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ABSTRACT OF THE THESIS

Encoding Abstract Syntax Trees (AST)
via distance based

self-attention mechanism

by

Rohan Dutta
Master of Science in Electrical & Computer Engineering
University of California, Los Angeles, 2021

Professor Jonathan Chau-Yan Kao, Chair

Code summarization and generation are valuable tasks to master for their wide range of
applications in code readability and code translation to name a few. This research work
is an extension of previously conducted research on the use of PLBART, a sequence-to-
sequence transformer model used for a variety of program and language understanding and
generation (PLUG) tasks. The ultimate goal is to improve the performance of PLBART
by modifying the noise function of it’s denoising autoencoder. The current noise function
corrupts code tokens randomly, but we hope to improve performance by masking nodes on
the corresponding Abstract Syntax Tree (AST) instead.To integrate the AST structure into
the self-attention mechanism, we adopt the dependency-guided self-attention mechanism ex-
plored in NLP literature in particular [ZKC21]. However, from the AST, we cannot compute
distances between all tokens that appear in a code since they need not necessarily appear
in the parse tree structure. So, we investigate how we can derive distances between tokens

from the AST structure.
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CHAPTER 1

Introduction

1.1 Code Summarization and generation

The premise of this research is to be able to improve performance in Code Summarization
and generation tasks. The idea is to train a Transformer model to be able to summarize
programming language i.e. Code Summarization (Programming Language to Natural Lan-

guage). A simple example in Fig 1.1

Code Generation is essentially the reverse process of Code Summarization. Being able

to generate code from natural language. A simple example would look like Fig 1.2

Note that both examples use Python3 as the source or destination programming language
and English as the source or destination natural language. Hence training the transformer

model can be extended to many different programming languages such as Java, Ruby, JS,

def function_x{n):

f1 =8

£2 =1

if (n < 1):
return | Print the first n fibonacci numbers
print(fl, end=" ") '

for x in range(l, n):
print(f2, end=" ")
next = f1 + 2
1 = f2
f2 = next

Figure 1.1: Code Summarization



def ()

sum = @
. . x =1
Print the sum of the first while x <=n
n natural numbers sum = sum + X
¥x=x+1

return sum

Figure 1.2: Code Generation

L — — PL;
1 code Summarization Code Generation 2

Figure 1.3: Code Translation

PHP, Go, etc. together. So, essentially this is can be formulated as a multilingual multi-task
learning problem. Most research in this field restricts the natural language to English due
to easy availability of data in English in most predominant data sources such as GitHub,

Stack Overflow, etc.

The advantages of perfecting such a multilingual multitask model has many apparent
advantages. For starters it would be easy for programmers to summarize code without

having to read through the code and this could help speed up many pipelines in industry.

We would also be able to perfect code translation as a direct application of this for
example we could translate Programming Language (PL) from Language 1 (L1) to Language

(L2) using Natural Language as an intermediary. See Fig 1.3

Such a process would allow translation between languages such as Java and Python, vice
versa, and so on. In short the advantages of being able to achieve better performances in
Code Summarization and Generation are manifold and we attempt to achieve improvements

in the same.



1.2 Denoising Autoencoder

Autoencoders are Neural Networks which are commonly used for feature selection and ex-
traction. However, when there are more nodes in the hidden layer than there are inputs, the
Network is risking to learn the so-called “Identity Function” meaning that the output equals
the input, marking the Autoencoder useless. Denoising Autoencoders solve this problem by

corrupting the data on purpose by randomly nulling some of the input values. [Monl17]

1.3 PLBART

This research work is an extension of the PLBART paper [ACR21]. PLBART is a sequence-
to-sequence model capable of performing a broad spectrum of program and language under-
standing and generation tasks (PLUG). PLBART is trained on code summarization: Pro-
gramming Language to Natural Language (PL —NL) and generation (NL —PL) on many
languages (e.g., Java, Python, Ruby, JS, PHP, Go, etc.) together via denoising autoencod-
ing. Denoising autoencoding (details in 1.2) involves reconstructing an input text that is
corrupted by a noise function. This forces the model to learn language syntax and semantics.

Different noising strategies may include token masking, token deletion and token infilling.

PLBART rivals or outperforms existing state-of-the-art models in seven programming
languages. Also, further analysis reveals that PLBART learns program syntax, style, logical
flow and other features that are crucial to program. However, PLBART was found to have
a very small improvement on summarization tasks due to multilingual multi-task modeling.
Furthermore, training models on languages grouped by their characteristics, didn’t provide
any significant benefit on the downstream tasks. An example of languages grouped by their
characteristics are as follows:

- Compiled (Java, Go, Ruby) vs Interpreted (Python, PHP, JS)
- Strong typed (Java, Go, Ruby, Python) vs Weak typed (PHP, JS)
- Static (Java, Go) vs Dynamic (Ruby, Python, PHP, JS)
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1.4 Abstract Syntax Trees (AST)

1.4.1 Syntax trees

A syntax tree in linguistics is a tree that represents the syntactic structure of simple English
sentences and phrases. For example the simple sentence “the man plays soccer” can be

broken down into a noun phrase (NP) and a verb Phrase (VP) and so on, as in Fig 1.4.

1.4.2 What are AST’s?

Like syntax trees in linguistics, an abstract syntax tree (AST) is a way of representing the
syntax of a programming language as a hierarchical tree-like structure. ASTs are widely used
in compilers to check code for accuracy. If the generated tree contains errors, the compiler
prints an error message. ASTs are highly specific to programming languages, but research
is underway on universal syntax trees. Examples of Java and Python AST’s are in Fig 1.5

and Fig 1.6 respectively

1.4.3 Why AST’s?

Manipulating text is dangerous in code; it shows the least amount of context. Ex: trying to
manipulate text using string replacements or regular expressions. Even manipulating tokens
aren’t easy. While we might know what a variable is, if we would want to rename it, we
would have no insight into things like the scope of the variable or any variables it might clash
with. The AST provides enough information about the structure of code that we can modify
it with more confidence. We could for example determine where a variable is declared and
know exactly which part of the program this affects due to the tree structure. The four steps

of code modification using AST: Parsing, Traversing, Modify, Generate.



.--’ff;maﬂ
NP VP
-~ s
.-'"'f \ .--""J-f MH\H

Det N V NP

the man plays N

soccer

Figure 1.4: Syntax Trees in Lingustics
1.4.4 How AST’s work on code?

A tokenizer splits the input stream representing the expression into a list of tokens, and
a parser which takes the list of tokens and constructs a parse tree or ast from it. So, the
expression 1+ 2 * (3 4+ 4) might be split into a list of tokens like this:

1-int

+ - add_operator

2 - int

* - mul_operator

( - lparen

3 - int

+ - add_operator

4 - int

) - rparen

The first column is the actual text value. The second represents the token type. These



Program

Variable
Declaration

Declarations

Variable
Declarator

Identifier Literal

Figure 1.5: AST in Java
Source code Parse into AST

def max(a, b):
x=0
If b>a:
x=b
else:
X=a
return x

Figure 1.6: AST example Python source: |[GRL21]

tokens are fed into the parser, which is built from grammar and recognizes the tokens and

builds the parse tree.



CHAPTER 2

Related Works

2.1 GraphCodeBERT: Pre-Training code representations with data
flow [GRL21]

The paper leverages semantic-level information of code, i.e. data flow, for pretraining. Data
flow is a graph, in which nodes represent variables and edges represent the relation of “where-
the-value-comes-from” between variables. Compared with AST, data flow is less complex
and does not bring an unnecessarily deep hierarchy, the property of which makes the model
more efficient.
The model takes source code paired with comments and the corresponding data flow as the
input and is pre-trained using standard masked language modeling. It is trained with two
structure-aware tasks:

e predict where a variable is identified from

e data flow edges prediction between variables
In summary, the contributions of this paper are:
(1) GraphCodeBERT is the first pre-trained model that leverages semantic structure of code
to learn code representation.
(2) Introduction of two new structure-aware pre-training tasks for learning representation
from source code and data flow.
(3) GraphCodeBERT provides significant improvement on four downstream tasks, i.e. code

search, clone detection, code translation, and code refinement.



2.2 PLBART: Unified Pre-training for Program Understanding
and Generation [ACR21]

This paper introduces PLBART, a sequence-to-sequence model capable of performing a
broad spectrum of program and language understanding and generation tasks (PLUG). It
uses denoising sequence-to-sequence pretraining to utilize unlabeled data in PL and NL.
Such pre-training lets PLBART reason about language syntax and semantics. It achieves
state of the art performance in software engineering tasks, including code summarization,

code generation, and code translation. (Discussed in detail in 1.3)

2.3 Project CodeNet: Simplified Parse Tree [PKJ21]

Introduced ”Project CodeNet”, a first-of-its-kind, very large scale, diverse, and high-quality
dataset to accelerate the algorithmic advancements in Al for Code. The dataset consists
of 14M code samples and about 500M lines of code in 55 different programming languages,
sample input and output test sets for over TM code samples. The coding tasks include
code similarity, classification for advances in code recommendation algorithms, and code
translation between a large variety programming language, to advances in code performance
(both runtime, and memory) improvement techniques. Additionally: several preprocessing
tools in Project CodeNet can be used to transform source codes into representations that

can be readily used as inputs into machine learning models. Ex: SPT (simplified Parse Tree)

2.3.1 SPT-Generator Batch Processing

Employed the SPT generator tool to Al4Code SPT generator Featurize programming source
code for the ML/DL pipeline in AT4Code project which currently supports 4 languages (C,
C++, Python, Java). This tool generates Simplified Parse Tree (SPT) for each recognized

program, which follows the similar idea presented in Facebook Aroma paper [LYB19].



2.4 Language-Agnostic Representation learning of source code from

structure and context [ZKC21]

This paper introduces the Code Transformer model that integrates both context and struc-
ture into it’s self-attention mechanism. Self-attention is the core operation powering the
transformer [VSP17] to focus on relevant parts of the input. The source code provides the
context and it’s corresponding Abstract Syntax Tree (AST) provides the structure. The
AST is a complementary representation of the same computer program discussed in Chapter
1.4. The Code Transformer model uses language agnostic features of the source code and
AST and can hence be extended to multiple languages. This paper achieves state of the art

on code summarization in 5 languages.

2.5 Code and Named Entity Recognition in StackOverflow [ACR20]

This paper introduces a new named entity recognition (NER) corpus for the computer pro-
gramming domain, consisting of 15,372 sentences annotated with 20 fine-grained entity types.
Indomain BERT [DCL19] representations (BERTOverflow) were trained on 152 million sen-
tences from StackOverflow, which lead to an absolute increase of +10 F1 score over off-the-
shelf BERT.The paper also presens the Soft NER model which achieves an overall 79.10 F1
score for codeand named entity recognition on StackOverflow data. The model incorporates
a context-independent code token classifier with corpus-level features to improve the BERT

based tagging mode



CHAPTER 3

Methodology

In this chapter we discuss the pipeline we use to obtain token mappings from the raw
code/method snippets downloaded in our datasets (described in Chapter 4). We make use

of the stagel preprocessing pipeline used in [ZKC21] which consists of several steps:

e (1) Tokenizing the code snippet

(2) Apply snippet-level filtering (removing comments, masking strings, etc)

e (3) Parsing the AST from the code snippet (this takes the biggest amount of time)
e (4) Transform the AST parsing result into a graph

e (5) Calculate mapping between tokens and graph nodes

3.1 Textual Code Snippet Preprocessing

Textual code snippet preprocessing consists of both Step 1: Tokenizing the code snippet
and Step 2: Applying snippet level filtering. We tokenize code snippets with a language
specific tokenizer: Pygments. Further preprocessing includes removing comments, removing
empty lines. Hard coded string and numbers are replaced with a special "mask string” and
"mask number”. Indentation style is detected and replaced with a corresponging indent or
dedent token. Tokens are made into sub tokens of 5 and if a token consists of less than 5 sub
tokens, the remaining spaces are filled with a special [PAD] token. Any remaining tokens

that only consist of white spaces are removed. The only white space characters that are kept

10



are line breaks. Finally, code snippets where the Pygments tokenizer cannot parse a token

are discarded.

3.2 Parsing the AST

To obtain language-specific AST’s we make use of AST parser from the java-parser project
for java code and for Python, JavaScript, Ruby and Go, we use semantic. Snippets that lead

to an AST parse error are discarded.

3.2.1 Semantic

Semantic [Git] is a Haskell library and command line tool for parsing, analyzing, and com-
paring source code.The first stage of our preprocessing pipeline makes use of semantic to
generate ASTs from code snippet that are written in Python, JavaScript, Ruby or Go. Se-
mantic is capable of parsing source code in a variety of languages. The generated ASTs
mostly share a common set of node types which is important for multilingual experiments
such as this one. Unfortunately semantic does not Java and hence a separate AST parser
must be employed. To obtain the ASTs, we rely on the —json-graph option that has been
dropped temporarily from semantic. As such, the stage 1 preprocessing requires a semantic

executable built from a revision before Mar 27, 2020.

3.2.2 JavaParser and Java Method Extractor

As Java is not currently supported by semantic, we employ a separate AST parser based
on the javaparser project [Jav]. We use the Java Parser project contains a prebuilt java-
parser-1.0-SNAPSHOT jar. To use the code2seq Java dataset or assemble ones own Java
dataset to train the CodeTransformer one can also make use of the JavaMethodExtractor-

1.0.0-SNAPSHOT .jar that gathers Java methods from a folder structure of class files. This

11



project contains a set of libraries implementing a Java 1.0 - Java 15 Parser with advanced
analysis functionalities. This includes preview features to Java 13, with Java 14 preview

features work-in-progress.

3.3 Obtain mapping between tokens and graph nodes

The main objective of this research is obtaining a function mapping code tokens based on
ranges, i.e an adjacency representation.To do this, every token is assigned to the node in the
AST with shortest source range that still encompasses the source range of the token. (see
Fig 3.1). Making an assumption that source ranges of child nodes do not overlap would
make things a lot easier when finding the smallest encompassing source range. This would
imply greedily selecting at every layer in the AST the child that encompasses the token’s
source range, with the assumption the child at every layer would be unique or non existent.
However this does not hold true for all ASTS and hence as a heuristic, we greedily select
the child node with the shorter source range in case there were multiple child nodes with
encompassing source ranges. This approximation seems to be sufficient in our case, and
limits runtime as we do not have to consider multiple paths in the AST. It is also sufficient
to stop when no child node encompasses the source range of the token, as in ASTs the source

ranges of child nodes are always contained in the source ranges of their parent.

3.4 Using token mapping in denoising autoencoder

In this research we explore a novel denoising autoencoder where the noise function randomly
picks a code token and masks out a given number (15-30 %) of tokens in the abstract syntax
tree (AST) of the code. This is achieved in two steps: 1) Obtaining the AST by parsing the
code snippets: for Java, we use the AST parser from the java-parser project, and we use

Semantic for Python, JavaScript, Ruby and Go. 2) Obtaining a graph structure mapping

12



1: def test() -> NoReturn
2: pass

|— Example snippet

Has children with
overlapping ranges

Annotation

O@

range:
1:15 - 1:23

NoReturn

Figure 3.1: Code snippet and corresponding AST. Source: [ZKC21]

code tokens to nodes of the AST. This is achieved by mapping every token to the node in

the AST with shortest source range that still encompasses the source range of the token.

13



CHAPTER 4

Dataset Overview

The ability to generate natural language sequences from source code snippets has a variety
of applications such as code summarization, documentation, and retrieval. Sequence-to-
sequence (seq2seq) models, such as PLBART have achieved state-of-the-art performance on
these tasks by treating source code as a sequence of tokens. Hence having a good dataset for
such research is imperative. In this research we use mainly two datasets: Code2seq (Java-
small, Java-medium and Java-large) and CodeSearchNet (CSN) (Python, Ruby, Javascript,
Go).

4.1 Code2seq

[ABL19] presents an alternative approach that leverages the syntactic structure of program-
ming languages to better encode source code. Their model represents a code snippet as the
set of compositional paths in its abstract syntax tree (AST) and uses attention to select the
relevant paths while decoding. The code2seq dataset contains the files that hold training,
test and validation sets, and a dict file for various dataset properties. In particular code

methods in java-small, java-large and java-med.

4.2 CodeSearchNet (CSN)

CodeSearchNet (CSN) is a collection of datasets and benchmarks that explore the problem

of code retrieval using natural language. This research is a continuation of some ideas

14



Samples per partition
Dataset Train Val. Test

CSN-Python 412,178 23,107 22,176
CSN-Javascript 123,889 8,253 6,483

CSN-Ruby 48,791 2209 2,279
CSN-Go 317,832 14,242 14,291
Java-small 691,974 23844 57,088

Table 4.1: CSN Dataset Statistics. Source: [ZKC21]

presented in [HWG19] and is a joint collaboration between GitHub and the Deep Program
Understanding group at Microsoft Research - Cambridge. It aims to provide a platform for

community research on semantic code search via the following:

e Instructions for obtaining large corpora of relevant data
e Open source code for a range of baseline models, along with pre-trained weights
e Baseline evaluation metrics and utilities

e Mechanisms to track progress on a shared community benchmark hosted by Weights

& Biases

CodeSearchNet aims at engaging with the broader machine learning and NLP community
regarding the relationship between source code and natural language. The dataset consistes
of code snippets in the following languages: python, javascript, ruby, go in zipped jsonl files

separated as train , test and valid datasets.

15



CHAPTER 5

Results

Some of the achievements of this research includes being able to research and identify a
possible area for improving the performance of PLBART via modifying the noise function

of the denoising autoencoder.

Secondly we employ techniques used in [ZKC21] and modify their code to obtain token
mappings which is essentially the mapping between code tokens and AST graph nodes for
different languages such as Python, Ruby, Javascript and Go. Main outcome being the zip

files containing the following as output:

e tokens_batch: code tokens obtained from the batch of code snippets being processed

after tokenization
e ast_graph_batch: corresponding AST graphs of the code tokens
e token_mapping_batch: mapping between code tokens and ast graph
e stripped_code_snippets: corresponding stripped code snippets

e func_names: function names of the batch

docstrings: other strings, comments or descriptions

This token_mapping (mapping between token and graph nodes) for Python, Ruby Go
can be further employed in the Denoising Autoencoder used in PLBART to modify it’s noise

function as discussed in Chapter 3.
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Unfortunately there were issues while running this modified code for our Java Dataset.
Java employs a different parser (not semantic) from the JavaParser library, and the JavaMeth-
odExtracter provided appears to be invalid or corrupted and hence token mappings for Java

code have not yet been obtained.

Due to the lack of time this script has not yet been incorporated in the PLBART which
uses fairseq [OEB19] for it’s PLUG tasks, and pretraining has not been run to observe corre-
sponding performance metrics. Our hope is that since we have encoded AST structure into
the self attention mechanism by obtaining the token mappings, the denoising autoencoder
would mask or delete code tokens linked directly to the structure of the AST and hence the

sequence-to-sequence model would have more robust learning as a consequence.
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CHAPTER 6

Conclusion and Future Works

In conclusion, our objective of investigating a technique to encode Abstract Syntax Trees
(ASTs) via distance based self-attention mechanism was achieved by referring to work by
[ZKC21] and obtaining a mapping between code tokens and AST nodes for languages such
as Python, Ruby, Javascript and Go.

Future work for this research would include:

e Obtain token mappings for the code2seq java dataset as well, after resolving issues

with the invalid Java Method Extractor.

e Searching for Parsers in C, C++ and PHP and expanding to include these languages,
particularly because PLBART [ACR21] supports these languages as well.

e Integrate the token mapping code with PLBART to observe (hopefully improved)
results in a variety of PLUG tasks. By integration we mean modifying the denoising
autoencoder which currently samples code tokens and masks or deletes these token at
random. The modified noise function randomly picks a code token and masks out a
given number (variable: 15-30 %) of tokens in the abstract syntax tree (AST) of the

code. This uses the code token to AST mapping we have obtained in this research.

18
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