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Abstract

A Bayesian Framework for Fully Nonparametric Ordinal Regression

by

Maria Noel DeYoreo

Traditional approaches to ordinal regression rely on strong parametric assumptions

for the regression function and/or the underlying response distribution. While they simplify

inference, restrictions such as normality and linearity are inappropriate for most settings,

and the need for flexible, nonlinear models which relax common distributional assumptions

is clear. Through the use of Bayesian nonparametric modeling techniques, nonstandard fea-

tures of regression relationships may be obtained if the data suggest them to be present. We

introduce a general framework for multivariate ordinal regression, which is not restricted

by linearity or additivity assumptions in the covariate effects. In particular, we assume

the ordinal responses arise from latent continuous random variables through discretization,

and model the latent response-covariate distribution using a Dirichlet process mixture of

multivariate normals. We begin with the binary regression setting, both due to its promi-

nent role in the literature and because it requires more specialized model development

under our framework. In particular, we use a square-root-free Cholesky decomposition of

the normal kernel covariance matrix, which facilitates model identifiability while allowing

for appropriate dependence structure. Moreover, this model structure has the computa-

tional advantage of simplifying the implementation of Markov Chain Monte Carlo posterior

simulation. Next, we develop modeling and inference methods for ordinal regression, in-

cluding the underdeveloped setting that involves multivariate ordinal responses. Standard

xii



parametric models for ordinal regression suffer from computational challenges arising from

identifiability constraints and parameter estimation, whereas due to the flexible nature of

the nonparametric model, we overcome these difficulties. The modeling approach is further

developed to handle ordinal regressions which are indexed in discrete-time, through use of

a dependent Dirichlet process prior, which estimates the unique regression relationship at

each time point in a flexible way while incorporating dependence across time. We consider

several examples involving synthetic data to study the scope of the proposed methodology

with respect to inference and prediction under both standard and more complex scenarios

for the underlying data generating mechanism. Moreover, a variety of real data examples

are used to illustrate our methods. As this methodology is especially well-suited to problems

in ecology and population dynamics, we target applications in these areas. In particular,

our methods are used to provide a detailed analysis of a data set on rockfish maturity and

body characteristics collected across different years.
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Chapter 1

Introduction

1.1 Motivation and Background

A fundamental problem in statistics lies in quantifying the relationship between a

response variable and a set of related variables (covariates) thought to affect the response

in some way. The response variable may either be continuous or discrete, and we work

within the latter setting, focusing our attention specifically on situations involving one or

more ordered categorical responses.

Binary and ordinal responses measured along with covariates are present in appli-

cations from fields including the social sciences, economics, and the biological sciences. So-

cial science data is frequently qualitative, often with some ordering. Sample surveys usually

result in correlated ordinal data, since respondents assign ratings on ordinal scales to a set of

questions, and the responses given by a single rater are correlated. Ordinal data is also en-

countered in econometrics, since rating agencies, such as Standard and Poor’s and Moody’s,

use an ordinal grading scale. Binary responses arise anytime a yes/no, positive/negative, or
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0/1 type of observation is made, for instance representing the presence/absence of a disease

or characteristic in a biomedical study.

Motivated by the prevalence of problems requiring the use of binary and ordinal

regression, and the unique challenges that stem from the discrete and ordered nature of the

response, we aim to develop new methods which have utility in several of the aforemen-

tioned settings. From a modeling perspective, interest centers on determining the regression

relationship between the responses and covariates, while appropriately accounting for the

dependence between variables, as well as the ordinal form of the responses.

Traditional approaches to binary and ordinal regression are based off of linear

methods, in which the response is assumed to depend explicitly on a linear combination

of the covariates. Specifically, in the binary case, the probability of a positive response is

assumed to be equal to a transformation of the linear predictor xTβ defined by a particular

distribution function, resulting in a generalized linear model (GLM) (McCullagh and Nelder,

1983). Alternatively, the model can be augmented with latent variables (Albert and Chib,

1993), so that the binary or ordinal response Y arises as a discretized version of a latent

continuous response Z. Here, it is typically assumed that Z = xTβ + ε, with ε following

some parametric distribution, such as the normal or logistic distribution. When multiple

ordinal responses occur for each observation, a multivariate distribution must be introduced

for the vector of latent responses Z.

A Bayesian version of the GLM allows for uncertainty in the regression coefficients

β, and the resulting predictive inference, however there are clearly limitations inherent in

the approach, regardless of the mode of inference. The large body of literature on Bayesian
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regression has aimed at developing more flexible regression functions, and quantifying un-

certainty in the resulting estimates. A natural way to overcome the restrictive assumptions

of parametric linear regression models is to adopt a Bayesian nonparametric approach.

Early work involving Bayesian nonparametric priors has focused on providing more

general inference for either the regression function or the error distribution. Semiparametric

approaches to binary and ordinal regression move away from the GLM framework, targeting

either linearity or the link function. This has been studied through the use of basis function

representations for the regression relationship (e.g., Denison et al., 2002), by assigning a

nonparametric prior to the distribution function that defines the link (e.g., Newton et al.,

1996), or with the addition of a nonparametric random effects term to the linear predictor

(e.g., Follmann and Lamberdt, 1989). In contrast to these approaches, our aim is to be

simultaneously flexible about the regression relationship, as well as the response distribution.

We work within a Bayesian nonparametric framework, under which priors are

placed on the distribution that generates the data, rather than on parameters of a par-

ticular assumed distribution as in parametric modeling. Instead of modeling directly the

distribution for Z conditional on a fixed covariate vector x, we use a version of implied

conditional regression, estimating the joint density f(z,x), and the marginal covariate den-

sity f(x), to obtain general inference for the conditional latent response density f(z | x).

Flexible modeling for f(z,x) results in a flexible form for the conditional latent response

distribution, and hence, also for the implied regression relationship. This approach to curve

fitting regression is discussed further in Section 1.2.

The contributions of this thesis are primarily in ordinal regression, as we aim to
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develop a set of tools which are powerful for certain regression problems involving binary

or ordinal responses, and illustrate the power of our methods using substantial applications

from fields we target. The starting point for the methodology lies in Bayesian nonparametric

mixture modeling, an overview of which is given in Section 1.2. The main contributions of

this work as well as a discussion of the modeling limitations are provided in Section 1.3.

1.2 Bayesian Nonparametric Mixture Modeling

Our goal is to model flexibly the joint latent response-covariate density, which, for

a single binary or ordinal response Y , is f(z,x). We refer here to a univariate response, but

the methods can be extended to multiple responses Y , a setting we explore in Chapter 3.

A natural extension of the assumption that a single parametric distribution generates the

data involves multiple distributions from the same family assumed to generate the data,

each with a given probability. Finite mixture modeling achieves increased flexibility in that

it can accommodate multimodal or skewed densities, however the number of components

in the mixture must be specified, or better yet, treated as random, requiring advanced

computational techniques. An arguably better alternative is to place a nonparametric prior

on the discrete random mixing distribution.

The mixture model we utilize is a location-scale mixture of multivariate normal

distributions for f(z,x), which can be expressed as
∫

N(z,x;µ,Σ)dG(µ,Σ). Note that a

finite mixture model with K components is obtained when G =
∑K

k=1 pkδ(µk,Σk), for a

probability vector (p1, . . . , pK). Alternatively, a discrete nonparametric prior can be placed

on G, resulting in a countable mixture, which has clear advantages in terms of selection
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of the number of mixture components based on the data, and the ability to accommodate

highly nonstandard distributions. In addition, inference can be simpler than under a finite

mixture model when the number of components K is large, or treated as random.

We choose to work with the well-studied Dirichlet process (DP) prior (Ferguson,

1973) for the random distribution G, due to its simplicity, analytical tractability, availability

of computational techniques for inference, and proven success in many applications. This

prior choice results in a DP mixture model (Antoniak, 1974) for the distribution of (Z,X).

We will denote the DP prior distribution for G by DP(α,G0), which is defined in terms of

a centering distribution G0, such that E(G) = G0, and a precision parameter α > 0, which

controls how close realizations of G are to G0. The DP generates almost surely discrete

distributions (Ferguson, 1973; Blackwell, 1973). More specifically, using its constructive

definition (Sethuraman, 1994), a realization G from a DP(α,G0) is almost surely of the

form G =
∑∞

l=1 plδθl . The locations θl are independent realizations from the centering dis-

tribution G0, and the weights are determined through stick-breaking from beta distributed

random variables. In particular, let vl
iid∼ beta(1, α), l = 1, 2, . . . , independently of {θl},

and define p1 = v1, and for l = 2, 3, . . . , pl = vl
∏l−1
r=1(1 − vr). The discreteness of the DP

allows for ties in the mixing parameters. The data is therefore clustered into a typically

small number of groups relative to the sample size n, with the distribution of the number

of distinct groups (clusters) depending on α, where larger α values favor more clusters.

Assuming a continuous response Y and continuous covariates X, the implied con-

ditional regression approach of obtaining inference for the conditional density f(y | x)

through estimation for the joint density f(y,x) and the marginal f(x) is not new. It dates
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back to Nadaraya (1964) and Watson (1964), who proposed kernel density estimators for

f(y,x) and f(x). Alternatively, ideas from Bayesian nonparametric density estimation

can be adopted, using multivariate normal DP mixtures for the joint response-covariate

distribution (as in Müller et al., 1996).

The DP mixture curve fitting approach has not, until recently, been widely utilized.

This may be attributed to the fact that estimation techniques used in DP mixture density

estimation are not sufficient for general inference in DP mixture conditional regression.

In particular, the regression estimates proposed by Müller et al. (1996), and in the more

recent work of Rodriguez et al. (2009), provide only an approximate point estimate for the

conditional response density f(y | x;G). To obtain full inference for the conditional density,

and hence the regression function, the posterior distribution for G must be sampled (e.g.,

Taddy and Kottas, 2010).

In contrast to MCMC techniques which involve marginalizing G over its DP

prior (e.g., Escobar and West, 1995; Bush and MacEachern, 1996; Neal, 2000), we use

a posterior simulation technique in which the infinite dimensional G is truncated to a fi-

nite level N via the constructive definition (Ishwaran and James, 2001). In particular,

G ≈ GN =
∑N

l=1 plδθl , where the atoms θl = (µl,Σl), remain i.i.d. from G0, and the

weights arise through stick-breaking, such that v1, . . . , vN−1
iid∼ beta(1, α) as in the count-

able representation, but vN = 1, so that pN = 1 −
∑N−1

l=1 pl. Throughout this document,

all inferences involving G are based on GN .

As a consequence of posterior sampling for G, posterior realizations are available

for the joint response-covariate density f(y,x;G), the marginal covariate density f(x;G),
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and hence the conditional response density f(y | x;G) at any fixed (y,x). This yields full

inference for the implied conditional regression relationship. Partition the mean vector of

the normal kernel such that µ = (µy, µx), where µy denotes the mean of Y , and µx denotes

the mean ofX, and partition the covariance matrix such that Σyy = var(Y ), Σxx = cov(X),

and Σyx = cov(Y,X). The conditional mean E(Y | X = x;G) has the form of a weighted

sum of conditional expectations
∑N

l=1wl(x)(µyl +Σyx
l (Σxx

l )−1(x−µxl )), with weights wl(x) =

plN(x;µxl ,Σ
xx
l )/

∑N
r=1 prN(x;µxr ,Σ

xx
r ), which are covariate-dependent. Evaluating this ex-

pression over a grid in x, provides posterior realizations for the conditional mean regression

function. Complete and proper inference under the flexible DP mixture curve fitting ap-

proach to regression provides a powerful framework for nonparametric estimation of the

conditional response density and the regression function.

An important extension of the DP mixture framework which we utilize in Chapter

4 involves modeling a collection of random distributions which are related in some way, such

as over space, time, or covariates. In particular, we develop a dependent Dirichlet process

(DDP) prior for data which is indexed in discrete-time. The general DDP formulation

(MacEachern, 2000) introduces time-dependence into the weights and atoms of Gt, the

random distribution at time t, so that Gt =
∑∞

l=1 pl,tδθl,t , where p1,t = v1,t, and for l =

2, 3, . . . , pl,t = vl,t
∏l−1
r=1 vr,t. The stick-breaking proportions vl = {vl,t : t = 1, 2, . . . }

and locations θl = {θl,t : t = 1, 2, . . . ) arise as i.i.d. realizations from stochastic processes

indexed in time, and each vl,t must be marginally beta distributed with first parameter equal

to 1, so that for any fixed t, Gt is marginally distributed as a DP. Technical details for the

DDP, as well as DP mixture models briefly introduced here, will be developed throughout
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the thesis in the specific settings in which they are utilized.

1.3 Research Objectives

Our main contribution in this thesis is to develop modeling strategies for binary

and ordinal regression that are more flexible from an inferential perspective than existing ap-

proaches. Our methods for binary regression can be compared with other recent approaches,

in that they share commonalities with the few existing fully nonparametric regression mod-

els which treat the covariates as random. However, as the response variables are made

more complex, becoming ordinal and finally multivariate ordinal, there are very few meth-

ods available for obtaining flexible inference. Fully nonparametric regression models in the

multivariate ordinal setting in particular are essentially nonexistent. We also propose an

original construction of the DDP in order to model ordinal regression relationships which

evolve in discrete-time.

The primary motivations in taking a Bayesian nonparametric curve fitting ap-

proach to regression include: the desire to let the data drive the form of the regression

relationships, the ability to properly quantify uncertainty in regression functions and other

inferences, the implicit modeling for the covariate distribution and accommodation of de-

pendence in covariates, and the ease of implementation relative to the significant attributes

afforded by Bayesian nonparametrics.

The proposed models are widely applicable, although there are some limitations of

the joint modeling approach to regression. The main restriction concerns dimensionality, as

these methods are meant for problems involving small to moderate numbers of covariates.
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A very large number of covariates does not present a problem methodologically, but rather,

practically. This is a consequence of the need to estimate the entire joint distribution, and

to obtain the posterior of the conditional response distribution over a grid of x values.

Inference for these conditional relationships can be made more feasible if interest centers

only on regressions over a subset of the covariates, or for just a few x values. Another

consequence of the joint modeling framework is that covariates are treated as random, which

is an attribute in many settings. However, if the covariates are fixed prior to sampling or can

not be viewed as random, as in controlled experiments involving pre-determined treatment

and control groups, then methods which attempt to model the covariates along with the

response are not appropriate.

A further remark involves the types of covariates that may be handled. The

modeling builds from a multivariate normal kernel, and thus can accommodate continuous

covariates, possibly after transformation. Discrete covariates which have some ordering

can also be handled using a latent variable approach, which we apply in the data example

of Section 3.3.4, as well as the main data analysis of Chapter 4. However, for nominal

categorical covariates we must move beyond mixtures of multivariate normals. In that

case, a mixed continuous-discrete kernel can be used, in which the multivariate normal is

retained for the latent responses and continuous covariates, and the discrete covariates are

incorporated through a discrete kernel component, possibly conditional on the continuous

covariates and/or latent responses. Nominal categorical covariates were not explored in this

thesis, however the core of the methodology is already in place, requiring relatively minor

modification to be applicable to problems involving categorical covariates.
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The practical utility of the proposed ordinal regression modeling framework will be

demonstrated through a variety of data examples. The proposed methods are particularly

well-suited to problems in population dynamics and evolutionary biology, thus many of

our data illustrations fall within these areas. In particular, the model for dynamic ordinal

regressions is used to provide a detailed analysis of a data set on rockfish maturation and

body measurements, recorded across different years.

We begin in Chapter 2 with the special case of binary regression. This is an im-

portant problem which should be distinguished from ordinal regression, because it requires

a different model and computational techniques for inference; this is primarily due to dif-

ferences arising from identifiability considerations. Ordinal regression with one or more

responses is the focus in Chapter 3, in which theoretical properties of the model are stud-

ied, and it is shown to be more flexible and arguably simpler to implement than standard

parametric models. A new DDP prior is developed in Chapter 4 for modeling dynamic

ordinal regressions, and Chapter 5 provides a detailed analysis of a data set on rockfish

maturity and body characteristics collected over time, as well as an illustration using Cit-

igroup stock data. We conclude with some final remarks in Chapter 6. Technical details

on proofs of theoretical results, posterior simulation methods, and properties of the DDP

model are provided in Appendices A, B, and C, respectively.
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Chapter 2

A Fully Nonparametric Modeling

Approach to Binary Regression

2.1 Introduction

Standard approaches to binary regression in both classical and Bayesian settings

involve potentially restrictive distributional assumptions as well as those of linearity in re-

lating the response to covariates. The simplest, yet commonly used approach to regression

with a dichotomous response assumes the probability of positive response is related to a

linear combination of the covariates (the linear predictor) via a link function, or transfor-

mation by a CDF. That is, given covariates x and regression coefficients β, it is assumed

that Pr(Y = 1) = F (xTβ). Common choices for F include the logistic and normal dis-

tributions, each resulting in a small range of monotonic, symmetric trends that may be

present for the probability response curve, regardless of what the data suggest. Inference
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under a GLM framework can be performed using either a classical or Bayesian approach to

inference, which are essentially the same in that they are equally restrictive.

There has been substantial effort devoted to relaxing the functional form of the

linear predictor, through the use of basis functions, including spline based approaches (e.g.,

Denison et al., 2002), and generalized additive models (Hastie and Tibshirani, 1990), applied

in a Bayesian context by Wood and Kohn (1998). Under these approaches, the linear

predictor is modified by applying a smoothing function to each covariate separately and

assuming the transformed covariates are additive in their effects. However, the underlying

distributional assumption is still present through the link function.

The motivation for Bayesian nonparametric methodology lies in the notion that

the model should support a wide range of distributional shapes and regression relationships.

In an attempt to create more flexible models to handle asymmetry, which the standard links

can not, as well as overdispersion, which arises when the data exhibit more variability than

expected under the model for the observations, several Bayesian semiparametric approaches

to binary regression have been developed. Early work has targeted either the link, treat-

ing it as a random function with a nonparametric prior (Newton et al., 1996; Basu and

Mukhopadhyay, 2000), or linearity, for instance, by viewing the intercept of the linear pre-

dictor as a random effects term having a nonparametric prior (Follmann and Lamberdt,

1989; Mukhopadyay and Gelfand, 1997; Walker and Mallick, 1997). More recently, Choud-

huri et al. (2007) relaxed the linearity assumption by placing a Gaussian process prior on

the argument of the inverse link. Trippa and Muliere (2009) assumed each binary response

to arise from a random colored tesselation, and placed a DP prior (Ferguson, 1973) on the
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space of colored tesselations. Shahbaba and Neal (2009), Dunson and Bhattacharya (2010),

and Hannah et al. (2011), have proposed nonparametric solutions to the regression problem

with categorical responses, building off the curve fitting approach to regression of Müller

et al. (1996), as described in Section 1.2.

The focus of this chapter is on building a Bayesian nonparametric model for binary

responses, measured along with covariates. The idea of inducing a regression model through

the joint response-covariate distribution is attractive, since in many settings the covariates

are not fixed prior to sampling. We target problems of this type, developing a flexible model

for fully nonparametric binary regression. The foundation of the proposed methodology is

different from the existing nonparametric modeling approaches. The key distinguishing

feature of the proposed model involves the introduction of latent continuous responses, in

similar spirit to parametric probit models; see, for instance, Albert and Chib (1993).

In Section 2.2, we formulate the mixture model for binary regression. We discuss

identifiability for the parameters of the mixture kernel distribution, as well as prior specifi-

cation approaches, and give details for posterior inference. In Section 2.3, the methodology

is applied to simulated data, and problems from environmetrics and evolutionary biology

are studied, using data sets from the literature for illustration. Section 2.4 contains further

discussion to place our contribution within the existing literature. Technical details on the

identifiability result, prior specification and posterior simulation, and the expressions for

the model comparison criterion used in Section 2.3 are provided in the Appendices.
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2.2 Methodology

2.2.1 The Modeling Approach

Let {(yi,xi) : i = 1, ..., n} denote the data, where each observation consists of a

binary response yi along with a vector of covariates, xi = (xi1, ..., xip). The continuous

auxiliary variables, zi, determine the observed binary responses yi by their sign, such that

yi = 1 if and only if zi > 0. Instead of seeking a nonparametric model directly for the

regression function, we estimate the joint distribution of latent responses and covariates,

f(z,x), which induces a flexible model for the regression relationship, Pr(Y = 1 | x).

Focusing on p continuous covariates, X, and a single binary response Y , with

corresponding latent continuous response Z, a normal distribution is a natural choice for

the kernel in a mixture representation for f(z,x). The Dirichlet process is then used as

a prior for the random mixing distribution G, to create a mixture model of the form:

f(z,x;G) =
∫

Np+1(z,x;µ,Σ)dG(µ,Σ), G | α,ψ ∼ DP(α,G0(·;ψ)), where α is the Dirich-

let process precision parameter, and ψ the parameters of the Dirichlet process center-

ing distribution. Applying the constructive definition of the DP with θl = (µl,Σl), the

model admits a representation as a countable mixture of multivariate normals, f(z,x;G) =∑∞
l=1 plNp+1(z,x;µl,Σl).

For the normal kernel distribution, let µ = (µz, µx), where µz denotes the mean

of Z, and µx denotes the mean of X, and partition the covariance matrix such that Σzz =

var(Z), Σxx = cov(X), a p × p matrix, and Σzx = cov(Z,X), a row vector of length p.

Then, integrating over the latent response z, the induced model for the observables assumes
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the form

f(y,x;G) =

∞∑
l=1

plNp(x;µxl ,Σ
xx
l )Bern

(
y; Φ

(
µzl + Σzx

l (Σxx
l )−1(x− µxl )

(Σzz
l − Σzx

l (Σxx
l )−1(Σzx

l )T )1/2

))
, (2.1)

where Φ(·) denotes the standard normal distribution function.

Flexible inference for the binary regression functional can be obtained through

Pr(Y = 1 | x;G) = Pr(Y = 1,x;G)/f(x;G). Marginalizing over z in f(z,x;G), the

marginal distribution for x is f(x;G) =
∑∞

l=1 plNp(x;µxl ,Σ
xx
l ). Hence, the implied condi-

tional regression function can be expressed as a weighted sum of the form
∑∞

l=1wl(x)πl(x),

with covariate-dependent weights wl(x) = plNp(x;µxl ,Σ
xx
l )/

∑∞
j=1 pjNp(x;µxj ,Σ

xx
j ), and

probabilities

πl(x) = Φ

(
µzl + Σzx

l (Σxx
l )−1(x− µxl )

(Σzz
l − Σzx

l (Σxx
l )−1(Σzx

l )T )1/2

)
, (2.2)

which have the probit form with component-specific intercept and slope parameters.

The dependence structure of the mixture kernel in f(z,x;G) is key to obtaining

general inference for the implied binary regression function. However, is it sensible to leave

all elements of the kernel covariance matrix Σ unrestricted? In the case of a single mixture

component, which arises in the limit as α→ 0+, the regression function Pr(y = 1 | x;G) has

the form a single normal cumulative distribution function, as given in (2.2). This function

takes the same value for any x when µz and Σzx are scaled by a positive constant c, and

Σzz by c2, indicating that different combinations of µ and Σ result in the same probability

of positive response. Hence, there is an identification problem if µ and Σ are unrestricted.

This limiting case of our model is a parametric probit model, albeit with random covariates.

In this setting, if identification constraints are not imposed, then prior distributions become

increasingly important yet difficult to specify, and the use of noninformative priors can be
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problematic and create computational difficulties (Hobert and Casella, 1996; McCulloch

et al., 2000; Koop, 2003). In addition, empirical evidence based on simulated data suggests

that, without parameter restrictions, the correlations implied by the covariance matrices Σl

are not representative of the correlations that generated the data, and undesirable behavior

is present in the uncertainty bands of the binary regression functional at the extreme regions

of the covariate space. For these reasons, and the fundamental belief that within a particular

cluster or mixture component the corresponding parameters should be identifiable, we now

focus on restricting the kernel of the mixture.

Here, we employ the standard definition of likelihood identifiability, such that a

parameter θ for a family of distributions {f(x | θ) : θ ∈ Θ} is identifiable if distinct values

of θ correspond to distinct probability density functions, that is, if θ 6= θ′, then f(x | θ) is

not the same function of x as f(x | θ′). Under our setting, the focus is on the kernel of the

mixture model for the observed data, f(y,x;G), which has the form

k(y,x;η) = Np(x;µx,Σxx)Bern

(
y; Φ

(
µz + Σzx(Σxx)−1(x− µx)

(Σzz − Σzx(Σxx)−1(Σzx)T )1/2

))
, (2.3)

with η = (µx, µz,Σxx,Σzz,Σzx). Note that if z and x are independent in the mixture ker-

nel, the probability in the Bernoulli response becomes Φ(µz/(Σzz)1/2); hence, a restriction

– for instance, on Σzz – is required for identifiability. This is in fact the only restriction

necessary to obtain an identifiable kernel, and we thus retain the ability to estimate Σzx,

which is significant in capturing the dependence of Y on X under the mixture distribution.

The specific result is given in the following lemma whose proof can be found in Appendix

A.1.1.
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LEMMA 1. The parameters (µx, µz,Σxx,Σzx) are identifiable in the model for observed

data which has the form in (2.3), provided Σzz is fixed to a constant.

While intuitively straightforward, fixing Σzz to a constant is challenging opera-

tionally. The usual conditionally conjugate inverse-Wishart choice for G0(Σ) does not offer

the solution, due to the single degree of freedom parameter in the inverse-Wishart distribu-

tion, which does not allow for one element of Σ to be fixed while freely estimating the rest of

the matrix. This problem is overcome by aid of a square-root-free Cholesky decomposition

of Σ. This decomposition is useful for modeling longitudinal data (Daniels and Pourah-

madi, 2002), as well as specifying conditional independence assumptions for the elements of

a normal random vector (Webb and Forster, 2008). Let β be a unit lower triangular matrix,

and let ∆ be a diagonal matrix with positive elements, (δ1, ..., δp+1), such that ∆ = βΣβT .

Hence, Σ = β−1∆(β−1)T , where β−1 is also lower triangular with all its diagonal elements

equal to 1, and det(Σ) =
∏p+1
i=1 δi. Moreover, δ1 = Σzz, and thus the identifiability restric-

tion can be implemented by setting the first element of ∆ equal to a constant value; δ1 = 1

is used from this point forward. Instead of mixing directly on Σ, the mixing takes place on

β and the p free elements of ∆, denoted by (δ2, ..., δp+1). Hence, the mixture model for the

joint density of the latent response and covariates is now written as:

f(z,x;G) =

∞∑
l=1

plNp+1(z,x;µl, βl
−1∆l(β

−1
l )T ). (2.4)

While this decomposition of Σ allows for the necessary flexibility in viewing only

part of the covariance matrix as random, its real utility lies in the existence of a con-

ditionally conjugate centering distribution G0, which enables development of an efficient
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Gibbs sampler for posterior simulation. In particular, a multivariate normal G0 com-

ponent for the vector β̃, which is composed of the p(p + 1)/2 = q free elements of β,

and independent inverse-gamma components for δ2, ..., δp+1 result in full conditional dis-

tributions which are multivariate normal and inverse-gamma, respectively. Therefore, G0

comprises independent components for µ, β̃, and δ2, ..., δp+1, such that it has the form

Np+1(µ;m, V )Nq(β̃;θ, C)
∏p+1
i=2 IG(δi; νi, si).

2.2.2 Posterior Inference for Binary Regression

In order to simulate from the full posterior distribution, we utilize the blocked

Gibbs sampler, which is based on a finite truncation approximation toG (Ishwaran and Zare-

pour, 2000; Ishwaran and James, 2001), as described in Section 1.2. Introducing configura-

tion variablesL = (L1, ..., Ln), each taking values in {1, ..., N}, and lettingW l = (µl, β̃l, δl),

the hierarchical version of the Dirichlet process mixture model for the data given the latent

continuous responses, z = (z1, ..., zn), becomes

yi | zi
ind.∼ 1(yi=1)1(zi>0) + 1(yi=0)1(zi≤0), i = 1, ..., n

(zi,xi) |W , Li
ind.∼ Np+1(zi,xi;µLi

, β−1
Li

∆Li(β
−1
Li

)T ), i = 1, ..., n

Li | p
iid∼

N∑
l=1

plδl(Li), i = 1, ..., n

W l | ψ
iid∼ Np+1(µl;m,V )Nq(β̃l;θ, C)

p+1∏
i=2

IG(δi,l; νi, si) l = 1, ..., N

and the prior implied for p by the stick-breaking construction defined through beta(1, α)

random variables corresponds to a generalized Dirichlet (GD) distribution (Connor and
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Mosimann, 1969), with density f(p | α) = αN−1pα−1
N (1 − p1)−1(1 − (p1 + p2))−1 × · · · ×

(1−
∑N−2

l=1 pl)
−1 (Ishwaran and James, 2001). The full Bayesian model is completed with a

gamma(aα, bα) prior for α, with mean aα/bα, and with conditionally conjugate hyperpriors

for ψ = (m, V,θ, C, s2, . . . , sp+1), specifically: m ∼ Np+1(am, Bm), V ∼ IWp+1(aV , BV ),

θ ∼ Nq(aθ, Bθ), C ∼ IWq(aC , BC), and si
ind.∼ gamma(asi , bsi), for i = 2, ..., p + 1. Here,

S ∼ IWk(a,B) indicates that the k×k positive definite matrix S follows an inverse-Wishart

distribution with density proportional to | S |−(a+k+1)/2 exp{−0.5tr(BS−1)}. The notation

δi,l is used for element i of the vector δl corresponding to the diagonal of ∆l. Moreover,

where convenient, we use the Σ notation for the structured covariance matrix, where the

elements of Σ are computed through Σ = β−1∆(β−1)T .

A key feature of the modeling approach is that simulation from the full posterior

distribution, p(W ,L,p,ψ, α, z | data), is possible via Gibbs sampling. We next discuss

posterior simulation details focusing on a result that enables Gibbs sampling updates for

the parameters that define the covariance matrices of the normal mixture components.

The updates for p and α are generic for any choice of mixture kernel (Ishwaran

and Zarepour, 2000). In particular, the implied prior f(p | α) is GD with parameter

vectors (1, 1, . . . , 1) and (α, α, . . . , α), and the remaining term in the full conditional for

p is
∏n
i=1

∑N
l=1 plδl(Li) =

∏N
l=1 p

Ml
l , which is GD with parameter vectors (M1 + 1,M2 +

1, . . . ,MN−1+1) and (N−1+
∑N

l=1Ml, . . . , 2+MN−1+MN , 1+MN ), where Ml =| {i : Li =

l} | is the size of mixture component l. Hence, the full conditional for p is GD with parameter

vectors (M1 + 1,M2 + 1, . . . ,MN−1 + 1) and (α+
∑N

l=2Ml, . . . , α+MN−1 +MN , α+MN ),

which can be sample constructively through latent beta(1 + Ml, α +
∑N

r=l+1Mr) random
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variables, for l = 1, . . . , N − 1. Combining the gamma(aα, bα) prior for α with f(p | α),

yields a full conditional for α which is gamma(aα +N − 1, bα − log(pN )).

Each Li, i = 1, ..., n, is sampled from a discrete distribution on {1, ..., N}, with

probabilities proportional to plNp+1(zi,xi;µl,Σl), for l = 1, ..., N . The full conditional

distributions for the components of ψ are easily found using standard conjugate updating.

The full conditional distribution for each zi is a truncated version of the normal distribution

N(µzLi
+ Σzx

Li
(Σxx

Li
)−1(xi−µxLi

), 1−Σzx
Li

(Σxx
Li

)−1(Σzx
Li

)T ), with the restriction zi > 0 if yi = 1,

and zi ≤ 0 if yi = 0.

Letting {L∗j , j = 1, ..., n∗} be the vector of distinct values of L, the full conditional

for W l is proportional to G0(W l | ψ)
∏n∗

j=1

∏
{i:Li=L∗j}

Np+1(zi,xi;µL∗j , β
−1
L∗j

∆L∗j
(β−1
L∗j

)T ). If

l /∈ {L∗j : j = 1, ..., n∗}, then W l ∼ G0(· | ψ). If l ∈ {L∗j : j = 1, ..., n∗}, then the

full conditional distribution for each element of W l = (µl, β̃l, δ2,l, ..., δp+1,l) arises from the

product of a normal likelihood component, based on {(zi,xi) : Li = L∗j}, and the base

distribution G0. Therefore, when l = L∗j , for j = 1, ..., n∗, the full conditional for µl is

multivariate normal with mean vector (V −1 + MlΣ
−1
l )−1(V −1m + Σ−1

l

∑
{i:Li=l}(zi,xi)

T )

and covariance matrix (V −1 +MlΣ
−1
l )−1.

Lemma 2, whose proof can be found in Appendix B.1, provides the result for

the posterior full conditional distributions of the β̃l and the δi,l, for l = 1, . . . , N , and

i = 2, ..., p+1. Before stating the lemma, we fix the required notation. As discussed earlier,

vector β̃ consists of the lower triangle of free elements of matrix β. For instance, if p = 2, the

mixture kernel is a trivariate normal, and the free elements of β are (β2,1, β3,1, β3,2), corre-

sponding to β̃ = (β̃1, β̃2, β̃3). The matrix ∆ contains vector δ on its diagonal. Let r = p+ 1
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represent the dimension of the mixture kernel. Let di be a vector of length r(r − 1)/2 = q,

containing r− 1 nonzero terms, occurring in elements k(k+ 1)/2 for k = 1, ..., r− 1. Let Ti

be a block diagonal matrix of dimension q × q with r − 1 blocks, which can be constructed

from square matrices T 1
i , ..., T

r−1
i of dimensions 1, ..., r − 1. Matrix T ji occurs in rows and

columns j(j − 1)/2 + 1 to j(j + 1)/2 of Ti.

LEMMA 2. Consider the following Bayesian probability model:

(yi,1, ..., yi,r) | µ, β̃, δ
ind.∼ Nr(µ, β

−1∆(β−1)T ), i = 1, ..., n,

with a multivariate normal prior for µ, independent inverse-gamma priors on the diago-

nal elements of ∆, δk ∼ IG(νk, sk), k = 1, ..., r, and a multivariate normal prior on the

vector comprising the lower triangular elements of β, β̃ ∼ Nq(θ, D). Then, the posterior

full conditional distribution for δk, k = 1, ..., r, is an inverse-gamma distribution with shape

parameter νk + 0.5n and scale parameter sk + 0.5
∑n

i=1{(yi,k − µk) +
∑

j<k βkj(yi,j − µj)}2.

In addition, the posterior full conditional for β̃ is multivariate normal with mean vector

(D−1 +
∑n

i=1 Ti)
−1(D−1θ +

∑n
i=1 Tidi) and covariance matrix (D−1 +

∑n
i=1 Ti)

−1. Here,

the non-zero elements of di are −(yi,2−µ2)/(yi,1−µ1), ...,−(yi,r−µr)/(yi,r−1−µr−1), and

the (m,n)-th element of matrix T ji , for j = 1, ..., r−1, is given by T ji,mn = (yi,m−µm)(yi,n−

µn)/δj+1, for m = 1, ..., j, n = 1, ..., j.

This lemma provides the information necessary to obtain the remaining full conditional dis-

tributions, which are available in closed-form. Let y∗i = (zi,xi) denote the augmented latent

response-covariate vector, such that y∗i,1 = zi and y∗i,j+1 = xij , for j = 1, ..., p. Then, when
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l = L∗j , for j = 1, ..., n∗, the full conditional distribution for δk,l is inverse-gamma with shape

parameter νk+0.5Ml and scale parameter sk+0.5
∑
{i:Li=L∗j}

{(y∗i,k−µk,l)+
∑

j<k βkj,l(y
∗
i,j−

µj,l)}2. The full conditional for β̃l is multivariate normal with covariance matrix (C−1 +∑
{i:Li=L∗j}

Ti)
−1, and mean vector (C−1 +

∑
{i:Li=L∗j}

Ti)
−1(C−1θ+

∑
{i:Li=L∗j}

Tidi). The p

non-zero terms in the vector di are −(y∗i,2−µ2,l)/(y
∗
i,1−µ1,l), ...,−(y∗i,p+1−µp+1,l)/(y

∗
i,p−µp,l),

and for j = 1, ..., p, the matrix T ji contains elements T ji,mn = (y∗i,m−µm,l)(y∗i,n−µn,l)/δj+1,l,

m = 1, ..., j, n = 1, ..., j.

The mixing distribution G, approximated by (p,W ), is imputed as a compo-

nent of the posterior simulation algorithm, enabling full inference for any functional of

f(y,x;G). The binary regression functional is the main quantity of interest, and is estimated

as Pr(Y = 1 | x;G) = Pr(Y = 1,x;G)/f(x;G), where f(x;G) =
∑N

l=1 plNp(x;µxl ,Σ
xx
l ),

and Pr(Y = 1,x;G) =
∑N

l=1 plNp(x;µxl ,Σ
xx
l )πl(x), with πl(x) given in (2.2). Therefore, full

inference for Pr(Y = 1 | x;G) can be readily obtained for any covariate value x, providing a

point estimate along with uncertainty quantification for the binary regression function. In-

ference can also be obtained for the covariate distribution, f(x;G), as well as the covariate

distribution conditional on a particular value of y, f(x | y;G), which we refer to as inverse

inferences, discussed further in the context of the data example of Section 2.3.2.

2.2.3 Prior Specification Strategies

We discuss two approaches to hyperprior specification by considering the limiting

case of the model as α→ 0+, which corresponds to a single mixture component (Taddy and

Kottas, 2010). Both approaches use an approximate range and center of x, say rx and cx,

both vectors of length p, with the objective being to center and scale the mixture kernel
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appropriately using only a small amount of prior information. Under the assumption of

a single mixture component, the marginal moments are given by E((Z,X)T ) = am, and

cov((Z,X)T ) = E(Σ) + Bm + (aV − p − 2)−1BV . We therefore set am = (0, cx), and let

Bm = 0.5diag(1, (rx1/4)2, ..., (rxp/4)2), using cxj and (rxj /4)2 as proxies for the marginal mean

and variance of xj , for j = 1, ..., p. We set aV = p+ 3, which yields a dispersed prior for V

albeit with finite prior expectation, and determine BV such that (aV − p− 2)−1BV = Bm.

Next, we must determine values for the prior hyperparameters associated with β̃ and the

δ, and this is where the two approaches differ.

The first approach uses prior simulation to induce approximately uniform(−1, 1)

priors on all correlations of the mixture kernel covariance matrix, while appropriately cen-

tering the variances. Note that the number of correlations grows at a rate of O(p2), making

this approach practically feasible only for a small number of covariates. In particular, with

a single covariate the kernel covariance matrix comprises correlation, ρ = −β̃(β̃2 + δ)−1/2,

and variance, σ2 = β̃2 + δ. Here, β̃ and δ are scalar parameters with G0 components

N(θ, c) and IG(ν, s), respectively, and the hyperpriors are: θ ∼ N(aθ, bθ), c ∼ IG(ac, bc),

and s ∼ gamma(as, bs). We set E(β̃) = aθ = 0, and build the specification for the other

hyperparameters from E(σ2) = bθ + b−1
s (ν − 1)−1as + (ac − 1)−1bc. We first fix the shape

parameters ν, ac and as to values that yield relatively large prior dispersion, for instance,

ν = ac = 2 results in infinite prior variance for the inverse-gamma distributions. Next,

using (rx/4)2 as a proxy for E(σ2), we find constants k1, k2, k3, where k1 + k2 + k3 = 1,

such that k1(rx/4)2 ≈ bθ, k2(rx/4)2 ≈ b−1
s (ν − 1)−1as, and k3(rx/4)2 ≈ (ac − 1)−1bc, while

at the same time the induced prior on ρ is approximately uniform on (−1, 1). Finally, with

23



k1, k2, k3 specified, bθ, bs, and bc can be determined accordingly.

While this approach is attractive when a relatively noninformative prior is desired,

it is difficult to implement with a moderate to large number of covariates. An alternative

strategy arises from studying the distribution which is implied for (β,∆) if Σ is inverse-

Wishart distributed. Using properties of partitioned Wishart and inverse-Wishart matrices

(e.g., Box and Tiao, 1973; Eaton, 2007, Ch. 8), it can be shown that Σ ∼ IWp+1(v, T )

implies inverse-gamma distributions for the δi, i = 2, . . . , p, and a normal distribution for

β̃ given the {δi}. It is customary to specify noninformative priors on the inverse-Wishart

scale, usually fixing the degrees of freedom parameter to a small value, and the inverse

scale parameter to be a diagonal matrix. Here, we use the smallest possible integer value

for v that ensures a finite expectation for the IWp+1(v, T ) distribution, that is, v = p + 3,

and set E(Σ) = T = diag(T1, . . . , Tp+1) = diag(1, (rx1/4)2, ..., (rxp/4)2). Then, as shown

in Appendix A.2, the distributions implied on δi, for i = 2, . . . , p+ 1, are IG(0.5(v + i −

(p + 1)), 0.5Ti). Hence, we let νi = 0.5(v + i − (p + 1)), and E(si) = 0.5Ti; for the data

examples of Section 2.3, we worked with exponential priors for the si resulting in bsi =

2/Ti. Moreover, the IWp+1(v, T ) distribution implies a normal distribution for the i-th

row of matrix β, given δi; see Appendix A.2. This can be translated into a distribution

for β̃ conditionally on the δi, specifically, a normal distribution with zero mean vector and

covariance matrix BD(S1, . . . , Sp), which denotes a block diagonal matrix with elements

Si = δi+1diag(T−1
1 , . . . , T−1

i ), for i = 1, ..., p. Now, after marginalizing out θ, the G0 prior

component for β̃ becomes Nq(aθ, Bθ +C). We therefore specify aθ to be equal to the zero

mean vector, and since we have a further prior on C, and Si is a function of δi+1, we set
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Bθ + E(C) = BD(Ŝ1, . . . , Ŝp), where Ŝi is a proxy for Si obtained by replacing δi+1 with its

marginal prior mean. Finally, Bθ and E(C) can be specified to be equal to each other or

assigned different portions of BD(Ŝ1, . . . , Ŝp).

The prior for α can be studied separately, as the value of α controls the number

of distinct components in the mixture, or the number of clusters (Antoniak, 1974; Escobar

and West, 1995; Liu, 1996). If one has some information or beliefs regarding the number

of clusters in the data, then the relations E(n∗ | α) ≈ α log((α + n)/α), and Var(n∗ | α) ≈

α{log((α + n)/α) − 1} can be used to specify a prior for α based on the expectation and

uncertainty in the number of mixture components. In many applications, it may be best to

use a prior on α which favors a small number of clusters.

2.3 Data Illustrations

2.3.1 Simulated Data

In order to study the performance of the model in the simplest regression setting

with a single covariate, latent response-covariate data {(zi, xi) : i = 1, ..., 150} was simulated

from a mixture of three bivariate normal distributions. The binary observations were then

determined directly from the signs of the latent responses, producing an observed data set

{(yi, xi) : i = 1, ..., 150}. As a tool for model validation, the inference from this binary

regression model can be compared to that obtained from a model which views {(zi, xi) :

i = 1, ..., 150} as observed data, effectively making the regression problem one of density

estimation, using the technique of Müller et al. (1996). In particular, the inference obtained

for Pr(Y = 1 | x;G) under the binary regression model can be compared to that for
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Pr(Z > 0 | x;G) under the density estimation model. The inference from the model

which treats z as observed is viewed as the best that can possibly be achieved under the

binary regression model. Under the simulation approach to prior specification, values of

k1 = k3 = 0.175 and k2 = 0.65 correspond to roughly uniform(−1, 1) priors for ρ, and result

in E(σ2) ≈ (rx/4)2.

The inference for Pr(Y = 1 | x;G) under the binary regression model may be

compared with that for Pr(Z > 0 | x;G) from the density estimation model, and both may

be evaluated in terms of their similarities to the true Pr(Z > 0 | x). Median and 95%

interval estimates for the two functions are displayed along with the truth in Figure 2.1.

The point estimate for Pr(Z > 0 | x;G) is slightly closer to the truth at the peak, as well

as at the extreme values of the covariate space. While there are subtle differences in the

estimation for Pr(Y = 1 | x;G) to that for Pr(Z > 0 | x;G), the fact that the proposed

model is performing almost as well as the model for density estimation is encouraging. The

interval estimates are widest at the endpoints under both models, as is to be expected since

there is less data at these regions.

The three bivariate normal components which generated the data had very differ-

ent correlation structure. One mixture component generated positively correlated data, one

generated negatively correlated data, and the other generated uncorrelated data. It would

clearly be restrictive to force cov(Z,X) to be zero in each component, and the proposed

model avoids doing so while maintaining identifiability.

The latent unobserved responses are a key component of the modeling strategy.

Since the variance of Z within each component must be fixed for identifiability, and the
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Figure 2.1: Simulation example. Left: Posterior median (dashed line) and 95% uncertainty
bands (dotted lines) for Pr(Z > 0 | x;G) are compared with the true data generating
Pr(Z > 0 | x) (solid line). Right: Posterior median (dashed line) and 95% uncertainty
bands (dotted lines) for Pr(Y = 1 | x;G) are compared with the true data generating
Pr(Z > 0 | x) (solid line).

cut-off point set to 0, any inference obtained for Z must be thought of as relative. Hence,

while the scale and location of f(z | x;G) is not directly interpretable, the inference should

meaningful when contrasted against estimates involving different covariate values. Because

Pr(Y = 1 | x;G) = Pr(Z > 0 | x;G), the observed binary responses fully inform about the

latent response CDF at 0, but not at other values. Within each normal kernel, it can be

shown that if Pr(Y = 1 | x1) < Pr(Y = 1 | x2), this implies that E(Z | X = x1) < E(Z |

X = x2). Therefore, although there is some information about the latent responses which

is lost in observing only the binary responses, we may be able to compare the estimated

latent response distributions across covariate values, particularly their locations. As an

illustration of the types of estimated conditional distributions which arise from the model,

we show posterior inference for f(z | x;G) for three values of x from both the model which
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Figure 2.2: Simulation example. The top row shows point (solid) and 95% interval estimates
(dotted) for f(z | x;G) for three different values of x obtained from the model based on
observed data (zi, xi), as well as the true densities (dashed). The bottom row shows the
corresponding inference obtained from the binary regression model.

actually observes the latent responses, and the binary regression model which sees only

the binary responses, in Figure 2.2. These values were chosen from different regions of

the covariate space; in particular, x1 represents the average of the minimum and the mean

covariate value, x2 = 0, and x3 represents the mean. Even though the binary responses tell

relatively little about the latent responses, the model is estimating the relative locations very

well, and the similarity with the estimates from the model which sees the latent responses

is apparent.
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2.3.2 Ozone Data

Ozone is a gas which has detrimental consequences when it occurs near the Earth’s

surface. Ground-level ozone is a harmful pollutant, making up most of the smog which is

visible in the sky over large cities. Because of the effects ozone has on the environment and

our health, its concentration is monitored by environmental agencies. Rather than recording

the actual concentration, presence or absence of an exceedance over a given ozone concen-

tration threshold may be measured, and the number of ozone exceedances in a particular

area is of interest.

We work with data set ozone from the “ElemStatLearn” R package. The data

set includes measurements of ozone concentration in parts per billion, wind speed in miles

per hour, temperature in degrees Fahrenheit, and radiation in langleys, recorded over 111

days from May to September of 1973 in New York. To construct a binary ozone exceedance

response, we define an exceedance as an ozone concentration which is larger than 70 parts

per billion. Therefore, we can model the probability of an ozone exceedance as a function

of wind speed, temperature, and radiation, using the Dirichlet process mixture binary re-

gression model. In addition, the modeling approach is evidently appropriate here, since it

is natural to estimate conditional relationships between the four environmental variables

through modeling the stochastic mechanism for their joint distribution. We are not sug-

gesting dichotomizing a continuous response in practice, but use this example to illustrate

a practically relevant setting in which a binary response may arise as a discretized version

of a continuous response. Moreover, the existence of the continuous ozone concentrations

enables comparison of inferences from the binary regression model with a model based on
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the actual continuous responses.

Prior specification was performed using the first approach discussed in Section 2.2.3

that favors uniform priors for the correlations of the kernel covariance matrix. Although

the corresponding priors were not all close to the uniform on (−1, 1) under the inverse-

Wishart prior specification approach, both methods resulted in prior mean estimates for

Pr(Y = 1 | xj), j = 1, 2, 3, that were, for each of the three random covariates, constant

around 0.5, with 90% interval bands that essentially span the unit interval. All posterior

inference results discussed below were robust to the prior choice.

The marginal binary response curves for the probability of exceedance as a function

of wind speed, temperature, and radiation, are shown in the top row of Figure 2.3. There

is a decreasing trend in probability as wind speed increases, with the probability being

essentially 0 when wind speed is greater than 15 mph. The opposite trend is observed with

temperature, as the probability of exceedance is near 0 when temperature is less than 75

degrees, and above 0.8 when temperature exceeds 90 degrees. A non-monotonic unimodal

response curve is obtained as a function of radiation, with peak probability occurring at

moderate values of radiation, and declining with higher and lower values. Bivariate surfaces

indicating probability of exceedance as a function of temperature and wind speed, as well

as radiation and wind speed, are shown in Figure 2.4.

For this illustrative data example, the continuous ozone concentration responses

are also available. We can therefore compare the binary regression model inferences for

Pr(Y = 1 | xj) with the ones for Pr(Z > 70 | xj), under the corresponding density estima-

tion model – a Dirichlet process mixture based on a four-dimensional normal kernel with

30



5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

wind speed (mph)

pr
ob

ab
ili

ty
 o

f e
xc

ee
da

nc
e

60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

temperature (degrees F)

pr
ob

ab
ili

ty
 o

f e
xc

ee
da

nc
e

50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

radiation (langleys)

pr
ob

ab
ili

ty
 o

f e
xc

ee
da

nc
e

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

wind speed (mph)

pr
ob

ab
ili

ty
 o

f e
xc

ee
da

nc
e

60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

temperature (degrees F)

pr
ob

ab
ili

ty
 o

f e
xc

ee
da

nc
e

50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

radiation (langleys)

pr
ob

ab
ili

ty
 o

f e
xc

ee
da

nc
e

Figure 2.3: Ozone data. Posterior mean (solid line) and 90% uncertainty bands (gray
shaded regions) for probability of exceedance versus wind speed (left panels), temperature
(middle panels), and radiation (right panels). The top row plots results under the binary
regression model, including the binary response data in each panel. The bottom row shows
results under the model for density estimation, applied to {(zi,xi)}.

unrestricted covariance matrix – applied to the original data set {(zi,xi) : i = 1, ..., 111}.

Results are shown in the bottom row of Figure 2.3, based on a prior choice for the density

estimation model that induces prior estimates for the Pr(Z > 70 | xj) curves that are sim-

ilarly diffuse to the ones for Pr(Y = 1 | xj). Save for some differences in the uncertainty

bands, the density estimation model reveals similar trends for the regression functions to

the ones uncovered by the binary regression model.

As another appealing consequence of estimating the joint response-covariate distri-

bution, we can obtain inference for the distribution of covariates conditional on a particular
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Figure 2.4: Ozone data. Posterior mean surface for probability of exceedance versus temper-
ature and wind speed (left panel), and radiation and wind speed (right panel). Probabilities
ranging from 0 to 1 are indicated by a spectrum of colors from white to red.

value of y. These inverse inferences may be of interest in many settings, as they indicate

how the covariate distribution differs given a positive versus a negative binary response.

Such inferences are not possible under a model directly for the conditional response distri-

bution (with the implicit assumption of fixed covariates). Figure 2.5 shows estimates for the

density of each covariate conditional on the binary exceedance response, f(xj | y = 1) and

f(xj | y = 0), for j = 1, 2, 3. Note that when an exceedance occurs, temperature is gener-

ally higher and wind speed lower. In addition, the conditional densities associated with an

exceedance have smaller dispersion than those associated with a non-exceedance, indicating

that a smaller range of covariate values are supported when an exceedance occurs.

Recall from Section 2.2 that if we make the simplifying assumption Σzx = 0 for

the covariance matrix of the kernel in f(z,x;G), we obtain a kernel for f(y,x;G) that

comprises independent components Np(x;µx,Σxx) and Bern(y; Φ(µz)). The implied condi-
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Figure 2.5: Ozone data. Posterior mean estimates (solid lines) and 90% uncertainty bands
(dashed lines) for the density of wind speed (left panel), temperature (middle panel), and
radiation (right panel), given an ozone concentration exceedance (blue) and non-exceedance
(black).

tional regression function is again a weighted sum of probabilities with the same covariate-

dependent weights as the proposed model, but probabilities which are not functions of x;

the probability πl(x) in expression (2.2) reduces to πl = Φ(µzl ). Mixtures of this product-

kernel form have been previously proposed in the literature; see, for instance, Dunson and

Bhattacharya (2010).

We fitted the simpler product-kernel model to the ozone data, using hyperpriors

that induce similarly diffuse prior estimates for the regression functions with the general

binary regression model. Differences in the response probabilities produced by the product-

kernel mixture model – not shown here – tend to occur at peaks or low points of the

curves in Figure 2.3. In general, the product-kernel model underestimates the probability

surface or curve when it takes a high value, and overestimates regions of low probability.

In addition, the uncertainty bands from the product-kernel model are generally wider than

those produced by the proposed model.

For a more formal comparison, we use the posterior predictive loss criterion of
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Gelfand and Ghosh (1998). The criterion favors the model m that minimizes the pre-

dictive loss measure Dk(m) = P (m) + {k/(k + 1)}G(m), with penalty term P (m) =∑n
i=1 var(m)(Ynew,i | data), and goodness of fit term G(m) =

∑n
i=1{yi − E(m)(Ynew,i |

data)}2. Here, E(m)(Ynew,i | data) is the mean under model m of the posterior predic-

tive distribution for replicated response Ynew,i with corresponding covariate value xi. The

variance is similarly defined. Details involving expressions contributing to Dk(m) for each

model are given in Appendix B.2, but note that computations are based on the conditional

posterior predictive distribution of Y given x. The penalty term under the product-kernel

model is 10.17, while it is 7.95 under the proposed model, and the goodness of fit terms

are 4.17 and 4.08, respectively. Hence, regardless of the choice for constant k, the criterion

favors the general Dirichlet process binary regression model.

2.3.3 Estimating Natural Selection Functions in Song Sparrows

In addition to enabling more general modeling of binary regression relationships,

the latent variables may be practically relevant in specific applications. Often, we may only

observe whether or not some event occurred, although there exists an underlying continu-

ous response which drives the binary observation. The ozone data was used to illustrate an

environmental application for which the latent continuous responses are actually present.

In applications in biology, the latent response may represent maturity, which is recorded on

a discretized scale, or an unobservable trait or measure of health. In general, the continuous

responses may be latent either because they are actually unobservable, or as consequence

of recording taking place on a discretized scale. As an example of the former scenario,

consider a binary response which represents survival. While we only observe survival on a
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binary scale, it is meaningful to conceptualize an underlying process which drives survival.

Quantifying the probability of survival as a function of phenotypic traits is of great interest

in evolutionary biology (Lande and Arnold, 1983; Schluter, 1988; Janzen and Stern, 1998).

Survival can be thought of as a measure of fitness, and the fitness surface describes the

relationship between phenotypic traits and fitness. The proposed methodology is partic-

ularly well-suited for this area of application, as it allows flexible inference for the shape

of the fitness surface and for the distribution of population traits under a joint modeling

framework that incorporates the scientifically relevant latent fitness responses.

As an illustration, we consider a standard data set from the relevant literature

that records overwinter mortality along with six morphological traits in a population of 145

female song sparrows (Schluter, 1988). The traits measured consist of weight, wing length,

tarsus length, beak length, beak depth, and beak width. Our initial analysis included four

traits – weight, wing length, tarsus length, and beak length – as beak width and depth are

highly discretized, correlated with beak length, and did not appear to be associated with

a trend in survival. This analysis revealed tarsus length and beak length to be the main

targets of selection, which is consistent with the findings of Schluter and Smith (1986).

A key objective in this example is to obtain inferences for functionals used to assess the

strength and form of natural selection acting on phenotypic traits, and we thus focus on

the two traits associated with survival.

The model was applied with standardized covariates tarsus length (X1) and beak

length (X2), measured in millimeters, using the second approach to prior specification in-

volving the inverse-Wishart distribution. The estimated selection curves are shown in Figure
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Figure 2.6: Song sparrows data. Posterior mean (purple) and 90% uncertainty bands (gray
shaded regions) for the probability of survival as a function of tarsus length and beak length.

2.6, revealing a strong decreasing trend in fitness over tarsus length, in which a sparrow with

tarsus length 20.55 millimeters has a 10% lower probability of surviving overwinter than a

sparrow with tarsus length just 0.5 mm shorter. The opposite trend in fitness is present

over beak length, as longer beaks are associated with higher probabilities of survival. The

posterior median estimate for the probability of survival as a function of both traits (Fig-

ure 2.7, left panel) confirms that the combination of long beaks and short tarsi is optimal

for fitness; importantly, it also indicates that a short tarsus provides the more significant

contribution to higher probability of survival. The corresponding posterior interquartile

range estimate (Figure 2.7, right panel) depicts more uncertainty in the survival probability

surface for sparrows having both a short beak and short tarsus, and those with both a long

beak and long tarsus.

For each of the two traits, we estimated the standardized directional selection

differential, x̄∗j − x̄j , j = 1, 2, which provides a measure of selection intensity representing
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Figure 2.7: Song sparrows data. Posterior median surface (left panel) and interquartile
range surface (right panel) for the probability of survival as a function of tarsus length and
beak length.

the change in mean value of a phenotype produced by selection (Lande and Arnold, 1983).

Here, x̄j =
∫
xjf(xj)dxj is the mean value of phenotypic trait xj before selection, and

x̄∗j =
∫
xjf(xj | Y = 1)dxj = {Pr(Y = 1)}−1

∫
xjPr(Y = 1, xj)dxj is the mean value

after selection; the marginal probability Pr(Y = 1) is referred to as mean absolute fitness.

Under our model, x̄j =
∑N

l=1 plµ
xj
l , mean absolute fitness is given by

∑N
l=1 plΦ(µzl ), and∫

xjPr(Y = 1, xj ;GN )dxj is approximated with a Riemann sum. The posterior mean

estimate for the standardized selection differential for tarsus length was −0.31, with a 90%

posterior credible interval of (−0.46,−0.18). For beak length, the posterior mean and 90%

credible interval for the standardized selection differential were 0.22 and (0.09, 0.36). Note

that these intervals do not contain zero. Combined with the estimated regression curves,

these results give strong evidence that directional selection is acting on tarsus length and

beak length, favoring sparrows with long beaks and short tarsi.
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The average gradient of the selection surface, weighted by the phenotype distribu-

tion, is given under our model by the vector

(∫
∂Pr(Y = 1 | x;G)

∂x1
f(x;G)dx,

∫
∂Pr(Y = 1 | x;G)

∂x2
f(x;G)dx

)T
.

Under a linear regression structure with a multivariate normal distribution for the pheno-

typic traits, the selection gradient is equivalent to the vector of linear regression slopes

(Lande and Arnold, 1983). Janzen and Stern (1998) do not incorporate in their ap-

proach a distributional assumption for f(x), and approximate the j-th selection gradient

by n−1
∑n

i=1 ∂Pr(Y = 1 | x)/∂xj |x=xi . Our joint mixture modeling approach avoids the

assumption of normality for the phenotypic distribution, as well as the need to estimate

the integral by assuming the sample represents the population distribution. The inte-

grand of the i-th component of the selection gradient vector can be written as {∂Pr(Y =

1,x;G)/∂xi} − {Pr(Y = 1 | x;G)∂f(x;G)/∂xi}, for i = 1, 2. We omit the specific ex-

pressions for each of these two terms, but note that both are analytically available as a

consequence of the mixture of normals representation for f(z,x;G). Finally, the average

gradient of the relative selection surface, also referred to as the directional selection gradient

by Lande and Arnold (1983), is obtained by dividing each element of the selection gradi-

ent vector by mean absolute fitness. We obtained posterior mean estimates of −0.27 and

0.18, with corresponding 90% credible intervals of (−0.40,−0.14) and (0.06, 0.31), for the

directional selection gradient associated with tarsus length and beak length, respectively.

The presence of stabilizing or disruptive selection can be explored by consider-

ing the change in the phenotypic variance-covariance matrix due to selection, that is,

the change from the pre-selection covariance matrix P , with elements
∫

(x1 − x̄1, x2 −
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x̄2)T (x1 − x̄1, x2 − x̄2)f(x)dx, to the post-selection covariance matrix P ∗, with elements∫
(x1 − x̄∗1, x2 − x̄∗2)T (x1 − x̄∗1, x2 − x̄∗2)f(x | Y = 1)dx. The stabilizing selection differential

matrix is given by P ∗ − P + (x̄∗1 − x̄1, x̄
∗
2 − x̄2)T (x̄∗1 − x̄1, x̄

∗
2 − x̄2) (Lande and Arnold,

1983), where negative values for a particular trait indicate the presence of stabilizing selec-

tion, while positive values indicate disruptive selection. The posterior mean for the matrix

element corresponding to tarsus length is 0.038, that for beak length is −0.020, and the

off-diagonal element has a posterior mean of −0.018. The 90% posterior credible intervals

for each element of the matrix all include zero, indicating lack of significant evidence for

stabilizing or disruptive selection acting on either trait.

One way to check if a kernel with independent components for x and y would be ad-

equate is to study in posterior predictive space the correlations between the latent response

and the two traits. Denoting by Θ the vector comprising all model parameters, the joint

posterior predictive distribution is given by p(z,x | data) =
∫ ∑N

l=1 plN3(z,x;µl,Σl)p(Θ |

data) dΘ, which requires sampling one of (Σ1, . . . ,ΣN ) with probabilities p1, . . . , pN for each

set of posterior samples. The correlations resulting from these posterior predictive draws for

the kernel covariance matrix are plotted in Figure 2.8. These results suggest that it would

be restrictive to force uncorrelated mixture kernel components, since the distribution of

correlations associated with (Z,X1) is right-skewed and centered on negative values, while

that for (Z,X2) is mainly focused on positive values and left-skewed, a pattern which is

consistent with the shape of the estimated binary regression curves.
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Figure 2.8: Song sparrows data. Posterior predictive samples for corr(z, x1) (left panel),
corr(z, x2) (middle panel), and corr(x1, x2) (right panel).

2.4 Discussion

We have presented a flexible method for estimating the regression relationship

between binary responses and continuous covariates, which is built from a DP mixture

model for the latent response-covariate distribution. Identifiability was established for the

parameters of the mixture kernel, in which the covariance matrix was reparameterized in

such a way that allows for viewing only part of the matrix as random, while retaining the

desirable features of conjugacy. Full conditional distributions were derived for the random

elements of the covariance matrix, providing the key component of an efficient Markov chain

Monte Carlo algorithm for posterior simulation. Two strategies for prior specification were

discussed. The methodology was illustrated with simulated data and two examples that

were chosen to indicate the practical utility of the modeling approach for problems in the

environmental sciences and in population biology.

We discussed the special case of the model arising from Σzx = 0 in the mixture

kernel, which has been previously proposed with the further restriction that Σxx is diagonal
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(Dunson and Bhattacharya, 2010). There, the simplicity of independence among covariates

within mixture components was viewed as appealing, and the response was modeled as inde-

pendent of the covariates within the kernel, resulting in what was termed a product-kernel.

In a related approach, Shahbaba and Neal (2009) also build a model for the joint distribution

f(y,x), but do so by separately estimating f(x) and Pr(y | x), where the latter is assumed

to be a multinomial logit model within a mixture component. Due to the difficulties arising

from estimation of full covariance matrices unless the inflexible inverse-Wishart is used as a

prior, they too assume x1, ..., xp to be independent within each component. This idea was

generalized by Hannah et al. (2010) to allow any standard generalized linear model to take

the place of the multinomial logit model.

The independence assumptions discussed above are, in general, restrictive. The

proposed justification is that because independence is imposed only within each component,

dependence arises when more than one component is contained in the mixture. Therefore,

the ability of product-kernel models to approximate the regression relationship and the

covariate distribution is enhanced through the mixture. However, in order to correctly

capture the covariate distribution and the dependence of Y onX in complex problems, there

is need for models which allow for dependence within clusters. Dunson and Bhattacharya

(2010) note that if interest centers on quantifying dependence, then there is no need to

introduce a response, and the method for joint modeling can still be used in this case. If

estimation of dependence is in fact the goal, this is clearly more adequately achieved when

random variables are allowed to depend on one another through more than just clustering.

In this work, the introduction of latent variables and reparameterization of the covariance
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matrix allow these assumptions to be relaxed.

The proposed modeling approach relies on the choice of the multivariate normal

distribution for the mixture kernel. This choice can accommodate essentially any type of

continuous covariate, possibly through use of appropriate transformation. As will become

clear in later chapters, it can also handle ordinal categorical covariates X by incorporating

in the model associated continuous variables, Xc, such that X arises from Xc through

discretization. In particular, although in this case inferences were not affected, beak length

in the data example of Section 2.3.3 was recorded only to the nearest tenth, and it could

therefore be treated as a discrete covariate. In a data example of Section 3.3.4, as well as the

main data analysis involving fish maturity of Chapter 4, we will exploit the ordinal nature

of the discrete covariates in this way. Extensions of the modeling approach to incorporate

ordinal responses follow naturally. This will be the focus of the next chapter.
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Chapter 3

A General Framework for

Multivariate Ordinal Regression

3.1 Introduction

The idea that categorical random variables arise as discretized versions of under-

lying latent continuous random variables becomes even more natural when taken to the

ordinal setting, as the categorical response levels have a natural ordering. Like the probit

GLM for binary responses, the parametric probit model for a multi-category response as-

sumes that Pr(Yi ≤ j) = Φ(γj−xTi β), for j = 1, . . . , C, and cut-offs −∞ = γ0 < γ1 < · · · <

γC−1 < γC = ∞, with γ1 = 0 for identifiability. In terms of latent responses (introduced

by Albert and Chib, 1993), the model assumes Yi = j if and only if Zi ∈ (γj−1, γj ], for

j = 1, . . . , C, and Zi ∼ N(xTi β, 1), to give Pr(Yi = j) =
∫ γj
γj−1

N(zi;x
T
i β, 1)dzi.

The multivariate binary probit model (Ashford and Sowden, 1970) generalizes
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the binary probit model to accommodate correlated binary responses using a multivariate

normal distribution for the underlying latent variables. In this setting, Zi is a vector, and

maximum likelihood estimation is intractable when more than just a few responses are

present. To obtain an identifiable model, restrictions must be imposed on the covariance

matrix of the multivariate normal distribution for Zi. One way to handle this is to restrict

the covariance matrix to be a correlation matrix, which complicates Bayesian inference since

there does not exist a conjugate prior for correlation matrices. Chib and Greenberg (1998)

discuss inference under this challenging model, using a random walk Metropolis algorithm

to sample the correlation matrix, however the matrix generated is not guaranteed to be

positive definite. Imai and van Dyk (2005) and Liu (2001) use parameter expansion with

data augmentation as developed by Liu and Wu (1999) to expand the parameter space

so that unrestricted covariance matrices may be sampled, and a one-to-one mapping is

used to imply a set of draws for correlation matrices. Talhouk et al. (2012) worked with

a sparse correlation matrix arising from conditional independence assumptions, and used a

parameter expansion strategy to expand the correlation matrix into a covariance matrix,

and update the covariance matrix in a Gibbs sampling step.

To avoid the issue of constrained covariance matrices in the multivariate ordinal

probit model, Webb and Forster (2008) reparameterized Σ in such a way that it is simple

to fix its diagonal elements without sacrificing closed-form full conditional distributions.

Lawrence et al. (2008) used a parameter expansion technique, in which the parameter space

includes unrestricted covariance matrices, which are then normalized to correlation matrices.

The multivariate ordinal probit model brings in an additional level of complexity since it
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requires estimation for the cut-offs in addition to the challenges arising from correlation

matrices. The cut-offs are often highly correlated with the latent responses, suffering from

problems of posterior degeneracy.

The assumption of normality on the latent variables is restrictive, in particular for

data which contains a large proportion of observations at high or low ordinal levels, and

relatively few observations at moderate levels. As a consequence of the unimodal, bell-shape

of the normal distribution, the effect of each covariate on the probability response curves

is somewhat restrictive. In particular, it is easy to see that, for an ordinal response Y ,

Pr(Y = 1 | x) and Pr(Y = C | x) are monotonically increasing or decreasing as a function

of covariate x, and they must have the opposite type of monotonicity. The direction of

monotonicity changes exactly once in moving from category 1 to C (referred to as the

single-crossing property). In addition, the relative effect of covariates k and l, or the ratio

of ∂Pr(Y = m | x)/∂xk to ∂Pr(Y = m | x)/∂xl, is equal to βk/βl, which does not depend on

m or x. That is, the relative effect of one covariate to another on the probability of response

is the same for every ordinal level and any covariate value. See Boes and Winkelmann (2006)

for a discussion of some of these properties.

As we saw in the last chapter, even with only one probability curve to be estimated,

there is a large set of literature devoted to modeling this function. Bayesian inference

which relies on alternative latent-response distributions is somewhat limited, particularly

in the multivariate setting. For a univariate ordinal response, Chib and Greenberg (2010)

assume that the latent response arises from scale mixtures of normals, and the covariate

effects to be additive upon transformation by cubic splines. This allows nonlinearities to be
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obtained in the marginal regression curves, however the assumption of additive covariate

effects is restrictive. Moreover, there are aspects of the spline-based approach such as

prior specification and choice of location and number of knots that make implementing

the model non-trivial. Gill and Casella (2009) extend the parametric ordinal probit model

by introducing subject-specific random effects terms, and modeling them with a Dirichlet

process (DP) prior.

Chen and Dey (2000) modeled the latent variables with scale mixtures of normal

distributions, with means linear on the covariates. In the context of multivariate ordinal

data without covariates, Kottas et al. (2005) modeled the distribution of the latent variables

with a Dirichlet process (DP) mixture of multivariate normals, which is sufficiently flexible

to represent essentially any pattern in a contingency table while using fixed cut-offs. This

represents a significant advantage in using a nonparametric model, because in the parametric

models discussed, the estimation of cut-offs represented a computational burden, requiring

nonstandard inferential techniques such as hybrid MCMC samplers (Johnson and Albert,

1999) and reparamaterization to achieve transformed cut-offs which do not have an order

restriction (Chen and Dey, 2000).

Finally, related work includes Shahbaba and Neal (2009), Dunson and Bhat-

tacharya (2010), Hannah et al. (2011), and Papageorgiou et al. (2014), as they develop

nonparametric models for joint response-covariate distributions. Shahbaba and Neal (2009)

considered classification of a univariate response using a multinomial logit kernel, and this

was extended by Hannah et al. (2011) to accommodate alternative response types with mix-

tures of generalized linear models. Dunson and Bhattacharya (2010) studied DP mixtures
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of independent kernels, and Papageorgiou et al. (2014) build a model for spatially-indexed

data of mixed type (count, categorical, and continuous). These models would not be ap-

propriate for ordinal data, or, particularly in the first three cases, when inferences are to

be made on the association or correlation between variables.

The preceding discussion should indicate that there are significant challenges in-

volved in fitting parametric multivariate probit models, and a large amount of research is

dedicated to providing new inferential techniques in this setting. While there is clearly

interest and utility in this model, the assumption of normality on the latent variables is

highly restrictive. There are few existing nonparametric approaches to ordinal regression,

and they are virtually nonexistent in the multivariate case. Semiparametric models for

binary regression are more common, since in this case there is a single regression func-

tion to be modeled. When taken to the setting involving a single ordinal response with

C ≥ 3 classifications, it becomes much harder to incorporate flexible priors for each of

the C − 1 probability response curves. Semiparametric prior specifications appear daunt-

ing in the multivariate ordinal regression setting where, in addition to flexible regression

relationships, it is desirable to achieve general dependence structure between the ordinal

responses.

In this chapter, we introduce a Bayesian nonparametric regression model for uni-

variate and multivariate ordinal responses. The covariates remain treated as random, and

the way in which they affect the response is driven by the data, as we do not assume a linear

relationship between the latent responses and covariates as in standard probit regression

and its variations, or any independence assumptions in the covariate effects. An appealing
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aspect of the nonparametric modeling approach taken is that the cut-offs may be fixed. In

Section 3.2 we formulate the model and show that, with fixed cut-offs, it can approximate

arbitrarily well any set of probabilities on the ordinal outcomes. To do so, we establish

the Kullback-Leibler (KL) property of our prior, proving the induced prior on the space

of mixed ordinal-continuous distributions assigns positive probability to all KL neighbor-

hoods of all densities in this space. A variety of data illustrations are provided in Section

3.3. One of these involves analysis of multirater agreement data, in which the association

between the ordinal variables is a key inferential objective. This association is described by

the correlations between the latent variables in the standard ordinal probit model, termed

“polychoric correlations” in the social sciences (e.g., Olsson, 1979). Section 3.4 concludes

the chapter.

3.2 Modeling Strategy, Properties, and Inference

3.2.1 Model Formulation

Suppose that k ordinal categorical variables are recorded for each of n individuals,

along with p continuous covariates, so that for individual i we observe a response vector

yi = (yi1, . . . , yik) and a covariate vector xi = (xi1, . . . , xip), with yij ∈ {1, . . . , Cj}, and

Cj > 2. Introduce latent continuous random variables zi = (zi,1, . . . , zi,k), i = 1, . . . , n,

such that yij = l if and only if γj,l−1 < zij ≤ γj,l, for j = 1, . . . , k, and l = 1, . . . , Cj . For

example, in a biomedical application, yi1 and yi2 could represent severity of two different

symptoms of patient i, recorded on a categorical scale ranging from “no problem” to “se-

vere”, along with covariate information weight, age, and blood pressure. The assumption
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that the ordinal responses represent discretized versions of latent continuous responses is

realistic for many settings, such as the one considered here. Note also that the assumption

of random covariates is appropriate in this application, and that the medical measurements

are all related and arise in the form of a data vector. This motivates our focus on building

a model for the joint density f(z,x), which is a multivariate density of dimension k + p,

which in turn implies a model for the conditional response distribution f(y | x).

To model f(z,x) in a flexible way while retaining interpretability and computa-

tional feasibility, we use a DP mixture (Ferguson, 1973; Antoniak, 1974) of multivariate

normals model, mixing on the mean vector and covariance matrix. That is, we assume

(zi,xi) | G
iid∼
∫

N(·;µ,Σ)dG(µ,Σ), and place a DP prior on the random mixing distri-

bution G. The hierarchical model is formulated by introducing a latent mixing parameter

θi = (µi,Σi) for each data vector, to give

(zi,xi) | θi
ind.∼ N(µi,Σi), i = 1, . . . , n

θi | G
iid∼ G, i = 1, . . . , n

G | α,m, V, S ∼ DP(α,G0) (3.1)

with G0(µ,Σ;ψ) = N(µ;m, V )IW(Σ; ν, S). The model is completed with hyperpriors on

ψ, and a prior on α:

m ∼ N(am, Bm), V ∼ IW(aV , BV ), S ∼W(aS , BS), α ∼ gamma(aα, bα), (3.2)

where, for (k+p)×(k+p) matrices S and V , W(aS , BS) denotes a Wishart distribution with

mean aSBS , and IW(aV , BV ) denotes an inverse-Wishart distribution with mean (aV −(k+

p)− 1)−1BV .
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From the constructive definition for G, the prior model for f(z,x) has an almost

sure representation as a countable mixture of multivariate normals, and the proposed model

can therefore be seen to be a nonparametric extension of the multivariate probit model,

albeit with random covariates. This implies a countable mixture of normals for f(z | x;G),

from which the latent z may be integrated out to reveal the induced model for the regression

relationships. In general, for a multivariate response Y = (Y1, . . . , Yk) with an associated

covariate vector X, the probability that Y takes on the values l = (l1, . . . , lk), where

lj ∈ {1, . . . , Cj}, j = 1, . . . , k takes the form

Pr(Y = l | x;G) =

∞∑
r=1

wr(x)

∫ γk,lk

γk,lk−1

· · ·
∫ γ1,l1

γ1,l1−1

N(z;mr(x), Sr)dz (3.3)

with covariate-dependent weights wr(x) ∝ prN(x;µxr ,Σ
xx
r ) and mean vectors mr(x) =

µzr+Σzx
r (Σxx

r )−1(x−µxr ), and covariance matrices Sr = Σzz
r −Σzx

r (Σxx
r )−1Σxz

r . Here, (µr,Σr)

are the atoms in the DP prior constructive definition, where µr is partitioned into µzr and

µxr according to random vectors Z and X, and (Σzz
r ,Σ

xx
r ,Σ

zx
r ,Σ

xz
r ) are the components of

the corresponding partition of covariance matrix Σr.

To illustrate, consider a bivariate response Y = (Y1, Y2), with covariates X. The

probability assigned to the event (Y1 = l1) ∩ (Y2 = l2) is obtained using (3.3), which

involves evaluating bivariate normal CDFs. However, one may be interested in the marginal

relationship between individual components of Y and the covariates. Referring to the

example given at the start of this section, we may obtain the probability that both symptoms

are severe as a function of X, but also how the first varies as a function of X. The marginal
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inference, Pr(Y1 = l1 | x;G), is given by the expression

∞∑
r=1

wr(x)

{
Φ

(
γ1,l1 −mr(x)

sr

)
− Φ

(
γ1,l1−1 −mr(x)

sr

)}
(3.4)

where mr(x) and sr are the conditional mean and variance for z1 conditional on x implied

by the joint distribution N(z,x;µr,Σr). Expression (3.4) provides also the form of the

ordinal regression curves in the case of a single response.

It can be seen that the expressions for the regression relationships have the form

of countable mixtures, with component-specific kernels which take the form of parametric

probit regressions, and weights which are covariate-dependent. This allows one to obtain

nonlinear, nonstandard relationships, by favoring a set of parametric models with varying

probabilities depending on the location in the covariate space. Many of the limitations of

standard parametric models including relative covariate effects which are constant in terms

of the covariate and the ordinal level, monotonicity, and the single-crossing property of the

response curves are thereby overcome.

3.2.2 Model Properties

In (3.1), Σ was left an unrestricted covariance matrix, and given an inverse-Wishart

base distribution in G0. In a parametric probit model, one way to ensure identifiability,

as an alternative to working with correlation matrices, is to fix γj,2 (in addition to γj,1),

for j = 1, . . . , k. As shown by the following result, this extends to the random covariate

setting. Under the mixture setting, model identifiability refers to identifiability of the

mixture kernel parameters in the induced model for (Y ,X), so that within a cluster or

mixture component, the parameters are identifiable. Lemma 3 establishes that there is no
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issue with identifiability in letting Σ be a general covariance matrix, as a consequence of

assuming fixed cut-offs (γj,1, . . . , γj,Cj−1), for j = 1, . . . , k.

Lemma 3. The parameters µ and Σ are identifiable in the kernel of the mixture

model for (Y ,X) as long as Cj > 2 for all j = 1, . . . , k.

Refer to Appendix A.1.2 for a proof of this result. If Cj = 2 for some j, additional

restrictions are needed for identifiability, and these are discussed later in Section 3.2.5.

Identifiability is a basic model property, and is achieved here by fixing the cut-

offs. However, this may appear to be a significant restriction with respect to the resulting

inferences, as under a parametric probit model, fixing all cut-offs would prohibit the model

from being able to adequately assign probabilities to the regions determined by the cut-

offs. We therefore seek to determine if the nonparametric model with fixed cut-offs is

sufficiently flexible to accommodate any distribution in the class being considered. Kottas

et al. (2005) provide an informal argument (also utilized by Savitsky and Dalal, 2014) that

the normal DP mixture model for multivariate ordinal responses without covariates can

approximate arbitrarily well any probability distribution for a contingency table. The basis

for this argument is that, in the limit, one mixture component can be placed within each

set of cut-offs corresponding to a specific ordinal vector, with the mixture weights assigned

accordingly to each cell.

Here, we provide a more formal proof of the full support of our model for ordinal-

continuous data. A prior model has large support if it can generate densities which are

arbitrarily close to any true data-generating density. In addition to being a desirable prop-
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erty on its own, the ramifications of large support are significant, as it is a key condi-

tion which is used in the study of posterior consistency (e.g., Ghosh and Ramamoorthi,

2003). Using the KL divergence as a measure of distance, a particular density f0(w) is

said to be in the KL support of the prior P, if P{Kε(f0(w))} > 0 for every ε > 0, where

Kε(f0(w)) = {f :
∫
f0(w)log(f0(w)/f(w))dw < ε}. The KL property is said to be satisfied

if any true density f0(w) is in the KL support of the prior.

It has been established that the DP location mixture of multivariate normal kernels

prior satisfies the KL property (Wu and Ghosal, 2008). That is, if the mixing distribution

G is given a DP prior on the space of probability measures on µ, and a normal kernel is

chosen so that f(w;G,Σ) =
∫

N(w;µ,Σ)dG(µ), with Σ a diagonal matrix, then the prior

induced on the space of densities assigns positive probability to all KL neighborhoods of all

densities. Letting this induced prior be denoted by P, and modeling the joint distribution

of (X,Z) with a DP location mixture of normals, the KL property yields:

P
(
{f :

∫
f0(x, z) log(f0(x, z)/f(x, z))dxdz < ε}

)
> 0 (3.5)

for all ε > 0 and all densities f0(x, z) ∈ D, where D denotes the space of densities on Rp+k.

To establish the KL property of the prior on mixed continuous-ordinal distributions

(X,Y ) induced from multivariate continuous distributions (X,Z), we must assume there

exists a true p0(x,y) ∈ D∗, with D∗ the space of distributions on Rp × {1, . . . , C1} × · · · ×

{1, . . . , Ck}. Let f0(x, z) ∈ D be a density function such that

p0(x, l1, . . . , lk) =

∫ γk,lk

γk,lk−1

· · ·
∫ γ1,l1

γ1,l1−1

f0(x, z1, . . . , zk)dz1 · · · dzk, (3.6)

for lj ∈ {1, . . . , Cj}. That is, f0(x, z) is an underlying density on the latent continuous

scale which induces the corresponding true distribution on the ordinal variables. Note that
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at least one f0 ∈ D does exist for each p0 ∈ D∗, with one such f0 described in Appendix

A.3. The next theorem establishes that, as a consequence of the KL property of the DP

mixture of normals (3.5), the prior assigns positive probability to all KL neighborhoods of

all p0(x,y), as well as all KL neighborhoods of all conditional distributions p0(y | x).

Lemma 4. Assume the true distribution of a mixed continuous-ordinal ran-

dom variable is p0(x, z) ∈ D∗, and let f0(x, z) ∈ D be the corresponding continuous

density function, which satisfies P{Kε(f0(x, z))} > 0. Then P{Kε(p0(x,y))} > 0, and

P{Kε(p0(y | x))} > 0.

Lemma 4, which is proved in Appendix A.3, establishes full support for a model

arising from a DP location mixture of multivariate normal kernels, a simpler version of

our model. Combined together, the properties of identifiability and full support reflect a

major advantage of the proposed model. That is, it can approximate arbitrarily well any

distribution on (Y ,X), as well as any conditional distribution for (Y | X), while at the

same time avoiding the need to impute cut-offs or work with correlation matrices, both of

which are major challenges in fitting multivariate probit models.

The cut-offs can be fixed to arbitrary increasing values, which we recommend to

be equally spaced and centered at zero. As confirmed empirically with simulated data (refer

to Section 3.3 for details), the choice of cut-offs does not affect inferences for the ordinal

regression relationships, only the center and scale of the latent variables, which must be

interpreted relative to the cut-offs.
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3.2.3 Prior Specification

To implement the model, we need to specify the parameters of the hyperpriors

in (3.2). A default specification strategy similar to that in Section 2.2.3 is developed by

considering the limiting case of the model as α → 0+, which results in a single normal

distribution for (Z,X). This limiting model is essentially the multivariate probit model,

with the addition of random covariates. The only covariate information we use here is an

approximate center (such as the midpoint of the data) and range of each covariate, denoted

by cx = (cx1 , . . . , c
x
p) and rx = (rx1 , . . . , r

x
p ). Then cxm and (rxm/4)2 are used as proxies for the

marginal mean and variance of Xm. We also seek to center and scale the latent variables

appropriately, using the cut-offs. Since Yj is supported on {1, . . . , Cj}, latent continuous

variable Zj must be supported on values slightly below γj,1, up to slightly above γj,Cj−1.

Let rzj = (γj,Cj−1 − γj,1), and use rzj /4 as a proxy for the standard deviation of Zj .

In the limit, with (Z,X) | µ,Σ ∼ N(µ,Σ), we find E(Z,X) = am, and Cov(Z,X) =

aSBS(ν − d − 1)−1 + BV (aV − d − 1)−1 + Bm, with d = p + k. Then, assuming each

set of cut-offs (γj,0, . . . , γj,Cj ) are centered at 0, fix am = (0, . . . , 0, cx). Letting D =

diag{(rz1/4)2, . . . , (rzk/4)2, (rx1/4)2, . . . , (rxp/4)2}, each of the three terms in Cov(Z,X) can

be assigned an equal proportion of the total covariance, and set to (1/3)D, or to (1/2)D

to inflate the variance slightly. For dispersed but proper priors with finite expectation, ν,

aV , and aS can be fixed to d + 2. Fixing these parameters allows for BS and BV to be

determined accordingly, completing the default specification strategy for the hyperpriors of

m, V , and S.

Although we have developed an approach to prior specification which utilizes the
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model for (Z,X), the focus of this work is in modeling regression functions, so we should

also consider the priors which are induced for the regression relationships. In the strategy

outlined above, the form of Cov(Z,X) was diagonal, so that in the prior, we favor inde-

pendence between Z and X. In the expressions for the regression functions in (3.3) and

(3.4), it is easy to see that if Σzx
l = 0 for all l, then ml(x) = µzl , and the probabilities (given

by the differences in CDFs) no longer depend on x. This leads to regression curves which

are flat in the prior mean, and not increasing or decreasing over the covariate space, and

this method can therefore be considered if noninformative priors are desired, or when it is

unknown how the ordinal responses vary over X.

3.2.4 Posterior Inference

The hierarchical model involving the truncation approximation to G is expressed

as:

yij = l iff γj,l−1 < zij ≤ γj,l, i = 1, . . . , n, j = 1, . . . , k

(zi,xi) | {µl,Σl}, Li
ind.∼ N(µLi

,ΣLi), i = 1, . . . , n

Li | p
iid∼

N∑
l=1

plδl(Li), i = 1, ..., n

p | α ∼ GD((1, 1, . . . , 1), (α, α, . . . , α))

(µl,Σl) | ψ
iid∼ N(µl;m, V )IW(Σl; ν, S), l = 1, . . . , N

and the full model is completed with conditionally conjugate priors on ψ and α as given in

(3.2).

All full conditional distributions are available in closed-form, allowing a Gibbs
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sampler to be used for sampling from the full posterior distribution p(µ,Σ,L,p, α,ψ, z |

data). The full conditional distribution for each µl is normal, that for Σl is inverse-Wishart,

and each Li is drawn from the discrete distribution on {1, . . . , N}. Each latent zij , i =

1, . . . , n, j = 1, . . . , k, has a truncated normal full conditional distribution, supported on

the interval (γj,yi,j−1, γj,yi,j ].

The regression functional Pr(Y = l | x;G) (estimated by a truncated version of

(3.3)) can be computed over a grid in x at every MCMC iteration. This yields an entire

set of samples for this probability at any covariate value x. Note that x may include just

a portion of the covariate vector or a single covariate, but in full generality this probability

could be estimated at any fixed covariate vector x. As indicated in (3.4), in the multivariate

response setting with k > 1, we may want to show inference for just individual components

of Y over the covariate space.

In some applications, in addition to modeling how Y varies across X, we may

also be interested in how the distribution of X changes at different ordinal values of Y .

As a feature of the joint-modeling approach which treats X as random, we can obtain

inference for f(x | y;GN ), which can be evaluated at fixed ordinal levels y. We refer to

these inferences as inverse relationships, which will be obtained for a data example in the

next section.

While these functionals involving the mixing distribution are of primary inter-

est, particularly the regression functionals, the association between the ordinal variables

in a multivariate ordinal setting may also be a key target of inference. In the social sci-

ences, the correlations between pairs of latent responses, corr(Zr, Zs), are termed polychoric
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correlations (Olsson, 1979) when a single multivariate normal distribution is used for the

underlying latent response distribution. Here, there are N multivariate normals present,

each having a particular probability given by the probability vector p, hence we can sample

a single corr(Zr, Zs) at each MCMC iteration, providing posterior predictive distributions

for polychoric correlations, which can be used to assess overall agreement between pairs of

response variables. As an alternative and possibly more informative measure of association,

we can obtain inference for probability of agreement over each covariate, or probability of

agreement at each ordinal level. These inferences can be used to determine where in the

covariate space response variables tend to agree, as well as the ordinal levels which are

associated with more agreement. In the social sciences it is common to assess agreement

among multiple raters or judges who are assigning a grade to the same item. We illustrate

our methods on a data set of this type, referred to as multirater agreement data, in which

both estimating regression relationships and modeling agreement are major objectives.

3.2.5 Accommodating Binary Responses

All discussion up to this point has focused on multivariate ordinal responses, with

Cj > 2 for all j. However, if one or more responses is binary, then the kernel of the

model proposed for ordinal responses with unrestricted µ and Σ is not identifiable. In the

univariate probit model studied in Chapter 2, identifiability was facilitated by fixing Σzz,

using the computationally convenient square-root free Cholesky decomposition of Σ which

uses the relationship Σ = β−1∆β−T , with β a unit lower triangular matrix, and ∆ diagonal.

When multiple ordinal responses exist and one or more is binary, it follows from

the univariate case that we can not hope to estimate all elements of Σ, in particular the
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covariance elements corresponding to the binary responses. Identifiability in this setting

can be accomplished by fixing the diagonal elements of Σzz which represent the variances

of the latent binary responses. The covariance elements Σzizj , i 6= j, all remain free, which

is important since the association between the responses may be of interest.

The decomposition of Σ used in the univariate binary case may be useful in the

multivariate setting as well. The key result here is that if (W1, . . . ,Wn) ∼ N(µ, β−1∆β−T ),

then Var(Wi | W1, . . . ,Wi−1) = δi, for i = 2, . . . , n. This was used by Webb and Forster

(2008) for modeling multivariate binary data. Therefore, if (Z,X) ∼ N(µ, β−1∆β−T ),

with (Z1, . . . , Zr) binary, and (Zr+1, . . . , Zk) ordinal, then fixing δ1 fixes var(Z1), fixing

δ2 fixes var(Z2 | Z1), and so on. The scale of the latent binary responses may therefore

be constrained by fixing δ1, the variance of the first latent binary response, Z1, and the

conditional variances (δ2, . . . , δr) of the remaining latent binary responses (Z2, . . . , Zr). The

conditional variances (δr+1, . . . , δk+p) are not restricted, since they correspond to the scale

of latent ordinal responses or covariates, which are identifiable under our model with fixed

cut-offs.

3.3 Data Examples

3.3.1 Simulated Data

The model was extensively tested on simulated data. We describe here some

observations and results from a series of simulations, in which the primary goal was to assess

how well the model can estimate the challenging regression functionals, which exhibit highly

nonlinear trends. We also explored effects of sample size, choice of cut-offs, and number of
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response categories, by modifying the simulation setting in various ways.

Bivariate continuous data {(zi, xi), i = 1, . . . , n} was simulated according to a

mixture of 4 bivariate normals. A set of cut-off points dividing R into 3 regions was specified,

so that an ordinal response yi is implied by each continuous zi, producing data observations

{(yi, xi), i = 1, . . . , n}, to which our model is applied. Two samples of sizes n = 200 and

n = 800 were produced from this simulation setting, to give data {(yi, xi), i = 1, . . . , n},

with yi ∈ {1, 2, 3}. The effect of the sample size was observed in the uncertainty bands for

the regression functions, which were reduced in width and made smoother with the larger

sample size. The regression estimates capture the truth well in both cases, but are smoother

and more accurate with more data, as expected. The cut-offs were specified as γ1 = −5 and

γ2 = 5. We stated previously that the cut-offs may be fixed to arbitrary increasing values,

and that the choice has no impact on inference involving the relationship between Y and

X, only between Z and X. To test this point, the model is fit to the same data but with

cut-offs of γ1 = −20 and γ2 = 20. The regression functions, i.e. Pr(Y = j | x;G), j = 1, 2, 3,

are unaffected by the change in cut-offs, as expected. Rather, the scale of the estimated

distribution for Z is increased, since | Z |> 20 is needed for observations corresponding

to Y 6= 2. The model was also applied using the more challenging cut-offs γ1 = 0 and

γ2 = 0.1, which correspond to a narrow interval for Z producing Y = 2. These cut-offs

force the model to generate components with small variance, lying in the interval (0, 0.1),

and it succeeds, producing ordinal regression functions unchanged from the previous set.

Figure 3.1 shows inference for the regression functions from the simulation with n = 200

using the more challenging cut-off points of γ = (−∞, 0, 0.1,∞), as well as the simulation
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Figure 3.1: Simulated data. Posterior mean (solid) and 95% interval estimates (dashed) for
Pr(Y = j | x;Gt), for j = 1, 2, 3 by column. Top row shows inference from a simulation
with n = 200, and bottom row corresponds to a larger sample size n = 800. The truth is
shown as a dotted line.

with n = 800 using the cut-offs points of γ = (−∞,−5, 5,∞).

Finally, the simulation setting was modified to produce an ordinal response with 5

categories for Y , by partitioning R into 5 regions. The cut-off points were chosen to create

a range of shapes for the regression functions, one having a standard monotonic trend, and

some with very nonlinear trends, including unimodality and bimodality. While these highly

nonlinear curves may rarely be present in practice, they certainly test the model’s ability

to capture the truth, however challenging it may be. With only 200 samples spread across

5 ordinal levels, the model captures the regression relationships very well, as can be seen in

Figure 3.2.

In the data illustrations that follow, the default prior specification strategy outlined

in Section 3.2.3 was used. The posterior distributions for each component of m always
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Figure 3.2: Simulated data. Posterior mean (solid) and 95% interval estimates (dashed) for
Pr(Y = j | x;Gt), for j = 1, . . . , 5. The truth is shown as a dotted line. The simulated
continuous {(zi, xi)} which generated data observations {(yi, xi)} is shown on the top left.

appeared very peaked compared to the prior, indicating the prior on m to be sufficiently

diffuse. Sensitivity to the prior for V and S was tested by comparing posterior distributions

under the strategy outline above to those obtained from more diffuse priors on V and

S, by letting the diagonal matrices BV and BS have larger elements, also increasing the

expectation of V and S element-wise. Some sensitivity to the priors was found in terms

of the learning for the hyperparameters V and S, however this was not reflected in the

posterior inferences for the regression functions, which displayed little to no change when

the priors were altered. The prior for α was also studied, and we noticed a moderate amount

of learning taking place for α for larger data sets, and a small amount for smaller data sets,

which is consistent with what is known about α in DP mixture models. The priors for α

were in all cases chosen to favor reasonably large values relative to the size of the data set,
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placing positive probability on a wide range of values for α to be relatively diffuse on the

number of components in the mixture.

3.3.2 Ozone Data

One area of application where the proposed model for ordinal data is particularly

well-suited falls in the environmental sciences, where observations of some key environmental

variable are recorded on the ordinal scale, however there is an underlying continuous random

variable which is not observed. If environmental covariates are present, these should in most

cases be viewed as random, and modeled jointly along with the variable viewed as the latent

response.

To illustrate the application of our methods in a setting of this type, we turn again

to the ozone concentration data from Section 2.3.2. We define an ordinal response containing

three categories, representing the concentration level. Ozone concentration greater than 100

ppb is defined as a “high” level, and assigned the ordinal level 3. This can be considered

an extreme level of ozone concentration, as only about 6% of observations are this high.

Concentration falling between 50 and 100 is considered “medium”, corresponding to level 2.

Approximately 22% of observations fall in this range. Finally, anything less than 50 ppb is

probably not of a high enough level to be of concern, and these concentrations are assigned

level 1.

In this example continuous ozone concentration is contained in the data, and we

create a discretized response indicating ozone concentration level to illustrate the proposed

method. However, in other real settings where data on ozone is recorded, it may only

be available in an ordinal form, such as whether or not it exceeded a certain threshold,
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Figure 3.3: Ozone data. Mean (solid) and 95% interval estimates (dashed) for Pr(Y =
j | xl;G) (thick black) compared to Pr(γj−1 < Z ≤ γj | xl;G) (red), for j = 1, 2, 3 and
l = 1, 2, 3, giving the probability of ozone concentration being low, medium, and high over
covariates radiation, temperature, and wind speed.

or whether it was “high”, “medium”, or “low”. This idea can be generalized to other

environmental characteristics or outcomes, which may only be available on an ordinal scale,

but in reality are continuous.

The ordinal regression model was applied to the ozone data, with ozone concen-

tration level response and the three environmental variables as covariates. Two different

sets of cut-offs were specified, those being (−∞,−3, 3,∞) and (−∞,−1, 100,∞), and these

had no effect on the inferences reported below. To assess and validate the inferences given
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by the model, we can compare the results from the proposed model which only sees the

discretized ozone concentration, to one which observes the actual continuous ozone concen-

tration. Specifically, we model the continuous data vector (Z,X) with a DP mixture of

multivariate normals, using the curve-fitting approach to regression of Müller et al. (1996)

and extended by Taddy and Kottas (2010). We compare the univariate regression curves

Pr(Y = j | xl;G) to Pr(γj−1 < Z ≤ γj | xl;G), j = 1, 2, 3, and l = 1, 2, 3, the latter

being from the model which observes Z rather than Y , essentially giving us a benchmark to

compare our model to which represents the best possible inference which could be obtained

if no loss in information occurred by observing Y rather than Z. Figure 3.3 compares mean

and 95% interval estimates for the regression curves produced by the model for ordinal data

to the comparable inferences from the model which observes (z1, . . . , zn). The similarity

between the two sets of inferences is clear. There are some regions where the interval bands

from the ordinal regression model are slightly wider, particularly for the covariate radiation,

which is the most nonlinear, however these differences are very subtle, and not even present

in some of the inferences. The trends in ozone concentration classification probabilities con-

ditional on temperature as well as wind speed are somewhat standard, exhibiting monotonic

relationships, while the regression curves associated with radiation are more nonlinear. The

ability to capture such a wide range of patterns is a feature of the flexible nonparametric

model for the latent response-covariate distribution.

Figure 3.4 displays bivariate surfaces which illustrate the posterior mean estimates

for probability of each level as a function of radiation and temperature. Interaction effects

are implicit in the joint response-covariate framework, without the need to account for
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Figure 3.4: Ozone data. Posterior mean estimates for Pr(Y = j | x1, x2;G) for j = 1, 2, 3,
corresponding to low (left), medium (middle) and high (right). White indicates a posterior
mean probability 0, and red indicates probability 1.
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Figure 3.5: Ozone data. Regions of significant positive interaction (red) and negative
interaction (blue) are compared under the model for ordinal data (top row) and a model
applied directly to the latent response-covariate data (bottom row).
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them with additional terms. To study how the covariates interact in terms of their effect on

ozone concentration, we turn to a standard decomposition from sensitivity analysis which

decomposes a deterministic function into main effects and interactions. The deterministic

function we work with is E(Z | X), which, for two covariates X = (X1, X2), is equal to

E(E(Z |X))+f1(X1)+f2(X2)+f12(X1, X2), with fi(Xi) = E(E(Z |X) | Xi)−E(E(Z |X))

the main effect of Xi, and f12(X1, X2) the interaction between X1 and X2 (Oakley and

O’hagan, 2004). This gives f12(X1, X2) = E(Z |X) + E(Z)−E(Z | X1)−E(Z | X2). Each

of these terms is easily available from the mixture of multivariate normals representation for

(Z,X1, X2). For any fixed covariate vector (x1, x2), a set of posterior samples is available.

Note that all terms in f12(X1, X2) are computed using the same joint distribution f(z,x;G)

at a particular MCMC sample, and thus the sign of f12(x1, x2) is meaningful. The magnitude

of the interaction at a particular covariate vector, f12(x0
1, x

0
2), is also comparable to the

magnitude at a different location, f12(x1
1, x

1
2), within a given MCMC sample.

We obtain posterior samples for the pairwise interactions over the covariate space,

and focus on the regions of significant interaction. That is, we indicate the regions of

significant positive interaction, for which the 2.5 percentile for f12 is above 0, and the

regions of significant negative interaction, for which the 97.5 percentile is below 0. We also

compare this to the inference obtained from the model applied to data {(zi,xi)}, which

should certainly be able to infer the way in which the elements of X interact to affect Z,

and in this case there is not potential for complications arising from the changing scale and

location of Z across MCMC samples. The inferences under the ordinal regression model are

shown in the top row of Figure 3.5, and the inferences from the continuous response model
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are shown in the bottom row. Red indicates regions of significant positive interaction, and

blue indicates significant negative interaction. The two sets of figures largely agree, with

the main difference being that the ordinal model is slightly more conservative in that it

assigns significance to smaller regions.

3.3.3 Credit Ratings of US Companies

We now consider an example involving Standard and Poor’s (S&P) credit ratings

for 921 US firms in 2005. This example is taken from Verbeek (2008), in which an ordered

logit model was applied to the data, and was also used by Chib and Greenberg (2010) to

illustrate a flexible modeling approach involving cubic splines and DP mixture errors. For

each firm, a credit rating on a seven-point ordinal scale is available, along with five charac-

teristics, which provide X1, . . . , X5. As consistent with the analysis of Chib and Greenberg

(2010), we combined the first two categories as well as the last two categories, to produce

an ordinal response with 5 levels, where higher ratings indicate more creditworthiness. The

covariates in this application are book leverage X1 (ratio of debt to assets), earnings before

interest and taxes divided by total assets X2, standardized log sales X3 (proxy for firm

size), retained earnings divided by total assets X4 (proxy for historical profitability), and

working capital divided by total assets X5 (proxy for short-term liquidity).

The posterior mean estimates for the marginal probability curves, Pr(Y = j |

xk;G), for j = 1, . . . , 5 and k = 1, . . . , 5, are shown in Figure 3.6. Each panel displays

the set of regression functions associated with a single covariate. These inferences display

some differences from the results obtained by Chib and Greenberg (2010), which could be

due to the additivity assumption of the covariate effects in the regression function under
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their model. Empirical regression functions computed by calculating proportions of obser-

vations assigned to each class over a grid in each covariate give convincing evidence that

the regression relationships estimated by our model fit the data quite well.
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Figure 3.6: Credit rating data. Posterior mean estimates for Pr(Y = j | xk;G), for each
covariate k = 1, . . . , 5. All 5 ordinal response curves corresponding to the 5 ordinal levels
are displayed in a single panel corresponding to a common covariate.

The most nonstandard trends appear to be present over X2, which is earnings

before interest and taxes divided by total assets. The covariate X3, which represents firm

size, has some interesting as well as sensible probability trends associated with it. The

probability of rating level 1 is somewhat constant for low values of X3, and then is decreasing

to 0, indicating that small firms have a similar probability of receiving the lowest rating, and

at some point, the larger the firm, the closer to 0 this probability becomes. The probability

69



curves for levels 2, 3, and 4 are all quadratic shaped, with peaks occurring at larger values

for higher ratings. Finally, the probability of receiving the highest rating is increasing as

a function of X3. In summary, the size of a firm is positively related to credit rating, as

expected.

0.0 0.4 0.8

0
1

2
3

4

Y=1

leverage

0.0 0.4 0.8

0
1

2
3

4

Y=2

leverage

0.0 0.4 0.8
0

1
2

3
4

Y=3

leverage

0.0 0.4 0.8

0
1

2
3

4

Y=4

leverage

0.0 0.4 0.8

0
1

2
3

4

Y=5

leverage

-4 -2 0 2

0.
0

0.
4

0.
8

log-sales

-4 -2 0 2

0.
0

0.
4

0.
8

log-sales

-4 -2 0 2

0.
0

0.
4

0.
8

log-sales

-4 -2 0 2

0.
0

0.
4

0.
8

log-sales

-4 -2 0 2

0.
0

0.
4

0.
8

log-sales

Figure 3.7: Credit rating data. Posterior mean (solid) and 95% interval estimates (dashed)
for distributions of covariates book leverage (first row) and standardized log-sales (second
row), conditional on ordinal credit rating, arranged by column, i.e. column 1 corresponds
to f(x | Y = 1;G).

One distinguishing feature of our approach is that we model the joint distribution

of the responses and covariates, viewing the covariates as random. This allows our model to

accommodate interactions between covariates, which is not done in the cubic spline model,

since this assumes the transformed covariates are additive in their effects on the latent

response. The assumption of random covariates is appropriate here, as the covariates are

characteristics of companies which are not fixed prior to sampling, and their distribution is

unknown. In addition to inference for the regression relationships, we may obtain inference
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for the covariate distribution, or for any covariate conditional on a specific ordinal rating.

These we refer to as inverse relationships, as introduced in Section 3.2.4. It may be of

interest to investors and econometricians to know, for example, approximately how large is

a company’s leverage, given that it has a rating of 2? Is the distribution of leverage much

different from that of a company which has a rating of 3? The distributions of the covariates

book leverage (X1) and standardized log-sales (X3), are shown in Figure 3.7 for each of the

5 ordinal ratings. In the first row, we show f(x1 | Y = j;G), for j = 1, . . . , 5. In general,

the distribution of book leverage is centered on decreasing values as rating increases, since

higher ratings are associated with lower leverage, and the distribution becomes more and

more peaked, having a smaller standard deviation. The interval bands are slightly wider

for the distribution associated with y = 1 than for y = 2, 3, or 4, and they are much wider

for y = 5, since there are very few observations in this category. The distribution of log-

sales (Figure 3.7, second row) has a mode which occurs at increasing values as Y increases,

indicating that if one firm has a higher rating than another, it likely also has higher sales.

3.3.4 Standard and Poor Grades of Countries

As a second example from econometrics, we turn our attention to a data set taken

from Simonoff (2003), concerned with modeling S&P ratings of n = 31 countries as a

function of debt service ratio and income, the latter given as an ordinal variable with levels

of low, medium, and high. Ratings range from 1 to 7, with 1 indicating the best rating of

AAA, and 7 the worst of CCC. This data set concerns a very small sample with a fairly

large number of categories, and it will be interesting to see how the model performs in this

setting.
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Since the covariate income is discrete, we can not simply treat it as part of the

continuous covariate vector X in our model. While income is recorded on an ordinal scale,

it is truly continuous, and therefore it makes sense to model income W as arising from a

latent continuous random variable (this method of modeling ordinal covariates was also used

by Ronning and Kukuk, 1996). Therefore, let Z = (Z1, Z2), and assume Y arises through

Z1 just as W arises from Z2. Let the continuous covariate X represent debt service ratio.

While rating is viewed as the response, we are once again interested in inverse relationships,

such as the distribution of debt service ratio or (discrete) income as a function of a given

S&P rating.

Figure 3.8 shows the posterior mean and 95% interval bands for the 7 probability

response curves as a function of debt service ratio. We see both monotonic trends (for

response categories 1, 2, and 7), as well as nonlinear ones, most notably for categories 4 and

5. The interval bands are wider than in the other examples, given the very small sample

size.

Posterior mean and 95% interval bands for the probability of each ordinal rating

as a function of income, Pr(Y = j | W = w;G) for w = 1, 2, 3 (low, medium, and high)

are shown in Figure 3.9. The expression for Pr(Y = j | W = w;G) is obtained from

Pr(Y = j,W = w;G)/Pr(W = w;G), where the numerator contains a double integral of a

bivariate normal density function, thereby requiring evaluation of bivariate normal CDFs.

One trend we observe is that the probability of receiving a top rating of 1, 2, or 3 is highest

for high-income countries, the probability of receiving a moderate rating of 4 or 5 is highest

for medium-income countries, and the probability of receiving a poor rating is highest for
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Figure 3.8: S&P ratings of countries data. Posterior mean (solid) and 95% interval estimates
(gray shaded regions) for probability curves associated with each rating as a function of debt
service ratio.

low-income countries. The uncertainty bands suggest large uncertainty in the probabilities

associated with the top 3 ratings for high-income countries, as well as the probabilities

associated with the worst 3 ratings for low-income countries. It appears highly unlikely

for a country to receive one of the top 2 ratings unless it is high-income, however there

does appear to be some positive probability of a middle-income country receiving one of

the lowest ratings.

The latent continuous responses represent latent continuous credit rating in this

application. The method for posterior simulation involves sampling zi,1, for i = 1, . . . , 31,

which represent the country-specific latent ratings. Although we may observe the same

ordinal rating for multiple countries, the latent continuous ratings may have slightly different

distributions. The two countries with AA (level 2) ratings are Canada and Australia. These

countries both have income classified as high, however Canada has no debt, and Australia
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Figure 3.9: S&P ratings of countries data. Posterior mean and 95% interval bands for each
category as a function of discrete income levels of low (1), medium (2), and high (3).

has a debt service ratio which is around 10. This value is not particularly high, but since

higher debt service ratio seems to be associated with poorer ratings, we would expect that

Canada would be closer to receiving a better rating of AAA than Australia. Posterior

distributions for latent continuous ratings for Canada and Australia are shown in Figure

3.10 on the left. Australia is represented by the solid line, and Canada by the dashed line.

The gray lines represent the cut-off points for the ordinal ratings. It is therefore the case

that Canada’s ordinal rating of AA is closer to a AAA than is Australia’s AA, as expected.

Now consider the four countries with A (level 3) ratings: Chile, Czech Republic,

Hungary, and Slovenia. Of these countries, all are classified as middle income except for

Slovenia, which has high income. The debt service ratios range from 8.9 (Czech Republic) to

15.8 (Chile), with Slovenia at 9.1, and Hungary at 12.9. The latent response distributions

are shown on the right of Figure 3.10. We see that Slovenia’s latent rating distribution

is centered on values very close to the cut-off for a higher grade of AA. The other three

74



0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Latent Continuous Rating

D
en
si
ty

AAA (1) AA (2) A (3)

0.
0

0.
2

0.
4

0.
6

0.
8

Latent Continuous Rating

D
en
si
ty

AA (2) A (3) BBB (4)

Figure 3.10: S&P ratings of countries data. Left: Posterior distributions for latent contin-
uous ratings for Australia (solid) and Canada (dashed), the two countries with AA rating.
Right: Inference corresponding to the four countries with A rating.

distributions are very similar, but there are subtle differences. Chile appears closest to

receiving a BBB, which makes sense given its higher debt service ratio. The Czech Republic

has a latent continuous distribution centered on slightly lower (better) values than does

Hungary, which is expected given its low debt service ratio. One interesting feature to

note is that differences in income seem to have a large effect on the distributions, while

differences in debt service ratio do not appear to have a great impact.

3.3.5 Analysis of Multirater Agreement Data

A variety of methods exist for analyzing ordinal data collected from multiple raters

when the goal is to measure agreemen, ranging from the commonly used κ statistic (Co-

hen, 1960) and its extensions (Fleiss, 1971), which are indices calculated from observed

and expected agreement of raters, to model based approaches involving log-linear models
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(Tanner and Young, 1985). We do not attempt to review all of the approaches to modeling

multirater agreement data, rather our focus lies in the use of fully model-based approaches

for analysis of ordinal data collected from multiple raters along with covariate information.

The proposed multivariate ordinal regression model is powerful in this setting, offering flex-

ibility and novelty in terms of the modeling framework and available inferences. We focus

on a scenario involving a set of expert graders who evaluate student essays, rating them on

an ordinal scale. We contrast our approach to the parametric model of Johnson and Albert

(1999), from where this data example is taken, and the nonparametric approach of Savitsky

and Dalal (2014), both containing fully model based Bayesian approaches to inference, and

similar in spirit to ours, utilizing latent responses.

Multirater agreement data arises when k raters assign ordinal scores to n indi-

viduals, so that yi = (yi1, . . . , yik), for i = 1, . . . , n. The raters typically use the same

classification levels, and therefore each yij ∈ {1, . . . , C}. This data could be summarized in

a contingency table, however, we are concerned with problems in which possibly relevant

covariate information is also available for each individual. We assume that each judge as-

signs an ordinal rating to individual i, which represents a discretized version of a continuous

rating, so that zij determines yij . That is, zij is the continuous latent score observed by

judge j on individual i.

This is in contrast to the formulation of Johnson and Albert (1999), in which the

assumption is made that all judges actually agree on the intrinsic worth of each item, so

that zij = Wi + εij , where Wi represents the true latent score, and εij is the error observed

by judge j. Then, Wi is assumed linearly related to the covariates, being normal with
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mean containing the term xTi β. The inflexibility of the latent response distribution is clear,

and since the distribution of zij does not have a judge-specific mean, random cut-offs are

necessary to allow the scores to vary among judges.

Savitsky and Dalal (2014) note the inflexibility of the latent response distribution

assumed by Johnson and Albert (1999), modeling the latent random vector of a single rater

with a DP mixture of independent normals, as the normal kernel distributions have diagonal

covariance matrices (a product-kernel model). The dependence is therefore introduced over

the latent scores of a single rater, but the data vectors arising from each rater are assumed

independent. It is therefore not so clear how to extract inference for inter-rater agreement

in this model, which is one of the major objectives in modeling data of this type in the

social sciences.

There is no notion in our model of an intrinsic true score for an individual, since

we assume each rater has his or her own beliefs which determine the score assigned to a

particular individual. An overall score for an individual could be obtained by somehow

averaging over the latent scores assigned by each rater, however, if extracting a true under-

lying score which it is believed all raters agree on is the goal, our method is probably not

the best choice. Rather, we focus on modeling relationships between the ordinal scores and

covariates, as well as inferring the association between the ordinal variables, over both the

covariate space and the ordinal levels. Our method is novel in its use for modeling multi-

rater agreement data in many ways, most notably in the nonparametric approach which can

accommodate complex dependence among raters, and the assumption of random covariates.

We now apply our method to a problem involving three expert graders who eval-
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uate n = 198 student essays, each assigned a rating on an ordinal scale of 1 through 10

(these represent raters 2, 3, and 4 from the data given in Chapter 5 of Johnson and Albert,

1999). The covariates average word length and total number of words are used as the p = 2

covariates, which may or may not explain to some extent the ratings given by a particular

judge. The traditional measure of agreement between raters l and m in the social sciences,

ρlm = corr(Zl, Zm), the polychoric correlation, can be assessed through the posterior pre-

dictive distribution for this correlation from the DP mixture model, by sampling one of

the (ρlm,1, . . . , ρlm,N ) with probabilities (p1, . . . , pN ) at each MCMC iteration, producing

samples for ρ0,lm. All three distributions favor most heavily positive correlations (raters 1

and 3 appear to agree most strongly), but place substantial probability on negative corre-

lations, suggesting there is some disagreement present between all pairs of raters. We can

determine where raters l and m tend to agree or disagree by finding the latent continuous

ratings which are assigned to observations for which corr(Zl, Zm) tends to be of a certain

strength and direction. That is, we can look at E(zil | data) and E(zim | data) arranged

by E(corr(zi,l, zi,m) | data), as {Σl : l = 1, . . . , N}, and Li imply a particular corr(zi,l, zi,m).

This shows, for instance, that raters 1 and 2 strongly agree on very low ratings, and they

disagree when rater 2 gives low ratings and rater 1 gives high ratings. It is also the case for

the other pairs of raters that they strongly agree mainly at low scores.

There are a variety of regression relationships present in this example. These can

be used to assess how ratings tend to vary across covariates, as well as how raters behave

in comparison to one another. Defining a high rating as 8 or larger, and a low rating as 3

or lower, we show inference for probability of high and low ratings as functions of average
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word length and total number of words for each rater in Figure 3.11. There appears to be

a strong trend in rating as a function of number of words for each rater, with rater 2 in

particular giving higher ratings for essays with more words. The regression curves for high

ratings associated with rater 2 are somewhat separated from raters 1 and 3, and rater 2

clearly assigns more high ratings than other raters.
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Figure 3.11: Multirater data. Posterior mean estimates for probability of high and low
rating as a function of average word length (2 left plots) and number of words (2 right
plots), for raters 1 (solid red), 2 (dashed blue), and 3 (dotted purple).
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Figure 3.12: Multirater data. Posterior mean (solid) and 95% interval estimates (gray) for
probability of agreement for raters 1 and 2 (left), 1 and 3 (middle), and 2 and 3 (right),
over covariate number of words.

To determine the regions of the covariate space in which raters tend to agree or

disagree, we show probability of perfect agreement for pairs of raters in Figure 3.12, over
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Y1 = H Y1 = L Y2 = H Y2 = L Y3 = H Y3 = L

Y1 = H 0.54 0.15 0.46 0.06

Y1 = L 0.13 0.48 0.04 0.51

Y2 = H 0.36 0.18 0.27 0.14

Y2 = L 0.08 0.56 0.07 0.41

Y3 = H 0.63 0.11 0.55 0.18

Y3 = L 0.04 0.78 0.15 0.54

Table 3.1: Multirater data. Agreement and disagreement probabilities for pairs of raters,
with disagreement highlighted in gray. The row labels indicate the event being conditioned
on. H refers to high ratings of {8, 9, 10}, and L refers to low ratings of {1, 2, 3}

the covariate number of words. This suggests that raters 1 and 2 agree most strongly on

grades for essays with few or many words. The other two pairs of raters tend to agree most

for essays with few words, and the trends in agreement probabilities are more constant for

these pairs of raters.

Finally, to assess the strength of agreement between raters on high and low scores,

we show posterior means for the probability that one rater gives a particular high/low

rating, conditional on the rating given by another rater. Posterior means for Pr(Yl | Ym;G)

for l,m ∈ {1, 2, 3}, and Yl and Ym taking values of {8, 9, 10} (high) or {1, 2, 3} (low),

are given in Table 3.1. Each row represents an event being conditioned on, while each

column is the event a probability is being assigned to. For example, row 1, column 3,

gives Pr(Y2 ∈ {8, 9, 10} | Y1 ∈ {8, 9, 10};G). The cells corresponding to disagreement are

highlighted with gray. The first two rows give probabilities conditioned on rater 1, and

indicate that rater 2 has substantially more disagreement with rater 1 than does rater 3.
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The last two rows suggest that rater 2 disagrees more with rater 3 than rater 1 disagrees

with rater 3. Finally, comparing the grades given by raters 1 and 3 to those of rater 2 in

the middle two rows, we see slightly more disagreement between raters 1 and 2 than raters

1 and 3; however not to a large degree.

3.4 Summary and Remarks

We have presented a fully nonparametric approach to modeling multivariate ordi-

nal data with covariates, which represents a significant contribution to the existing methods

for ordinal regression. The power of the framework lies in the flexible model for the latent

responses and covariates, which allows the data to drive the way in which the covariates

affect the response, while naturally accounting for dependence and interactions.

We showed that our model can accommodate any distribution for mixed ordinal-

continuous data, by providing a proof of the KL property of the prior. While our objective

was to show the power of the model to approximate any data-generating distribution while

at the same time assuming fixed cut-offs, which is provided by the KL property. Flexibility

is achieved while assuming fixed cut-offs, without restrictions on the covariance matrix of

the normal kernel. This is a very appealing feature of the model, since it avoids the need to

estimate cut-offs or work with correlation matrices, which are the most challenging aspects

of fitting multivariate probit and related models.

The version of the multivariate probit model we introduced in Section 3.1, and the

setting under which we work to build our model, is one in which there exists a single vector

of covariates X for each response vector Y . That is, the covariates are not specific to the
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particular response variable, but rather (Y ,X) arise as a truly multivariate vector. How-

ever, there is another version of the model in which pj distinct covariates (Xj,1, . . . , Xj,pj )

exist for each response variable Yj . This regression setting was described for multivariate

continuous responses by Tiao and Zellner (1964), and this is the version of the multivariate

binary probit model developed in the work of Chib and Greenberg (1998).

Scenarios which make use of distinct covariates for each response fall broadly into

two categories. The first consists of problems in which only a portion of the covariate

vector is thought to affect a particular response, but there may be some overlap in the

subset of covariates which generate the responses. Chib and Greenberg (1998) considered

a voting behavior problem of this kind in which the first of two responses was assumed to

be generated by a subset of the covariates associated with the second response. Although

treated with a distinct covariate model, this setting could really be accommodated by

modeling all covariates X jointly with Y , and conditioning on the relevant subset of X in

the regression inferences.

The other type of example which is often approached using a distinct covariate

regression model really does not fall into the multivariate regression setting. For instance,

Tiao and Zellner (1964) mention an example in which each response Yj corresponds to a

particular company j, and therefore Xj is company-specific. Chib and Greenberg (1998)

illustrate their model with the famous Six Cities data, in which Y = (Y1, . . . , Y4) represents

wheezing status at ages 7 through 10. In these settings, we argue that the responses are

actually univariate ordinal, in which hierarchical structure exists, creating dependence in

the company-specific or age-specific distributions. This motivates our work on modeling
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for dynamic ordinal regression relationships, which builds on the work presented here, so

that at any particular time point a unique regression relationship is estimated in a flexible

fashion, while dependence is incorporated across time.

In the next chapter, we will extend the model for ordinal regression to handle

ordinal regression problems which also contain an aspect of time. That is, the observations

are made up of ordinal responses along with covariates, as well as a time index. Many of the

properties and results developed in this chapter carry over to the time-dependent setting,

since at any given point in time, the ordinal regression model already developed holds.
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Chapter 4

Modeling for Dynamic Ordinal

Regression Relationships

The motivation for this chapter stems from ordinal regression problems, in which

the observations also contain some measure of time. The goal then becomes flexible model-

ing for dynamically evolving mixed ordinal-continuous distributions. The model for ordinal

regression developed in the previous chapter was seen to be powerful for modeling a single

multivariate distribution which implies a set of ordinal regressions, and we now require a

model for a time series of multivariate distributions. We build on previous work through

use of the dependent Dirichlet process (DDP), which we first review in Section 4.1, and de-

velop a new method for incorporating dependence in the weights of the DP in Section 4.2.

Two versions of the DDP model for density estimation are presented in Section 4.3. The

general DDP model for regression with time-dependent weights and atoms that we choose

to work with due to its superior forecasting ability is applied to carefully chosen simulated
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data scenarios in Section 4.4. In the following chapter, we consider two real data examples,

focusing primarily on a case study involving data on rockfish sampled along the coast of

California, which contains temporal structure, since the date of sampling is available in

addition to the ordinal response on maturity, along with covariates length and age.

4.1 Dependent Dirichlet Process Priors

Consider data indexed in discrete-time, giving rise to a set of distributions, which

are related but not identical. The goal then becomes to model each distribution in a flexible

way, while realizing that the set of distributions are correlated, and therefore this depen-

dence must be accounted for in an appropriate fashion. To build on previous knowledge and

results, we would like to retain the well-studied DP mixture model marginally at each time

t ∈ T , with T = {1, 2, . . . }. We thus must extend the DP prior to model GT = {Gt : t ∈ T },

a set of dependent distributions such that each Gt follows a DP marginally. The constructive

definition of the DP which expresses a realization G from a DP(α,G0) as a countable mix-

ture of point masses such that G =
∑∞

l=1 plδθl can be extended to model GT by introducing

dependence in the weights or the atoms.

The general formulation of the DDP introduced by MacEachern (2000) expresses

the atoms θl = {θl,t : t ∈ S}, l = 1, 2, . . . as i.i.d. sample paths from a stochastic process

over S, and the latent beta random variables which drive the weights, vl = {vl,t : t ∈

S}, l = 1, 2, . . . , as i.i.d. realizations from a stochastic process with beta(1, αt) marginal

distributions. The data could be indexed in time, space, or by a covariate, and S represents

the corresponding index set, often being R or Z+, the latter holding in our case. The
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DDP model for data indexed in discrete-time expresses Gt as
∑∞

l=1 pl,tδθl,t , for t ∈ T . The

locations θl = {θl,t : t ∈ T } are i.i.d. for l = 1, 2, . . . , from a time series model for the kernel

parameters. The stick-breaking weights pl = {pl,t : t ∈ T }, l = 1, 2, . . . , arise through a

latent time series with beta(1, αt) marginal distributions, independently of {θl}.

The general DDP can be simplified by introducing dependence only in the weights,

such that the atoms are not time dependent, or alternatively, the atoms can be time depen-

dent while the weights remain independent of time. We refer to these as common weights

(or single-p) and common atoms models, respectively. The most natural of the two simpli-

fications is to assume that the locations are constant over time, and introduce dependence

in the weights through dependent beta random variables, so that Gt =
∑∞

l=1 pl,tδθl with

θl
iid∼ G0 and p1,t = v1,t, pl,t = vl,t

∏l−1
r=1(1− vr,t), for l = 2, 3, . . . , with each {vl,t : t ∈ T } a

realization from a time series model with beta(1, α) marginals. Equivalently, we can write

p1,t = 1 − β1,t, pl,t = (1 − βl,t)
∏l−1
r=1 βr,t, for l = 2, 3, . . . , with each {βl,t : t ∈ T } a re-

alization from a time series model with beta(α, 1) marginals, which we will utilize. This

simplification is natural for time series data, as it assumes a set of atoms common to each

distribution, which are favored to different degrees at each time-point. In addition, intro-

ducing dependence in the atoms is not always straightforward, particularly if θl is of large

dimension.

There have been many variations of the DDP model proposed in the literature

since it was introduced. The common weights version was originally discussed (MacEach-

ern, 2000), in which a Gaussian process was used to generate dependent locations, with

the autocorrelation function controlling the degree to which distributions which are “close”
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are similar, and how quickly this similarity decays. De Iorio et al. (2004) consider also a

common weights model, in which the index of dependence is a covariate, a key applica-

tion of DDP models. In the order-based DDP of Griffin and Steel (2006), covariates are

used to sort the weights. Covariate dependence is incorporated in the weights in the ker-

nel and probit stick-breaking models of Dunson and Park (2008) and Chung and Dunson

(2011), respectively, however these are not DDP models, as they do not retain the DP

marginally. Gelfand et al. (2005) developed a DP mixture model for spatial data, using

a spatial Gaussian process to induce dependence in distributions indexed in space. For

data indexed in discrete-time, as in our setting, Rodriguez and ter Horst (2008) apply a

common weights model, with atoms arising from a dynamic linear model. Taddy (2010)

assumes the alternative simplification of the DDP, having common atoms, and models each

independent time series of stick-breaking proportions {vl,t : t ∈ T } using an autoregressive

beta stick-breaking process McKenzie (1985), which generates positively correlated beta

random variables. Nieto-Barajas et al. (2012) also use the common atoms simplification

of the DDP, modeling a time series of random distributions by linking the beta random

variables through latent binomially distributed random variables.

4.2 A Dependent Nonparametric Prior

To generate a correlated series (βl,1, . . . , βl,T ), we define a stochastic process

B =

{
βt = exp

(
−ζ

2 + η2
t

2α

)
: t ∈ T

}
, (4.1)

which is built from a standard normal random variable ζ and a stochastic process ηT

which has standard normal marginal distributions. This transformation leads to marginal
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distributions βt ∼ beta(α, 1) for any t. To see this, take two standard normal random

variables Y1 and Y2. Assuming Y1, Y2
ind.∼ N(0, 1) implies U = Y 2

1 +Y 2
2 ∼ χ2

2, or U ∼ exp(0.5).

Now, if W = 0.5U , then W ∼ exp(1). Finally, the transformation B = exp(−W/α)

yields f(b) = αbα−1, that is B ∼ beta(α, 1). Therefore, to have βt ∼ beta(α, 1), we need

ζ ∼ N(0, 1) and ηt ∼ N(0, 1).

Because we work with distributions indexed in discrete-time, we assume ηT to be

a first-order autoregressive (AR) process. The requirement of standard normal marginal

distributions on ηT leads to a restriction on the variance of the AR(1) model, such that

ηl,t ∼ N(φηl,t−1, 1 − φ2), t = 2, . . . , T . Thus |φ| < 1, which implies stationarity for the

stochastic process for ηT . The correlation in (βl,t, βl,t+k) is driven by the autocorrelation

present in ηT , and this induces dependence in the weights (pl,t, pl,t+k), which leads to

dependent distributions (Gt, Gt+k).

While the AR(1) process is the simplest and most natural choice for a discrete-time

index, higher-order AR processes may be preferred, though we note that the ηT process

is just contributing to the dependence in the stick-breaking random variables, which in

turn drives the dependence in the weights, and hence the distributions. For other settings

involving distributions indexed by a covariate or spatial location, alternative stochastic

processes can be chosen appropriately. For instance, a Gaussian process is a natural choice

for spatially-referenced data.
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4.2.1 Properties of the DDP Prior Model

Autocovariance of the Stochastic Process B

Let ρ(k) = corr(ηt, ηt+k), which is equal to φk under the assumption for of an

AR(1) process for η. The autocovariance function associated with B is

cov(βt, βt+k) =
α3/2(1− ρ2(k))1/2

(2 + α)1/2 ((1− ρ2(k) + α)2 − α2ρ2(k))1/2
− α2

(α+ 1)2
, (4.2)

as described in Appendix C.1.

This covariance function can be converted to a correlation function by dividing

(4.2) by var(βt) = α/((α+ 1)2(α+ 2)), giving

corr(βt, βt+k) =
α1/2(1− ρ2(k))1/2(α+ 1)2(α+ 2)1/2

((1− ρ2(k) + α)2 − α2ρ2(k))1/2
− α(α+ 2). (4.3)

This autocorrelation function is shown for k ranging from 1 to 50, at various values of

α assuming an AR(1) process for ηT in Figure 4.1. Smaller values for α lead to smaller

correlations for any fixed φ at a particular lag, and φ controls the strength of correlation,

with large φ producing large correlations which decay slowly. The parameters φ and α in

combination can lead to a wide range of correlations, however it is clear from the figures

that α ≥ 1 implies a lower bound near 0.5 on the correlation for any lag k.

We now turn to the limiting behavior of the autocorrelation function. Using (4.3),

the limα→0+ corr(βt, βt+k) is easily found to be 0. At the other extreme, consider the limiting

behavior as α→∞, which is tending towards 0.5 as ρ(k)→ 0+, and 1 as ρ(k)→ 1−, taking

values between 0.5 and 1 for intermediate values of ρ(k). Assuming ρ(k) = φk, gives

limφ→0+ corr(βt, βt+k) = α1/2(α + 1)(α + 2)1/2 − α(α + 2). This tends to 0.5 quickly as

α→∞. At the other extreme value of φ, we have limφ→1− corr(βt, βt+k) = 1.
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Figure 4.1: Autocorrelation function for B assuming ηT ∼AR(1), with values of φ of 0.99
(solid), 0.9 (dashed), 0.5 (dotted), and 0.3 (dashed/dotted).

Note that the covariance expressions are functions of ρ2(k) but not ρ(k), which is

to be expected since η2
t enters the expression for βt, and thus −ρ(k) and ρ(k) have the same

effect in the correlation. The same is true of the correlation in the DP weights, which is

derived below. We believe that φ ∈ (0, 1) is natural since we are trying to build a stochastic

process for distributions correlated in time through a transformation of an AR process,

which we expect should be positively correlated. However, all that is strictly required to

preserve the DP marginals is | φ |< 1.

Autocovariance of the DP Weights

Assume that the random distribution at time t is realized in the form Gt(·) =∑∞
l=1 pl,tδθl(·), where pl,t = (1 − βl,t)

∏l−1
k=1 βk,t, and βl = (βl,1, . . . , βl,T ) is generated by
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B, from an underlying AR(1) process for ηT with coefficient φ. Since each element of

βt = (β1,t, β2,t, . . . ) is i.i.d. beta(α, 1), marginally, Gt is distributed as DP(α,G0). The

expression for cov(pl,t, pl,t+1) is

{
α3/2(1− φ2)1/2

(2 + α)1/2((1− φ2 + α)2 − α2φ2)1/2

}l−1{
1− 2α

α+ 1
+

α3/2(1− φ2)1/2

(2 + α)1/2((1− φ2 + α)2 − α2φ2)1/2

}
−

α2l

(1 + α)2l+2
, (4.4)

as derived in Appendix C.2.

To obtain corr(pl,t, pl,t+1), we need var(pl,t) which is the same for every t, and

since βl,t is independent of βk,t, for k 6= l, we use the fact that for independent random

variables X1, . . . , Xn, var(
∏n
i=1Xi) =

∏n
i=1(var(Xi) + E2(Xi)) −

∏n
i=1 E2(Xi). Note that

var(βl,t) = var(1−βl,t) = α/((1+α)2(α+2)), E(βl,t) = α/(α+1), and E(1−βl,t) = 1/(α+1),

to get var(wl,t) = var((1− βl,t)
∏l−1
k=1 βk,t) =

(
α

(1 + α)2(2 + α)
+

1

(1 + α)2

)(
α

(1 + α)2(2 + α)
+

α2

(1 + α)2

)l−1
− α2l

(1 + α)2l+2
. (4.5)

The ratio of (4.4) to (4.5) provides corr(pl,t, pl,t+1), which is plotted for various values of

α and φ, over weight index l in Figure 4.2. A number of features of this plot can be noted.

First, as expected, larger values of φ near 1 lead to larger correlations for weights of any

lag. Second, the decay in correlations with weight index is faster for small α and small φ.

Numerical exploration suggests that as α→ 0+, corr(p1,t, p1,t+1)→ 1 for any value

of φ. However, the correlation in the second weight, corr(p2,t, p2,t+1), tends towards 0. For

very large α, the correlation is constant over weight index l, fixed at some value which is

an increasing function of φ, always larger than φ, and which does not go below 0.5. For

large α, as φ→ 0+, the correlation tends to 0.5, and as φ→ 1−, the correlation tends to 1.
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Figure 4.2: Each panel shows corr(pl,t, pl,t+1) for fixed α for four values of φ ranging from
0.99 (solid) to 0.3 (dashed/dotted) over weight index l running from 1 to 100.

Therefore, in the limit, as α→∞, corr(p1,t, p1,t+1) is contained in (0.5, 1).

While we focused only on consecutive weights, note that corr(pl,t, pl,t+k) has the

same expression as corr(pl,t, pl,t+k), with φ replaced by φk. Therefore, the limits in the

correlations of weights k time lags apart remain the same for any k as φ tends to 0 and 1,

or as α tends to 0. For large α, corrφ(p1,t, p1,t+k) = corrφk(p1,t, p1,t+1), and therefore the

lag k correlations also are between (0.5, 1), but decay with k.

Autocovariance of Consecutive Distributions

We obtain corr(Gt(A), Gt+1(A)) for two consecutive distributions Gt and Gt+1,

and a measurable subset A ⊂ R (details given in Appendix C.3). This has the expression:
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corr(Gt(A), Gt+1(A)) =
(α+ 1)(

∑∞
l=1 σl,lG0(A) +

∑
l 6=m σl,mG

2
0(A) +

∑∞
l=1

α2(l−1)

(1+α)2l
G0(A)(1−G0(A)))

G0(A)(1−G0(A))

=

∞∑
l=1

α2(l−1)

(1 + α)2l−1
+

(α+ 1)(
∑∞
l=1 σl,l +

∑
l 6=m σl,mG0(A))

1−G0(A)
, (4.6)

where σl,l is defined in equation (4.4), and σl,m = cov(pl,t, pl,t+1). Letting a = min(l,m)

and b = max(l,m), the expression for σl,m is

E (βj,tβj,t+1)
a−1

(
α

1 + α

)b−a−1{
α

1 + α
−
(

α

1 + α

)2

− E (βj,tβj,t+1) + E (βj,tβj,t+1)
α

1 + α

}
−

αl+m

(1 + α)
l+m+2

(4.7)

where E(βj,tβj,t+1) = α3/2(1−ρ2(1))1/2

(2+α)1/2((1−ρ2(1)+α)2−α2ρ2(1))1/2
, as described in Appendix C.1.

Stationarity

We find that the resulting stochastic process B which produces the stick-breaking

proportions is strongly stationary, using the fact that it is a transformation of a strongly

stationary process ηT . See Appendix C.4 for a discussion of how this can be shown.

Although the process generating the stick-breaking weights is stationary, the ran-

dom process G generates non-stationary time series. Assume observations Yt arise from Gt.

Marginalizing over G gives E(Yt) = E(G0) and var(Yt) = var(G0), the mean and variance

of the centering/base distribution G0. However, given Gt, E(Yt | Gt) =
∑∞

l=1 pl,tθl, and

var(Yt | Gt) =
∑∞

l=1 pl,tθ
2
l − (

∑∞
l=1 pl,tθl)

2. For two time points t and t+ k,

cov(Yt, Yt+k | Gt, Gt+k) =
∞∑
j=1

∞∑
l=1

pl,tpj,t+klθlθj −

( ∞∑
l=1

pl,tθl

) ∞∑
j=1

pj,t+kθj

 ,
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indicating the random process G generates non-stationary time series with non-constant

variance.

4.3 DDP Mixture Modeling for Density Estimation

4.3.1 Common Atoms DDP Hierarchical Model

Assume, at time t, there exist nt observations, denoted by {yt,i : i = 1, . . . , nt}. To

model the time-evolving distributions in a flexible way, while retaining some common be-

havior from one time to the next, we apply a common atoms DDP mixture model with trun-

cation. This expresses the distribution for data at time t as f(y;Gt) =
∫
k(y;θ)dGt(θ)≈∑N

l=1 pl,tk(y;θl), with k(·;θ) a kernel distribution having parameters θ.

Inference under this model requires updating the probabilities {pl,t}, or equiva-

lently the {βl,t}, which are defined through {ηl,t}, {ζl}, and α. A number of updating

schemes can be considered. The distribution f(β2, . . . , βT ) can not be built directly us-

ing
∏T
t=2 f(βt | βt−1), as there does not appear to be available a useful expression for

f(βt | βt−1). In designing an MCMC algorithm to learn the beta random variables {βl,t}, one

choice is to work with {βl,t} and {ηl,t}. In this case, we require f(βt | ηt, α), which has the

form f(βt | ηt, α) =
{

(21/2αβα−1
t exp(η2

t /2))/(π1/2(−2α log βt − η2
t )

1/2)
}

1(0,exp{−η2t /(2α)})(βt).

Alternatively, we can work with {ζl} and {ηl,t}, which, along with α, provide {βl,t}, and

hence {pl,t}. Assuming a normal kernel to model continuous observation vectors yt,i, and

introducing configuration variables L such that Lt,i = l if-f observation yt,i is assigned to

component l, for l = 1, . . . , N , the hierarchical model is:
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{yt,i} | {µl}, {Σl}, {Lt,i} ∼
T∏
t=1

nt∏
i=1

N(µLt,i
,ΣLt,i)

{Lt,i} | {βl,t} ∼
T∏
t=1

nt∏
i=1

{[
N−1∑
l=1

(1− βl,t)
l−1∏
r=1

βr,tδl(Lt,i)] +
N−1∏
r=1

βr,tδN (Lt,i)}

ζl
iid∼ N(0, 1), l = 1, . . . , N − 1

ηl,1
iid∼ N(0, 1), l = 1, . . . , N − 1

ηl,t | ηl,t−1, φ ∼ N(φηl,t−1, 1− φ2), l = 1, . . . , N − 1, t = 2, . . . , T

(µl,Σl) | ψ
iid∼ N(µ;m, V )IW(Σ; ν,D), l = 1, . . . , N, (4.8)

with priors on α, ψ, and φ. The parameters {ζl} and {ηl,t} can be updated individually

with slice samplers, which involves drawing alternatively from uniform random variables and

truncated normal random variables. The parameters α and φ, given priors IG(aα, bα), and

Uniform on (0, 1) or (−1, 1), respectively, can be sampled using a Metropolis-Hastings algo-

rithm. The configuration variables {Lt,i} and kernel parameters {µl,Σl} are common to DP

mixture models, and follow standard updates. Finally, the parameters ψ = (m, V,D) have

closed-form full conditional distributions, given normal, inverse-Wishart, and Wishart pri-

ors. The full conditionals and posterior simulation details are described in Appendix B.3.1.

Functionals for Density Estimation and Forecasting

First note that, for any time t = 1, . . . , T , and letting Θ denote all model param-

eters, the posterior predictive distribution for y0t, a new observation at time t, is given

by

p(y0t | data) =

∫
p(y0t | Θ)p(Θ | data)dΘ
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=

∫ ∫
p(y0t | {µl,Σl}, Lt0)p(Lt0 | Θ)p(Θ | data)dLt0dΘ

=

∫ N∑
l=1

pl,tN(y0t;µl,Σl)p(Θ | data)dΘ

= E(f(y0t;Gt) | data),

which can be evaluated for any y0t using Monte Carlo integration.

Now consider forecasting to the next time not contained in the data. This requires

samples for pT+1 = {pl,T+1}, for which we need samples for ηT+1 = {ηl,T+1}, in addition

to the posterior samples we already have. Then p(y0,T+1 | data) =

∫ ∫ N∑
l=1

pl,T+1N(y0,T+1;µl,Σl)

N−1∏
l=1

N(ηl,T+1;φηl,T , 1− φ2)p(Θ | data)dηT+1dΘ (4.9)

Each MCMC posterior sample for Θ can be used to draw a sample for ηT+1, and then

to calculate
∑N

l=1 pl,T+1N(y0,T+1;µl,Σl) for any y0,T+1, providing full inference for the

forecast at any y0,T+1.

Forecasting to later times, such as T + 2, requires samples for ηT+2, and hence

ηT+1 as well. The expression for p(y0,T+2 | data) follows from the one-step ahead forecast,

and inference can be obtained in a similar fashion.

Accommodating Missing Data

It is likely that in applications, there may be one or more years for which there is

no data, and such is the case with the data we will later study. We consider the situation

in which data is completely missing at some time or a set of time points. If a small number

of years are missing, we essentially have regularly spaced data, but there is a gap which we

must deal with since our model is for regularly spaced data.
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Let r represent the year(s) for which there is no data. The posterior distribution

for model parameters, conditioning on only the observed data, and integrating over the

missing data, leaves a joint posterior proportional to

{
∏
t6=r

nt∏
i=1

N(yt,i;µLt,i
,ΣLt,i)}{

∏
t6=r

nt∏
i=1

N∑
l=1

pl,tδl(Lt,i)}{
N−1∏
l=1

N(ζl; 0, 1)}

{
N−1∏
l=1

N(ηl,1; 0, 1)}{
T∏
t=2

N−1∏
l=1

N(ηl,t;φηl,t−1, 1−φ2)}{
N∏
l=1

N(µl;m, V )IW(Σl; ν,D)}p(α,ψ, φ).

(4.10)

There are a few changes in the posterior full conditionals, in particular the full

conditionals for ηl,r are now missing the contributions from the second line of the model for

Lr,i, having only the contributions from the AR model:

p(ηl,r | . . . ,data) ∝ N

(
ηl,r;

φ(ηl,r−1 + ηl,r+1)

1 + φ2
,
1− φ2

1 + φ2

)
.

The full conditionals for {ζl} and α reflect the lack of data at r as well. Since posterior

samples are obtained for all ηl,t, even at t = r, posterior inference is still available for

f(y0,r;Gr) at missing time points r.

Data Examples

Various simplifications of the model were tested for purposes of code debugging,

and the full model was also applied to simulated data which corresponded to a similar

scenario to that assumed in the hierarchical model. In all cases, the posterior density

estimates were observed to be capturing the truth well, with more uncertainty associated

with smaller sample sizes. As α → 0+, a single normal distribution holds, being the same

at any time t. Prior specification for the DP mixture hyperpriors may therefore follow a
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standard default specification strategy in which we use a rough measure of the center and

range of the data to scale the mixture component appropriately.

Simulated data from a mixture of normals with time-varying locations At each

time point assume a mixture of three normals with constant weights and locations which

depend on time. In particular, assume a 3 component mixture with weights (0.3, 0.2, 0.5),

locations µl,t, and variances (6, 2, 3) not dependent on time. The locations µl,t, l = 1, 2, 3,

are assumed to follow an AR(1) model with AR coefficients 1, 0.7, and −0.5, and innovation

variances equal to 1. This is a mixture autoregressive model, which is a special case of a

Markov switching AR model (Früwirth-Schnatter, 2006) with transition matrix having all

rows equal to the weight distribution (0.3, 0.2, 0.5), and is closer to a common weights DDP

model, the alternative simplification of the DDP, than our model.

A histogram of the data at each time point is shown in Figure 4.3, along with

the posterior mean and 95% intervals estimates. The model appears to be doing a very

good job of estimating these densities, even though the data was simulated from a model

with time-varying locations and constant weights, a scenario which is not contained in our

model.

Simulated data from a skew-normal distribution In this example, data was simu-

lated from a skew-normal (SN) distribution with time-varying parameters. The SN distribu-

tion has density function f(y) = 2φ{(y− ξ)/ω}Φ{α(y− ξ)/ω}, with ξ a location parameter,

α a shape parameter, and ω a scale parameter. The parameters of the SN distribution at

time t are ξt, ωt, and αt, for t = 1, . . . , T = 18. We assume αt = 10t/(T−1)+5−10T/(T−1),
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Figure 4.3: Constant weights simulation. Posterior mean and 95% interval estimates for
f(y0t;G) (black) compared to a histogram of the data and the true densities (blue).

99



that is α has a linear trend with skewness ranging from −5 at time t = 1 to 5 at t = T ,

meaning the distributions will be left-skewed early on, and right-skewed later on. The scale

parameter is given a quadratic trend ωt = 0.2t2 − 0.2tT + 20, which has larger values for

time points near the beginning and end of the time series, and smaller values for time points

near the middle. Finally, the location parameter ξ is given a periodic trend, using the model

ξt = 10 cos(πt/4) + εt with εt ∼ N(0, 1).

This produces a time series of 18 densities which begin left-skewed with large

variance, become symmetric with smaller variance, and finally become right-skewed with

increasing variance. The model is first fit to the entire set of data (results not shown because

they are indistinguishable from those shown next). Next, the observations at time t = 13 are

removed, and the model is applied using the missing data techniques previously described.

Density estimates for all years are shown in Figure 4.4, including year 13, for which there

is no data (the figure still shows the data which was present at this year before becoming

missing). Notice that there is more uncertainty present at year 13 than in other years, as

there should be, however the point estimate is capturing the location of the missing data

fairly well, and may indicate some slight right skewness, which is in fact present in the

model which generated the data at this time point, with skewness parameter α13 = 2.06.

Forecasting Results The forecast distribution can be obtained using (4.9). The results

obtained in various settings combined with further exploration suggests that this simplified

DDP prior which incorporates dependence only in the weights is not sufficient for forecasting

in all settings. Due to the nature of this model, if the shape or location of the modes of the

distributions are changing over time, some normal components will be present at a particular
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Figure 4.4: SN with missing year simulation. Posterior mean and 95% interval estimates for
f(y0t;G) (black) compared to a histogram of the data and data-generating densities (red).
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time point that are not needed, hence they receive a weight close to zero. For example, in

the SN simulation, the distributions are changing drastically from the first year to the last

year in terms of their support. The model is able to accommodate this heterogeneity in

shape and location of distributions by using enough components to produce any of these

distributions, and at a particular time adjusting the weights according to which components

are favored.

However, when taken to the next time point for which there is no data, new weights

are generated at each location assuming ηl,T+1 ∼ N(φηl,T , 1− φ2), and pl,T+1 is calculated

using the ζl, which are common to each time, and the time-specific draws for ηl,T+1. The

newly generated weights therefore should be similar to those at pl,T , however the degree of

similarity depends on φ (with φ values closer to 1 producing more similarity), and the value

of ηl,T . What enters into the calculation of the weights is not ηl,t, but | ηl,t |, and | ηl,t+1 |

is on average larger than | ηl,t | when | ηl,t | is near zero, and on average smaller than | ηl,t |

when | ηl,t | is large, being exactly equal to | ηl,t | in expectation for any value of φ when

| ηl,t |=
√

2/π. This leads to very large proportions 1 − βl,T at time T being smaller at

T + 1, and very small proportions 1 − βl,T being larger. In general, this leads to weights

at time T + 1 which are somewhat similar to those at time T , but the very small weights

at time T are often larger at T + 1, and the very large weights at time T are often smaller

at T + 1. Because the components of the mixture are placed all over the support of the

entire set of T densities, this behavior may produce forecasted distributions which are not

as similar to the last time points as they probably should be.

This behavior is reflected in the forecasts produced for the simulated data. In
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the first example involving a mixture of normals with time-varying weights and constant

locations, the forecast was similar to that at time T , with the very peaked modes at T

being slightly less so at T + 1, and having wider uncertainty bands. In the SN simulation,

the forecasted distribution is fairly symmetric, and places positive probability over the

entire region supported by the set of distributions. This behavior is not what would be

expected given the distributions at the last few time points, which do not place much

weight on negative values, and are right-skewed. However, the combination of the process

which generates {pl,T+1} and the nature of the common atoms DDP model leads to weights

which are larger than zero placed at components centered on negative values, creating a

fairly symmetric distribution covering the entire region between approximately −30 and

40. When the model is applied to only the last 5 years of data, a right-skewed distribution

similar to that present at T is produced for the forecast. The forecasted distribution from

the common weights simulation has a mean very similar to that at the previous time-point,

and makes sense given the time series of densities. Forecasting is successful in these two

settings because the support of the distributions is not changing to the degree that the SN

densities were.

4.3.2 Extension to a More General DDP Model

The common atoms DDP performs well in density estimation, however it does

not always forecast densities which are similar to only the most recent time points, often

producing predictions which are somewhat of an average of the entire time-series of densities.

In light of these results, we seek a variation of the current model with an eye towards

forecasting. There are a number of extensions to the model which can be considered.
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Staying in the realm of a common atoms DDP, the time series model for the {ηl,t} random

variables, which is now assumed an AR(1), could be replaced with any time series model

having standard normal marginal distributions. The most natural extension would be to

use a higher-order AR model, however, this does not appear to solve the issues present in

forecasting when the distributions change support significantly over time. The obvious way

to control this, it seems, is to make the atoms of the DP also time-dependent, in addition

to the weights, so that Gt =
∑∞

l=1 pl,tδθl,t . The simplest extension that should achieve the

necessary flexibility in forecasting is to make the means of the atoms time-dependent, and

keep the covariance parameters constant in time. A vector autoregressive model of order 1,

VAR(1), assumed for µl,1, . . . ,µl,T , has the form µl,t | µl,t−1,Θ,m, V ∼ N(m+Θµl,t−1, V ),

where Θ and V are, in general, full matrices. This gives rise to the stationary distribution

having mean (I−Θ)−1m, and covariance matrix C where C solves the equation C−ΘCΘT =

V . The analytic solution to this equation is given by vec(C) = (I −Θ⊗Θ)−1vec(V ), where

the operator vec(A) stacks the columns of the matrix A. Since the stationary distribution

for the VAR(1) is not convenient to work with, we assume a prior µl,1 ∼ N(m0, V0),

l = 1, . . . , N . All but the last line of the hierarchical model in (4.8) still holds, but the rest

of the model is completed as follows:

µl,1 |m0, V0 ∼ N(m0, V0), l = 1, . . . , N

µl,t | µl,t−1,Θ,m, V ∼ N(m+ Θµl,t−1, V ), l = 1, . . . , N, t = 2, . . . , T

Σl | ν,D
iid∼ IW(Σl; ν,D), l = 1, . . . , N (4.11)

with priors on α, φ, Θ, and ψ = (m, V,D).
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The full conditionals for {ηl,t}, {ζl}, φ, α and D are the same in this model. As

before, Lt,i is drawn from the discrete distribution on {1, . . . , N}, but now with probabilities

proportional to pl,tN(yt,i;µl,t,Σl) for l = 1, . . . , N , i.e., µl,t replaces µl. The update for

Σl is also changed to reflect the time-dependence in the atoms, being IW(ν + Ml, D +∑
{(t,i):Lti=l}(yt,i − µl,t)(yt,i − µl,t)

T ), where Ml =| {t, i} : Lt,i = l |. The updates for the

remaining parameters in this model are provided in Appendix B.3.2.

The matrix Θ, if left a full matrix, seems difficult to work with. A VAR(1) process

is stable if the polynomial | I − Θu | has no roots within or on the complex unit circle.

A VAR process is stationary if its mean and covariance functions are time-invariant, and

stability is a sufficient condition for stationarity of a VAR. Due to the complex form for the

stable region of Θ, common prior choices are noninformative, and do not have support on

only the stable region.

The simplifying assumption that Θ is diagonal with elements θ1, . . . , θd implies

that each element of µl,t has a mean which depends on only the corresponding element of

µl,t−1 and not the other elements, which seems reasonable for most applications. In this case,

individual Uniform priors on (0, 1) or (−1, 1) can be used for each θi, and the full conditional

for θ1, . . . , θd is p(θ1, . . . , θd | . . . ,data) ∝
∏L
l=1

∏T
t=2 N(µl,t;m+ Θµl,t−1, V )

∏d
i=1 1(a,1)(θi),

where a is either 0 or −1. The individual θi elements can be updated with a Metropolis-

Hastings algorithm, or the parameters (θ1, . . . , θd) can be updated jointly, using a proposal

distribution which is a multivariate normal distribution on the logit scale.

A further possible assumption is that V is diagonal, in which case µl,1 can be

started from the stationary distribution, in which case the VAR(1) is just a set of d AR(1)
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models: µl,1,i | mi, Vi, θi ∼ N( mi
1−θi ,

Vi
1−θ2i

) and µl,t,i | µl,t−1,i, θi,mi, Vi ∼ N(mi+θiµl,t−1,i, Vi),

for i = 1, . . . , d. However, the V matrix being diagonal implies independence in the elements

of µl,t, which is probably more restrictive than is realistic. We therefore advocate for a full

covariance matrix V .

For prior specification of the hyperparameters, we use the limiting result that as

α → 0+ and θ → 0, the model for Y t, the random variable at time t, is N(µt,Σ), with

µt ∼ N(m, V ). Therefore, the marginal prior moments E(Y t) and Cov(Y t) are the same

for any t = 2, . . . , T , and these expressions can be set to a global (over all t) mean and

covariance estimate based on the range and center of the data, as was done in the previous

version of the model. It remains to specify only m0 and V0, the mean and covariance

for the initial distributions µl,1. We propose a fairly conservative specification, noting

that in the limit, E(Y 1) = m0, and Cov(Y 1) = aDBD(ν − d − 1)−1 + V0. Therefore,

m0 can be set to the mean or midrange of the data at t = 1, and V0 can be set to

diag((r1
1/4)2, . . . , (r1

d/4)2) − aDBD(ν − d − 1)−1, where r1 indicates the range vector at

t = 1.

Implementation in the Skew-Normal Setting

For univariate data yt,i, the stationary distribution for the AR(1) process is easily

available. We use this and assume µl,1 | m, v, θ ∼ N(m/(1− θ), v/(1− θ2)), where variance

v replaces the covariance matrix V . In the example which follows, the choice of Uniform

priors on (−1, 1) or (0, 1) for θ and φ did not affect the results, as these parameters each

had posterior distributions which were concentrated far away from 0, centered on values of

0.86 and 0.78.
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This model produces a series of density estimates which look almost identical to

those produced from the simpler common atoms model. Forecasting involves generating new

means at time T + 1 in addition to new weights, which can be accomplished by drawing

µl,T+1 ∼ N(m+ θµl,T , v) using the posterior samples for θ,m, µl,T , and v. The forecasting

distribution is displayed in Figure 4.5 along with the densities from the last 5 years of data.

Looking closely at the means µl,t and weights wl,t produced by this model at T versus T +1

suggests a larger degree of similarity than in the model with common atoms (Figure 4.6),

which may be surprising since, intuitively, restricting the locations to be the same at each

time should lead to more similarities across time. Figure 4.6 plots the posterior means for

{µl} on the x-axis, and the corresponding posterior means for {pl,T } (black) and forecasted

weights {pl,T+1} (blue) on the y-axis. It can be seen from this plot that for the common

weights model (left), the small weights at time T associated with µl,T < 0 are estimated

to be quite a bit larger at T + 1, and some of the larger weights take on smaller values at

T + 1, producing a fairly symmetric forecasting distribution with left tail extending much

farther into negative values than is suggested by the trend in the data. The right figure

gives the equivalent inference from the more general model, in which µl,T+1 6= µl,T . It is

clear that more similarity is present for f(y0,T+1;GT+1) and f(y0,T ;GT ) under the general

DDP model. Note that the same number of effective components are present at time T and

T + 1 under this model, and their locations and weights match up fairly well. The main

differences are the slightly smaller weights at T + 1 for the smallest and largest (effective)

µ values near 7 and 30, and the slightly larger weights near the center, which produces a

fairly symmetric forecasting distribution.
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Figure 4.5: SN simulation. Inference from general DDP model. Posterior mean and 95%
interval estimates for f(y0,T+1;G), the forecasting distribution, compared with the last 5
years of data.
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DDP model (right). The posterior mean weights are plotted on the x-axis and the posterior
mean weights pl,T (black) and mean forecasting weights pl,T+1 (blue) on the y-axis.
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Figure 4.7: SN simulation with data at t = 2 missing. Mean and 95% interval estimates
from the common atoms model (top) versus general DDP model (bottom) for the densities
at t = 1, 2, 3, in which the data at t = 2 was missing.

Missing data can be taken into account using this model in the same way as

discussed for the simpler model. Note that, since the normal locations now also depend on

time, the update for µl,r is the same update that occurs for µl,t when Ml,t = 0. The model

is applied to the SN example with year 13 missing, which produced the inferences under the

common atoms model shown in Figure 4.4. The estimates for the missing year distribution,

f(y0,13;G), are much smoother under the general model, and the tails of the distribution

do not extend out as far as under the common atoms DDP.

The models are also applied with year 2 missing, which is a more interesting

scenario since the data is more significantly skewed at t = 1 and t = 3. The distributions

for the first 3 years, including the missing year 2, are shown in Figure 4.7. The first row

corresponds to the simpler model. The general model is definitely performing better, with
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a point estimate that approximates the distribution of missing data fairly well, exhibiting

a small amount of left-skewness.

4.4 Modeling Dynamic Regressions

4.4.1 Continuous Response Variable

We now extend the model for density estimation of univariate random variables

{Yt} to a model for regression of continuous random variables {Zt} on covariates {Xt}. We

focus our attention on the more general model with weights and atoms which are indexed

by time. The DDP mixture model is applied to estimate ft(z,x), using ft(z,x;Gt), t =

1, . . . , T , and the output of the MCMC can be used to obtain inference for the conditional

distribution ft(z | x;Gt) = ft(z,x;Gt)/ft(x;Gt). The model was first tested on data which

was produced by simulating from the model, and in all cases was able to identify very well

the locations and weights (of the non-negligible components) of the data-generating mixture.

The results did suggest some difficulty in learning θ, φ, and ψ, which were estimated very

well in some simulations and not as well in others. In the cases with poorer estimation,

the posterior distributions for θ and φ were certainly identifying the correct region of the

intervals (0, 1) or (−1, 1), however the estimation was better for the means and weights,

even though θ, φ, and ψ appear in the time series models for these parameters.

Skew-Normal Conditional Densities

Bivariate data (z, x)t,i, with T = 12 and nt = 200 for all t was simulated in the

following way. First, xt,i ∼ N(5t, 302), so that the series of distributions are normal with
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increasing means. Then, zt,i was simulated from a SN distribution with time and covariate-

dependent locations ξt, and time-dependent skewness and scale parameters αt and ωt. In

particular, zt,i | xt,i ∼ SN(ξt,i, ωt, αt), with ξt,i = at + btx
2
t,i, where at is a linear function of

t such that a1 = −80 and aT = 80, and bt begins negative at −0.03, and ends at 0.03, being

nondecreasing. The other parameters ωt and αt have quadratic and linear trends as in the

SN simulation for univariate density estimation.

The posterior mean estimates for the bivariate surfaces ft(z, x;Gt) are shown with

the data overlaid in Figure 4.8. As implied by these figures, the marginals ft(x;Gt) and

ft(z;Gt) are also well-captured, being symmetric for Xt and moving from left-skewed to

right-skewed for Zt. The expectation of Zt over the covariate Xt is shown at each time in

Figure 4.9, displaying quadratic trends of various forms at early and later time points.

Forecasts for fT+1(x;GT+1), fT+1(z;GT+1), and ET+1(Z | X;GT+1) are displayed

in Figure 4.10. Since Xt is normal with mean having a parametric trend and constant

variance, the true fT+1(x) is available to compare with the forecast. This is shown in red,

and the distribution fT (x) is also included in blue. The marginal distribution for ZT+1 is

not available analytically, but samples can be obtained by drawing an xT+1 from the normal

distribution at time T + 1, and sampling zT+1 | xT+1 from a SN distribution with location

ξT+1 a function of xT+1, and parameters αT+1 and ωT+1 calculated from their parametric

functions. The estimate fT+1(z;GT+1) is right-skewed, and closely approximates fT (z;GT ),

but does not quite capture the true distribution for Z at a future time point in which all

parameters continue to evolve parametrically. The estimates for ET+1(Z | X;GT+1) are

compared with ET (Z | X;GT+1) (blue) and ET+1(Z | X;GT+1) (red).
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Conditional densities ft(z | x;Gt) are estimated at fixed covariate values of x =

−20, 0, and 40, and at time points t = 2, 4, 8, and 10, and compared with the actual

SN densities ft(z | x) in Figure 4.11. The forecast distribution fT+1(z | x;GT+1) is also

obtained at each covariate value.

Mixture of Normals with Time-dependent Weights and Means

Assume data is generated from a mixture of three normal distributions with

weights and means that depend on time, varying parametrically. In particular, let p1,t =

0.4 | sin(t/3) |, p2,t = 0.6 | sin(t/7) |, for t = 1, . . . , T − 1, p1,T = 0, p2,T = 1, and

let p3,t = 1 − p1,t − p2,t for each t. The mean vectors µl,t are given parametric trends:

µ1,t = (15, 28 + t), µ2,t = (10 + 0.7t, 35 + t), and µ3,t = (10 + 0.7t, 20 + t). Bivariate data

vectors (zt,i, xt,i) are generated according to the mixture
∑3

l=1 pl,tN(µl,t,Wl), for t = 1, . . . , 9

and i = 1, . . . , 100, with W1 uncorrelated, W2 negatively correlated, and W3 positively cor-

related. This leads to a diverse set of conditional expectations Et(Z | X), containing both

linear and nonlinear trends.

The model captures well the densities ft(x), which range from unimodal to multi-

modal, shown in Figure 4.12. A range of trends are present in the conditional expectations

Et(Z | X), including linear (both increasing and decreasing) and quadratic trends, with a

dipping behavior in the center of the peak of the quadratic function at moderate to later

times. The mean and 95% interval estimates from the model are compared with the truth

and the data in Figure 4.13. In all cases, the point estimates contain the truth, and the

model appears to be doing particularly well in capturing the complex forms present near

t = 7, both in terms of the point estimates and the interval bands.
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Figure 4.8: SN regression example. Mean estimates for ft(z, x;Gt), t = 1, . . . , 12, with the
data overlaid as small points.
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Figure 4.9: SN regression example. Mean and 95% interval estimates for Et(Z | X;Gt).
The truth is shown in red.
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Figure 4.10: SN regression example. Mean and 95% interval estimates for forecasting
distributions fT+1(x;GT+1) (truth in red, fT (x) in blue), fT+1(z;GT+1) (truth in red,
fT (z) in blue), and ET+1(Z | X;GT+1) (truth in red, ET (Z | X) in blue).

4.4.2 Dynamic Ordinal Regressions

To accommodate ordinal responses, we add an additional level to the hierarchical

model in which ordinal responses Y arise from latent continuous responses Z, such that

Yt,i = j iff Zt,i ∈ (γj−1, γj ], for j = 1, . . . , C, with γ0 = −∞ and γC = ∞. Then, the DDP

mixture model is applied to estimate ft(z,x). Now, zt,i is unobserved and must be updated

in the MCMC with a truncated normal distribution lying on the interval (γyt,i−1, γyt,i ],

with mean µzLt,i,t
+ Σzx

Lt,i
(Σxx

Lt,i
)−1(xt,i−µxLt,i,t

) and variance Σzz
Lt,i
−Σzx

Lt,i
(Σxx

Lt,i
)−1Σxz

Lt,i
. The

ordinal regression functions have the form

Prt(Y = j | x;Gt) =

N∑
r=1

πr,t(x)

{
Φ

(
γj −mr,t(x)

sr

)
− Φ

(
γj−1 −mr,t(x)

sr

)}
(4.12)

with πr,t(x) ∝ pr,tN(x;µxr,t,Σ
xx
r ), mr,t(x) = µzr,t + Σzx

r (Σxx
r )−1(x − µxr,t) and s2

r = Σzz
r −

Σzx
r (Σxx

r )−1Σxz
r .
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Figure 4.11: SN regression example. Inference for ft(z | x;Gt) for x = −20, 0, and 40 (by
column) and at t = 2, 4, 8, 10, and T + 1 = 13 (by row). Mean (solid) and 95% interval
estimates (dashed) are compared with the truth (red) in each case.
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Figure 4.12: Mixture of normals regression example. Mean (solid) and 95% interval esti-
mates (dashed) for the marginal distributions ft(x;Gt). The data is given as a histogram
and the density which generated it shown in red.
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timates (dashed) for the conditional expectations Et(Z | X;Gt). The data is also shown
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Ordinal Responses from a Conditional Skew-Normal Distribution

Ordinal responses {yt,i} with C = 3 categories are generated from the SN responses

{zt,i} (obtained in the first example of Section 4.4.1), using cut-offs of γ1 = 0 and γ2 = 80.

Note that the ordinal regression estimates from the model fit to data (Y,X) can be compared

to the equivalent functional from the model which is applied to (Z,X), which can be used

as a benchmark, representing the best possible inference that may be obtained under the

ordinal model. This expression has the same form, since Pr(Y = j | x) = Pr(γj−1 < Z ≤

γj | x). For this simulation, we also know the truth, which is Prt(γj−1 < Z ≤ γj | x) =

FSN(γj ; ξt, ωt, αt)−FSN (γj−1; ξt, ωt, αt), where FSN denotes the CDF of the SN distribution.

The true data-generating probability functions are compared with the mean and

95% interval estimates from the model fit to {(z, x)t,i} and the model for ordinal regression.

Figure 4.14 illustrates these regression curves at t = 2, 8, and 12, time points which are

representative of the different types of behavior observed in these trends, as well as the

forecasts for time 13. The point estimates for Prt(γj−1 < Z ≤ γj | x) are extremely similar to

the estimates for the ordinal regression curves Prt(Y = j | x), and any differences that occur

are very subtle. The interval bands from the ordinal regression model are slightly wider in

some places than those from the model for density estimation. Overall, the similarity in

the ordinal regressions and their proxies from the model which observes z is clear, and the

DDP regression models seem to be capturing the truth well.
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Figure 4.14: Ordinal SN conditional densities regression example. Posterior mean (black)
and 95% interval estimates (gray shaded regions) for Prt(γj−1 < Z ≤ γj | x) (left column)
and Prt(Y = j | x) (right column), for j = 1, 2, 3, compared to the truth (red). Category 1
is indicated by a solid line, category 2 by a dashed line, and category 3 by a dotted line.
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Ordinal Responses Generated by Parametric Mixtures of Normals

The second simulation setting in Section 4.4.1 was extended to generate ordinal

responses Y ∈ {1, 2, 3} using cut-off points of γ1 = 12 and γ2 = 14. The DDP models are

fit to the data (Y,X) and (Z,X), producing inferences which are shown for t = 1, 2, 7, and

9 in Figure 4.15 and compared to the truth. The curves are more linear at t = 1, favoring

category 1 with decreasing probability as X increases, and at t = 9, favoring category 3 with

decreasing probability. The intermediate time points are of similar forms, having quadratic

shapes, favoring category 1 near the boundaries in X and category 3 for moderate X. The

model which observes Z is doing better in some places, such as when t = 9, however the

model which sees only Y is performing very well in capturing the nonlinear shapes which

are present, for example at t = 7. The model is even estimating the slight dip in the

peak of the quadratic trend for Prt(Y = 3 | x) which is present at t = 7. The interval

estimates produced when the discretized ordinal variable is treated as the response are

wider in essentially all places as compared to the corresponding inference from the model

which sees the continuous version.

4.5 Concluding Remarks

In this chapter, we set out to develop a DDP prior model for ordinal regressions

indexed in time. We began with a simplification of the DDP, in which only the probabilities

are time-dependent. This model appeared to be very successful in density estimation,

however, further exploration suggested that its ability to forecast was not so strong, as a

consequence of the common atoms restriction, which may lead to atoms being present in
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Figure 4.15: Discretized mixture of normals regression example. Posterior mean (black)
and 95% interval estimates (gray shaded regions) for Prt(γj−1 < Z ≤ γj | x) (left column)
and Prt(Y = j | x) (right column), for j = 1, 2, 3, compared to the truth (red). Category 1
is indicated by a solid line, category 2 by a dashed line, and category 3 by a dotted line.
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regions where there is no data at a particular time. Because forecasting is an important

aspect of modeling for time series, and in particular, we require estimation for densities at

years of the time series for which there is no data, we move to a more general model, in

which the atoms are also time-dependent. While we did not consider the alternative DDP

simplification, one future area of research which could be interesting would involve formal

study and comparison of the common weights and common atoms DDP models. Under

what settings does the common weights model yield superior inference, and vice versa?

The simulation settings of this chapter were all developed for a purpose, beginning

with those used to test the models for density estimation. For example, the simulation

involving time-dependent atoms and constant probabilities revealed that the common atoms

model was able to capture densities which were generated from a scenario closer to the

common weights model. The simulation involving SN densities represented an interesting

but also realistic scenario, in which fairly standard densities exist at each time, smoothly

evolving from left to right-skewed, and in terms of scale and location. The simulation studies

of Section 4.3.1 were then extended to test the model for regression, and finally for ordinal

regression.

Having tested the model extensively on simulated data, we are confident in its

power to uncover the truth in complex scenarios. Next, we move in Chapter 5 to real

data illustrations, focusing first on a case study involving data on rockfish, which contains

temporal structure. Chapter 5 also contains an example, involving Citigroup stock data, to

indicate other settings in which these methods may be utilized.
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Chapter 5

Applications of Temporal Ordinal

Regression Methods

5.1 Estimating Maturity of Rockfish

The problem of modeling maturity as a function of age or length is extremely

important in fisheries science, as estimates of age at maturity play a large role in population

model estimates of sustainable harvest rates (Clark, 1991; Hannah et al., 2009). Virtually

all methods for studying maturity as a function of age or length use logistic regression

or some variant. Hannah et al. (2009) use logistic regression with a single covariate to

study the proportion of fish mature by length and age separately for female Cabezon and

yelloweye rockfish. Bobko and Berkeley (2004) also collapsed maturity into just two levels

and applied logistic regression with length as a covariate, combining data on female black

rockfish collected from November through March of three consecutive years. To obtain age
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at 50% maturity, they used their estimate for length at 50% maturity and solved for the

corresponding age given by the von Bertalanffy growth curve. Morgan and Hoenig (1997)

discuss how estimates of proportion mature at a particular age are often flawed because the

length-distribution at a given age is not taken into account, that is it is often assume that

maturity is independent of length after conditioning on age. Their method to account for

length weights observations of a given age differently depending on length class (an interval

of lengths), and they apply a probit regression to model maturity over age.

Our modeling framework can be used to study time-evolving relationships between

maturation, length, and age. It is well-suited to this problem, as these three variables

constitute a random vector, and although maturity is recorded on an ordinal scale, it is

truly continuous. The ability of our approach to treat the covariates and response jointly as

random variables, handle multiple ordinal maturation categories, provide flexible inference

for a variety of functionals involving maturity and covariate measurements, and incorporate

time-dependence distinguishes it from the standard approaches. These features are viewed

as strengths and attributes, but also imply that we must be somewhat careful in interpreting

results, and realize that although the benefits are numerous, there are some limitations

inherent in this approach.

One possible price to be paid for the flexibility afforded by this approach is that we

can not incorporate monotonicity restrictions without substantially altering the modeling

framework. From a biological point of view, we expect the larger or older the fish, the

smaller the probability it is immature, hence monotonically decreasing (increasing) proba-

bility curves associated with the level immature (mature). Our approach is in contrast to
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more standard techniques such as logistic regression, which force these probability curves

to be increasing or decreasing. We must also be careful with extrapolation, as the flexibility

of the model may lead to unrealistic behavior outside of the range of the data. In previous

simulations we observed that the model could uncover smooth, monotonic trends if they

were present, and we will see for this example, that it is retaining reasonable levels of mono-

tonicity, even though there is nothing to force or encourage this behavior. The model is

capturing the trends suggested by the data, which often fit with what we expect or believe

to be true biologically, but not always.

5.1.1 Description of the Data and Preliminary Results

Before delving into analysis, we discuss the data and the assumptions we make

about it. The data on female Chilipepper rockfish that we will analyze consists of date

of sampling, age recorded in years, length in millimeters, and maturity recorded on an

ordinal scale from 1 to 6, representing immature (1), early and late vitellogenesis (2, 3),

eyed larvae (4), and post-spawning (5, 6) (data obtained courtesy of Steve Munch, NOAA,

SWFSC, FED). Because we are not necessarily interested in differentiating between every

one of these maturity levels, and to make the model output simple and more interpretable,

we collapse maturity into 3 ordinal levels, representing immature (1), pre-spawning mature

(2, 3, 4), and post-spawning mature (5, 6).

Many observations have age missing or maturity recorded as unknown. Exploratory

analysis suggests there to be no systematic pattern in missingness, for example the length

distribution using only the complete data looks identical to the length distribution using

the data which has missing values for age and/or maturity. Further discussion with fisheries
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research scientists at NOAA having expertise in aging of rockfish and data collection (Don

Pearson, NOAA, SWFSC, FED) revealed that the reason for missing age in a sample is

that otoliths were not collected or have not yet been aged. Maturity may be recorded as

unknown because it can be difficult to distinguish between stages, and samplers are told

to record unknown unless they are reasonably sure of the stage. Therefore, there is no

systematic reason that age or maturity is not present, and it is reasonable to assume that

the data are missing at random, or that the probability an observation is missing does not

depend on the missing values, allowing us to ignore the missing-data mechanism, and base

inferences only on the complete data.

The months of December-February are the interesting ones biologically, since this

is the time that Chilipepper rockfish spawn, and the various levels of maturity are all present

during these months. Considering complete observations of maturity, length, and age from

these winter months, with year as an index of dependence, observations occur in years 1993-

2007, with no observations in 2003, 2005, or 2006. The approach to handling data for which

entire years are missing (as described in Section 4.3.1) must be applied. If age is treated

as a continuous covariate, so that X represents (length, age), we run into problems, as the

model places one mixture component centered at each discrete value of age, with a variance

component which approaches zero; that is the model places a point mass at each value of

age. Computational problems arise very quickly in the MCMC from attempting to invert

singular matrices. Clearly, treating age as continuous is not appropriate here, as there are

only around 25 distinct values of age in over 2, 200 observations.

Age is in fact an ordinal random variable, such that a recorded age j implies the
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fish was between j and j + 1 years of age. This relationship between discrete recorded

age and continuous age is obtained by the following reasoning. Chilipepper rockfish are

winter spawning, so they are assumed to be born on January 1. The annuli (rings) of the

otiliths (ear stones) are counted in order to determine age, and these also form sometime

around January. Thus, for each ring, there has been one year of growth. While it may seem

strange at first that there is not a single 0 recorded for age, this is because these “young

of the year” are very small and extremely unlikely to be caught by a fishery except for a

few unusual species, of which Chilipepper is not one (personal communication with Alec

MacCall, NOAA, SWFSC, FED).

We therefore treat age much in the same way as maturity. Let U represent observed

ordinal age, let U∗ represent underlying continuous age, and assume, for j = 1, 2, . . . , that

U = j iff U∗ ∈ (j, j+1]. We can equivalently say that U = j iff log(U∗) ∈ (log(j), log(j+1)],

for j = 1, 2, . . . , and U = 0 iff log(U∗) ∈ (−∞, 0], so that the support of the latent

continuous random variable corresponding to age is R. Letting W be the latent continuous

random vector which determines U through discretization, we assume ut,i = j iff wt,i ∈

(log(j), log(j + 1)], for j = 0, 1, . . . , so that W is interpretable as log-age on a continuous

scale. Assuming Z represents maturity on a continuous scale, and X represents length,

the DDP mixture model is then applied to the trivariate continuous vector {(z, w, x)t,i},

t = 1, . . . , 15, i = 1, . . . , n15.

The distributions for length display a range of unimodal and skewed, as well as

nonstandard shapes, and are shown for 6 years in Figure 5.1. The 95% posterior interval

estimates reflect the different sample sizes in these years; in 1994 there are 271 observations,
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Figure 5.1: Fish maturity example. Posterior mean and 95% interval estimates for the
distribution of length in millimeters across 6 years, with the data shown as a histogram.

whereas in 2000 and 2004 there are only 64 and 37 observations, respectively. One attractive

feature of our model is that inference is obtained over age on a continuous scale. The

distribution of log-age is given by ft(w;Gt), which at a particular value w0, can be divided

by exp(w0) to obtain the corresponding density estimate at age u∗0 = exp(w0). These

densities are shown in Figure 5.2 for the same years as length. The year 2002 favors the

particular age of 3, and 2004 favors age 5.

The posterior mean surface for the bivariate distributions of age and length are

shown in Figure 5.3 for all time points. An ellipse with a slight “banana” shape appears

at each year, though some nonstandard features and differences across years are present.

Picture a line or curve going through the center of these distributions, representing Et(X |

U∗ = u∗;Gt), which is obtained at a particular u∗ by evaluating Et(X | W = w;Gt) =
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Figure 5.2: Fish maturity example. Posterior mean and 95% interval estimates for the
distribution of age on a continuous scale across 6 years, with the data shown as a histogram.

∑N
l=1 πl,t(µ

x
l + Σxw

l (Σww
l )−1(w − µwl )) with πl,t ∝ pl,tN(w;µwl ,Σ

ww
l ) at w = log(u∗), for

which we show posterior mean and 95% interval bands for 3 years in Figure 5.4. These

are analogous to the von Bertalanffy growth curves used to obtain length-at-age (shown in

red). While the von Bertalanffy growth equation is a particular function of age and three

parameters (estimated here using nonlinear least squares), our model is simply estimating

the joint distribution of length and age, which implies the form of length as a function of age.

These curves happen to be very similar to the von Bertalanffy growth curves, with slight

differences, for instance in 2002. Note that our approach yields uncertainty quantification

in the growth curves, while the usual technique of obtaining point estimates of parameters

and plugging in these estimates to obtain a fitted growth curve does not allow for this.

This seems an important distinction, as the attainment of unique growth curves by group
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Figure 5.3: Fish maturity example. Posterior mean estimates for the distribution of age
and length (mm) across all years.

131



5 10 15

20
0

30
0

40
0

50
0

t=1993

age

le
ng
th

5 10 15
20
0

30
0

40
0

50
0

t=2000

age

le
ng
th

5 10 15

20
0

30
0

40
0

50
0

t=2002

age

le
ng
th

Figure 5.4: Fish maturity example. Posterior mean and 95% interval estimates for Et(X |
U∗ = u∗;Gt), evaluated for a grid of values u∗, or the expected value of length over age,
compared the the von Bertalanffy growth curves (red) with the data overlaid.

(i.e. by location or cohort) are often used to suggest that the groups differ in some way,

however this type of analysis should appropriately take into account the uncertainty in the

estimated curves.

Referring again to Figure 5.3, note that there is actually no data in 2003, 2005,

or 2006, and the model places more smooth, standard shapes for the distributions in those

years, as it should. The distribution in 2002 appears to extend down farther to smaller ages

and lengths; in fact this year is unique in that all of the age 1 fish are present in this year

(9 of them). In addition, 26 out of 34 of the age 2 fish and 83 out of 118 of the age 3 fish

are contained in this year. That is, this year contains a very large proportion of the young

fish which are present in the data.

The last year 2007, in addition to containing few observations, is peculiar. There

are no fish that are younger than age 6 in this year. Of the 5 age 6 fish, 3 are immature,

and of the 7 age 7 fish, all are immature. From this point on, the proportion of immature
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fish decreases quickly. In all years combined, less than 10% of age 6 as well as age 7 fish

are immature. This year is clearly an anomaly. Is there really some change point at which

fish are suddenly maturing much later? Or is this an error on the part of the person who

determined and recorded age and maturity at this time? As there are no observations in

2005 or 2006, and a small number of observations in 2007 which seem to not agree with the

other years of data, we now report inferences only up to 2004.

5.1.2 Results for Functionals Involving Maturity

Inference for the maturation probability curves is shown over length and age in

Figures 5.5 and 5.6. The probability that a fish is immature (solid black line) is generally

decreasing over length, reaching a value near 0 at around 350 mm in most years. There is a

large change in this probability over length in 2002 and 2004 as compared to other years, as

these years suggest a probability close to 1 for very small fish near 200 to 250 mm. Turning

to age, the probability of immaturity is also decreasing with age, also showing differences in

2002 and 2004 in comparison to other years. There is not an indication of a general trend

in the probabilities associated with levels 2 or 3. Years 1995-1997 and 1999 display similar

behavior, with a peak in probability of post-spawning for moderate length values near 350

mm, and ages 6-7, favoring pre-spawning fish at other lengths and ages. The last four years

2001-2004 suggest the probability of pre-spawning mature to be increasing with length up

to a point and then leveling off, while post-spawning is favored most for large fish. Post-

spawning appears to have a lower probability than pre-spawning mature for any age at all

years, with the exception of 1998, for which the probability associated with post-spawning

is very high for older fish.
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The Pacific States Marine Fisheries Commission states that all Chilipepper rockfish

are mature at around 4-5 years, and at size 304 to 330 mm. A stock assessment produced by

the Pacific Fishery Management Council (Field, 2009) fitted a logistic regression to model

maturity over length, from which it appears that 90% of fish are mature around 300-350

mm. As our model does not enforce monotonicity on the probability of maturity across

age, we obtain posterior distributions for the first age not less than 2 (since biologically

all fish under 2 should be immature) at which the probability of maturity exceeds 90%,

given that it exceeds 90% at some point. That is, for each posterior sample we evaluate

Prt(Y > 1 | u∗;Gt) over a grid in u∗ beginning at 2 and find the smallest value of u∗ at

which this probability exceeds 90%. Note that there were very few posterior samples for

which this probability did not exceed 90% for any age, namely just 4 samples in 1993 and

8 in 2003. The estimates for age at 90% maturity are shown in Figure 5.7. The most

noticeable feature is the very narrow interval bands in 2002. Recall that this year contained

an abnormally large number of young fish. In this year, over half of fish age 2 (meaning

age 2-3) are immature, and over 90% of age 3 (meaning age 3-4) fish are mature, so we

would expect the age at 90% maturity to be above 3 but less than 4, which it is. The early

and later years seem to be suggesting that fish are maturing later than in the intermediate

years, the trend having somewhat of a bathtub shape, with the exception of 1998 which is

placed on somewhat higher ages. A similar analysis is performed for length, and suggests a

similar trend over time as the age analysis.

Due to the monotonicity in the maturity probability curve in standard approaches,

and the fact that age and length are not viewed as random variables, the point at which
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Figure 5.5: Fish maturity example. Posterior mean (black lines) and 95% interval esti-
mates (gray shaded regions) for the marginal ordinal probability curves associated with
length. Category 1 (immature) given by solid line, category 2 (mature) given by dashed,
and category 3 (post-spawning) shown as a dotted line.

135



5 10 15

0.
0
0.
4
0.
8

t=1993

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=1994

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=1995

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=1996

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=1997

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=1998

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=1999

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=2000

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=2001

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=2002

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=2003

age

pr
t (
y|
u*
)

5 10 15

0.
0
0.
4
0.
8

t=2004

age

pr
t (
y|
u*
)

Figure 5.6: Fish maturity example. Posterior mean (black lines) and 95% interval estimates
(gray shaded regions) for the marginal ordinal probability curves associated with age. Cat-
egory 1 (immature) given by solid line, category 2 (mature) given by dashed, and category
3 (post-spawning) shown as a dotted line.
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Figure 5.7: Fish maturity example. Posterior mean and 90% intervals for the smallest value
of age above 2 years at which probability of maturity first exceeds 90% (left), and similar
inference for length (right). Refer to Section 5.1.2 for details.

maturity exceeds a certain probability is a reasonable quantity to obtain in order to study

the age or length at which most fish are mature. However, since we are treating age and

length as random variables, we can actually obtain their distribution at a given maturity

level. These are inverse inferences, in which we study ft(x | Y = 1;Gt) as opposed to

Prt(Y = 1 | x;Gt), for instance. It is most informative to look at age and length for

immature fish, as this makes it clear at which age or length there is essentially no probability

assigned to the immature category. The posterior mean for ft(u
∗, x | Y = 1;Gt) is shown in

Figure 5.8. These can be compared to the bivariate distributions for age and length which

closely resemble ft(u
∗, x | Y > 1;Gt), since most fish are mature.

5.1.3 Model Checking

We now seek to validate our model, by studying how well it fits the observed

data, as well as how it performs in terms of prediction. Two methods of model checking
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Figure 5.8: Fish maturity example. Posterior mean estimate for the distribution of age and
length for immature fish over time, with the age and length of immature fish overlaid.
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are performed, one which involves applying the model to a reduced data set and obtaining

Bayesian residuals for the observations that were left out. The second approach involves

posterior predictive checking, in which we generate replicate data sets from the predictive

distribution and compare these to the real data, using various test quantities.

To analyze residuals with cross-validation, we randomly select 20% of the obser-

vations in each year and refit the model, leaving out these observations. The inferences

obtained for the ordinal regressions and density estimates (not shown) appear unchanged

from those based on the complete data. We now obtain residuals for each observation

(ỹ, ũ, x̃) which was left out. The residuals we consider are of the form ỹt,i − Et(Y | U =

ũt,i, X = x̃t,i;Gt), so that there is one residual for each MCMC posterior sample. Note

that the residuals are bounded by −2 and 2, and the closer to 0 the better, although the

residual will often not be right near 0, as, for ỹ = 1 or ỹ = 3, this can only happen if the

model assigns a probability of exactly 1 to the particular category. The residuals for ỹ = 1

will always be negative, while those for ỹ = 3 will be positive, and since there are relatively

few 1s, we do not expect to see very many negative residuals. The posterior mean and 95%

interval estimates for the residuals are shown for each time, ordered by covariate (age is first

ordered followed by length), in Figure 5.9. The reason why there appear to be two or three

distinct ranges in residuals at each time is due to the discrete nature of the responses. That

is, for two covariate values close together, the model assigns approximately the same expec-

tation, but if one of those observations is 1 and the other is 2, the residuals will differ by

approximately 1. There does not appear to be any sort of trend in residuals across covariate

values, meaning we are not systematically under or overestimating maturity for fish of a
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particular covariate size. All years look roughly similar in terms of the types of residuals

we see, with any noticeable differences due to the differences in number of observations left

out or number of residuals (determined by sample size in each particular year).

Next, we study how well the model fits the observed data by creating replicate data

sets from the posterior predictive distribution. Using the output from the model applied

to the full data set, we simulate replicate data sets, (y, u, x)rept,i , t = 1, . . . , 12, i = 1, . . . , nt,

for each MCMC iteration. We then choose some test quantity T ({y, u, x}t), t = 1, . . . , 12,

and for each replicate data set, determine the value of the test quantity and compare the

distribution of test quantities with the value computed from the real data set. To obtain

Figure 5.10 we computed, for each replicate sample, the proportion of age 6 fish that were of

maturity levels 1 and 2. Boxplots of these proportions are shown, with the true proportions

in the real data set indicated as blue points. The width of each box is proportional to the

number of age 6 fish in that year. Figure 5.11 refers to fish of at least age 7 and longer than

400 mm. Finally, we compute the sample correlation of length and age for fish of maturity

level 2 in Figure 5.12. These figures all suggest that the model is predicting data which is

very similar to the observed data in terms of inferences we really care about.

For comparison, we also fitted the simpler common atoms DDP model to the data,

and computed the predictive criterion of Gelfand and Ghosh (1998), used earlier in Section

2.3.2, which is composed of a sum of squares goodness of fit term, and sum of predictive

variances penalty term. The goodness of fit term at time t is given by
∑nt

i=1(yt,i − Et(Y |

U = ut,i, X = xt,i; data))2, and the penalty term is
∑nt

i=1(Et(Y
2 | U = ut,i, X = xt,i; data)−
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Figure 5.9: Fish maturity example. Posterior mean and 95% intervals for the cross-
validation residuals, ordered by covariate values.
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Figure 5.10: Fish maturity example. Distributions of the proportion of age 4 fish that were
of maturity level 1 (left) and 2 (right) in the replicated data sets are shown as boxplots,
with width proportional to the number of age 6 fish in each year. The true proportion in
the real data set is given as a blue circle.
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Figure 5.11: Fish maturity example. Distributions of the proportion of fish age 7 and above
and length larger than 400 mm that were of maturity level 1 (left) and 2 (right) in the
replicated data sets are shown as boxplots, with width proportional to the number fish of
this age and length in each year. The true proportion in the real data set is given as a blue
circle.
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Figure 5.12: Fish maturity example. Distributions of the sample correlation of fish that
were of maturity level 2 in the replicated data sets are shown as boxplots, with width
proportional to the number of level 2 fish in each year. The sample correlation present in
the real data set is given as a blue circle.

E2
t (Y | U = ut,i, X = xt,i; data)). Letting Θ denote all model parameters,

Et(Y | U = ut,i, X = xt,i; data) =

∫ ∫
ypt(y, ui, xi | Θ)p(Θ | data)dΘdy∫
pt(ui, xi | Θ)p(Θ | data)dΘ

,

where pt(ui, xi | Θ) is
∑N

l=1 pl,tN(xi;µ
x
l,t,Σ

xx
l )
∫ log(ui+1)

log(ui)
N(w; El,t(W | X = xi),Varl(W |

X = xi))dw, and El,t(W | X = xi) ≡ El(W | X = xi) under the common atoms model.

The term pt(y, ui, xi | Θ) has a similar form, but with a double integral over z and w,

and
∫
ypt(y, ui, xi | Θ)dy =

∑3
j=1 jpt(y, ui, xi | Θ). The numerator and denominator can

therefore each be evaluated via Monte Carlo integration of these expressions. The penalty

term requires Et(Y
2 | U = ut,i, X = xt,i; data), for which the numerator requires Monte

Carlo integration of
∑3

j=1 j
2pt(y, ui, xi | Θ). The goodness of fit and penalty term are

computed for each year, and we find that the goodness of fit term is lower under the general

model at every time point, although by a small amount. The penalty terms show larger
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differences, and are lower under the general model for all years except 1996, 2005, and

2007. This suggests that the general model is providing a better fit to the data with less

uncertainty, except in the few cases in which the posterior predictive variance is larger

under the more complex model. Overall, the general model is preferred to the common

atoms model using this criterion, which confirms our earlier conclusions based on simulated

data.

5.2 Modeling Stock Price Changes over Time

Before 1997, all stocks traded on the New York Stock Exchange were priced in

eighths. In 1997, they moved to pricing in sixteenths, and are now using a decimal system.

There has been some discussion by the Securities and Exchange Commission (SEC) of bring-

ing back the fractional pricing on stocks (for a recent report by the SEC on the effects of deci-

malization, see http://www.sec.gov/news/studies/2012/decimalization-072012.pdf),

and corporate bonds still trade in eighths. In analyzing price changes of stocks which are

traded in fractions, it is not adequate to treat the price changes as continuous, particularly if

the range of changes is not too large. Müller and Czado (2009) and others referenced therein

argue that the possible returns occur in clusters which are well separated due to the small

range of price changes, and therefore the data must be modeled using a discrete-response

model. Their ordinal-response stochastic volatility model assumes a latent continuous time

series in which each latent response is normal with mean linear on the covariates and log-

variances (log-volatilities) forming an AR(1) process. Most analyses of stock returns or

price changes use time series models in which one observation exists at each point in time,
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however our model requires replication, being appropriate only for settings in which multiple

observations occur at each point in time.

The focus of this example is to model the price changes of Citigroup stock. Cit-

igroup is an American financial services corporation. It has the largest financial services

network in the world and is the third largest bank holding company in the US. We focus

on the time period of 12 years from 1980 to 1991, considering each year to be one period

in time, and weekly price changes to be observations within each time period, resulting in

approximately 52 observations per year. The log-volume of trades in each week is used as

a covariate. This data is publicly available, obtained here from Yahoo Finance. A quick

look at the data shows weekly price changes occur in multiples of $0.125, as expected. For

ease of interpretation of results, we collapse levels of return into 7 ordered categories, rep-

resenting “large negative” (1), “moderate negative” (2), “small negative” (3), “insignificant

change” (4), “small positive” (5), “moderate positive” (6), and “large positive” (7). We

define price change (in absolute value) of greater than $2.50 as large, greater than $1.25

but not greater than $2.50 as moderate, greater than $0.25 but not greater than $1.25

as small, and less than or equal to $0.25 as insignificant. This results in proportions of

(0.08, 0.11, 0.20, 0.20, 0.19, 0.12, 0.12) assigned to each level, so that a large negative change

is the least likely outcome, and small or no change are equally most likely.

The recession of the early 1980s had a severe effect on financial institutions, and in

1987 the stock market crashed in what is known as Black Monday. On average, the returns

from 1985 and 1991 are focused on relatively higher values, and those from 1987 on lower

values. In most years, the distribution of ordinal returns is roughly symmetric, favoring
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moderate values, however some years show different patterns, favoring extreme values (as

in 1987) or a particular value (5 is favored in 1985) with higher probability. The years 1988,

1990, and 1991 show more uniform behavior across values. Exploratory analysis of return

versus volume suggests that return does not necessarily increase or decrease with volume,

but that the potential for extreme losses or gains may increase with volume. This has been

suggested by others, and is not surprising since positive or negative news about a company

generally leads to more trading action.

The distributions of log-volume suggest an increasing trend in volume over time,

with some right-skewness for some years, and differences in standard deviations or peaks

(being more peaked at later time points, and less in 1981-1985). The posterior mean for

each ordinal return level over log-volume is shown in Figure 5.13 over time. Blue indicates

a positive return, black a negative, and red insignificant change. The dotted lines represent

extreme changes, dashed lines represent moderate changes, and solid lines represent small

changes. In most years, there appears to be a decreasing trend over log-volume for levels

3, 4, 5, those indicating small changes (solid lines), and an increasing trend for level 1 or 7

or both (dotted lines). The trends in 1981-1985 are fairly similar, having high probability

associated with little or no change, except for large volume, for which the probability of a

large positive change increases and becomes large. In 1986, a large positive return is very

likely when log-volume is moderate to large, a similar pattern to that observed in 1991. In

1987, the year of the stock market crash, we see that for the first time, the probability of

a large negative return is most likely for low to moderate volume. In fact, the three most

likely outcomes when volume is low to moderate involve negative return. Interestingly, for
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large volume the probability of a large positive return becomes most likely.

For the extreme levels 1 and 7, corresponding to large losses and gains, we show

the posterior mean along with 95% interval bands (Figures 5.14 and 5.15). It is clear that

the probability of a large negative return is significantly higher overall in 1987, and fairly

high in 1990 compared to other years, and that the uncertainty is larger in 1987 and later

than in earlier years. The probability associated with a large positive gain is generally

increasing with volume, and takes on fairly high values for any volume in 1991.

Inference for the probability allocated to each ordinal level over time, Prt(Y =

j;Gt), is shown in Figure 5.16. These are consistent with the earlier description of the

distributions of returns in the data, favoring small changes in price early on. The proba-

bilities are fairly uniform across values in 1986 but favor more large positive returns, and a

significant increase in probability of large negative returns is seen in 1987. In 1988-1990 the

probabilities are again fairly uniform across values, and in 1991 the large positive return

has the highest probability.

Qualitative conclusions may be drawn from this analysis. It appears that extreme

changes in price are more likely when volume is high. The years 1980-1985 were not asso-

ciated with large gains or losses, and were therefore not risky years for investors, whereas

the years 1986-1991 were much more volatile, producing large positive losses or gains with

higher probability. The year 1987 was not a good year for this stock, it contained many

extreme losses, but also extreme gains, hence it was very volatile.
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Figure 5.13: Citigroup example. Posterior mean estimates for Prt(y = j | x;Gt), for
j = 1, . . . , 7. Blue indicates a positive return, black a negative, and red little/no change.
The dotted lines represent extreme changes, dashed represents moderate changes, and solid
represents small changes.
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Figure 5.14: Citigroup example. Posterior mean and 95% interval estimates for Prt(y = 1 |
x;Gt), or the probability of a large negative return.
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Figure 5.15: Citigroup example. Posterior mean and 95% interval estimates for Prt(y = 7 |
x;Gt), or the probability of a large positive return.
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Figure 5.16: Citigroup example. Posterior mean and 95% interval estimates for Prt(y = j |
Gt), for j = 1, . . . , 7.
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5.3 Comments

The methods for dynamic ordinal regression, developed in Chapter 4 and elab-

orated in this chapter through specific data examples, are widely applicable to modeling

mixed ordinal-continuous distributions indexed in discrete-time. The ordinal regression

model at any particular point in time is flexible, as the DP mixture representation is re-

tained for the latent response-covariate distribution, as studied in Chapter 3. This means

that our approach can provide flexible inference for multiple functionals of the response-

covariate distribution. However, we can not force relationships such as monotonicity in

the regression functions without substantial changes in the modeling framework from the

start. We see this as an attribute in most settings. Nevertheless, in situations in which it

is believed that monotonicity exists, we must realize that the data will dominate the model

output, and may not produce strictly monotonic relationships.

In the fish maturity example considered in Section 5.1, it is scientifically accepted

that monotonicity exists in the relationship between maturity and age or length. Although

our model does not force this, the inferences generally agree with what is expected to be

true biologically. Our model is also extremely relevant to this setting, as the covariates

age and length are treated as random, and the ordinal nature of age is accounted for by

the model using variables which represent underlying continuous age. The set of inferences

that are provided under this framework, including estimates for length as a function of

maturity, which is comparable to a growth curve, make this modeling approach powerful

for the particular application considered, as well as related problems.

While year of sampling was considered to be the index of dependence in this
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analysis, an alternative is to consider cohort as an index of dependence. All fish born in the

same year, or the same age in a given year, represent one cohort. Grouping fish by cohort

rather than year of record should lead to more homogeneity within a group, however there

are also some possible issues since fish will generally be younger as cohort index increases.

This is a consequence of having a particular set of years for which data is collected, i.e., the

cohort of fish born in 2006 can not be older than 4 if data collection stopped in 2009. Due

to complications such as these, combined with exploration of the data and the relationships

implied within each cohort, we decided to treat year of data collection as the index of

dependence, but cohort indexing could be explored further. There are also other possible

changes that may be made in this analysis, such as collapsing maturity in a different way,

or considering each of the 6 levels of maturity to be distinct.

We also provided an illustration using Citigroup stock data in Section 5.2, to

indicate the potential for utility of our methods for problems in econometrics. There are a

large number of econometric time series models which are built to handle features such as

stochastic volatility, in which the variance of a process is non-constant over time. While the

dynamic ordinal regressions model is not a time series model, it can be used when multiple

observations exist at each point in time, accommodating nonstandard features across time,

such as differences in variance, as well as within a particular point in time.
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Chapter 6

Conclusions

To conclude this dissertation, we discuss some extensions of the proposed meth-

ods. We began the thesis by stating that our focus was on regression involving ordered

categorical responses. While this is an accurate claim, we note that it is possible to extend

the methods to settings containing multivariate mixed ordinal-continuous responses. The

models for ordinal regression were developed to handle ordinal responses and continuous co-

variates, as well as ordinal covariates, through use of a multivariate normal mixture kernel.

It can therefore also handle mixed ordinal-continuous responses, with continuous and/or

ordinal covariates. For any combination of ordinal and continuous variables, the mixture of

multivariate normals model can be applied to the joint distribution of the latent continuous

variables and the truly continuous variables. The distinction between the responses and

covariates comes into play later, when producing conditional inferences.

A number of applications which were considered here mainly as illustrations could

be expanded. One is the fish maturity example, in which certain aspects of the analysis
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could be performed differently, as already discussed in Section 5.3. While time was the focus

of dependence here, similar applications may instead contain a spatial index. To incorporate

dependence across spatial locations, or sites, a spatial model could be introduced in place of

the time series model for the atoms of the DP (Gelfand et al., 2005), and the weights could

either be assumed constant in space, or dependence introduced by a spatial model (Duan

et al., 2007). At any particular location, the ordinal regression model induced through

a dependent mixture of multivariate normal kernels retains the same form as under the

time-dependent setting. To account for space when there exist few spatial locations, such

as “northern” and “southern” port complexes in the fish maturity data, a dependent DP

prior may be assigned to the finite collection of mixing distributions, say Gn and Gs in the

setting mentioned, in similar spirit to the methods of De Iorio et al. (2004) or Teh et al.

(2006).

The model for ordinal regression was applied to a data set of multirater agreement

in Section 3.3.5. As most of the existing methods for quantifying agreement among raters

are restrictive in terms of incorporating covariate information and dependence between

raters, the nonparametric multivariate ordinal regression model has potential for utility in

this setting. However, more thought is needed in terms of determining an effective way of

measuring agreement between raters. In addition, if obtaining an overall underlying score

for each subject is a key component of inference, the model as it stands must be tailored to

provide estimation for the intrinsic subject-specific score.

We mention throughout the thesis that our methods accommodate interactions

between covariates in a natural way, through the joint modeling framework. A question
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remains on how to quantify those interactions. In the ozone data example of Section 3.3.2,

we proposed using standard decompositions from sensitivity analysis to determine the pair-

wise interactions. It remains to be determined whether this technique, when applied to the

deterministic function which is an expectation of the latent response, allows for estimation

of the magnitude of the interactions, or only the sign. Further study in the ordinal response

setting, as well as with a continuous response, may indicate if this decomposition is an ap-

propriate method for studying interactions among covariates when Bayesian nonparametric

curve fitting models are applied.

This dissertation provides a collection of flexible modeling and inference methods

for a variety of problems in ordinal regression. We take a Bayesian nonparametric approach,

using existing prior models and developing a new DDP prior for distributions indexed in

discrete-time. Our impetus for performing Bayesian nonparametric curve fitting regression

lies in the significant attributes afforded by this approach in terms of flexibility, uncer-

tainty quantification, the treatment of covariates, and accommodation of dependence. The

methodology contained in this thesis has a very wide scope, being applicable to a number

of data analysis problems, as indicated by the examples drawn from the social sciences,

econometrics, and especially, the biological and environmental sciences.
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Appendix A

Theoretical Results

A.1 Identifiability Results

A.1.1 Proof of Lemma 1

Recall the kernel distribution in (2.3) for which we wish to prove that parameters

(µx, µz,Σxx,Σzx) are identifiable, fixing Σzz = 1. Assume that

k(y,x;µx1 , µ
z
1,Σ

xx
1 ,Σzx

1 ) = k(y,x;µx2 , µ
z
2,Σ

xx
2 ,Σzx

2 ). (A.1)

If this implies (µx1 , µ
z
1,Σ

xx
1 ,Σzx

1 ) = (µx2 , µ
z
2,Σ

xx
2 ,Σzx

2 ), then (µx, µz,Σxx,Σzx) are identifiable.

From (A.1), it must be the case that Np(x;µx1 ,Σ
xx
1 ) = Np(x;µx2 ,Σ

xx
2 ). This follows

from summing each side of (A.1) over the two possible values of y. Because the mean vector

and covariance matrix are identifiable for the multivariate normal likelihood, it can be

concluded that µx1 = µx2 , and Σxx
1 = Σxx

2 . Now, after this simplification, each side of the

equality in (A.1) consists of a Bernoulli distribution for k(y | x), and since y is either 0

or 1, the corresponding Bernoulli probabilities must be equal. Since Φ is a monotonically
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increasing function of its argument, the arguments of Φ are equal, that is,

µz1 + Σzx
1 (Σxx)−1(x− µx)

(1− Σzx
1 (Σxx)−1(Σzx

1 )T )1/2
=

µz2 + Σzx
2 (Σxx)−1(x− µx)

(1− Σzx
2 (Σxx)−1(Σzx

2 )T )1/2
.

This can be written in the form aTx+ b = 0, and in order for this to be true for all x, each

element of vector a must be 0, and scalar b must be 0. The two equations a = 0 and b = 0

require

Σzx
1

(1− Σzx
1 (Σxx)−1(Σzx

1 )T )1/2
=

Σzx
2

(1− Σzx
2 (Σxx)−1(Σzx

2 )T )1/2
(A.2)

µz1 − Σzx
1 (Σxx)−1µx

(1− Σzx
1 (Σxx)−1(Σzx

1 )T )1/2
=

µz2 − Σzx
2 (Σxx)−1µx

(1− Σzx
2 (Σxx)−1(Σzx

2 )T )1/2
(A.3)

Using (A.2), (A.3) can be replaced by µz1Σzx
2 = µz2Σzx

1 . Writing these two equations

component-wise, and letting Σzx
ji denote element i of the vector Σzx

j , results in two sys-

tems of p equations:

(Σzx
1i )2

1− Σzx
1 (Σxx)−1(Σzx

1 )T
=

(Σzx
2i )2

1− Σzx
2 (Σxx)−1(Σzx

2 )T
, i = 1, ..., p (A.4)

µz1Σzx
2i = µz2Σzx

1i , i = 1, ..., p (A.5)

When p = 1 such that Σzx is a scalar, (A.4) becomes | Σzx
1 |=| Σzx

2 |, which has

only the solution Σzx
1 = Σzx

2 , since Σzx
1 = −Σzx

2 would violate (A.2). Then from (A.5) we

conclude µz1 = µz2.

In general, with p covariates, (A.4) can be written as

(Σzx
1i )2−(Σzx

1i )2
p∑

k=1

p∑
j=1

Σzx
2jΣzx

2k(Σxx)−1
jk = (Σzx

2i )2−(Σzx
2i )2

p∑
k=1

p∑
j=1

Σzx
1jΣzx

1k(Σxx)−1
jk , i = 1, ..., p

Because (A.5) implies Σzx
1l Σzx

2m = Σzx
1mΣzx

2l for any l,m = 1, ..., p, the equation reduces to

(Σzx
1i )2 = (Σzx

2i )2. The constraint Σzx
1l Σzx

2m = Σzx
1mΣzx

2l leaves only Σzx
1 = −Σzx

2 and Σzx
1 = Σzx

2
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as possible solutions. The first can be eliminated as well, since this contradicts (A.2). This

leaves as the only feasible solution Σzx
1 = Σzx

2 , which implies µz1 = µz2 from (A.5).

It has been shown that if k(y,x;µx1 , µ
z
1,Σ

xx
1 ,Σzx

1 ) = k(y,x;µx2 , µ
z
2,Σ

xx
2 ,Σzx

2 ), then

this implies (µx1 , µ
z
1,Σ

xx
1 ,Σzx

1 ) = (µx2 , µ
z
2,Σ

xx
2 ,Σzx

2 ). Therefore, applying directly the defini-

tion, the parameters (µx, µz,Σxx,Σzx) are identifiable in the kernel of the mixture.

A.1.2 Proof of Lemma 3

Here we show that the parameters in the kernel of the induced model for mixed

ordinal-continuous (y,x) with fixed cut-offs are identifiable, as stated in Section 3.2.2. We

use the definition of likelihood identifiability, setting

k(y,x;µ1,Σ1) = k(y,x;µ2,Σ2), (A.6)

for arbitrary (y,x) such that yi ∈ {1, . . . , Ci} and x ∈ Rp. If this implies µ1 = µ2 and

Σ1 = Σ2, then the kernel is identifiable.

For observed y such that yj ∈ {1, . . . , Cj} with Cj > 2, for all j = 1, . . . , k,

k(y,x;µ,Σ) is expressed as
∫ γk,yk
γk,yk−1

· · ·
∫ γ1,y1
γ1,y1−1

N(z,x;µ,Σ)dz1 . . . dzk. As a consequence of

(A.6), we have that N(x;µx1 ,Σ
xx
1 ) = N(x;µx2 ,Σ

xx
2 ), for all x ∈ Rp, and therefore µx1 = µx2 ,

and Σxx
1 = Σxx

2 .

It also must be the case that for each j = 1, . . . , k, k(yj | x;µ1,Σ1) = k(yj |

x;µ2,Σ2), for any yj ∈ {1, . . . , Cj}. That is,

Φ

(
γj,l − µ

zj
1 − Σ

zjx
1 (Σxx)−1(x− µx)

(Σ
zjzj
1 − Σ

zjx
1 (Σxx)−1Σ

xzj
1 )1/2

)
= Φ

(
γj,l − µ

zj
2 − Σ

zjx
2 (Σxx)−1(x− µx)

(Σ
zjzj
2 − Σ

zjx
2 (Σxx)−1Σ

xzj
2 )1/2

)
, (A.7)

for l = 1, . . . , Cj − 1.
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For (A.7) to be true for any x, it must be that

Σ
zjx
1

(Σ
zjzj
1 − Σ

zjx
1 (Σxx)−1Σ

xzj
1 )1/2

=
Σ
zjx
2

(Σ
zjzj
2 − Σ

zjx
2 (Σxx)−1Σ

xzj
2 )1/2

, (A.8)

and

γj,l − µ
zj
1

(Σ
zjzj
1 − Σ

zjx
1 (Σxx)−1Σ

xzj
1 )1/2

=
γj,l − µ

zj
2

(Σ
zjzj
2 − Σ

zjx
2 (Σxx)−1Σ

xzj
2 )1/2

, (A.9)

for l = 1, . . . , Cj − 1. Using (A.8), (A.9) becomes (γj,l − µ
zj
1 )Σ

zjx
2 = (γj,l − µ

zj
2 )Σ

zjx
1 , and

working with 2 of these Cj − 1 equations, the system has the solution Σ
zjx
1 = Σ

zjx
2 . Then

from (A.9), µ
zj
1 = µ

zj
2 , and from (A.8), Σ

zjzj
1 = Σ

zjzj
2 .

Notice that we required 2 of the Cj − 1 equations of the form (A.9) to arrive at

this solution. Therefore, if Cj = 2 for some j, we are unable to identify all free parameters

Σzjzj , µzj ,Σzjx, which we have identified if Cj > 2. In this case, fix Σzjzj , and then µzj and

Σzjx are identifiable, as in Appendix A.1.1. Although we do not require free cut-offs here

due to the flexibility provided by the mixture, if Cj > 3, the cut-offs γj,3, . . . , γj,Cj−1 are

also identifiable, if treated as parameters.

Finally, (A.6) implies k(yj , yj′ ;µ1,Σ1) = k(yj , yj′ ;µ2,Σ2), for j, j′ ∈ {1, . . . , k},

j 6= j′. Because identifiability has already been established for all parameters except Σzjzj′ ,

this implies that, for any yj ∈ {1, . . . , Cj} and yj′ ∈ {1, . . . , Cj′},

∫ γj′,yj′

γj′,yj′−1

∫ γj,yj

γj,yj−1

N

(zj , zj′)
T ; (µzj , µzj′ )T ,

 Σzjzj Σ
zizj′
1

Σ
zizj′
1 Σzj′zj′


 dzjdzj′ =

∫ γj′,yj′

γj′,yj′−1

∫ γj,yj

γj,yj−1

N

(zj , zj′)
T ; (µzj , µzj′ )T ,

 Σzjzj Σ
zjzj′
2

Σ
zjzj′
2 Σzj′zj′


 dzjdzj′ . (A.10)
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We use the result that
∫ b
−∞

∫ a
−∞N((w1, w2)T ; (0, 0)T , V )dw1dw2 is monotonically

increasing in V12, for constants a and b. This can be shown with the following:

∂

∂V12

∫ b

−∞

∫ a

−∞
N((w1, w2)T ; (0, 0)T , V )dw1dw2

=

∫ b

−∞

∫ a

−∞

∂

∂V12
N((w1, w2)T ; (0, 0)T , V )dw1dw2

=

∫ b

−∞

∫ a

−∞

∂2

∂w1∂w2
N((w1, w2)T ; (0, 0)T , V )dw1dw2

=
∂2

∂w1∂w2

∫ b

−∞

∫ a

−∞
N((w1, w2)T ; (0, 0)T , V )dw1dw2

= N((a, b)T ; (0, 0)T , V ) > 0.

This result implies that k(Yj = 1, Yj′ = 1;µ,Σ) is monotonically increasing in

Σzjzj′ and therefore, Σ
zjzj′
1 = Σ

zjzj′
2 .

A.2 Distributions Implied by the Inverse-Wishart

Assume Σ ∼ IWr(v, T ), with r = p+1, and partition Σ into blocks, Σ11, Σ12, Σ21,

and Σ22, of dimensions q × q, q × (r − q), (r − q) × q, and (r − q) × (r − q), respectively.

Moreover, consider the corresponding partition for matrix T . Then, applying propositions

8.7 and 8.8 of Eaton (2007), we obtain:

(a) Σ11 ∼ IWq(v − (r − q), T11).

(b) Σ22·1 ∼ IWr−q(v, T22·1), where Σ22·1 = Σ22 − Σ21Σ−1
11 Σ12 and T22·1 = T22 −

T21T
−1
11 T12.

(c) Σ−1
11 Σ12 | Σ−1

22·1 ∼ MNq,r−q(T
−1
11 T12, T

−1
11 ,Σ22·1). Here, MN denotes the matrix

normal distribution such that, conditionally on Σ22·1, vec(Σ−1
11 Σ12) ∼Nq(r−q)(vec(T−1

11 T12), T−1
11 ⊗

Σ22·1).
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We now assume T is diagonal, with elements (T1, . . . , Tp+1), as this is the case

relevant to our prior specification approach. Let T i = diag(T1, . . . , Ti). Applying result

(b) with q = p, we obtain δp+1 ∼ IG(0.5v, 0.5Tp+1). This uses the fact that Σ22·1 =

δp+1 as a consequence of the (β,∆) parameterization, and the simplification of T22·1 to

T22 = Tp+1 when T is diagonal. Applying result (a) with q = p, we obtain the marginal

distribution of the upper left p dimensional block of the covariance matrix Σ, which is

Σ1:p,1:p ∼ IWp(v − 1, T p). Next, using result (b) for matrix Σ1:p,1:p with q = p− 1, we have

δp ∼ IG(0.5(v − 1), 0.5Tp), since (Σ1:p,1:p)22·1 = δp. Analogously, applying results (a) and

(b) in succession, we obtain δi ∼ IG(0.5(v + i− (p+ 1)), 0.5Ti), for i = 2, . . . , p+ 1.

For each i = 2, . . . , p+ 1, result (a) yields an IWi(v + i− (p+ 1), T i) distribution

for Σ1:i,1:i, that is, for the upper left block of Σ of dimension i. Then, applying result (c) to

Σ1:i,1:i with q = i − 1, we obtain (−βi,1, . . . ,−βi,i−1)T | δi ∼ Ni−1((0, . . . , 0)T , δi(T
i−1)−1),

for i = 2, . . . , p+1. This uses the fact that (T i)12 = (0, . . . , 0)T , vec((Σ1:i,1:i)
−1
11 (Σ1:i,1:i)12) =

(−βi,1, . . . ,−βi,i−1)T , and (Σ1:i,1:i)22·1 = δi.

A.3 Proof of Lemma 4

We first show that there exists at least one f0(x, z) for any p0(x,y), as defined

in (3.6). This is related to the example given by Canale and Dunson (2011) for modeling

count data, in which f0(z) with univariate z ∈ R induces probability mass function p0(y).

Let s = (s1, . . . , sk), with each sj ∈ {1, . . . , Cj}, and define

f0(x, z) =
∑
s

p0(x, s1, . . . , sk)
∏k
j=1 1(γ∗j,sj−1,γ

∗
j,sj

](zj)∏k
j=1(γ∗j,sj − γ

∗
j,sj−1)
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where γ∗j,l = γj,l if l ∈ {1, . . . , Cj − 1}, γ∗j,0 = bj , and γ∗j,Cj
= dj , with −∞ < bj < γj,1 and

γj,Cj−1 < dj < ∞, for j = 1, . . . , k. Then this f0(x, z) satisfies the relationship given in

(3.6), inducing p0(x, l) upon integration.

Now we prove the lemma. Let KL(f0, f) be the KL distance between f0 and f .

The chain rule for relative entropy states that

KL(f0(x, z), f(x, z)) = KL(f0(x), f(x)) + KL(f0(z | x), f(z | x)), (A.11)

and therefore

∫
f0(x, z) log (f0(x, z)/f(x, z)) dzdx ≥

∫
f0(x) log (f0(x)/f(x)) dx,

so that if f(x, z) ∈ Kε(f0(x, z)), then f(x) ∈ Kε(f0(x)). That is,

Kε(f0(x, z)) ⊆ Kε(f0(x)) = {f(x, z) : KL(f0(x), f(x)) < ε}.

Using the KL property of the prior model for (x, z), P{Kε(f0(x))} ≥ P{Kε(f0(x, z))} > 0,

so that the prior P assigns positive probability to all KL neighborhoods of the true marginal

covariate distribution f0(x).

Now, take f ∈ Kε/2(f0(x, z)). By the chain rule, KL(f0(x), f(x)) < ε/2, and

KL(f0(z | x), f(z | x)) < ε/2. We now use the result that for two distributions g1(t) and

g2(t), with t = (t1, . . . , ts),

∫
As

· · ·
∫
A1

g1(t) log

(
g1(t)

g2(t)

)
dt ≥

∫
As

· · ·
∫
A1

g1(t)dt× log

(∫
As
· · ·
∫
A1
g1(t)dt∫

As
· · ·
∫
A1
g2(t)dt

)
, (A.12)

Applying this result with g1(t) = f0(z | x), g2(t) = f(z | x), and Aj = (γj,lj−1, γj,lj ), for

j = 1, . . . , k, then the right hand side of the equation becomes p0(l | x) log(p0(l | x)/p∗(l |

x)), with p∗(l | x) =
∫ γk,lk
γk,lk−1

· · ·
∫ γ1,l1
γ1,l1−1

f(z | x)dx. Now, summing each side of (A.12) over
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lj = 1, . . . , Cj , and j = 1, . . . , k, and multiplying by
∫
R f0(x)dx, we have

∫
R
f0(x)

∫
R
· · ·
∫
R
f0(z | x) log

(
f0(z | x)

f(z | x)

)
dzdx ≥

∫
R
f0(x)

Ck∑
lk=1

· · ·
C1∑
l1=1

p0(l | x) log

(
p0(l | x)

p∗(l | x)

)
dx.

The left side of the equation is by definition KL(f0(z | x), f(z | x)), which is less than

ε/2, and the right side is KL(p0(y | x), p∗(y | x)), which also must be less than ε/2.

This implies KL(p0(x,y), p∗(x,y)) < ε, by (A.11). Defining Kε(p0(x,y)) = {f(x, z) :

KL(p0(x,y), p∗(x,y)) < ε}, we have Kε/2(f0(x, z)) ⊆ Kε/2(p0(y | x)) and Kε/2(f0(x, z)) ⊆

Kε(p0(x,y)), implying P{Kε(p0(x,y))} ≥ P{Kε/2(f0(x, z))} > 0 and P{Kε/2(p0(y | x))} ≥

P{Kε/2(f0(x, z))} > 0.
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Appendix B

Posterior Simulation Details

B.1 Proof of Lemma 2

Here, we provide details for Lemma 2 of Section 2.2.2. Consider y = (y1, ..., yr) |

µ, β,∆ ∼ Nr(µ, β
−1∆(β−1)T ), such that the likelihood for β is proportional to exp{−(y −

µ)TβT∆−1β(y − µ)}. First, focus on determining the likelihood for β̃, a vector of length

q = r(r − 1)/2. Write β(y − µ) as M(1, β̃
T

)T , for a matrix M , of dimension r × (q + 1)

which has row i containing i nonzero elements, the first being (yi−µi), occurring in column

1, and the rest being (y1 − µ1), ..., (yi−1 − µi−1), occurring in columns 2 + (i − 1)(i −

2)/2 to i + (i − 1)(i − 2)/2. Then, the likelihood for β̃ can be written proportional to

exp{−(1, β̃
T

)MT∆−1M(1, β̃
T

)T }. Let C = MT∆−1M . If there exists a symmetric, positive

definite matrix T and vector d for which (1, β̃
T

)C(1, β̃
T

)T = β̃
T
T β̃−2β̃

T
Td+R, where R

is a constant that does not depend on β̃, then the likelihood for β̃ corresponds to a normal

distribution with mean vector d and covariance matrix T−1. The left side of the above

equation is C11 + 2
∑q+1

j=2 β̃j−1C1j +
∑q+1

j=2

∑q+1
i=2 β̃j−1β̃i−1Cij , and the last of these terms is
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just β̃
T
Cq×qβ̃, where Cq×q denotes the q×q submatrix of C obtained by deleting the first row

and column of C. Therefore, with T = Cq×q, we seek d such that −β̃TTd =
∑q+1

j=2 β̃j−1C1j .

Equating the coefficient associated with β̃i, i = 1, ..., q, on each side of the equation results

in a system of q equations:

−
q∑
j=1

djTi−1,j = C1i, i = 2, ..., q + 1. (B.1)

As explained in Section 2.2, T is a block diagonal matrix which can be constructed from

square matrices T 1, ..., T r−1, of dimensions 1, ..., r − 1, where

T jmn = (ym − µm)(yn − µn)/δj+1, m = 1, ..., j, n = 1, ..., j. (B.2)

The symmetry of T follows from the symmetry of C, but it remains to be shown that T is

positive definite. For a non-zero vector v, we must have vTTv > 0. When r = 2, vTTv

becomes v2
1(y1−µ1)2/δ2. When r = 3, vTTv is the sum of the result for r = 2 and the term

(v2(y1−µ1)+v3(y2−µ2))2/δ3. For r = 4, the term (v4(y1−µ1)+v5(y2−µ2)+v6(y3−µ3))2/δ4

is added to the result for r = 3. In general, a term of the form (vq−r+2(y1 − µ1) + ... +

vq(yr−1 − µr−1))2/δr is added in going from r − 1 to r dimensions. Clearly, T is positive

semidefinite. However, to have vTTv > 0, and all elements of T strictly positive, it must

be the case that yi 6= µi, for i = 1, ..., r − 1, which holds true with probability 1, since µ is

a continuous random vector.

We now derive the form of the mean vector d. Because T is sparse, the system

of q equations (B.1) can be divided into r − 1 sets of equations, where set j consists of j

equations with j unknowns, d1+j(j−1)/2, ..., dj(j+1)/2. Let the index 1+j(j−1)/2 be denoted

by (1) and let the index j(j + 1)/2 be denoted by (j). Set the first j − 1 of these elements
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equal to 0, so that d1+j(j−1)/2 = ... = dj(j+1)/2−1 = 0. Then the j equations become

−d(j)T(1),(j) = C1,(1)+1, ...,−d(j)T(j),(j) = C1,(j)+1. (B.3)

The solution d(j) = −(yj+1 − µj+1)/(yj − µj) satisfies these j equalities (B.3), since the

elements C1,(1)+1, ..., C1,(j)+1 are (y1−µ1)(yj+1−µj+1)/δj+1, ..., (yj−µj)(yj+1−µj+1)/δj+1,

and the elements T(1),(j), ..., T(j),(j) are (y1 − µ1)(yj − µj)/δj+1, ..., (yj − µj)(yj − µj)/δj+1,

as given in (B.2), so that

−C1,(1)+1/T(1),(j) = ... = −C1,(j)+1/T(j),(j) = −(yj+1 − µj+1)/(yj − µj).

With n data vectors, (yi,1, ..., yi,r), for i = 1, ..., n, the likelihood for β̃ is propor-

tional to a normal with mean (
∑n

i=1 Ti)
−1(
∑n

i=1 Tidi), and covariance matrix (
∑n

i=1 Ti)
−1,

where Ti and di are computed using the i-th observation. When combined with a normal

prior for β̃, the full conditional is also normal.

Next, consider the likelihood for the δk, which up to the proportionality con-

stant is given by
∏r
k=1 δ

−1/2
k exp{−tr(βT∆−1β(y−µ)(y−µ)T )/2}. By properties of trace,

tr(βT∆−1β(y−µ)(y−µ)T ) = tr(β(y−µ)(y−µ)TβT∆−1). Let A = β(y−µ)(y−µ)TβT .

Since ∆ is diagonal with δ on the diagonal, the likelihood for each δk is proportional to

δ
−1/2
k exp{−Akk/(2δk)}. The diagonal elements of A are the squares of β(y−µ), which are

Akk = {(yk−µk)+
∑

j<k βkj(yj−µj)}2. Then, with n data vectors, (yi,1, ..., yi,r), i = 1, ..., n,

the likelihood for δk, k = 1, ..., r, is proportional to an inverse-gamma with shape parameter

(n/2)−1 and scale parameter 0.5
∑n

i=1{(yi,k−µk)+
∑

j<k βkj(yi,j−µj)}2. When combined

with an inverse-gamma prior, this results in a posterior full conditional distribution which

is inverse-gamma.
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B.2 Model Comparison Criterion

The predictive loss measure used for model comparison in Section 2.3.2 requires for

each model m the posterior predictive mean, E(m)(ynew,i | data), and posterior predictive

variance, var(m)(ynew,i | data), for replicated response ynew,i with associated covariate vector

xi.

Denote generically by Θ the full parameter vector for either the product-kernel

model or for the more general binary regression model developed in Section 2. For the former

model, E(y | xi; data) = {p(xi | data)}−1
∫ ∑N

l=1 plNp(xi;µ
x
l ,Σ

xx
l )Φ(µzl ) p(Θ | data)dΘ,

with p(xi | data) =
∫ ∑N

l=1 plNp(xi;µ
x
l ,Σ

xx
l ) p(Θ | data)dΘ, and E(y2 | xi; data) also has

the same form. Under the proposed model, E(y | xi; data) is given by

{p(xi | data)}−1

∫ N∑
l=1

plNp(xi;µ
x
l ,Σ

xx
l )Φ

(
µzl + Σzx

l (Σxx
l )−1(xi − µxl )

(Σzz
l − Σzx

l (Σxx
l )−1(Σzx

l )T )1/2

)
p(Θ | data)dΘ

where p(xi | data) =
∫ ∑N

l=1 plNp(xi;µ
x
l ,Σ

xx
l ) p(Θ | data)dΘ, and E(y | xi; data) = E(y2 |

xi; data). Hence, under both models, straightforward Monte Carlo integration using the

posterior samples for model parameters yields estimates for the required posterior predictive

means and variances.

B.3 MCMC Details for DDP Model

B.3.1 Updates for Constant Atoms DDP Model

Here we give details for posterior full conditionals required to implement the model

in Section 4.3.1.
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Updating the Weights

The full conditional for ({ζl}, {ηl,t}) is given by p({ζl}, {ηl,t} | . . . ,data) ∝

N−1∏
l=1

N(ζl; 0, 1)N(ηl,1; 0, 1)

T∏
t=2

N−1∏
l=1

N(ηl,t;φηl,t−1, 1− φ2)

T∏
t=1

nt∏
i=1

N∑
l=1

pl,tδl(Lt,i).

Write
∏nt
i=1

∑N
l=1 pl,tδl(Lt,i) =

∏N
l=1 p

Ml,t

l,t , where Ml,t =| {(t, i) : Lt,i = l} |, i.e., the number

of observations at time t assigned to component l. Filling in the form for {pl,t} gives

nt∏
i=1

N∑
l=1

pl,tδl(Lt,i) =

(
1− exp

(
−
ζ2

1 + η2
1,t

2α

))M1,t

exp

(
−
MN,t

∑N−1
l=1 (ζ2

l + η2
l,t)

2α

)
N−1∏
l=2

(
1− exp

(
−
ζ2
l + η2

l,t

2α

))Ml,t

exp

(
−
Ml,t

∑l−1
r=1(ζ2

r + η2
r,t)

2α

)
.

The full conditional for each ζl, l = 1, . . . , N − 1, is therefore

p(ζl | . . . ,data) ∝ exp

(
−
ζ2
l

2

)
exp

(
−
∑T

t=1

∑N
r=l+1Mr,t

2α

)
T∏
t=1

(
1− exp

(
−
ζ2
l + η2

l,t

2α

))Ml,t

giving

p(ζl | . . . ,data) ∝ N(ζl; 0, (1 + α−1
T∑
t=1

N∑
r=l+1

Mr,t)
−1)

T∏
t=1

(
1− exp

(
−
ζ2
l + η2

l,t

2α

))Ml,t

We use a slice sampler to update ζl, with the following steps:

• Draw ut ∼ uniform

(
0,

(
1− exp

(
− ζ2l +η2l,t

2α

))Ml,t
)

, for t = 1, . . . , T.

• Draw zl ∼ N(0, (1 + α−1
∑T

t=1

∑N
r=l+1Mr,t)

−1), restricted to the lie in the interval

{ζl : ut <

(
1− exp

(
− ζ2l +η2l,t

2α

))Ml,t

, t = 1, . . . , T}. Solving for ζl in each of these T

equations gives ζ2
l > −η2

l,t − 2α log(1− u1/Ml,t

t ), for t = 1, . . . , T . Therefore, if −η2
l,t −

2α log(1 − u1/Ml,t

t ) < 0 for all t, then ζl has no restrictions, and is therefore sampled

from a normal distribution. Otherwise, if −η2
l,t − 2α log(1 − u

1/Ml,t

t ) > 0 for some
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t, then | ζl |> maxt{(−η2
l,t − 2α log(1 − u1/Ml,t

t ))1/2}. This then requires sampling ζl

from a normal distribution, restricted to the intervals (−∞,−maxt{(−η2
l,t−2α log(1−

u
1/Ml,t

t ))1/2}), and (maxt{(−η2
l,t − 2α log(1− u1/Ml,t

t ))1/2},∞).

In the second step above, we may have to sample from a normal distribution, restricted

to two disjoint intervals. The resulting distribution is therefore a mixture of two trun-

cated normals, with probabilities determined by the (normalized) probability the nor-

mal assigns to each interval. These truncated normals both have mean 0 and variance

(1 +
∑T

t=1

∑N
r=l+1Mr,t/α)−1, and each mixture component has equal probability.

The full conditional for each ηl,t, l = 1, . . . , N − 1, t = 2, . . . , T − 1, is proportional

to

N(ηl,t; 0,
α∑N

r=l+1Mr,t

)N(ηl,t;φηl,t−1, 1− φ2)N(ηl,t+1;φηl,t, 1− φ2)

(
1− exp

(
−
ζ2l + η2l,t

2α

))Ml,t

∝ N

(
ηl,t;

φα(ηl,t−1 + ηl,t+1)

φ2(α−
∑N
r=l+1Mr,t) + α+

∑N
r=l+1Mr,t

,
α(1− φ2)

φ2(α−
∑N
r=l+1Mr,t) + α+

∑N
r=l+1Mr,t

)
(

1− exp

(
−
ζ2l + η2l,t

2α

))Ml,t

Each ηl,t, l = 1, . . . , N − 1, and t = 2, . . . , T − 1, can therefore be sampled with a slice

sampler:

• Draw u ∼ Unif

(
0,

(
1− exp

(
− ζ2l +η2l,t

2α

))Ml,t
)

.

• Draw ηl,t ∼ N

(
ηl,t;

φα(ηl,t−1+ηl,t+1)

φ2(α−
∑N

r=l+1Mr,t)+α+
∑N

r=l+1Mr,t
, α(1−φ2)

φ2(α−
∑N

r=l+1Mr,t)+α+
∑N

r=l+1Mr,t

)
,

restricted to

{
ηl,t :

(
1− exp

(
− ζ2l +η2l,t

2α

))Ml,t

> u

}
, giving η2

l,t > −2α log(1−u1/Ml,t)−

z2
l .
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In the second step above, we will again either sample from a single normal or a mixture

of truncated normals, where each normal has the same mean and variance, but the trun-

cation intervals differ. Since the mean of this normal is not zero, the weights assigned to

each truncated normal are not the same. The unnormalized weight assigned to the nor-

mal which places positive probability on ((−2α log(1 − u1/Ml,t) − ζ2
l )1/2,∞) is given by

1−F ((−2α log(1−u1/Ml,t)− ζ2
l )1/2), where F is the CDF of the normal for ηl,t given in the

second step. The unnormalized weight given to the component which places positive proba-

bility on (−∞,−(−2α log(1−u1/Ml,t)−ζ2
l )1/2) is given by F (−(−2α log(1−u1/Ml,t)−ζ2

l )1/2).

The full conditionals for ηl,1 and ηl,T are slightly different. The full conditional for

ηl,1 is

p(ηl,1 | . . . ,data) ∝ N(ηl,1; 0,
α∑N

r=l+1Mr,1

)N(ηl,1; 0, 1)N(ηl,2;φηl,1, 1−φ2)

(
1− exp

(
−
ζ2l + η2l,1

2α

))Ml,1

,

∝ N

(
ηl,1;

φαηl,2

α+
∑N

r=l+1Mr,1 − φ2
∑N

r=l+1Mr,1

,
α(1− φ2)

α+
∑N

r=l+1Mr,1 − φ2
∑N

r=l+1Mr,1

)
(

1− exp

(
−
ζ2
l + η2

l,1

2α

))Ml,1

.

For ηl,T , we have:

p(ηl,T | . . . ,data) ∝ N(ηl,T ; 0,
α∑N

r=l+1Mr,T

)N(ηl,T ;φηl,T−1, 1−φ2)

(
1− exp

(
−
ζ2
l + η2

l,T

2α

))Ml,T

,

which is proportional to

N

(
ηl,T ;

φαηl,T−1

α+
∑N

r=l+1Mr,T − φ2
∑N

r=l+1Mr,T

,
α(1− φ2)

α+
∑N

r=l+1Mr,T − φ2
∑N

r=l+1Mr,T

)
(

1− exp

(
−
ζ2
l + η2

l,T

2α

))Ml,T
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The slice samplers for ηl,1 and ηl,T are therefore implemented in the same way as for ηl,t,

except the normals which are sampled from have different means and variances.

Updating α

The full conditional for α is

p(α | . . . ,data) ∝ p(α) exp

(
−
∑T
t=1MN,t

∑N−1
l=1 (ζ2l + η2l,t)

2α

)
exp

(
−
∑T
t=1

∑N−1
l=2 Ml,t

∑l−1
r=1(ζ2r + η2r,t)

2α

)
T∏
t=1

N−1∏
l=1

(
1− exp

(
−
ζ2l + η2l,t

2α

))Ml,t

Therefore, with p(α) = IG(aα, bα), we have

p(α | . . . ,data) = IG

(
α; aα, bα +

1

2

T∑
t=1

(
MN,t

N−1∑
l=1

(ζ2
l + η2

l,t) +
N−1∑
l=2

Ml,t

l−1∑
r=1

(ζ2
r + η2

r,t)

))
T∏
t=1

N−1∏
l=1

(
1− exp

(
−
ζ2
l + η2

l,t

2α

))Ml,t

The parameter α can be sampled using a Metropolis-Hastings algorithm. In particular we

work with log(α), and use a normal proposal distribution centered at the log of the current

value of α.

Updating φ

The full conditional for AR parameter φ is

p(φ | . . . ,data) ∝ p(φ)

T∏
t=2

N−1∏
l=1

N(ηl,t;φηl,t−1, 1− φ2)

∝ (1− φ2)−(N−1)(T−1)/2 exp

(
−

T∑
t=2

N−1∑
l=1

1

2(1− φ2)
(ηl,t − φηl,t−1)2

)
p(φ)

We assume p(φ) = uniform(0, 1) or p(φ) = uniform(−1, 1), and apply a M-H algorithm to

sample log
(

φ
1−φ

)
or log

(
φ+1
1−φ

)
, respectively, using a normal proposal distribution.
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Updating Remaining Parameters

The configuration variables Lt,i, t = 1, . . . , T , i = 1, . . . , nt, have full conditionals

given by

p(Lt,i | . . . ,data) ∝ N(yt,i | µLt,i
,ΣLt,i)(

N−1∑
l=1

pl,t

l−1∏
r=1

pr,tδl(Lt,i) + pN,tδN (Lt,i))

where p1,t = 1−β1,t, pl,t = (1−βl,t)
∏l−1
r=1 βr,t, for l = 2, . . . , N−1, and pN,t = 1−

∑N−1
l=1 pl,t.

Therefore, Lt,i is drawn from the discrete distribution on {1, . . . , N}, with probabilities

pl,ti ∝ pl,tN(yt,i | µl,Σl) for l = 1, . . . , N .

The parameters ({µl}, {Σl}) of the normal kernel have full conditionals:

p(µl,Σl | . . . ,data) ∝ N(µl;m, V )IW(Σl; ν,D)

n∗∏
k=1

∏
{(t,i):Lti=L∗k}

N(yt,i;µL∗k
,ΣL∗k

)

where L∗k, k = 1, . . . , n∗ are the distinct values of L. Therefore, for l /∈ {L∗k}, we simulate

µl ∼ N(m, V ), and Σl ∼ IW(ν,D). And, for l ∈ {L∗k}, with M∗k =| {(t, i) : Lti = L∗k} |,

µl ∼ N(aµ, Bµ), with

Bµ = (V −1 +M∗k (ΣL∗k
)−1)−1, aµ = Bµ(mV −1 +

∑
{(t,i):Lti=L∗k}

yt,i(ΣL∗k
)−1),

and Σl ∼ IW(ν +M∗k , D +
∑
{(t,i):Lti=L∗k}

(yt,i − µl)(yt,i − µl)T ).

The updates for ψ = (m, V,D) are straightforward. Assuming a prior m ∼

N(am, Bm), then the posterior full conditional for m is p(m | . . . ,data) ∝ N(am
∗, B∗m),

with B∗m = (B−1
m +NV −1)−1 and am

∗ = B∗m(amB
−1
m + V −1

∑N
l=1µl).

Assuming a prior V ∼ IW(aV , BV ), we sample (V | . . . ,data) ∼ IW(aV +N,BV +∑L
l=1(µl −m)(µl −m)T ).

Finally, letting D ∼W(aD, BD), we sample (D | . . . ,data) ∼W(aD + νN, (B−1
D +∑N

l=1(Σl)
−1)−1).
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B.3.2 Updates for General DDP Model

Here, posterior full conditionals required for the model of Section 4.3.2 are given.

The parameter m, when given a prior N(am, Bm) has full conditional

p(m | . . . ,data) ∝ N(m;am, Bm)
N∏
l=1

T∏
t=2

N(µl,t;m+ Θµl,t−1, V )

∝ N(m;am, Bm)
N∏
l=1

T∏
t=2

N(m;µl,t −Θµl,t−1, V )

so that m can be updated with a N(am
∗, B∗m), with

B∗m = (B−1
m +N(T − 1)V −1)−1

and

a∗m = B∗m(B−1
m am + V −1

N∑
l=1

T∑
t=2

(µl,t −Θµl,t−1))

The parameter V , when given a prior that is IW(aV , BV ), has full conditional p(V |

. . . ,data) ∝ IW(aV +N(T −1), BV +
∑N

l=1

∑T
t=2(µl,t−m−Θµl,t−1)(µl,t−m−Θµl,t−1)T ).

The updates for µl,t are N(m∗, V ∗), with m∗ and V ∗ given by:

• For t = 2, . . . , T − 1, if Ml,t = 0, then the update for µl,t has V ∗ = (V −1 +

(Θ−1VΘ−T )−1)−1 and m∗ = V ∗(V −1(m+Θµl,t−1)+(Θ−1VΘ−T )−1Θ−1(µl,t+1−m))

• For t = 2, . . . , T − 1, if Ml,t 6= 0, then the update for µl,t has V ∗ = (V −1 +

(Θ−1VΘ−T )−1+Ml,tΣ
−1
l )−1 andm∗ = V ∗(V −1(m+Θµl,t−1)+(Θ−1VΘ−T )−1Θ−1(µl,t+1−

m) + Σ−1
l

∑
{i:Lt,i=l} yt,i)

• for t = 1, if Ml,1 = 0, then the update for µl,1 has V ∗ = ((Θ−1VΘ−T )−1 + V −1
0 )−1,

and m∗ = V ∗((Θ−1VΘ−T )−1Θ−1(µl,2 −m) + V −1
0 m0), unless d = 1, in which case
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the updates are V ∗ = ((1 − θ2)V −1 + θ2V −1)−1 = V and m∗ = V ∗((1 − θ2)V −1(1 −

θ)−1m+ θV −1(µl,2 −m))

• for t = 1, if Ml,1 6= 0, then the update for µl,1 has V ∗ = (Ml,1Σ−1
l + (Θ−1VΘ−T )−1 +

V −1
0 )−1 and m∗ = V ∗(Σ−1

l

∑
{i:L1,i=l} y1,i + (Θ−1VΘ−T )−1Θ−1(µl,2−m) +V −1

0 m0),

and for d = 1, V ∗ = ((1−θ2)V −1 +θ2V −1 +Ml,1Σ−1
l )−1 and m∗ = V ∗((1−θ2)V −1(1−

θ)−1m+ θV −1(µl,2 −m) + Σ−1
l

∑
{i:L1,i=l} y1,i)

• for t = T , if Ml,T = 0, then the update for µl,T has V ∗ = V , and m∗ = m+ Θµl,T−1

• for t = T , if Ml,T 6= 0, then the update for µl,T has V ∗ = (Ml,TΣ−1
l + V −1)−1 and

m∗ = V ∗(Σ−1
l

∑
{i:LT,i=l} yt,i + V −1(m+ Θµl,T−1))

185



Appendix C

Properties of the DDP Prior Model

Details are provided for the properties of the dependent stick-breaking process

given in Section 4.2.1.

C.1 Autocovariance of B

The last term in expression 4.2 is obtained by noting that E(βt) = α/(α+1), since

the process is stationary with βt ∼ beta(α, 1) at any time t.

The first term of (4.2) is E(βtβt+k) = E(e−ζ
2/α)E(e−(η2t−η2t+k)/(2α)) =

α3/2(1− ρ(k)2)1/2

(2 + α)1/2((1− ρ(k)2 + α)2 − α2ρ(k)2)1/2
. (C.1)

Since ζ2 ∼ χ2
1, we have that E(e−ζ

2/α) = α1/2/(2 + α)1/2 through the moment generating

function of X = ζ2 which gives E(etX) = (1 − 2t)−1/2, and we evaluate this for t = −1/α.

For the term E(e−(η2t +η2t+k)/(2α)), we use the fact that (ηt, ηt+k) ∼ N(0, C(k)), with C(k)

a covariance matrix with diagonal elements equal to 1 and off-diagonal elements equal to
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ρ(k). Integration results in

E

(
−
η2
t + η2

t+k

2α

)
=

α(1− ρ(k)2)1/2

((1− ρ(k)2 + α)2 − α2ρ(k)2)1/2
.

Combining these terms yields expression (C.1) and (4.2) follows.

C.2 Autocovariance of Consecutive Weights

The expression for E(pl,tpl,t+1) is:

E(pl,tpl,t+1) = E

{
(1− βl,t)(1− βl,t+1)

l−1∏
k=1

βk,tβk,t+1

}

= E

{
l−1∏
k=1

βk,tβk,t+1

}
−E

{
βl,t

l−1∏
k=1

βk,tβk,t+1

}
−E

{
βl,t+1

l−1∏
k=1

βk,tβk,t+1

}
+E

{
βl,tβl,t+1

l−1∏
k=1

βk,tβk,t+1

}
.

Using the fact that each times series βl is independent of βm (i.e., independence

exists across the index l, and only stick-breaking proportions βl,t, βl,t′ for t, t′ ∈ {1, . . . , T}

are correlated), the expression above simplifies to

l−1∏
k=1

E {βk,tβk,t+1} {1− E(βl,t)− E(βl,t+1) + E(βl,tβl,t+1)} ,

with E(βl,t) = E(βl,t+1) = α/(α+ 1), and E(βl,tβl,t+1) is given in (C.1).

To get corr(pl,t, pl,t+1), we also need E(pl,t) = E{(1 − βl,t)
∏l−1
k=1 βk,t}, and since

β1,t, β2,t, . . . are independent, and each are marginally beta(α,1), E{(1− βl,t)
∏l−1
k=1 βk,t} =

αl/(1 + α)l+1. This gives the expression for cov(pl,t, pl,t+1) as given in (4.4).
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C.3 Autocorrelation of Consecutive Distributions

Since Gt is marginally distributed as a DP(α,G0), its variance is var(Gt(A)) =

G0(A)(1−G0(A))/(α+ 1). By definition, cov(Gt(A), Gt+1(A))

= E(cov(Gt(A), Gt+1(A) | θ)) + cov(E(Gt(A) | θ),E(Gt+1(A) | θ)),

since Gt(A) =
∑∞

l=1 pl,tδθl(A), where δθl(A) depends on θl, which is itself a random variable,

and for fixed α, pl,t does not depend on further parameters. The first term in the expression

above is then E(cov(Gt(A), Gt+1(A) | θ)) =

∞∑
l=1

cov(pl,t, pl,t+1)E(δ2
θl

(A) | θ) +
∑
l 6=m

cov(pl,t, pm,t+1)E(δθl(A)δθm(A) | θ)

=

∞∑
l=1

cov(pl,t, pl,t+1)G0(A) +
∑
l 6=m

cov(pl,t, pm,t+1)G2
0(A)

using the fact that E(δθl(A)) = G0(A) and var(δθl(A)) = G0(A)(1−G0(A)).

The second term is

cov (E(Gt(A) | θ),E(Gt+1(A) | θ)) = cov

( ∞∑
l=1

E(pl,t)δθl(A),
∞∑
m=1

E(pm,t+1)δθm(A) | θ

)

= cov

( ∞∑
l=1

αl−1

(1 + α)l
δθl(A),

∞∑
m=1

αm−1

(1 + α)m
δθm(A) | θ

)

using the fact that E(pl,t) = αl−1/(1 + α)l. Then, because θl and θm are independent for

m 6= l, this becomes

=
∞∑
l=1

var

(
αl−1

(1 + α)l
δθl(A) | θ

)

=

∞∑
l=1

α2(l−1)

(1 + α)2l
G0(A)(1−G0(A)).

Finally, letting σl,m = Cov(pl,t, pm,t+1), and putting everything together, we have (4.6).

The form of σl,m = cov(pl,t, pm,t+1) can be worked out in a similar way to σl,l.
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C.4 Stationarity of the B Process

Since ηT is a stationary process, fηt(ηt1 , . . . , ηtk) = fηt+s(ηt1+s, . . . , ηtk+s). Apply-

ing a transformation to ηt and ηt+s to obtain the distribution of βt and βt+s, we find that

f(βt1 , . . . , βtk) is the same function of βt as f(βt1+s, . . . , βtk+s) is of βt+s. That is, these

density functions are the same. Therefore, the stochastic process B is strongly stationary,

as a consequence of the strong stationarity of the ηT process.
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