UC Berkeley
SEMM Reports Series

Title
Viscoelasticity of Granular Materials

Permalink
bttgs:ggescholarshiQ.orgéucgitem41257872d
Authors

Maddalena, Francesco
Ferrari, Mauro

Publication Date
1994-05-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/1p57872p
https://escholarship.org
http://www.cdlib.org/

REPORT NO. STRUCTURAL ENGINEERING
UCB/SEMM-94/04 MECHANICS AND MATERIALS

VISCOELASTICITY OF
GRANULAR MATERIALS

BY

Francesco Maddalena

and

4044 Davis Hali
Univ. of California, Berkeley 94720

Mauro Ferrari

LOAN COPY
PLEASE RETURN TO

NISEE/Computer Applications

MAY 1994 DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA




Viscoelasticity of Granular Materials

Francesco Maddalena® Mauro Ferrari®

¢ Department of Materials Science and Mineral Engineering, University
of California, Berkeley, CA 94720, USA

b Department of Civil Engineering and Department of Materials Science
and Mineral Engineering, University of California, Berkeley, CA 94720,
USA

Abstract

In a former work (Granik and Ferrari, 1993 ) a micromechanical
theory for elastic granular media was deduced on the basis of the iden-
tification of the constituent grains with the nodes of a Bravais lattice.
The transition from the discrete structure to the continuum level was
achieved through assumptions on the kinematical fields and through
a variational formulation establishing the relationship between mi-
crostresses and macrostresses. In the present paper we extend to the
linear viscoelasticity domain. We formulate the general linear vis-
coelastic relations in terms of microstresses and microdeformations,
deducing the boundary value problems for the microstresses and for
macrostresses. Then we focus our attention on the links between con-
stitutive equations governing the microscopic level (formulated follow-
ing the general methods of linear viscoelasticity) and their macroscopic
counterparts. Thus we directly relate microstructural informations
to the macroscopic constitutive laws,deducing classical macroscopic
properties in terms of structural parameters. Finally the dynami-
cal problem of plane waves propagation in a semi-infinite granular
medium is analyzed and the influence that the arrangement of the
particles exerts on the pulse propagation is discussed.
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1 Introduction

The macroscopic (phenomenological) behavior of a given material derives
from its discrete microstructure. To bring microstructural informations into
the continuum description, in a consistent a fruitful way, is the objective of
a vast research area in mechanics. Major contributes in this field over the
last decade are due to Nemat-Nasser and his school (Oda, 1978; Konishi,
1978; Nemat-Nasser and Tobita, 1982; Mehrabadi and Nemat-Nasser, 1983;
Balendran and Nemat-Nasser, 1993).

In a former work (Granik and Ferrari, 1993) a general theory of linear elas-
tic granular media was deduced starting from a micromechanical approach.
The constituent grains were identified with the nodes of a Bravais lattice and
the transition to the continuum level was achieved through approximation
conditions relating kinematical fields, and through a variational formulation
establishing the relationship between microstresses and macrostresses. In the
present paper we extend to the linear viscoelasticity domain. The need of mi-
crostructural informations, in formulating viscoelastic constitutive equations,
arises for different classes of materials (Poirier,1983; Feda, 1992), whenever
the internal structural features (spatial arrangement of particles, voids, clus-
ters, etc.) cannot be ignored even in a first gross approximation. Therefore
it 1s not surprising that predictions based on the classical viscoelasticity the-
ory often significantly differ from experimental results (Feda,1989 refers that
a prediction of experimental creep deformation with an accuracy of 30% is
not discarded as a serious disagreement between the theory and the experi-
ment). In order to characterize the anisotropic geometric microstructure of
the material, the concept of fabric tensor (a second order tensor) was intro-
duced (Oda,1972; Cowin, 1978; Nemat-Nasser,1980). Then the dipendence
of the stress upon the fabric tensor is made explicit through formal argu-
ments based on tensor functions theory, involving a notion of transformed
stress tensor (Boehler,1987). By contrast to the inductive character inher-
ent to this approach, we claim a purely deductive point of view , for in
the present approach the macroscopic constitutive equations directly follow
from microscopic properties. Indeed thanks to the relationship between mi-
crostrsses and macrostresses, we directly relate microstructural informations
to the macroscopic constitutive laws.

In section 2 we recall the general relations of the thory of granular ma-
terials as well as introduced by Granik and Ferrari, 1993, limiting ourself to
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the case of axial doublet microdeformation, in the first order approximation
(non-scale theory). In section 3 linear viscoelastic constitutive equations, of
differential and integral type, are formulated at the microstructural level.
Then their macroscopic counterparts are derived; as a result the macroscopic
description accounts for the microscopic parameters. In particular, internal
stability and dissipation depend on the microgeometry of the material. In sec-
tion 4 the general boundary value problem is formulated and it is shown how
the solution can be characterized in terms of microfields and macrofields. Fi-
nally, as an application, we study the one-dimensional problem of plane shear
waves in a semi-infinite medium, noting the influence of the microstructure
on the propagation phenomenon.

Notation Troughout this paper boldface lowercase letters represent vec-
tors, boldface uppercase letters represent second-order and fourth-order ten-
sors. The inner product of two second-order tensors is A-B = tr(ABT). The
tensor product of two vectors a and b is the second-order tensor a® b whose
action on any vector ¢ is (a @ b)c = (b - c)a. The tensor product of two
second-order tensors is a fourth-order tensor defined as follows (Del Piero,
1979): (A®B)C = (B-C)A. If u is a unitary vector, the tensor P =u®u
defines the projection in the u direction, it has the property P? = P.

2 General Relations

In what follows a granular body is thought as an assembly of elastic spher-
ical particles arranged in a Bravais lattice I' (Fig.1). The neighbor of each
particle a, denoted T),(a), is the set of the m vectors joining a with the
adjacent particles. Its elements {,(a) are doublet vectors, with magnitude
Ne and direction 74 (Fig.2). Because T,,(a) can be split in two disjointed
subsets, equivalent via the center of inversion operation at the node a€ T, it
is sufficient to restrict the attention to the set T,,(a), with m = 2n, n being
the valence of the Bravais lattice. The configuration of the granular body T
can be approximated by a smooth region V of the Euclidean space, so in the
- the paper of Granik and Ferrari,(1993) the relation:
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> SR x X [ R, )

Vael a=1
was shown to hold for an arbitrary function F,(a) defined on T, (a).

Let u(x,t) be a smooth displacement field defined on V whose values
are assumed to coincide with the particle displacements when x = x, (x is
the position vector of an arbitrary point in V, and x, is the position of the
particle a). Moreover, the increment function:

Auy, =u(x+¢,,1) —u(x,t), (2)

is assumed to be expandable in a convergent Taylor series in the neigh-
borhood of x,. The kinematics of the granular structure is characterized by
the microstrain scalar measure ¢,,representing the axial deformation of the
doublet vector ,it is given by:

To - Au,
Na .
Introducing the microstrain vector €, = €,T4, it follows, from (3):

(3)

Ea =

€y = -7—71—(1‘0 ® TO,)AUQ. (4)

Now, recalling Taylor’s representation formula for the increment function:

M X
Ay = 3 B (e )t )+ Ol o 1) 5

In the first order approximation,(x = 1; or non-scale)the microstrain
vector takes the form:
o= (Ta @7q)ET, (6)

or, in components form :
Eai = TaiTajEjkTaka

where

= L0y, Ou

B =50 o)
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is the linear strain tensor. Thus, at the lowest order approximation, the
microstrain measure (6) is unaffected by the scale parameter n,; by contrast,
at the second order, the strain vector is

Eoi = TaiTcxj(

; 2
e 8 ™
If not otherwise specified, we refer to (6) as microstrain measure.

The force system associated with the above kinematic fields is expressed
by the microstress p, conjugate to €,,the volume force b and the inertial force
pa defined in V, (p is the bulk density of the medium, a is the acceleration
field), the surface force t defined on V. The principle of virtual work states:

. = — pa) - - dud
O,Z_—:l/Vpa deqndV /V(b pa) - dudV + avt uds, (8)

for all admissible éu. By virtue of Gauss-Green theorem, and with local-
ization arguments, we obtain from (8), the first order

Equations of motion in V

i 0P 0%y,
TaiTa; Ta — + bi = P73, 9
az=:1 J k 8(2] p 6t2 ( )
as well as the first order
Natural boundary conditions on OV
D TaiTajTakPakl; = ti. (10)

a=1
Here n; is the component of the outward unit normal to V. Equation (10)
establishes the relationship between micro and macrostress, upon interpret-

ing
' n

> TaiTajTakPak = Ty, (11)

a=1

as the Cauchy stress tensor.More compactly, this may be expressed as
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n

T=> (Ta Pa)(Ta ® Ta).

3 Linear Viscoelastic Constitutive Equations

The formulation of (linear) constitutive equations modelling viscoelastic be-
havior usually follows two different approaches. The first relates the value of
the stress at the time ¢ with the complete past history of the strain, originat-
ing a constitutive equation in integral form. The second one,generalizing ele-
mentary rheological models,states a linear relation between the stress deriva-
tives with respect to time, up to a fixed order, and the time strain derivatives,
this yields a constitutive law in differential form. Though the two formu-
lations are not mathematically independent (Gurtin and Sternberg, 1962),
because every constitutive differential law can be put in integral form, but
not conversely, the distinction is somewhat useful. Indeed, in deducing vis-
coelastic proprties of materials, from experimental data, both the integral
and differential formulation are fruitfully used. Here we do not deal with a
particular constitutive equation, neither our intention is to discuss the ap-
propriateness of various models.

Moreover, in what follows we will formulate general linear viscoelastic
equations for the discrete structure T', with the perspective to analyze their
macroscopic continuum counterparts. Both the integral and the differential
approaches will be discussed.

3.1 Constitutive Laws of Integral Type

We assume linear dependence between the éeneric doublet microstress at the
time ¢ and the microstrain histories concerning the doublets belonging to
T (a),therefore, granted to the principle of fading memory,the constitutive
relation:

n

Po(t) = D(45%0(t) + [ Ana(s)e(t = o)ds) (12

performs the behavior of the material at hand. The scalar valued map-
pings Aqp(s) are the relaxation functions with A%; = Aap(0) representing
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the instantaneous elasticities. Moreover, the limit of A,p(s), as s — oo, is
assumed to exist and A%y = lim,.c Aap(s) is termed, for a and § fixed,
equilibrium elastic modulus.

Classical thermodynamic restrictions ! require that

ap = Afas (14)
Aup(0) < 0. (15)

The next goal is to deduce the macroscopic response function associated
with (12). Defining

P,=(r,0m,), for y=a,f (16)

from the equation (12),in view of (11) and (6), with some algebra follows:

T(t) = GE(t) + /0°° G(s)E(t — s)ds, (17)
with .
G(s) = %; (7o - T5)Aas(s)(Pa ® Ppg). (18)

The fourth order tensor valued mapping G(s) (G® = G(0)) plays the role
of the relazation function of the classical linear viscoelasticity,its components
given by:

G;jkz(s) = 2 TatTgtAag(.S)Ta,'TajTngﬁz.
a,f=1
It may be elementary shown that G(s) meets the usual symmetry properties,

i.e.

Gijn(s) = Gjiri(s) = Giie(s), (19)
Gijri(s) = Gz (8), (20)

'In the very general context of thermodynamics, the second law is imposed on con-
stitutive functions,to obtain a priori characterizations. For a modern treatement of these
aspects of the linear viscoelasticity see Fabrizio and Morro,1992
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for all positive s. Finally the restriction of positive definiteness on G(s)
produces the condition (Ferrari and Maddalena,1994):

n

E (To-T5) > 0. (21)

a,B=1

This relates internal stability of the material with the geometrical arrange-
ment of the particles.

In view of a discussion of the dissipation characteristics, of the microstruc-
tured medium, consider, without loss of generality, oscillating microdeforma-
tion histories, starting at time zero:

£4(t) = €2 sin(wt). (22)

Here w # 0 is the frequency and T = %}’5 the period of oscillation. The
corresponding microstress is computed via (12):

Pa(t) = sin(wt) Y (A3 + A 4(w)ef) — cos(wt) ZA w)eg, (23)

f=1 f=1
with o .
Aip(w) = ./o Aop(s) cos(ws)ds, (24)
Al(w) = /Ooo Aqp(s) sin(ws)ds. (25)

From (22) the phase lag of the microstress becomes evident, Ajs(w) being
the constitutive feature governing the out-of-phase term,which in turn is
responsible of the energy dissipation. Cauchy stress generated from (22)
assumes the form: '

T(t) = sin(wt)(G® + G.(w))E® — cos(wt)(G,(w))E° (26)

with

= Z‘: / o T5)Aap(s)(Po ® Pj) cos(ws)ds, (27)
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- %j/ T T5)Aap(s)(Pa @ Pp) sin(ws)ds. (28)

Gs(w) is termed loss modulus, since the energy dissipated in one period
[0,T1], is

/0 ’ T(t) - E(t)dt = —7G,(w)E° - E°. (29)

Specializing, for the sake of simplicity, to materials with Aqs(s) = C(s)8ag,
we obtain:

Gsijkl(w) = Z ToiTajTakTal /Ooo C’(s)sin(ws)ds. (30)

a=]1

Owing to the presence of the unit doublet vectors 7, in this expression,
it is concluded that the capacity of a granular material to dissipate energy
depends on the spatial organization of its particles, and not only on their
physical properties.

3.2 Constitutive Laws of Differential Type

Micro constitutive equations of differential type can be formulate. In the
very general form:

M(pg) = N(ep), (31)

where M, N are differential operators so defined:

M= , 32
,‘V:; ﬁatr (32)
N= 33
Z:g T atr (33)

and M];, NJ; are material constants. Equation (31), together with the
appropriate initial conditions, describe the time dependent behavior of the
doublets interactions. Therefore, the unit cell can be thought as formed by
n doublets which constitutive behavior we can perform through elementary
rheological models. The simplest in this class can be built imagining the con-
nections, between each pair of doublet particles, consist of springs and dash-
pots,this corresponds to the case of purely axial interactions,(Fgg.3,4). Thus
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we will concern with Micro Kelvin-Voigt Materials when the generic doublet
pair is jointed by a spring and a dashpot put in parallel. Otherwise we will
deal with Micro Mazwell Materials for the case in which the spring and dash-
pot are put in series. Various combinations of these can be (not arbitrary)
thought to represent more complex time dependent behavior. 2

Micro Kelvin-Voigt Materials
Choosing the coeflicients of (30) in the following way:

M, = bap, M ;=0, forr>0, (34)
N,=0 for r > 1, (35)

the constitutive equation follows:
Pa(t) = Noges(t) + Nogés(t). (36)

Equation (35) expresses the microstress in the a-doublet as a linear function
of the microstrains and the rate of microstrains occuring in the n doublets of
the unit cell. It corresponds to assume that each interaction is of Kelvin- Voigt
type.

From (35), for the macroscopic level:

T(t) = C(E(t)) + H(E(1)), (37)

with
C = Eﬁ; (Ta Tﬁ)N (P ® Pj), (38)
H = 62 (Ta- 70)N15(Pa @ Pg), (39)

representing,respectively, the elasticity and viscosity tensor. In components
form:

1]kl Z TatTﬁt ﬁTazTa]TﬁkT,@ly z]kl - Z TatT,Bt gTa':TaJTﬁkTﬁl
06 1 vﬁ 1

It is well known that the elementary models of Kelvin-Voigt and Maxwell cannot
represent viscoelastic behavior adequately (Tschoegl ,1989). Nevertheless, for the present
aim, they well illustrate the problem of transition micro-macro. .
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Thus we note that the assumptions made at the microstructure level, give
rise a macroscopic equation which model a Kelvin-Voigt like material. Then,
thanks to the relation microstrss-macrostress it is possible to formulate con-
stitutive equations in one dimension to obtain three dimensional constitutive
laws.

Micro Mazwell Materials
In this case we specialize the coefficients of (30) to be:

M;=0 for r > 1, (40)
Nls = bap, Nyp=0, forr#l. (41)

Thus, the governing equation for the microlevel is:
€a(t) = Magps(t) + MagPs(t) (42)

Unlike Kelvin-Voigt materials, it is not trivial to deduce the macroscopic
counterpart of(41); indeed, in order to compute the macrostresses, we have
to solve (41) with respect to p, and in doing this we are forced to reduce to
purely axial interactions. Assume:

Moﬁ =K 16aﬂ, (43)
Ml = k60, (44)

where p is the viscosity and % is the elastic modulus, we obtain upon
integration of (41)

Pa(t) = c(0)e(t) +/ s)ea(t — s)ds, (45)

with
ks
c(s) = kexp(*—;)- (46)

Finally, for the macroscopic level, the equation

T(t) = C[c(0)E +/ E(t — s)ds], (47)
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with

C=P,QP,, (48)

follows. We notice that the conditions under which it has been possible
to deduce the macro constitutive equation of Maxwell like material, from the
analogous formulated at the micro level,are quite strong. They regard either
both the specific interaction between doublets,and the geometric structure
of the unit cell. The last one is a recurring theme in our discussion which
relies on understanding how microscopic features influence the macroscopic
behavior of materials.

4 Boundary Value Problems

In this section the general problem of the equilibrium of viscoelastic granular
bodies will be formulated. First, the equations governing the micro prob-
lem are stated, and their relationship with the corresponding continuum-
mechanical problem is addressed. In section 4.2 the problem of plane shear
waves in a semi-infinite medium is solved.

4.1 General Formulation

Let be given a granular body immersed in a regular region V of the Euclidean
space(Fig.5). The boundary 9V is decomposed in two disjoint surface ele-
ments 6;V and 0,V.0On V the body field force b(x,?) is assigned.

Let us define a microscopic admissible viscoelastic process myp, to be the
set of 3n functions:

myp = [u& (X,t); Ea(xv t); pa(xat)]» (49)
such that,
1 3uaj Ouak
Eai = "2'Ta1Ta]Tak('é_x';' 8.’13] )z‘::a:ay (50)
~ Op,x 0*uo;
a};l TazTaJTak—é‘—x; + b= P"'g’t'z_ (51)

Pai = Fi(eg;), - (32)
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where F; is a viscoelastic constitutive functional.
Furthermore, let us define a macroscopic admissible viscoelastic process
My p, to be the triplet of functions:

Myp = [u(x,£); E(x,£) T(x,0)], (53)

We say that Myp is compatible with myp if the following are satisfied:

u = u, at X = Xg, (54)

P.,ET, = e,, (55)

T=) (Ta:Pa)Pa. (56)
az=1

Let be given the boundary data (u°,t°), then myp is a solution of the
corresponding dynamic viscoelastic boundary value problem if and only if it
satisfies the boundary conditions:

Ug; = U’ on 0.V, (57)

i

Z TaiTajTakPak; = t? on 62V (58)
a=1
Finally, if Myp is compatible with the solution myp, then it is a solution of

the differential system:
9T

aQU_,'

M D e
dz; +b;=p 922 (59)
1 8u1- Bu,-
Ej= E(E—x‘; + ‘5‘;;), (60)
T,-J-nj = tf. (61)

Thus we have obtained a characterization of the solution of the dynamic
boundary value problem, for the body V, in terms of micro-fields and macro-

fields.
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4.2 Plane Shear Waves

We suppose that a semi-infinite viscoelastic granular body occupies the region
y > 0. The geometry of the microstructure is assumed to be a face centered
cubic lattice (Fig.6) which valence is n = 3. The unit doublet vectors are:

T1 = (—cosvy,—siny), 7T,=(cosv,—siny), 73=(1,0). (62)

We are interested in studing the propagation into the body of a disturbance
caused by a pulse velocity in the e;-direction at the boundary y = 0. The
governing equations of the problem ,in the absence of body forces,are:

3 Opa(y,t) _ 0u(y,?)
C,Z_l To2(Ta * Ta) 3y ETPa (63)
Palt) = L (ASpea(t) + " Aals)es(t — s)ds), (64)
u(0,%) = voh[t]es, JLIE) u(y,t)=0, t>0, (65)

where A[t] is the unit step function.
Introducing the Laplace transform of a generic function:

F(s)= [ 1ty exp (—st)at, (66)

the above problem reduces, in the space of Laplace transforms, to the ordi-
nary differential equation:

2._.
sin2(27)8(5)—6—%;—3(/‘z’—32 — 2psti(y,s) =0 (67)
and the initial condition:
s11(0,8) = s~ vy, (68)
where a _ . _
#(s) = (A11(s) + Aza(s) — 2A12(8)(1 — 2 cos? 7)). (69)

The solution of (67),(68),in view of the second of (65), is:

u = s‘lvoex —Y S
ul(yas) - p[sin (27)9( )]7 ‘ (70)
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and the related velocity field is:

MQ(S)], (71)

i)_l(ll/a 5) = Vg €Xp [

with

Us) = (55 (72)

By specializing to the case of micro Mazwell material, 64 takes the form:

palt) = /Ot &(s)ealt — 8)ds, (73)

where

k
cft) = kexp (1), (74)

k and i being respectively the elastic and viscosity modulus. Besides, from
(69) and (72), the relations

é(s) = 2e(s), (75)

k
c1+ ) (76)
Us
follow. In view of the transform inversion, we look for an asymptotic solution
applying the binomial expansion to (76):
1k

Q(s)=1+§‘l;+"' (77)

Finally, by sostituting (77) in (70), the solution has the form

ur = voexp [~ (55 )ulhlt - 5 (78)

'.th .
b ) =k (19)
b — u'

Then we conclude, from (78) that the rate of propagation of the dis-
turbance cannot be greater than sin (27)(%)%. Furthermore (78), at ¢t =

k
A =sin{(29)(—
(7)(p

(ST

3By neglecting the terms involving positive powers of % we represent the behavior near
t=0. .
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(f)l Yoo gives the amplitude of the propagating discontinuity and its decay

is governed by (")l —2—;;15(77— As a matter of fact, we notice that the main
features of the phenomenon are affected, at the same time, by the moduli
k,p and by the structural parameter 5.

Thus, the microstresses (Fig.7), are given by

= e (expl-n(t - L))+ exsl-n(ZDrle - Lhr, (50)

_(QU;Z/\any (e p[ n(t -_ X)] + eXP[ (%])h[t - %])TZ’ (81)
ps = 0. (82)

The non zero component of Cauchy stress is

P2 =

Tip = 2 ”S"."A” (expl=n(t = )] + exp[-n(ZDrlt - ). (83)

5 Conclusion

A micromechanical approach, based on the concept of doublet of particles,
was employed in this article,to investigate general properties of linear vis-
coelastic materials. Both integral and differential constitutive laws were for-
mulated for the microstructure and their macroscopic counterparts were de-
rived on the basis of a relation connecting microstresses and macrostresses.
As aresult the macroconstitutive equations are characterized by the presence
of projection tensors representing the spatial arrangement of the unit doublet
vectors. Remarkable consequences are that dissipation as well as stability de-
pend on the geometrical organization of the particles and not only on their
physical properties. The general boundary value problem was formulated
enlightening the corrispondence between microfields and macrofields and the
problem of shear waves propagation in a semispace was addressed. It was
shown how microstress waves contribute to originate the macroscopic shear
wave.
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