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Reply from George A. Brooks

Langan and Navarro are thanked for
providing commentary on our paper,
‘Lactate in contemporary biology: a phoenix
risen’ (Brooks et al., 2022). We regard their
thoughtful letter as a note in addition to our
review on the lactate shuttle that is directly
related to their provocative title: ‘How high
can the lactate phoenix rise?’ (Langan &
Navarro, 2022). Clearly, we do not know,
but it is imperative to find the apogee.
Regarding the diverse signalling roles of
lactate Langan and Navarro noted the role
of lactate in activating the carotid body
olfactory receptor (Olfr78) (Chang et al.,
2015). Give the importance of breathing in
physiology, ours was a significant omission
making their contribution noteworthy.
‘How high’ indeed!
Langan and Navarro distinguished
between the roles of lactate and hypoxia in
hypoxia-inducible factor (HIF) signalling.
We touched on that also in our review, but
for us to have emphasized the role of lactate
over hypoxia in HIF signalling might have
been viewed as over reaching.
In our review we noted infancy of the field
of histone lactylation on gene expression
(Zhang et al., 2019). Already we see
extensive evidence not only of histone,
but protein lactylation (Leija et al., unpub-
lished). Importantly, the role of lactate as
a transcription factor was foreshadowed in
an earlier report (Hashimoto et al., 2007).
In our review we briefly touched on
the role of lactate as fuelling the spiral
mitochondrial reticulum in sperm tails.
Most recently, Sharpley et al. commented
extensively on the role of lactate in
embryogenesis (Sharpley et al., 2020).
In terms of a launchpad for studies of
lactate’s role in biology, what could be
more fundamental than the moment of
conception and subsequent embryogenesis?
In sum, we thank Langan and Navarro for
extending the discussion on the biological
roles of lactate, particularly as a signalling
molecule. As well, others have made similar
observations, for instance the role of
lactate in glutamatergic signalling in the
brain (Pellerin & Magistretti, 1994). One
significant correction we have to offer is to

their penultimate sentence and citation on
lactate as the primary circulating energy
source. The paper cited was confirmatory;
there having been many previous primary
sources and reviews on lactate as an energy
source (e.g. Brooks, 1985; Brooks, 2002).
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