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A long one-dimensional wire with a finite density of strong random impurities is modeled as a chain of
weakly coupled quantum dots. At low temperature T and applied voltage V its resistance is limited by
breaks: randomly occurring clusters of quantum dots with a special length distribution pattern that inhibit
the transport. Because of the interplay of interaction and disorder effects the resistance can exhibit T and
V dependences that can be approximated by power laws. The corresponding two exponents differ greatly
from each other and depend not only on the intrinsic electronic parameters but also on the impurity
distribution statistics.

DOI: 10.1103/PhysRevLett.97.096601 PACS numbers: 72.20.Ee, 72.20.Ht, 73.63.Nm

Recently much interest has been attracted by the ob-
servations of algebraic current-voltage and current-
temperature dependences in one-dimensional (1D) elec-
tron systems. The power laws, I / Vb�1 at high V and I /
TaV at low V, appear in a variety of conductors including
carbon nanotubes [1–4], nanowires [5–9], and polymer
nanofibers [10]. This implies that the electron transport in
such systems is effectively blocked by some barriers at T,
V ! 0. It is a question of both fundamental and practical
interest to determine what these barriers are and what
controls the exponents a and b.

In the model with a single opaque barrier the power law
can indeed appear if electron interactions are strong, in
which case the effective transparency of the barrier is
governed by the T and V-dependent suppression of elec-
tron tunneling into a correlated many-body state [11].
Similar physics may operate in the quasi-1D case [12–
15]. Barring some difference in computational methods,
the existing theories agree that the single-barrier exponents
should be equal. For an interior barrier in a 1D wire they
are given by a � b � 2�K�1 � 1�, where K < 1 is deter-
mined by the interaction strength [11]. Experiments with
wires a few�m or shorter in length [1–3,7,9] support these
predictions. Yet in wires of length L * 10 �m the ratio
a=b is almost always larger than unity. It is usually be-
tween two and five [5,8–10]. To explain this behavior we
propose that for long wires the single-barrier model may be
unrealistic. Indeed, observations of Coulomb blockade
(CB) at low T [1,2,10] suggest that a long wire typically
contains multiple impurities that convert it into a chain of
weakly coupled 1D quantum dots.

We show that for such a system there indeed exists a
broad parameter regime where the function I�V; T� can be
approximated by power laws with a� b. They originate
from the statistics of impurity distribution not from

Luttinger-liquid effects [11]. Although in strictly 1D wires
these power laws would be somewhat obscured by meso-
scopic fluctuations, they may be observable in a cleaner
manner in quasi-1D systems [5,8–10]. Under certain real-
istic conditions (discussed below) different transverse
channels of such systems can act as independent 1D con-
ductors in parallel, so that our results are fully relevant yet
mesoscopic fluctuations are averaged out.

The model we study is similar to that of Refs. [16–18]
and is depicted in Fig. 1(a). Identical impurities (e.g.,
dopants of the same chemical species) are positioned along
the wire according to a Poissonian distribution with the
mean spacing l� 1=n, where n is the average electron
density. The tunneling transparency of each impurity is
e�s � 1. Electrons occupy a partially filled band with a
generic (e.g., parabolic) dispersion. Their spin is ignored.
Electron-electron interactions are short-range, e.g., due to
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FIG. 1. (a) Illustration of the model. The consecutively num-
bered dots represent strong random impurities. (b) Typical shape
of an Ohmic break. (c) A typical non-Ohmic break.
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screening by a nearby gate, so that the system has a finite
(geometry-dependent) capacitance per unit length C. The
possibility of thermal activation and a finite conductance in
the CB regime is ensured by weak coupling of electrons to
the thermal bath of phonons. (The conductance depends on
this coupling through a subleading prefactor, if at all [19].
We ignore such prefactors here because they are non-
universal.)

The ground state and the low-energy charge excitations
of this model are well approximated by the classical limit
in which the number of electrons in each dot is restricted to
be an integer. In the ground state it is the integer qj closest
to the ‘‘background charge’’ Qj � nlj � ��=�j�, where �
is the electrochemical potential and lj is the length of the
dot. The charging energy �j � �d�=dn� C

�1�=lj in-
cludes contributions both due to a finite thermodynamic
density of states dn=d� (the analog of the level-spacing in
bulk quantum dots) and due to electrostatics, as usual. Here
� � ��U and U are the chemical and the electrostatic
potentials, respectively, and the units e � kB � 1 are used.
The typical charging energy is � � �d�=dn� C�1�=l.

Changing the electron number in the dot bym incurs the
energy cost of Emj � �1=2��jm2 � �jm�qj �Qj�. Hence,
the equilibrium probability of having qj �m electrons in
the jth dot is given by fmj � exp���Emj �=Z, where � �
1=T and Z �

P
m exp���Emj �. The dot is in the CB state if

jqj �Qjj � 1=2� T=�j. In this case onlym � 0,�1 are
important. As common in CB literature, one can view
��j 	 �� E�1

j as the energy of the lowest unoccupied
(highest occupied) ‘‘single-particle’’ orbital. Important in
the following is the probability P���; ��� of having no
charge excitations within a given energy interval, E�1

j >
�� [20]. Function P depends only on � � �� � �� and can
be easily calculated:

 P��� �
Z dlj

l
e�lj=l

�
1�

�
�j

�
� 1�

�
�
�1� e��=�� (1)

(the integration is constrained to �j > �). It behaves as
�=�2�� at �� �, and so the average charge excitation gap
h�i � �

R
�dP��� is logarithmically divergent [21]. Below

we turn to the study of transport and show that this diver-
gence and the constrains of the 1D geometry lead to new
conductivity laws.

We focus on the case of low voltages, V < Vc �
L�=�2l�, where the wire is in the CB state [22]. Electron
transitions between any two dots j and k occur by the
combination of quantum tunneling and thermal activation.
For jj� kj � 1 the tunneling is said to be sequential;
otherwise, it is referred to as cotunneling [14]. In prior
studies of random quantum dot arrays [17,23–25] the
analogy between this transport mechanism and the
variable-range hopping [26,27] (VRH) has been noted.
Thus, the typical length of a hop jj� kj is established
from the competition between activation and tunneling.
Longer hops allow electrons to find transitions of lower

activation energy but involve a higher tunneling action
sjj� kj. The crucial point is then as follows. It is known
that 1D VRH (of noninteracting electrons) is special: the
conductance is limited not by typical hops but by rare
highly resistive spots—‘‘breaks’’ [28–31]. Therefore,
one may anticipate that some type of breaks operate in
our model as well. Indeed, the calculation below shows that
at not too low T the role of breaks is played by rare clusters
of densely spaced impurities, see Fig. 1(a) [32].

The calculation closely parallels those of Refs. [30,31].
It starts by noting that if breaks exist, they act as transport
bottlenecks where the most of the applied voltage drops. In
contrast, the dots between two adjacent breaks are in a
quasiequilibrium. Their electrochemical potentials �j are
nearly equal while the occupation factors of their charge
excitations are given by f�1

j ’ exp
����j � ��j ��, where
�j is the local chemical potential. This allows one to get a
simple formula for the net current Ijk from a dot j to
another dot k. For the most relevant case of a large activa-
tion energy, Ejk � T, it coincides with the standard ex-
pression of the VRH theory:

 Ijk � I0e
�sjj�kje��Ekj sinh���j � �k�; (2)

 Ekj �
1

2
min
�;���

�j��j ��jj � j�
�
k ��kj � j�

�
j � �

�
kj�; (3)

where I0 � const is some prefactor [33]. Consider first the
Ohmic regime. Here �j ’ � � const and the effective
resistance Rjk � ��j � �k�=Ijk for each link of the hopping
network can be defined: Rjk � R0 exp��Ejk � sjj� kj�,
with R0 � T=I0. Denote by Pu�u� the probability per unit
length of finding a break of resistance at least R0e

u, i.e.,
such a configuration of dots that Rjk 
 R0e

u regardless of
how j to the left of the break and k to the right of it are
chosen. For u� s this break contains many, at least u=s,
dots. We can then talk about its shape, i.e., smooth enve-
lope functions "��z�> 0 such that ����j ��� 
 "��j�
for all j in the break, see Fig. 1(b). The probability in
question can be approximated as follows:

 Pu�u� �max
Y
j

P
"��j� � "��j��; (4)

where the maximum is sought under the constraint Rjk 

R0eu for all (j k) pairs. Verbatim repetition of the steps
taken in Ref. [30] establishes that the break has a familiar
diamondlike shape [30,31], see Fig. 1(b).

It requires some effort to finish the derivation of Pu for
an arbitrary u. However, for Tu� � the final result can be
obtained if the actual shape of the break is approximated by
a rectangle of the same width and height, i.e., if we con-
sider a break of N � u=s dots with the charging energy Tu
each. This gives Pu�u� � 
P�Tu��N, and so

 lnPu�u� ’ ��u=s� ln�Tu=��; Tu� �: (5)

A non-Ohmic break, where Vb 	 �j � �k � T for j and k
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on the opposite sides of the break, can be treated similarly.
The necessary steps are spelled out in Ref. [31]. Namely,
consider a state of a given fixed current I � I0 exp��uI�,
so that the free parameter is the voltage Vb generated by a
break. Denote by PV�Vb� the probability per unit length of
finding a non-Ohmic break with the voltage drop of at least
Vb. Once again approximating the break shape by a rect-
angle "� � TuI � �Vb=L� with L� 1 [34] and using
Eq. (4), we find this time

 lnPV�Vb� ’ lnPu�uI� � Vb=�sLT�: (6)

This entails that the average voltage drop V� across a non-
Ohmic break is V� � sLT. Thus, if V � V�, many breaks
must contribute. The derivation of I�V� is especially simple
in this case, so we prefer to finish it first and turn to the
Ohmic one later.

The total voltage V is the sum of voltages generated by
all non-Ohmic breaks (contribution of Ohmic ones is sub-
leading). For V � V� (many breaks) the sum can be re-
placed by the integral V � L

R
dVbPV�Vb�. Using Eqs. (5)

and (6) we get a transcendental equation for uI

 uI � s ln�c1LT=Vl�= ln�TuI=��; V� � V � Vc;

(7)

where c1 is a slow dimensionless function of V and T. We
conclude that the dependence of I on V is close to the
power law with a weakly T and V-dependent exponent

 b ’ s= ln�TuI=��; T � �=s: (8)

This is the first of our two main results. As V decreases to a
number ca. V� the resistance of a wire becomes dominated
by the single largest break, and so it exhibits strong en-
semble fluctuations. To illustrate how to handle this case,
let us consider next the Ohmic regime where such fluctua-
tions are the strongest.

In this regime the resistance R of the wire is the sum of
Ohmic resistances Rj � R0 exp�uj�, where uj’s form a set
of Nb � L=lb independent random numbers with the
probability distribution function (PDF) lbPu�u� each
[Eq. (5)]. Parameter l�1

b 	
R
Pu�u�du enters the final result

only under the logarithm, so it need not be specified
precisely.

Following [30], our goal is to compute PR, the PDF of R.
We begin by noting that the PDF p of Rj behaves as

 p�Rj� � R
�1��
j ; � � s�1 ln
�T=�� ln�Rj=R0��; (9)

cf. Eq. (5). Since ��Rj� is a very slow function, p�Rj� is
basically a power law. Hence, the random variable R> 0 is
a Lévy random walk. A celebrated theorem of the proba-
bility theory immediately tells us that in the limit of large
Nb the PDF of R approaches the stable Lévy distribution
[35] (often encountered in plasma, astro, and atomic phys-
ics, as well as in biology, economics, and reliability the-
ory). For �� 1 it becomes identical to Fréchet extreme-
value statistics PR�R� / R�1��� exp
��R�=R��� �. In turn,
the PDF of the conductance G � 1=R has the form

 PG�G� � const�G���1 exp
��R�G��� �; (10)

so that its first two moments are given by

 hGiR� � ��1� ��1
� �; hG2iR2

� � ��1� 2��1
� �; (11)

��z� being the Euler gamma function.
The equations for�� andR� are obtained by the standard

procedure [35] (see also Ref. [30]):

 �� ln�R�=R0� � ln�Nb=���; �� � ��R��: (12)

Combined with Eq. (9), they yield

 ln�R�=R0� ’
s ln�L=��lb�

ln
�Ts=�� ln�L=��lb��
: (13)

Not surprisingly, the form of Eq. (10) is identical to that
found in Ref. [30] for another model; however, the T
dependence of R� in that case is different from Eq. (13).
If only a limited range of T is accessible, which is often the
case in the experiment, the latter can be approximated by a
power law with a weakly varying exponent. In turn, this
entails hGi / Ta, where a is given by

 a �
d lnhGi
d lnT

’ b
ln�c2L=l�
ln�Ts=��

(14)

and c2 is an algebraic function of T [36]. This is our second
main result. As emphasized above, a� b� 1.

Equation (14) applies at T >�=
s ln�L=l�� and for wires
of length l� L� l exp�es�. The lower bound guarantees
that the wire contains a large number of impurities. The
upper bound, which is likely to be satisfied in practice,
ensures �� � 1, so that Eq. (10) holds.

The PDF of Eq. (10) describes the statistics of G in an
ensemble of wires at a given T. However, fluctuations of
comparable magnitude would appear in the same wire as T
varies [29,30,37]. They would be superimposed on the
backbone dependence G / Ta. According to Eq. (11), the
amplitude of such fluctuations is large in the limit we
considered, �� � 1. Let us however estimate how small
�� can really be. For the experimentally accessible regime
of ln�R�=R� & 10 and Nb, L=l of a few hundred, Eq. (12)
gives �� � 0:5. In this case, the fluctuations of G are still
significant [cf. Eq. (11)], and so verification of our predic-
tions in truly 1D systems would require statistical analysis
of the data [37] and/or ensemble averaging.

At this point we draw attention to the fact that the cited
experiments [5,8–10] were actually performed on quasi-
1D systems with a large number N of transverse channels.
Suppose that conductances of different channels are addi-
tive and statistically independent, then for �� � 0:5 the
relative fluctuations of the total G will be

���������
5=N

p
. This

amounts to 10% for a representative number of N � 500,
and so the power laws should no longer be obscured by
fluctuations. The above scenario certainly needs an experi-
mental verification. It will not hold for materials where
transverse channels are coupled. However, there are sys-
tems in which it is reasonable, e.g., those with a large
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concentration of neutral (in general, short-range) impuri-
ties and strong anisotropy of longitudinal and transverse
transport; see Ref. [17].

Finally, let us comment on the expected values of a, b,
and s. For a 1D wire the result s � � lnt� �K�1 � 1��
ln�E2

F=�j�j�1� can be obtained [17,18,25]. Here t� 1 is
the bare tunneling transparency of the impurity and EF, �j
are, respectively, the high and the low-energy cutoffs for
the Luttinger-liquid effects. The latter cutoff �j � K�j /

1=lj is the energy spacing of the collective neutral excita-
tions of the jth dot. In comparison, for an impurity in an
infinite wire, the low-energy cutoff is set by either V or T
[11]. Since s depends on lj’s only logarithmically, our
approximation that s is the same for all impurities is
justified. Note that �j � KTu / T ln�L=l� for important
Ohmic breaks, so that, nominally, s has the same logarith-
mic T dependence as in the single-barrier case [11].
Nevertheless, due to the (modestly) large logarithmic fac-
tors ln�EF=�j� and ln�L=l� both predicted exponents a and
b would noticeably exceed the single-impurity one, in this
case, 2�K�1 � 1�.

Semiconductor nanowires, polymer nanofibers, and car-
bon nanotubes appear promising for a continuing inves-
tigation of the physics we discussed. We call for a
systematic study of transport in such wires.

We thank the Hellman Fund, the Sloan Foundation,
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