, suggesting changes in estimated fitness distribution 
agree with ideal selection dynamics. (B) Sequence-based analysis shows some conformity to FFTNS, though 
less than cluster-based analysis. (C) GFT at the level of skewness appears to be mostly followed in sequence 
clusters, whose skewness and change in variance follow the expected higher-order relation. (D). Sequence-
based analysis does not appear to follow the same GFT pattern, with skewness and change in variance of fitness 
distributions behaving unexpectedly. Dotted lines correspond to the expected 1:1 relationships. Blue: 5m 
branch; Orange: 3h branch. 
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3.6. Retrospective evolutionary analysis predicts an initial distribution of 

triphosphorylation activity 

Following analysis, cluster-based Method 4 fits were chosen as the most accurate estimate of 

sequence fitness for selection populations. Since the 3h selection branch underwent constant 

selection conditions (3 hour incubation time) from Round 1 through 8, Fe(3h) was used to 

characterize the overall distribution of Fe. Fe values were binned into a 40-box histogram to 

approximate the probability distribution function (pdf) of estimated fitness at round 4, the 

earliest round of selection in which most sequences had an estimated activity.  

Fitness distributions for Rounds 1-3 were calculated by a retrospective approach. In 

principle, the process of selection translates mathematically into the multiplication of the 

existing pdf by a selection function, analogous to equation (2.13). Dividing the estimated 

fitness pdf of one round by the pdf of the preceding round should yield this selection 

function, which was calculated from observed fitness pdf for each of Rounds 5-8 (Figure 

3.8), and which roughly fit to an expected linear shape. As described in the previous section, 

we consider Fisher’s theorem analysis of this evolution of fitness distribution consistent 

enough to approximate with the ideal case, which follows equation (3.2)—that is, each 

sequence’s abundance is multiplied by its fitness divided by a round’s average fitness. Thus, 

the pdf of fitness for Rounds 1-3 and for the initial pool of random RNA (Round 0) was 

estimated by back-calculation using Fe (figure 3.9); instead of dividing by average fitness 

(and potentially incurring errors from any inaccuracy in average fitness), we normalized each 

round’s pdf to integrate to 1, which was expected to have the same effect, such that 𝑝g 𝐹 =

Á�tu � /�

(Á�tu � /�)v�u
f

. (As described in section 3.1, F behaves as fitness value x in Chapter 2, but as 

a reacted fraction, is bounded to a maximum value of 1). 
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However, most sequences are expected to fit into the lowest-fitness histogram bin, 

which corresponds to a sequence space where most random RNA sequences have no 

catalytic activity, instead triphosphorylating at the base uncatalyzed rate. These exceedingly 

abundant, low-activity sequences are unlikely to survive past the first round except through 

stochastic processes, making the lower end of the distribution the hardest to accurately 

measure. As this is also the overwhelmingly most abundant part of the initial fitness 

distributions, small variations in the chance survival of a few low-activity sequences could 

have a large effect on the overall normalization of the initial distribution. This, fitting to a 

predicted round 0 probability distribution included multiplying proposed distribution 

functions by an arbitrary scaling factor, to account for this variability. 

This initial distribution of reacted fractions/selection fitness was then converted into a 

distribution of catalytic constants ki following equation (3.5), which required assuming a 

single A value, for which we used a rough average of all sequences whose kinetics were had 

been determined. No previous work had measured or approximated the distribution of a 

catalytic activity over random molecular space of this scale; here, analysis of HTS data 

allowed for the conversion of fitness information into kinetic parameters. The affinity of 

aptamers has been posited to be log-normally distributed, based on a model and experimental 

data for dsDNA-protein interactions in which individual base pairs contribute independently 

to overall binding energy 92,93,101. However, energetic contributions that are correlated along 

the sequence, such as from DNA bending, could alter this distribution 102. In the case of RNA 

folding, a theoretical model suggests that the activation energies of melting follow a 

Gaussian distribution,94 while folding simulations suggest that the distribution of minimum 

free energies for random RNAs is non-Gaussian.103 In microbial populations, the 
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distributions of fitness effects from new mutations have been fit to a variety of distributions, 

including normal and exponential.104 In addition, extreme value theory indicates that a high-

value tail can be approximated as a Pareto (scale-free) distribution if the value is comprised 

of independent random variables, a trend observed in previous comparisons of pool size and 

activity.91 We attempted to fit the empirically derived ribozyme rate constant distribution to 

log-normal, exponential, and scale-free distributions, as a log-log fit, with a log-normal 

distribution showing the best fit. 

To determine whether the three fitness distributions tested (log-normal, exponential, 

scale-free) could be differentiated in the presence of stochastic noise in abundances, 

simulations were also conducted. Each fit for the retrospectively inferred Round 0 Fe 

distribution was assumed to be an initial distribution and binned into a 30-bin histogram. 

Over four rounds of simulated “selection,” the abundance of each bin was increased by the F 

of that bin divided by that round’s average F, as 𝐹Â�>/ 𝐹g . To simulate random noise, the 

abundance of each bin was also multiplied by a normally-distributed random variable with 

mean 1 and standard deviation 0.5 (with a minimum bound of 0.05), expected to be equal to 

or greater than the actual noise in most real sequence’s enrichment. Following four rounds of 

simulated forward selection, each bin’s abundance was then divided by 𝐹Â�>/ 𝐹g , simulating 

a retrospective inference to recover the original distribution. Finally, the inferred R0 

distribution from each simulation was fit on a log-transformed scale to the candidate 

distributions (log-normal, scale-free, and exponential) and the r2 was calculated, averaged 

over ten simulations (Figure 3.10).  



74 
 

 

Figure 3.8. Measured selection function for fitness distribution change in TMPase selection 
The function pR(Ee)/pR-1(Ee), plotted on the y-axis, is expected to be proportional to Ee (calculated from Round 
4-Round 8 analysis), plotted on the x-axis (see Methods: Retrospective inference of underlying fitness and 
activity distributions; gaps in lines denote fitness histogram bins where PR(Ee) = 0). (A-B) Cluster-based 
analysis (left, 5m branch; right, 3h branch). Approximate linear relationships are indeed observed in cluster-
based analysis for ratios of Round 8/Round 7 (Blue), Round 7/Round 6 (Red), and Round 6/Round 5 (Yellow). 
Since Ee is proportional to Fe, these relationships indicate that a similar linear relationship holds for Fe. (C-D) 
Sequence-based analysis (left, 5m branch; right, 3h branch) was too noisy for retrospective inference. 
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Figure 3.9. TMPase fitness distribution and predicted distribution evolving across rounds  
(A) Distribution of estimated rate constants (kest) for sequence clusters over multiple rounds of selection; lines 
correspond to distributions measured from HTS data of Rounds 4-8 in the 3h selection branch (Yellow: Round 
8; Green: Round 7; Blue: Round 6; Purple: Round 5; Red: Round 4). (B) Inferred distribution of kest for 
sequence clusters in earlier rounds of selection; solid red line corresponds to Round 4 distribution, while dashed 
lines represent the retrospectively inferred distributions for Rounds 0-3 (Brown: Round 3; Yellow: Round 2; 
Green: Round 1; Blue: Round 0, i.e., initial pool). 
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Figure 3.10. Testing back-prediction with different simulated fitness distributions  
Test of fitness distribution inference in the presence of stochastic noise. Simulations began with the candidate 
initial distributions fit to the HTS data. Candidate initial distributions were log-normal (A), scale-free (B), and 
exponential (C) (in scale-free distribution, the scale-free and log-normal fits are overlapping). Black line: 
original distribution (as fit to estimated R0 data). Dashed line: distribution (not renormalized) after four rounds 
of enrichment + random noise. Gray line: R0 distribution retrospectively inferred from simulation of R4 + 
noise. Dotted lines are curve fits of the inferred R0 distribution (red line: log-normal; green line: scale-free; blue 
line: exponential). (D) Goodness of fit for different distributions fitting the inferred R0 distributions from 
simulations with added noise. Each r2 value is the average of 10 trials. Overall, retrospective inference recovers 
the original distribution of Fe. Since high r2 values can be found for different distributions, the pattern of 
residuals should be taken into account to determine the best fitting distribution to approximate the underlying 
curve. 
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3.7. Conclusion: A log-normal distribution of catalytic activity over random RNA space 

Despite experimental and theoretical interest, there is little consensus in the literature on the 

nature and shape of any such distribution for any ribozyme function, or for that matter any 

chemical function evolved de novo from a biopolymer sequence space. Here, in one 

particular activity and sequence space, we found that the inferred distribution of ribozyme 

rates in a random pool fit well to a log-normal distribution (Figure 3.11A). A log-normal 

distribution of catalytic constants k for ribozymes across sequence space could indicate a 

normal distribution of the corresponding activation energies. Although the observed 

distribution cannot be quantitatively translated into activation energies without knowledge of 

the Arrhenius pre-exponential factor (which we here call Arr to avoid confusion), we note 

that the probability density drops precipitously as rate increases, such that high-fitness 

ribozymes occur in the population as extremely rare events. A normal distribution of log(k) 

would then imply a normal distribution of Ea/RT + ln(Arr). If we posit that Arr is likely to be 

similar for most ribozymes of similar chemical function, the standard deviation of ln(k) 

should equal the standard deviation of Ea/RT, such that our calculated standard deviation 

σlog(k) = 0.665 corresponds to activation energy deviation σEa = 1.6 kJ/mol. 

This distribution of activation energies is surprisingly steep; under such a distribution, 

a ribozyme cluster with 100-fold higher activity than the mean would occur only once in a 

pool of 1011 sequences. The steep drop-off of the distribution can be put in terms of the 

expected activity of the best ribozyme in a pool of a given size (Figure 3.11B), which shows 

that even very large increases in pool complexity result in relatively small gains in activity. 

Interestingly, increasing the size of the initial selection pool under such a relation would 

provide diminishing returns; knowing the size of all of sequence space, we can hypothesize 
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an upper limit for the most active possible ribozyme. While various possible initial 

distributions of ribozyme activity have been proposed, the fit of rate constants to a single log-

normal distribution (and the fit of activation energies to a normal distribution) suggest that 

the ribozymes, despite the large heterogeneity of sequence, share an underlying pattern for 

the emergence of function, a pattern that may only become obvious when considering 

hundreds of unrelated catalytic motifs. One possible interpretation is that a normal 

distribution of activation energies reflects the energetic contributions of many independent 

interactions with finite variance, with the ribozymes each using a similar number of 

interactions. The apparent independence of small contributions could be tested by combining 

mutations.105 HTS could be used to expand and systematize such an approach. 

A few caveats should be mentioned regarding the use of HTS data to infer the 

distribution of rate constants. First, while sequence clusters exhibited behavior that was 

consistent with evolutionary theory, individual sequences were less well-behaved. The effect 

of this limitation can be seen in the somewhat imperfect correlation between kinetics 

estimated from HTS and kinetics determined biochemically for individual sequences. 

Additionally, any conversion of fitness to rate constants relies on assumptions about the 

kinetic model. In this case, the assumption of constant A necessary for estimating an initial 

activity distribution is known to be a simplification. A is presumably influenced by RNA 

folding and activity as a ligase substrate, in addition to the triphosphorylation reaction. While 

it may be justified as discussed above, based on the ribozymes observable in later rounds, it 

is possible that the statistical properties of A differ for lower activity ribozymes. In that case, 

it would not be possible to disentangle the effect of k and A on fitness, although F would still 

have biochemical meaning as the fraction reacted. 
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With respect to the distribution itself, it should be noted that there is presumably an 

upper limit to activity that truncates any probability distribution function in reality. That is, 

increasingly precise arrangements of nucleotides at the active site, and correspondingly 

higher catalytic rates, are presumably limited by the RNA's steric mobility around a catalytic 

site. Structural and/or chemical limits in RNA would provide an upper limit for the possible 

catalytic rate enhancement, affecting the distribution at very high activity; these limits may or 

may not be close to the estimated upper activity limit suggested by the overall shape of the 

initial distribution. 

Finally, the surprisingly steep drop-off in the frequency of high-activity ribozymes, 

and the accompanying flatness of the expected maximum k vs. complexity curve (Figure 

3.11B), suggests that the ribozyme activity level in this case is largely determined by the 

nature of the function, not the complexity or diversity of the library. For some functions, a 

relatively low-complexity pool of RNA may thus possess ribozymes of biochemically 

significant activity, suggesting that the emergence of some catalytic functions may be 

substantially easier than of others, making high-throughput estimation of activity 

distributions a useful tool for identifying the most evolvable chemical functions in both RNA 

world studies and directed evolution for other de novo functions. 
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Figure 3.11. An initial fitness distribution for TMPase ribozyme activity  
(A) The high-activity (right-sided) tail of the initial distribution of rate constants (k) is fit by a log-normal 
distribution (Red line: log-normal distribution P7 =

B
Ãm ;Ä

exp − (dE	m	`	Å)q

;Ãq
 with σ = 0.665, µ = −5.375, pdf 

scaling factor = 54.3, and nonlinear r2 = 0.933; dotted green line corresponds to fit scale-free distribution P7 =
Æ.ÇÈ∗[;É.Ê]Ë.À¢

mÌ.À¢
, with pdf scaling factor = 0.00807 and nonlinear r2 = 0.910; dotted blue line corresponds to fit 

exponential distribution P7 = 89.08e`ÈÊ.7Èm, with pdf scaling factor = 1390 and nonlinear r2 = 0.859. (B) Best 
ribozyme activity predicted by pool size, according to the inferred log-normal distribution of sequence 
activities. This curve is quite flat and suggests that large increases in complexity are needed for relatively 
modest gains in the activity of the best ribozyme. 
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4. Measuring ribozyme activity over an entire evolutionary space 
Parts of this section were adapted from Pressman, A., Liu, Z., Janzen, E., Blanco, C., Muller, 

U.F., Joyce, G.F., Pascal, R, Chen, I.A., J Am Chem Soc. (not yet published at the time this 

was written). Reprinted with permission from ACS. 

 

4.1. Background: Prior limitations of fitness landscape approaches 

Section 3.1 describes the challenges and recent advances in estimating evolutionary fitness or 

direct kinetic activity for a large number of sequences within an evolving population. But if 

our goal is mapping out potential pathways of evolution for a de novo function or 

mechanistic change, it is not sufficient to measure the frequency with which catalysts of 

various strength are distributed across molecular space. We also want a picture of the 

individual peaks in fitness space, the valleys between them and paths by which they may be 

crossed, as well as the local topography surrounding evolutionary-optima and how that might 

affect evolvability. As described in section 1.4, fully understanding the evolutionary 

possibilities of a molecular space requires measuring the fitness of every possible molecule, 

creating a topographical “fitness landscape.” And while various parameters can capture key 

features of a fitness landscape, an ideal approach would be able to simultaneously measure 

the chemical activity of every possible molecule capable of performing a given function. 

To this end, existing research has taken one of two approaches. Molecular screening 

methods, described in section 1.4, directly measure the kinetics of every molecule in a 

population. While originally based in microarray techniques,24,52-54 newer screening approach 

have used High-Throughput Sequencing (HTS) itself as a screening tool. In studies of self-

cleaving RNA,59,60 sequencing has proven an accurate measure of the fraction of each 
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sequence that survives a selection step; studies in aptamers have gone further, using HTS to 

characterize the fraction of each unique sequence that survives a pulldown.106 Such non-array 

screening methods can accurately characterize each sequence in a population, as long as each 

sequence is present at multiple count in the sequenced pools. However, with the limits of 

current DNA sequencing technology, HTS screening methods can only measure the activity 

of ~106-107 unique sequences, while array-based methods are even more limited in their 

depth. One solution to this has been choosing a sufficiently small scope: the work described 

above focuses on either extremely small sequence spaces of 10 varying nucleotides or less, as 

well as single-peak fitness landscapes covering only small mutations around a wild-type core 

sequence. 

In contrast, one other approach to generating complete fitness landscapes, based on 

work in the Chen lab, has focused on the use of selection to cover an extremely large 

landscape. Jimenez et al.43 demonstrated that a typical starting pool of ~1014 sequences is 

sufficient to cover a sequence space with 20 random nucleotides at 100-fold (that is, an 

average of 100 copies of every possible sequence in the starting pool). Under this selection 

scheme, nearly every aptamer of sufficiently high affinity was expected to survive selection, 

and nearly every aptamer surviving selection was expected to have high affinity. This 

requires a well-defined initial pool, but potentially expands the analysis, as it is no longer 

limited by the sequencing throughput but by the complexity of the initial pool, which is 

larger by several orders of magnitude. Although detailed information cannot be obtained 

about lost mutants, their disappearance indicates low fitness. More generally, depending on 

the hypothesis or question being investigated, in vitro selections from a large, random pool 
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that only sparsely covers sequence space can still provide insights into general underlying 

trends in the larger, un-measurable spaces.42,58 

 Such “selection-heavy” coverage approaches have been able to identify numerous 

unique peaks corresponding to every likely active motifs across a sequence space, as well as 

many of the sequences in those peaks. But they have also been unable to accurately measure 

selection fitness or chemical activity of those peak sequences. As the goals of a fitness 

landscape approach include viewing the evolutionary tradeoffs along pathways between 

peaks, as well as the slope, roughness, and other topology of high-activity regions, a fitness 

landscape that only outlines peaks and potential pathways is of limited value. Instead of 

vague patterns of abundance or enrichment, we ideally seek a landscape in which the 

chemical activity of every possible sequence is directly measured. Thus, as described in the 

next section, the work in this chapter sought to combine selection and screening approaches, 

in order to map a fitness landscape both A) large enough to contain multiple peaks of 

unrelated catalytic mechanism, and B) with the same accurate activity measurement of a 

screening approach. 

 

 

4.2. Theory: SCAPE, k-Seq and “virtual arrays” 

As described in the previous section, there are fundamentally two main strategies to measure 

fitness landscapes: selection-based approaches, which can reduce a large and diverse pool of 

sequences down to a small and manageable number, and screening approaches, which can 

accurately measure many molecular activities in parallel but are limited by experimental 

design. To combine the two, we have developed a methodology that combines full-coverage 
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selection with screening-based activity measurement to observe the kinetics of every high-

activity ribozyme (or other functional molecule) capable of surviving selection. In the current 

work, we use this combined approach, termed SCAPE (sequencing to measure catalytic 

activity paired with in vitro evolution), to map a comprehensive ribozyme activity landscape. 

We focus on oxazolone-aminoacylation, an activity that would be foundational to protein 

translation, whose patterns of de novo emergence are of general interest to the study of how 

life evolved (Section 1.5). Biotinylated methyl tyrosine oxazolone (BTO) was chosen as a 

reaction substrate, due to its relative ease of manufacture and storage (vs. other activated 

amino acids) and synthesized by our collaborators, Robert Pascal and Ziwei Liu. 

The SCAPE strategy begins with a population of molecules that covers nearly all 

possible sequences (here, N=21 nucleotides, for a starting library that includes ~80 copies of 

every possible RNA polymer sequence). In a first step, this library is subjected to in vitro 

selection for aminoacylation activity to isolate the ribozymes. In a second step to assay the 

ribozyme activities, a pool from the selection that includes many different active sequences 

(~108, with ~105 appearing multiple times) is reacted at multiple substrate concentrations and 

products are isolated and sequenced on the Illumina platform. The sequencing output 

functions as a “virtual array”—a certain percentage of each sequence is self-modified and 

survives a purification step, thus giving a signal analogous to the fluorescent density of a 

microarray spot with ribozyme activity that reacts to a tagged substrate. We refer to this 

second step as kinetic sequencing (k-Seq), and in the aminoacylation selection it was used to 

measure the percentage of each ribozyme activated at four different substrate concentrations, 

in triplicate. While the k-Seq assay can only measure the activity of a small number of 

sequences (relative to all possible monomer patternings), we expect most high-activity 
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sequences to survive selection, and most selection-end sequences to be of high activity. Thus, 

by running in vitro selection until the population is tractably small (5 rounds of selection here 

enough to reduce diversity from ~1012 to ~108), the remaining sequences can be measured, 

allowing k-Seq to quantify reaction products and rates of potentially hundreds of thousands 

of sequences in parallel. 

The k-Seq step is experimentally similar to previous rounds of selection; a 

representative round with manageable but sufficient diversity (105-106 expected unique 

sequences) is used for one final selection round. In this case, the selection is carried out many 

times in parallel, with different reactions varying the concentration of substrate (or the 

reaction time, or another selection parameter). The total number of recovered sequences is 

measured, by use of a spiked-in nonreactive sequence or other method; after sequencing each 

individual reacted pool, the reacted fraction can be calculated for every sequence present 

under every tested reaction concentration. In the SCAPE methodology, it is assumed that 

most high-activity sequences survive selection until the k-Seq round, and that most surviving 

sequences are of high activity. Thus, while SCAPE cannot test every single sequence present 

in a large sequence space, it can measure high-activity sequence (or nearly every one, 

accounting for stochastic losses) present in the starting population. If the sequence space is 

small enough to synthesize with high coverage, it then becomes possible to effectively 

measure biochemical activity across an entire fitness landscape of possible molecules. 

In principle, the mathematics involved in k-Seq are fairly simple. For first-order 

ribozyme catalysis, data points were fit to equation (3.5), where each catalyst has the 

individual constants Ai and ki representing overall stability and kinetic rate. For an in vitro 

enzyme selection, we would use the same math, with Ai representing the rate of proper 
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protein expression. In the case of an aptamer or in vitro antibody or peptide aptamer 

selection, we would instead use equation (3.6), etc., as described in section 3.1. 

In applying the SCAPE method, our oxazolone aminoacylation selection was carried 

out on a library of 71-nucleotide RNA sequences, with a 21-nt randomized central region; 

this gave a total sequence space of 4x1012 possible sequences, allowing the first round of 

selection to be carried out at 85-fold coverage. Six rounds of in vitro selection for 

aminoacylation activity were conducted, using a biotinylated tyrosine analog, biotinyl-

Tyr(Me)-oxazolone (BTO), with aminoacylated RNA sequences recovered through the use 

of Streptavidin beads and replicated through reverse-transcriptase polymerase chain reaction 

(RT-PCR). The progress of the selection was followed by high-throughput sequencing, 

which yielded 2x106 – 1x107 sequence reads per round of selection. Two replicates of the 

selection were performed (RS1 and RS2). Analysis was conducted using RS1, with data from 

RS2 to confirm reproducibility of the selection. After the selection was completed, a set of 

“k-Seq rounds” were selected from the round 5 RNA pool, using four different substrate 

concentrations, each in triplicate, at similar sequencing depth. These k-Seq sequence 

abundances, normalized by a nonreactive spike-in sequence of known concentration, were 

used to generate activity curves for approximately 9x106 sequences, of which about 3x105 

displayed increased activity over the baseline uncatalyzed aminoacylation rate. 

 

Figure 4.1. k-Seq schematic 
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In k-Seq, an RNA pool enriched for active ribozymes is reacted at multiple BTO concentrations, in triplicate. 
Captured RNA is then reverse-transcribed and sequenced. Activity curves are constructed for sequences 
detected in the enriched pool. 
 
 

4.3. Oxazolone aminoacylation selection results 

Overall, numerous related families of active ribozymes were observed in the aminoacylation 

selection, with distinct repeated motifs appearing in Round 4 (Figure 4.2A,B). Three distinct 

motifs were identified from the top 20 sequence families, which comprised 80% of sequence 

reads by Round 6. Notably, each family showed one of these three motifs present at a slightly 

different location within the 21-nucleotide random region, suggesting conserved sets of 

active nucleotides that survived selection despite being located at different positions within 

sequence space. Every one of the top 20 families present in the first selection, RS1, were also 

present in a duplicate selection, RS2, with similar rates of enrichment (Figure 4.2C). Of these 

three motifs, Motif 1 contained the shortest conserved region (Figure 4.2D) and encompassed 

the greatest number of unique sequences. Motif 1 could be further categorized into three sub-

motifs (1A, 1B, 1C) by differences in the conserved region, with 14 of the top 20 families 

belonging to Motifs 1A and 1B. Motif 2 contained fewer unique sequences than Motif 1, but 

more than Motifs 1A, 1B, or 1C. Motif 2 also included Family 2.1, the most abundant family 

of the pool. Motif 3 comprised the smallest fraction of the pool and encompassed the fewest 

unique sequences.  

k-Seq estimates for activity could be obtained for 8.9x106 sequences, but the majority 

of sequences were present at low count and correspond to low activity (Figure 4.3). ~105 

unique sequences were found to have activity >10-fold above the non-catalytic background 

rate (i.e., catalytic ratio ri > 10, where ri = kiAi/k0A0, with k0 and A0 being reaction parameters 
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for uncatalyzed aminoacylation of random RNA). To determine how well k-Seq results 

corresponded with results of the standard assay, we chose ten sequences that are close to the 

consensus sequences of the high- or medium-activity families (Appendix Table A.3, with all 

five motifs and sub-motifs represented) and measured aminoacylation activity by a standard 

Streptavidin gel-shift assay after reaction with the biotinylated substrate (explained further in 

Appendix Figure A.5). In the k-Seq assay, we reacted a heterogeneous pool from in vitro 

selection, containing many different RNA sequences, with BTO and pulled down the 

aminoacylated RNAs with streptavidin beads. These sequences were expected to span 

approximately one order of magnitude in their overall catalytic rates. Rate constants 

determined from k-Seq matched well with gel-shift measurements (Figure 4.4A,B, Appendix 

Table A.3). All k-Seq and gel-shift measurements were performed in triplicate and the 

standard error was similar between k-Seq and gel-shift measurements (Figure 4.5A). 

Measurement error during k-Seq decreased as sequence read abundance increased, becoming 

substantial for sequence read abundances <10-6, as expected for stochastic noise (Figure 

4.5B). 

Notably, the noise in sequence estimation was lower for most sequences than in the 

case described in section 3.5, suggesting k-Seq as a more robust activity estimation method 

than our best estimates from multiple-round selection data. However, the relative scarcity of 

high-activity, measured sequences in all but the final round of selection prevented the use of 

a detailed Fisher’s Theorem analysis as described in the same section. 

The best ribozyme found here has a rate constant comparable to that of ribozymes 

using a biologically derived aminoacyl adenylate,40,107 indicating that these reactions could 

proceed efficiently even with only prebiotic substrates.  High-activity sequences (e.g., the 
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center of Family 2.1, with rS-2.1-a = 1010 and kS-2.1-a = 779 ± 21 min-1M-1) exhibit saturating 

kinetics from k-Seq, providing both the rate constant (ki) and the maximum amplitude of 

reaction (Ai). However, the reaction for lower activity sequences (approximately ki < 20 min-

1M-1) appears linear under the conditions tested, so that ki and Ai are difficult to estimate 

separately using these data; instead the combined parameter kiAi can be estimated (Figure 

4.5D).  

The most highly abundant sequences from each major motif were chosen (S-1A.1-a, 

S-1B.1-a, S-2.1-a, S-3.1-a; see Methods for sequence nomenclature) for characterization of 

the reactive site. Identification of the site was performed by another member of the Chen 

group, and is described further in Appendix A.2. While the reactive site was conserved for 

sequences from the same major motif (e.g. S-1A.1-a and S-1B.1-a, both from Motif 1), the 

site differed among sequences from the three major motifs, indicating that ribozymes with 

different motifs utilize different detailed mechanisms. 

The log-normal distribution shape for catalytic activity kiAi, is consistent with prior 

findings.58,108 Since the rate constant scales exponentially with the activation energy, it was 

of interest to determine the distribution of ki alone. For the highest activity family (2.1), 

many ribozymes could be characterized by ki and Ai separately. ki was observed to fit a log-

normal distribution, indicating that activation energies are normally distributed for a 

ribozyme family (Figure 4.5E,F). The distribution of Ai, which represents the maximum 

extent of reaction and may indicate the fraction of RNA that is well-folded, also fit a log-

normal distribution well, suggesting that folding energies may also be normally distributed 

for a ribozyme family. For the regime in which ki and Ai could be determined separately, 



90 
 

these parameters are not well-correlated with each other, suggesting no relationship between 

the catalytic rate and fraction folded.  

 
Figure 4.2. Results of aminoacylase selection 
(A) Pool composition over Rounds 4-6 after clustering. The top 20 families are indicated in non-neutral colors; 
gray corresponds to un-clustered sequences; white corresponds to families with rank by abundance >20. 
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Families from sub-motif 1A (purple), 1B (dark blue), and 1C (cyan), and Motif 2 (green) and Motif 3 (yellow) 
are shown. Inset: Abundance of the top 20 families in Rounds 4-6 (same color scheme, except that the dotted 
black line corresponds to families of rank >20). (B) Magnified version showing families ranked 6-20. (C) Plot 
demonstrating concordance of top 20 families discovered in two selection branches. Dot size corresponds to 
family rank in RS1 (see Methods). Enrichment ratio across rounds shows some correlation. (D) SeqLogo 
representations of motifs.  

 

Figure 4.3. Initial activity distribution for aminoacylation ribozyme space and families  
Distributions for the 9 highest activity families are plotted individually. The overall curve, including all families 
(black), is driven at higher activities by contributions from the families shown, which make up a significant 
portion of high-activity sequences. 
of unity. 
 
 

 
Figure 4.4. Comparing k-Seq to experimental activity measurements  
(A) Aminoacylation at various [BTO] for ribozyme S-2.1-a observed by both gel shift (kA = 706 ± 117 min-1M-

1) and k-Seq (kA = 652 ± 3 min-1 M-1). Data for all other measured ribozymes are shown in Supporting Figure 3. 
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Error bars correspond to standard deviation among triplicates. (B) Correlation between catalytic ratio of ten 
ribozymes, measured by gel shift assay and k-Seq. Error bars correspond to standard deviation among 
triplicates. (R2 = 0.87; catalytic ratio calculated from values given in Appendix Table A.3). Dotted orange line 
indicates line of unity. 
 
 

 
Figure 4.5. The distribution of noise in k-Seq measurements  
(A) All data points from gel-shift assays (10 sequences, 4 concentrations of BTO, 3 replicates), compared to k-
Seq measurements of sequence recovery for the same sequences. Error bars are standard deviation of triplicates. 
(B) Catalytic rate enhancement (k-Seq) vs Round 6 abundance for all sequences in family 2.1. Sequences sorted 
by distance from peak center (d = 0,1,2,3, colored as blue, red, green, and purple, respectively). No correlation 
observed between abundance and catalytic ratio. (C) For all sequences in family 2.1, proportional standard error 
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is higher at very low abundance than at higher abundance. Most sequences having abundance >10-6, and nearly 
all sequences having abundance >10-5 have proportional error < 1. These values may be consistent with 
stochastic noise due to stochastic sampling of sequencing reads. (D) k  vs A for all sequences in Family 2.1. For 
sequences of low k, a fit with A=1 is found; k A is still expected to be accurately estimated, but parameters 
cannot be estimated separately with accuracy as the curve appears linear in this range. For sequences of higher 
ki , there appears to be little correlation between ki  and Ai. The distributions of k (E) and A (F) fit well to log-
normal distributions (dotted red line, nonlinear R2=0.99 for k, and R2=0.97 for A).  
 
 

4.4. A large, quantitative fitness landscape and its evolutionary pathways 

Overall, the results described in the previous section suggest several key features of the 

aminoacylation activity landscape constructed through SCAPE: 1) Our landscape likely 

identified all major activity peaks in the 21-varying-nucleotide sequence space, measuring at 

least the highest-activity catalysts with decent accuracy; and 2) Conserved regions appear 

small and varied enough, and the random region large enough, that our landscape contains 

several different catalytic mechanisms for achieving the same chemical function. This is 

significant, as prior measurements of fitness landscapes achieve only one of these points 

(section 4.1); we are thus able to observe multiple different evolutionary paths to the same 

biochemical outcome, with substantial resolution and kinetic data around each unique 

reactive mechanism. 

A series of single mutations defines an evolutionary pathway between two sequences. 

Although there are very many conceivable pathways, many of these include intermediate 

sequences of low fitness. Under selection, such fitness valleys represent dead ends that 

effectively block evolution. An open question (mentioned also in section 1.5) is whether 

viable evolutionary pathways exist between different sequences that catalyze the same 

reaction. Using the chemical activity data from k-Seq, we searched for viable evolutionary 

pathways between center sequences of the major ribozyme families (Figure 4.6, Appendix 

Table A.4). A broad network of pathways existed among Families 1A.1, 1B.1, and 1C.1, with 
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a <10-fold catalytic rate decrement at the lowest point of the best pathways. Thus the families 

of Motif 1 form a ‘plateau’ in the chemical activity landscape, corresponding to the small 

size of Motif 1. Similarly, viable pathways exist between the two top families of Motif 2. 

Although Motif 2 encompasses a smaller region of sequence space compared to Motif 1 due 

to a larger conserved region, Motif 2 contains the global optimum of the landscape.  Viable 

pathways were not found between families of Motif 3, likely due to the small number of 

unique sequences in this motif. Within Motifs 1 and 2, the number of viable pathways was 

relatively small, suggesting that evolution within a motif would be fairly reproducible.  

However, evolutionary pathways between motifs appeared strikingly different. The 

only pathways that could be constructed between different motifs contain fitness losses down 

to baseline activity, with multiple mutational steps occurring at near baseline activity. The 

closest apposition of motifs was a pathway between Family 3.1 and Family 1A.1, which 

involves five consecutive intermediates expected to have only baseline activity (i.e., r ~ 103-

fold less than rS-2.1-a and with aminoacylation likely to occur at random sites or the 3’-OH 

end). The global optimum (Family 2.1) is particularly isolated, with ~10 mutations at 

baseline activity required along any pathway toward a different motif. These pathways would 

not be viable under selection, indicating that optimization of activity over the global fitness 

landscape would be frustrated. 
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Figure 4.6. Evolutionary pathways for oxazolone aminoacylase ribozymes  
(A) Catalytic ratio along the best pathway discovered from the center of Family 1B.1 (blue, S-1B.1-a), to 1A.1 
(purple, S-1A.1-a), to 2.1 (red, S-2.1-a), to 2.2 (orange, S-2.2-a). Capital letters denote sequence positions 
changing at each step; underscore indicates a deletion. Note the large drop in activity required to cross between 
Motif 1 and Motif 2. Error bars are standard deviation from triplicate measurements. (B) Evolutionary network 
displaying the best 10 pathways discovered between the centers of six key families (1A.1, 1B.1, 1C.1, 2.1, 2.2, 
and 3.1) representing each motif and sub-smotif, as well as the two most active centers from motif 2. Each node 
is an individual sequence with activity measured by k-Seq as indicated by color (see legend; red indicates 
activity equal to or below the baseline uncatalyzed rate). The strength of the lines indicates mutational distance 
between sequences; intermediate sequences along the dotted lines have baseline activity. The majority (67%) of 
the edits along these pathways are substitutions; the remainder are insertions/deletions. 
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4.5. Conclusion: SCAPE reveals a highly frustrated evolutionary network 

In the SCAPE method, a ribozyme fitness landscape can be mapped in two steps. First, the 

vast majority of inactive sequences are removed from the pool through in vitro selection. 

Second, the catalytic activities of the remaining sequences are directly assayed by kinetic 

sequencing (k-Seq). In this case, k-Seq yielded estimates for ~105 unique sequences (a 

number that in general depends on pool diversity, activity distribution, and sequencing 

depth). Using SCAPE, we mapped a first comprehensive fitness landscape for catalytic 

activity. We discovered ribozymes that self-aminoacylate using a 5(4H)-oxazolone, a key 

step toward the genetic code. The best ribozyme found here has rate constant comparable to 

that of ribozymes using a biologically derived aminoacyl adenylate,40,107 indicating that these 

reactions could proceed efficiently even with only prebiotic substrates.   

Fundamentally, the motivation for SCAPE analysis is to learn about molecular 

evolution by measuring all viable evolutionary pathways and networks through sequence 

space, providing a complete map for how a given biochemical function can evolve (or be 

evolved) into or between different catalytic peaks of high activity. We found that, while some 

viable pathways exist locally around an optimum, most conceivable pathways toward the 

global fitness optimum (Family 2.1) are blocked by extensive fitness valleys. In general, 

valleys appear to occur when mutations that are separately beneficial or neutral become 

detrimental together.109-112 The likely reason is that the three major motifs differ in 

mechanism and structure, as indicated by their different aminoacylation sites. It appears that 

the mechanism cannot be changed without destroying the structure of one ribozyme and 

building another, requiring extensive mutations at negligible activity. Such evolutionary 
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walks would be essentially impossible while under selection for catalytic activity, frustrating 

optimization over the network. 

This landscape can be compared to other landscapes and evolutionary pathways 

described for functional RNA. Specifically, it addresses the hypothesis of neutral networks (a 

proposal discussed in section 1.5). While in general theoretical studies have suggested the 

possibility of comprehensive, evolvable networks between diverse peaks in fitness space for 

early life-analog ribozymes,94,113,114 such networks have been difficult to find in practice.115 

One possible intuitive interpretation of these aggregated results is that evolutionary pathways 

for ribozymes may be viable when structural and/or mechanistic features can be conserved, 

but that pathways toward a new fold or motif are usually not viable. A second interpretation 

is that the appearance of “neutral” networks may to some extent be an artifact of selection 

processes; while we were indeed able to find “pathways” of sequences connecting all major 

peaks in our landscape, real catalytic measurement of these intermediate sequences revealed 

them to have little to no activity, likely simply the result of a few random sequences 

surviving the initial rounds of selection. An important caveat is that the landscape has been 

described under constant selection for a particular catalytic activity; changing environments 

or selection pressures may significantly alter this picture, but this is something that may be 

testable by future fitness landscape studies varying additional environmental conditions 

under k-Seq. 

The evolutionary frustration inherent to the ribozyme activity landscape is analogous 

to frustration found in other physical systems. A classic illustration of frustration is the anti-

ferromagnetic spin glass, in which energy would be minimized by antiparallel placement of 

neighboring electronic spins.41,116,117 In certain configurations (e.g., a triangle), no placement 
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of spins can satisfy all desired constraints, leading to rugged energy landscapes. Walks on 

such energy or evolutionary landscapes are characterized by sensitivity to initial conditions, 

frustrated optimization, and multiple possible outcomes. Thus, in the absence of 

recombination or other mechanisms to increase diversification,112 the emergence of a 

globally optimal sequence is likely to result from chance events rather than natural selection, 

as shallower local optima become effective fitness traps. This is a significant result for the 

emergence of one particular ribozyme function in the origin of life (or in de novo selection 

for an engineered aminoacylation system), but the extent to which these results can be 

expanded to other examples of evolution relies on application of the SCAPE methodology to 

additional evolutionary systems. 
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5. Limitations of the k-Seq assay 

5.1. The curious k-Seq conundrum for a TMP phosphorylase  

As a follow-up to the successful generation of an oxazolone aminoacylation landscape, we 

decided to attempt a similar analysis on the TMP triphosphorylation ribozyme selection 

discussed in Chapter 3. This experiment did not fall under the typical SCAPE methodology, 

as the pool of ribozymes had been selected from an infinitesimally small partial coverage of 

sequence space, with mutagenic PCR generating sequence-variant fitness peaks around each 

high-activity sequence present in the initial pool. However, the presence of > 300 apparently-

unrelated active catalytic motifs was determined to be a suitable subject of interest. 

Here, the actual k-Seq step was performed by the Müller lab, which had previously 

carried out the triphosphorylation selection; we carried out sequencing and analysis of the 

data similarly to the aminoacylation case, but the k-Seq rounds were carried out under a 

different protocol. Specifically, our collaborators suggested varying reaction time instead of 

substrate concentration so that all reactions could be taken out as quenched aliquots from a 

single reaction. The presence in the selection of a ligation step whose efficiency varied by 

sequence also reduced the ability of a spike-in sequence to accurately quantitate recovery 

through normalization, such that kinetic fitting could be assumed to accurately determine ki 

but not Ai for each sequence. Additional complicating steps in the selection meant that only a 

single replicate was carried out, instead of the parallel triplicates of each sample used in the 

aminoacylation experiment. Overall, while the aminoacylation selection had been designed 

from the start to fit the criterion for an effective SCAPE experiment, the triphosphorylation 

selection contained additional complicating steps, and was chosen as a test of k-Seq in a non-

ideal, more chaotic setting. 
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Unfortunately, the results of this k-Seq selection proved inconclusive. For a number 

of sequences synthesized and tested, chemically-measured and k-Seq-predicted catalytic 

activity showed almost no correlation (Figure 5.2A). After some consideration and further 

analysis, we settled on several hypotheses for why this approach was not nearly as accurate 

as our previous use of k-Seq: 

1) Fundamentally, the triphosphorylation selection had been an extremely sensitive 

one; larger variations were observed in round-to-round sequence enrichment in this selection 

than in the aminoacylation selection (compare Figures 3.6, 4.5C). In fitting kinetic curves to 

k-Seq data points, the data themselves were slightly less “curve-shaped” in the 

triphosphorylation selection than in the aminoacylation selection, resulting in the latter giving 

kinetic fits with lower correlation (Figure 5.2C). This may be a relatively isolated problem, 

as the triphosphorylation was especially finicky and sensitive, with its activity varying 

substantially more between measurements. It may also be the result of an inability to 

accurately fit only ki and not Aiki, as we saw in the aminoacylation case that k-Seq can fit Aiki 

substantially more accurately than either single parameter for lower-activity sequences. 

2) The data inconsistencies could be an artifact of sequence choice. While 

aminoacylation ribozymes were chosen as the centers of large sequence families, the 

triphosphorylation selection contained far more diversity of active motifs. Thus, sequences 

were chosen based on their activity (as an expected 100%, 90%, 80% etc. of the highest-

activity sequence) rather than the specifics of their sequence. If we expect a mean random 

variance in sequence activity of ±30%, with a large population of sequences, we could 

conceivably see at least a handful with observed activity over 2x greater than the highest 

actual activity; thus, the highest-activity sequence (and all sequences with at least half its 
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activity) might very well be all or mostly casualties of stochastic effects or measurement 

noise, as described in sections 3.5 and 4.3. Over the range of activities observed and tested, 

this might be capable of providing enough chaos to obfuscate any correlation between k-Seq 

and chemically-tested activity measurements. 

3) The addition of many rounds of mutagenized PCR to the triphosphorylase selection 

left most sequences at extremely low copy number in the selected pool, and most of those 

chosen were of low abundance. Ongoing theoretical work by another member of the Chen 

group has suggested that k-Seq becomes inherently unreliable once sequence abundance falls 

below a certain threshold in an idealized case. While the triphosphorylase ribozymes chosen 

had abundance above this threshold, the actuality might require a slightly larger abundance 

cap for reliable prediction than the theoretical simulations suggest. 

Unfortunately, lack of a k-Seq replicate makes it impossible to determine which 

combination of these factors may have confounded the triphosphorylation attempt. As at least 

one possibility is inherent randomness in the reaction itself, it was decided that rather than 

spend additional time and resources on redoing the experiments, future focus should be on 

specific methods to improve the accuracy of existing k-Seq data, as described in the next 

section. 
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Figure 5.1. Kimitations of k-Seq analysis applied to TMP ribozyme selection  
(A) k-Seq estimated vs. experimentally-determined activity for 10 new sequences chosen specifically for k-Seq 
analysis of the TMP triphosphorylase ribozyme system. Sequences were chosen to correspond to a range of 
expected activity. Higher-abundance sequences showed some correlation HTS-predicted and experimentally-
measured catalytic ratio; taken as a whole set, very little correlation is observed. (B) The individual ligation 
rates, measured both experimentally and by k-Seq, for each incubation time point for all 10 new sequences. 
Compared to figure 4.5A, we observe significantly less correlation between the two values under individual 
measurement conditions. (C) Reaction vs. time curves for investigated sequences show some irregularity. 
  
 
 

5.2. Improving k-Seq accuracy through library manipulation 

The presence of a known non-reacting RNA spike-in sequence in both k-Seq tests led, among 

other things, to an interesting dilemma: constructing a “peak” around this dummy sequence 
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led to a number of single-mutant variants, making up about 3% as many sequences as the 

correct version in the aminoacylation case and about 20% as many sequences in the 

oxazolone case. Since each spike-in sequence had been ordered as a single DNA sequence, 

this implied the introduction of mutational variation either through transcription, reverse 

transcription, PCR, or sequencing itself (with the longer triphosphorylation spike-in 

acquiring more errors). A close reading of enzyme manufacturers’ protocols suggests that T7 

polymerase had the highest error rate of any of these steps, and was thus likely introducing 

unintentional slight mutation rates at every round of selection. 

In the aminoacylation selection, miscopying 3% of every sequence’s random region 

gives about 0.5 copies of each specific mutant for any copied sequence. While relatively 

small, this still functions as a limiter on the accuracy of certain points in our SCAPE-

generated landscape. Due likely to stochastic effects in the early rounds of selection, the 

highest-count sequences in each of the top 3 aminoacylation peaks appear at greater than 

2000x the abundance of the lowest-count sequences, which gives T7 polymerase errors the 

potential to slightly bias measurement of low-count sequence activity. The effects of such 

bias are likely to be relatively small, and likely to impact mostly the sequences closest to 

family centers, leaving most of the shape of our predicted fitness landscape (and the 

pathways between peaks) intact. It does, however, limit our confidence in measurements of 

fine peak topography such as epistasis and certain roughness parameters (discussed in the 

next section), whose analysis relies specifically on the variation in activity between high-

abundance sequences and their closest neighbors. 

A number of methods already exist to address these concerns, and it remains to be 

seen whether or not such remediation even changes epistasis calculations. Techniques for 
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normalizing libraries of highly-varied sequence abundance have existed for decades,118,119 

and represent one possible step to add to the SCAPE protocol if necessary. A simpler option, 

and one we are currently testing, involves synthesizing new libraries comprising the local 

sequence space around all major peaks. While this method may sacrifice some coverage of 

fitness space, the initial SCAPE approach is still able to pinpoint all possible active motifs, 

and a more detailed follow-up may be able to determine whether the local topography of 

disparate fitness peaks is homo- or heterogeneous in different regions of sequence space. The 

next chapter describes how this approach may be able to answer additional open questions 

about evolutionary spaces and how to map them. 
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6. Potential high-definition landscape topography 
The work in this chapter primarily corresponds to my contribution to an in-progress 

publication, which is awaiting one final set of experimental data (k-Seq over a library 

corresponding only to local peak sequences) to confirm or contradict the findings briefly 

proposed here. 

 

6.1. Background: Epistasis in real fitness landscapes 

While evolutionary pathways determine global evolvability of functional molecules across a 

fitness landscape, local evolvability is generally governed by subtler local topography. The 

ease with which a sequence can reach a local maximum in activity depends on its epistasis 

(as introduced in Section 1.3), which is the dependence of fitness effects on multiple sites. In 

an evolutionary system with little epistasis, swapping out one monomer at a time, and 

choosing the replacements that increase activity, would be sufficient to evolve the best 

possible catalyst or reagent sequence for a given task. In a system with significant epistatic 

effects, evolving the highest-activity sequences would require a significant mutation rate and 

many rounds of selection. 

Theoretically, a system with complete or near coverage of sequence space—such as 

our SCAPE landscape—benefits less from epistatic analysis, as no mutation or additional 

evolution is required to identify the most active sequences. But epistasis distributions and 

roughness measurements provide a simple means to generalize evolvability of a landscape, 

which helps us to understand how a given function could evolve in a history-of-live setting, 

or how a similar but unstudied function could be engineered to evolve. And epistasis is 

already widely studied in lower-coverage fitness landscapes, especially those of natural 
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proteins, where only a small local band of fitness space can be studied. Analysis of epistasis 

on in vivo protein landscapes is more common than on in vitro systems, but generally limited 

to a small number of peptide sites, a limited library of amino acid substitutions, or one 

specific set of evolutionary paths.27 Weinreich et al. compiled a comprehensive review of 

these studies, showing that in these limited-landscape cases, in vivo protein epistasis tends to 

be primarily dominated by low-order epistatic effects of only a few loci,120 although higher-

order epistasis was notable in some cases. A local fitness landscape for four positions in 

protein GB1 revealed a very interesting feature – although many direct evolutionary 

pathways were blocked by reciprocal sign epistasis, these evolutionary dead ends could be 

avoided by following indirect paths in the sequence space.57 Limited epistasis and 

evolutionary detours suggest short neutral pathways; whether these could combine over 

larger sequence space to form a neutral network is still unknown. We thus chose our 

aminoacylation landscape as a subject for epistatic analysis to both A) investigate SCAPE’s 

ability to provide high-quality epistasis data that might be useful in future comparison studies 

and B) observe whether patterns of epistasis in a synthetic ribozyme mirror or differ from 

those in naturally-occurring protein-based catalysts. 

One may also ask whether real fitness landscapes can be generally fit to rough 

empirical fitness landscapes models. One 2013 meta-analysis found general trends in 

ruggedness and epistasis across a number of such studies, with many showing reasonable 

agreement41 with patterns expected from the Rough Mt. Fuji model, in which a perfectly-

smooth fitness landscape is overlaid with an uncorrelated pattern of random roughness.121,122 

Efforts to connect empirical data to these models are important for gaining an intuitive grasp 

of the topography of fitness landscapes. It currently remains an open question whether any 
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empirical fitness landscape models can also describe effects fitness landscapes over a larger 

scale, or ones that contain multiple unrelated high-activity peaks. 

 

 

6.2. Theory: Topography and ruggedness of fitness landscapes 

Overall, the dominant types of epistasis give a sense of the sort of “curvature” of a fitness 

peak in evolutionary space. Here, the terminology is somewhat confusing, and can depend on 

the sequence chosen as a baseline or “wild-type” (wt) for investigating epistatic effects 

(Table 5.1). While multiple definitions of epistasis exist, for purposes of studying epistasis on 

our aminoacylation landscape we chose log-fitness, such that the epistasis of combined 

mutations a and b, 

ε¯,Î = ln
r¯Î
rÏ+

− ln
r¯
rÏ+

− ln
rÎ
rÏ+

6.1  

 

where rwt is the catalytic enhancement ratio of a chosen peak center “wild-type,” and ra the 

enhancement of the baseline sequence modified by mutation a. 

For simplicity, we choose the highest-activity sequence in a fitness peak as our 

baseline (such that all single monomer changes are deleterious). Then an abundance of 

positive magnitude epistasis, where the effects of two individual mutations are greater in 

combination, leads to a “dome-shaped” peak, where fitness drops off first gradually and then 

quickly with an increased number of sequence substitutions—in such a case, the peak may 

function as more of a small plateau of high local evolvability. Negative magnitude epistasis, 

where two individual mutations have less of an effect in combination, leads to a “needle-
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shaped” peak, where fitness drops off sharply with any changes to the ideal sequence and 

then gradually with additional changes—such a peak might be harder to find through random 

evolutionary walks but easier to maintain through additional rounds of evolution once found. 

Sign epistasis, where two negative mutations in combination have a less negative effect than 

one individual mutation, leads to a peak surrounded by local smaller peaks or “saddle 

points”—in this case, changes to the ideal sequence might be offset by compensating 

mutations at other monomer sites. 

Beyond basic, two-mutation combinations, other types of epistasis can be investigated 

at well. Higher-order epistasis looks at either the effects of more than two changes, or of the 

effects of two larger changes (i.e. the epistatic effects of two multiple-monomer 

substitutions). To evaluate interaction between a double mutation and a third mutation (c), 

we calculated  

𝜀�,ÂÑ = ln
𝑟�ÂÑ
𝑟ÓZ

− ln
𝑟�
𝑟ÓZ

− ln
𝑟ÂÑ
𝑟ÓZ

6.2  

with 𝜀Â,�Ñ and 𝜀Ñ,�Â defined and calculated in analogy, for all combinations of three 

mutants observed; this is referred to as “a-bc epistasis”, in analogy to the “a-b epistasis” of 

double mutants. We also calculated a triple “a-b-c epistasis”, defined as 

𝜀�,Â,Ñ = ln
𝑟�ÂÑ
𝑟ÓZ

− ln
𝑟�
𝑟ÓZ

− ln
𝑟Â
𝑟ÓZ

− ln
𝑟Ñ
𝑟ÓZ

6.3  

although this could not be classified in direct analogy to the other epistatic 

observations. 

Overall, the ratio of different epistatic effects can be appraised through various 

ruggedness parameters, which give general numerical descriptors of how “smooth” or 

“bumpy” a landscape is. For our purposes, the most useful is probably epistatic correlation 
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γd, further discussed in Appendix A.3, which is defined for each possible pair of mutations 

over a varying background of edit distance d. 123  γ1 = 1 indicates a perfectly smooth 

landscape with no epistasis, γ1= 0 indicates a completely uncorrelated landscape, and γ1 = -1 

indicates a maximally rugged, anticorrelated landscape dominated by reciprocal sign 

epistasis. The changes in γd as d varies indicate how many key positions are involved in 

determining a sequence’s sensitivity to variation. If γd remains high, we expect the same 

positions in a key motif to be conserved even as the other positions vary, but if it drops off 

quickly as d increases we expect the key active monomers to change more fluidly across 

sequence space. 

 

Single mutants Double mutant Category 

 rab = rarb no epistasis 

ra > rwt and rb > rwt rab > ra and rab > rb magnitude epistasis 

ra < rwt  and rb < rwt rab < ra and rab < rb magnitude epistasis 

ra > rwt  > rb ra > rab  > rb magnitude epistasis 

ra < rwt  < rb ra < rab  < rb magnitude epistasis 

ra > rwt and rb > rwt rab < ra and rab < rb reciprocal sign epistasis 

ra < rwt and rb < rwt rab > ra and rab > rb reciprocal sign epistasis 

ra > rwt  and rb > rwt  ra < rab  < rb or 
ra > rab  > rb 

partial sign epistasis 

ra < rwt  and rb < rwt  ra < rab  < rb or 
ra > rab  > rb 

partial sign epistasis 

ra > rwt  > rb ra < rab or rb > rab partial sign epistasis 

ra < rwt  < rb ra > rab or rb < rab partial sign epistasis 

Table 6.1. Explanation of epistasis terms used in this chapter 
As the language of epistasis can often be confusing or inconsistent, we provide here the definitions of various 
discussed categories of epistatic interactions. 
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6.3. Possible epistatic analysis of a multi-peak ribozyme activity landscape 

As discussed in section 5.2, the realities of polymerase-induced errors throw question onto 

the use of our aminoacylation fitness landscape for epistatic analysis. Thus, current 

experiments on this system are focused on measuring a new k-Seq data set from a more-

normalized library, generated by heavily-mutagenizing the top sequence peaks from every 

active motif. As no previous study has ever compared the shape and topography of multiple 

unrelated peaks in a fitness landscape, such analysis has merit, regardless of what specific 

patterns it shows. Specifically, it may be able to answer whether different evolved 

mechanisms for the same chemical function, generated from the same biopolymer system, 

show similar or different patterns of evolvability. To that end, one result is suggested by our 

existing SCAPE data; once the new k-Seq data has been sequenced, new numbers will be run 

through the same scripts and workflow, with a potential future publication presenting the 

resultant epistasis analysis. 

In analysis using existing SCAPE data, major aminoacylation ribozyme families 

displayed similar patterns of epistasis. Epistasis was substantial, as the measured activity of 

double mutants did not correlate with expectation based on single mutants. The distribution 

of epistasis values was roughly symmetric around 0 (i.e., interactions were roughly equally 

likely to result in higher vs. lower activity than expected), with the typical epistatic effect 

having a magnitude |ε| ≈ 1.5, indicating that the typical double mutant showed activity ~5-

fold different from expectation (Figure 6.3). Most combinations of beneficial mutations show 

negative epistasis (i.e., a concave-down curvature immediately near the fitness peak), 

consistent with expectations from diminishing returns epistasis 124. Measures of higher-order 

epistasis (triple mutants; see previous section) show a distribution of epistasis values and 
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categories similar to that of double mutants (Figure 6.3), demonstrating that addition of a 

third mutation has quantitatively similar effects as addition of the second mutation. 

The majority of interactions exhibited magnitude epistasis (i.e., the activity of a 

double mutant was aligned in direction with the expected linear combination of single 

mutants but differed in magnitude). However, roughly one third of interactions exhibited sign 

or reciprocal sign epistasis (i.e., the activity of the double mutant was affected in direction 

opposite to expectation). Sign epistasis represents a drop in activity along either the path 

wt→a→ab or the path wt→b→ab, while reciprocal sign epistasis represents a drop in 

activity along both such paths, suggesting that 20–40% of evolutionary steps within an edit 

distance of 2 from the center sequence would be blocked in the strong-selection/weak-

mutation regime for each family (Table 6.1). 

Analysis of γd for individual ribozyme families, carried out by another member of the 

Chen group (Appendix Figure A.6) indicates that the overall topography of each peak can be 

described as a combination of two components: a 'smooth' component (~40%) in which 

mutations have additive effects on catalytic activity, and a 'rough' component (~60%) that 

represents deviations from additivity (i.e., epistasis). This combination resembles the so-

called Rough Mt. Fuji model, which consists of a perfectly smooth peak overlaid by 

uncorrelated ruggedness. However, sequences that did not survive selection were included 

and assigned baseline activity, then families showed a gradual decrease of γd as d increased, 

matching the exponentially decreasing pattern expected for a rugged NK model (Appendix 

Figure A.6).125 Here the decreasing pattern of the γd curve is consistent with an important role 

for reciprocal sign epistasis associated with highly deleterious mutations and implies that 

ruggedness increases over larger length scales, consistent with separate peaks in a landscape 
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being uncorrelated. Overall, the different peaks show similar ruggedness, with high-activity 

regions resembling a RMF model and the overall region resembling an NK landscape.
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Figure 6.2. Distribution of fitness effects across individual ribozyme families  
(A) Number distribution of catalytic power for sequences of Family 2.1. The blue filled circle indicates the 
center sequence (edit distance d=0). Single (d=1), double (d=2), and triple (d=3) mutants are shown in red, 
green, and purple filled circles, respectively. Dotted lines show log bimodal normal fits to each mutant 
distribution (R2 = 0.98, 0.96, and 0.99, respectively). The overall distribution of fitness effects from single, 
double, and triple mutants may be conserved across different key mechanistic structures performing the same 
ribozyme function; further data will help to confirm or refute this. (B) Heat map representation of number 
distribution for single and double mutants of Family 2.1, by nucleotide position (y-axis; SeqLogo given along y-
axis). Distributions were smoothed as a sum of normal distributions based on the average and standard error of 
each sequence’s activity (kA) measured by k-Seq (weighted based on expected Round 1 loss). Sequences not 
observed were assumed to have baseline activity. Such approaches may be able to identify sites with a greater 
portion of deleterious/neutral mutations within large sequence peaks. 
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Figure 6.3. Distribution of epistatic effects across individual ribozyme families  
(A-C) show categorization of double mutant (a-b) epistasis and (D-F) show categorization of triple mutant (a-
bc) epistasis across three different ribozyme families. Overall, the general shape and proportional composition 
of epistasis appears remarkably similar for each different active ribozyme motif. Further data may be helpful in 
confirming or refuting this first observation of epistasis compared across different fitness landscape peaks. If 
true, the extent of homogeneity is significant. (G-I) show the overall distribution of epistasis values for a-b 
(orange), a-bc (blue), and a-b-c epistasis (gray). Results suggest that epistasis may be similar in its magnitude 
for these peaks at both higher and lower numbers of interacting mutation sites. 
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6.4. Conclusion: Aminoacylation landscape may show surprising homogeneity 

The prevalence of epistasis, and the decrease of γd to 0 across low-activity sequences, suggest 

our aminoacylation landscape may be consistent with the “thermodynamic threshold model” 

in which biomolecular activity falls abruptly when mutations decrease stability below a 

sustainable level.126,127 This may help to explain the relatively small number of sequences 

(>105 out of >1012) displaying activity significantly higher than the baseline; it may also be a 

feature of intermediate-to-low-activity sequences simply failing to survive the initial 

selection rounds of SCAPE. Unlike previous studies of epistasis across a substantial local 

fitness landscape,126,128 we observed roughly equal frequency of positive and negative 

epistasis values. That is, an additional mutation was equally likely to interact synergistically 

or antagonistically with the genetic background. Epistasis and ruggedness metrics are 

surprisingly consistent across several unrelated ribozyme families, suggesting that epistatic 

findings may be generalizable either across the entire fitness space of RNA-catalyzed 

aminoacylation, or possibly across a larger category of ribozymes as a whole. Overall, we 

expect further, higher-quality epistasis data to soon answer these questions, and in the future 

provide an additional analytic step downstream of SCAPE analysis. 
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7. Future prospects and conclusions 
“A mathematician may say anything he pleases, but a physicist must be at least partially 

sane.” 

 – J.W. Gibbs, On the Relation of Mathematics and Physics, Dec. 1944 

 

7.1. Landscapes for molecular specificity and environmental conditions 

A current open question in the RNA world is whether changing pH, salt concentration, or 

molecular crowding in an early earth ocean might make certain evolutionary pathways more 

or less accessible; but tolerance to environmental conditions is also a general concern in the 

optimization of many functional proteins.129-134 Studies of local fitness landscapes in proteins 

and functioning cellular RNA have suggested that landscapes can vary significantly under 

different reactive or growth conditions, including changes to the overall evolvability and 

epistasis of these systems. 135,136 

The k-Seq methods described in this work should be able to easily investigate such 

questions as they apply to environmental effects on the evolvability of an aminoacylation 

ribozyme. The actual environmental conditions of an early earth environment are fairly 

unknown; it remains to be seen whether varying reaction buffers or other conditions might 

increase the appearance of neutral pathways between currently-isolated fitness peaks in our 

aminoacylation landscape. The answers to such questions require only repeating certain 

experimental steps under different reaction conditions—and the ability to build fitness 

landscapes under multiple different conditions may be of special interest to bioengineered 

systems designed to function both in vitro and in vivo. 
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Beyond selecting sequences with high and predictable fitness, another important 

consideration in in vitro selections is specificity. In aptamers and antibodies, a highly specific 

binder forms a very stable with its target molecule and not other, similar molecules; in 

ribozyme and enzyme selections, a high-specificity catalyst incorporates one substrate into a 

reaction far more readily than other similar alternatives. Aptamers and antibodies, when 

selected naively, sometimes display too much nonspecific binding to be useful in a diagnostic 

or biological setting. Often, a selection can generate several high-fitness sequences whose 

specificities vary dramatically, and it can be hard to predict whether a selection will produce 

aptamers or ribozymes of useful specificity, requiring characterization and testing of each 

final sequence to measure this.137,138 Counter-selection to remove sequences from a pool with 

an “off-target” substrate can help to control specificity,139 but counter-selection also increases 

the runtime and complexity of selections, with no current work examining ideal conditions 

for such steps. 

One of the challenges in dealing with specificity of selection products is that no 

research exists comprehensively investigating the distribution of specificities in any in vitro 

selection. Competing theories in aptamer selection suggest either selecting high-affinity 

binders and then optimizing with mutagenesis for specificity of binding, or selecting high-

specificity binders and then optimizing those to improve binding fitness.23,137 The 

effectiveness of either approach depends on the combined distributions of fitness and 

specificity over sequence space; a pool whose peaks show mostly constant affinity but 

locally-varying specificity would suggest the first approach, while a pool whose peaks show 

mostly constant affinity with locally-varying affinity would suggest the second. Measuring 

the specificity space of ribozymes relevant to early life could also potentially answer 
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questions about an RNA world, demonstrating which ribozyme functions may have been 

more likely to descend from a single progenitor with mutation-varied substrate specificity 

than from parallel evolution for the same. 

Conceptually, mapping and building specificity landscapes for a given selection or 

family of selections should function similarly to calculating fitness landscapes. The next step 

of the aminoacylation landscape study, currently being carried out by new members of Chen 

lab, involves using SCAPE to build parallel fitness landscapes for aminoacylase ribozymes 

selected with different amino acid substrates. We expect that this will allow construction of 

the first large, complete landscape of catalytic specificity, answering questions of whether 

one basal aminoacylase could evolve into many specific variants, or whether different 

aminoacylases more likely evolved independently. Demonstrating the use of this method for 

building specificity landscapes should also show the extent of its feasibility for answering 

questions of specificity in general, which we expect, combined with questions of 

environmental generation, to form the next generation of fitness landscape approaches to 

understanding engineered evolution. 

 

7.2. SCAPE and k-Seq tools 

Beyond the experimental side, other work being carried out on this project involves making 

existing tools for SCAPE and k-Seq easier to use. To that end, the collection of scripts 

currently used for this analysis is being refined into a set of easier-to-use tools for 

distribution on the Chen lab github. (github.com/ichen-lab-ucsb). Concurrent work by 

another member of the Chen group has identified minor improvements to the mathematics of 

the SCAPE method, which are described in Appendix A.4. 
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7.3. Final Thoughts 

The overall goal of this project was not simply to study several specific questions, but to 

build a better analytical framework for studying evolutionary spaces—and, to some extent, to 

shift the level at which fitness landscapes are discussed. The practical uses of artificial 

selection are, to some extent, not as pronounced today as they were five years ago. Advances 

in molecular screening and DNA synthesis allow sizeable landscapes of molecules to be 

constructed and immediately tested from scratch, in workflows increasingly paired with in 

silico predictions of putative catalysts or aptamers. Directed evolution still remains a 

powerful and widely-used tool for maturation of pharmaceutical antibodies, as well as our 

best method for investigating possible reactions in the origin of life, but rational design 

methods are beginning to answer some questions that once only selections could touch. At 

the conferences I have personally attended, selection just feels like a less sexy research area 

than it used to; synthetic biology, as a field, seems to be moving away from new ways to find 

functional molecules and towards new things to do with those molecules and methods. 

But artificial selection, the oldest tool in the bioengineer’s handbook (by around 

10,000 years), isn’t going away just yet. And the work described in this report demonstrates 

several ways that analysis of selections can answer questions it previously could not. Very 

few basic fitness distributions have been mapped out at any notable resolution, for any 

biological function. With a new theory-based approach to approximate these “starting 

curves” for directed evolution, we have the ability to greatly expand our repertoire of 

knowledge regarding the distribution of chemical activity over random biopolymer space. 

Such distributions may one day be helpful in providing realistic bounds on in silico 
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simulations, and the ability to estimate these distributions as they evolve may be of direct aid 

now to the automation of genetic engineering, which remains a rapidly-growing field of 

interest. 

Plus, no matter how much progress is made in biopolymer synthesis and molecular 

simulation, it will be a long time before any method other than selection can investigate 

sequence spaces on the order of trillions of functional molecules. With fitness estimation and 

k-Seq methods, we are able to bridge some of the gap between screening and selection 

methods, allowing any simple selection to be transformed into a direct chemical activity 

assay. By combining the search space of selection with the quantitative nature of such 

screens, our SCAPE methodology has successfully built the largest activity landscape ever 

characterized, covering a sequence space six orders of magnitude larger than anything 

similarly measured. We have observed the first comprehensive fitness landscape with 

multiple unrelated peaks, quantifying the paths between unrelated ribozyme mechanisms as 

evolutionarily unfeasible in an aminoacylation system. Questions of homogeneity across a 

large and diverse fitness landscape may also be answerable, though final confirming data is 

still needed. Perhaps most significantly, we have effectively mapped all possible routes by 

which a specific catalytic activity can evolve from random RNA space, hopefully creating a 

new standard that can be used in many future studies on the evolutionary possibilities of 

novel chemical functions. 

Evolution is a powerful engineering tool, and its applications are far more diverse 

than a single reaction, or even a single type of functional molecule. It is my sincerest hope 

that this work is able to inspire other researchers, across different areas of biochemistry and 
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engineering, to approach their research on evolution and artificial selection with a greater eye 

for mathematical analysis, and a better set of tools to perform that analysis. 
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Appendix A: Additional Protocols and Data 

A.1. Data on tested sequences 

Here we present kinetic data on all sequences tested as part of the analysis in Chapters 3 and 

4. Unless otherwise indicated, error bars are the result of triplicate analyses. 

 

Sequence Name 

Initial rate 
estimated by 
HTS (keAe) 
(min-1M-1) 

R8(5m) 
Abundance 

Initial rate measured 
experimentally (kiAi) 
(min-1M-1) 

Previously 
Identified? 

1-S 0.476 ± 0.238 0.1581 0.124 ± 0.033 No 

2-S 0.761 ± 0.381 0.0449 0.278 ± 0.149 No 

3-S 0.369 ± 0.185 0.0229 0.807 ± 0.171 No 

4-S 0.431 ± 0.215 0.0435 0.212 ± 0.026 No 

6-S 1.547 ± 0.774 0.0497 0.770 ± 0.166 No 

8 0.298 ± 0.149 0.0759 0.080 ± 0.46 No 

11-S 1.192 ± 0.596 0.0125 1.638 ± 0.078 No 

22-S 1.072 ± 0.536 0.0060 0.412 ± 0.281 No 

R5_3C21 0.115 ± 0.058 0.0060 0.074 ± 0.083 Yes 

R8_35C18A 0.143 ± 0.072 0.0097 0.023 ± 0.003 Yes 

R8_35C18B 0.173 ± 0.087 0.0130 0.020 ± 0.001 Yes 

R8_55C10 0.423 ± 0.212 0.0102 0.030 ± 0.001 Yes 

R8_35C10 0.173 ± 0.087 0.0130 0.050 ± 0.001 Yes 

R8_55C18 0.158 ± 0.079 0.0030 0.036 ± 0.001 Yes 

R8_35C16 0.295 ± 0.148 0.0457 0.025 ± 0.001 Yes 
 
Table A.1. Activity of tested TMP ribozymes  
Table 2. Ribozyme activity assayed experimentally, comparing newly identified ribozymes with the best 
previously identified 99. Estimated and measured values were calculated as described in Supplementary Text. 
Bold indicates newly-identified sequences. Errors given are ± 1 standard deviation, as described in Methods and 
Supplementary Text, with the standard deviation of ke calculated from cluster abundance as a scale-variant error 
of ±50% for cluster enrichment. 
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New 
Sequence 

Measured 
Ligation % 
(3h) 

Similar Previously-
Tested Sequence 

Measured 
Ligation % 
(3h) 

Edit distance 
between 
sequences 

1-S 3 R8_55C12 4 13 
11-S 52 R8_35C16 24 6 
6-S 39 R8_55C4 7 5 
2-S 21 R8_55C6 4 1 

 
Table A.2. Triphosphorylase families undergoing a notable mutational shift 
Of sequences predicted to have high fitness and tested experimentally in isolation, four were similar to 
previously tested sequences99 but differed by possessing notable mutations. In three of these four cases, the 
minor sequence variations caused a substantial increase in ribozyme activity; one of these differed by only a 
single nucleotide (the center shift of a notable mutation).  

 

 

Name Sequence (random region) A (by 
gel) 

A (by 
k-Seq) 

k (by gel) 
(min-1M-1) 

k (by k-Seq) 
(min-1M-1) 

Reason chosen 

S-2.1-a ATTACCCTGGTCATC
GAGTGA 0.450 ± 

0.012 

0.161 
± 
0.007 

1570 ± 
260 779 ± 21 

Most abundant 
sequence, most 
abundant family 

S-2.1-b ATTACCCTGGTCATC
GAGTGT 
 0.446 ± 

0.072 

0.158 
± 
0.007 890 ± 267 729 ± 28 

Second-most 
abundant seq., 
most abundant 
family 

S-1A.1-a CTACTTCAAACAATC
GGTCTG 

0.708 ± 
0.008 

0.283 
± 
0.069 303 ± 29 121 ± 11 

Most abundant 
sequence, 
second-most 
abundant family 

S-1B.1-a CCACACTTCAAGCAA
TCGGTC 

0.708 ± 
0.124 

0.865 
± 
0.185 247 ± 49 46.2 ± 17.6 

Most abundant 
sequence, third-
most abundant 
family 

S-1B.2-a CCGCTTCAAGCAATC
GGTCGC 

0.704 ± 
0.238 

0.669 
± 
0.275 112 + 23 47.3 ± 11.5 

Most abundant 
sequence, 
fourth-most 
abundant family 

S-1B.3-a CCGAGTTTCAAGCAA
TCGGTC 0.700 ± 

0.064 

0.458 
± 
0.313 194 ± 19 71.2 ± 20.6  

Expected to 
have medium-
high activity 

S-3.1-a AAGTTTGCTAATAGT
CGCAAG 

0.825 ± 
0.006 

0.134 
± 
0.013 169 ± 12 142 ± 3 

Most abundant 
sequence, most 
active family of 
motif 3 

S-2.2-a ATTCACCTAGGTCAT
CGGGTG 

0.404 ± 
0.050 

0.132 
± 
0.019 355 ± 75 197 ± 9 

Second-most 
active family 
from most-
active motif 

S-1A.4-a CTCTTCAAACAATCG
GTCTTC 0.719 ± 

0.249 

0.251 
± 
0.145 127 ± 860 74.9 ± 5.2 

Expected to 
have medium-
low activity 
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S-1C.1-a CTCTTCAATAATCGG
TTGCGT 0.516 ± 

0.048 

1.000 
± 0.00
0 

81.5 
± 20.4 6.65 ± 0.75 

Most abundant 
sequence, least 
active motif 

Baseline 
Activity 

N/A 

  
0.645 ± 
0.283 0.124 

Baseline 
catalytic 
activity of 
starting pool 

 
 
Table A.3. Aminoacylation ribozymes chosen for gel-shift assay.  
Ten sequences were chosen for gel-based activity testing; nine were the highest-abundance centers of a range of 
different sequence families (± indicates standard deviation of triplicates). k-Seq activity estimates were not 
adjusted for expected loss due to column binding and recovery, as described in Methods; expected loss from a 
linear fit of these data is 80.7% (or 19.3% of aminoacylated sequences retained). Since the baseline activity 
measurement does not include these losses, we calculate the estimated k-Seq equivalent baseline k0A0 = 0.193 * 
0.645 = 0.124 min-1M-1, for comparison to k-Seq values in calculation of catalytic ratio. 

 

Start 
Sequence 

End 
Sequence 

Name Total Path 
Length 

Path Steps Largest 
Step 

Minimum 
Count 

S-1A.1-a 
 

S-1B.1-a 1A-1B:1 7 7 1 4 
1A-1B:2 7 7 1 4 
1A-1B:3 7 7 1 4 
1A-1B:4 7 7 1 4 
1A-1B:5 7 7 1 4 
1A-1B:6 6 5 2 12 
1A-1B:7 6 5 2 12 
1A-1B:8 6 5 2 9 
1A-1B:9 6 5 2 9 
1A-1B:10 6 5 2 7 

S-1A.1-a 
 

S-1C.1-a 1A-1C:1 8 6 2 4 
1A-1C:2 8 6 2 4 
1A-1C:3 8 6 2 4 
1A-1C:4 8 6 2 3 
1A-1C:5 8 6 2 3 
1A-1C:6 7 5 3 13 
1A-1C:7 7 5 3 10 
1A-1C:8 7 5 3 7 
1A-1C:9 7 5 3 7 
1A-1C:10 7 5 3 3 

S-1B.1-a S-1C.1-a 1B-1C:1 12 9 2 2 
1B-1C:2 12 9 2 2 
1B-1C:3 12 8 2 2 
1B-1C:4 12 8 2 2 
1B-1C:5 12 8 2 2 
1B-1C:6 11 7 3 3 
1B-1C:7 11 7 3 3 
1B-1C:8 11 7 3 3 
1B-1C:9 11 7 3 2 
1B-1C:10 11 7 3 2 

S-1A.1-a S-2.1-a 1A-2:1 24 11 4 2 
1A-2:2 24 11 4 2 
1A-2:3 24 11 4 2 
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1A-2:4 24 11 4 2 
1A-2:5 24 11 4 2 
1A-2:6 15 7 5 2 
1A-2:7 15 7 5 2 
1A-2:8 15 7 5 2 
1A-2:9 15 7 5 2 
1A-2:10 15 7 5 2 

S-1A.1-a S-3.1-a 1A-2:1 27 11 4 2 
1A-2:2 27 11 4 2 
1A-2:3 27 11 4 2 
1A-2:4 27 11 4 2 
1A-2:5 27 11 4 2 
1A-2:6 12 9 5 2 
1A-2:7 12 9 5 2 
1A-2:8 12 9 5 2 
1A-2:9 12 9 5 2 
1A-2:10 12 9 5 2 

S-2.1-a S-3.1-a 1A-2:1 21 9 4 2 
1A-2:2 21 9 4 2 
1A-2:3 21 9 4 2 
1A-2:4 21 9 4 2 
1A-2:5 21 9 4 2 
1A-2:6 18 7 5 2 
1A-2:7 18 7 5 2 
1A-2:8 18 7 5 2 
1A-2:9 18 7 5 2 
1A-2:10 18 7 5 2 

S-2.1-a S-2.2-a 2-2.1:1 5 5 1 2 
2-2.1:2 5 5 1 2 
2-2.1:3 5 5 1 2 
2-2.1:4 5 5 1 2 
2-2.1:5 5 5 1 2 
2-2.1:6 5 4 2 40 
2-2.1:7 5 4 2 13 
2-2.1:8 5 4 2 13 
2-2.1:9 5 4 2 13 
2-2.1:10 5 4 2 3 

 
Table A.4. Properties of pathways between aminoacylase ribozyme peaks 
For each pathway found between peak centers of interest, 10 pathways were found as described in Methods. For 
each path, “largest step” corresponds to the edit distance of the largest step present within the pathway, and 
“minimum count” is the lowest Round count (# of sequence reads) of any sequence that the pathway passes 
through. 
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A.2. Identification of aminoacylation ribozyme sites for top motifs 

The work in this section was primarily done by Evan Janzen as part of an upcoming 

publication (though I assisted with interpreting the results), but may also be helpful in 

understanding the overall project described in Chapter 4. 

The most highly abundant sequences from each major aminoacylation ribozyme motif 

were chosen (S-1A.1-a, S-1B.1-a, S-2.1-a, S-3.1-a; see Methods for sequence nomenclature) 

for characterization of the reactive site. Identification of the site was performed in two steps. 

First, reverse transcription is known to be sensitive to 2' adducts, such that stalled products 

can be used to identify 2' acylation sites. The putative ribozymes were ligated to a 3' adapter 

in order to test for stalling of reverse transcription along the entire length of the RNA. 

Stalling resulted in a truncated product whose length, determined by gel electrophoresis, 

suggested a likely site of aminoacylation (Figure A.5A). Second, the nucleophilic importance 

of the 2'OH at the candidate site was verified by testing the activity of a synthetic RNA 

sequence modified at this position by 2'-O-methylation. In each case, a control synthetic 

RNA sequence that was instead modified at an adjacent position was also tested. Blocking of 

the candidate site (but not the control sites) by O-methylation is expected to abolish the 

reaction. For all sequences tested, the results were consistent with aminoacylation at a 

specific internal 2'-OH position within the 3' constant region of the sequence (Appendix 

Figure A.5). While the reactive site was conserved for sequences from the same major motif 

(e.g. S-1A.1-a and S-1B.1-a, both from Motif 1), the site differed among sequences from the 

three major motifs, indicating that ribozymes with different motifs utilize different detailed 

mechanisms.  
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Note that the catalytic ratio ri calculated here underestimates the true catalytic 

enhancement at the modified site. The potential nucleophilic sites include 70 internal 2'-OH 

groups, the vicinal diol at the 3' end, and the 5'-triphosphate. Thus the uncatalyzed reaction 

rate at a particular site is lower than k0A0, which we measured for the entire RNA. In 

addition, previous work on oxazolone modification of small RNA oligonucleotide models 

indicates that the vicinal diol and terminal phosphates (2', 3', or 5') are strongly preferred as 

nucleophiles, with no detectable reactivity at internal 2'-OH sites 140,141. In contrast, we found 

that all ribozymes tested, representing each motif (1A, 1B, 2, 3), were modified at an internal 

2'-OH. Therefore, the true catalytic enhancement provided by these ribozymes at a specific 

internal 2'-OH is at least 100-fold greater (and likely several orders of magnitude greater) 

than the ri as reported in this work, suggesting significant catalytic rate enhancement is 

possible for oxazolone-precursor aminoacylation.   
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Figure A.5. Location of ribozyme oxazolone-aminoacylation sites 
The likely site of BTO modification on ribozyme S-1A.1-a was identified by stalling of reverse transcription, 
resulting in a truncated product (A) The site, G65, was verified by loss of activity upon 2'-O-methylation, 
assayed by streptavidin gel shift after BTO reaction (B) 2'-O-methylation of an adjacent site (C64) did not show 
loss of activity. (C) For comparison, a gel shift assay similar to those used to quantify aminoacylation. Here, 
BTO-aminoacylated RNA can bind to streptavidin, resulting in a shifted gel band from the larger complex. 
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Figure A.5 continued. Location of ribozyme oxazolone-aminoacylation sites 
(D) Minimum free energy secondary structures for the sequences indicated, predicted by mfold. Black denotes 
constant regions. Sites in the random region conserved with information entropy < 1 bit are shown in blue; sites 
with information entropy > 1 bit are shown in red (also see Fig. 4.2 D). Red arrows indicate the observed 
aminoacylation site. 
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A.3. Epistatic correlation parameter for an aminoacylation landscape 

The work in this section was primarily done by Dr. Celia Blanco as part of an upcoming 

publication (though I assisted with interpreting the results), but may also be helpful in 

understanding the overall project described in Chapters 4 and 6. 

To understand how the overall character of the ribozyme fitness landscape compares 

with well-known theoretical models, we characterized the ruggedness of the ribozyme peaks. 

Generally, the fitness of close relatives is highly correlated to each other, but the fitness of 

more distant relatives is less correlated. A simple measure of ruggedness is the fitness 

correlation γd for a ribozyme family, which is the average correlation of activity effects of 

single mutations between sequences at evolutionary distance d of each other 123 (d is the 

Levenshtein edit distance, i.e., the number of substitutions, insertions or deletions between 

two related sequences). γd = 1 indicates a perfectly smooth landscape, and γd = 0 indicates a 

highly rugged, completely uncorrelated landscape. γ1 was approximately 0.4 for all families 

analyzed, i.e., the typical effect of a particular mutation is 40% correlated across all single-

mutant backgrounds (Figure 3C, Supporting Figure 7), indicating substantial ruggedness on 

the fitness peaks. Interestingly, as the neighborhood size increased up to d = 4, γd dropped 

only slightly, indicating that activity remained similarly correlated at longer evolutionary 

distances within the peaks. The relative constancy of γd over a range of d indicates an 

underlying smoothness that is felt throughout the peak. 

A general interpretation of these results may be that, overall, the correlation between 

various sites is preserved even against a random background effect on fitness. In other words, 

the core conserved motif, and how its important elements bind with or are oriented towards 
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each other, changes very little across a peak corresponding to a single reaction mechanism. 

As with the other epistatic analysis in this work, additional data will be helpful in confirming 

the precise extent of this phenomenon. 

 

Figure A.6. Epistatic correlation may be consistent across aminoacylation ribozyme peaks 
Average correlation of fitness effects are shown for the Rough Mt. Fuji model, calculated with different 
amounts of additivity vs. randomness (see legend). The observed data, corresponding to the top 5 most active 
peaks is shown in blue, suggesting significant agreement to this model (at least in terms of the correlatedness of 
fitness effects across the motif sequence). 
 

A.4. Refinements to the k-Seq calculation 

Updates to the k-Seq methodology has been developed primarily by Yuning Shen, as part of 

an upcoming publication, developed and tested through numerous data simulations. While 

the extent of that evaluation is beyond the scope of this particular work, it may be helpful to 

know that a slight variation on the calculations will be included as a default option in future 

versions of the k-Seq tools. Essentially, the updated method fits an activity curve to all 
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measured data points, rather than averaging for each set of substrate/reaction conditions. In 

this case, bootstrapping is used instead of random triplicate grouping in order to estimate 

error bars on fitness fits. This new approach seems fairly robust, and will likely be fully 

adopted as part of the relevant workflow. 

 

A.5. k-Seq protocols 

As a potentially useful aide to future Chen lab members or other readers of this work, several 

write-ups of lab methods from the aminoacylation k-Seq paper are provided. The first of 

these is a selection protocol, which details potential minute errors in carrying out the 

selection and how to avoid them; the second consists of the help docs for the SCAPE analysis 

tools currently available on the Chen lab github. These are not meant to be of interest to the 

casual reader, but merely a readily-available place of documentation. 

 

Oxazolone aminoacylase ribozyme selection protocol (also applicable to k-Seq rounds): 

 
Start: Make some RNA 
-I usually run a double transcription reaction (2 tubes) with ~200 ng of dsDNA per reaction tube, which should 
give 50-100 µg of RNA for that round—plenty of extra, in case the selection needs to be done a few times 

 

Start: Reconstitute some BTO 
Reminders: 
-It’ll take a lot of vortexing/sonication to get this stuff to dissolve 
-I typically defrost a new tube every 2 weeks or so when doing the selection (it’s probably fine for about 1 
month in the freezer once reconstituted, though, if you’re only looking for qualitative results) 
-Make sure to avoid accidentally heating up any of the non-reconstituted tubes (don’t take the box out of the 
freezer for longer than you have to) 

 

Selection 
Step 1: Set up the reaction 
Reminders: 
-RNA can stick to the sides of tubes when it freezes. Use Eppendorf or other DNA lo-bind tubes when possible; 
make sure to vortex RNA tubes well after they are thawed 
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-Make sure BTO tube has reached ~ room temperature or so (the outside of the tube isn’t cold) before opening it 
(if you don’t, water will precipitate on the sides of the tube, causing the BTO to break down faster) 
Procedure: 
Do the following: 
-2 reactions, for 90 minutes total 
-Each reaction: 100 µL buffer (the pH 6.95 HEPES selection buffer), 5 µg of RNA, 50 µM BTO 
-The BTO stock should be at 25 mM. To get it to 50 µM, you’re doing a 500-fold dilution. I find it’s easiest to 
make a 1:10 dilution of this (45 µL of buffer + 5 µL of BTO stock), then add the dilution stock in a 1:50 volume 
ratio to each reaction 
 
Step 2: Set up next few steps 
I usually start at around 60 minutes after the reaction starts. This gives me 30 minutes (plenty of time) to set up 
the next few steps. 
Reminders: 
-P30 spin columns should be inverted several times; after you snap off the bottom piece of plastic, shake them 
once more 
-If streptavidin-coated beads ever clump together, use the sonicator for a few seconds, then vortex them, to help 
them re-dissolve 
-Magnetic beads should only be left on the magnetic rack for 1-2 minutes at a time (though try to let the liquid 
turn clear before you remove it). As soon as you remove the liquid from a tube containing magnetic beads, 
remove the tube as well (leaving the beads “dry” on the magnetic rack will cause them to roll out of the 
remaining liquid and into the air, where they can dry out and damage the streptavidin) 
-I usually like to use an empty Falcon tube (50 mL) to quickly eject my wash liquid into (as a small “liquid 
waste” that can then be thrown out because there’s nothing hazardous in it) 
Procedure: 
-Cast a denaturing PAGE gel (I use a small gel, at 6% acrylamide, here). Skip this if you’re doing a qPCR 
instead 
-Prep spin columns, 1 per 100 µL of RNA reaction (do this by spinning for 2 minutes at 1000 G, then discarding 
flow-through, then spinning for 2 minutes at 1000 G a second time, then placing each column into a new 1.5 
mL Eppendorf tube) 
-Get Streptavidin beads out of fridge (I’ve been using 50 µL of bead stock for every 100 µL reaction tube). 
Vortex the bead stock well, then aliquot the amount you’re using into a new tube. 
-Turn heating block on at 65° C 
Procedure (if you have time; if not, you can put off the bead-washing until a bit later) 
-Wash your new tubes of beads as follows: 
1. Remove liquid with magnet, add equal volume of bead buffer (bead buffer is 1x PBS, pH ~ 7.5, with 0.01% 
Triton X-100 added) 
2. Remove liquid with magnet, add equal volume of 20mM NaOH 
3. Remove liquid with magnet, add equal volume of bead buffer 
4. Remove liquid with magnet, add equal volume of bead buffer 
Tips: If you’re doing 200 µL of total reaction, you’ll want to leave your pipet set to 100 µL here; push it all the 
way down (past the stop) when removing liquid, so you can get it all easily (try not to leave much in the tube). 

 

Step 3: Stop the reaction (should happen ~90 minutes after reaction is started) 
Reminders: 
-Make sure to vortex tubes frequently (especially after eluting RNA from columns) 
-Make sure to always spin tubes down before placing them on the magnetic rack, so that no liquid is up on the 
sides of the tube 
Procedure: 
-Use prepped spin columns to remove BTO from reactions (put up to 100 µL of reaction into each P30 spin 
column) 
-Add washed beads to column elutions (At a ratio of 1 bead volume : 2 reaction volume) 
-Vortex bead+RNA tubes 
-Place on rotator for 10-15 minutes 
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Prep for next step: 
-Prep additional spin columns (you probably only need 1) for formamide buffer exchange in next step 
-Take out reagents for Reverse Transcription (primers, DTT, DNTPs, forward strand buffer) now so that they 
can thaw 
 
Step 4: Wash + Elute RNA from beads 
Procedure: 
-Take bead+RNA tubes off rotator (I usually combine them into one tube at this point for ease of handling) 
-Wash beads as follows: 
1. Remove liquid with magnet, add equal volume of bead buffer 
2. Remove liquid with magnet, add equal volume of 20mM NaOH 
3. Remove liquid with magnet, add equal volume of bead buffer 
4. Remove liquid with magnet, add *half* volume of Formamide (95% formamide, 10 mM EDTA) 
(If you started with 200 µL of reaction, and 100 µL of beads, you’re adding 50 µL of formamide) 
-Place formamide-bead tubes on rotator for 5-10 minutes 
-Place formamide-bead tubes on heat block (65°) for 5-10 minutes 
-Sonicate formamide-bead tubes, then vortex and spin down. Place them on the magnetic rack. The solution will 
not go completely clear, but wait at least 2 minutes. 
-Remove formamide solution from beads and add it to a prepped P30 spin column (don’t push the pipet down 
past the stop; we don’t need to get all the volume here, if there’s a little left behind that’s okay, we’re trying to 
avoid pipetting beads) 
-Use spin column to exchange formamide (it’ll elute in Tris buffer) 

 

Step 5: Reverse Transcription 
Procedure: 
-Prepare reverse transcription reactions 
(per reaction: I usually use 25 µL eluted-RNA, +1 µL of each primer from 100µM stock, and +1 µL of dNTPs 
stock) 
-Run reverse transcription protocol on these reactions (it should run at 65°C for 5 minutes to anneal primers, 
then hold at 4° C) 
-Add to each tube: buffer, DTT, super-ase-in, and enzyme 
(per reaction: I usually use 7 µL of 5x first-strand buffer, 1 µL DTT, 1 µL SUPERase-in, 1 µL Superscript III 
reverse-transcriptase) 
-Put reverse transcription tubes back into thermocycler, hit next step to continue the protocol (I use the standard 
superscript III protocol but have extended the reaction step to 45 minutes) 

 

Step 6: PCR 
Prep (you can do this while the RT reaction is still running): 
-Wipe down everything on bench, including pipets 
-Prepare for 500 µL PCR reaction, adding to a tube as follows: 
-100 µL 5x HF buffer 
-5 µL of 100µM FP and RP (this is the forward & reverse primer I only use for PCR, so they’re likely to be 
“cleaner” 
-5 µL of dNTP stock 
-5 µL Phusion primer 
-300 µL of water 
-80 µL of reverse transcription product 
Procedure: 
-Aliquot 50 µL of PCR into a “test PCR” tube 
-Run test PCR for ~18 rounds; take a 5µL aliquot out during the annealing step of each round 7, 9, 11, 13, 15, 
17, and then after round 18 (taking out DNA during the annealing step of round 7 will tell you how much DNA 
was produced by 6 rounds, etc.) 
-Run these samples (corresponding to round 6, 8, 10, 12, 14, 16, 18) on a gel, stain, and photograph 
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-Determine how many rounds PCR should be run for 
-Aliquot PCR mix into five PCR tubes (~100 µL/tube) and run for the right number of cycles 
 
Step 7: Finishing up 
-Run Qiagen kit cleanup of PCR 
(Add 5x PB buffer for ~3 mL of Qiagen sample; you can run two Qiagen columns, loading each one twice with 
750µL, before proceeding to the normal PE wash step—Qiagen columns can be run with multiple PB buffer 
aliquots before you add the second/third buffers) 
(I recommend eluting each Qiagen column into 20 µL of EB buffer—instead of 15 µL twice—, then vortexing 
these tubes well, combining, and reading their concentration) 
-Make new RNA! 

 

Pathfinding and k-Seq scripts: Full documentation, and the scripts themselves, can be found 

at the Chen lab github, https://github.com/ichen-lab-ucsb/SCAPE-BYO 
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