UC Berkeley
CUDARE Working Papers

Title
A Noncooperative Model of Collective Decision Making: A Multilateral Bargaining Approach

Permalink
https://escholarship.org/uc/item/1p67k0dp

Authors

Rausser, Gordon C.
Simon, Leo K.

Publication Date
1992-08-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/1p67k0dp
https://escholarship.org
http://www.cdlib.org/

g
.,

DEPARTMENT OF AGRICULTURAL AND RESOURCE ECONOMICS
DIVISION OF AGRICULTURE AND NATURAIL RESOURCES
UNIVERSITY OF CALIFORNIA AT BERKELEY

WORKING PAPER NO. 620

A NONCOOPERATIVE MODEL OF COLLECTIVE DECISION MAKING:
A MULTILATERAL BARGAINING APPROACH

by

Gordon C. Rausser and Leo K. Simon

California Agricultural Experiment Station
Giannini Foundation of Agricultural Economics
August 1992



A NONCOOPERATIVE MODEL OF COLLECTIVE DECISION MAKING:

A MULTILATERAL BARGAINING APPROACH.

by

Gordon C. Rausser and Leo K. Simon

Department of Agrcultural and Resource Economics
230 Giannini Halt
University of California
Berkeley, CA 94720,

August 14, 1992

+ The authors are indebted to Elaine Benpett, Eddie Dekel, Glenn Hagrison, Bentley MacLeod,
Chardes Plott and Robert Powell for helpful conversations. Jeremy de Groot provided
invaluable rescarch assistance. Greg Adams valiantly Iabored through the proofs. Research

support from the Office of the United States Trade Representative is gratefully acknowledged.




ABSTRACT

This paper extends the Stahl-Rubinstein model of bilateral bargaining to incorporate many
players and multidimensional issue spaces. A central feature of our framework is that in each
round of negotiations, a proposer is selected randomly. Our bargaining model consists of a
sequence of finite-horizon games, in which the horizon increases without bound. A solution to
our model is a Hmit of equilibrium outcomes for the finite-horizon games. A pecessary
condition for existence of a detenministic solution iz that the limit outcome belongs to the core
of the underlying bargaining problem. Solutions, if they exist, are geverically unique. Two
sets of sufficiency conditions for existence are presented, The paper concludes with examples
and applications. In particular, we consider bipolar negotiations between two factions, and
show that there is a positive relationship between the cobesiveness of one faction relative to
the other and its effectiveness in securing the common goals to its members.



This paper proposes a noncooperative model of multilateral bargaining. Our framework can be viewed as an
extension of the classical Stahl-Rubinstein bargaining game in which two players take tums proposing a division of
a "pie."!  After one player has proposed a division, the other can accept or reject the proposal. If the proposal is
accepted, the game ends and the division is adopted; if it is rejected, the second player then makes a proposal,
which the first player then accepts or rejects. And so on. In Stahl's formulation, the game continues for a finite
aumber of rounds: in Rubinstein’s extension, the number of rounds is infinite. We propose a generalization of this
framework to incorporate multiple players and multidimensional issue spaces. We consider a sequence of games
with finite bargaining borizons, and study the limit points of the equilibrium outcomes as the horizon is extended
without bound. Departing from the classical approach, we assume that the proposer is chosen randomly "by nature"
in each round of bargaining, according to a prespecified vector of "access probabilities."?

The paper focuses on collective decision-making problems. In contrast to the related political science
literature, which explicitly models decision-making in formal institutions such as legislatures and committees, our
framework is intended to represent in a very stylized way the informal, unstructured negotiations and debates that
frequently precede and accompany the formal legislative process. Consider, for example, the current discussions
among the formerly Soviet Republics over the fate of the Soviet Union, or the recent negotiations in Canada leading
up to the Meech Lake Accord.? Alternatively, consider negotiations between regional interests within California
over, say, the location of a new hydroelectric facility, or between members of an agricultural cooperative over the
location of a new processing plant.

Imagine the activity within the White House staff prior to the selection of a nominee for a senior appointment
(such as a Supreme Court judgeship). The following scenario might unfold: a pumber of different senior staff
members, including, perhaps, the President himself, are concurrently lobbying each other, each attempting to build
support for one particular candidate; somehow, one of the names under consideration is singled out from the others
and, in a plenary meeting of the White House staff, attention is focussed exclusively on this candidate. If sufficient
support has been generated, the White House will adopt the candidate as its official nominee. Otherwise, the
fobbying process will begin again, until agreement is finally reached.

The formalism of our framework conforms rather closely to this informal negotiating process. Oue aspect of
it, however, is difficolt to describe analytically: how is one staffer’s proposal singled out from the others? In our
framework, this problematic issue is "black boxed:" we simply assert that pature selects a player to be the
"proposer” in a random way. Presumably, however, there is some relationship between a staffer’s status within the
organization and the likelihood that her proposal will be singled out for consideration. We operationalize this
relationship by assuming that nature’s random choice is govemned by an exogenously specified vector of access
probabilities. Players’ access probabilities are interpreted as measures of their relative political “effectiveness:” the
higher a player’s access weight, the more likely it is that she will “seize the initiative" in the negotiations. A
player’s high access might reflect the extent of her political power within the organization, or, perhaps, a talent for
formulating issues in ways that can lead to workable compromises.

The scenario spelled out above is intended to be suggestive, but should not be taken too literally, There are
several different stories that are consistent, to some degree, with the framework. Alteratively, the framework can
be viewed as reduced form of a complicated structural process. In any case, the ultimate usefulbess of the
framework will be determined by the intuitive “feel” of its predictions and comparative statics properties rather than
the extent to which it faithfully mirrors the details of some actmal negotiating process.

The paper is organized as follows. Section 1 introduces the model. The formal presentation is contained in
sections 2 and 3. Section 4 contains examples and applications. In Appendix A we discuss an important class of
problems to which our theorems do not apply. Proofs are gathered together in Appendix B.

U Sl {1972, 1977} and Rubinstein {1982}
2 The idea of a randem proposer has been explored n several other papers, including Binmore [1987} and Baron-Fercjohn {1989].
3 fn Raussee-Sinon [1992], we use the framework developed in this paper as 2 basis for studying the process of privatization in Eastem

Europe.



SECTION 1.  INTRODUCTION.

Outline of the Framework.

Qur game consists of a finite number of negeriating rounds. The purpose of negotiations is to select a policy
from some set of possible altemnatives. In odd-numbered rounds, each player chooses a preposal, which is a policy,
paired with an admissible coalition. Between the odd- and even-pumbered rounds, one of the players is selected at
random to be the proposer, according to the prespecified vector of access probabilities. In the even-numbered
rounds, each member of the proposer’s coalition decides whether to accept or reject the proposer’s policy® The
game ends as soon as all cealiion members accept a policy. If one member rejects a proposed policy, the players
proceed 1o the next round. If the last round of the game is reached and the players still fail to agree, then the game
ends and a prespecified disagreement outcome is implemented,

An important parameter of our framework is the set of admissible coalitions. An admissible coalition is
intetpreted as a subset of the players that has the authority to impose a policy choice on the whole group. For
example, in a majority rule bargaining game, a coalition is admissible if and only if it cootains a majority of
players. More generally, the set of admissible coaliions might have a vadety of structures. In partcular, we will
sometimes impose the restriction that at least one player belongs to every admissible coalition. Any such player
will be refenred to as essential,

Our equilibrium concept is a refinement of subgame perfection (Selten {1975]). For a bargaining game with 2
fixed number of bargaining rounds, an equilibritan outcome is a probability distribution over the policies that are
implemented when players play equilibrium strategies. A solution to our model is a limit of equilibrium outcomes,
ag the number of negotiating rounds increases without bound. The main results in this paper concern the existence
of a dererministic solution, which is a limit outcome assigning probability one to a single policy. A npecessary
condition for a policy to be a solution is that the policy belongs to the core of the underlying bargaining game, ie.,
there exists no admissible coalition whose members all prefer some other policy. Weak conditions guarantee that if
a solution exists, it will be -unique for -generic specifications -of players’ preferences. - 'We -identify two sets of
sufficient conditions for existence. If all players are risk averse, then every majority rule bargaining game with a
one-dimensional space of policies has a deterministic solution. Altematively, a detemministic solution exists in
general if at Jeast one player is essential. In particular, the latter testriction is satisfied by wnanimtity games, in
which the only admissible coalition is the grand coalition, so that each player is essential.

A striking feature of our framework is that even when the bargaining problem is quite complex, the
{generically upique) equilibrium solution can easily be computed numerically. Monte Carfo methods can then be
applied to investigate the comparative statics propertics of the problem. Specifically, owr model is solved
recursively, by computing a sequence of solutions to straightforward single-person decision problems, until an
acceptable degree of convergence has been obtained. Because of its computational tractability, our framework
provides a useful analytical approach to examining a wide variety of collective decision-making problems.

Modeling Issues.
A major modeling issue relates to the sufficiency condition that some player be essential. In the abstract, this

condition is quite restrictive. For example, it clearly conflicts with the formal institutional procedure of decision-
making by majority mule. However, in a wide variety of collective decision-making contexts, the condition is
satisfied de facto, even when it is explicitly violated de jure. For example, it is difficult to imagine that a candidate
could emerge as the White House nominee for 2 major political appointment without at least the tacit approval of
the President. That is, in negotiations with the White House staff, the President would be an essential player.
Similarly, in the current pegotiations over the future of the Soviet Union, essential status might be conferred upon
either Mr Gorbachev, Mr Yeltsin or both. More generally, whenever a group of negotiators has a cleadly identified
“leader,” it may be appropriate to model this player as essential.®  Finally, a player might be deemed essential by
4 We could have formulated the framework more sparsely, allowing the proposer’s coalition to be determined endogenously. Qur rcasons
for requiring players to sprcify coalitions explicitly arc explained in section 2 below.
5 The framework as presently formulated has been stripped to its barest essentials. It can be extended in numerous of ways without great-
Iy affecting our major conclusions. For example, if players have positive time-discount factoss, our sufficiency conditions will no longer
guarantee deterministic solutions, though “almost detenministic™ solutions will exist if players are sufficiently patient. Another naterai way to
extend the framework would be to tndegenize the determination of access probabifities, by allowing players to "invest in 2ceess”™ during a
Coumot-type pregamc. This extension would enhance the rcalism and applicability of the framework, but at the cost of a considerable foss in
computational simplicity.

§ Conversely, in the absence of leadership, one might expect certain kinds of negotiations to become bogged down; a fermal counterpart of
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virtue of her role in executing the decisions resulting from the negotiations. For example, in faculty meetings of -
wniversity departments, the Chairperson will typically have ne special voting privileges. Presumably, however,
there are certain kinds of policy decisions that will rarely be taken in the face of explicit opposition from the Chair,
as the Chair must bear the ultimate responsibility for implementing the policy.

Confusion frequently arises over the relationship between “essentiality” and "access.” While essential players
will tend in general to have relatively high access probabilities, there is no necessary correlation between these two
facets of political power. Czechoslovakia’s President Havel provides a stiiking illastration of the distinction.
During his country’s velvet revolution, Havel's access weight was very bigh In the post-revolutionary era, he has
acquired essential status, but his "empisical” access probability has undoubtedly declined. Similarly, while President
Reagan was clearly an essential player within the Reagan White House, his "revealed" access probability was quite
low in the sense that he rarely initiated policy proposals. More generally, in almost every political process, there
are many groups that have considerable access but do not participate in the formal decision-making process. In our
framework, these participants would be assigned positive access probabilities but would not belong to any
admissible coalition. Familiar examples from national politics are “intellectual lobby groups” such as the Brookings
Institution, whose access is derived from its members’ individual relationships with policy makers, or, in univessity
politics, radical student groups, whose access might be measured by their ability to influcnice the general climate of
opinion. _

A second modeling issue arises from our treamment of the time horizon. Since Rubinstein {1982}, &t has
become customary in bargaining theory to assume that the time horizon is infinite. We depart from this custom,
and assume that the bargaining horizon is finite but arbitrarily long. A pragmatic justification for this assumption is
that the infinite-horizon version of our model has no predictive power: any outcome can be supported as an
eq:xilibrium." More significantly, there are in some circumstances sound modeling grounds for presuming that the
horizon is finite. In collective decision-making contexts, impending deadlines can provide a dramatic impetus to
compromise: witness the frequency of last-minute resolutions of Congressional deadlocks, and of post-midnight
compromises in wage pegotiations when strikes are threatened for the following moming. Since finite horizon
models are solved by backward induction, attention js inevitably drawn to these "eleventh hour" effects.®
Conversely, of course, in an infinite horizon model there is no endgame. Our final argnment in support of a finite
horizon is again pragmatic. Our model exhibits certain properties that are intuitively appealing and correspond to
well-known stylized facts about actual negotiating situations. (See Rausser-Simon [1991] and section 4 below for a
preview.) Whatever the "true” explanations are for these facts, the explanations for the properties of our model that
mimic them can be traced to players’ behavior in the final rounds of megotiations. Thus, our finite horizon
assumption can be justified on the grounds that it captures the spirit of some inferesting but not well understood
phenomena that might otherwise escape attention.

Related Literature. .

Until recently, the topic of multilateral bargaining has received surprisingly little attention by noncooperative
game theorsts. The few papers that have been written focus almost exclusively on various versions of the
alternating-offer model. Binmore [1985] considers several alternative extenstons of Rubinstein’s analysis to the
problem of “three player and three cakes:" each pair of players exercises control over the division of a different
cake, only one of which can be divided. In unpublished work,? Shaked observed that in any infinite-horizon,
altemating-offer, multilateral pure~division problem, if the consent of three players is required for agreement, and if
they are not extremely impatient, then any division of the pie can be implemented by subgame perfect equilibrium
strategies. The proof follows easily from the following observation: suppose one player proposes an off-the-
equilibrium-path division that gives her a positive share of the pie. If players are not too impatient, then at least
ope of the other two players can be induced to reject this division by the promise of the whole pie in the subgame
that will follow if she does so,

this tendency woukd be an existence failure in our framework.

T The proof of this assertion is sketched in the "Related Literature” subscction below.

¥ In general, te profession is justifiably skeptical of arguments that involve fong and intricate inductive chains. In many instances, how-
ever, the problem is mitigated somewhat in cur framework because the basic "shape” of the solution is more or less determined after only 2
fow rounds of induction. (This will become clear when we discuss examples in Section 4 below ) This fact may alse reassure cxperimental-
ists, since {here is abundant evidence that experimenta] subjects seem unable to backward induct mech beyend three periods. (See Neclin et
al. {1988] and Spicgel et al. {1990}, See, however, Harrison McCabe [1992] for a dissenting opinion, and Harrison [1991] for 2 sarvey.)

9 Shaked's result is discussed in Satton [[986] and Osborne-Rubinstein [1990].



An interesting variant of the altemating-offer model, called the "Proposal-Making Model,” has been advanced
by Selten [1981]. A player is selected by pature to make the first proposal. She proposes a utility vector, a
coaliion and a “responder.” The responder either accepts or rejects. If she rejects, the responder then proposes a
new utility vector, a new coalition and a pew responder. If she accepts, the responder designates another member
of the coalition as the next responder, and so on until all members of a coalition have agreed to some proposal.
This srodel has been studied extensively in Chatterjee et. al. [1987] and by Bennett and coauthors. 10

Baron-Ferejohn [1989] study a symmetric problem in which n players must divide up a pie, using majority
ryle. One variant of their model is strikingly similar to ours, yet draws quite different conclusions; players propose
divisions of the pie in odd-numbered rounds; pature chooses one of the proposals at random and voting follows in
even-numbered rounds. Io the two-round version of this model, each proposer keeps slightly more than half of the
pie for herself, and distributes a smadl portion to enough others (o obtain a majority vote. In the infinite-horizon
version of the game, as usual, virtually any division can be supported as an equilibtium. The two-period outcome,
however, is identified as the unique outcome that can be supported by stationary strategies.!! The most important
difference between our framework and theirs is that we focus on the Emit of findte-horizon outcomes. For generic
specifications of players” utilities, the problem posed by Baron-Ferejohn has no solution in our model.12

SECTION 2. THE T-ROUND MULTILATERAL BARGAINING GAME.

In our formal presentation, we distinguish between multilateral bargaining problems, games and models. A
multilateral bargaining problem is, essentially, a game in the sense used by cooperative game theorists. Each
bargaining problem gives rise 1o a family of poncooperative, finite extensive form muddilateral bargaining games
that are identical except for the pumber of negotiating rounds. A multilateral bargaining model couosists of a
sequence of T-round bargaining games derived from a common bargaining problem; in which T increases without
bound,

The Underying Multilateral Bargaining Problem. _
There is a finite set of players, denoted by I = {1, ---,i}. The representative player will be denoted by ;.
The players meet together to select a policy from some set, X, of possible alternatives.

Assumption Al: X is a convex, compact subset of {-dimensional Euclidean space.

If e policy vector x is selecied, player { receives the payoff u;(x). Of the assumptions we impose on u;, the only
significant one is strict concavity (ie., players are globally risk avesrse). In particular, we assume that payoffs are
independent of time.!3 :

Assumption A2: For each i, 1;(-) is continuous and strictly concave on X* and satisfies the
von-Neumann Morgenstern axioms. 14

To avoid degenerate special cases, we assume that there is a minimal amount of diversity in players’ preferences:
Assumption A3: Fori # j, the maximizers of ;") and «;("} on X are distinct.

dfir

There is in addition to X a distinguished vector, x¥*, which is called the disagreement outcome.'> If players

1% Bennett {1991a, 19915], Bennett and van Domme [1991] Bennett and Houba [1991).
' Baron-Kalai [1991} show that it can alse be isolated by invoking a computational simplicity criterion.

12 Because of its symmetry, their problem is nongeneric.

3 {1 is straigltforward but not particularly illuminating to incorporate time-discounting into the model.

1 For many applications, the requirement of strict concavity is (oo strong. For example, #f X is the unit simplex, representing players’
shares of z dollar, then we would naturally want to allow player § to be indifferent between any two share vectors whese { 'th components are
the same. To allow for such preferences, we could assume that for each f, there is some subspace X! of X such that i is indifferent between
any two vectors that differ only os X - XY, and globally risk-averse on X, Al of the resubts in the paper hold if Assumption A2 is weak-
eaed i this way.

5 I is convenicat to isolate {x %% | from the set X, For example, we can assign x¥¥ 5 peyoff of ncgative infinity without violating con-
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cannot reach an agreement during the negotiation process then the vector x9" will be imposed by default. Once
again we avoid degenerate special cases by assuming that there is some a negotiable settlement which Pareto
dominates the disagreement outcome:

Assumption Ad: There exists x € X such that for each 7, 1;(x) > u (x Uy,

Denote by X* the set X (U (x¥™}. We will refer to the vector-valued function, w = (1; Yo defined on X* as the
payaff function for the problem. (Throughout the paper, vectors will be denoted by boldface lefters.) Assuming
that all other paramneters have implicitly been specified, we will denote by T'(u) the bargaining problem with payoff
function w.

The examples discussed in this paper all belong to a class known as spatial problems, in which the policy
space, X, consists of altemative locations. For example, a location could be a site for a public good. More
abstractly, a location could be a point in characteristics space, representing, pethaps, the attributes of a candidate for
some office. Each player has a most preferred location in X, called her ideal point. The vector of players’ ideal
points will be denoted by & = (¢ )ier- Letting d(x, y) denote the Euclidean distance between x and y, player i's
utility from a policy x will be a declining function of d(x, & 316 In all of the computational examples, player i 's
utility function is assumed to be of the form:

W) = (4 ~d, o) T w ) = e @1

where y; is a positive constant and p; € (0, 1} is player i 's risk aversion coefficient.

The specification of a multilateral bargaining problem includes a list of admissible coalitions, €, with
representative element C. An admissible coalition is interpreted as a subset of the players that can impose a policy
decision on the group as a whole. For example, in majority rule decision-making, a coalition is defined to be
admissible if and only if it contains a majosity of the group. More generally, the set of admissible coalitions may
have a varety of structures. In particular, we will sometimes impose the restriction that one or more players
belongs to every admissible coalition. In this case, we shall say that the bargaining problem has an essential player.

The core of a multilateral bargaining problem is defined in the usual way. A policy x can be blocked by a
coalition € if there exists an altemative policy y such that each member of C strictly prefers y to x. The core is
the set of policies that cannot be blocked by any admissible coalition.

The T Round Muiltilateral Bargaining Game,

A bargaining game is derived from a bargaining problem by superimposing upon it a “negotiation process.”
We will denote by I'(u, T) the T-round bargaining game derived from I'(u). We distinguish between odd-
pumbered rounds of negotiations, called offer rounds, and even-numbered rounds, called response rounds. In offer
rounds, players choose propesals, consisting of policies from X and coalitions from C. In response rounds, they
specify acceptance sets, indicating which vectors they will accept if invited to join a coalition in that round.

For fr € {1, 3,...., -1}, Iet (x;,, C;,) denote player I *s proposal in offer round 7, and A,y represent her
acceptance set in the following response round. We impose the restriction that acceptance sets must be closed. A
strategy for player { is a collection of proposals and acceptance sets, 5; = |{x;,, Ci /) A;',J,jm B Let §;

denote the set of strategies available to player i. For expositional purposes, we restrict strategies to be history
independent. That is, players’ decisions in round ¢ are independent of the history of moves by nature, and of the
history of proposals rejected in previous rounds. As will become apparent below, for geperic specifications of
players' payoffs this is no more than a notational comvenience; for these specifications, all of our results are
unchanged, and their proofs are identical, when strategies are history-dependent!?  Of greater consequence is our
requirement that acceptance sets.can be conditioned neither on the identity of the proposer nor on the composition
of the proposed coalition.!® Both restrictions could be relaxed without affecting the main results, although certain

tinuity .
f
16 1fY R, then d{x, v} = ¥ 0 —v) P~
Fet
Y Of course, this staternent would not be true if information were incomplete, in which case, information could be revealed as histories
valolded.
* This last assumption ks unlikely to cause scrious concem to cconomists, who tend to insist that the variables in question should not
matter. To other social scientists and the world at farge, however, this assumption might be regarded as too restrictive, In a model of Middle



equilibrium properties would be affected. A strategy profile is a list of strategies, one for each player. Let §
denote the set of strategy profiles. A list of strategies for all but one player will be called a subprofile. Let
S = ]S, denote the set of subprofiles that omit player i, with representative element s_;.

i

i«:ach profile of strategies uniquely identifies an cufcome, which is a random variable defined on
X* =X (x¥"). The mapping from strategies to outcomes will be referred to as the outcome function for the
game. In our informal cutline of the framework, nature moved between each offer and response round. From a
formal standpoint, however, the actual sequencing of pature’s moves is immaterial, since players’ strategies are
independent of these moves. Nature simply selects a proposer sequence, which is a list of players, one for each
offer round, denoted by =D, «3),, -, T-1N e I An heurstic interpretation of t is that for
t € {1,3 ..., T-1}, if negotiations have not already been concluded by the time round ¢ is reached, nature declares
that player 1¢}'s round ¢ proposal will be voted upon in round ¢+1 by the coalition she specifies. For each ¢, W)
is an iid. random variable, distributed according o the exogenmously specified vector of access probabilities,
w = (W, )ier > 0. (Recall that the magpitude of w; is interpreted as a measure of player s relative “political” or
"bargaining power.") Thus, the proposal sequence t is selected with probability &t} = w XWX * * * Xwyr.y.

The outcome function is a map ¥ from strategy profiles and “proposer sequences” to policies. Specifically, fix
a strategy profile s, where 5, = (x;,, Cr s By radimas, .-y Foreachve [l 72 4 unique policy x(1, 8) is defined as
follows. If the policy xyyy; is an element of 4; 5, for every j in C gy, then this vector is accepted and negotiations
do not proceed beyond the second round., Now suppose that for ¢ € {3, 5,..., T~1}, the policies proposed in
previous offer rounds have all been rejected. If xy,,, is an element of 4; 4, for every j in the coalition C\,,,
then this vector is accepted and negotiations do not proceed beyond the r+1’th round. If agreement is pot reached
by round T, then the vector x¥* is selected by default.!®

The procedure just described defines a finite-support random variable on X*. Given a profile s, we denote by
Fu;(s) player i's expected payoff from the random profile generated by s. That is, Eu;(s) = 2, (0w (x(t, s).

tef T2
Similarly, for ¢ € (3, ..., T+1}, Eu; (s! ¢} denotes player i's expected payoff if the profile s is played out starting
from round {. We will refer to Eu; (sl t) as player i’s reservation udlity in round t—1, since this is indeed her
expected utility conditional on failure to reach agrement in round 71,

The standard solution concept for these games is subgame perfection. Informally, a strategy profile s is
subgame perfect if starting from each round of the game, the remaining portion of 5; is optimal for player {, given
that players other than { are playing the remaining portions of s_;. In the present context, this concept has no
predictive power: for any game in which at least two players are required for agreement, any policy that is weakly
preferred by all players to the default outcome can be implemented with certainty as a subgame perfect equilibrium
outcome. For example, the following strategies implement the policy x with certainty. In each offer round, each
player proposes x and an arbitrary coafition; in each response round, each player accepts x and no other policy, If
x is preferred by all players to x% e, then these strategies are clearly subgame perfect and x is implemented with
probability one.

The equilibria just described violate a natural rationality criferion and can be eliminated by a number of
equilibrium refincments. Trembling hand perfection is not sufficiently strong, for the familiar reason that this
criterion does not impose sufficient discipline off the equilibtium path. A stronger criterion, such as Myerson's
[1978] propemess, is needed. In infinite games, however, this criterion involves considerable technicalities. 2 To
avoid these, we invoke a simpler refinement, which we will call the SEDS criterion (Sequential Elimination of
Dominated Strategies).2t  Variants of this criterion are regularly invoked to deal with essentially the same problem
as the one that faces us.?2

East tiegotiations, for example, it would be unfortunate if Isreclis were obliged to respond in the same way to any given proposal, regardless
of whether it was issucd by, say, the U.S: o the P.L.O.

¥ As noted above, there is an equivalent, apparcatly simpler, specification of the model. Rather that require each player to specify a coal-
ition explicitly, we could endogenize the coalition selection problem by allowing the ovtcome function to simply count votes. EBither way,
however, the sclection of an optimal coalifion is an incscapable task for the proposer. as she solves her maximization problemn. Thus, fhe is-
sue iz no more than a notational one and the obvious arguments in favor of explicitness seom to us to justify the additional notational burden.

2 Sec Simon aud Stinchcombe {1991,

I This eriterion naturally extends to sequential games the criterion known as Dominance Solvability (Moulin [1979]).

2 See, for example, Baron-Ferejohn [1989], Salant-Goldstein {1990] and Baron-Kalai 1991{]. For a rather different application of the
same criterion, see Simon-Stinchcombe [198%].



Informally, the procedure begins by eliminating strategies that involve inadmissible (ie., weakly dominated)
play in the final response round. Next, we eliminate strategies that involve inadmissible play in the penultimate
round, considering ooly strategies that survive the first round of elimination. And so on. To define the criterion
formally, first declare every strategy for ¢ to be admissible from round T+1. Now fix ¢ T and assume that for
each 7, there is an identified set of strategies that are admissible from round t+1. Define 5; to be admissible from
round t if (i) it is admissible from round ¢+1 and if there exists no alternative strategy ©; such that (i) o; agrees
with s5; before ¢, (iif) o; does at least as well as 5; against any subprofile 5_; that is admissible from round r+1; and
(iv) o; does strictly better than 5; against some such subprofile. Finally, say that a profile s satisfies the SEDS
criterion if for each i, 5; is admissible from round one. If s satisfics the SEDS criterion for some bargaining game,
we say that s is an equilibrium for that game. We will refer to the outcome generated by s as an equilibrium
outconte.

Results for T-Round Bargaining Games.

Proposition | below characterizes the set of strategy profiles that satisfy the SEDS criterion. Indeed, the
characterization theorem provides the basis for our computer algorithm for solving bargaining games numerically.
In each round of the game, after strategies that are inadmissible from later rounds have been eliminated, each player
is left with a straightforward single-person decision problem. In a response round, a player will accept a proposed
policy if and only if it generates at least as much utility as her reservation utility in that round.?? In an offer round
t, a player is faced with a two-part problem. For each admissible coalition, she maximizes ber utility subject to the
copstraint that other coalition members must receive at least their reservation utilities in round ¢+1. She then
selects a utility-maximal policy from among these maximizers.

Proposition 1:  Let I'(u) be a bargaining problem satisfying Assumptions Al-A4, Then s is an
equilibrium for the bargaining game Iw, 7) if and only if for cach i and each
re L 3, T-1}

(i) Ai = {x € X:1(x) 2 Fu, (sl e+}.

(i) x;, € 4;,, for al jedC;, ad x, maximizes () on the set

UM e Xigx) 2 Eu; (st 1+2)}.

Cet jul

The proof of this Proposition depends on two independently useful properties of equilibria, stated in the
Lemma below. First, at least two distinct offers are proposed in every offer round. Second, in every offer round
there is some policy that yields each player strictly more utility than ber reservation utility in the following round.

Lemma 1: Let T{u) be a bargaining problem satisfying Assumptions Al-A4 and let s be an equili-
brium for the bargaining game I'(w, 7). Then fort e t=1,3,---,T-1,

(a) There are at least two distinct players i and j such that x; , # X ;.

(b) There exists x € X such that for all i, 1;(x) > Eu (sl £+2).

An obvious coroliary of Proposition I (indeed, of Lemma I(b)) is that in every game, agreement is reached
immediately with probability one. We can exploit this fact to obtain a convenient, simplified representation of
equilibtium outcomes. Given an equilibrium strategy profile s, we denote by x(s} = (x;(8));er the vector consisting
of the policics proposed by each player in the first round of negotiations. As we have noted, each of these
proposals is pecessarily accepted. Therefore, x(s) is a representation of the outcome generated by 5. For this
reason, we will refer to x(s) as an equalibrium ocufcome vector. The original outcome can be recovered by
combining x(s) with the access probability vector, w: for each 7, x; (s) is realized with probability T b s, 9] w;.

Another corollary of Proposition I is that we can without loss of generality restrict aftention to bargaining
problems in which the set of coalitions is minimal in the following sense. Say that a coatition  is minimal with
respect to player i if there exists no strict subset, ¢ of € such that the coalition €7 () {i} is admissible. 2

B Ry assuming that accepiance seots are closed, we fincsse the indcterminacy that arises when player is jndifferent between accepting and

rejecting a proposal.
U Thix critcrion is strictly more stringent than the simpler criterion of {unqualificd} minimality, which would be satisfied by any coalition
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Corollary I below shows that that player {’s opportunity set is uvnaffected by the restriction that she must choose
only coalitions which are minimal with respect to i. In other words, we lose no generality by assuming that f
always chooses coalitions that include berself whenever possible, and exclude as many other players as possible.
This fact is of considerable practical value, because when we analyze games pumerically, it is obviously important
to minimize the number of coalitions for which calculations must be made,

Corollary to Proposition I: Let I'(u} be a bargaining problem satisfying Assumptions Al-A4 and

let 3 be an equilibrium for the bargaining game INu, I"). Then there is an equilibtum profile o
for this game which is identical to s with the (possible) exception that in each round, each player ¢
specifies a coalition that is minimal with respect to 7.

An immediate implication of Proposition I is that an equilibrium always exists. The pivotal, and by far the
most difficult result in the paper is that for generic problems, the equilibrium outcomes for games derived from
these problems are unique. Specifically, let W denote the set of payoff functions on X satisfying Assumptions
A2-A4 and endow W with the sup norm metric.?

Theorem II:  Let Tu) be a bargaining problem satisfying Assumptions Al-Ad, Then for every
even integer T, the derived game I'(w, T} has an equilibrium. Moreover, there is an open, dense
subset, W', of W such that for each v € W~ and every T, the equilibrium outcome for
T(u', T') is unique,

The arguments we use to prove uniquencss also imply that in all but exceptional games, all of the above resulis
apply whether or not we restrict strategies to be history independent. The argument is transparent. In each round
of any game, players’ payoffs and strategic opportunities are independent of apyibing that bas happened -in previous
rounds. Also, because there is no uncertainty about playeis’ types in the model, there is no payoffirelevant
information te be revealed as history umfolds. Now if a player has a unique optimal choice, and this choice is
independent of history, the player must act in the same way, regardless of the past history. Finally, in the present
context it is generically the case that players’ optimal choices are unique in every round.

SECTION 3. THE MULTILATERAL BARGAINING MODEL.

A multilateral bargaining model is a sequence of T-round bargaining games, {I(w, T)}r.p4, ... in which T
increases without bound., The games in the sequence are all derived from the same underdying bargaining problem.
The only difference between them is the number of negotiating rounds.

We define a solution 10 be a limit of a sequence of equilibrium outcomes for the games in the sequence.
Since these outcomes are random variables, the natural notion of closepess is the weak-star topology. However,
because our sequences of equilibrium outcomes have a special structure, we can simplify matters considerably. It is
sufficient simply to identify the pointwise limits of sequences of equilibrium outcome vectors. Specifically, suppose
that for t= {2, 4, - - - .}, " is an equilibrium strategy profile for I'(u, 7) and that X = (¥;);¢; is a pointwise limit of
the sequence (X(5))waq ..., . We will refer to X as a limit outcome vector. From our earlier discussion (p. 7), the
outcomes gencrated by (8%wqp4 ..., have the following weak-star limit: for each i, X; is realized with probability
Zun?,-m?.. P

A soluwtion will be called deterrninistic if the limit outcome has singleton support, or, equivalently, if the
elements of the Hmit outcome ‘vector are all identical. The policy to which a deterministic solution assigns
probability one will be referred to as the solwtion policy. Solutions that are not deterministic will be called
stochastic. When a solution exists, it is interpreted as a proxy for the equilibrium outcome of a bargaining game in
which the number of negotiation rounds s finite but arbitiarily large.

resdesed inadmissible by the omission of any player. For cxample, in a majority rule bargaining problem with five players, the coalition
{2, 3, 4} is admissible, but is not admissible with respect to player #1, since {1, 3, 4} is admissible.

T I the sup norm metric, the distance between two fusictions is the supremum, taken over all points x in the domain, of the absolute
value of the difference between the evaluations of the functions at x.



-9-

An approximate solution is a sequence of outcome vectors that almost converges. More precisely, the model
derived from I'(u) has an e-solution if there exists a policy vector X and an even integer T such that for each player
i and each even T > T, the distance between ¥; the policies proposed by { in the first round of I'(u, 1) is no greater
than ¢. Like all approximate equilibrium concepts, the interpretation of approximate solutions in the present context
is somewhat problematic from a theoretical standpoint. (For one thing, what constitutes a “good" approximation?)
For practical purposes,, however, approximate solutions can be virtually as useful as exact solutions as sources of
testable hypotheses in the analysis of practical applications. In particular, approximate solutions provide rough-
and-ready predictors of the location in policy space of a negotiated agreement. Moreover, since generically this
prediction will be unique (more or less), sensible comparative statics questions can be posed. On the other hand, if
a “reasonably exact" solution does not exist, then the predicted outcome of negotiations will depend in a nontrivial
way on the number of negotiation rounds. In this event, little positive or prescriptive siguificance can be attached
to the model’s predictions. Nonetheless, existence failures are interesting in the negative sense of indicating
inherent instabilities in the megotiating enviromment. In Appendix A we investigate the kinds of stochastic and
approximate solutions that arise in a family of two-dimengional spatial problems.

Regults for the Bargaining Model.
A necessary condition for existence of a deterministic solution is that the underdying bargaining problem has a
nonerapty core.

Proposition TI:  Let I'(u)} be a multilateral bargaining problem satisfying assumptions Al-Ad. If
the multilateral bargaining model derived from this problem has a deterministic solution, then the
solution policy belongs to the core of I(u).

Proof of Proposition II: Assume that x is the solution policy but that there is some policy y and some
adimissible coalition C such that each member of C strictly prefers y to x. Then there exists £ > O such that all
members of C strictly prefer v to any policy in the ball B(x, €). Fortv=2,4,---,let s* be an equilibrium profile
for I'(w, ©). For « sufficiently large, each component of the equilibrium outcome vector x(5%) must be contained in
B(x,€). Thus we have w;(y)> u; (x;(s")) > Euj(sj‘l 3), for every j € C. (The second inequality follows from
combining Proposition I(ii) and Lemma I(b).) But this is a contradiction, since by Proposition I(ii), x; (s%) must a
maximizer of () on the set (~ {x € X: w;(x) 2 Eu;s°t 3)). L

jeC

Theorems IV and V below identify two sets of sufficient conditions for existence of a deterministic solution.
The first is that the space of policies for the underlying problem is one-dimnensional and that decisions are made by
majority nile. .

Theorem IV: Let I'(w) be a multilateral batgaining model satisfying assumptions Al-A4, If )
the space of admissible policies, X, is a subset of R! and (ii} a coalition is admissible if and only

if it contains strictly more than half of the players in [, then the multilateral bargaining model

derived from this problem has a deterministic solution.

When the policy space is multidimensional, it is much more difficult to guarantee convergence. Af an
abstract level, the task is to identify global stability conditions for a relatively complex, noulinear stochastic
dynamical system. Ome relatively straightforward way to proceed is to restrict attention to problems in which there
is at least ope essential player, ie., a player who is a member of every admissible coalition, The interpretation of
this assumption is discussed in detail above (pp. 2-3).

Theotem V:  Let I(u) be a multilateral bargaining problem satisfying assumptions Al-Ad. 1f the
problem has at least one essential player, then the multilateral bargaining model derived from this

problem has a deterministic solution.

Note that Theorem V is applicable to every problem in which unanimity is required for agreement.
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Our final result follows immediately from Theorem II. Solutions, when they exist, are generically unique.
Assurne that X satisfies assumption Al and, once again, let ¥ denote the set of payoff functiops on X satisfying
Assumptions A2-Ad.

Corollary to Theorem II:  There is an open, dense subset, W ‘., of ¥ such that for each

w & W' if the model derived from the problem I'(u') has a solution, then this solution is unique.

Proof of the Corollary: Suppose that for some ue W, the model derived from I'(x) has more than one
solution. Then necessarily there exists T (in fact, infinitely many 7''s) such that the bargaining game I'(w, T'} has at
feast two distinct equilibrium outcomes. But from Theorem II, it follows that the set of all such w’s is contained in

the complement of an open, dense subset of W . 1

Multilateral Bargaining and the Nash Program.

Nash [1953] urged that strategic models and axiomatically derived solution concepts should be studied in
conjunction, because “each helps to justify and clarify the other (p. 129)." This dual approach has become known
as the “Nash Program.” Pursuing this program, Binmore, Rubinstein and Wolinsky [1986] study two strategic
models with alternating offers and in each case establish a close relationship between their perfect equilibria and the
Nash bargaining solution of the comesponding cooperative game.

More recently, Krishna-Serrano [1991] have extended the Nash Program to the n-player case. Their point of
departure is Lensberg’s [1988] alternative axiomatization of the multilateral Nash bargaining solution, in which
Nash’s Independence of lrrelevant Aliermatives (IIA) axiom is replaced by Multilateral Stability (MS).26
Oversimplifying slightly, the MS axiom can be paraphrased as follows: if in the solution to a multilateral pie-
division problem, player i receives a share of the pie x;, then in the problem construcied by excluding player / and
depleting the total size of the pie by x;, the remaining players should receive exactly the same portions as they
received when i was present. Krishna-Serrano incorporate this axiom into their model in a rather direct way, by
allowing individual players to exit from the bargaining table, taking with them the shares of the pie that they bave
pegotiated for themselves. In this way, they are able to reconcile the strategic and axiomatic approaches to
multilateral bargaining.

While the two strategic models mentioned above lend plausibility to Nash’s axiomatic solaution concept, our
model presents a challenge to MNash’s approach. Specifically, our model violates both the HA and the MS
axioms.2? To see that TIA is violated, compare the solutions to our model when two tisk neutral players with equal
access are bargaining over fhe two-dimensional policy spaces X ={(xe€ RE:x, +x, =1} versus

£x +XQ32/3(1+€) fo;b’:l/ﬁ%

Y*{XEX: X;“FZ’Z:}L 1fx,21/3 l
with #(c¥") = 0. By symmetry, the solution in the first case is (%, %) for € = 0, the solution in the second is
approximately (7/12, 5/12). The explanation for the difference is transparent. In the last round of offers, player #2
will propose (0, 1), when tbe set of altematives is X, and (0, 2/3(1+€)) when it is ¥. ‘fhus in the "eleventh hour” of
negotiations, player #2's bargaining position is weaker when bargaining over ¥ than over X, and this relative
weakness is reflected in the coresponding solutions to our model. Thus, in the bargaining environment that we
tiave formulated, the altematives comtained in X but not in ¥ are by no means strategically irrelevant. If is
imiportant to emphasize that the above example has nothing whatever to do the fact that players are bargaining over
policies rather than utilities: we could, obviously, have defined the spaces X and ¥ to consist of utility vectors
rather than two-dimensional policies.

The violation of MS is of particular interest because, in confrast to the vielation of ILA, this axiom is
inberently multilateral in pature. Fssentially, the MS axiom declares that there can be no "bargaining synergies”
between players: (he relative bargaining strengths of players j and k must be independent of whether or not player
i is present at the bargaining table. In our model, however, such synergies altnost always arise, except when the

Assume that in each case, x¥™ = (0, 0) while 1;(x) = x;,

6 Congider a n-player bargaining problem in which the set of feasible utility vectors,is U. Assume that all players reccive zero utility in
the event of disagreement. The wnique wtility vector satisfying Nash's four axioms--scale Invariance, Pareto optimality, symunctry and in-

dependence of irrelevant alternatives--is #, defined by Ila = {} w;, forafbew e U.
it i=1
27 The IIA axioss can be looscly paraphrased as follows: suppose that the solution to the bargaining problem is x when the universe of
bargaining outcomes is X. For any subset ¥ that does not contain x, x must be the solution when players are bargaining over X ~ ¥,



11 -

upiverse of possible bargaining outcomes is symmetric.28  To see this, copsider the t;‘_xree-player unamimity
bargaining game in which players are bargaining over the "truncated pie" V = {u & R): Y =1and uy < uy).
i=1

As before, assume that the disagreement utility vector is zero and that all three players’ bargaining attributes are
identical. In this asymmetric problem, player #1 appears to have a "natural ally” in player #3 and this is reflected
in the equilibium outcome of the game. In the last round of offers, player #3 proposes the vector (Y4, 0, %),
favoring #1 at the expense of player #2. Thus, once again, in the "eleventh hour” player #3's presence at the
bargaining table places #2 at a strategic disadvantage relative to #1, and this weakness is reflected in the solution to
the model.2? On the other hand, if #3 were to leave the bargaining table, along with her equilibrium share of the
pie, then our model predicts that players #1 and #2 would equally divide the remainder of the pie.

In the study of multilateral bargaining in collective decision-making environments, it is natural to expect
bargaining synergies to arise between different players. What are the sources of bargaining synergies? What
compromises will emerge as alliances are forged between parties whose interests are interrelated but not coincident?
How effective will these alliances be in furthering the common interests of their members? What is the relationship
between the “intemal” alignment of interests within a given alliance and its "external” effectiveness as it negotiates
with other alliances??® Since bargaining synergies are axiomatized out of existence by the MS criterion, these
questions can only be addressed in a model that violates MS.

SECTION 4. APPLICATIONS

The main purpose of this section is to illustrate certain properties of our framework and to indicate some
problems to which it might be applied. The discussion in this section will be heuristic and informal. For a more
systematic and formal approach to comparative statics issues see Rausser-Simon [1991]. We discuss five classes of
bargaining problems, labeled A through E. Problem E is a pure-exchange economy. Problems A through D are
spatial problems, in which players’ preferences satisfy equation (2.1). For expositional purposes, we shall interpret
these problems as political in nature, and describe the players as members of some political party. Players whose
ideal points lie to the left (resp. right) of the origin will be referred to as the left-wing (resp. right-wing) faction of
the party. Locations further along the horizontal axis from the origin depote more exireme pokitical orentations.

Problem A: X < R'; Zn +1 players; majority rule.

In this problem, there is an odd number of players, whose ideal points are located along the real line. A
coalition is admissible if it contains at least n+1 players. It is straightforward to verify that the core is a singleton
set consisting of the median player’s ideal point. From theorems H and IV, there is a unigue, deterministic solution
to the derived model: the solution policy is the unique element of the core. There is a suiking resemblance
between this result and the familiar “median voter theorem" from the political science literature. This theorem
states that in a two-candidate election with a ope-dimensional issue space, both candidates will locate at the median
voter’s ideal point. Our result states that a comumittee consisting of the voters themselves will select the same point.

Problem B: X < R'; 2n players; strict majority rule.

This problem is identical to the previous one, except that there is an even number of players, of which strictly
more than half are required for agreement. Once again, theorem IV guarantees the existence of a deterministic
solation. In this case, the core of the underlying problem is the segment of the real line joining the two median
players’ ideal points and the solution policy can lie auywhere along this segment. In contrast to the preceding
problem, the solution policy is sesitive to all of the parameters in the model, so that interesting companative statics
issues do arise. We will discuss one of the more subtle issues in some detail.

A set U < RY is symmetric i for every v & U, and every v obtaiucd by permuting the order of the elements in v thenv € U

¥ The propetties of the model we have been considering in this and the preceding example are clearly driven by the finiteness of the bar-
gaining horizon.

3 Some of these questions will be addressed in section 4 below, when we consider particular examples. They are the primary focus of
Rausser-Stmon {1991}
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The effect of a shift to the right in the ideal point of the most right-wing player is investigated. Intuitively,
this shift can be interpreted as an increase in political extremism. To simplify the analysis, we will impose the
following restrictions on the parameter set: (i} all players are equally risk averse; (i) all members of the same
faction have the same access probabilities; (iii) player’s ideal points are symmetrically distributed about the origin;
(iv) players' ideal points are all distinct. We assign labels to players so that their ideal points are monotone
increasing. Thus restriction (iif) states that for 1 <@ S r, O,y = -0 > 0.

The increase in (i, has two effects, which we will call the access effect and the risk aversion effecl. The
access effect bepefits the faction that has greater access; the risk aversion effect benefits the faction containing the
extreme player whose ideal point has shifted. For utility functions that satisfy equation (2.1), the latter effect is
always very weak relative to the former. Hence if the left-wing of the party has even slightly more access than the
the right wing, the solation policy will shift to the left. If the distribution of access is virtually uniformn, however,
the policy will shift to the right.

The reasoning outlined below applies to any problem in the class identified above. For expositional purposes,
however, we will present the arguments in the context of a pair of numerical examples illustrating the two effects.
The examples both have six players. In case (i), access is uniformly distributed; in case (i), it is skewed in favor
of the left-wing. The parameters for the simulations are displayed below.

Problem B: Shifting Player #6's Ideal Point to the Right (Sec Tables 4B).
Player #1 Player #2 Player #3 Player #4 Player #5 Player #6
Initial Locaton: oy = oy e=—3 Oy=—2 oy =2 as=73 og=4

- Perturbed Location: oy =d p=—3 oy =-2 oy =2 O5=3 og=4.4
Access-Case (i) w=0.166 w,=0.166 wa=1{.166 wy=0.166 w5 ={.166 we=(0.166
Access-Case (i) w;=0.188 wo==0.188 w3=0.188 wy=0.144 wg==().144 we=0.144

Risk aversion: =02 pa=0.2 =02 pa=0.2 ps=0.2 Pe=0.2

Constant: ;= 100 = 100 13 =100 1= 100 Y52 100 Yo = 100

Table 4B-(i} compares the last five rounds of negotiations for Case (i). In the last offer round (7—1), the shift to
the right in player #6°s ideal point reduces the other players’ reservation utilities in round T—2. Because players are
all equally risk averse, the effect of this shift is greater for players whose ideal points are further away from o
Now consider the penultimate offer round (round T'-3). Because admissible coalitions contain at least n+1
members, each left-winger (resp. right-winger) must induce one right-winger (resp. lefi-winger) to accept her
proposal. It can be shown that in round 73, the left-wingers all choose player #4 and the right-wingers all choose
#3. But as we have seen, player #3's reservation utility in round T'-2 is lowered more by the shift in o than is
player #4’s. Therefore, while each left-wing proposal in round T'--3 shifts to the left, the corresponding rightward
shifts in the right-wing proposals are larger. It follows that in round T4, each left-winger’s reservation utility is
reduced relative to its level in the original model, while cach right-wing's reservation utility is either reduced by a
lesser amonunt or, possibly, is increased. The effects of these changes are apparent in Table 4B-(i): compare
players’ reservation utilities in round T—4, and their offers in round T'--5, of the original and perturbed models. The
relative weakness of the left-wing in round 7-5 is transmitted via backward induction to the first round of
negotiations, resulting in a shift to the dght in the solution policy.

In Case (ii), the access probabilities of the left-wingers are slightly greater than those of the right-wingers.
Table 4B-(if) lustrates the effects of the shift in o in this case. In round T-3, the qualitative effects are the same
as in Case (i) the lefi-wing proposals shift to the left, while the right-wing proposals shift to the right by a greater
amount. However, when the asymmetry in access is sufficiendly great, the smaller, but more heavily weighted
leftward shift dominates the larger but less heavily weighted rightward shifts in the computation of players’
expected utilities. Once again, the effects of these changes are apparent in Table 4B-(ii): compare players’
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Table 4B-(i): Effect of Shifting Player #6's Ideat Point to the Right in Problem B.
Left and Right Wings Have Equal Access

Rnd Prpr Xy () o) wu3(") u4() us() ug)
#1 4000 6.310 5.800 5.278 3.031 2.408 1.741
#2 -3.000 5.800 6.310 5.800 3.624 3.031 2.408
T #3 -2.000 5278 5.800 6.310 4.193 3.624 3.031
o #4 2.000 3.031 3.624 4.193 6.310 5.800 5.278
#5 3.000 2.408 3.031 3.624 5.800 6.310 5.800
#6 4000 1.741 2.408 3.031 5.278 5.800 6.310
T2 Fu 4.095 4.495 4.706 4.706 4.495 4.095
#1 -1.069 4.781 5314 5.835 4.706* 4.154 3.584
#2 .1.069 4.781 5.314 5.835 4.706* 4.154 3.584
'3 #3 -1.069 4,781 5.314 5.835 4.706* 4.154 3.584
4 1.069 3.584 4.154 4.706*% 5.835 5314 4.781
f#5 1.069 3.584 4.154 4.706* 5.835 5314 4.781
#6 1.069 3.584 4.154 4.706* 5.835 5314 4,781
T-4 Fu 4.182 4.734 5270 5270 4734 4182
#1 -0.019 4.204 4.754 5.288 5.268 4.733 4.182%
#2 A019 4.204 4,754 5.288 5.268. 4.733 4,182*
o5 #3 -0.019 4.204 4754 5.288 5.268. 4.733 4.182%
. #4 0.019 4.182% 4.733 5.268 5.288 4.754 4,204
#5 0.019 4.182% 4.733 5.268 5.288 4754 4204
#6 0.019 4.182* 4.733 5.268 5.288 4754 4204
Perturbed Location Configuration.
#1 -4.000 6.310 5.800 5.278 3.031 2.408 1.456
#2 23,000 5.800 6.310 5.800 3.624 3.031 2.148
T1 #3 2000 5.278 5.800 6.310 4.193 3.624 2.786
) #4 2.000 3.031 3.624 4.193 6.310 5.800 5.066
#5 3.000 2.408 3.031 3.624 5.800 6.310 5.592
#6 4.400 1.456 2.148 2.786 5.066 5.592 6.310
T-2 Eu 4.047 4.452 4.665 4.671 4.461 3.893
#1 -1.134 4.816 5.349 5.868 4.671* 4.118 3.311
#2 -1.134 4.816 5.349 5.868 4.671* 4.118 3.311
3 #3 -1.134 4,816 5.349 5.868 4.671* 4.118 3.311
) #4 1.144 3.540 4.112 4.665% 5.874 5.354 4.604
#5 1.144 3.540 4,112 4.665% 5.874 5.354 4.604
#6 1.144 3.540 4.112 4.665* 5.874 5.354 4.604
T-4 Bu ) 4.178 4.730 5.267 5.272 4.736 3.957
#1 -0.018 4,203 4,753 5,288 5.26% 4.733 3.957*
42 -0.018 || 4.203 4.753 5.288 5.268 4733 3.957*
Ts #3 0.018 4,203 4,753 5,288 5.268 4.733 3.957*
™ #4 0.027 4.178* 4.729 5.264 5.292 4758 3.983
#s 0.027 4.178% 4.729 5.264 5.292 4758 1.9%3
#o 0.027 4.478* 4729 5.264 5.292 4758 1.983
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Table 4B-{ii): Effect of Shifting Player #6’s Ideal Point to the Right in Problem B.
Left Wing Has Greater Access

Rad Prpr Xy ie4(7) uy(") t3() uy(") (") ug(")
#1 -4.000 6310 5.800 5.278 3.031 2.408 1.741
# ~3.000 5.800 6.310 5.800 3.624 3.031 2.408
Tl #3 -2.000 5.278 5.800 6.310 4.193 3.624 3.031
B #4 2.000 3.031 3.624 4.193 6.310 5.800 5.278
#5 3.000 2.408 3.031 3.624 5.800 6.310 5.800
#6 4.000 1.741 2.408 3.031 5.278 5.800 6310
T2 Eu 4.317 4.688 4.848 4564 4.303 3.873
#1 -1.330 4921 5.451 5.969 4.564% 4.008 3432
#2 -1.330 4921 5451 5.969 4.564* 4.008 3.432
1.3 #3 -1.330 4.921 5.451 5.969 4.564% 4008 3.432
: #4 0.806 3.736 4.301 4.848* 5.699 5.175 4.638
#5 0.806 3.736 4.301 4.848% 5.699 5.175 4.638
#6 0.806 3.736 4.301 4.848% 5.699 5.175 4.638
T4 Fu 4.406 4951 5.482 5.058 4.515 3.956
#1 -0.421 4.427 4970 5.499 5.055 4514 3.956%
#2 -0.421 4427 4.970 5.499 5.055 4514 3.956*
Tos #3 0.421 4.427 4.970 5.499 5.055 4514 3.956*
- #4 -0.383 4. 406* 4950 5.479 5.075 4.534 3.977
#5 -0.383 4.406* 4.950 5.479 5.075 4534 3.977
#e -0.383 4.406% 4.950 5.479 5.075 4.534 3.977
Perturbed Location Configuration.
#1 -4.000 6310 5.800 5278 3.031 2.408 1.456
#2 -3.000 5.800 6.310 5.800 3.624 3.031 2.14%
1 #3 -2.000 5.278 5.800 6.310 4.193 3.624 2.786
) #4 2.000 3.031 3.624 4,193 6310 ' 5.800 5.066
#5 3.000 2.408 3.031 3.624 5.800 6.310 5.592
_ #6 4.400 1.456 2.148 2.786 5.066 5.592 6.310
T2 Eu 4275 4.650 4813 4.533 4273 3.663
#1 -1.386 4.951 5.481 5.998 4.533% 3.976 3.161
#2 -1.386 4.951 5.481 5.998 4.533% 3.976 3.161
3 #3 -1.386 4.951 5.481 5.998 4.533% 3976 3.161
) #4 0.872 3.698 4.264 4.813* 5.733 5210 4.455
#5 0.872 3.698 4.264 4.813* 5.733 5.210 4.455
#6 0.872 3.698 4.264 4.813* 5.733 5.210 4.455
T4 Eu 4.406 4952 5.482 5.055 4513 3.723
#1 -0.428 4.431 4974 5.503 5.051 4510 3.723%
#2 -0.428 4.431 4974 5.503 5.051 4.510 3.723%
s #3 -0.428 4.431 4974 5.503 5.051 4.510 3.723*
) #4 -0.384 4.406% 4.950 5.480 5074 4534 3.749
#5 -0.384 4.406* 4950 5.480 5.074 4534 3.749
#6 -0.384 4.406* 4.950 5.430 5.074 4.534 3.749
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reservation utilities in round 7-4, and their offers in round -5, of the original and perturbed models. In this case,
the right-wingers’ reservation utilities fall, while the left-wingers’ stay virtually the same. This time, the relative
weakness of the right-wing is transmitted to the first round, and the increase in right-wing extremism results in a
shift to the left of the solution policy.

Problem C: X < R? 2n players; strict majority rule.

A stylized fact about bipolar negotiations between two factions is that either one of the factions will be more
effective in its pursuit of the common objectives of its members, the greater the degree of cohesiveness among its
membership. As this example demonstrates, the predictions of our model are consistent with this observation. In
spatial problems, a natural measure of the cohesiveness of a faction is the proximity of its members’ ideal points to
each other. We will show that as the distance between the right-wingers’ ideal points is increased, the solution
vector shifts to the keft.

When the space of policies is two-dimensional, deterministic solutions do not exist in gemeral. However,
Theorem IV can be extended to guarantee existence provided that agents’ ideal points are confined to an "almost”
one-dimensional set. Once again, we illustrate the discussion by a pair of six-player examples, whose parameters
are specified below.

Problem C: Reducing the Cohesiveness of the Right-Wing Faction (See Table 4C).
Player #1 Player #1 Player #3 Player #4 Flayer #5 Player #6
Tnitial Location: oy =(-9,-1) @ =(-9,0) oy =(-9,41) o=(9.-1) os={9.0) ag=(9,41)
Perturbed Location: oy = (9,1} oy = {~9,0) O == (-9, +1) o ={9~1} o= (9,0} o =(9,41)
Access: w,=0.166 w,=0.166 w4 =0.166 w,,=0.160 ws=0.166 w0166
Risk aversion: pr=0.5 pr=0.5 pa=0.5 =03 ps=0.3 pe=0.2
Constant: 7 =100 V=100 ¥ =100 4= 100 Ye=100 Ys =100

Table 4C compares the last four rounds of negotiations for the inital and perturbed locations. In this case, the
argument is quite straightforward. In round 7—1, each player proposes hier ideal point. When the ideal points of
the right-wingers are dispersed, there is a significant loss in utility for each of them. On the other hand, the vertical
shifis in the right-wing proposals are so small refative to the gap between the left- and right-wing locations that the
dispersion barely affects the left-wingers at all. (Intuitively, imagine heated disputes between conservatives about
the fine details of their ideology which radicals perceive as no more than arcane hair-splitting.) As a result, right-
wingers’ reservation utilities in round 7'-2 fall, while left-winger’s remain almost the same. The effect of this
difference, once again, is to shift the solution policy to the left. :

Problem I»:  Three players, X < R?, variable coalition configurations.

In the three preceding problems we assumed that decisions were made by majority rule. In this problem we
consider alternative coalition structures. In particular, we consider the effects of declaring one or more players to
be essential. The ideal points of the three players are, tespectively, o; = (—1,0), oy = (+1,0) and o5 = (0,1).

First assume that any coalition of two players is admissible, so that no player is essentinl. In this case, the
core of the underlying bargaining problem is clearly empty, so that the model cannot have a deterministic solution.
Not surprisingly, the sequence of equilibrium outcomes settles fnto a cyclic pattern, for reasons very similar to those
discussed on p.  above. Now assume that player #1 is essential. From Theorem V, this model has a determiinistic
solution. Since the core of the underlying problem contains exacily one point—player #1’s ideal point--it follows
from Theorem 11 that this point is the unique solution policy. Next, consider the unanimity version of this problem,
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Table 4C: Reducing the Cohesiveness of the Right Wing in Problem B.
Initial Location Copfiguration

Raod Frpr Xy X3 () 1)) () u4() us(’) te(")
i1 -9.000 -1.000 10.000 9.950 9.899 | 9.055 9.054 9.049
#2 -9.000 (.000 9.930 10.600 9.950 9.054 9.055 9.054
T #3 -9.000 1.000 9.899 9.950 10.000 9.049 9.054 9.055
#4 9.000 -1.000 9.055 9.054 9.049 10.000 9.950 9.899
#5 9.000 0.000 9.054 9.055 9.054 9.950 10.000 9.930
#6 9.000 1000 9.049 9.054 9.055 9.899 9.950 10.000
T2 En 9.501 9.510 9.561 9.501 9.510 9.501
#1 -0.725 -1.000 9.577 9.574 9.565 9.501* 9.499 9.491

#2 -0.710 0461 I 9570 9.576 9.576 9.496 9.502 9.501*

T3 #3 -0.725 1.000 9.565 9.574 9.577 9.491 9.499 9.501*
' #4 0.725 -1.000 9.501% 9499 9.491 9.577 9.574 9.565
#5 0.710 0.461 9.496 9.502 9.501* 9.570 9.576 9.576
#6 0.725 1.000 9491 9.499 9.501* 9.565 9574 9577
T-4 Eu : 9.533 9.537 9.535 9.5333 9.537 9.535

Perturbed Location Configaration.

#1 -9.000 -1.000 16.600 9.950 9.899 9.055 9.634 9.046
#2 -9.000 .000 9.950 16.000 9.950 9.052 9.055 9.052
T1 #3 -9.000 1.000 9.899 9.950 10,000 9.046 9.054 9.055
#4 9.000 -1.500 9.053 9.052 9.046 10.000 9.925 9.849
#5 9.000 0.000 9.054 9.055 9.054 9.925 10.000 9.925
#6 9.000 | 1.5060 9.046 9.052 9.455 9.849 9.925 10.000
T-2 Eu _ 9.501 9.510 9.501 9.488 9.502 9.488
#1 -0.979 -1.223 9.590 9.5860 9.575 9.488* 9.484 9.469

#2 -0.949 0.671 9.580 9.588 9.539 9.477 9.438 9.488*

.3 #3 -0.979 1.223 9.575 9.586 9.590 9.469 9484 9.488*
) #4 0.733 -1.270 9.501* 9497 9.487 9.578 9.573 9.554
#5 0.722 0.460 9.496 9504 9.501* 9.565 9577 9.574
#06 0.733 1.210 9.487 9.497 9.501* 9.554 9.573 9.578
T-4 Eu . 9.538 9.542 9.540 9.522 9.530 9.525
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in which all three players are essential. In this case, the core consists of the convex hull of the three players’ ideal
points. The solution to the model derived from this problem depends on the entire distribution of bargaining
attributes among the three players. The comparative statics properties are predictable. If ome player’s access
probability increased or ber risk aversion coefficient decreases, the solution shifts in the direction of that player’s
ideal point. Finally, suppese that players #1 and #2 are both essential, so that the admissible coalitions are (1, 2)
and (1, 2, 3). In this case, the core of the underlying game is the "contract curve" joining the essential players’
ideal points, ie., the line segment {(B,0): B & {1, 1]}. If the two essential players have equal access, the solution
outcome will be the midpoint of this line, ie., the origin. '

It is instructive to investigate the role that player #3 plays in this configuration. Though players #1 and #2
never invite her to join a coalition, player #3’s presence affects the outcome of negotiations, provided her access
probability is positive. (Think of #3 as representing a group that is peripberal to the decision-making process, but
has the capacity to capture the attention of the general public, and thereby influence the pature of the debate
between the major players (cf. our discussion of essentiality and access on pp. 3-3)). To illustrate this, we simulate
the effect of a leftward shift in #3°s ideal point. The parameters for the iHustration are displayed below.

Problem D: Shifting Player #3's Ideal Point to the Left (See Table 4D).
Player #1 Player #2 Player #3
Initial Location: o = (-1, o= (+1,0) oy =(0,1}
Perturbed Location: oy = (—1,0) o= (+1,0) 03 =(0,~0.05)
Access: w=10.333 wo=0.333 wy=0.333
Risk aversiom p=0.2 =02 P =02
Constant: =100 Yy =100 ¥y = 100

Table 4D compares the last six rounds of pegofiations for the initial and perturbed locations. In the final offer
round (7'—1), the shift in player #3’s proposal benefits player #1 at the expense of #2. In the preceding response
round (T--2), therefore, #1's reservation ufility is higher than initially, while #2's is lower. In the penultimate offer
round {T-3), there are three changes. Player #1's proposal is closer to o, because #2°s reservation utility is Jower.
Player #2's proposal is further from oy, because #1's reservation utility is higher. Finally, player #3’s proposal is
closer to oy and further from oy, both because her own ideal point is now closer to o and because of the shifts in
the other two players’ reservation utilities. All three of these changes benefit #1 at the expense of #2, so that in
round T—4, #1's reservation utility is bigher than initially, while #2's is lower. The effects of these changes are
transmitted via backward induction to the first round of pegotiations, resulting in a shift to the left in the solution
policy.

Problem E: A two-good pure exchange economy with four players.

In this final problem we extend our framework to model pegotiations between agents in a pure exchange
economy. While the problem is very simple, it extends the preceding analysis in three respects. First, it
demonstrates that our framework can be applied a wider class of problems than the ones we have considered thus
far. Second, a deterministic solution is obtained even though there is no essential player and the policy space is
high dimensional. Third, it extends ope of the basic assumptions of the paper, by allowing players’ policy choices
to depend on the coalitions they select.

There are two commodities and four players. Any subset of these players forms an admissible coalition.
Each player has equal access. Players #1 and #2 are each endowed with two units of the first commodity while
players #3 and #4 are each endewid with two units of the second. A policy is an allocation x = (x;y, b

satisfying, for & =1, 2, xu =20 and 3 x; =4. If a player proposes the coalition C, she can propose any aflocation
f=t

in which the players excluded from C' are all assigned their initial endowments. Player i's utility is the Cobb-
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Table 41> Effect of Shifting Player #3°s Ideal Point to the Left in Problem D.
Initial Location Configuration

Rad Prpr Xy Xa 1;(0) (%) te5()
#1 -1.000 Q.000 66.289 66.056 66.124
T-1 #2 1.000 §.000 66.056 66.289 66.124
#3 0.000 1.000 66.124 66.124 66.289
T2 Eu 66.156 66.156 66179
#1 0.138 0.000 66.189 66.156%* 66.171
T3 #2 0.138 0.000 66.156% 66.189 06,171
#3 0.000 (0.543 66.156% 06.156% 66.236
T-4 Eu 66.167 66.167 66.193
#1 -.046 0.060 66.178 66.167* 66.172
T-5 #2 0.046 G.000 66.167* 66.178 06.172
#3 0.000 0.307 66.167* 66.167* 66.208
T6 Ea 66.171 66171 66.184

Perturbed Location Configuration

. #1 -1.000 0.000 66.289 66.056 66.128

T-1 ) 1.000 0.000 66.056 66.289 66.120
#3 -0.050 1.000 66.128 66.120 66.289

T2 Eu 66.158 66.155 66.179
#1 -0.150 0.000 66.190 66.155* 66.172

T3 # L 0.126 0.000 66.158* 66.187 66.171
#3 -0.013 0.544 66.158* 66.155% 66.236

T.4 Eu 66.169 66.166 66.193
#1 0.057 0.000 66.179 66.166* 66.173

T.5 2 0.034 0.000 66.169* 66.177 66.172
#3 0.012 0.307 66.169* 66.166* 66.208

T-6 Eu ’ 66.172 66.169 66.184
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Douglas function w; (x) = {x; x;9)F, with p < 42, _

The model derived from this problem has a unique deterministic solution. Not surprisingly, since the model
is completely symmetric, the solution policy is the symmetric allocation in which each player receives one unit of
each commodity. The proof is extremely simple. To reduce notation we set p=0.25. It can be established that in
each response round, cach player has the same reservation utility. For each even integer ¢, let «, denote this
common reservation utility.

in round T -1, each player proposes the grand coalition and selects the allocation in which she receives the
the aggregate endowment vector (4, 4). Thus, 0y, = Y(16)°% = 4. Now fix an odd integer ¢, and assume that
players’ reservation utilities in round ¢+1 are all equal to 04y < 1. We will show that in round ¢, each player
gelects the grand coalition and, modulo relabeling, the same allocation. Morcover, we will show that the common
reservation utility in round -1 is o € (Ya(1+3e,,), 1). Consider the options facing player i in round ¢. Her
opportunilies in any two-player coalition are clearly dominated by her opportupities in the grand coalition.
Moreover, it is straightforward to verify that if she selects any three-player coalition, the best trade she can achieve
is (2 — VZo2,) units of the scarce commodity and 2(2 — Y22} of the other.3! If she selects the grand coalition,
the best trade she can achieve is (4 — 302,;) of each commodity. Since 04, < 1, the latter trade yields a higher
utility than the former.32 We have thus verified that in round ¢, each player selects the grand coalition and, modulo
relabeling, the same allocation. When player j # i makes a proposal, player i receives the wutility level o ,; when
i herself proposes, her utility is (4 — 303 )*® > 1. It follows that o,y > Va(l+300,y). Finally, players’
teservation utilities obviously cannot all exceed unity. We have established, therefore, that o, € (Y4(l +30,.4), 1)
This completes our verification of the inductive hypothesis. It follows that for every positive €, if T is sufficiently
large then players’ common reservation utility in the second round of the T -round game must exceed (1 — ). But
in this case, the policies proposed by each player in the first round must be arbitrarily close to the allocation in
which each player receives one unit of each commodity.

3 Without loss of generality, consider player #1% opportunities if she selects the coalition € = [, 2, 3]. The aggregate endowment is
{4, 7). A necessary condition for an optimal allocation is that for { € €, x¢ = 25, Fors = 2,3, (e3P = qpy. so that xp = Y20k,
Player #1 takes what remains of the second commodity, e 2~ 2\50'.,2“, and twice as much of the Brst commodity.

32 Sinee 22 - Y204 07 < (1502 2ol ), it s sufficient to check that (3 - ‘fﬁafﬂ} < (4 = JoL fe that (3 - Va5, < 1. This

inequality clearly holds whenever o0 < 1.
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APPENDIX A: TWO-DIMENSIONAL SPATIAL PROBLEMS.

Thete are, of course, bargaining problems for which neither Theorem IV por Theorem V applies, either
because the policy space is multidimoensional or because there is no essential player. This is true of a class of
problems that has played an extremely important role in political sciénce theory.3? These are spatial problems in
which the policy space is two-dimensional. The informal discussion below summarizes what can be inferred about
this class of problems by applying numerical simulation techniques.

First, for every problem that has a nonempty core, we bave been able to compute a deterministic solution for
the model derived from that problem. For example, the core is nonempty for every four-person two-dimensional
problem with strict majority rule and we have computed solutions to hundreds of corresponding models. Second,
the closer a problem is to one with a nonempty core, the more likely it is that the model derived from it will bave
an exact solution? Moreover, if a solution is not exact, it is more likely to be almost exact. Finally, the
outcomes implemented by these exact or approximate solutions are more likely to be close to the core of the
neighboring problem.

To demonstrate the relationship between the structural characteristics of bargaming problems and the
frequency of different solution types for the comesponding models, we report on three Monte Carlo experiments,
referred to as experiments A, B and C. In each experiment we sample one hundred bargaining problems. The
sample spaces are three increasingly general, parameterized families of five-person spatial problems, ranging from a
famify in which the core is always "almost nonempty” to ope in which only minimal restrictions are imposed. In
all three experiments, access probabilities are sampled from the four-dimensiopal vnit simplex, and players’ risk
aversion coefficients lie on the unit interval. The sample spaces for players’ ideal points are displayed in the table
below, with o, = (0, 0;5) denoting player i’s ideal point. In experiments A and B, only «; is selected randomly
while in experment C, all five ¢;'s are randomly chosen,

Sample Spaces for Players’ Ideal Points in Experiments A-C.

Player #1 Player #2 Player #3 Player #4 Player #5
A: oy =(~1,0) oy =(+1,0) (~05,—.05) £ 05 <(.05,.05) o =(0,~1) os={0+1)
B: o =(~1,0) 0= (+1,0) (-0.5,-0.5) 5 0; <(0.50.5) o =(0,~1) os=(0+1)
C: (-1~ =o;<(1,1) —1~D=ses(LD {-1-D=o:s(L1) (~L-D=a,=(L1} (~1~-D<os;<(11)

It is well known that in experiments A and B, the core is nopempty if and only if player #3’s ideal point is located
at the origin.3? ,

The results of the three experiments are summarized in the three histograms presented in Table 5.1. In each
case, the leftmost column reports the frequency of exact stochastic equilibria. The other columns indicate the
frequency of approximate equilibria with different degrees of inexactness: specifically, the height of the bar labelled
"from o to b" represents the frequency with which we computed an e-equilibrium with € € (a, b]. The
experimental results are consistent with the qualitative remarks offered above. In particular, in experiment A the
fikelihood of an exact equilibrium is very high, while vistually all of the approximate equilibria are almost exact.
As the class of problems is expanded, the likelihood of an exact equilibdum declines, and the likelibhood of a quite
inexact solution increases. Of course, because of the methodology used here, these statistics are necessarily subject
to certain caveats. In particular, -while we have observed stable cycles over thousands of rounds, and inferred from
these cycles the existence of approximate solutions, the existence of infinite stable cycles cannot, obviously, be
guaranteed by numerical methods. Equally obviously, numerical methods cannot guarantee the existence of exact

3 The scminal papers in this fiteratuee are Davis and Hinich [1966] and Plott [1967]. For surveys of the literature, sce Enclow and Hin-
ich {1984} and Ordeshook {1986].

3 Because our sample spaces are alf finite-dimensional, the notion of "close” here is the standard one. Also, the sample spaces in the fol-
lowing discussion are all endowed with Lebesgue measure, and terms such as "nrore likely” have precise meanings in terms of this measure.

33 See section 4.7 of Ordeshook [1986], and Fiotina-Plou [1978].
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Table 5.1: Histograms for Experiments A-C
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stochastic solutions. 3¢

Our third observation is that in vinually alt of the bargaining problems for which an exact solution was pot
obtained, the sequence of outcomes settled into a cyclic pattem. It is instructive to investigate the nature of these
cycles. FEssentially, they arise because as one player altemates between different coalitions, selecting those
members whose participation can be obtained most “cheaply,” other players’ participation "prices” change in
response, generating a stable oscillatory pattern of optimal coalition cheices. To illustrate this cyclic phenomenon,
consider a problem drawn at random in experiment B with the following parameters:

Parameters for the Simulation Displayed in Table 5.2.
Player #1 Player #2 Player #3 Player #4 Player #5
Location: oy = (1,0 o =(+1,0 o =(~0.193,0.202) o= (0,~1) o5 =(0,+1)
Access: w=0.152 wy=0222 wy=0.216 w,=0.183 ws=0.227
Risk aversiomn: p1=0.860 Pe=0.706 pi=0.200 p=0.892 ps=0.746
Constant: 1y =60 Y,=60 _ 1, =60 Yy=60 15 =60

In Table 5.2, the relevant computations for selected rounds of the 2000 round game are displayed in reverse
order.37 Clearly, the sequence of offer vectors settles into a two-period limit cycle.?® For the odd-numbered
(offer) rounds, column 2 lists the proposer and column 3 lists the members (in addition to hesself) that the proposer
invites to form a coalition. Columns 4 and 5 list the policies proposed by each player and 6 through 10 display the
utilities that each player derives from each of the proposed policies. - An asterisk in a column indicates that the
player’s participation constraint is binding for the proposer. For the even-numbered {(response) rounds, columns 6
through 10 display players’ reservation utilities, which are, identically, their expected utilities conditional on
reaching the following offer round. Fntres that are central to the following discussion are emboldened.

Observe that except for the first component of player #5°s proposal, the offers remain relatively similar from
round to round. In the fifth round, player #5 proposes the policy (~0.20, (.52) and the coalition {5, 1, 3}. Player
#1's paticipation constraint is birding, while player #2's utility from this proposal {alls short of her reservation
utility in the sixth round. Consequently, #2's reservation utility is lower in the fourth round than in the sixth, while
for #1 the ordering is reversed. Thus in the third and fifth rounds, the configuration of "participation prices”
confronting player #5 is slightly different: in the third, the price of securing #2’s agreement is skightly lower
relative to the price of securing #1's agreement. The difference is enough to tilt the balance in favor of player #2,
and so in the third round, player #5 proposes the policy (-0.03, 0.48) and the coalition {5, 2, 3]. Player #2’s
participation constraint is now binding, while player #1’s udlity from #5's proposal falls short of her reservation
utility in the fourth round. Consequently #2’s reservation utility is higher in the second round than in the fourth,
while for #1 the ordering is again reversed. In the first round, the relative prices facing #3 are virtually the same as
in the fifth round,3® and she chooses player #1 in preference to #2.

In parameterized families of problems with empty cores, we should not expect to identify conditions that can
distinguish models with exact stochastic solutions from those with only approximate solutions. Cyclic patterns arise
because the negotiating problem facing players is inherently discontinuous: each player must choose from 2 finite
set of coaliions and as one player switches coalitions, other players’ payoffs change discontinuouslty. Our
simulations indicate that exact solutions result whenever players’ optimal coalition choices are unchanged from
round to round. Conversely, a cyclic pattem emerges whenever at Ieast one player's optimal coalition choice
regularly changes, Cleady, it will be extremely difficult to ensure that players’ optimal coalition choices remain

36 The exact stochastic solutions that we report are indeed exact to the the limits of machine precision, but the tolerances of our computa-
tiosal algorithun are relatively coarse (approximately .

31 Because the scquence of offers is uniquely determined, the offers made in round #3 of the T-round game are, identically, the initial
offers in the T'-2-round game, ete.

3 Iy fact, the cychic pattern is not quite exact. There are stight differences between the offers in rounds ¢ and 44 that are obscured by

counding.
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Table 5.2: A Two-period Limit Cycle.

Rad Prpr | Coal Xy Xq 14(") :¢2=(~) ('} 14} (")

1000 Bu 177076 331871 26.29755 1.55071 2.82409
#1 {3,4) || 0479479 0.078169 I 1.77245 3.31335 26.29755% | L55071% | 282227

#2 {45} (3.263466 0.150188 | 1.76932 3.32546 26.24555 1.55071* | 2.82409*
999 #3 {1,51 §| -0.193165 0.201892 | 177117 3.31787 26.40391 1.55060 2.82492
#4 (1,2} § -0.120128 | -0.300296 || 1.77076* 3.31871% | 2622866 1.55204 2.81902
#5 (2.3} 1 -0.054990 0.481519 || 1.77021 3.31871% | 26.29755% | 1.54985 2.82856
4998 Eu 1.77066 331921 26.29644 1.55073 2.82408
#1 [3.4) | -0.478789 0.068909 i 1.77245 331337 26.29644* | 1.55073* | 2.82218

#2 (4,3} .248006 0.144683 § 1.76939 3.32523 2625072 1.55073% | 2.82408%
997 #3 (1,5} § -0.193165 0.201892 | 1.77117 3.31787 26.40391 1.55660 2.82492
#4 {1,2) i -0.091547 | -0.289190 || L.77066% 3.31921% | 26.23077 1.55202 281918
#5 {1,3} || -6.198921 0.516905 || 1.77066% | 331628 26.29644*% | 1.54971 2.82855
4] Eu 1.77066 3.31921 26.29644 1.55073 2.82408
#1 (3,4} | -0.478789 0.068909 || 1.77245 3.31337 26.29644% | 1.55073% | 2.82218

#2 {4,5) 0.248006 0.144683 || 1.76939 332523 | 2625072 1.55073* | 2.82408%
5 #3 {15} || -0.193165 0.201892 || L77117 3.31787 26.40391 1.55060 2.82492
' #4 {1,2} || -0.091547 | -0.289190 || 1.77066* 3.31921*% | 2623077 1.55202 2.81918
#5 (1,31 || -0.198%21 0.516905 [ 1.77066* | 331628 | 26.29644* 1.54971 2.82855
4 Eu 1.77076 3.31871° | 26.29755 1.55071 2.82409
#1 (3.4} || -0.479479 0.078169 1 1.77245 331335 26.29755% + 1.55071% | 2.82227

#2 {45} 0.263466 0.150188 | 1.76932 3.32546 | 26.24555 1.55071% | 2.82409*
3 #3 i1,5) || -0.193165 0201892 || 1.77117 3.31787 26.40391 1.55060 2.82492
#4 (1,2} -0.120128 | -0.300296 || 1.77076* 331871*% | 26.22866 1.55204 2.81902
#5 {2,3] || -0.054990 0.4815%9 || 1.77021 3.31871% | 26.29755% | 1.54985 2.82856
2 Eu 1.770646 331921 2629644 | 1.55073 2.82408
#1 [3,4) | -0.473789 0.068909 | 1.77245 3.3133%7 26.29644* | 1.55073* | 2.82213

#2 (4,5} 0.248006 0.144683 | 1.76939 332523 26.25072 1.55073*% | 2.82408*
i #3 {1,531 | -0.193165 0.201892 4 1L.77117 331787 26.40391 1.55060 7.82492
#4 (1,2) || -0.091547 | -0.289190 || 1.77066% 331921% | 26.23077 1.55202 2.81918
#5 {13} §f -0.198921 0.516905 || 1.77066* | 3.31028 26.29644% | 1.54971 2.82855
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constant, and hence to guarantee existence of an exact stochastic solution. On the other hand, our Monte Cado
experiments do suggest that there is a predictable relationship between the structure of a given family of problems
and the relative lkelibood of exact, almost exact and inexact solutions for the corresponding models,

The preceding discussion raises a wide variety of questions such as: What is the precise relationship between
the dynamical system we have been investigating and static concepts such as the core? Is there an necessary
relationship between the likelihood of a nonempty approximate core and the frequency of an exact or almost exact
solution; conversely, are there familics of problems for which even approximate cores are usually empty, yet exact
or approximate solutions to the corresponding models arise as frequently, say, as in experiment A? Why are the
cyclic patterns we have observed so prevalent, rather than, say, some kind of chaotic behavior? To what extent are
the various observations reported above robust with respect to alternative functional forms?
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APPENDIX A: TWO-DIMENSIONAL SPATIAL PROBLEMS,

There are, of course, bargaining problems for which ncither Theorem 1V nor Theorem V applics, either
because the policy space is multidimensional or because there is no essential player. This is true of a class of
problems that has played an extremely important role in political science theory.?  These are spatial problems in
which the policy space is two-dimensional, The informal discussion below summarizes what can be inferred about
this class of problems by applying numerical simulation techniques.

First, for every problem that has a2 nonempty core, we have been able to compute a deterministic solution for
the model decived from that problem. For example, the core is nonempty for every four-person two-dimensional
problem with strict majority rule and we have computed solutions © hundreds of corresponding models. Second,
the closer a problem is to one with a nonempty core, the more likely it is that the model derived from it will have
an exact solution3* Moreover, if a solution is not exact, it is more likely to be almost exact. Finally, the
outcomes implemented by these exact or approximate solutions are more likely to be close to the core of the
neighboring problem.

To demonstmte the relationship between the structural characteristics of bargaining problems and the
frequency of different solution types for the corresponding models, we report on three Monte Carlo experiments,
referred to as experiments A, B and C. In each experiment we sample one hundred bargaining problems. The
sample spaces are three increasingly general, parameterized familics of five-person spatial problems, ranging from 2
family in which the core is always "almost nonempty” to one in which only minimal restrictions are imposed. In
all three experiments, access probabilities are sampled from the four-dimensional unit simplex, and players® risk
aversion coefficients lic on the unit interval. The sample spaces for players’ ideal points are displayed in the table
below, with o = {0y, 04 denoting player i's ideal point. In experiments A and B, only ay is sclected randomly
while in experment C, all five o; s are randomly chosen.

Sample Spaces for Players” Ideal Points in Experiments A-C.

Player #1 Player #2 Player #3 Player #4 Player #5
Ar oy = (=10 o= (+1,0) (~.05-.05)< (3 < (05,.05) s ={0,~1) os=(0,41)
B: o = (LD = (+1,0) (-0.5-0.5) €3 <{0.5,0.5) o =(0.~1) o= (0,41)
C LD sl | Do) (~1,~1}< o< (L.1) D<) | 1-Dsos<(l1)

It is well known that in experiments A and B, the core is nonempty if and cnly if player #3's ideal point is located
at the origin.3%

The results of the three experiments are summarized in the three histograms presented in Table 5.1. In each
case, the leftmost column reports the frequency of exact stochastic equilibria. The other columns indicate the
frequency of approximate equilibria with different degrees of inexactness: specifically, the height of the bar labelled
“from a to b" represents the frequency with which we computed an e-equilibrium with € € (a, ). The
experimental results are consistent with the qualitative remarks offered above. In particular, in experiment A the
fikelihood of an exact equilibrium is very high, while virtually all of the approximate equilibria are almost exact.
As the class of problems is expanded, the likelihood of an exact equilibiium declines, and the likelihood of a quite
inexact solution increases. Of course, because of the methodology used here, these statistics are necessarily subject
to certain caveats. In particular, while we have observed stable cycles over thousands of rounds, and inferred from

33 The seminal papers in this fiterature are Davis and Hinich {1966] end Plow [1967]. For surveys of the lterature, see
Eneclow and Hinich {1984} and Ordeshook [1986].

¥ Because our sample spaces are all finfte-dimensional, the noton of “close™ here is the standard one.  Also, the sample
spaces in the following discussion are all endowed with Lebesgue measure, and terms such as "more likely™ have precise
meanings in terms of this measure.

35 See section 4.7 of Ordeshook [1986], and Fiorina-Plou [1978].
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Table 5.2: A Two-peniod Limit Cycle.
Rnd | Prpr | Coal X Xy uy{) u{) 13() u4() us()

1000 | Eu 1.77076 331871 2629755 1.55071 282409
#1 {34} | 0479479 | 0078169 {i 1.77245 3:31335 2629755% 1 1.55071% | 2.82227

#2 {4,5}) 0.263466 | 0.I50188 | 1.76932 3.32546 26.24555 L.55071% | 2.824009+
999 #3 {15} || -0.193165 0.201892 || 1.77117 3.31787 2640391 1.55060 282492
#4 {1,2} || -0.120128 | -0.300296 || 1.77076% | 3.31871{* | 2622866 1.55204 281902
#5 {2.3] || -0.054990 | 0481519 | 1.77021 331871% | 26.29735% | 1.54985 2.82856
| 998 Eu L77066 | 331921 26250644 1.55073 2.82408
#1 {34) || 0478789 | 0.068909 || 1.77245 |} 3.31337 26.20644% | 1.55073% 2.8_2218

#2 {4,5] 0248006 | 0.144683 || 1.76939 3.32523 26.25072 1.55073% | 2.82408+*
997 #3 {15} || -0.193165 | 0201892 )| 177117 331787 | 2640391 1.55060 282492
#4 {12} | -0091547 | -0.289190 || 1.77066% | 3.31921*% | 26.23077 1.55202 281918
#5 (1.3} | -0.198921 0.516905 || L.77066% | 3.31628 26.29644% 1 1.54971 282855
6 Eu 177066 | 3.31921 26.29644 1.55073 2.82408
#1 {34} || 0478789 0.068909 || 1.77245 331337 26.29644% | 1.55073% | 2.82218

#2 {4,5) 0.248006 | 0.144683 | 1.76939 3.32523 26.25072 1.55073* | 2.82408*
5 #3 {15} §§ 0.193165 0.201892 || 1.77117 331787 26.40391 1.55060 2.82492
#4 {12} 3 -0.091547 | -0.289190 Jj 1.77066* | 3.31921* | 26.23077 1.55202 2.81918
#5 {13} || -0.198921 0.516905 || 1.77066* | 3.31628 26.29644% | 1.54871 2.82855
4 Eu 1.71076 331871 2629755 1.55071 282409
#1 {34} || -0479479 | 0.078169 || 1.77245 331335 | 2629755% | 1.55071% | 282227

#2 {4,5] 0263466 | 0.150188 || 1.76932 332546 26.24555 1.55071* | 2.82406*
3 #3 {15} || -0.193165 | 0201892 | 177117 331787 | 26.40391 1.55060 2.82492
#4 (1,2} | -0.120128 | -0.300296 § 1:77076* | 3.3187i% | 26.22866 1.55204 2.81902
&5 {23} || -0.054990 0481519 | 1.77021 331871 | 26.29755% | 1.54985 2.82856
2 Eu 1.77066 3.31921 26.25644 1.55073 282408
#1 (34] || 0478749 | 0.0068909 || 1.77245 331337 26.29644* | 1.55073* | 2.82218

#2 (4.5} 0.248006 | 0.144683 | 1.76939 332523 2625072 £.55073% | 2.82408*
i #3 {1,5} £ -0.193165 | 0.201892 || 1.77117 331787 2640391 1.55060 2.82492
#4 {1.2] | -0.091547 | 0289190 §| 1.77066% | 3.31921% | 26.23077 1.55202 281918
#5 {13} | -0.198921 0.586905 i 1.77066% | 331628 26.29644* | 1.54971 2.82855
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round to round. Conversely, a cyclic pattern emerges whenever at least one player’s opumal coalition choice
regularly changes. Clearly, it will be extremely difficult o cnsure that players’ optimal coalition choices remain
constant, and hence to puaraniec existence of an exact stochastic solution. On the other hand, our Monte Carlo
experiments do suggest that there is a prediciable relatonship between the structure of 4 given family of probloms
and the relative likelihood of exact, almost exact and inexact sofutions for the corresponding models.

The preceding discussion raises a wide variety of questions such as: What is the precise relatisaship between
the dynamical system we have been investigating and static concepts such as the core? Is there an necessary
relationship between the likelihood of a nonempty approximate core and the frequency of an exact or almost exact
solution; conversely, are there familics of problems for which even approximate cores are usually empty, yet exact
or approximate solutions to the corresponding models arise as frequenty, say, as in experiment A7 Why arc the
cyclic patterns we have observed so prevalent, rather than, say, some kind of chaotic behavior? To what exient are
the various observations reported above robust with respect to alternative functional forms?
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APPENDIX B: PROOFS.

Proof of Proposition | and Lemma 1 The proofs of Proposition I and Lemma I are interwoven., We first
I I I

establish part (i} of the proposition for ¢ = 7. Consider a policy vector ¥ € X such that u;(¥) < u, @Y%), Clearly,
if (1) round 71 is reached, (2) some player proposes ¥ and (3) { has the deciding vote, then § does strictly worse
if she accepts X than if she rejects it Similarly, for x such that i (x) > & (x¥¥), i does strictly worse if she rejects
x than if she accepts it Morcover, in ecither case, conditions (1)-(3) are indeed satisfied if each j =i plays as
follows: A; y = X; xj 7.4 = X; and for cach ¢ € {2,4,...., T~2}, A;, = (J. This cstablishes that if 5; e S; 1, then
i’s acceptance set in the last period must comiain the set {x € X1 () > ;(x¥™)} and exclude the set
{x € X:u(x) < (x¥™)}. To complete the proof of part (i), observe that acceptance scts are required to be
closed.

We now prove parts (a) and (b) of the Lemma, for t =T-1. JetJ = {j € [: ¥y, € BA!-'T_I}.“Q IfJis

empty, then Xy € interior( A}:wi) and pant (2) follows immediately from Assumption A3, Assume
je(',‘u-_]

therefore, that J is nonempty. We will show that for alt j € J, ;7.9 # % 7.0. It follows from part (i) of
Proposition I that for all j € J, w;j(%ir) = u;(xdf ¥y, From assumption A4, however, there exists ¥ such that
up(T) > up (¥, for all j e 1. Since any coalition of players must accept X if it is proposed, it follows that for
.any player j € J, u;(%; 1) 2 #;(X) > 4; (& 7). verifying that as claimed, % 7.y # %5,

For ¢t = T—1, part (b) of the Lemma is an immediate implication of Assumption A4, As noted above, for
every player i, the vector ¥ identified by Assumption A4 will be accepted by all players and yields i a suictly
higher payoff than Eu, G| T).

We now return (o the proposition, to prove part (i) for r = T—1. After elimination of weakly dominated
strategies in round T, player j is Jeft with a unique admissible choice in round T: the acceptance set
(x € X:u(x) 2 u;(x¥")). Pan (ii) now follows immediately from this fact and part (b) of the Lemma with
t =T-1,

Now fix t = {2,4,---,7T-2} and assume that part (i} of the Proposition has been proved for round r+2
while part (ii) of the Proposition and parts (a} and (b) of the Lemma have been proved for round (+1. Part (i) of
the Proposition can now be proved for ¢, using exactly the same argument as we used for ¢ = 7. Now consider
parts {a} and (b) of thé Lemma, for round (—~1. If round t+1 of the game is rcachéd, then the vector of offers

(% pe)ier Will be proposed and accepted. et Ex = Ew‘-f;',“. Because the offers in this round are not all
igt

identical, it foliows from the strict concavity payoffs that Uy (Ex.q) > Eup 31142, for every f/ & f. Now repeat
the argument proving parts (2) and (b) for ¢ =T-1, but replace ¥ with with Ex,,;. Finally, part (ii) of the

proposition for round (-1 can be proved by exacdy the same argument that was used to prove part (i) for round

1. [1

40 Given a set X, the symbol "X " denotes the boundary of X.



Proof of the Coreliary to Theorem kb Let &= (8 )er be an equilibrium profile for the game I'(u, T,
where 5; = (f;,, Cisy Aiiatdiz1s, -+ r-1- Suppose that for some ¢ and ¢ € {1,3, -, T-1}, C:, is not minimal
with respect to . Then there exisis O o Cian C 2 C;y. such that €7« {1} is admissible. Thus,

N Ajen © () Ajear while by Proposition I, max{u () x € M Aj a2 max( () x € (yAj 0} Since
j€c"; jeC” jccu jel”

u; (-) is strictly concave, the maximizers on the two constraint sets must coincide. Moreover, from Lemma I(h) and

Proposition I, 1 (%; ;) € iﬂtcrior(ﬁ;'zﬂ), so that %;, is also a maximizer on (™) A jai- Thus the profile 3 remains
Jelru{iy

an equilibrium after substituting the coalition €’ for ;. Ll

Proof of Theorem 1L While the existence result is immediate, the proof of unigueness is extremely intricate.

Accordingly, we precede it with an heuristic guide. Recall that in each offer round, player i solves a two-part
maximization problem. She first considers each admissible coalition in tarn and maximizes her utility subject to the
condition that all members of that coalition must accept her choice. For each cozlition, our strict concavity
conditions guarantce a unique optimal choice. She then chooses a utility-maximal policy from among these
maximizers. To guarantee that a game has a unique equilibrium, it is sufficient to ensure that for each player in
each round, there is a unique solution to the second stage of her maximization problem. As usual, we start from the
_ end of the game and work backwards. In round 7'—1, we accomplish this for generic games simply by increasing
slightly cach player’s utility on a small neighborhood of one of her optimal choices. In round -1, for ¢ <T
however, the problem is much more delicate; to obtain uniqueness in this round, we must locally perturb player’s
utilities without interfering with any of the adjustments we have already made. Qur approach is to arrange things,
whencver possible, in round £-+1 so that the offers players make in round (-1 arc distinct from all of the offers they
make in later rounds. When things can be armanged in this way, we can simply perurb players’ wtlities on
neighborhoods of their ¢-1 round offers, without affecting any of our previous perturbations. It is no( always
possble, however, to ensure that offers in different rounds arc always distinct: there is an open set of utlity
functions for which at least one player repeatedly proposes her ideal point. This fact dramatically comﬁh‘ca[cs the
proof. Fortunately, however, there are only finitely many exceptional cases that must be dealt with; because we
have a continuum of degrees of freedom, we can take care of these cases through an intricate process of

“anticipatory planning.”

Definitions:  Fix a twice continuously differentiable function v e W. Let a(v) = (0g(v));es denote the vector of
players’ ideal points; that is, for each [, o;{v) globally maximizes v, () on X. When confusion will not result, we
will use boldface lowercase letters to denote bath vectors and the sets corresponding to these vectors. ! Fori € 1
and x € X, let Hv,(x) denote the Hessian matrix of v; evaluated at x. Since X is comipact, and v is stictly
concave, there exists 1(v) > O such that for all i and all unit length vectors f§ & R, BHv (x)B < —niv). Now, for

cach pair of veciors y € X fandee Rf: and scalar 8 > 0, define

41 For example, a(v) will sometimes denote the set (_ja(v), and sometimes the ordered i-wuple {o 00}
T
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Yy, £, 8) = {y: X - R;T: wi(x¥*y = 0 and for all {,
for all x € X and all enit lenpth vectors B e . BHyi{x ) < nlvy ;
if g; = ( then y; () = (;
e, >0thenyw; (yYy=¢; >y; (¥, forally #y
Y, () =0o0n X ~ By, 8}

Observe that for all yw € ¥Y(, -, ), v+ y e W. For the remainder of the proof, we will assume without further

commment that the symbols ¢, T and 1 denole even integers. For each + = T, define the set V(T') as follows.
Vi)=[ve W:Vte [, T),
each player has a unique optimal policy choice in round 1+1 of I'(v, T')}

In the definitions that follow, we always presume that v e V(). Let z(v, T+1) = %%, - -+ x%") and for
te{t,T), let z{v, t+1) denote the vector of optimal choices for players in round T+l of I'(v,T). Let

Zv, 1} = J z(v, t+1). (Observe that for alv, Zv, TY=06). Llet n{v, 1) = ij v{(z; (v, T+1}) denote the vector
{7} ’ J

of players® reservation utilities in round t. For each { and te [, T], let Li(v, ©) = {y € X: v(y) = x;(v, 1)}
denote the "lower™ boundary of player i's acceptance set in round T of I'(v, T). Let A(v, 1) = (™ () co{l; (v, )
denote the set of policies that will be accepted by some coalition in round =% For each i, let
M (v, 1=1) = {y € X:y maximizes v;(-) on A(v, 1)). Observe that for v € V (1), M;{v, t~1) is necessarily a finitc

set, but in general may contain more than one element. Alse, observe that
for all y € M;(v, (1), either y = o;(v) or there exists j # 1 such that y e L;(v, ¢). (B.IL1)

To see that (B.IL1) is true, recall that as an immediate implication of Lemma I(b), each player’s opimal offer must

yield her more utility than her reservation utility in the following round. Thus, M;{v, (-1} N L;{v, 1} must be

empty. Therefore, if y € M;(v,1=1) but y ¢ {_yL,;(v, ¢}, then y must be an interior potnt of A (v, ¢} and hence 2
L

global maximizer of v;(YonX. For ¢ 2 ¢,V e V() and v\ e V(') we will say that v' and v¥ are strategically

equivalent from ¢ if the following three conditions are satisfied: (a) a(v) = a(v"); and for all T21¢, (b)

2(v", 1+1) = 2(v7, T+1); and (©) V' (z(v', T+1)) = vE(z(¥", T+1)). "Observe that strategic equivalence is transitive in

* and v© are strategically cquivalent from ¢’ while v' and V' are

strategically equivalent from ¢, then v* and v are strategically equivalent from 7,

the following sense: if for t < ¢ <7, v

The construction that follows relates to the “intricate process of anticipatory planning” referred 1o above. Let

{_; denote the set [ ~ {i}. For eachm € R and nonempty setJ € I, define the affine function 6;(x, J) by

0;(n, J} = (w‘-v;(a.-(V)H h wiua‘(v))] + Y wa

wlu{i ] e S

Now, for cach scalar 7>0, define PPv,n) = {x} and for each even integer k >0, define

4 “cofY )Y denotes the convex hull of Y.
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Piv,n)y= 6,0, J). Obviously,
J J ¥
wellf2ny @wlat

for any finite set 2 < R, the sel of ©'s for which PHy, 1) m i (82} = D 18 finite; (B.11.2a)

Also, since Y w, € (O, 1), for all @ #J < 1, it follows that for all even k, 7' € PE?(v, 1) ( PRy, ) oaly if
wi

is a fixed point one of some member of a fixed finite set of affine functions, each of which has at most one fixed

point. Hence,
for all even x > k =0, the set of o's for which PHv, ®) O PN(v, ) = & is finite. (B.I1.2b)

Now for each even integer & € [0, 1], let I (v, £) = PEv, m;(v, ¢)). [1Xv, 1) has the following interpretation. For
each 1 € (1—k, 1], suppose that in round 11, player i proposes her ideal point, at least one player j # i proposes a
policy that yields i her reservation utility in round T, and the remaining players propose their ideal points. In this
event, player i's reservation _utiﬁ{y in round f—% mast belong to the finite set I"I,-"(v, ). The relevance of this
arcane fact will eventually become apparent. For now, we will simply assert that the following fact plays a critical
role in the proof,
For all ve V({t=2), either for each k € [0, (2], TIHv, (=2) < T2, 1), {B.IL3)
or. z{v, (=1} = al¥) .
or there exists ' € T and @ %0 stz (v, t=1) € La(v, 1) = Le(v. 1)
To see that (B.JL3) is true, observe first that from (B.IL1), if neither the second nor third conditions are satisfied,
then, necessarily, z (v, (1) = og(v}, while for some @ = J <4, z{v,t-1) € Li(v, 1), for i € J, and otherwise,
2.(v, 1) = o (v} In this case, player i’'s reservation ufility in round -2,
Ty, £-2) = 6,05 (v, 1), 1) € TIA(v, 1-2) < 13(v, 1). Moreover, by construction, if 5%y, (-2) < Xy, 1), for
some k € (0, (-2, then Ty, (=2) < TIFA, ).
Finally, let £2 < R be an arbitrary finite sct and define the set U (¢ €2) as follows:
U@; Q) ={ve W: for alli and altk e {0, (], TIE(v, £) v v () = &8
for all even x € (k, (], TI&v, 1) A IV, 1) = O}
Observe that € < € implies U{; Q) < U{t; ). Also observe that that
O e Q implies U Q) c U Q). (B 1L.4a)
for all ve U({; Z(v, ) and all i € I, Li{v, 1) M Z(¥, L) =1, (B.IL4b)
(B.IL4a) is immediate. (B.IL4b) is"equivalent to the statement that TI&(v, 1) M vi(Z(v, 1)) = &. An immediate

consequence of (B.ILT) and (B.IL4} is that for any finite set € that contains Z(v, (),

for all ve U@ Q), iy € Mi(v,(~1) and y # o (v), theny & Z{v, (). {R.IL5)

43 For a real-valued function £, "f ()" denotes the image of the set ¥ under the map f, i.e. [f()e Riy e YL
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We now present three lemmas, from which the proof of the Theorem will follow (relatively) casily.

Lemma IL1: Fix ¢ <7,xe X' and v e V() U £), for some finite set €2 that contains Z(v, ¢} w a{v).
There exists & > 0 and v > 0 such that for all & € (0, S if e e B0, v} with & = 0 whenever x; € (), thea for all

y e Y, g, 8), v and v + y are strategically equivalent from ¢.

Proof of Lemma II.1:  Pick & > O sufficiently small that for all i: (8-)) for all i such that x; & Z{v,),
B, 8 nB(Z(vy), 8 = and (&) forall Tt 21, x; € A(v, T) implies B (x;, &) m Al{v, 1} = . Pick y> 0 such
that: (v-i) for all T> ¢ and all i such that x; € Z{v, ¢}, x; € A(v, 1) tmnplies that v, (B {x;, 8)) < vi(z; (v, =~1) — v
and {y-ii) for all €€ B(0, 1), ¥Y(x, & & is nonempty.®* Now pick § ¢ (0, 5) and €€ B,V with g >0
whenever x; & Z{v, ) and pick ve Y e 8 Qbserve that by definition

2(v, T+1) = z2(viy, T+1) = ¥*, - - -, x¥") and, by assumption, y(x¥¥) = y(a(v)) = 0. Hence v and v + y are
strategically equivalent from T. Now fix T € (¢, T'] and assume that v and v + y are strategically equivalent from
1. We will show that they are strategically equivalent from 72,

Fix { € . Together with our assumption that x; ¢ Z(v, 1) whenever £; > 0 condition (-if) implics that
there exists a nbd N; of 7 (v, 1~1) such that for each j, y;(y=0 on N;. Moreover, since strategic equivalence
from- - iaplies -that ywiz(v, T41)) = 0, we have x(viy, 1).= x{v, 1). . Thus, for.each j and.y € Ny, v;(3). = m(v, %) ..
if and only if (v+y)y)zwi(viy, 0. It follows that A(viy, )N, =A{v, ) N; and so
(v, 1} € A(v+y, ©). Moreover, since y{-) is nonnegative it follows that for all j and all y ¢ A(yv, 1),
ity Xy ) 2 v, 1) = T vy, 1). Thus A{vty, ©) < A{v,1). We now have two cases to consider. First,
suppose that x; € A(v, 7). In this case, condition (3-il) implies that B (x;, 8] M A(v, 1) = & so that y;() = 0 on
A(v,T). Second, suppose that x; € A{v,1). In this case, yw;(:}=0 on the set A{vty, T} ~ B(x, &), while
condition {y-I) and the definition of y; imply that for all y € B(x;, 8). vi(z (v, ==1)) ~ v, (¢} > Y> w; (). This
establishes  that for all z{v, 1)) #y € A(vty, 1), (g ez (v, 1)) > (vi+y: ) (y) and  proves  that

7 (vty, 1-1)) = z;(v, 7-1)). It now follows immediately from the definition of & that yw(z(v, T-2)) = 0. O

Lemma IL2: Fix ¢t <7 and ve V()  U; £), for some finite set Q that contains Z{v, 1) v afv). Fix
x e X such that for each i, x, € M;(v, 1=1). There exists y>0 and &> 0 such that for all & (0, 8) if
€€ B, v) with g; = 0 whenever x; = o (v), then for all y € ¥¥(x, €, §), v and v + y are strategically equivalent

from ¢ and v+y € V{i-2).

Proof of Lemma I12:  Pick y>0 and & > 0 sufficiently small that the conclusion of Lemma IL1 holds for

(¢, v,x, 7 &). We can assume wlo.g. that 8 is sufficiently small that the following conditions are satisfied in
addiion:  (84il) for all x; #x, By, 8 nB(x, 8= and ($iv) if x e inlco(l,(v,1))), then
B(x, 8 cceoll;(v,1)). Pick de (0, 8 and £e B(0,7) with g =0 whenever x =o;(v) and pick

44 A ysatisfying (y-i) exists because by assumption, z;(v, -1} # x; is the unique maximizer of v, () on A(v, 13.)



y e ¥Yx, g, 8. We first establish that the hypothesis in Lemma I11 is satisfied. From (BILD), if g >0 ﬂ'zcﬁ
there exists § #i such that x € Li(v, 1), le, v;{x)= "y, e E"If(v, (Y. Since ve UQ: Z{v, 1y,
Hf(v, v E, ) =0, Therefore, x; € Z(v, ¢}, It now follows from Lemma L1 that for cack
v € ¥¥x, g, ) v and v + y are strategically equivalent from ¢.

We pext establish that for cach i € [, x; € A{v+y, 1), Since x; € M;(v, 1~1}. there exists a cealition

C €€ such that x; € (ycoll;(v, 1)) Suppose that for je €, x; =x. It follows from Lemma I(b) that
jeC ’

x; € int{co(l; (v, 1))); condition (6-iv) now implies that y(L;(v, ()} = 0. Thus, L;(v, 1) = L;(v+y, (), and so
x; € co{l;(v+y)). Now suppose that for j € C,x; #x. In this case, condition (6-iii) implies that y;{(:) =0 on a
nbd N; of x. Therefore, L;(viy, 1) O N; :'Lj(v, (YN N;. We have cstablished, thercfore,  that
x € (yeoll;(viy, 1)) < A{vty, ). We now show that x; is the unique element of M;(v4yr, (—1). Since y(}) is
fed
nonnegative, (v;+y;)}y) & r;(v, 1) = (v, 1), for all j and all y € A(v, 1). Thus A(vey, 1) < Alv, t). First
suppose that x; # oy{v). In this case y; () attains a unique maximum at x;. Moreover, x; maximizes v; () on
A(v, £). Therefore, (v;+y;)() attains a unique maximum on A(v+y, £) at x;. If x; = o;(v), then x; is the unigue

global maximizer of v;(-) and y; (") = 0. Once again, therefore, (v;+\y;)() attains 3 unique maximum on A (v+y, 7)
at x;. This completes the proof that v+y € V-2) [

Lemma I13: Fix ¢ <T and ve V(i-2) (N U(t; Q), for some finite set Q that contains Z(v, 1) U a(v). If
2(v, -1} = afv), then for all ¥ > 0, there exists x € X"—. ve (0.7),ce B, V), 86>0and & ¢ ¥(x, g, &) such that

v and v+ ¢ are strategically equivalent from f, z{v, i—1} = z{v+d, 1—1} and
vi+be Vi-2) M\ U2 Quzlv,1-1)) < U(e—2; Z(v+d, 2y o ol(vd)).

Proof of Lemma IL3: Define [ as follows:

T=1{iel:there existst! € [ and ¥ #i stz (v, t=1) € Ly(v, ) ~ Li(v, 1)}

For each i € I, pick (!({) and 1*() such that Zapv -1 € L, (v, 1) ~ L;(v, 1). (Note that, possibly, ((f) =1i.)
Define x € X¢ as follows: fori € I, x; = 111(,-)("- (—1); otherwise, pick x; arbitrarily. Pick & > 0 sufficiently small
that: (8-iii) for all i and all x; # z(v, (=), B(x;, 8) M B (z(v, 1-1), &) = @; and (B-iv) if x; € int{co{L;(v, 1)),
then B(x;, 8) < coll;(v, 1)). Pick 1€ 0.%) sufficiently small that (v ¥(x, g, &) is nomempty, for all
€€ B0,y and (y-iii) if x; # z; (v, t~1), then v;(B (x;, 8)) < vi(z: (v, (-1 — 1. (Such a vy > 0 exists because, by
assumption, x; = zll(‘_)(v, t~1) & A(v, 1), while z(v,1-1) #x; is the unique maximizer of vi(")y on A{v, 1))

Finally, pick £ € B(0, y) as follows: fori ¢ I, setg; = 0; Fori & I, define q;(g;) = m;(v, t)+g; Y, w, and pick

{roe g )
g € (0,7 such that for all even k € [0, 12}, PHv, ;&) v vi@(v, t-Dualv)) = &, while for all even
ke (k, 2], PHv, i) o P, qi(&:)) = . Statements (B.11.2a) and (B.IL2b) imply that these conditions are
satisfied for ail but finitely many g's Since velU{; Q) and Q contains Z{v,{),
v@(‘.)(x,') = 1:‘,(‘,){&', 1y e vl%.}(Z(v, 1)), so that x; ¢ Z{v, ), for each i such that g; > 0. Tt follows from Lemma 1A

that when v and & arc sufficiently small, then for cach ¢ € Y(x, €, 5y, v and v + ¢ are sirategically equivalent from



Y

(. We will assume that v and & are indeed sufficiendy small and pick & ¢ ¥, g, 8).

We first establish that v+ ¢ V{1-2}, with z(v+d, 1-1) = z(v, 1-1). The argument replicates almost exactly
the corresponding argument in the proof of Lemma L2, We begin by showing that for each e 7,
zifv, -1y e A(vid, ¢). Pk € €@ such 1ha‘i (v, -1y e pycoll (v, 1)) and consider { #j & C. I[ je J,

jeC

then ¢; () = 0, so that, wrivially, z;(v, t~1) € co(L;(v+¢, 1)). Assume, therefore, that j € I.If x; = z; (v, 1), then
by coastruction x; = zlz(j}(v, t~1) & L;(v,(-1). Therefore, z (v,t-lYe mt{co(L;{v, 1))} and condidon (B-iv)
implics that G (L (v, £)) = 0. Therefore, Li(v, 1) = L;(vtd, 1), so that (v, t~1) € coll;{(v+d)). I x; # 7 (v, 11},
then condition (5-iii) implies that $;() = 0 on a nbd N; of z; (v, 1—1). Therefore, L;(v+¢, 1) M Ny = L;(v, 1) " N;,

50 that once again 2 (v, 1~1) € colL;{v+d}). We have established, therefore, that
x; € ycollj(vid, £)) < A(vid, 1),
jeC

We now show that z; {v, 1—1) is the unique element of M;(v+¢, t-1). Replicate the reasoning in the proof of
Lemma IL2 to establish that A (v+é, ¢} < A(v, ). If z;(v, r-1) = x;, then x; is the unique maximizer of both v, ()
and &;() A(ved, ). If x; = z;(v, 1), then §; (-} =0 on the set A(v+d, () ~ B (x, 8), while condition (y-iii) and
the definition of ¢; imply that for all y € B(x, 8). v;(z; (v, £-1)) — v;{y) > v > ¢;(y). This establishes that for all
(v, 1=1)y # y € A(vid, 0), (49 )z (v, 1-1)) > (v+¢;)(¥) and proves that z; (v+§, (—1}) = z (v, 1~1)).

To establish that v + ¢ € U -2; Z{(v+d, (-2)w a(v+)), we must show that for each § and all k € [0, (2],

K, (2 UG Z bl ) Gy S B T T T e
and for all ever x & (&, t-2], [T&v+d, 1-2) m IIv+d, 1-2) = @, (R.IL6L)

First, note that as a consequence of (8-iii}, ¢;(x;) =0, for all j such that x; # x; = z‘;(‘.)(v, t—1). Therefore, for

cach i:

(v, =20

n

2w v Mz (v, 1) = Y wlvi i (v, -1))

It

Swwiln (v, (-1 e Y owy = wlv, -2 Y, wy
1

{ux=x; ) {uxx; ]

1

q:(g;).

Thus for all i, ITKv+d, -2) = PHq:(e:)). Fori ¢ I, conditions (B.ILGa) and (B.IL6b) hold by construction of ;.
For i ¢ 7, e, =0 so that (v, (=23 = g (8;) = m(v, 1=2). Applying statement (B.L3) and the fact that
z(v, 1-1) # af(v), TF2(vi¢, (-2) = 11F v, 1-2) < TIK(v, t). for each k e [2,¢]. Because ve U(; Q) and Q
contains Z(v, 1) a(v)), it follows that for all even & and x & (k, =2], IIXv+d, 1-2) A If(v+d, 1-2) = and
A+, 1-2) v, (Z (v, Nue(v)y =@, To establish that v+d € UQ-2; Z{v+d, (-2 a{v+d)), the only

remaining condition to check is that
for all £ ¢ {0, (=2), TTHv+, 1-2) n v (alv, (1)) = &, (BT

Observe that for all § € 7, z(v, r—1) = o {v), while for j #i, either z;{v.t—1) € Li(v, 1), in which case
vi(z; (v, -1 = (v, 1) € 1%v, 0), or z;(v, (1) = o;(v}. In the first instance, {B.11.7} foliows from the fact that

for ke {2, 1], Hisz(vm,tw?,)mﬂf)(v,!) o N, YA OXv,t) = @ In the second instance, (BJILT)



follows from the fact that for k € (2, ¢}, 1 0vid, (-2) v ovi(alv)) < [y, i)y mvi(ade)) = @ ]

We can now prove Theorem I, Define the set U * as follows

-

U =lu= )y € W: there exists T, an equilibrivm s for F'(u, T), 7§ € Jand x # x"such that

for some 1 €¢ €7, both x and x” maximize )y on Uy My {y € X1 Q)= Eul(sl 1+2)).
Cel jeC

To prove Theorem 11, it is sufficient to show that the closure of U” has an empty interor. Pick u* e (U )and a
sequence (u") in U" such that for every n, u" & B(u®,n™). We will construct a sequence of continuous
functions, (v*}, such that for every r, ¥v" € B(", n™t), so that (v*) coaverges to u*. We will show that for
sufficiendy large n, the v™’s satisfy assumptions A2-A4 and so belong to W, but do not belong to U°. The
existence of such a sequence will establish that the closure of U * has an empty isterior. We now fix n, drop the a

superseript, and replace it with a 7', so that u" becomes uf. There are two cases o consider

Case ' o(ui)e A@T, T). In this case, cleary, z(u?, T-1) = a(u’), so that ul € V(T-2). For each i € I,

define g;(e;) = Ywal o, (")) + & ¥ w, and pick & € (0, (nT)!) such that for all even k ¢ [0, T-2],
v fro(uT ) =o(aT))

PHUT, (&) v uT(au™)) = @, while for all even x € (&, -2], PAu", q;(e)) N PR’ q:(e)) = D. Now
el &TGee amd WTTouTaell  Stcs ZGTET-2)= ST Tollows that
Ve VI-2) ( UT-2 Z@™2, T-2)ua@™). Now fix 1 <7 and assume that u’ has been defined such
that u* and 1" are strategically equivalent from 1+2, while u' € V{t) (M U(r; Z(u', rjua(u')) (This condition is
certainly satisfied for ¢ = T—2) We will construct u*™? € B (u, 2(nT)™") such that u? and u’ are strategically

equivalent from ¢ while u'? € V(1-2) (M U{=2; Z(u'™?, 1-2)ua(u’™?)). There are two cases to consider.

Case I{ay: For some i, o;(u} € A(u,t). Pick x € X7 such that for each i, x; € M;{(u', t~1). Applying
Lemma 1.2, there exists 8 > 0, € € B0, (nTY™") with g; = 0 whenever x; = o (u') and y' ¢ Y (x, g, 8) such that
u' and u'+y’ are strategically cquivalent from ¢ and u'+y’ € V(r-2). From Lemma IL3, there exists x € X £
ve (0,nT™), ec BO, Y, >0 and ¢' € Py £, 8) such that u'+y’ and u'+y'4d' are strategically
equivalent from ¢ and o +y' + ¢’ € V(-2)  UU-2; Z(', 1-2)oafu’)). Set u' ™ =u' +y' + ¢ and observe

that indeed u' € B (W'*2, 2(nTY™Y), while ™% and u' are strategically equivalent from .

Case Ib): au} c A, ). In this case, set u*? = u'. Because sirategic equivalence is transitive in the
sense defined above, z(u"?, 1—1) = a(e'?) = a(u’ ) = z(u""2, T-1) and wu'?, -2) = n(u’ 2, T-2). Cleatdy, in

{his case, we can set «'* = ', for each k € [4, (], and observe that z(u‘ ™, (~k+1) = z(u™ ™, T—k+1).

In either case () or (B), we can now define v* = u’. Observe that v* & B(u, n"‘) M V), so that v* & U *. Let
Q=2ZF", 0.

Case I ofu’) & A(u’, T). In this case, set v =u’. We first pick € € B (0, (¢T)™") such that for ¢ven
cach ke [0, T, PHTaYe) nvi@Qua ) =0, while for all  even xe (k,T-2]
PRV e ¥)ee) n PR (e Y1) = @ Now define ¢7 by ¢7(X) = 0, while ¢7(x¥") = & Define vV 2 = u” + ¢7

and proceed cxactly as in case I, with the [ollowing excepuions: everywhere replace u's with v's; replace



Ul Z@', Doadu'y) with U Uz (v, yoalvh)); if case (b applics for some ¢, then define v o g_né
observe that z(v'7%, 1-1) = a(v'"?) = afu’ ) = 2”2, T-1) and wiu'?, 1-2) = n(v' 2, T—2). Once again, in this
case, wecan set v = v foreach k e {4, 1], and observe that z(v"™*, r—k+1) = z(u?™*, Tk +1) D

Proof of Theorem IV: We begin by introducing some further notation. Define the mappings G; () and

U () on R by, for each X = (X }iet, Gi(x)=1{y e Rt () 2 min w: (x;)) and
I
Ui) = [y € R ;(y) 2 T wjue(x;)}. Giver a closed set ¥ < R, let I{¥) and h(Y) denote, respectively, the
/

minimal and maximal elements of Y. (Treating x as a set, we will sometimes refer to [ (x) and A (x).) Finally, for

each i and proposal profile x, let B;(x) = I{G; (x)) and B;(x) = #(G;(x)). The proof relies on the following Lemma.,
Lemma IV.1: For each € > 0, there exists § > 0 such that for every i € [ and x = (x;);, © X:
il h(x)-1(x) > e and cither (@) oy =x; or (b) o; ¢ (I(x), h(x)), then

Uix)) < Gi)+38, h(Gi(x)) - 8]

Proof of Lemma IV.I: If the Lemina were false, we could find £ > 0, and for every n, a vector X" in X

and i€l such that either condition (3) or (b) above is satisfed for i while
U, 6N S HGO) + 1™, RIG (™) — ). Pick a convergent subsequence of the x™'s, again indexed by n,

such that for some fixed player {, either condition (4) i satisfied fot evéry # of condition (b) is satsied for cvery

n. Let X be the limit of the subsequence. Clearly A(G;(®) ~ [{G; (X)) = & while there exists ¥ € U;(X) such that
either y < I(G;(®)) or ¥ = I{G;(X)). Since u; is strictly concave, it follows that F) < min u; ().
j

Fust assume that for the identified player i, condition (b) holds for every n. We can assume without loss of
generality that  for every n, o =AY so  that o = h (x). Because u; is strictly concave,
w,(h(E) > ij 6 05) > (L)), But by assumption, w;(F) < 1 (1(D)), contradicting the fact that ¥ € U.(¥). Next,

J

assume that for this 7, condition (a) holds for every n, so that o; =%. I g (A(X)) # 1, (1 (D) then the preceding
argument can be applied again.  Assume therefore that 1; (A (X)) = (I (X)). By strict concavity, u;({(X)) < u; (v}, for
cach  y e (I(X), h(X)). Morcover, by assumption o =5 € ({(X), h(X)).  Thercfore, ounce again,

4 () € 1 () < Yw,u,(%;), contradicting the fact that ¥ ¢ U, ). [,
7

We can now proceed with the proof of the theorem. The concavity of i; implies that ;(Ex) > 3w, (x;),
i

for every i, so that for every policy vector x, (U (x) is nonempty. It follows immediately that (_j (U (x) is a
il el ieC

COnvex set.

Fix a particular equilibrinm profile s, and for ¢ ¢ (1,3, T-1], let x, denote the profile of policy vectors
proposed in round ¢. Note that from Theorem II, player i 's acceptance set in round ¢ e {2.4, -+ 72} must be
U;(x41). Thus, inround ¢ € {1, 3,---,T-3}, the set of policy vectors that will be acceptable 10 some coalition in

round ¢ is given by (_J ™y U;(x). Since this set is coavex, it follows that if 0; € (J(x,,2), Aix o)), for some {,
Cef ieC

then if { proposes o, it will be accepied by some coalition. We have established, then, that for each §,



i o e (H{xeen), B{x0)) then X = Oy

so that the hypothesis of Lemma IV.1 is satisfied.

Let ur, ) and T, +) be alternative enumerations of [ such that for 1€k <% Bue, (%) £ Bur, eny(xo),
while B.r(,.k){x,}zgm_t ep(X ). Next, define i 1o be the smallest integer strictly lfarger than i/2 and define
L=, D). e, D)) and I = (@, 1), -+ T, D). Observe that for each 1, [, 0 I # & and for each
vt I I 2@ Set B, =B px) and Be = By, (%), Thus, a palicy vector y s contained in (B, B,] if and
only if for a strict majority of the players in I, y is weakly preferred to the least preferred clement of x,.
Specifically, every y € (B, £x/], is weakly prcfcrred 0 h(x,) by every i € I,, while every y € {Ex,, Bl
weakly prefesred 1o 1(x,) by every i € I.

We are now ready to proceed with the proof of the theorem. Fort € (1.3, -.T-3}], it is clearly true that
X © U NV | B.IV.1)
Cel icC

Now, fix £ > 0 and choose 8 > 0 for which the conclusion of Lemma IV.1 applies. We will show that if T is
sufficiendy large, tien for T > ¥, the soluton for the T-round game will be contained in an interval of length no
greater than €. Specifically, we have shown (B.IV.1) that for each ¢, x, < [Bieo. ﬁ,\q]. We will show that when
H (Xen) — [ (X,49) exceeds e, the interval (B, B.1 will be contained in [, §,.2], but its length will be shorter by at
. least 8. . This fact will establish the theorem. PSR . .

It follows from the first inclusion of B.V.1 that for all i, there are at least i players j such Lhat
Xig € Ui T hxe) 1(x,4) > &, then, Lemma IV.1 implies that x, > Beaa + 8 while x;, <Prp— 8

Summarizing, we have established that for each ¢ € {1,3,---.T-3}
if k(xu2) — [ (xe2) > & then %, < [Beag + 8, Peaz — 8L (B.IV.2)
The next step in the proof is to show that for each ¢ ¢ (1,3, -~ T-1},
either B, = 1(x) or B, = h(x,). C(BIV.Y)

To sce this, observe that for each i, B;(x,) 1 (x{)'while 5—3—1- (x,) = h{x,). Moreover, because payolfs are concave, at
most one of these inegualities can be strict for any i. Thus if B:ix)y < B <l{x,), for each i € [, then
Bix)=B, =hix), fori e [, I,. Since [; I, is nonempty, this establishes that (B.IV.3) is true. We will now

assume (without loss of gcnerahty) that E, = h(x,), and rewrite B.IV.2 as
Be  Brant 8, Bria — 8- (BIV.2)
To complete the proof of the theorem, we need to show that B, = Bisa- To see this, observe first that for each
iel,.
1B 2w Bex ) = (B > wBeed). (BIV.A)

The second inequality holds because Bm, = ki (x,); the third because fi-wg > 5,. We now have two cases (o consider.

First assume that B, = A (X,49). In this case, B.IV.4 implics that B, € Gilxp2), for { € 1,4y, so that, immediately,

45 Recall that the set of players £ has ¢ elements.
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B 2 Braae Sccond assume that By € {(x.49). In this case, (B 2w (B (o)) = 1 {Braa) for i € [y But from

BIVA, 1B > 1;(Brua), for each i € [, Since I, a1 [, is nonempty, there exists £ such that
ui(&t) > u‘{g”?) 2 u:‘(ﬁu?}~

Since u; is concave and P, > By, it now foliows that B, > B, L

Proof of Theorem V:  The proof uses the following lemma repeatedly.

Lemma V.1: Fix £ > 0, an integer k, and a strictly positive probability vector p & A*™1. There exists § > 0
such that for each i and y = (yok, < X, diam(y) 2 € implies u;(p-y) — 2 pa(0 2 &
®

Proof of Lemma V.1:  If the Lemma were false, then we could find £ > 0, i € [ and a sequence of vectors,

(y*} in X, such that for each n, diam(y") =€ and 5 (Y'Y — Ypaulyy) < n~l. Since X is compact the
x

sequence {y"} has a convergent subsequence. Let ¥ be the limit of this subsequence. Since u; Is continuous,

15 (pY) < Yp2u). Morcover, the diameter of ¥ is at least £, However, since the vector p is strictly positive,
4

PV is contained in the relative interior of the convex hull of ¥. But this contradicts the assumption that z; is

strictly concave. )

We now proceed with the proof of the theorem. Let (xT) denote the sequence of outcomes cotresponding o
a nested sequence of equilibrium strategy profiles for the T-round games. Assume that player #1 is an essential

player. For each T, let 67 = Eu,(x").

Step #1: The sequence (67 is a strictly increasing, Cauchy sequence.
Proof of Step #1: Fix an even integer 7. Since player #1 is essential, cach player's policy proposal in

round #1 of the T+2-round game must yield player #1 a payoff of a least 67. Moreover, from Lemma 1(a) player
§1's own proposal yields a payoff strictly exceeding 07. This establishes that the sequence is strictly incressing.

Because ; is confinucus and X is compact, ;(-) is bounded on X. Hence the sequence is Cauchy.

Step #2: For all pasitive ¢, there exists a T such that for each T > T, diam(x7} < ¢.
Proof of Step #2: Suppose to the contrary that there exists a subsequence, {x"), of (x7) such that for each

r, diam(x*)ze. From Lemma V.1, there exists 8§>0 such that for each n, and cach

g (wx"y — Fwij(xfy = 8. It follows that for each n, player #1°s own proposal in round #1 of the n+2-round
jel

game must yield a payoff that exceeds 0" by at least &. Thas, for each n, 0"*? 2 0" + w,8. But this contradicts

Step #1.

Step #3: The limit of any convergent subsequence of (x) is a singleton profile ¥} such that

1 (7} = 6 = lim@’. Moreover, a convergent subsequence exists.
T



Proof of Step #3: The first statement follows immediately from Steps #1 and £2. The second follows from

the fact that X is compact.

Step #4: If {y} is the limit of a convergent subsequence of (x7), then y belongs to the core of the
underlying game. Morcover, there are al most { distinet limits of convergent subsequences.

Proof of Step #4: The first sentence follows from an argument identical to the proof of Theorem II.

Assume that there are £ distinet limits of convergent subsequences, {y', - -+ y*]. From Step #3, u,(y%) = 6, for
each ¥, so that for any k + x, YAy~ + Yy* yields player #1 a strictly higher payoff than cither, Moreover, for each
¥, since y* belongs to the core, it cannot be Pareto dominated; thus, there must exist (k) > 1 such that
UipoO@™ 0 U(y*) has an empty interior. Suppose that {(x) =i(k) =1, for x # k. Since u; and u; arc both
sr.::ictiy concave, then YAy ® + Yy* must yield player i a higher payoff than either y¥ or y*. But this means that
either Up(y®) n Uy or U (y*) m U {y*) has a nonempty interior. We have established, then, that x # & implies
i(x) # i (k) and hence that £ < 7.

T+2

Step #5: Forevery € > 0 there exists T such that for 7 > T, diam(x"*? u x7) < &.

Proof of Step #5: Supposc to the contrary that there exists £ > 0 and a subsequence (x7 )%, such that for
442

each n, diam(x wx’"} > 3e. From Step #2, we can pick # sufficiently large that for T > T%, the diameter of

x7 is less than €. Clearly, for such T, the distance between any point in the convex hull of x7 and any point in the
T2 must be at feast £ Pick & > 0 such that the conclusion of Lemma V:1 holds for this &, with

k=2 p= (04, 1) and & = 3§; Thus, for T > T7, we have for each player 7,

- eonvex hall of x

w (o (xT 4 X7 - Y w (e (] + () 2 38 (B.V.1)
J

Next, using Step 1 and, once again, Step 2, pick n > 7 sulficiendy large that for each i 67" — 87" « delta? and
for cach T 2 T*, diam(y; (x7)) < 8. Let & = ¥w-(x”" + x7 **). Now, in the first round of the (T"+2)-round game,

player #1 proposes xT™*? (o some coalition C. We claim that ¥ will be accepted by each player in C and is

strictly preferred by player #1 to xT 2. This contradicts the hypothesis that xT™*? is player #1’s best alternative at
this paint of the game, and hence establishes Step #5. For i € €, we have
Yow; u,-(xf“*"z} > (I -8 2 iju,~(xf“) -& {B.V.2)
/ J

The first inequality follows from our choice of T™; the second uses the condition for acceptance by i of x] 2.

Combining (B.V.1) and (B.V.2) yields 1, (¥) >3 w;u; (x] ") + 28, for each i € €. On the other hand for player #1,
J
we have

L& < iju;(xf"*z} +8 = 077485 £ 877 428 = ijui(xfﬁ} + 28 {B.V.3)
¥ i

Both incqualities follow from our choice of T". Combining (B.V.1) and (B.V.3) yields w(Z) > w5, (x]™*?) + 8

which cstablishes the claim above.



Step #6: The sequence (x¥) has a (unique) limit point.

Proof of Step #6: let ¥ denote the intersection of «{' (8) and the core. From Step £4, ¥ is a finite ser. If

Y is a singleton sct, then Step #6 follows immediately. Assume, therclore, that ¥ ocontains two distingt elements
and choose € > 0 such that any two clements of ¥ are separated by at least 3¢, From Step, #4, we can pick 7 such
that for every T > T, x' € B(Y, €). Thus, there is a unique poficy ¥ & Y such that x! e B(¥, £). Moreover,
from Step €5, there exists 7 > T such that for every T >7, xT2 c B(x7,€). It now foliows from the iwo
previous sentences that for every T > T, QT € B(¥V, g). This establishes Step #6 and completes the proof of the
Theorem. [_].





