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Abstract of the Dissertation

Essays on Financial Frictions and Aggregate Dynamics

by

David Laszlo Zeke

Doctor of Philosophy in Economics

University of California, Los Angeles, 2016

Professor Andrew Granger Atkeson, Chair

This dissertation studies the effects of firm debt and financing frictions on the macroecon-

omy. Chapter 1 investigates the role of changes in firms’ idiosyncratic risk and their cost of

default in driving changes in employment and credit spreads, both over the business cycle

and in the cross-section. I use firm-level panel data and a structural model of financial fric-

tions and volatility shocks to assess the effects of shocks to firm volatility and default costs. I

find that volatility shocks alone can only generate modest declines in aggregate employment.

However, simultaneous shocks to firm volatility and default costs can interact to generate

large employment declines.

Chapter 2, co-authored with Robert Kurtzman, investigates the role of changes in the al-

location of labor and capital between firms in driving productivity dynamics. This chapter

presents accounting decompositions of changes in aggregate labor and capital productivity.

Our simplest decomposition breaks changes in an aggregate productivity ratio into two com-

ponents: A mean component, which captures common changes to firm factor productivity

ratios, and a dispersion component, which captures changes in the variance and higher order

moments of their distribution. We demonstrate that in standard models of production with

heterogeneous firms, our dispersion component reflects changes in distortions to the alloca-
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tion of labor and capital between firms. We find, for public firms in the United States and

Japan, that the dispersion component plays a minor role in productivity changes over the

business cycle.

Chapter 3, co-authored with Robert Kurtzman, investigates the role of debt overhang, an

agency problem between firms’ equity holders and creditors, in distorting firm growth and

aggregate welfare. This chapter addresses this question through the lens of a general equi-

librium model of firm dynamics and endogenous innovation in which debt overhang affects

the firm innovation decision and subsequent firm growth. The estimated model implies that

while the private gains to a firm from resolving debt overhang can be large if it faces sufficient

default risk, the social gains to long-run productivity and output are relatively modest. The

time-varying distribution of firm default risk suggests social gains may be greater during

recessions.
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Chapter 1: Financial Frictions, Volatility, and

Skewness

1.1 Introduction

The countercyclical behavior of the cross-sectional dispersion of economic variables has been

well documented by economists, and convincing arguments have been made that this reflects

the underlying volatility of firm-level idiosyncratic shocks.1 A recent strand of literature has

generated aggregate fluctuations by using the interaction of volatility shocks with firm-level

financial market frictions to distort firm-level employment or investment decisions.2 Several

of these papers find that idiosyncratic volatility shocks, operating through financial frictions,

are important for explaining business cycle dynamics.3 Financial frictions affect not only firm

investment but also firm employment decisions if labor markets are not frictionless; several

recent papers document that firm employment does in fact respond to changes in financial

constraints.4

In this paper, I use firm-level panel data, together with a structural model, to assess how

firm employment responds to volatility shocks in the presence of financial frictions. I use

cross-sectional patterns in the data directly related to the response of firm employment and

credit spreads to volatility shocks in order to discipline parameters key to the magnitude

of this response. One parameter which crucially affects the response of firm employment to

volatility shocks is the cost of default. This is true in a large number of models, including

1Recent papers include Eisfeldt and Rampini (2006) and Bloom (2009). Additionally, Herskovic, Kelly,
Lustig, and Van Nieuwerburgh (2014) document that idiosyncratic equity volatility obeys a strong factor
structure and spikes during recessions.

2See Christiano, Motto, and Rostagno (2013), Arellano, Bai, and Kehoe (2012), and Gilchrist, Sim, and
Zakrajsek (2014).

3For instance, Christiano et al. (2013) find that changing volatility is the most important shock over
the business cycle. Similarly, Arellano, Bai, and Kehoe (2012) find that most of the decline in output and
employment during the recent recession can be explained by idiosyncratic volatility shocks.

4See Benmelech, Bergman, and Seru (2013) and Chodorow-Reich (2014).
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papers using the financial accelerator framework of Bernanke, Gertler, and Gilchrist (1999)

(hereafter BGG).5 If default is costless, corresponding to the assumptions of Modigliani and

Miller (1958), then the heightened default risk caused by an increase in volatility does not

affect firm decisions. As the cost of default increases, the magnitude of its effect on firm

employment increases as well. I argue that the cost of default is important not only for

the impact of volatility shocks on firm employment over the business cycle, but also for

the strength of many cross-sectional relationships relating credit spreads, default rates, and

firm employment. I use firm-level panel data to identify shocks to the cost of default and

to the skewness of firm idiosyncratic risk, and evaluate their impact on firm decisions and

aggregates over the business cycle.

Many of the models in this literature would generate cross-sectional implications if firms

were to receive heterogeneous shocks to the level of idiosyncratic volatility.6 These cross-

sectional implications arise from the same channels that lead to aggregate fluctuations over

the business cycle. Therefore, I argue that the cross-section can be used to calibrate param-

eters which affect business cycle dynamics.

The specific structural model I use to assess the role of volatility shocks and financial

frictions on firm employment is based on the model of Arellano, Bai, and Kehoe (2012) (here-

after, ABK). Firms face idiosyncratic shocks which have a persistent effect on the profitability

of the firm, and the stochastic volatility of these shocks are time varying.7 The main mech-

anism at play in the model is the following: An increase in the firm’s idiosyncratic volatility

increases its probability of default. This, in turn, increases credit spreads and decreases firm

employment. The decline in employment occurs because firms must choose their level of em-

ployment before realizing their idiosyncratic shocks, receiving proceeds from production, and

paying the wage bill. Thus, choosing higher employment is risky and increases the probabil-

5In a BGG framework, the monitoring cost can be interpreted as the cost of default.

6These include papers using the financial accelerator framework following Bernanke, Gertler, and
Gilchrist (1999), notably Christiano, Motto, and Rostagno (2013).

7These shocks are motivated as demand shocks, but they are isomorphic to productivity shocks.
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ity of default, because the heightened wage bill increases the firm’s liabilities the following

period (therefore, the realized level of the idiosyncratic shock needed to pay off both debt

and the higher wage bill increases). This effect of firm employment on default risk can be

thought of as increasing the operating leverage of the firm, as the additional risk of a higher

wage bill due in the future increases the fixed cost due similar to how it is increased by debt

(financial leverage). A key property of this mechanism is that it is operational at the firm

level. Therefore, an increase in the idiosyncratic volatility faced by a firm should increase

its credit spread and reduce employment, even if the increase in volatility only affects that

firm in isolation. Thus, this mechanism generates testable cross-sectional implications.

I base my analysis on the model of ABK as it is tractable and has meaningful hetero-

geneity in firm productivity and leverage. Additionally, their model focuses on the effect

of volatility shocks and financial frictions on labor, rather than investment, and is able to

generate a large decline in employment with volatility shocks calibrated for the 2007-2009

recession while matching important business cycle facts.8 I expand this model by adding

heterogeneity in volatility and generalizing the parameterization of the default cost.9 I use

this rich heterogeneity to generate cross-sectional implications. The same approach should

work for an array of other models, notably those using the BGG framework and volatility

shocks (such as Christiano, Motto, and Rostagno (2013)). The main mechanism in these

models is effectively the same: in order to lower the risk of costly default firms/entrepreneurs

reduce the scale of their operations. Increases to the likelihood or cost of default amplifies

this reduction in scale.10

8ABK are able to generate a large decline in employment with volatility shocks consistent with observed
sales growth dispersion during the 2007-2009 recession. Their model is able to do so without declining
aggregate labor productivity.

9There is also heterogeneity in innovations to firm productivity, leverage, and volatility in my model.
This heterogeneity is important because structural models of default risk and credit spreads, such as Merton
(1974), use firm leverage and volatility as the key explanatory variables.

10BGG style models do not have meaningful heterogeneity in firms/entrepreneurs who are exposed to
default, they are ex-ante identical. This allows the distribution of these agents to be summarized by the
total wealth they hold. To implement my approach on such a model, meaningful heterogeneity would have
to be added to generate cross-sectional implications.
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I use firm-level panel data from U.S. public firms on credit spreads, equity prices, and ac-

counting statements to test the presence and magnitude of cross-sectional patterns predicted

by the model. I document that there is considerable cross-sectional variation in innovations

to firm asset volatility, even during non-recession years.11 The variation in innovations to

volatility in the cross-section is significant relative to the average increase in asset volatility

during the crisis. I show that innovations to asset volatility are associated with significant

increases in credit spreads and are predictive of decreases in employment. These results are

robust to a large number of controls, year effects, and substituting sales for employment.12

This validates the key qualitative implications of the model, and stresses that the associa-

tion of volatility shocks with credit spreads and employment is present not only in aggregate

time-series, but also in explaining patterns between firms in panel data.

I calibrate the model with moments relating the probability of default and credits spreads,

and using the joint distribution of innovations to employment, credit spreads, and firm-level

volatility measures. I show that the slope of the relationship between the probability of

default and credit spreads depends primarily on the cost of default; credit spreads are a

function of both the probability of default and recovery rates conditional on default, which

depends crucially on the costs of default. When I set the cost of default to 100%, as in ABK

where defaulting firms exit and lose all firm value, the relationship between the probability

of default and credit spreads in the model is very steep. Similarly, if default is costless, the

slope of this relationship is very flat. The slope implied by historical default probabilities

and credit spreads by ratings class (for speculative grade firms) is much different than either

of these two extremes. The slopes corresponding to estimates of the cost of default from the

corporate finance literature, ranging from 8.4−30% of firm value lost, generate a relationship

11I consider innovations, as opposed to the level, of most of the measures I examine. This is because
firm capital structure, given sufficient time, can adjust in response to differences in the level of volatility.
Additionally, looking at innovations in volatility is the natural approach given the desire to examine the
response to volatility shocks.

12There are some known measurement issues associated with firm employment in Compustat (see Bloom
(2009)). I use sales, which is measured more accurately, to confirm that this measurement error is not
significantly distorting my results.
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much more in line with the data.13

With such default costs, my calibrated model generates a modest decline in employment

in response to common shocks to firm idiosyncratic volatility. Feeding in volatility shocks

corresponding to the 2007-2009 recession generates at most a 2.5% decline in employment

under the upper bound calibration. This is much lower than that implied by the calibration

of ABK, where all firm value is lost upon default. This suggests that idiosyncratic volatility

shocks, by themselves, have trouble explaining much of the employment dynamics in the

recession of 2007-2009 through this mechanism.

However, there is empirical evidence of other important changes during the great re-

cession that affect employment in this model. First, Bloom, Guvenen, and Salgado (2015)

document substantial evidence of a large negative skewness shock to the growth rates of

U.S. public firms. This suggests that something may be lost by modeling the change in firm

idiosyncratic risk only as a second moment shock, as skewness affects the relative amounts

of left and right tail risk. Second, recovery rates, the fraction of debt obligations (principal

and accrued interest) debtholders receive upon firm default, are procyclical and fell signif-

icantly during the 2007-2009 recession, which may be indicative of an increase in the cost

of default.14 I show that the cross-sectional relationship between default probabilities and

credit spreads among U.S. public firms changes in a way consistent with a heightened cost

of default during this recession. Specifically, I estimate that it became around 2.5 times

steeper, corresponding to a significant increase in the cost of default.15 Feeding in either of

these shocks together with volatility shocks can amplify the decline in employment. If firm

upside and downside volatility are parameterized separately, differing shocks to these volatil-

13See Davydenko, Strebulaev, and Zhao (2012) (which includes a summary of estimates in the literature),
Kaplan and Andrade (1998), and Hennessy and Whited (2007).

14See Altman (2006) and Moody’s (2015).

15For the purpose of the model, I consider the cost of default to be exogenous. One could microfound such
a shock through disruptions in financial markets which reduce the liquidation value of firm assets, see Shleifer
and Vishny (1992) and Shleifer and Vishny (2011). Additionally, Gilchrist et al. (2014) consider shocks to
the liquidation value of capital, which can make default more expensive as some capital is liquidated upon
default in their model.
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ities consistent with micro data from the 2007-2009 recession (using the measures of upside

and downside dispersion in Bloom, Guvenen, and Salgado (2015)) amplify the fall in em-

ployment by around 1% of employment. Shocks to the cost of default, when interacted with

volatility shocks, can generate an enormous decline in employment. Simultaneous shocks

to volatility and default cost, calibrated to micro data, explain the majority of employment

losses during the 2007-2009 recession. These losses are substantially larger than if the cost

of default were permanently high (calibrated to the maximum cost of default realized during

the 2007-2009 in my parameterization). This suggests the interaction of these two shocks is

key in explaining large employment losses.

Related Literature There are a number of papers which use volatility shocks to drive

business cycle dynamics. Several of these papers use the increased volatility of firm-level

shocks interacted with adjustment costs in capital or labor to generate business cycle fluc-

tuations; see, for example Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and

Terry (2014a), and Bachmann and Bayer (2013). Schaal (2015) uses the interaction of volatil-

ity shocks with labor market frictions in a search and matching model to generate significant

declines in employment. The papers in this literature closest to mine are those which study

the interplay between volatility shocks and financial frictions, notably Arellano et al. (2012),

Christiano et al. (2013), and Gilchrist et al. (2014). I focus on volatility shocks operat-

ing through financial frictions for two reasons. First, there is evidence suggesting that this

interaction may be able to deliver larger declines in output and employment than the inter-

action of volatility shocks with other frictions.16 Second, the interaction of volatility shocks

with financial frictions leads to clear cross-sectional implications which can be compared to

available firm-level data.

My main contributions to this literature are as follows: First, I use cross-sectional patterns

16Gilchrist et al. (2014) find, in a model with volatility shocks interacting with both adjustment costs and
financial frictions, that the quantitatively important channel is through financial frictions. Bachmann and
Bayer (2013) also call into question the quantitative relevance of adjustment costs interacting with volatility
shocks.

6



to discipline key parameters that control the impact of volatility shocks on aggregates over

the business cycle. While some papers in this literature use the cross-section to parameterize

volatility shocks, my paper focuses on other key relationships to parametrize the cost of

default as well. Second, my paper is novel in the shocks I consider, notably the role of

changing skewness of firm idiosyncratic shocks and its impact for aggregates in this setting.

There is a strand of the finance literature which discusses the asset pricing implications of

idiosyncratic skewness; see, for example Amaya, Christoffersen, Jacobs, and Vasquez (2015),

Feunou, Jahan-Parvar, and Okou (2015), Kraus and Litzenberger (1976), and Barberis and

Huang (2008). However, these changes have been under-explored in macroeconomics —

idiosyncratic risk shocks have typically been modeled only as volatility shocks.17 Bloom,

Guvenen, and Salgado (2015) provide convincing evidence in firm-level data of significant

changes in idiosyncratic skewness over the business cycle, and my paper investigates its

implications in a business cycle model.

My paper also contributes to this body of literature through my analysis of shocks to

the cost of default. My paper is novel in that I stress the interaction of this default cost

shock with volatility shocks and show that this interaction leads to amplification effects.

While Gilchrist, Sim, and Zakrajsek (2014) do consider both idiosyncratic volatility and

capital liquidity (related to the cost of default) shocks, my paper differs in that it stresses

the interaction between the two happening simultaneously.18 Additionally, I use the change

in a key cross-sectional relationship to help parameterize the magnitude of the shock to the

cost of default.

My paper is also related to a strand of literature which aims to disentangle the effects

of financial and volatility (or uncertainty) shocks. The challenge faced by this literature is

17There are some papers in macroeconomics related to possibly time-varying skewness, but they differ
substantially from my approach. A notable example is Orlik and Veldkamp (2014), who provide a micro-
foundation for time-varying uncertainty about aggregate shocks by having agents update beliefs about the
skewness of aggregate shocks.

18Additionally, a large literature looks at the effect of a variety of financial shocks, including the cost of
default or liquidation, on the macroeconomy.
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that the predictions of the two shocks are quite similar for the time series. Caldara, Fuentes-

Albero, Gilchrist, and Zakrajsek (2014) state that “distinguishing between these two types

of shocks... is difficult because increases in uncertainty are frequently associated with a

widening of credit spreads, an indication of a tightening in financial conditions” and use a

penalty function approach to assess the individual impact of these two shocks on the economy.

Stock and Watson (2012) use a dynamic factor model and conclude that uncertainty and

financial shocks were the primary drivers of the recent recession, although they note the

high correlation between the shocks and question whether they are distinct. Christiano,

Motto, and Rostagno (2013) use time-series data and a structural model following BGG

with volatility and a number of other shocks to estimate the key drivers of business cycle

dynamics.19 My paper’s contribution relative to this literature is the use of firm-level panel

data to pin down shocks and their effects. For instance, while it is difficult to separately

identify shocks to the cost of default as opposed to idiosyncratic volatility using only time

series data on macroeconomic and financial aggregates, there are some rather stark cross-

sectional implications of these shocks. Namely, in the framework I consider, the slope of the

relationship between credit spreads and probability of default is very sensitive to the cost of

default but not to volatility. This is because the effect of volatility on credit spreads occurs

primarily through its effect on the probability of default.

Finally, my paper is related to a number of studies which aim to quantify the cost of

default. The main challenge lies not in estimating the direct costs (such as legal bills) but

rather the indirect costs (for example, the loss of key employees/customers due to greater risk

of unemployment/discontinued support). This is a difficult task due to potential selection

effects and the anticipation of default by markets. Andrade and Kaplan (1998) is the most

widely used of these studies, which looks at a sample of highly leveraged transactions which

became distressed and finds costs of default from 10-23%. Other studies include Davydenko,

19They do not consider shocks to the cost of default/monitoring; indeed it would be difficult to separately
identify them in a BGG-style model. They do, however, estimate the constant level of default/monitoring;
their estimate of 20% is consistent with estimates from the finance literature.
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Strebulaev, and Zhao (2012), which take advantage of the fact that default is only partially

anticipated to estimate cost of default from the valuation of firm equity and debt before

and after default. They produce estimates larger than previously found, finding that default

destroy around 30% of firm value while debt renegotiations destroy around 15%. On the

low end of estimates, Hennessy and Whited (2007) use structural estimation to find costs of

default as low as 8.4% for large firms. My results are consistent with the range of estimates

in this literature. My paper shows that this range of estimates not only corresponds to

patterns in the pricing of debt (as others have), but is also consistent with firm dynamics,

namely the magnitude of the decline in employment or sales predicted by innovations to

credit spreads.

Road Map The rest of the paper follows as such: Section 1.2 introduces a simplified

version of the model to introduce the key mechanism along with the strategy by which

cross-sectional relationships are used to discipline model parameters. Section 1.3 describes

the data I use and establishes facts about the cross-sectional relationships of innovations to

asset volatility, credit spreads, and firm input decisions. Section 1.4 describes the model of

firm volatility and financing frictions and characterizes an equilibrium. Section 1.5 describes

the parameterization of the model and the resulting implications for both the cross-section

and the business cycle. Section 1.6 documents the implications of negative idiosyncratic

skewness shocks and shocks to the cost of default. Section 1.7 concludes.

1.2 Simple Model

I begin with a simplified version of the model to illustrate the mechanism of interest, through

which firm-level volatility shocks can generate business cycle dynamics. Specifically, I show

how changes in the distribution of a firm idiosyncratic shock can, in the presence of financial

frictions, lead to fluctuations in the level of employment and credit spreads. The simple

model will demonstrate how the costliness of default plays a key role in determining how

9



large of an impact fluctuations in firm-level risk have on firm employment. Also, the simple

model generates cross-sectional implications, which can be compared to the data to discipline

the theory.

The primary mechanism in this model is based on employment operating leverage, where

firms’ labor decisions affect their probabilities of default. Firms make their employment

decision before realizing a firm-level demand shock, affecting the profits generated by a

given number of workers. They then receive revenues from production (which depend on the

shock) less the wage bill (which does not depend on the shock) and any debt outstanding. If

a firm chooses a greater amount of labor, it takes on additional risk due to greater operating

leverage (a higher fixed cost next period) in exchange for higher expected profits. A higher

labor choice hurts firm net revenues if the realized shock is low, and thus can increase the

probability of default. Default is costly, so firms have an incentive to reduce their labor

demand in order to reduce their default risk.

This section also demonstrates a few key points of the paper. First, I show that the cost

firms face upon default has an enormous impact on the magnitude of the distortion to firm

labor, as well as the magnitude of labor losses due to a volatility shock. Second, I show that

since the mechanism is operational in partial equilibrium, the cross-sectional implications

of the model can be used to discipline the parameterization. For example, the slope of

the relationship between the probability of default and credit spreads is effectively pinned

down by the cost of default and can be used to discipline parameter choices controlling the

magnitude of the cost.

The simple model not only provides intuition about the mechanism of interest; in the

following subsections I use it to demonstrate the key points made in this paper. In subsection

1.2.1, I introduce the simple model and outline how labor is distorted due to the presence of

financial frictions (there are incomplete markets, as equity holders can only raise revenues

with a one period state-uncontingent debt which can lead to costly default) and idiosyncratic

shocks. In subsection 1.2.2, I characterize the distortion to labor and show how the cost of
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default and the distribution of idiosyncratic shocks affect the distortion. Namely, I show that

the distortion is roughly proportional in the cost of default and the marginal probability of

default (which naturally depends on the distribution of idiosyncratic shocks). In subsection

1.2.3, I show the cross-sectional implications of this mechanism and argue that they can

be used for calibrating key parameters, such as the cost of default, to ensure the model is

consistent with the data.

1.2.1 Model Setup and Characterization

Consider a two-period model of operating leverage and financial frictions. In the first period,

firms issue uncontingent debt and choose the amount of labor input l to hire. Equity holders

receive cash flows from debt issuance in that first period, with the debt priced as the expected

discounted present value of cash flows to debtholders. In the second period, a firm-level

demand shock which augments revenues, z, is realized. If the firm does not default, equity

holders receive revenues from production, zlα, less the cost of labor, wl, and the amount of

debt due, b. They also receive a continuation value V . If the firm defaults, equity holders

receive nothing while debt holders receive net revenues from production, zlα−wl, as well as

a portion 1− c of the continuation value V . The parameter c represents how costly default

is. Thus, if c = 1, then all remaining firm value above and beyond current operating profit is

lost upon default. If c = 0, then default is costless. Firms default if zlα−wl−b+V < 0, that

is if the value to equity holders in the second period (net cash flows from production less the

debt payment plus the continuation value) are less than zero.20 The default threshold can

be characterized by the level of the shock z below which a firm defaults, denoted as z (l, b).

20In the full model, default occurs if net cash flows from production less debt due are low enough such that
revenues raised through debt issuance are insufficient to cover the firm’s obligations. This is an endogenous
threshold solved in an infinite-horizon model, so I use this simple default threshold for illustration here.
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The revenues the firm receives for issuing debt are:

bq (l, b) = (1− F (z (l, b)))︸ ︷︷ ︸
prob. no default

β b+ F (z (l, b))︸ ︷︷ ︸
prob. default

β

E [z|z < z (l, b)] lα − wl︸ ︷︷ ︸
exp. operating profit

+ (1− c)V︸ ︷︷ ︸
recovery

 , (1.1)

where F (z) is the cumulative density function of the shock z. The optimization problem

governing the labor demand of equity holders can be expressed as follows:

max
l

bq (l, b)︸ ︷︷ ︸
debt issuance

+ (1− F (z (l, b)))︸ ︷︷ ︸
prob. no default

β

E [z|z > z (l, b)] lα − wl︸ ︷︷ ︸
exp. operating profit

− b︸︷︷︸
debt due

+ V︸︷︷︸
cont. val

 . (1.2)

Plugging (1.1) into (1.2) yields:

max
l
β

 E [z] lα − wl︸ ︷︷ ︸
exp. operating profit

+ V︸︷︷︸
cont. val

− F (z (l, b))︸ ︷︷ ︸
prob. default

× c V︸︷︷︸
default cost

 . (1.3)

The first order condition of (1.3) with respect to firm employment is the following:

l∗ =

(
αE [z]

w + V × c× f (z (l∗, b)) ∂z(l∗,b)
∂l∗

) 1
1−α

. (1.4)

As a contrast, if default is costless (corresponding to the assumptions in Modigliani and

Miller (1958)), the first order condition reduces to the following:21

l∗MM =

(
αE [z]

w

) 1
1−α

(1.5)

The key difference between these two cases is the term V cf (z (l∗, b)) ∂z(l∗,b)
∂l∗

in the de-

nominator. In this expression, V c represents the cost of default, while f (z (l∗, b)) ∂z(l∗,b)
∂l∗

represents the derivative of the probability of default with respect to firm’s labor demand.

This second term can be split into f (z (l∗, b)), which represents the probability density func-

21(1.5) is also the first order condition which would arise if I relaxed market incompleteness and allowed
the debt payments to be conditional on the realized shock z.
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tion of the shock z at the default threshold, and ∂z(l∗,b)
∂l∗

, which represents the effect of the

firms labor decision on the default threshold. While V , c, and f (z (l∗, b)) are non-negative

by definition, ∂z(l∗,b)
∂l∗

depends on the parametrization as well as firm debt and labor. The

following proposition formalizes the conditions under which this derivative is positive and

its effect on firm employment:

Proposition 1.1. The following are equivalent:

1. wl∗ ≥ α (wl∗ + b− V )

2. ∂z(l∗,b)
∂l∗

≥ 0

3. V cf (z (l∗, b)) ∂z(l∗,b)
∂l∗

≥ 0 if V, c, f (z (l∗, b)) > 0

4. l∗ ≤ l∗MM if V, c, f (z (l∗, b)) > 0

Proof. See Appendix A.

The parameter restriction wl ≥ α (wl + b− V ) can be understood as requiring that the

wage bill is at least as large as a fraction α of the fixed cost less continuation value. To

violative this condition, firms need to have sufficiently high levels of debt relative to their

operating costs. Intuitively, if the wage bill is a small part of the fixed cost, a high labor

choice increases the potential revenues from production but does little to the total fixed cost

due. If firms have sufficiently high debt, the firm will default anyway for low realizations of

z, and a higher labor choice helps the firm generate enough revenues for higher realizations

of z to avoid default in some cases. However, firms with sufficient levels of debt to violate

the condition in Proposition 1.1 are rare, both in the full model and the data. For most

firms, the prospect of risky default distorts firm employment decisions downwards.

1.2.2 Distortion to Firm Employment

In this subsection, I demonstrate how changes to the distribution of z, such as volatility or

skewness shocks, can decrease employment. Further, I discuss why the magnitude of the
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change in employment in response to these distributional changes depends crucially on the

cost of default, c. Finally, I discuss why changing the cost of default in itself can reduce firm

labor demand and why the combined effect of shocks to volatility and the cost of default can

interact to generate large declines in employment.

In this simple model, the distribution of z affects only the term f (z (l∗, b)) in (1.4).22

The following proposition demonstrates that if a threshold z is sufficiently below (or above)

the mean, f (z) is increasing in volatility:

Proposition 1.2. Let f1(z) and f2(z) denote normal probability density functions with iden-

tical means µ and variances σ1 and σ2, respectively.

1. If |µ− z| > σ1, then ∂f1

∂σ1
(z) > 0

2. If |µ− z| > σ2 and σ2 > σ1, then f2 (z) > f1 (z)

Proof. See Appendix A.

Figure 1.1 illustrates how changing the distribution of the shock z by increasing the

variance can raise the probability density function of the shock at a given default threshold.

Naturally, other changes to the distribution also change the probability density function and

this term. Notably, a decrease in skewness of the distribution following the empirical findings

of Bloom, Guvenen, and Salgado (2015) leads to substantially more dispersion of outcomes

in the left tail than the right; this higher variance of the left tail can significantly raise the

probability density function at the default threshold for many firms.

The cost of default, c, crucially affects the magnitude of the impact of volatility shocks

(and other changes to the distribution of z) on firm employment and output. First, note

that c multiplicatively enters the term which leads to the distortion from the case without

the possibility of default in (1.4). In a world consistent with Modigliani and Miller (1958),

22In the full model, where the continuation value and default threshold are endogenous, the distribution
of z does affect other components in the problem. Quantitatively, however, the first-order effect still comes
through f (z (l∗, b)).
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Figure 1.1: Effect of volatility shock on f (z (l∗, b))

default threshold
z

density

c = 0 and changes to the distribution of z have no impact on employment at all, as long as

they do not affect the expected value of z. I can illustrate this by finding an expression for

the distortion from the no-default case. (1.4) and (1.5) can be re-arranged to express the

distortion from the case without default as the following:

log (l∗)− log (l∗MM) = − 1

1− α
log

(
1 +

cV f (z (l∗, b)) z(l∗,b)
∂l∗

w

)
.

As the marginal cost of labor demand is primarily driven by wages,
cV f(z(l∗,b))

∂z(l∗,b)
∂l∗

w
will be

relatively small. Thus the following is a good approximation:

l∗ − l∗MM

l∗MM

≈ − c

1− α
V f (z (l∗, b)) ∂z(l∗,b)

∂l∗

w
. (1.6)

If the right hand side terms in (1.6) do not change very much in the firm’s labor decision,

then the percent deviation in labor choice from the costless default (Modigliani-Miller) case

is roughly proportional in both how costly default is, c, as well as the probability density

function at the default threshold, f (z (l∗, b)). This suggests that the level of c will roughly

proportionally affect the magnitude of the impact of shocks to the distribution, which change

f (z (l∗, b)), on employment. Also note that changing the level of c, all else fixed, will also

affect firm employment – thus shocks to the cost of default can affect employment on their

15



own.

This can be numerically demonstrated in this simple model, which can be done with a

simple parameterization. I normalize the wage w to 1, and parameterize z as a lognormal

distribution with the mean chosen so that E [z] = 1. I set V = 1.81 to hit the median

ratio of market capitalization to sales, and set α = .6091, the degree of decreasing returns

to scale in ABK.23 I allow c, the volatility of z, and the debt outstanding b to vary. The

ranges of volatility and leverage are chosen to be reasonable given the distribution of firms

sales growth and leverage. If default leads to firm death (c = 1), as in ABK, the induced

distortions are much larger than if the higher estimates from the corporate finance literature

(c = 0.3) are used. In this simple model, this will increase the magnitude of distortions by

almost 70%. Figure 1.2 details the impact of a doubling in volatility of employment for a

range of values of c.

Figure 1.2: Volatility shock
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* Lines represent the implied effect of a doubling in the volatility of z on firm employment in the
simple model, for a variety of values of c.

I can also demonstrate that there are significant interaction effects between shocks to the

cost of default and volatility (or other distributional) shocks. For instance, if c and f (z (l∗, b))

were each hit with s1 and s2 percent positive shocks, then (1.6) implies that they individually

23This number accounts for both the decreasing returns to scale in their intermediate good production
function and the extent of decreasing returns to scale inherent in the technology through which intermediate
goods are aggregated into output.
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would amplify the distortion in labor demand from the no-default case by roughly s1 and s2

percent, respectively (thus employment fall by roughly s1s0 and s2s0 percent, where s0 is the

percent distortion of labor demand before the shocks). If they arrived together they would

amplify the distortion in labor demand by s1 + s2 + s1s2 percent (and thus labor demand

falls by s0(s1 + s2 + s1s2) percent). The calibrated shocks to the equivalents of these objects

during the recent recession are quite large; the increase in idiosyncratic volatility can lead to

a more than doubling of f (z (l∗, b)), and I also find that c increases substantially. Therefore,

the additional term due to the interaction, s1s2, may be quite large.24 Figure 1.3 details the

implied employment response to a doubling of volatility and a doubling of the cost of default

(from c = .15 to .3), demonstrating that the interaction term is significant and potentially

large.

Figure 1.3: Volatility shock
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* Lines represent the implied effect of a doubling in the volatility of z or of a doubling in the cost
of default on firm employment in the simple model, denoting the individual and interaction effects of
the two shocks.

24The reason why the two shocks do not separate if looking at log changes in (1.4) is that w is quite large

relative to cV f (z (l∗, b)) ∂z(l
∗,b)

∂l∗ . If w were small, then the approximation in (1.6) would be poor and the
interaction effects would be negligible.
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1.2.3 Implications for the Joint Distribution of Credit Spreads,

Leverage, and Observable Volatility

The above theory has several implications for the cross-sectional behavior of firms that can

be used to discipline its application over the business cycle. A key property of the mechanism

detailed above is that it is operational in partial equilibrium. In other words, a rise in firm

business risk (changing the distribution f(z)) will distort a firm’s behavior even if it happens

only to that single firm alone. This implies that there is a link between the cross-sectional

implications of this mechanism and its business cycle implications. Therefore, cross-sectional

patterns, even outside of business cycle episodes, can be used to calibrate the model. This

is useful, as many significant changes to conditions over the business cycle (such as changes

to financial or product market conditions) are omitted from the model that likely affect

observables over the business cycle and make calibration with data during recessions more

challenging.

One of the key parameters for governing the strength of this operating leverage mechanism

distorting firm labor is the costliness of default, c. In this section I demonstrate a key

observable implication of this parameter: the derivative of credit spreads with respect to

the probability of default is increasing in c. I argue that values of this parameter which

correspond to the range of values found in the corporate finance literature (generally between

8.4-30% of firm value) generate more reasonable dynamics than the assumption of 100% of

firm value lost.

I also show that the model has implications for the joint distribution of equity volatil-

ity, credit spreads, and employment. Namely, innovations to equity volatility should move

together with credit spreads and predict employment declines.

1.2.3.1 Probability of Default and Credit Spreads

The probability of default, F (z (l, b)), is the cumulative probability of receiving a shock

below the default threshold implied by firm decisions. The credit spread faced by a firm can
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be written as b
bq(l,b)

− 1
β
. This can be expanded to find:

cs (b, l) =
b

β (b− (b+ wl − V (1− c))F (z (l, b))) + β
(∫ z(l,b)

0
zdz
)
lα
− 1

β
. (1.7)

Note that the credit spread is increasing in F (z (l, b)), as it decreases the denominator

in the expression of cs (b, l) above. The two are positively correlated, as greater leverage

or volatility of z both lead to an increased probability of default, and therefore a lower

probability of full repayment of debt and thus higher credit spreads. The strength of the

relationship between the two, however, depends crucially on c. When c is high, default is

very costly and recoveries conditional on default are low. Thus, as the probability of default

increases, credit spreads increase substantially. Conversely, if c is low, debtholders are able

to recover most of the firm’s value (and more of the debt face value) upon default, and thus

credit spreads rise less in the probability of default. Assuming that l and b remain fixed, I

can characterize the slope of credit spreads relative to default probability as the following:

∂ cs

∂ P (def)
=

bβ (b+ wl − V ) + bV c

β2
(

(b− (b+ wl − V (1− c))F (wl1−α + (b− d) l−α)) +
(∫ z(l∗,b)

0
zdz
)
lα
)2 .

In the above equation, increasing the cost of default, c, increases the slope for reasonable

parameterizations, as increasing the term in the numerator dominates the term in the de-

nominator. In practice (allowing l, b, and the volatility of z to vary), in the simple model the

relationship between the probability of default and credit spreads is approximately linear for

reasonable probabilities of default.

Figure 1.4 shows how credit spreads vary with the probability of default (due to hetero-

geneity in both leverage and asset volatility) for a range of values for c.25 Note that the

slope of credit spreads with respect to default probability is increasing in c — it is near zero

for c = 0, and in excess of one for c = 1. Also plotted on the figure are credit spreads and

25I follow the parameterization outlined above for V , α, and f(z). Volatility and debt outstanding are
both allowed to vary — they are the reasons firms have differential credit spreads and default probabilities.
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one-year realized default probabilities for speculative grade firms by rating class.26 The teal

lines (c=0.084,0.3) represent the range of estimates for the cost of default from the corporate

finance literature. Note that, as expected, the relationship in the data lies between these

two lines.

Figure 1.4: Credit spreads vs. probability of default
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* The red dashed line reflects data from speculative grade firms, by rating class, for the time pe-
riod 1984-2012 as reported by Standard and Poor’s. The remaining lines are implied by the simple
model, for varying values of c. All series have the y-intercept from their line of best fit subtracted from
them so the slopes can be easily compared.

What this plot suggests is that the assumption that default leads to firm death (c = 1)

leads to much too strong of a relationship between default probabilities and credit spreads

compared to the data. On the other hand, using c in a range of values found in the corporate

finance literature, where default is much less costly, leads to a relationship much more in

line with the data. As the choice of c is very important for the magnitude of the distortion

to employment, this has significant implications for the effect of volatility shocks over the

business cycle.

Correcting for Risk Premia I also account for the potential bias of risk premia on this

relationship. Credit spreads are often decomposed into two parts: compensation for default

26I consider only speculative grade firms because investment grade firms default incredibly rarely within
one year, and when they do it is almost always during a recession. Speculative grade firms, on the other hand,
have sufficient observed short-term default rates outside of recessions to allow for meaningful comparison
across rating classes.
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losses and the risk premium. The simple model corresponds only to the first part. Cross-

sectional patterns in risk premia may affect this cross-sectional relationship and potentially

bias calibration strategies reliant on it. A number of recent studies have estimated cross-

sectional patterns in risk premia by computing excess bond returns, namely Choi and Kim

(2015) and Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2015). Their results indicate

that while firms with a low probability of default indeed do have a greater proportion of their

credit spreads explained by risk premia, the level of the risk premium is increasing as firms

face a higher risk of default. Both of these studies find that excess bond returns are decreasing

in firm credit ratings (a worse credit rating implies higher risk premia). Chordia et al. (2015)

find that mean excess bond returns are decreasing in distance to default, a common proxy for

default risk. This implies that firms with lower distance-to-default (and thus higher default

probabilities) have higher risk premia.

These results suggest that the model-implied relationship between the probability of

default and credit spreads would be steeper if we were to perfectly account for cross-sectional

patterns in risk premia. This will reduce model-implied estimates of c. For the sake of

tractability, I perform this correction using the data. I compute the slope of the risk premium

with respect to default probability using estimates by rating class of excess bond returns

from Choi and Kim (2015) and historical default probabilities from Standard and Poor’s. I

find that the slope of the annualized risk premium with respect to the annual probability

of default is 0.14.27 This can be interpreted as the following: C/CCC rated firms, with an

annual default rate of roughly 20−25%, should have annual risk premia of around 3% greater

than firms with no probability of default. Figure 1.5 demonstrates the relationship between

default probability and credit spreads less risk premia. The range of estimates discussed

earlier, c ∈ [.084, .3], still bounds the relationship in the data from below and above. With

this correction, the lower end of this range corresponds better to the data, whereas without

27I compute the slope using default probabilities and excess bonds returns for AAA and C/CCC rated
firms.
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it the upper end of this range matches the data better.

Figure 1.5: Credit spreads vs. probability of default, controlling for risk premia

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

Probability of Default (%)

Cr
ed

it S
pr

ea
d 

(%
) l

es
s r

isk
 p

re
m

ia

 

 
c=0
c=0.084
c=0.3
c=1
data

* The red dashed lines reflects data from speculative grade firms, by rating class, for the time pe-
riod 1984-2012 as reported by Standard and Poor’s, less a risk premia effect implied by estimates from
Choi and Kim (2015) by ratings class. The remaining lines are implied by the simple model, for varying
values of c. All series have the y-intercept from their line of best fit subtracted from them so the slopes
can be easily compared.

1.2.3.2 Innovations to Asset Volatility, Credit Spreads, and Employment

The model also has implications for how innovations to the level of firm fundamental idiosyn-

cratic risk (the volatility of z) affects asset volatility, credit spreads, and firm’s employment

decisions. In the model, an increase in the volatility of z increases the volatility of the value

of the firm’s assets and the probability of default. This raises credit spreads and decreases

firm employment decisions.28 Therefore the model has two clear predictions: First, innova-

tions in measures of firm volatility should co-move with credit spreads on the firm’s debt.

Second, innovations in measures of firm volatility should predict (negative) innovations in

firm employment.

Figure 1.6 shows the implied credit spreads and labor choice generated in the simple

model, conditional on the amount of debt due, for varying levels of volatility of z. The simple

model is parameterized as before. Note that credit spreads are increasing in volatility, but

are higher if the debt due is greater. The firm’s labor choice is decreasing in volatility, and

28In (1.4) and (1.7), this manifests itself by raising f (z (l∗, b)) and F (z (l∗, b)).
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depends on the indebtedness of the firm. Figure 1.2 shows the implied impact of volatility

doubling on firm employment in the simple model for varying values of c. It is clear that

higher c leads to a greater decline in firm employment in response to volatility shocks. Note

that this effect should exist in both the cross-section and over the business cycle.

Figure 1.6: Effect of volatility
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* These results are generated from the simple model, with c = 0.3.

Implications for Financial Market Measures of Volatility As the volatility of firm

fundamentals is difficult to measure at the firm level (due to the low frequency of observa-

tions), it is common to use financial market measures of volatility, particularly measures of

realized or expected equity volatility.29 The draw of z, reflecting stochastic firm fundamentals

or demand, affects the market value of claims on the firm. Therefore, the volatility of z should

be reflected in the volatility of equity returns. I can easily compute the model-implied equity

volatility in this two period case introduced above, or a measure of instantaneous volatility

implied by a Merton model related to this two-period case. Both expressions are functions

of not only the volatility of z, but also capital structure considerations. If a firm is highly

leveraged, a small volatility of z can imply larger volatility of equity returns because small

movements in z can have large percent changes in the value of assets less liabilities. The

29For instance, see Gilchrist et al. (2014).
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presence of default itself also affects the volatility of equity returns. Appendix A outlines

the computation of equity volatility in this simple model.

Relationship Between Equity Volatility, Credit Spreads, Employment Figure

1.7 shows the relationship between equity volatility, credit spreads, and employment in the

simple model.30 This is quite similar to the relationship with theoretical volatility — the

model predicts that equity volatility will co-vary with credit spreads and predict employment

losses.

Figure 1.7: Volatility shock
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* These results are generated from the simple model, with c = 0.3.

This is a key qualitative prediction of the model I test in the data. As the relationship

between equity volatility and the volatility of z relies crucially on assumptions about the

variance of the continuation value and its correlation with z, I do not use the magnitude of

this relationship to calibrate the model.31 Instead, I rely on the relationship between the

probability of default and credit spreads, as well as the relationship between innovations to

credit spreads and innovations to year-ahead employment.

30The relationship here is plotted for equity volatility from a Merton model, however, the relationship is
similar if I use the full model or measures of the volatility of the value of the firm as a whole.

31There is likely significant variation in equity returns driven by factors other than near-term shocks. This
could be addressed in the model by making V stochastic (which it is in the full model), but its correlation
with z would affect how much equity volatility responds do changes in the volatility of z and thus these
cross-sectional relationships.
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1.3 Empirical Evidence

In this section, I describe the dataset and the measures of volatility I derive from asset

prices, and document key aspects of the cross-sectional relationship between volatility, credit

spreads, and firm labor decisions. The main findings of this section are the following: Cross-

sectional evidence suggests that an increase in measures of firm idiosyncratic risk are sig-

nificantly correlated with changes in credit spreads, and are predictive of changes in firm

employment. This is consistent with the main qualitative predictions of the model for the

cross-section. I also document how predictive innovations in credit spreads are of employ-

ment, as this relationship can be compared to the (full) model.

1.3.1 Data and Measurement

I use data on public firm equity prices, financial statements, analyst sales forecasts, and

credit spreads from 1984-2013. Equity price data is drawn from the Center for Research in

Security Prices (CRSP), accounting data from Compustat, and data on credit spreads from

the Lehman-Warga (1984-1998) and Merill Lynch (1997-2013) databases.

1.3.1.1 Measuring Volatility

A key empirical challenge is constructing a panel dataset of measures of the time-varying

idiosyncratic risk at the firm-level. The primary measure I consider is a measure of idiosyn-

cratic equity volatility following Gilchrist, Sim, and Zakrajsek (2014), though I do consider

alternative measures for robustness.

Measuring Volatility from Asset Returns Asset prices, in principle, should summarize

all of the publicly available information relevant for a firm’s future prospects. This corre-

sponds closely to theory — a stochastic volatility shock is an innovation in the distribution

of non-forecastable shocks affecting future firm cash flows. I thus follow the literature and
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use a measure of the idiosyncratic component of daily return volatility as one of my measures

of volatility.

I use a standard linear factor model to remove the portion of excess returns attributable

to aggregate factors:

Ritd − r
f
td

= αi + β′ifitd + uitd . (1.8)

Ritd−r
f
td

is the daily excess equity return on stock i in trading day d of year t. fitd corresponds

to a vector of aggregate factors — in this case a four-factor model consisting of the Fama and

French (1992) factors along with a momentum measure. I use uitd to denote the variation in

excess returns beyond the four aggregate factors, for reasons one can consider idiosyncratic.

The residual of running an OLS regression on (1.8), ûitd , is the idiosyncratic component

of excess returns, and greater variation in this corresponds to higher levels of idiosyncratic

volatility. The standard deviation of this component can thus be computed over an annual

frequency as:

σEIit =

√√√√250

Dt

Dt∑
d=1

(ûitd − ūit)
2. (1.9)

ūit denotes the average of ûitd over the year, and Dt the number of trading days. Further

details of this measure can be found in Gilchrist, Sim, and Zakrajsek (2014).

As measures of equity volatility are affected by leverage, I also compute a measure of

asset volatility from returns. I follow a procedure consistent with Bharath and Shumway

(2008) and Gilchrist and Zakrajsek (2012) in measuring firm asset volatility, and further

derive a measure of idiosyncratic asset volatility, detailed in Appendix B.

Measure of Volatility from Sales Growth To allay concerns about variation in financial

market returns representing factors other than changes in firm fundamentals or expectations

of them, I construct measures of sales growth volatility over controls as a measure of funda-
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mental volatility. This data is available at no more than a quarterly frequency, so I use a

GARCH process to estimate the volatility of this process. I consider only firms with at least

30 quarters of consecutive sales data. I first remove all forecastable variation in firm growth

rates by running a regression of firm sales growth on lagged firm fundamentals (investment

rate, size, profitability) with time-industry and firm-season fixed effects.32 The residuals of

this regression represent the variation in firm sales growth beyond those explained by predic-

tive factors, and also help eliminate any seasonal trends, including those which exist only for

given industries or firms. I then run a GARCH(1,1) procedure to estimate a volatility series

from the time series of residuals for each firm. I test each firm’s residual series individually

for ARCH effects, and keep only those which reject the null (support the presence of ARCH

effects). This results in a panel dataset of quarterly firm-level volatility.

Figure 1.8: Cross-section of shocks to asset volatility during non-recession years
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1.3.1.2 Other Firm Measures

Firm measures of leverage, profitability, and Tobin’s Q are all computed from Compustat

annual data. I define the book value of debt as the sum of short term debt outstanding

32By time-industry fixed effects I mean a dummy for every 1 digit sic code for every year-quarter. By
firm-season fixed effects I mean a fixed effects factor for every firm in a given season/quarter (i.e. Microsoft
quarter 1).

27



and 1
2

of long term debt outstanding (following Gilchrist and Zakrajsek (2012)). Leverage

is computed as the ratio of the book value of debt and the sum of the value of equity and

the book value of debt. Profitability is defined as the ratio of operating profits to the book

value of assets (from the balance sheet). Tobin’s Q is defined as the ratio of the sum of the

value of equity and the book value of debt over the book value of assets (from the balance

sheet). I compute credit spreads from the databases following the procedure outlined in

Gilchrist et al. (2014). I take employment from Compustat as well, and allay concerns about

measurement error by replicating my results with sales.

1.3.2 Empirical Results

1.3.2.1 Cross-section of Innovations to Volatility

Figure 1.9: Cross-section of shocks to idiosyncratic equity volatility during non-recession
years
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There is a large dispersion of innovations (year-over-year percent changes) to firm-level

measures of volatility, even during non-recession years. The magnitude of this dispersion

is significant compared to the size of the average innovation in the equivalent measures of

volatility during the great recession of 2007-2009. Figures 1.8 and 1.9 show histograms of

the frequency of innovations to measures of volatility, measured as year-over-year percent
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changes, during non-recession years. Overlaid on the histogram is the average year-over-year

percent change that occurs during the rise in volatility during the great recession.33 The

dispersion in innovations to my measures of volatility outside of recessions is substantial.

In terms of the volatility of assets, the mean increase in volatility in 2007/2008 represents

approximately two standard deviations of the non-recession distribution. Thus, while the

mean innovation to volatility during the crisis is clearly large, the cross-sectional variation

during non-recession years is comparably large enough that cross-sectional relationships are

empirically relevant for understanding the effect of volatility shocks on firm decisions.

Figure 1.10: Innovations in credit spreads vs. volatility
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in the scatter reflecting the mean of those observations in both the x and y axis variables.

1.3.2.2 Relationship to Credit Spreads

I now look at the response of credit spreads to innovations to financial market measures of

volatility. If greater volatility in asset prices reflects increases in volatility about future firm

prospects, it will increase the probability of default and raise credit spreads.

In the data, credit spreads increase significantly in response to firm level innovations

in volatility, suggesting that the financial market measure of volatility reflects economically

33The change from 2007-2008 is used because it is by far the greatest average annual increase in volatility
that occurs in the time series.
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Figure 1.11: Innovations in credit spreads vs. volatility
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significant changes in volatility. Figure 1.10 shows this relationship of year-over-year in-

novations of credit spreads against idiosyncratic equity volatility, for non-recession years.34

The observations are binned by the x-axis since there are thousands of observations. Figure

1.11 shows the entire scatter in a heatmap and a line of best fit confirming the positive

correlation. Table 1.1 shows that this positive relationship is robust to controlling for firm

characteristics which are known determinants of credit spreads, specifically innovations in

leverage, profitability, and equity values. This is consistent with the findings of Gilchrist,

Sim, and Zakrajsek (2013), who find that an increase in idiosyncratic volatility is associated

with a significant widening of credit spreads. They also find that increases in idiosyncratic

volatility also has statistically significant effects on capital expenditures. I therefore assess

the impact of idiosyncratic volatility on employment, my corresponding variable of interest.

1.3.2.3 Relationship with Firm Employment

I evaluate the magnitude of a decrease in firm employment predicted by increases in the level

of idiosyncratic volatility facing the firm. I find that the relationship is negative and robust,

34The relationship between idiosyncratic asset volatility and credit spreads is very similar.
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Figure 1.12: Innovations in firm employment vs. volatility
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though the magnitude of the effect is modest. Figure 1.12 shows the relationship between

the year-ahead year-over-year percent change in firm employment against year-over-year

change in idiosyncratic equity volatility, for non-recession years. Observations are binned by

idiosyncratic equity volatility as there are thousands of observations. Figure 1.13 shows the

entire scatter in a heatmap, which confirms the trend. This relationship remains negative

and significant (though the magnitude is relatively modest, with a doubling in volatility

implying a 2-3% decrease in employment), even after controlling for innovations in firm

characteristics, such as profitability, leverage, and Tobin’s Q, or year/industry fixed effects.

Table 1.2 shows the results of the regression:

∆ empt = β0 + β1∆σAIit−1 + γ Xi,t−1 (1.10)

where Xi,t−1 represents the controls mentioned above. This illustrates the robustness

of the magnitude and the sign of the decrease in employment associated with an increase

in firm idiosyncratic risk. To alleviate concerns about measurement error in Compustat

employment, Figure 1.14 shows that the relationship between innovations to equity volatility
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Figure 1.13: Innovations in firm employment vs. volatility
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and year-ahead sales growth is quite similar in both direction and magnitude.

1.3.2.4 Relation to Model

The relationships documented above agree with the qualitative predictions of the model,

but comparing them quantitatively is difficult. The true volatility of firm processes are not

observed in the data, and the financial market proxies from realized returns are difficult to

convincingly characterize in the model.35 Therefore, I turn to a relationship which measures

the extent to which default risk affects employment: how predictive innovations in credit

spreads are to changes in employment. Figure 1.15 documents this relationship for non-

recession years, binning firms by credit spreads; Figure 1.16 displays the entire scatter. There

is a significant and robust (to standard controls) negative relationship between innovations to

credit spreads and employment.36 This is consistent with the work of Benmelech, Bergman,

and Seru (2013), who document that financial constraints play a role in reducing firm (and

35For instance, the variance of realized equity returns may be affected by liquidity considerations or other
financial market changes not captured in the model.

36Figure 1.17 documents that this relationship is similar when sales growth is used instead of employment
growth.
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aggregate) employment.

Figure 1.14: Innovations in firm sales vs. volatility

.02
.04

.06
.08

.1
Pe

rce
nt 

ch
an

ge
 in

 ye
ar

-a
he

ad
 sa

les

-.5 0 .5
Percent change in equity volatility

*Data is an unbalanced panel for 1984-2012, excluding NBER recession years. Percent changes are

computed as
xt+1−xt

1
2

(
xt+1+xt

) . Observations are binned into 5-percentile bins by the x-axis, with a point

in the scatter reflecting the mean of those observations in both the x and y axis variables.

1.4 Model

To evaluate the role of volatility shocks in driving aggregate dynamics, I use a dynamic

model with financial frictions and variation in the level of volatility at the firm level. The

model is a generalized version of ABK.37

My model differs from ABK in two primary ways. First, I allow for the extent of default

costs to vary, controlled by a parameter c. Second, I add heterogeneity in both the level

and changes in firm idiosyncratic volatility. Specifically, I let innovations to the volatility

of firm specific demand z, vary across firms. This additional heterogeneity allows me to

generate cross-sectional implications which can reproduce patterns in the data and be used

for calibration.

37ABK have, as of October 2015, presented an updated version of their paper, which include some changes
to the model. The now use a different agency problem to motivate firms to hold debt and consider the risk-free
interest rate to be exogenous. However, the mechanism through which volatility shocks affect employment
and the main business cycle results are qualitatively unchanged.
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Figure 1.15: Innovations in firm employment vs. credit spreads
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Figure 1.16: Innovations in firm employment vs. credit spreads
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The model has a continuum of final good firms, intermediate good firms, financial in-

termediaries, and households. Intermediate good firms produce differentiated goods using

labor which are aggregated into the final good. Final good firms are competitive and pro-

duce the final good from intermediate goods. The production technology of final good firms

is subject to idiosyncratic shocks augmenting the usage of individual intermediate goods.
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These shocks need not be technological: as in ABK they can be interpreted as idiosyncratic

demand shocks. The volatility of these demand shocks is stochastic. Competitive financial

intermediaries lend to the intermediate good firms using standard defaultable debt contracts.

Households own all firms and financial intermediaries and pay lump-sum taxes. They make

decisions over consumption and leisure, which they both value.

The timing of the model is as follows. First, households make their labor supply decision

and firms make their labor demand decisions, and the wage rate is set to clear the labor

market. Then, shocks to demand and volatility are realized. Then intermediate good firms

produce with the labor choice they made the previous period and the demand shock they

received and sell the goods to final good firms, pay workers, choose whether to repay the

financial intermediaries, and choose labor for the next period as well as issue additional debt.

The final good firms buy the intermediate goods and aggregate them into the final good,

which is either consumed or used by entering firms to pay the cost of entry. Potential entrants

decide whether to pay the entry cost (in units of the final good) and enter. Households receive

all of the net cash flows from intermediaries and firms, and consume the final good.

Figure 1.17: Innovations in firm sales vs. credit spreads
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1.4.1 Physical Environment

Intermediate good firms produce differentiated goods with technology yit = lαit, where lit

indexes the labor stock of firm i at time t. The price that they receive for these goods,

as well as how important these goods are for the final good, depend on an idiosyncratic

demand shock zit. zit follows a Markov process with transition function πz (zit|zt−1,i, σit) and

depends on the lagged value of zit as well as the level of stochastic volatility the firm faces,

σit. I do not assume σit must be equal for all firms — it is a function of an idiosyncratic

component, σidit , and an aggregate component, σagt . Both of these follow Markov processes,

with transition functions πσid
(
σidit |σidt−1,i

)
and πσag

(
σagt |σ

ag
t−1

)
.

I denote the idiosyncratic state of a firm as xit =
{
zit, lit, bit, σ

id
it

}
, where lit is the employ-

ment of the firm and bit its borrowing, and the aggregate state of a firm as St = {σagt , Sbt},

where Sbt is the beginning-of-period aggregate state prior to the realization of shocks. The

beginning-of-period aggregate state, Sbt =
{
σagt−1,Υt, Bt

}
, is summarized by the aggregate

level of volatility before the shock, σagt−1 , the distribution of firms Υt(xt), and the household’s

wealth, Bt.

Final good firms buy the intermediate goods and produce the final good with technology:

Yt =

(∫
z(xit)y(xit)

γ−1
γ dΥt(xit)

) γ
γ−1

(1.11)

where z(xit) and yt(xit) denote the demand shock and intermediate good production of a

firm with state xit.

1.4.2 Final Good Firm’s Problem

The final good is used for consumption or to pay the entry cost. Competitive final good firms

choose their purchase of intermediate goods to maximize profits, Yt−
∫
pt(xit)yt(xit)dΥt(xit),

subject to (1.11). This yields the relative price of the intermediate firm good xit relative to
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the aggregate price index:

pt(xit) = z(xit)

(
Yt

yt(xit)

) 1
γ

. (1.12)

1.4.3 Intermediate Good Firm’s Problem

Intermediate good firms make labor, debt issuance, dividend, and entry decisions. They are

restricted from paying non-negative dividends, and if they would be compelled to do so they

default and any cash flows or remaining firm value goes to the financial intermediaries. It is

useful to separately consider the problems of incumbents and entrants.

1.4.3.1 Incumbent Firms

Incumbents enter the period with a stock of labor and debt, lit and bit, and receive their new

demand shock and idiosyncratic component of firm-level volatility, zit and σidit . They choose

new amounts of labor and debt issuance, l′it and b′it, as well as dividends dit. The dividend

for an incumbent firm can be written as:

dt = pt(xit)l
α
it −W (Sbt)lit − bit + bt+1,iQ

(
zit, σ

id
it , lt+1,i, bt+1,i, St

)
(1.13)

where W (Sbt) is the wage. The cash flow from debt issuance depends on the firm idiosyncratic

shocks, zit, σ
id
it , as well as firm decisions, lt+1,i, bt+1,i, and the aggregate state, St. The price

of state-uncontingent debt is Q
(
zit, σ

id
it , lt+1,i, bt+1,i, St

)
.

Firms seek to maximize the discounted present value of dividends, modified by a Jensen

effect parameter κ. This is motivated by ABK, referring to Jensen (1986), as the following:

Managers have incentives to spend built up cash by the firm in ways that benefit themselves

at the expense of shareholders, and thus shareholders change management incentives to pay

out dividends rather than retain them. The value function of intermediate good firms can
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thus be expressed as the following:

V (xit, St) = max
lt+1,i,bt+1,i


κdt + (1− κ)Et

[
PSt,St+1V (xt+1,i, St+1)|xit, St, lt+1,i, bt+1,i

]
dt ≥ 0

0 dt < 0

such that (1.13) holds. Here, PSt,St+1 denotes the stochastic discount factor implied by the

consumer’s problem. If firms cannot pay a non-negative dividend, they default and are seized

by creditors, and the equity holders walk away with no cash.

1.4.3.2 Entrants

Firms can enter by paying an entry cost ξ in terms of the final good. This cost is paid by

household in exchange for equity (this is the only equity issuance allowed in the model), and

they enter with no debt and idiosyncratic states xe and σide . Thus the free entry equation

can be expressed, modified by the Jensen effect parameter, as the following:

0 = max
lt+1,e

− κξ + (1− κ)Et
[
PSt,St+1V (xt+1,i, St+1)|St, lt+1,e

]
.

1.4.3.3 Distribution of firms

The distribution of firms, Υt(x), depends on firm leverage, employment, default, and entry

decisions. The law of motion for it can be characterized as the sum of several components:

First, incumbent firms which do not default:

ΥND
t (z′, l′, b′, σ′ id) =

(
1− br(z′, l′, b′, σid′, St)

)∑
x

P
(
z′, σ′ id|x, St−1

)
I (l′, b′, St−1, x) Υt−1(x),

where br(z′, l′, b′, σid′, St) and I (l′, b′, St−1, x) are dummy variables. br(z′, l′, b′, σid′, St) is

equal to 1 if a firm defaults conditional on realized shocks z′, σid′, choices l′, b′ and aggregate

state St. I (l′, b′, St−1, x) is equal to 1 if l′ = l∗(x, St−1) and b′ = b∗(x, St−1).
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Second, incumbent firms which do default (but survive default with probability 1− c):

ΥD
t (z′, l′, 0, σ′ id) = (1− c)

(
br(z′, l′, b′, σid′, St)

)∑
x

P
(
z′, σ′ id|x, St−1

)
I (l′, b′, St−1, x) Υt−1(x).

Finally, entering firms:

Υe
t (z
′, l′, 0, σ′ id) = etP

(
z′, σ′ id|xe, St−1

)
1{l′=l∗e(St)}.

Using these components, the law of motion for the distribution of firms can be written

as the following:

Υt(x) = ΥND
t (x) + ΥD

t (x) + Υe
t (x)

1.4.4 Financial Intermediation

Financial intermediaries lend non-contingent debt to the firms and borrow state-contingent

debt from the households. They are perfectly competitive and thus the price of outstanding

debt Q
(
zit, σ

id
it , lt+1,i, bt+1,i, St

)
is pinned down by the following zero profit condition:

Q
(
zit, σ

id
it , lt+1,i, bt+1,i, St

)
= E

[
PSt,St+1

(
1− br (xt+1,i, St+1)

+ (1− κ) (br (xt+1,i, St+1)) rrt+1 (xt+1, St+1, bt+1,i)) | zit, σidit , lt+1,i, bt+1,i, St

]
.

I assume here that if firms default, the resulting cash flows to debtholders are discounted

at the discount rate of equity holders, (1 − κ)β. This is micro-founded by specifying that

the remaining value of the firm is contracted to be sold to equity holders (or the managers

of these firms) in case of default. If I did not make this assumption, then firms would have

a perverse incentive to default, as cash flows conditional on defaulting would be discounted

at a lower rate than cash flows conditional on surviving.

The recovery rate on debt in the event of default is denoted rrt+1 (xt+1, St+1, bt+1,i) and
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is defined as follows:

rrt+1 = max

{
pt+1(xt+1,i)l

α
t+1,i −W (Sbt+1)lt+1,i + (1− c)V C

it (xt+1,i, St)

bt+1,i

, 0

}
,

where V C
it (xt+1,i, St) is the continuation value of the unlevered firm after being seized by

debtholders, and c is the probability that the firm is destroyed in default. The continuation

value of the unlevered firm is expressed as the following:

V C
it (xt+1,i, St) = max

lt+2,i

E
[
PSt+1St+2V (xt+2,i, St+2) |xt+1,i, St+1, lt+2,i, bt+2,i = 0

]
.

1.4.5 Households

Households have preferences over consumption of the final good and leisure of the form

U (Ct, Lt). They own (and receive) all dividends paid by firms. They also buy state-

contingent securities from the financial intermediaries, effectively lending them cash they

then extend as credit to intermediate good firms. They discount the future with discount

factor β. The problem of households can thus be written as the following maximization

problem:

V H (Sbt) = max
Lt

E

[
max

Ct,Bt(St+1)
U (Ct, Lt) + βV H (Sbt+1)

]

such that the budget constraint of the household is satisfied:

Ct +
∑
St+1

Bt (St+1)P (St+1|Sb,t) = WtLt +Bt−1 (St) +
∑

dit − ξMt (St) ,

where Mt is the mass of entry.
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1.4.6 Equilibrium

The equilibrium in this model is a sequence of allocations {C (St) , L (Sbt) , Y (Sbt)}, dis-

tribution of firms Υt, firm decision functions {l (xt, Sbt) , b (xt, Sbt) , br (xt, Sbt)} and prices

{W (Sbt) , Q (l′, b′, xt, Sbt) , P (Sbt)} such that the intermediate good firm’s problem is satis-

fied, the household’s problem is satisfied, financial intermediaries earn zero economic profit,

final good firms minimize costs, the labor and final good markets clear, the law of motion

for the distribution of firms is satisfied, and the free entry condition holds.

1.5 Quantitative Results

This section outlines the parameterization of the model and discusses the solution method. It

then documents the cross-sectional implications of the parameterized model and the business

cycle implications of a volatility shock.

1.5.1 Parameterization

I parameterize the utility function of be of the form U (C,L) = C1−ς

1−ς −
L1+ν

1+ν
, following ABK.

I parameterize the process for innovations in z to be the following: log( zt+1

zt
) = µz + σitεzit,

where εzit ∼ N(0, 1) and µz = −σ2
it

2
. Therefore, E[z] does not change in σit. The process

for log(σidit ) is set to be an AR(1) process with mean, µσ, variance, φσ, and persistence,

ρσ. The firm parameters which are chosen are c, κ, β, µσid ,ρσid ,φσid . I allow for a range of

parameterizations for c, allowing for both c = 1 (default very costly) as in ABK, as well as

setting c to the range of values found in the corporate finance literature (c ∈ (.084, 0.3)).

The remaining parameters are calibrated in the c = 0.3 case, which is on the high end of

estimates from the corporate finance literature. Table 1.3 summarizes the parameterization

of the remaining parameters in the model. κ is chosen to hit the degree of financial leverage

help by non-financial firms in Compustat. I compute the sum of a measure of total liabilities

and the sum of market capitalization for all firms for which I have both data series and I
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compute the ratio of the sum of liabilities to the sum of market capitalizations across firms.

µσ, φσ, and ρσ are chosen to hit the behavior of firm idiosyncratic asset volatility, including

the mean, persistence, volatility, and how much of the time series variation is represented by

the common component of idiosyncratic equity volatility.38 I parameterize aggregate shocks

to firm volatility to match dispersion in firm sales growth over the business cycle.

1.5.1.1 Measuring Equity Volatility in the Model

The parameter σit measures the amount of idiosyncratic volatility of the firm-specific funda-

mental shock z. However, it does not have a corresponding observable in the data. Thus, I

compute a measure of idiosyncratic asset volatility to correspond to the measure I compute

from the data. To this end, I compute the expected discounted present value of all cash

flows from the firm (both those going to debt and equity holders) for a firm with a given

set of state variables. Given the transition probabilities for firm fundamental z and for firm

volatility σidit , I compute the theoretical expected return for the value of firm’s assets as

well as the standard deviation of returns for the firm’s assets. This volatility differs from

the measure in the data in that it does not have measurement error and only accounts for

changes in business risk or leverage, and not for other variation in asset prices (due to liq-

uidity or other financial market factors). I proxy for these factors by adding noise to the

measurement of variance. The process for σit and for the noise affecting observation of asset

volatility is chosen to hit the cross-sectional variation in percent changes in sales growth, the

cross-sectional variation in idiosyncratic asset returns, and the persistence and volatility of

idiosyncratic firm asset volatility.

38I find that a common component is responsible for about 25% of within-firm variation in idiosyncratic
equity volatility.
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1.5.2 Solution Method

The solution method and parameterization I use differs from that used in ABK in a few

ways. First, I use very fine grid of productivity shocks, as the quantitative implications of

structural models of default can be very sensitive to the grid points. My parameterization for

z, which assumes a random walk instead of an AR1, allows me to solve the model for a very

fine grid, as I can represent all firm decisions and state variables relative to firm productivity

z.39 The cross-sectional implications of my model are generated from the solved steady

state. Business cycle implications are generated in the following way: The economy is first

assumed to be in steady state, and then a sequence of aggregate shocks are fed in, including

volatility shocks calibrated to the micro data for the recent recession. Then firm decision

rules are computed via backward value iteration, from which the resulting path of aggregate

employment is recovered.

1.5.3 Cross-Sectional Relationships

Figure 1.18: Probability of default vs. credit spreads
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* The red dashed line reflects data from speculative grade firms, by rating class, for the time pe-
riod 1984-2012 as reported by Standard and Poor’s. I adjust this data to account for risk premia, with
the procedure outlined in section 1.2.3.1. The remaining lines are implied by the full model, for varying
values of c. All series have the y-intercept from their line of best fit subtracted from them so the slopes
can be easily compared.

39Additionally, the literature cited by ABK indicate the demand shocks which are represented by z are
quite persistent.
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Figure 1.19: Innovations to employment vs. credit spreads, model (c=.3)
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To analyze the cross-sectional implications of the model, I compute the steady state of

the model with idiosyncratic shocks to firm fundamental volatility z. Figure 1.18 shows that

the relationship between default rates and credit spreads are entirely inconsistent for the first

parameterization (c = 1), but generate reasonable results for c ∈ [0.084, 0.3] (I correct for risk

premia in the data using the procedure outlined in section 1.2.3.1). This confirms the results

from the simple model. However, it is possible that while default destroys less than 30% of

firm value, firms may make decisions as if default were much more costly. For instance, if

managers face unemployment in case of default, they have an additional incentive to avoid

default. To address this, I consider the relationship between innovations to credit spreads

and innovations to year-ahead employment. In the context of the model, this is a measure

of how the risk of default (as reflected by credit spreads) affects firm employment choices.

If firms made employment decisions as if default were more costly due to higher default

costs borne by managers, this relationship should reflect the distortion caused by managerial

incentives and correspond to a higher cost of default. Figure 1.19 shows the scatter plot of

this relationship in the model in the c = 0.3 case. There is a negative relationship between

innovations to credit spreads and employment, but it is not perfectly correlated as firms

vary in their productivity, volatility, and leverage, and receive shocks to both productivity
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and volatility. Figure 1.20 shows the lines of best fit summarizing this relationship in the

data and in the model, for a range of values of c. Once again, the relationship in the data

lies somewhere between the slopes implied by c = .084 and c = 0.3. This suggests that

firm employment decisions, not just debt pricing, in my model is consistent with firm level

data for c ∈ [0.084, 0.3]. If the cost of default were instead parameterized to be c = 1,

the relationship between these two variables would be much stronger in the model than in

firm-level data.

Figure 1.20: Innovations to employment vs. credit spreads
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* The red line reflects the line of best fit from an unbalanced panel from 1984-2012, excluding NBER
recession years. The remaining lines of best fit are computed using the full model, for varying values
of c, in the steady-state.

1.5.4 Business Cycle Implications

As demonstrated in the simple model, the parameterization of c has large effects on the

impact of volatility shocks on employment. Figure 1.21 illustrates how the aggregate em-

ployment of firms responds to the sequence of volatility shocks implied by the dispersion

in firm sales growth seen during the recent 2007-2009 recession. If one follows ABK and

assumes default leads to the loss of all firm value (c = 1), the model generates large declines

in output (> 6%), explaining a great deal of the decline in employment per capita over the

recession. However, if c is set to the upper bound of estimates from the corporate finance
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Figure 1.21: Aggregate implications of a volatility shock
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* The lines depict the response of employment, for a variety of calibrations of c, to a sequence of
shocks corresponding to the IQR of sales growth during the 2007-2009 recession.

literature, the decline is much more modest, representing at most about a 2.5% decrease.

Further reducing c lowers the impact of volatility shocks even more. In the lower bound cal-

ibration (c = .084), employment only declines slightly before over-correcting. In comparison

to these plots, employment per capita fell by around 10%, and the employment of Compustat

firms (who did not enter/exit during the recession) fell by just over 5%. Therefore, after

calibrating c to match cross-sectional patterns, volatility shocks alone are not sufficient to

explain the decline in employment.

1.6 Other Shocks

However, there are other changes which occurred over the business cycle which may affect

the decline in employment. I focus on two which are consistent with firm-level data and have

a meaningful effect on firms in my model: First, a decline in the skewness of innovations to

firm idiosyncratic shocks z; second, a worsening of the cost of default, c.
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Figure 1.22: Distribution of firm sales growth
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1.6.1 Skewness Shock

Figure 1.24 shows the distribution of year-over-year sales growth during and before the 2007-

2009 recession. It is clear that during the recession, firms grew less on average and that the

dispersion in growth rates was greater, but the distribution seems to also have become slightly

more asymmetric. This becomes much more apparent when looking at measures of outlier-

robust dispersion and skewness following Bloom, Guvenen, and Salgado (2015). Figure 1.23

plots three lines: the difference between the 90th and 10th percentile of sales growth, the

difference between the 50th and 10th percentile, and the difference between the 90th and

50th percentile. It is apparent that there was a marked increase in the dispersion of sales

growth during the recent crisis, as the difference between the 90th and 10th percentile of sales

growth widened significantly. However, this was essentially all driven by downside dispersion,

the difference between the 50th and 10th percentile, rather than upside dispersion. Bloom,

Guvenen, and Salgado (2015) document that this marked decline in skewness is a robust

result, and that in general the skewness of firm growth rates in compustat is procyclical. In

my model with only volatility shocks, the model underestimates the increase in downside

dispersion and overestimates the increase in upside dispersion.

I parameterize a negative skewness shock by assuming that εzit follows a binormal dis-
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Figure 1.23: Measures of Dispersion, Upside and Downside
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tribution (about the median)40. The probability density function of this distribution is the

following:

f (ε) =


1

σ1

√
2π
e
− 1

2
(ε−m)2

2σ2
1 x ≤ m

1
σ2

√
2π
e
− 1

2
(ε−m)2

2σ2
2 x > m

I can thus parameterize the standard deviations for the upper and lower tails separately,

and specify them to hit the numbers documented in Bloom, Guvenen, and Salgado (2015)

for upside (90th percentile less 50th percentile) and downside (50th percentile less 10th

percentile) of the dispersion of sales growth.

As default is typically a left-tail event, shocks to the skewness of the distribution can

increase marginal default probabilities and reduce firm employment further. Figure 1.24

shows the results of an increase in idiosyncratic risk that increased volatility and decreased

skewness. This shows that skewness shocks can amplify the decline in employment, but its

magnitude is modest (around 1 percentage additional decline in employment).

40The binormal distribution has been used to parameterize skewness in financial modeling, see Feunou,
Jahan-Parvar, and Tdongap (2014), for example.
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Figure 1.24: Aggregate implications of a volatility and skewness shock

0 2 4 6 8 10 12
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Quarters since recession beginning

La
bo

r, 
cu

m
ul

at
ive

 p
er

ce
nt

 c
ha

ng
e

 

 

Vol, c=0.3
Skew, c=0.3

* The lines depict the response of employment to a sequence of shocks corresponding to the IQR
of sales growth and the observed changes in the difference between upside and downside dispersion
(documented by differences in percentiles of sales growth) during the 2007-2009 recession.

1.6.2 Changing Cost of Default

There is considerable evidence consistent with an increased cost of default during recessions.

A number of papers document that recovery rates are procyclical (thus losses to debtholders,

conditional on default, are countercyclical) and that there is a negative correlation between

the default rate and recovery rates conditional on default.41 This negative relationship is

only partially explained by the state of the aggregate economy; this has been interpreted

as consistent with the “fire-sale” effect of Shleifer and Vishny (1992).42 Figure 1.25 plots

the decline in average recovery rates reported by Moody’s during the 2007-2009 recession.

Additionally, I argue that a key cross-sectional relationship, the slope of credit spreads vs.

the probability of default, changed during the recent crisis in a way consistent with an

increased cost of default. As historical default probabilities are highly variable for individual

years, I have to use another measure of default risk. I follow Gilchrist and Zakrajsek (2012)

and use the probability of default implied by firm micro-data and a Merton “distance-to-

41Altman (2006) and Altman, Brady, Resti, and Sironi (2005) document key facts and provide a detailed
overview of the literature. These results are consistent with Moody’s data and analysis on recovery rates,
see Cantor and Varma (2004) and Moody’s (2015).

42See Acharya, Bharath, and Srinivasan (2007).
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default” model.43 Figure 1.26 displays this relationship both before and during the great

recession. There are two clear changes: first, credit spreads increase substantially given their

implied default probability; second, the slope between credit spreads and default probability

increases. The level effect, indicating that credit spreads rise more than can be explained

by the extent of default risk, is consistent with the finding in Gilchrist and Zakrajsek (2012)

that the excess bond premium, a measure of credit spreads in excess of what can be explained

by default risk, increased substantially in the 2007-2009 recession. The increase in the slope

is consistent with a higher cost of default in my model. The slope increases substantially,

more than doubling.

Figure 1.25: Procyclical Recovery Rate
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* The data is taken from the average recovery rate as reported by Moody’s.

As the cost of default is a first-order driver of the incentive for firms to reduce employ-

ment in the face of risk, a shock to the cost of default can reduce employment. I parameterize

the shock to the bankruptcy cost c to hit the relative changes in recovery rates during the

2007-2009 recession. Figure 1.27 documents the result of a volatility shock as well as a shock

to the level of the default cost.44 By itself, a shock to the cost of default does relatively

43The probability of default is a function of the market value of the firm, its liabilities, and the volatility
of equity, all taken from firm micro-data.

44The cost of default here is 30% before the shock, and increases to just over 50% of firm value during
the crisis.
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Figure 1.26: Probability of Default vs. Credit Spreads
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* The x-axis denotes the probability of default implied by a Merton model, computed from the market
capitalization of a firm, its liabilities, and realized equity volatility.

little, reducing employment by around 1.5%. However, when fed in together with idiosyn-

cratic volatility shocks, employment declines markedly, generating a roughly 7% decline in

employment. The large losses are due to the interaction of the two shocks, not just higher

default costs. If c is parametrized as constant and equal to the maximum value of the shock

to the cost of default realized in the great recession, the decline in employment is only about

half as much (the line labeled “Volatility shock, high constant cost of default” illustrates

this in Figure 1.27). The intuition here is similar to the simple model: volatility shocks and

shocks to the cost of default interact, as together they raise the incentive for firms to reduce

employment in order to avoid losses upon default more than they do separately. In addition,

both firm risk-taking and the distortion of firm employment from the costless default case

before the shock depend substantially on the level of c. If c is high prior to the sequence of

shocks, firms choose lower employment and take less risk in terms of leverage and operating

leverage than if c was low. Therefore the fact that c is low prior to the sequence of shocks

helps amplify the magnitude of the decline in employment.

Figure 1.28 shows the decline in employment implied by the interaction of these shocks

for varying mean levels of the cost of default, c = .084, 0.3. The shocks are parameterized

to hit the relative decline in recovery rates; therefore, the maximum level of c parameterized
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Figure 1.27: Aggregate Implications of a volatility and default cost shock
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* The lines depict the response of employment to a sequence of shocks corresponding to the IQR
of sales growth and calibrated shocks to the cost of default during the 2007-2009 recession. The line
denoted ”Volatility shock, high constant cost of default” considers the impact of volatility shocks if the
cost of default is set to the maximum value of it attained by the calibrated shock during this recession.

is lower if the cost of default is lower (c = .084) before the shock. If I instead fed in the

same sequence of shocks to the cost of default, the decline in employment would be even

greater if the cost of default was lower prior to the recession. The decline in employment by

the interaction of these shocks still depends on the typical magnitude of the cost of default.

However, given a cost of default, the decline in employment is much larger in response to

the combination of these shocks than to volatility shocks alone.

1.7 Conclusion

In this paper I investigate the role of idiosyncratic volatility shocks interacting with financial

frictions to drive a decline in employment over the business cycle. I argue that the cost of

default has a first-order effect on the size of this decline, and use cross-sectional implications

of the model to calibrate the cost of default. The assumption of very high default costs leads

to counterfactual implications and are in conflict with an established literature in corporate

finance. Parameterizing the cost of default to lower levels, consistent with both the cross-

sectional implications and the range of estimates from the literature, greatly reduces the

impact of this mechanism over the business cycle. I investigate two additional shocks which
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Figure 1.28: Aggregate Implications of a volatility and default cost shock, varying c
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* The lines depict the response of employment, for a variety of calibrations of c, to a sequence of
shocks corresponding to the IQR of sales growth and calibrated shocks to the cost of default during
the 2007-2009 recession.

are consistent with the micro-data for the 2007-2009 recession — a negative idiosyncratic

skewness shock and a shock to the cost of default. I find that modeling the risk shock as not

only as a volatility shock, but also as a negative skewness shock can amplify employment

losses, but not sufficiently to explain the decline in aggregate employment. Shocks to the

cost of default, on their own, only have a modest effect on employment. However, when

shocks to the cost of default and volatility are fed in together, they can interact to generate

a large (> 7%) decline in employment. This suggests that the factors leading to a change in

cost of default are key to understanding the effects of higher idiosyncratic volatility during

the great recession.

Appendix A: Simple Model

Proof of Proposition 1.1

The default threshold z (l, b) is defined as follows:

z (l, b) lα − wl − b+ V = 0.
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This can be rearranged:

z (l, b) = wl1−α + bl−α − V l−α.

Taking the derivative with respect to labor yields:

∂z (l, b)

∂l
= (1− α)wl−α − α bl−1−α + αV l−1−α.

This can be rearranged to find:

∂z (l, b)

∂l
= l−1−α (wl − α (wl + b− V )) .

It immediately follows that (i) and (ii) are equivalent.

The positivity of parameters V ,c, and probability density function f immediately imply

that (ii) and (iii) are equivalent.

(1.4) immediately implies that (iii) and (iv) are equivalent.

Proof of Proposition 1.2

The normal pdf has the form f(z) = 1
σ
√

2π
e

(z−µ)2

2σ2 . Thus the derivative of this with respect to

σ is:

∂ f(z)

∂σ
= − 1

σ2
√

2π
e

(z−µ)2

2σ2 +
(z − µ)2

σ3

1

σ
√

2π
e

(z−µ)2

2σ2 .

This can be simplified as:

∂ f(z)

∂σ
=

1

σ4
√

2π
e

(z−µ)2

2σ2
(
(z − µ)2 − σ2

)
.

Which implies that ∂f(z)
∂σ

> 0 if |µ− z| > σ, and thus (i) immediately follows. (ii) follows

from the fact that |µ− z| > σ2 and σ2 > σ1 then f2(z) = f1(z) +
∫ σ2

σ1

∂f(z)
∂σ

dσ > f1(z).
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Derivation of Equity Volatility in the Simple Model

Two Period Case Real equity returns can be computed as follows:

VE,2 + div

β VE,1
,

where

VE,2 = β


0 z < z (l, b)

zlα − wl − b+ V z ≥ z (l, b)

is the value of equity after z is realized,

VE,1 = β (E [z] lα − wl + V − F (z (l, b)) cV )

is the value of equity before debt issuance, and

div = β

(
b (1− F (z (l, b))) +

∫ z(l,b)

0

(zlα − wl) dF (z) + F (z (l, b)) (1− c)V

)

is the income from debt issuance paid to equity holders. These can be combined to compute

the volatility of equity returns in closed form. The expression is omitted here for simplicity,

but it is a function of the volatility of z, the amount of leverage, the incidence of default,

and the relative size of V to the operating profits. Shocks to the volatility of z will have a

first-order effect on the size of equity volatility.

Merton Model The role of the volatility of z on equity volatility can most easily be

demonstrated using a Merton model equivalent of this two-period model. The equivalent of

“asset value” in the Merton model is A = zlα; this means that if z follows geometric Brownian

motion, so does At. The equivalent of liabilities are B = wl + b− V ; the continuation value

has to be subtracted here because it does not move proportional in z. Default occurs, as
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in a Merton model, if A < B. The standard solution of a Merton model then implies that

equity volatility, σE, can be expressed as the following:

σE = σz

z0l
αΦ

(
log

(
z(lα)

b+wl−V

)
+

(
r+

σ2
z
2

)
(T−t)

σz
√
T−t

)
(1− F (z (l, b))) (E [zT |zT > z (l, b)] lα − wl − b+ V )

Here it is clear that changes to σz will have a large effect on σE, though the magnitude

of the response also depends on the effect on capital structure considerations.

Appendix B: Dataset Construction

Data Sources

Daily equity prices are extracted from the Center for Research in Security Prices (CRSP).

Data from firm accounting statements, at either the annual or quarterly frequency are taken

from Compustat. I combine data on credit spreads from the Lehman-Warga and Merill

Lynch databases. The data on credit spreads is limited to the time frame of 1984-2012, thus

my empirical analysis is limited to those years.

Computing Asset Volatility

As measures of equity volatility are affected by leverage, I also compute a measure of asset

volatility from returns. I follow a procedure consistent with Bharath and Shumway (2008)

and Gilchrist and Zakrajsek (2012) in measuring total firm value V A
it and firm asset volatility,

σAit , whose procedures are all in the spirit of Merton (1974). VA is the value of assets, V B
it is

the value of debt, µAit is the mean rate of asset growth, and σAit is asset volatility. I recover

V A
it and σAit from the data closely following the procedure outlined by Gilchrist and Zakrajsek

(2012). For each firm, I linearly interpolate the quarterly value of debt from Compustat to a

daily frequency. I use daily data on the market value of equity; call this V E
it . I guess a value
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of asset volatility, σAit = σEit
V Bit

V Eit +V Bit
, where the standard deviation of equity is calculated as

the square root of the annualized moving average of squared returns for a firm. To recover

the value of assets and the volatility of assets, I follow the procedure outlined in Merton

(1974).

Given a guess of σAit , I then use the equation

V E
it (t) = V A

it (t)Φ(d1)− e−r(T−t) ∗ V B
it Φ(d2),

where d1 =
log

(
V Ait
V B
it

)
+
(
r+ 1

2(σAit)
2
)
T

σAit
√
T

and d2 = d1−σAit
√
T , to recover the value of assets. I define

r to be the one-year Treasury-constant maturity, which is taken from the Federal Reserve’s

H.15 report. After converging on V A
it for the given σAit , I recompute σA from the implied V A

it

using the same methodology I use to compute σEit . I ultimately converge on σAit through a

slow-updating procedure.

This is a measure of asset volatility, but not the idiosyncratic component. I use the theory

of Merton above to derive a measure of idiosyncratic asset volatility from idiosyncratic equity

volatility and asset volatility. Assuming that equity prices follow geometric brownian motion

and are a function of asset prices and debt, Ito’s lemma allows us to express them as the

following: 45

σAit = σEit
V E
it

V A
it

∂V A
it

∂V E
it

. (B.1)

Rearranging (B.1) and splitting asset and equity volatility into aggregate and idiosyn-

cratic components yields:

(
σAMit

)2
+
(
σAIit
)2

=
(
σEMit

)2
(
V E
it

V A
it

∂V A
it

∂V E
it

)2

+
(
σEIit
)2
(
V E
it

V A
it

∂V A
it

∂V E
it

)2

,

where σAIit is idiosyncratic asset volatility of firm i and time t, σAMit is the firm’s aggregate

45This is equivalent to equation 6 in Gilchrist and Zakrajsek (2012)
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(market) asset volatility, and
(
σAit
)2

=
(
σAMit

)2
+
(
σAIit
)2

(and similarly for equity volatility).

Assuming that the idiosyncratic components in this equation correspond to each other and

plugging in (B.1) yields idiosyncratic asset volatility as the product of idiosyncratic equity

volatility and a de-leveraging factor:

σAIit = σEIit
σAit
σEit

. (B.2)

Tables for Chapter 1

Table 1.1: Regression of innovations in credit spreads on innovations in volatility

(1) (2) (3) (4)
%∆cst %∆cst %∆cst %∆cst

%∆σAi,t 0.249∗∗∗ 0.031∗∗

%∆σsale,t 0.187∗∗∗ -0.023
%∆lvgt -0.024 -0.072
%∆Πt -0.404∗∗∗ -0.329∗∗∗

%∆VE,t -0.369∗∗∗ -0.375∗∗∗

Year Effects No Yes No Yes
Bond Characteristic Controls No Yes No Yes
Bond Rating Effects No Yes No Yes
N 15474 14700 6865 6631
r2 0.025 0.438 0.002 0.407

* Data is an unbalanced panel for 1984-2012, excluding NBER recession years. Percent changes are computed as
xt+1−xt

1
2

(
xt+1+xt

) .

Bond characteristics considered include the duration, coupon, and the face value of debt. σAi,t is idiosyncratic asset
volatility, σsale,t is a measure of volatility estimated from a GARCH process on firm sales growth, lvgt is market leverage,
Πt is profitability (operating profits to book value of assets), and VE,t denotes the market capitalization of the firm.
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Table 1.2: Regression of innovations in employment on innovations in volatility

(1) (2) (3) (4) (5) (6)
%∆lt+1 %∆lt+1 %∆lt+1 %∆lt+1 %∆lt+1 %∆lt+1

%∆σAi,t -0.024∗∗∗ -0.021∗∗∗ -0.028∗∗∗

%∆σsale,t -0.029 -0.028 -0.015
%∆Πt 0.033∗∗∗ 0.005 0.042∗ 0.007
%∆Qt−1 0.023∗∗∗ 0.025∗∗∗ 0.027∗∗∗ 0.029∗∗∗

%∆salet 0.173∗∗∗ 0.126∗∗∗ 0.193∗∗∗ 0.151∗∗∗

%∆VE,t 0.087∗∗∗ 0.074∗∗∗

%∆lvgt 0.026∗∗∗ 0.016
Year Dummies No Yes Yes No Yes Yes
N 37511 30567 29292 9797 8381 8100
r2 0.001 0.057 0.080 0.000 0.067 0.086

* Data is an unbalanced panel for 1984-2012, excluding NBER recession years. Percent changes are computed as
xt+1−xt

1
2

(
xt+1+xt

) .

Bond characteristics considered include the duration, coupon, and the face value of debt. σAi,t is idiosyncratic asset
volatility, σsale,t is a measure of volatility estimated from a GARCH process on firm sales growth, lvgt is market leverage,
Πt is profitability (operating profits to book value of assets),Qt is Tobin’s Q, and VE,t denotes the market capitalization of
the firm.

Table 1.3: Baseline parameterization

Parameter Meaning Value Notes

Non-firm Parameters:

ς CES parameter in utility function 2 Taken from ABK
ν Controls labor elasticity 0.5 Taken from ABK, implies labor elasticity of 2
γ Elasticity of substitution 7.7 Taken from ABK, implies 15% markup

Firm parameters:

α Returns to scale in labor 0.7 Taken from ABK
κ Jensen effect parameter 0.05 Chosen to hit ratio of the sum of total

liabilities to the sum of market capitalization
β Discount rate 0.99

Firm-specific portion of idiosyncratic risk:

log(µσid) Mean .09 Chosen to hit IQR of sales growth and proportion of idiosyncratic
equity volatility not explained by common component

ρσid Persistence .92 From autocorrelation of firm idiosyncratic equity volatility
φσid Variance .12 From volatility of innovations to firm idiosyncratic equity volatility

*All variables are at a quarterly frequency.
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Chapter 2: Accounting for Productivity Dispersion

over the Business Cycle

2.1 Introduction

What drives changes in aggregate productivity? One explanation that has been widely used

to explain the variation of aggregate productivity over the business cycle or over time more

generally is that frictions to the allocation of labor and capital between firms are time-

varying: Greater frictions to the distribution of capital and labor between firms reduce the

amount of output produced with a given amount of capital and labor and reduce measures

of aggregate productivity.46 This paper presents accounting decompositions of changes in

aggregate labor, capital, and total factor productivity that addresses this economic mecha-

nism, and can help to quantify the extent to which the changing distribution of labor and

capital drive fluctuations in aggregate productivity over time.

The accounting decompositions in this paper rely on the property that aggregate factor

productivity ratios can be expressed as the weighted sum of firm-level productivity ratios.

Our first decomposition splits changes in measures of aggregate factor productivities into a

mean component, changes in the weighted average of log productivities across firms, and a

dispersion component, which captures changes in the higher order moments of the distribu-

tion of productivities across firms.47 The two components add up to the change in a given

aggregate factor productivity ratio. We compute the decomposition separately for both ag-

gregate labor and capital productivity. Crucially, for the decomposition of aggregate labor

productivity, we require only firm-level panel data on value added and labor, and for the

46This economic mechanism plays a role in driving the dynamics of productivity and other macroeconomic
aggregates in a number of recent influential papers, including Arellano et al. (2012), Bloom, Floetotto,
Jaimovich, Sporta-Eksten, and Terry (2014b), Gilchrist et al. (2014), Khan and Thomas (2013), Midrigan
and Xu (2014), and Moll (2014), as examples.

47To be precise, the dispersion component can be expressed as a function of the second and higher order
cumulants of the distribution of firm productivity measures, while the mean component is only a function
of the first cumulant.
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decomposition of aggregate capital productivity, we require firm-level panel data on value

added and capital.

The allocation of labor and capital may vary across firms not only due to distortions

but for technological reasons as well; the second decomposition allows us to group firms

(by industry or other categorical groups) to address this point. We implement our first

decomposition on each sector, resulting in sectoral mean and dispersion components. We

can then weight each sector’s mean and dispersion components by sectoral factor shares to

obtain aggregate mean and dispersion components. Thus, by an accounting property, the

change in aggregate factor productivities can be decomposed into three components: First,

an aggregated mean component which captures changes in the weighted average of log factor

productivities within sectors. Second, an aggregated dispersion component which captures

changes in the dispersion of log factor productivities across firms within sectors. Third, a

sectoral-share component, which captures the changes in the distribution of inputs between

sectors.

Our decompositions, when applied to aggregate labor or capital productivity, are purely

accounting identities. To combine aggregate capital and labor productivity into a measure

of total factor productivity, we rely on the standard model assumptions that allow us to

compute the Solow residual. We then show that the Solow residual has the nice property

that we can express it as the weighted average of the mean, dispersion, and sectoral-share

components of capital and labor productivity.

Our decompositions are useful tools for researchers testing whether models where frictions

to the allocation of labor or capital across firms play a meaningful role in driving aggregates

are consistent with firm level behavior. We present a series of results to demonstrate this

point. In the model of Hsieh and Klenow (2009), we demonstrate how our decomposition

captures changes in the distribution of the log of marginal revenue factor productivities. We

prove that changes in the expected value of the log of marginal revenue factor productivities,

as well as changes in production function coefficients, drive changes in the mean component
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of our decompositions. We prove that changes in the second central moment and all higher

order moments of the log of marginal revenue factor productivities drive changes in the

dispersion component of our decompositions.

We then use a more general model of production by heterogeneous firms to demon-

strate how distortions to firm capital and labor decisions are captured in our decomposition.

We demonstrate analytically that the dispersion component of our decomposition captures

changes in productivity due to heterogeneous distortions to firm-level input allocation. The

mean component of our decompositions captures changes in technology or common distor-

tions to firm capital or labor choices. We prove that this general model of production has a

mapping to a large number of macroeconomic models in the literature that utilize frictions

to the allocation of labor or capital across firms to help drive aggregate dynamics.

We compute our decompositions for aggregate labor productivity, capital productivity,

and TFP using firm-level data on U.S. nonfinancial public firms. To see if the results are

consistent for another large, developed nation, we perform a similar analysis for nonfinancial

public firms from Japan. The results for the United States and Japan from the second decom-

position applied to labor productivity show that the mean component is highly correlated

with movements in aggregate labor productivity and are essentially solely responsible for its

cyclical variation. The magnitude of movements in the dispersion component are small, and

the dispersion component has a weak negative correlation with changes in aggregate labor

productivity. Our results are different for aggregate capital productivity. The dispersion

component moves much more closely with changes in aggregate capital productivity, and

does play a role in contributing to cyclical variation in aggregate capital productivity. Our

decomposition, when applied to TFP, yields the result that the mean component is respon-

sible for the vast majority of its cyclical variation, because much of the cyclical movements

in TFP are driven by changes in aggregate labor productivity.
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Related Literature The contribution of this paper is to provide accounting decomposi-

tions of aggregate labor and capital productivity, which can be implemented without struc-

tural estimation, and can guide the specification of firm-level frictions to capital and labor

allocation in business cycle models. The fact that our decompositions only require measures

of firm-level value added, labor, and capital, and do not require estimation to be computed

is an attractive property, as it implies the use of our decomposition not only avoids potential

biases from estimation, but also means that our decomposition can be computed in both data

and heterogeneous firm models with relative ease. A large number of papers in the literature

work with production environments that map into the class of production environments that

we rely on to prove how our decomposition maps into models in Section 2.3. The general class

of models to which our theoretical results apply include the influential models of Arellano,

Bai, and Kehoe (2012), Bloom et al. (2014b), Kehrig (2015), and Khan and Thomas (2013),

as only a few recent examples. Thus, the dispersion component of our decomposition reflects

changes in the distribution of distortions to firm input allocation in such papers. Hence,

the role of frictions to firm labor and capital allocation in a large number of models can be

compared to the data through the use of our decomposition. Our empirical results alone

can also help to guide model selection in standard, widely-used production environments. In

this sense, our decomposition is similar in spirit to Chari, Kehoe, and McGrattan (2007).

Our paper is also related to a number of recent studies which examine the role of real-

location or allocative efficiency in driving aggregate productivity dynamics. One group of

papers estimate production function coefficients and firm-level total factor productivities to

assess the role of allocative frictions in driving productivity over the business cycle, such as

Oberfield (2013), Osotimehin (2013), and Sandleris and Wright (2014). Our approach differs

from this set of the literature in that our decompositions are accounting identities requiring

only measures of firm-level value added, capital, and labor, and thus we do not require the

estimation of production function coefficients. Our method therefore avoids the potential

econometric biases in these estimation procedures (which are discussed in Appendix E) and
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can be implemented immediately on a wide array of models and data. The magnitude of

the dispersion component of our decompositions can be viewed as an approximation to the

extent to which allocative efficiency affects aggregate productivity in such models (we show

this in Appendix E). Thus, our decomposition, if applied to the respective datasets used in

these papers, could be used to complement the paper’s structural approaches and potentially

address concerns regarding the assumptions required for estimation. Another group of papers

examine the role of resource reallocation through the use of aggregate productivity decom-

positions, such as Foster, Haltiwanger, and Krizan (2001) and Basu and Fernald (2002). The

sectoral share component of our second decomposition also speaks to the role resource real-

location between sectors can play in driving productivity dynamics. Differently from these

papers, however, the dispersion component of our decomposition captures the role allocative

efficiency plays in driving productivity dynamics.48 Additionally, our decomposition does

not require the estimation of firm-level TFP.

The rest of the paper proceeds as follows. Section 2.2 defines the components of our

decompositions for aggregate labor productivity, aggregate capital productivity, and TFP.

Section 2.3 discusses how shocks to firm-level wedges map into the components of our decom-

position. Section 2.4 applies our decomposition to data from U.S. and Japanese nonfinancial

public firms. Section 2.5 concludes.

2.2 Productivity Decompositions

In this section, we first present our decompositions of changes in aggregate labor and capital

productivity, and then we present how to combine these decompositions to perform decom-

positions of changes in TFP. Decomposition I breaks changes in the log of each aggregate

productivity ratio into a mean and a dispersion component to help identify whether it is

48Alternatively, adjustment costs could generate a dynamically efficient allocation that observationally is
consistent with static misallocation; this point is made in Asker, De Loecker, and Collard-Wexler (2014),
e.g.
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changes in the mean or dispersion of the log of firm-level productivity ratios that are driving

changes in aggregate productivity. Decomposition II allows for groupings of firms (sectors)

to each have a mean and a dispersion component, and for the allocation of inputs between

each grouping of firms to change over time. In turn, when analyzing changes in aggregate

productivity, there is also a sectoral-share component, which reflects how input shares are

changing across sectors over time.

2.2.1 Decomposition I: Mean and Dispersion Components

We start with a static decomposition of aggregate labor productivity. We define L as ag-

gregate labor and l as firm-level labor. Aggregate labor is the sum of all firm-level labor.

We define K as the aggregate capital stock and k as the firm-level capital stock, where the

aggregate capital stock is the sum of all firm capital stocks. The decomposition below holds

for capital productivity as well, if we substitute K for L and k for l.

We define Y as aggregate output and v as firm value added, where aggregate output is

the sum of all firm-level value added. We have the following identity, which holds at each

time t:

Lt
Yt
≡
∑
i

li,t
vi,t

vi,t
Yt
, (2.1)

where i indexes the set of firms in the economy.

Building on (2.1), we can now perform a static version of our first decomposition:

log

(
Lt
Yt

)
=

∑
i

log

(
li,t
vi,t

)
vi,t
Yt︸ ︷︷ ︸

static mean component

+

(
log

(∑
i

li,t
vi,t

vi,t
Yt

)
−
∑
i

log

(
li,t
vi,t

)
vi,t
Yt

)
︸ ︷︷ ︸

static dispersion component

. (2.2)

Aggregate labor to output at each time t is now broken into a “mean component,” which is

the weighted average of the log of labor to value added, and a “dispersion component.” If we

treat labor to value added as a random variable with a probability density function (reflecting
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the number and size of firms with a given productivity ratio), the dispersion component

takes the form of the log of the expectation of firm-level labor to value-added ratios less the

expectation of the log of firm-level labor to value-added ratios. This term is always non-

negative due to Jensen’s inequality. This measure has useful statistical properties related

to the measure of entropy in Backus, Chernov, and Zin (2014). Assuming some regularity

conditions on the distribution of firm labor to value-added ratios such that the cumulant

generating function exists, the dispersion component captures all higher-order cumulants

of the distribution of firm-level labor to value-added ratios.49 This can be interpreted as

the following: The dispersion component captures the effect of all second and higher order

moments of the distribution of firm labor productivity on aggregate labor productivity.

We are interested in changes in labor productivity. We can recover changes in labor

productivity as:

∆ log

(
Yt
Lt

)
= −∆

∑
i

log

(
li,t
vi,t

)
vi,t
Yt︸ ︷︷ ︸

mean component

(2.3)

−∆

(
log

(∑
i

li,t
vi,t

vi,t
Yt

)
−
∑
i

log

(
li,t
vi,t

)
vi,t
Yt

)
︸ ︷︷ ︸

dispersion component

.

An increase in dispersion in firm-level labor to value-added ratios decreases aggregate

labor productivity. Similarly, an increase in the weighted average of firm-level labor to value-

added ratios decreases aggregate labor productivity. Our mean/dispersion decomposition

allows us to determine whether it is changes in the mean or the dispersion in the log of

firm-level labor to value added which is driving changes in aggregate labor productivity.

We present our second decomposition below, which allows each sector to have a mean and

dispersion component. Hence, changes in aggregate labor productivity can be driven by

49Cumulants summarize the distribution of a random variable, as we explain in more detail in Section 2.3.
Backus, Chernov, and Zin (2014) also provide an excellent discussion of why functions of this form capture
all higher-order cumulants.
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changes in the mean of log firm-level labor to value-added ratios within sectors, changes in

their dispersion within sectors, or changes in the allocation of inputs between sectors.

2.2.2 Decomposition II: Mean, Dispersion, and Sectoral Share

Components

For a sector (or any given grouping of firms), the identity in (2.1) holds. Hence, if j indexes

a given sector, we have the following identity for aggregate labor to added value ratio within

that sector at time t:

Ljt

Y j
t

≡
∑
i

lji,t

vji,t

vji,t

Y j
t

. (2.4)

In turn, for each sector at time t, we can decompose the aggregate labor to added value

ratio within a sector into a mean and dispersion component:

log

(
Ljt

Y j
t

)
=
∑
i

log

(
lji,t

vji,t

)
vji,t

Y j
t︸ ︷︷ ︸

Mj
t

+

(
log

(∑
i

lji,t

vji,t

vji,t

Y j
t

)
−
∑
i

log

(
lji,t

vji,t

)
vji,t

Y j
t

)
︸ ︷︷ ︸

Djt

, (2.5)

where M j
t is the static mean component in sector j and Dj

t is the static dispersion component

in sector j.

By an identity, aggregate labor productivity is equivalent to:

Yt
Lt

=
∑
j

e−M
j
t−D

j
t
Ljt
Lt
. (2.6)

This implies that aggregate labor productivity can be expressed as an aggregate of sectoral

mean and dispersion components, weighted by the share of labor allocated to each sector.

Hence, when we look at changes in aggregate labor productivity, we have to account for the

fact that input shares of different sectors can be changing over time. In turn, we have a

third component, which reflects changes in the input share of a given sector, which we call

67



the sectoral-share component:

log

(
Yt
Lt
Yt−1

Lt−1

)
= log


∑

j

(
e−M

j
t

)
Ljt−1

Lt−1∑
j

(
e−M

j
t−1

)
Ljt−1

Lt−1


︸ ︷︷ ︸

mean component

+ log

 ∑
j e
−Mj

t−D
j
t
Ljt
Lt∑

j e
−Mj

t−D
j
t
Ljt−1

Lt−1


︸ ︷︷ ︸

sectoral share

+ log

 ∑
j e
−Mj

t−D
j
t
Ljt−1

Lt−1∑
j e
−Mj

t−1−D
j
t−1

Ljt−1

Lt−1

− log


∑

j

(
e−M

j
t

)
Ljt−1

Lt−1∑
j

(
e−M

j
t−1

)
Ljt−1

Lt−1


︸ ︷︷ ︸

dispersion component

. (2.7)

In this decomposition, changes in aggregate labor productivity are broken into three

components. First, a mean component which captures changes in an aggregation of sectoral

mean log labor productivities. Second, a sectoral share component which captures the effect

of the changing allocation of labor between sectors. This second component will be positive

if labor is flowing from low labor productivity sectors to high labor productivities onces.

Third, a dispersion component, which captures changes in the dispersion of firm log labor

productivities within sectors.

2.2.3 Decomposing Changes in TFP using Decomposition II

We measure TFP, At, as:

At =
Yt

Kα
t L

1−α
t

. (2.8)

We assume that capital’s share of output, α, is positive. We can thus rewrite (2.8) as:

log(At) = α log(
Yt
Kt

) + (1− α) log(
Yt
Lt

). (2.9)
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Taking changes in (2.9),

∆ log(At) = α∆ log(
Yt
Kt

) + (1− α)∆ log(
Yt
Lt

). (2.10)

In (2.7), we showed that changes in log( Yt
Lt

) can be broken into mean, dispersion, and sectoral-

share components. Denote these components for labor as ML
t , D

L
t , and SLt , respectively.

Denote these components for capital as MK
t , D

K
t , and SKt , respectively. Hence,

∆ log(
Yt
Kt

) = MK
t +DK

t + SKt . (2.11)

In turn, we can rewrite changes in log TFP from (2.10) as changes in the weighted sum

of the mean components for capital and labor, the dispersion components for capital and

labor, and the sectoral-share components for capital and labor:

∆ log(At) = (αMK
t + (1− α)ML

t ) + (αDK
t + (1− α)DL

t ) + (αSKt + (1− α)SLt ). (2.12)

2.3 Decomposition Applied to Models

In this section, we demonstrate the economics of our decomposition in standard production

environments. First, in the production environment described by Hsieh and Klenow (2009),

we demonstrate that changes in the production technology, prices, or the expected value

of the log of marginal revenue products of capital will manifest themselves in the mean

component of our decomposition. Second, changes in the variance or higher order moments

of the log of marginal revenue products of capital will be reflected in the dispersion component

of our decomposition.

Building on the above results, we demonstrate in a standard production environment

how the components of our decomposition capture changes in the distribution of distortions

to firm labor and capital choices. We find that common changes to the frictions to input
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choices facing firms are reflected in movements in the mean component. We also derive

conditions under which distributional changes in such frictions are reflected in the dispersion

component of our decomposition. Such results are derived in a more general framework than

that of Hsieh and Klenow (2009), and we identify a number of relevant papers that can be

mapped into our environment.

Our results are particularly relevant to the literature that studies the role financial fric-

tions play in amplifying movements in aggregates over the business cycle. We analytically

demonstrate how a change in a financial friction in a simple model of production will present

itself as a distortion. We then demonstrate that an increase in the extent to which this

financial friction affects firms will increase the dispersion in wedges.

2.3.1 Hsieh and Klenow (2009) Production Environment

The model consists of heterogeneous firms that produce differentiated goods. There are S

industries, and the outputs of each industry, YS, are aggregated into a final good (total out-

put), Y , using Cobb-Douglas technology in a perfectly competitive market. Hence, aggregate

output can be defined as:

Y = ΠS
s=1Y

θs
s , where

S∑
s=1

θs = 1. (2.13)

From standard arguments: PSYS = θsPY , where the price of industry output is Ps and

P is the price of the final good, which is set to be the numeraire.

There are Ms firms in a sector s. Industry output, Ys is produced using CES technology:

Ys =

(
Ms∑
i=1

Y
σ−1
σ

si

) σ
σ−1

. (2.14)

Within an industry, firms are heterogeneous in a few dimensions. First, they vary in

aspects of their physical productivity. Second, they vary in the magnitude of frictions to

70



their labor and capital choices. One can write these two distortions as distortions that

affect the marginal products of labor and capital evenly, which one can write as an output

distortion τY , and distortions that affect the marginal product of capital relative to labor,

which one can write as a capital distortion, τK . Firm i within sector s produces output, Ysi,

from its firm TFP, Asi, capital stock Ksi, and labor Lsi, using the following Cobb-Douglas

technology:

Ysi = AsiK
αs
si L

1−αs
si . (2.15)

Profits of firm i in sector S are thus:

πsi = (1− τYsi)PsiYsi − wLsi − (1 + τKsi)RKsi. (2.16)

From standard arguments, in this setup, the marginal revenue product of capital for a

firm, MRPKsi ,
∂PsiYsi
∂Ksi

, is a function of the rental rate of capital and firm level wedges:

MRPKsi = R
1 + τKsi
1− τYsi

. (2.17)

As in Hsieh and Klenow (2009), it is useful to define the marginal product of capital (in

total) for a sector as the following:50

MRPKs ,
R∑MS

i=1

1−τYsi
1+τKsi

Ksi
KS

. (2.18)

For our decomposition, it is also useful to define the weighted average of the log marginal

50There was an error in the specification of this object in the original paper of Hsieh and Klenow (2009).
The specification here corresponds to the form in the published corrections.
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product of capital for firms in a sector, which is:

LMRPKs ,
MS∑
i=1

log(R
1 + τKsi
1− τYsi

)
PsiYsi
PSYS

. (2.19)

2.3.1.1 Our Decomposition in this Production Environment

In the environment above, from (2.18) and (2.19) and the definition of the marginal revenue

product of capital, our decomposition applied to capital productivity for sector s can be

expressed as the following:

∆ log

(
P s
t Y

s
t

Ks
t

)
= ∆ log

(
1

αs

σ

1− σ

)
+ ∆LMRPKs︸ ︷︷ ︸

mean component

+ ∆ log
(
MRPKs

)
−∆LMRPKs︸ ︷︷ ︸

dispersion component

. (2.20)

We now demonstrate how the changing distribution of marginal productivities are re-

flected in our decomposition by demonstrating which cumulants of the distribution of log

marginal revenue productivities show up in which components of our decomposition. Cumu-

lants are similar to moments; the cumulant-generating function of a random variable is an

alternative specification of a probability distribution, similar to a moment-generating func-

tion. The first cumulant is the expected value of the variable, the second cumulant is its

variance, and the higher order cumulants are polynomial combinations of centralized mo-

ments. Consider the distribution of firm log marginal revenue products of capital, reflecting

both the mass of firms at a given productivity and their relative output shares (to be precise,

the CDF would be written Gs (X) =
∫
i∈s 1 (MRPKsi ≤ X) PsiYsi

PSYS
di). Denote the cumulants

of this distribution as κs1, κ
s
2, .... Using properties of the cumulant generating function, our

decomposition can be expressed as the following function of the cumulants of the distribution
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of log marginal revenue productivities of capital:51

∆ log

(
P s
t Y

s
t

Ks
t

)
= ∆ log

(
1

αs

σ

1− σ

)
+ ∆κs1︸ ︷︷ ︸

mean component

+−∆κs2
2!

+
∆κs3
3!
− ∆κs4

4!
+ ...︸ ︷︷ ︸

dispersion component

. (2.21)

Note that κs1 = LMRPKs is the weighted average of the log of firm marginal revenue

products of capital, while κs2 is the variance of the log of firm marginal revenue products of

capital. The mean component captures only changes in technology or LMRPKs. Changes

in the second cumulant (and thus second central moment), or higher order cumulants (and

thus all of the remaining higher order moments) of the distribution of the log of firm marginal

revenue products of capital are reflected in the dispersion component of our decomposition.

Note that if firm marginal revenue products of capital are lognormally distributed, then

only the first two cumulants are non-zero. In that case, our decomposition is isomorphic to

a mean-variance decomposition. Increases in the expected value of the log of firm marginal

revenue productivities are reflected in the mean component of our decomposition, while the

negative effect of the greater variance of the log of firm marginal revenue products is reflected

in the dispersion component of our decomposition. This is apparent if in (2.21) the dispersion

component is further broken into variance and higher order terms as below:

∆ log

(
P s
t Y

s
t

Ks
t

)
= ∆ log

(
1

αs

σ

1− σ

)
+ ∆κs1︸ ︷︷ ︸

mean component

+

variance︷ ︸︸ ︷
−∆κs2

2!
+

higher-order terms︷ ︸︸ ︷
∞∑
n=3

(−1)n−1 ∆κsn
n!︸ ︷︷ ︸

dispersion component

. (2.22)

Notice, if we define κL,n as the n′th cumulant of the log of the marginal revenue product

of labor and κK,n as the n′th cumulant of the log of the marginal revenue product of capital,

51See Appendix C for details of this derivation.
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we can apply our decomposition to changes in TFP using (2.12):

∆ log (TFPRs) = ∆ log

(
σ

1− σ
α−αss (1− αs)αs−1

)
+ (1− αs)∆κsL,1 + αs∆κ

s
K,1︸ ︷︷ ︸

mean component

variance︷ ︸︸ ︷
−

(1− αs)∆κsL,2 + αs∆κ
s
K,2

2!
+

higher-order terms︷ ︸︸ ︷
∞∑
n=3

(1− αs)∆κsL,n + αs∆κ
s
K,n

(−1)n−1 n!︸ ︷︷ ︸
dispersion component

.

(2.23)

2.3.2 Simple Model of Production and Allocation

Given an increase in the dispersion of wedges likely results in a change in value added

shares, we demonstrate under what conditions we can analytically demonstrate that an

increase in the dispersion of wedges leads to an increase in the dispersion component of

our decomposition. Similarly, we demonstrate under what conditions we can analytically

demonstrate that an increase in the mean of wedges will increase the mean component of

our decomposition, all else equal. We present our results within a similar environment to

Hsieh and Klenow (2009), but more general technology.

As in Hsieh and Klenow (2009), the model consists of heterogeneous firms who produce

differentiated goods, which are aggregated into a final good (total output), but now with a

more general aggregation technology to be described below. Firms are heterogeneous in the

following dimensions: They vary in aspects of their physical productivity, zit, and they vary

in the magnitude of frictions to their labor and capital choices.

2.3.2.1 Intermediate Good Firm Technology

Firms are indexed by i and time by t. Firm i at time t produces yi,t units of an intermediate

good using li,t units of homogeneous labor and ki,t units of capital with the production

function yi,t = zi,tl
γ
i,tk

ν
i,t. Labor and capital are homogeneous, therefore aggregate labor and
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capital clearing imply that
∫
i
li,tdi = Lt and

∫
i
ki,tdi = Kt, where Lt and Kt denote aggregate

labor and capital.

2.3.2.2 Aggregation Technology and Value Added

Total output, Yt, is aggregated from firm output with technology Yt =
(∫

i
yϕi,tdi

)φ
. Note

that this general form nests the two most common final good technologies considered in the

literature as special cases: The CES aggregator and heterogeneous firms producing a single

good. The final good sector is competitive and cost minimizing. Standard arguments imply

the price of each intermediate good, pi,t, is pi,t = Y
φ−1
φ Pt (yi,t)

ϕ−1, where Pt is the price

of the final good, which we set to be the numeraire. Therefore value added in real terms,

vi,t =
pi,t
Pt
yi,t, can be expressed as a function of prices and firm output:

vi,t = Y
φ−1
φ

t (yi,t)
ϕ . (2.24)

To compute our decomposition, one requires firm-level productivity ratios and firm-level

value-added shares. For a given firm, we can compute a firm-level value-added share as:
vi,t
Yt

.

2.3.3 The Optimal Allocation of Inputs and the Role of Firm-level

Wedges

In this subsection, we solve the optimal allocation of resources in the planner’s problem,

and we demonstrate how firm-specific wedges can distort the allocation of labor and capital

between firms from this allocation.

We show that the optimal allocation of resources in the planner’s problem is such that

all firms have the same productivity ratios. This choice is unique and can be characterized

as a function of the distribution of firm-level TFP, F z
t (z). We then show that any allocation

of capital and labor between firms can be expressed as a function of the optimal input choice

and firm-specific wedges. We utilize this final result in the following subsection to evaluate
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how shocks to firm-level wedges show up in our decomposition.

2.3.3.1 Optimal Allocation

We now present a proposition that highlights the known result that for any fixed amount

of total capital and labor, the optimal allocation of resources (to maximize static output)

is such that all firms with identical production function coefficients have the same factor

productivity ratios.

Proposition 2.1.

1. Given a fixed amount of total labor and capital, Lt and Kt, the allocation of capital and

labor across firms that maximizes output is such that there are unique optimal labor

and capital productivity ratios,
v∗t
l∗t

and
v∗t
k∗t

, which are common among all firms and only

depend on the CDF of firm productivity, F z
t (z).

Proof. See Appendix C.

A full (static) planner’s problem maximizing current welfare could be split into two parts:

First, solve for the optimal allocation rule of capital and labor between firms for any fixed

amount of both capital and labor; and second, choose the total amount of capital and labor

to maximize current period utility. Therefore Proposition 2.1 implies that the allocation

which maximizes static utility is one where firms have constant productivity ratios. We do

not place any restrictions on the level of statically optimal total labor and capital.

2.3.3.2 Firm-Level Wedges

We then use the optimal labor and capital productivity ratios to define firm-level wedges,

defined as the firm productivity ratio,
vi,t
li,t

or
vi,t
ki,t

, over the optimal productivity ratio,
v∗t
l∗t

or

v∗t
k∗t

. We formally define firm level wedges as:

ωl,i,t ,
vi,t
li,t

l∗t
v∗t
, (2.25)
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and

ωk,i,t ,
vi,t
ki,t

k∗t
v∗t
, (2.26)

for labor and capital, respectively.

These wedges capture how far a firm’s productivity ratio is from the one that maximizes

welfare in the social planner’s static optimization problem. They also capture aggregate

distortions, which distort every firm’s input decision and change aggregate labor or capital,

as well as changes in the relative distribution of resources between firms.

In the model of Hsieh and Klenow (2009), which is a special case of this production

environment, these wedges can be expressed as functions of the firm-level distortions in

their model, τY si and τKsi. The firm-level wedges are proportional to these distortions:

ωl,i,t ∝ 1
1−τY si

and ωk,i,t ∝
1+τKsi
1−τY si

.

2.3.4 Shocks to Firm-level Wedges in our Decompositions

In this subsection, we illustrate how changes to the distribution of firm-level wedges are cap-

tured in our decomposition and how such changes affect aggregates. The model of production

and allocation (from subsection 2.3.2) we consider only has a single sector of production with

identical production function coefficients, so we can perform our analysis using Decomposi-

tion I. However, Decomposition II first applies Decomposition I individually to each sector

and then aggregates up the sectoral mean and dispersion components. Therefore, the way in

which our components capture firm-level wedges will be similar for a multi-sector version of

our model with production function coefficients varying across sectors. We perform our anal-

ysis of shocks to firm-level wedges only for Decomposition I due to the greater tractability

and cleaner demonstration of the economics of our decomposition.

We begin without making parametric assumptions on the distribution of wedges. Let
Y ∗t
K∗t

denote the undistorted (absent any idiosyncratic or common distortions) aggregate capital
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factor productivity ratio. Let Fω,k denote the density function of wedges to firm capital

choices, which reflects both the mass of firms and their relative value added shares. Formally,

this can be expressed as an integral over firms (denoted by i): Fω,k (x) =
∫
i
1(ωk,i≤x)

vi
Y
di.

The cumulants of the log of firm-level wedges are denoted as: κk,1,t, κk,2,t, κk,3,t, et cetera.

Cumulants are similar to moments; we discuss their statistical properties in subsubsection

2.3.1.1. Our decomposition of changes in aggregate capital productivity can be expressed

as:52

∆ log

(
Yt
Kt

)
= ∆ log

(
Y ∗t
K∗t

)
+ ∆κk,1,t︸ ︷︷ ︸

mean component

+

variance︷ ︸︸ ︷
−∆κk,2,t

2!
+

higher-order terms︷ ︸︸ ︷
∞∑
n=3

(−1)n−1 ∆κk,n,t
n!︸ ︷︷ ︸

dispersion component

. (2.27)

Equation (2.27) shows that the mean component captures changes in the undistorted

productivity ratio (capturing changes unrelated to distortions) and changes in the first cu-

mulant (which capture common changes in distortions). Changes in the variance of firm log

wedges (the second cumulant), or any higher moments of their distribution, are reflected in

the dispersion component. Such results easily carry over for labor productivity by replacing

capital for labor in (2.27).

We can then use (2.12) to express total factor productivity as a function of undistorted

52See Appendix C for details of this derivation.
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TFP, TFP ∗t , and the cumulants of wedges to capital and labor:53

∆ log (TFPt) = ∆ log (TFP ∗t ) + α∆κk,1,t + (1− α) ∆κl,1,t︸ ︷︷ ︸
mean component

(2.28)

variance︷ ︸︸ ︷
−α∆κk,2,t + (1− α) ∆κl,2,t

2!
+

higher-order terms︷ ︸︸ ︷
∞∑
n=3

α∆κk,n,t + (1− α) ∆κl,n,t

(−1)n−1 n!︸ ︷︷ ︸
dispersion component

.

Equation (2.28) shows that the mean component captures changes in undistorted TFP

and changes in the first cumulants of log wedges (corresponding to the mean of log wedges).

The dispersion component captures changes in the variance or higher order moments of log

wedges.

In the remainder of this subsection, we present special cases of the results in (2.27) and

(2.28). We show how common changes in wedges and changes in technology are reflected

in the mean component of our decomposition. Finally, we show that changes in the vari-

ance and higher-order moments of log wedges are captured in the dispersion component our

decomposition.54

2.3.4.1 Common Shocks to Distortions

We first show that common changes to distortions are reflected only in the mean component

of our decomposition. First, consider a shock, ξt+1, that affects firms evenly such that

ωk,t+1 = ξl,t+1ωk,t. This is the sort of shock that would arise, for example, from a distortion

to the rental rate of capital faced by all firms. Below, we show the effect of this shock on

53For this exercise, we make the standard assumption that TFP is measured as TFPt = Yt
Kα
t L

1−α
t

, where

α is constant over time.

54These results follow directly from our decomposition and properties of cumulant generating functions;
an outline of their derivation are found in Appendix C.
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aggregate capital factor productivity and TFP is reflected only in the mean component:

∆log(
Yt
Kt

) = log(ξk,t)︸ ︷︷ ︸
mean component

,

and

∆log(TFPt) = α log(ξk,t)︸ ︷︷ ︸
mean component

.

Only the mean component will change if the economy is hit by no other shocks. Such

results extend to the decomposition of labor productivity when we replace labor for capital.

2.3.4.2 Shocks to the Variance and Higher-order Moments of Distortions

Note that the second cumulant is the variance of log wedges, while all of the higher order cu-

mulants can be expressed as polynomial combinations of the second and higher-order central

moments. Therefore (2.27) and (2.28) imply that changes in the variance and any higher-

order moments of log wedges are reflected in the dispersion component, without having to

make any parametric assumptions.

To provide further intuition, we now demonstrate how shocks to the distribution of

wedges are realized in our decomposition under some standard parametric assumptions. For

example, if wedges to capital are lognormally distributed with mean µω,k,t and variance σ2
ω,k,t,

then changes in aggregate capital productivity can be decomposed as:

∆ log

(
Yt
Kt

)
= ∆ log

(
Y ∗t
K∗t

)
+ ∆µω,k,t︸ ︷︷ ︸

mean component

+ −
∆σ2

ω,k,t

2︸ ︷︷ ︸
dispersion component

.

With the lognormal assumption, only the first and second cumulant exist. A typical way

of adding variation in higher-order central moments (and thus higher-order cumulants) is to

create a mixture of lognormals. If wedges to capital are modeled as a mixture of lognormals,

80



with weights λk,n,t on lognormal distributions with means µk,n,t and variances σ2
k,n,t, then we

can express our decomposition as follows:

∆ log

(
Yt
Kt

)
= ∆ log

(
Y ∗t
K∗t

)
+ ∆

∑
n

λk,n,tµk,n,t︸ ︷︷ ︸
mean component

−
∆
∑

n λk,n,tσ
2
k,n,t

2
−∆ log

(∑
n

λk,n,te
(µk,n,t−

∑
j λk,j,tµk,j,t)e

1
2(σ2

k,n,t−
∑
j λk,j,tσ

2
k,j,t)

)
︸ ︷︷ ︸

dispersion component

.

The mean component captures changes in the weighted means of the lognormal distributions

or in the undistorted factor productivity ratio. All other changes in the distributions will

be reflected in the dispersion component. Changes in the variances of the lognormal dis-

tributions which make up the mixture will be reflected here, as will higher order moments.

For example, a skewed distribution is often parameterized as a mixture of lognormals with

different means, which will be reflected, via the term e(µk,n,t−
∑
j λk,j,tµk,j,t), in the dispersion

component. Kurtosis is often often parameterized as a mixture of lognormals with differ-

ent variances, which will be reflected, via the term e
1
2(σ2

k,n,t−
∑
j λk,j,tσ

2
k,j,t), in the dispersion

component.

2.3.5 Mapping to Other Models

In this subsection, we show that our model has a mapping to several models of frictions to

the allocation of labor and capital between firms. We then demonstrate how frictions in a

simple model of financial frictions would be reflected in wedges, and then discuss how our

decomposition would capture changes in such frictions.

2.3.5.1 Mapping to Models of Labor or Capital Allocation

Our simple model consists only of a production environment with wedges representing fric-

tions to the allocation of labor and capital. Therefore, there is a mapping to any model
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with a production environment consistent with ours. This includes the models of Khan and

Thomas (2013), Bloom et al. (2014b), and Arellano et al. (2012), as well as numerous other

heterogeneous agent models considered in the macroeconomics literature.

We formally show this correspondence by proving that given the production environment

in our model, aggregate output, employment, capital, and the full distribution of output,

labor, capital, and technology across firms can be characterized using wedges and either

firm-level technology or output shares for any allocation of labor, capital, and technolog-

ical productivity across firms. We denote Gt (z, ωl, ωk) as the joint distribution of firm

technological productivity and firm-level wedges to labor and capital, Jt
(
v
Y
, ωl, ωk

)
as the

joint distribution of firm output shares and firm-level wedges to labor and capital, and

Zt =

(∫
i

(
z
ϕ( 1

1−νϕ−γϕ)
i,t

)
di

)φ(1−νϕ−γϕ)

as an index of aggregate productivity. The following

proposition states that this representation can map any resulting allocation of resources and

aggregates using these firm-level wedges:

Proposition 2.2. The full distribution of labor, capital, and productivity across firms,

Ft (z, l, k), and aggregate output, employment, and capital have a 1-1 mapping with any

of the following:

1. Gt (z, ωl, ωk).

2. Jt
(
v
Y
, ωl, ωk

)
and a measure of aggregate productivity Zt.

55

Proof. See Appendix C.

2.3.5.2 Mapping to a Model of Financial Frictions

In this subsection, we show that a financial friction in a simple model map can be redefined

as a firm-level wedge. We then discuss how a tightening of the friction in the model can

generate a greater variance of wedges.

55More generally, it can be shown that Jt
(
v
Y , ωl, ωk

)
together with

(∫
zτdF z(z)

)
, for any τ 6= 0, is

sufficient to characterize output, employment, and capital at both the aggregate and firm level.
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Consider a simple model where heterogeneous firms produce a homogeneous consumption

good with technology yi,t = zi,tl
b
i,t, where b < 1. In this setting, value added is equivalent

to firm output, vi,t = zi,tl
b
i,t. Households have utility function U (C,L) = C1−σ

1−σ −
L1+ν

1+ν
and

discount the future at rate β. Production in this simple model is a special case of the

production environment introduced in Subsection 2.3.2; thus, the planner’s problem states

all firms optimally have the same labor productivity ratios.

The friction in this model is a simple borrowing constraint: Firms have wealth ai,t, which

we consider exogenous for our analysis. Firms must pay their workers at the beginning of the

period but only receive cash flows from production at the end. The borrowing constraint,

li,tW ≤ ai,tρ, where W is the wage and ρ is a positive constant, restricts the labor decisions

of firms when it binds. Assume firms may also exogenously exit each period with probability

δ.

The optimization problem of firms can be expressed as the following Lagrangian:

L = max
li,t

zi,tl
b
i,t − li,tW + λi,t (ai,tρ− li,tWt) , (2.29)

where λi,t is the Lagrange multiplier on the borrowing constraint. The multiplier is 0 if the

borrowing constraint does not bind, and positive otherwise. Taking the first-order conditions

of (2.29) and manipulating the labor-leisure condition allows us to express the firm’s labor

choice as the following:

li,t = z
1

1−b
i,t b

1
1−bY

− σ
1−b

t L
− ν

1−b
t (1 + λi,t)

− 1
1−b . (2.30)

From (2.30) we can derive firm-level wedges, ωl,i,t =
vi,t
li,t

l∗t
v∗t

, as a function of aggregates

and the Lagrange multiplier faced by the firm:

log (ωl,i,t) = σlog

(
Yt
Y ∗t

)
+ νlog

(
Lt
L
∗
t

)
︸ ︷︷ ︸

Aggregate

+ log (1 + λi,t)︸ ︷︷ ︸
FirmSpecific

. (2.31)
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Note that the wedge can be expressed as a function of the distortion of aggregates from

their optimal value (which affect the wage rate) as well as the firm-specific distortion captured

by the Lagrange multiplier in the firm’s problem. We can express the Lagrange multiplier

as the following function of aggregates and each firm’s zi,t and ai,t:

log (1 + λi,t) =


0 zi,tbY

−bσ
t L−bνt ab−1

i,t ρ
b−1 ≤ 1

log
(
bY −bσt L−bνt zi,ta

b−1
i,t ρ

b−1
)

zi,tbY
−bσ
t L−bνt ab−1

i,t ρ
b−1 > 1

. (2.32)

Note that the only way that there is no heterogeneity in Lagrangian multipliers is either

if (a) the borrowing constraint never binds, or (b) it binds for all firms, but wealth is

proportional to productivity (zi,t = a1−b
i,t ). This second condition implies no inefficiencies in

the distribution of resources between firms; all inefficiencies arise from the reduced aggregate

demand for labor.

Now consider what a shock to borrowing constraints does. Assume that at time t = 0, ρ

is high enough such that the constraint binds for no firms. Then the mean and variance of

log (1 + λi,0) is 0. A decrease in ρ to the point where the constraint binds for some but not

all firms leads to a rise in both the mean and variance of log (1 + λi,t). At the same time, the

borrowing constraint reduces Yt and Lt, as some firms cannot hire the amount of labor they

would prefer were they unconstrained. Therefore the change to the mean of firm wedges,

log (ωl,i,t), as a result of this shock is ambiguous, as the aggregate component and the mean

of the firm-specific component move in opposite directions. However, the direction of the

change in variance of the firm-level labor wedge is unambiguous, increasing in response to

such a shock.

2.4 Decomposition Applied to Data

In this section, we apply our decompositions of aggregate productivity described in Section

2.2 to data on U.S. public firms and Japanese public firms. In our discussion of the re-
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sults applied to U.S. public firms, we also include a comparison of our measures of labor

productivity, capital productivity, and TFP to those from the national income and product

accounts (NIPA). In Appendix D, we describe how we clean our data on U.S. nonfinancial

public firms, and measure the objects of interest.

2.4.1 Discussion of results — Data from the United States

Figures 2.1 and 2.2 display results of year-over-year changes in aggregate labor productivity

and its components from Decompositions I and II, respectively. From the eye test alone it

should be clear that in the recent recession, aggregate labor productivity and its dispersion

component have a negative correlation, and the mean component is highly correlated with

aggregate labor productivity. Figures 2.3 and 2.4 further demonstrate this point: Over four

recession periods, the mean component moves closely with aggregate labor productivity. In

Decomposition II, the dispersion component has very little cumulative change over any of

the four episodes in our sample.

Figures 2.5 and 2.6 display results from Decompositions I and II of year-over-year changes

in aggregate capital productivity, and tell a different story. The dispersion component is

positively correlated with aggregate capital productivity over the past two business-cycle

episodes. For previous episodes, the mean component moves more closely with aggregate

capital productivity. These results are more starkly apparent in Figures 2.7 and 2.8, which

show cumulative changes in aggregate capital productivity and its components from Decom-

positions I and II. In the recent episodes, for either decomposition, the dispersion component

moves much more closely with aggregate capital productivity.

As we describe in the previous subsection on measurement, to compute TFP, by the

nature of our assumptions on the production function and values for its coefficients, changes

in labor productivity get more weight (65 percent) than changes in capital productivity

(35 percent). Hence, as should be expected, we see that the results for TFP are much more

qualitatively consistent with the results from what drives changes in labor productivity. This
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is apparent in the year-over-year changes charts from Decompositions I and II in Figures 2.9

and 2.10, as well as the cumulative changes charts from Decompositions I and II in Figures

2.11 and 2.12.

Table 2.1 displays correlations between the components of Decomposition II and their

respective aggregates. The results from the figures are further codified in this table. The

correlation between the dispersion component and sectoral share components and labor pro-

ductivity are especially striking. Movements in labor productivity are much more correlated

with the mean of firm-level log labor to value-added ratios than with their dispersion. These

results are dampened when looking at TFP because capital productivity has a positive cor-

relation with its dispersion component. However, the relationship between TFP and its

dispersion component is ultimately close to zero.

Our sample represents a significant slice of the U.S. economy; in 2011, it accounted for

over 15 percent of GDP and over 17 million employees. To understand the extent to which

our sample reflects the mechanisms responsible for driving aggregate productivity changes,

we compare the time-series behavior of each aggregate productivity ratio as aggregated from

Compustat to that of the respective productivity ratio computed from NIPA. Figures 2.16

and 2.17 show that the time-series properties of TFP computed from both Compustat and

NIPA are similar both in their cyclical dynamics and long-term trends. These figures suggest

that some of the key forces driving TFP over time are likely present in Compustat data. If

there were significant factors driving TFP over the business cycle that existed only in small,

private firms, we would expect systematic differences in the behavior of TFP and our measure

computed from publicly listed firms over time. However, there are some differences in the

measures. TFP from Compustat is more volatile, which is unsurprising given the documented

greater volatility of corporate profits measured with generally accepted accounting principles

(GAAP) than corporate profits as measured in NIPA.56 There are also some slight timing

56Hodge (2011) compares the properties of corporate profits computed from the GAAP accounting state-
ments of firms in the S&P 500 index with the corresponding measure from NIPA, finding significantly greater
volatility in the S&P measure.
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differences, particularly in the timing of the trough (of TFP) of the 2007—2009 recession.

These timing differences may be due to the reporting dates of firms in Compustat. However,

the measure of TFP for the United States in the Penn World Tables (8.0) has the trough

in 2009, so the timing differences may also be due to some technical adjustments made in

the NIPA aggregation. In Figures 2.18 and 2.19, we look at changes in each productivity

ratio and its NIPA equivalent. We see the timing and volatility issues are present for each

productivity ratio separately.

2.4.2 Discussion of results - Data from Japan

In Figures 2.13 and 2.14, we display results from Decompositions I and II of year-over-year

changes in aggregate TFP in Japan. The results from the second decomposition are more

consistent with those from the United States for the recent recession in that the dispersion

component is not correlated with movements in TFP. The results from the first decomposi-

tion, however, show the dispersion component to be more highly correlated with aggregate

TFP over the recent episode. This result is true for labor productivity as well.

2.5 Conclusion

This paper presents decompositions of changes in aggregate labor productivity, capital pro-

ductivity, and TFP. We demonstrate how the dispersion component of our decompositions

reflects changes in the degree to which frictions affect firms in many heterogeneous firm

models that attempt to explain the nature of the business cycle. In turn, computing the

components of our decomposition in data and comparing them to the same metrics in a given

model of the class we consider will help to assess whether such a model is consistent with

firm-level behavior. As we demonstrate in this paper, it is not only useful to compute our

decompositions on models that have already been solved; one can also compute our metrics

in the data before writing down a model to help motivate which mechanisms should be key
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in driving patterns over the business cycle.

Appendix C: Proofs and Derivations

Proof for Proposition 2.1

Given the model of production in Subsection 2.3.2, we can define the following Lagrangian

for the social planner to solve supposing she gets to allocate a fixed amount of labor and

capital across firms, which are indexed by i:57

L = max
li,ki

(∫
i

(zil
γ
i k

ν
i )ϕ di

)φ
+ λ1

(
K −

∫
kidi

)
+ λ2

(
L−

∫
lidi

)
. (C.1)

We want to show that there exists optimal labor and capital productivity ratios that are

shared by all firms that share the same production function coefficients. From the first-order

conditions of (C.1):

νϕφY
1−φ
φ

(zil
γ
i k

ν
i )ϕ

k
= λ1, (C.2)

and

γϕφY
1−φ
φ

(zil
γ
i k

ν
i )ϕ

l
= λ2. (C.3)

Also, the planner will fully allocate labor and capital to all firms, so:

K =

∫
kidi, (C.4)

57To economize on notation, time subscripts are omitted.
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and

L =

∫
lidi. (C.5)

With some algebra, it can be shown that:

vi = ki
λ1

νϕφ
, (C.6)

and

vi = li
λ2

γϕφ
. (C.7)

Hence, summing over i in (C.6) and (C.7):

Y = K
λ1

νϕφ
, (C.8)

and

Y = L
λ2

γϕφ
. (C.9)

In turn, from (C.6) and (C.8):

Y

K
=
vi
ki
. (C.10)

Also, from (C.7) and (C.9):

Y

L
=
vi
li
. (C.11)

In turn, all firms will optimally have the same firm-level capital and labor productivity

ratios.

89



We can now express optimal productivity ratios v∗

l∗
and v∗

k∗
as a function of L, K, and Y ∗.

From the production technology, (C.10), and (C.11):

ki = Y
−1
φ zϕi l

ϕγkϕνi K∗ (F z(z)) , (C.12)

and

li = Y
−1
φ zϕi l

ϕγkϕνi K∗ (F z(z)) . (C.13)

Combining the production technology with (C.12) and (C.13), along with some algebra,

yields:

Y ∗ = LϕφγKφϕν

(∫
i

(
z
ϕ( 1

1−νϕ−γϕ)
i

)
di

)φ(1−νϕ−γϕ)

. (C.14)

Note that this optimal output is just a function of the distribution of productivity, F z(z),

and total labor and capital.

Thus, we can express the optimal productivity ratios as:

v∗

l∗
=
Y ∗

L
, (C.15)

and

v∗

k∗
=
Y ∗

K
. (C.16)

Proof for Proposition 2.2

This proof is done in the following parts:

1. F (z, l, k) fully characterizes output, employment, and capital.

2. F (z, l, k) has a 1-1 mapping with G(z, ωl, ωk).
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3. G(z, ωl, ωk) has a 1-1 mapping with J( v
Y
, ωl, ωk) and a measure of aggregate produc-

tivity Z =

(∫
i

(
z
ϕ( 1

1−νϕ−γϕ)
i

)
di

)φ(1−νϕ−γϕ)

.

Part (i): F (z, l, k) fully characterizes output, employment, and capital.

This must be true, by the definition of production technology and the clearing conditions

L =
∫
ldF (z, l, k) and K =

∫
kdF (z, l, k). Thus, F (z, l, k) fully characterize aggregate

output, employment, and capital.

Part (ii): F (z, l, k) has a 1-1 mapping with G(z, ωl, ωk).

The portion of the proof has the following parts:

(a) F (z, l, k) has a unique mapping χ1 into G(z, ωl, ωk).

(b) G(z, ωl, ωk) has a unique mapping χ2 into F (z, l, k).

(c) χ2 = χ−1
1 .

F (z, l, k) has a unique mapping χ1 into G(z, ωl, ωk):

(2.24) combined with the production technology gives us vi as a function of only z, l, k:

vi =

(∫
zϕlγϕkνϕdF (z, l, k)

)φ−1

zϕi l
γϕ
i kνϕi . (C.17)

Combining (2.25), (2.26), and (C.17) yields:

ωk (zi, li, ki, F ) =

(∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
zϕi l

γϕ
i kνϕi

ki

k∗

v∗
, (C.18)

and

ωl (zi, li, ki, F ) =

(∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
zϕi l

γϕ
i kνϕi

li

l∗

v∗
. (C.19)

91



These equations characterize the wedges implied by a given distribution of capital, labor,

and productivity. We can rearrange (C.18) and (C.19) to solve for labor and capital as a

function of wedges:

k (zi, ωl,i, ωk,i, F ) =

((∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
zϕi
(
l∗

v∗

)γϕ (k∗
v∗

)1−γϕ

(ωl.i)
γϕ (ωk,i)

1−γϕ

) 1
1−γϕ−νϕ

, (C.20)

and

l (zi, ωl,i, ωk,i, F ) =

((∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
zϕi
(
l∗

v∗

)1−νϕ (k∗
v∗

)νϕ
(ωl,i)

1−νϕ (ωk,i)
νϕ

) 1
1−γϕ−νϕ

. (C.21)

(C.20) and (C.21) allow us to obtain the unique mapping from F to G:

G (z̄, ω̄l, ω̄k) =

∫ z̄,ω̄l,ω̄k

z,ωl,ωk=0

dF (z, l (z, ωl, ωk, F ) , k (z, ωl, ωk, F )) . (C.22)

G(z, ωl, ωk) has a unique mapping χ2 into F (z, l, k):

Combining (C.18) and (C.19) allows us to express F (z, l, k) as the following:

F
(
z̄, l̄, k̄

)
=

∫ z̄,l̄,k̄

z,l,k=0

dG (z, ωl (z, l, k, F ) , ωk (z, l, k, F )) . (C.23)

This expression is not sufficient to characterize F (z, l, k) as a function of G(z, ωl, ωk), as

the functions ωl() and ωk() on the right-hand side depend on the term(∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
φ . Note that

(∫
zϕlγϕkνϕdF (z, l, k)

)φ−1
φ = Y

φ−1
φ . All we have to

do now is express Y as a function of G. Plugging (C.20) and (C.21) into the aggregate

production function yields:

Y =

(k∗
v∗

)ϕφν (
l∗

v∗

)ϕφγ (∫
z

ϕ
1−γϕ−νϕ

ω
γϕ

1−γϕ−νϕ
l ω

νϕ
1−γϕ−νϕ
k

dG (z, ωl, ωk)

)φ


1−γϕ−νϕ
1−φ(γϕ+νϕ)

.

(C.24)
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Y (G (z, ωl, ωk)) can thus be defined as a function of z and wedges.

(C.23) and (C.24) can be combined to obtain the functions ωl (z, l, k, G) and ωk (z, l, k, G).

Thus, we can obtain the unique mapping:

F
(
z̄, l̄, k̄

)
=

∫ z̄,l̄,k̄

z,l,k=0

dG (z, ωl (z, l, k, G) , ωk (z, l, k, G)) . (C.25)

χ2 = χ−1
1 :

Combining (C.22) and (C.25) yields the result that F (z, l, k) = χ2 (χ1 (F (z, l, k))) for any

F (z, l, k). It follows that χ2 = χ−1
1 .

Part (iii): Claim: G(z, ωl, ωk) has a 1-1 mapping with J( v
Y
, ωl, ωk) and a measure

of aggregate productivity Z =

(∫
i

(
z
ϕ( 1

1−νϕ−γϕ)
i

)
di

)φ(1−νϕ−γϕ)

.

The portion of the proof has the following parts:

(a) G(z, ωl, ωk) has a unique mapping χ3 into J( v
Y
, ωl, ωk) and pins down Z.

(b) J( v
Y
, ωl, ωk) and Z has a unique mapping χ4 into G(z, ωl, ωk).

(c) χ3 = χ−1
4 .

G(z, ωl, ωk) has a unique mapping χ3 into J( v
Y
, ωl, ωk) and pins down Z:

(C.17), (C.20), (C.21), and (C.24) can be combined to characterize v
Y

:

vi
Y

=
z

ϕ
1−γϕ−νϕ
i (ωl,i)

−γϕ
1−γϕ−νϕ (ωk,i)

−νϕ
1−γϕ−νϕ∫

z
ϕ

1−γϕ−νϕ (ωl)
−γϕ

1−γϕ−νϕ (ωk)
−νϕ

1−γϕ−νϕ dG(z, ωl, ωk)
, (C.26)

and thus express z as a function of v
Y

, ωl, ωk, and G:

z
(vi
Y
, ωl,i, ωk,i, G

)
= ωγl,iω

ν
k,i

(
vi
Y

∫
z

ϕ
1−γϕ−νϕ

ω
γϕ

1−γϕ−νϕ
l ω

νϕ
1−γϕ−νϕ
k

dG (z, ωl, ωk)

) 1−γϕ−νϕ
ϕ

.

(C.27)

93



(C.27) can be used to characterize J( v
Y
, ωl, ωk):

J
( v̄
Y
, ω̄l, ω̄k

)
=

∫ v̄
Y
,ω̄l,ω̄k

v
Y
,ωl,ωk=0

dG
(
z
( v
Y
, ωl, ωk, G

)
, ωl, ωk

)
. (C.28)

G (z, ωl, ωk) trivially maps into a unique Z.

J( v
Y
, ωl, ωk) and Z has a unique mapping χ4 into G(z, ωl, ωk):

(C.27), rearranged and integrated, yields:

∫
z

ϕ
1−γϕ−νϕ

ω
γϕ

1−γϕ−νϕ
l ω

νϕ
1−γϕ−νϕ
k

dG (z, ωl, ωk) =
Z

1
φ(1−νϕ−γϕ)∫ (

v
Y

)
ω

γϕ
1−νϕ−γϕ
l ω

νϕ
1−νϕ−γϕ
k dJ

(
v
Y
, ωl, ωk

) .
. (C.29)

Combining (C.27) and (C.29) yields:

z
(vi
Y
, ωl,i, ωk,i, J, Z

)
= ωγl,iω

ν
k,i

 vi
Y
Z

1
φ(1−νϕ−γϕ)∫ (

v
Y

)
ω

γϕ
1−νϕ−γϕ
l ω

νϕ
1−νϕ−γϕ
k dJ

(
v
Y
, ωl, ωk

)


1−γϕ−νϕ
ϕ

. (C.30)

(C.30) implies that we can express G(z, ωl, ωk) as a function of J( v
Y
, ωl, ωk) and Z:

G (z̄, ω̄l, ω̄k) =

∫ z̄,ω̄l,ω̄k

z,ωl,ωk=0

dJ
( v
Y

(z, ωl, ωk, J, Z) , ωl, ωk

)
. (C.31)

χ3 = χ−1
4 :

These two mappings are trivially inverses of each other.
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Other Derivations

Decomposition as a Function of Cumulants

Consider the cumulative density function of firm log capital productivity, weighted by output

shares, G (X) =
∫
i
1

(
log
(
vi
ki

)
≤ X

)
vi
Y

. The mean component expressed as a function of

this distribution is: −
∫
x
−xdG (x), while the dispersion component is:

−
(∫

e−xdG (x)−
∫
−xdG (x)

)
.

We know, by definition, that the first cumulant can be written as:
∫
x
xdG (x). A property

of the cumulant generating function is that E [etx] =
∑n

t=1 t
n κn
n!

, which yields:

∫
e−xdG (x) =

n∑
t=1

(−1)n
κn
n!

= −κ1 +
n∑
t=2

(−1)n
κn
n!
.

Therefore the mean component can be written as:

−
∫
x

−xdG (x) = κ1.

While the dispersion component is:

−
(∫

e−xdG (x)−
∫
−xdG (x)

)
= −

(
−κ1 +

n∑
t=2

(−1)n
κn
n!

+ κ1

)

= −
n∑
t=2

(−1)n
κn
n!

=
n∑
t=2

(−1)n+1 κn
n!
.

This means our decomposition can be expressed as:

log

(
Y

K

)
= κ1︸︷︷︸

Mean Component

+ −κ2 +
n∑
t=3

(−1)n+1 κn
n!︸ ︷︷ ︸

Dispersion Component

.

Now note that for any variable of the form zi = c vi
ki

(such as capital wedges or marginal
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products in a Hsieh and Klenow case) yields log (zi) = log (c)+log
(
vi
ki

)
. Standard properties

of cumulants imply that κ1,z = κ1, v
k

+ log (c), and κn,z = κn, v
k

for all n > 1. Therefore for

such variables, our decomposition implies

log

(
Y

K

)
= κ1,z − c︸ ︷︷ ︸

Mean Component

+−κ2,z +
n∑
t=3

(−1)n+1 κn,z
n!︸ ︷︷ ︸

Dispersion Component

.

(2.21) and (2.27) follow immediately from this derivation.

Our Decomposition for Different Models and Shocks

Common changes in firm revenue products, whether driven by technology or distortions, are

reflected only in the mean component of our decomposition. Consider a change in revenue

products such that
vi,t+1

ki,t+1
= x

vi,t
ki,t

. Then, our decomposition implies that:

log

(
Yt+1

Kt+1

)
= −

∫
log

(
ki,t
vi,t

1

x

)
vi,t
Yt
di︸ ︷︷ ︸

mean component

−
(
log

(∫
ki,t
vi,t

1

x

vt
Yi,t

di

)
−
∫
log

(
ki,t
vi,t

1

x

)
vt
Yt
di

)
︸ ︷︷ ︸

dispersion component

= log(x)−
∫
log

(
ki,t
vi,t

)
vi,t
Yt
di︸ ︷︷ ︸

mean component

−
(
log

(∫
ki,t
vi,t

vt
Yi,t

di

)
−
∫
log

(
ki,t
vi,t

)
vt
Yt
di

)
︸ ︷︷ ︸

dispersion component

.

The results in subsubsections 2.3.4.1 immediately follow from the above. The results in

subsubsection 2.3.4.2 can be derived by using standard formulas for the expectation of log-

normally distributed variables.

Specifically, consider the case where the output-share weighted distribution of wedges is

a mixture of lognormals. The pdf of wedges is thus g (log (ω)) =
∑N

n=1 λnφn (log (ω)), where

φn, where φn are normal pdfs and
∑

n λn = 1. Note that lognormal wedges is the special

case of this with N = 1. Standard formulas for expectations over lognormal distributions

imply that
∫
log (ω) g (log (ω)) dω =

∑
n λnµn and

∫
ωtg (log (ω)) dω =

∑
n λne

tµn+ 1
2
t2σ2

n .

The results in subsubsection 2.3.4.2 immediately follow.
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Appendix D: Data and Measurement

Measurement of Objects — Data from the United States

For the empirical analysis in Section 2.4 on U.S. firms, we use annual data on firms that

exist in the Compustat database. We take the following steps, in order. First, firms must

be headquartered in the United States and have a U.S. currency code. We then keep only

firms with December fiscal year-ends. We then drop firms if their employment, property,

plant, and equipment — net of depreciation, sales, or our measure of firm-value added —

are missing or negative. We then exclude firms with 4-digit SIC codes between 4000 and

4999, between 6000 and 6999, or greater than 9000, as our model is not representative of

regulated, financial, or public service firms. We then clean the data by winsorizing each

series at the 1st percentile over the entire sample. For our analysis, we lastly only keep data

from 1971 to 2011.

Firm-level value added, firm-level capital stock, and firm-level employment are the only

firm-level objects we need for our decomposition. When computing year-over-year changes

in the components of our decomposition, we also adjust for entry and exit by only keeping

data on firms that exist in consecutive years. In the second decomposition, firms are grouped

into sectors by two-digit SIC codes.

We measure labor as the number of employees reported in Compustat. We measure

capital as the firm’s plant, property, and equipment, adjusted for accumulated depreciation.

The aggregate capital stock is annual, taken from the Penn World Tables. To adjust for

potential changes in the valuation of capital over time, we construct a perpetual inventory

measure of the aggregate capital stock and use the ratio of this measure to the value of the

aggregate capital stock to deflate the firm-level measure of capital. The investment measure

used in the perpetual inventory method is annual gross private domestic investment from

the Bureau of Economic Analysis (BEA). To construct our measure of capital using the

perpetual inventory method (starting from 1959), we use a depreciation rate of 4.64 percent
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and growth rate of technology of 1.6 percent, following Chari, Kehoe, and McGrattan (2007).

Our measure is then deflated by the December value of the monthly CPI, which is CPI for

All Urban Consumers, seasonally adjusted, from the Bureau of Labor Statistics.

We create a measure of value added in public firms using income accounting. GDP has

an income equivalent, GDI, which has similar time-series properties. The major components

of this measure have equivalents to income statement measures that are required on 10-

K forms for U.S. public firms. In order of magnitude, GDI is made up of the following

components: compensation of employees, net operating surplus, consumption of fixed capital

(depreciation), and taxes on production and imports less subsidies. While we do not observe

the taxes or subsidies on production and imports firms pay in our dataset, we do observe

measures of the other three components, all of which make up over 90 percent of GDI for

all years in our sample. We observe labor compensation in Compustat annually. If labor

compensation is missing, we replace it with selling, general, and administrative expenses.

We also observe net operating profits before depreciation, which is the sum of a firm’s net

operating surplus and its capital consumption. We define a firm’s contribution to output as

the sum of labor compensation and operating profits before depreciation. In practice, the

BEA uses a similar, more detailed approach, where they use firm tax data to aggregate up the

components of domestic income and make adjustments for differences between accounting

and economic treatment of factors such as capital consumption and inventory valuation.

To compute TFP, following Chari, Kehoe, and McGrattan (2007), we set capital’s share

of income, α = .35 and back it out from (2.9). When we compare our measure against

the NIPA-equivalent, we require a NIPA equivalent measure of our value-added measure,

a measure of aggregate labor, and a measure of aggregate capital. To compute our NIPA

equivalent of our pseudo-GDI measure, we use data from NIPA table 1.12 on National Income

by Type of Account. We take compensation of employees (line 2) and subtract government

(line 4), then add to this measure corporate profits with inventory valuation adjustment

and capital consumption adjustment less taxes on corporate income (line 43). Finally, we
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add to this measure consumption of fixed capital, which comes from the BEA. All measures

are quarterly, and we only use the fourth-quarter values of these measures. We put this

measure in per-capita terms using population including armed forces overseas. This measure

is mid-period and monthly. We only keep its December value. We then put this measure

in real terms using the CPI measure described in this subsection. Our measure of the real

aggregate capital stock was already described in this subsection. This measure is also put

in per-capita terms. Our measure of aggregate labor is total non-farm employment and is

monthly. We only use the December observation of this variable.

Measurement — Data from Japan

Our data on Japanese public firms comes from the Compustat global database, and our

firm-level variables are measured annually. We clean the data as we do for data from the

United States, except we only keep firms with currency codes corresponding to the Japanese

Yen and country headquarter codes corresponding to Japan. Also, the years of our sample

are different: They only cover 2001 to 2011. Consistent with our application to U.S. data,

when computing year-over-year changes in the components of our decomposition, we also

adjust for entry and exit by only keeping data on firms that exist in consecutive years. In

Decomposition II, firms are grouped into sectors by two digit SIC codes

As for the U.S. data, we measure firm-level labor as the number of employees reported

and firm-level capital as the firm’s plant, property, and equipment, adjusted for accumulated

depreciation. We deflate the firm-level Japanese capital stock by the U.S. capital deflater.

To put the capital stock in real terms, we deflate it by the OECD’s measure of the quarterly

CPI in Japan. We only keep the fourth-quarter value of this measure.

In a manner consistent with our application to U.S. data, we create a measure of value

added in public firms using income accounting, which is the sum of labor compensation and

operating profits before depreciation. As for the U.S. data, if labor compensation is missing,

we replace it with selling, general, and administrative expenses. We eventually deflate by
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the same Japanese CPI measure as for capital. To compute TFP, we again set α = .35 and

back it out from (2.9).

Appendix E: Our Decomposition in the Context of

Other Methodologies

To apply our decomposition to data, one does not need to estimate firm-level TFP or sectoral

production function coefficients. There is already potential for measurement issues biasing

the results from our decompositions, as measures of labor, value added, and capital can all

be measured incorrectly. Further, we could be incorrectly grouping firms with our sectoral

definitions. However, it is easy enough to check different measures of labor, capital, or value

added, if available, and see if the results change. Also, one could add measurement error

to firm variables and test the extent to which the results change. Similarly, one can check

the results from our second decomposition on different definitions of “groupings” or sectors.

However, to compute sectoral production function coefficients, as is commonly done in papers

assessing the role of labor and capital allocation on productivity over the business cycle, some

issues cannot be “checked.” Data from 30 years prior can be crucial in providing “correct”

estimates of sectoral production function coefficients. But what if such data are unavailable

to the researcher? In addressing the role of resource reallocation in productivity dynamics

over the business cycle, the literature has relied on the estimation of these technological

measures for all sectors in the economy. In this section, we will demonstrate how some of the

econometric biases associated with such an approach can lead one to produce quantitatively

and qualitatively different results on the role of allocative efficiency over the business cycle.

We first demonstrate the most difficult-to-correct econometric bias associated with mea-

suring production function coefficients, which is the fact that data for the entire sector over

the entire sample are needed to estimate them. We also show that different definitions of fac-

tor prices can crucially affect one’s results. Second, we show that our decomposition can help
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to assess the role of resource reallocation in productivity dynamics over the business cycle.

In particular, in a relatively general setting, we demonstrate that the within-industry com-

ponent of our decomposition is reflective of within-sector allocative efficiency. Ultimately,

this section is meant to demonstrate that our decomposition can, at the very least, be a

useful check on such attempts at measuring the role of resource allocation over the business

cycle that require estimates of sectoral production function coefficients and firm-level TFP.

Illustrating issues with identification

In Figure 2.15, we demonstrate one possible issue with identification that can severely change

the interpretation of the qualitative and quantitative importance of the role of reallocation

over the business cycle. We show that our results change substantially when we follow a

standard procedure and only slightly vary the estimation procedure for production function

coefficients.58 Figure 2.15 shows the cumulative change in the contribution of allocative

efficiency to TFP over the recent recession for three different standard “versions” of estimat-

ing production function coefficients.59 We estimate production function coefficients as the

average of the ratio of capital expenditures to labor expenditures, rk
wl

, across firms within

a sector over time, where r is the rental rate, k is the capital stock in the firm, w is the

wage, and l is labor utilization in the sector. In Version 1, the baseline version, we drop

all observations before 1972, use capital and labor utilization from our firm-level data, and

estimate the rental rate and wage following Chari, Kehoe, and McGrattan (2007).60

We see that in Version 1 of our estimation of production function coefficients, there

58Specifically, we implement the approach of Oberfeld (2013) to measure changes in allocative efficiency
in our sample of U.S. publicly listed firms. This model of production and aggregation is identical to that in
Hsieh and Klenow (2009). Details of our dataset construction and measurement can be found in section 2.4
and Appendix D. As in Oberfeld (2013) and Hsieh and Klenow (2009), we set the elasticity of substitution
within sectors to 3.

59Positive changes indicate an increase in the extent of allocative efficiency.

60Following Chari, Kehoe, and McGrattan (2007) entails setting r = α ∗ YK and w = (1− α) ∗ YL , where
α is defined in the measurement subsection above and come directly from Chari, Kehoe, and McGrattan
(2007). Our measures and Y , L, and K are all computed as describe in subsection . These measures are
computed differently from how Y , L, and K are computed in Chari, Kehoe, and McGrattan (2007).
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seems to be a decrease in allocative efficiency from pre-recession levels to the trough in 2008

to 2009. In Version 2, we take capital, k, and labor expenditures, wl, from the firm-level

data, but still estimate r following Chari, Kehoe, and McGrattan (2007). Estimating labor

expenditures using firm-level data changes the year-over-year behavior of the contribution

of allocative efficiency to TFP. In Version 3, we follow the same procedure as in Version 1

but drop all observations before 1976. In this version, which is only different from Version 1

in that we assume there is slightly less data available decades prior to the recession we are

examining, we find an increase in allocative efficiency from 2006 to the trough of the recession.

These results demonstrate just one of the potential problems with identification to which the

standard model-based approaches are susceptible, a problem that can substantially change

the qualitative and quantitative implications of the role of reallocation over the business

cycle. Other issues with identification remain; another example is that we find that when

we vary the elasticity of substitution across firms between 3 and 10 (standard values used in

the literature as noted in Hsieh and Klenow (2009)), the qualitative and quantitative nature

of our results change substantially.

Relation to Models of Allocative Efficiency

This part of the appendix demonstrates how the dispersion component of our decomposition

relates to the aggregate productivity loss suffered from misallocation in a standard static

model of allocative efficiency. We show that the dispersion component directly enters this

loss and discuss the relative magnitude of the the social losses and the dispersion components.

We consider the one-sector economy introduced in subsection 2.3.2, and derive two statis-

tics commonly used as measures of productivity loss due to distortions. First, we derive the

difference between efficient and observed log TFP. This difference may be driven by mis-

allocation or frictions to the total amount of capital/labor used. Second, we compute the

difference between the log TFP implied by the output-maximizing allocation of the observed

total labor and capital and observed TFP. This difference will be driven only by misalloca-
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tion.

Difference from Optimal Allocation Note that an analogue (in levels instead of differ-

ences) to (2.28) yields:

log (TFPt) = log (TFP ∗t ) + ακk,1,t + (1− α)κl,1,t︸ ︷︷ ︸
static mean component

(E.1)

+

variance︷ ︸︸ ︷
−ακk,2,t + (1− α)κl,2,t

2!
+

higher-order terms︷ ︸︸ ︷
∞∑
n=3

(−1)n−1 ακk,n,t + (1− α)κl,n,t
n!︸ ︷︷ ︸

static dispersion component

,

where κk,n,t, κl,n,t are the cumulants of log wedges in capital and labor to firms productivity

ratios, as defined in subsection 2.3.3. This implies that we can express the difference between

efficient and realized log TFP as the following:

log (TFP ∗t )− log (TFPt) = −ακk,1,t − (1− α)κl,1,t − αDK
t − (1− α) DL

t .

Where DK
t and DL

t are the dispersion components of labor and capital in our decomposition.

The first cumulants are the output-share weighted averages of log wedges, and are the only

terms other than the dispersion components to enter these losses.

Total Labor and Capital Fixed Consider a firm optimization problem, with fixed stock

of total capital and labor within the production environment defined in subsection 2.3.2.

Firms take the wage and rental rate as given, and clearing conditions Kt =
∑

i ki,t and

Lt =
∑

i li,t are satisfied. Firm labor and capital choices are distorted from their optimal

allocation by θli,t and θki,t, respectively.

max
ki,t,li,t

pi,tyi,t − ki,tθki,trt − li,tθli,twt. (E.2)
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The equilibrium decision rules imply that firm marginal revenue products are the following:

vi,t
ki,t

= θki,t
rt
ϕγ

, (E.3)

and

vi,t
li,t

= θli,t
wt
ϕφ

. (E.4)

We can then express the losses due to misallocation in this fixed environment as a function

of the rental rate, efficient rental rate, and cumulants of firm-level distortions θki,t and θli,t.
61

We derive the following expression for log
(

ˆTFP t

)
− log (TFPt):

log

(
ˆTFP t

TFPt

)
= α

(
log

(
r̂t
rt

)
− κk,1,t

)
−DK

t ) + (1− α)

(
log

(
ŵt
wt

)
− κl,1,t −DL

t

)
,

where ˆTFP t is TFP if labor and capital are allocated efficiently but total labor and capital

are fixed at the observed levels, and ŵt and r̂t are the wage and rental rate required to keep

total capital and wages fixed if distortions are removed.

61These distortions differ only from the wedges defined before in that they are distortions from the input
choices implied by rental rates and wages instead of the efficient allocation.
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Tables and Figures for Chapter 2

Table 2.1: Correlations between Changes in Aggregates and Changes in their Components
from Decomposition II — U.S. Data

TFP Labor productivity Capital productivity

Mean component 0.974 0.955 0.955

Dispersion component 0.042 -0.346 0.399

Sectoral share component -0.245 -0.329 0.259

Notes: Sample period is from 1972 to 2011. Data are from U.S. nonfinancial
public firms. Firms are grouped by two digit SIC codes. Changes in aggregate
measures (TFP, labor productivity, and capital productivity) and components of our
decompositions are measured year over year.
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Figure 2.1: Decomposition I Applied to Aggregate Labor Productivity: Year-over-Year
Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate labor produc-
tivity and its components from Decomposition I using data from U.S. nonfinancial public firms. Because
there is no grouping by sector for Decomposition I, the sectoral share component (the yellow line) is, in turn,
flat.
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Figure 2.2: Decomposition II Applied to Aggregate Labor Productivity: Year-over-Year
Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate labor produc-
tivity and its components from Decomposition II using data from U.S. nonfinancial public firms. Firms are
grouped by two digit SIC codes.
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Figure 2.3: Decomposition I Applied to Aggregate Labor Productivity: Cumulative Changes
over Four Business Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate labor productivity
and its components from Decomposition I using data from U.S. nonfinancial public firms over four business
cycle episodes, with the pre-recession index year in the title of the plot. Because there is no grouping by
sector for Decomposition I, the sectoral share component (the yellow line) is, in turn, flat.
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Figure 2.4: Decomposition II Applied to Aggregate Labor Productivity: Cumulative Changes
over Four Business Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate labor productivity
and its components from Decomposition I using data from U.S. nonfinancial public firms over four business
cycle episodes, with the pre-recession index year in the title of the plot. Firms are grouped by two digit SIC
codes.
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Figure 2.5: Decomposition I Applied to Aggregate Capital Productivity: Year-over-Year
Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate capital produc-
tivity and its components from Decomposition I using data from U.S. nonfinancial public firms. Because
there is no grouping by sector for Decomposition I, the sectoral share component (the yellow line) is, in turn,
flat.
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Figure 2.6: Decomposition II Applied to Aggregate Capital Productivity: Year-over-Year
Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate capital produc-
tivity and its components from Decomposition II using data from U.S. nonfinancial public firms. Firms are
grouped by two digit SIC codes.
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Figure 2.7: Decomposition I Applied to Aggregate Capital Productivity: Cumulative
Changes over Four Business Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate capital productivity
and its components from Decomposition I using data from U.S. nonfinancial public firms over four business
cycle episodes, with the pre-recession index year in the title of the plot. Because there is no grouping by
sector for Decomposition I, the sectoral share component (the yellow line) is, in turn, flat.

112



Figure 2.8: Decomposition II Applied to Aggregate Capital Productivity: Cumulative
Changes over Four Business Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate capital productivity
and its components from Decomposition I using data from U.S. nonfinancial public firms over four business
cycle episodes, with the pre-recession index year in the title of the plot. Firms are grouped by two digit SIC
codes.
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Figure 2.9: Decomposition I Applied to Aggregate TFP: Year-over-Year Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate TFP and
its components from Decomposition I using data from U.S. nonfinancial public firms. Because there is no
grouping by sector for Decomposition I, the sectoral share component (the yellow line) is, in turn, flat.
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Figure 2.10: Decomposition II Applied to Aggregate TFP: Year-over-Year Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate TFP and its
components from Decomposition II using data from U.S. nonfinancial public firms. Firms are grouped by
two digit SIC codes.
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Figure 2.11: Decomposition I Applied to Aggregate TFP: Cumulative Changes over Four
Business Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate TFP and its
components from Decomposition I using data from U.S. nonfinancial public firms over four business cycle
episodes, with the pre-recession index year in the title of the plot. Because there is no grouping by sector
for Decomposition I, the sectoral share component (the yellow line) is, in turn, flat.
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Figure 2.12: Decomposition II Applied to Aggregate TFP: Cumulative Changes over Four
Business Cycle Episodes
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Note: Sample period is from 1972 to 2011. We compute cumulative changes in aggregate TFP and its
components from Decomposition I using data from U.S. nonfinancial public firms over four business cycle
episodes, with the pre-recession index year in the title of the plot. Firms are grouped by two digit SIC codes.
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Figure 2.13: Decomposition I Applied to Aggregate TFP: Year-over-Year Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate TFP and its
components from Decomposition I using data from Japanese nonfinancial public firms. Because there is no
grouping by sector for Decomposition I, the sectoral share component (the yellow line) is, in turn, flat.
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Figure 2.14: Decomposition II Applied to Aggregate TFP: Year-over-Year Changes
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Note: Sample period is from 1972 to 2011. We compute year-over-year changes in aggregate TFP and its
components from Decomposition II using data from Japanese nonfinancial public firms. Firms are grouped
by two digit SIC codes.
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Figure 2.15: Three Estimation Techniques for the Contribution of Allocative Efficiency to
TFP
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Note: We can express TFP as a function of the hypothetical efficient productivity, TFP efft , at time t, and

the allocative efficiency of resources at such that TFPt = atTFP
eff
t . The figure shows log(at)− log(a2006).

The lines can thus be interpreted as the cumulative percent change in TFP over 2006 levels due to changes
in allocative efficiency. The estimation of the different “versions” only differs in the estimation of production
function coefficients as follows: (1) Version 1 is the baseline version, (2) Version 2 uses wage data from
Compustat rather than from NIPA, and (3) Version 3 uses data back to 1976 instead of 1972.
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Figure 2.16: Trend in Aggregate TFP: NIPA vs. Compustat
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Note: Sample period is from 1972 to 2011. This figure depicts the trend in the natural logarithm of aggregate
TFP computed from two different samples. The blue line corresponds to a measure computed from public
firm data. The red line corresponds to a measure computed from NIPA.
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Figure 2.17: Changes in Aggregate TFP: NIPA vs. Compustat
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Note: Sample period is from 1972 to 2011. This figure depicts changes in the natural logarithm of aggregate
TFP computed from two different samples. The blue line corresponds to a measure computed from public
firm data. The red line corresponds to a measure computed from NIPA.
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Figure 2.18: Changes in Aggregate Labor Productivity: NIPA vs. Compustat
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Note: Sample period is from 1972 to 2011. This figure depicts changes in the natural logarithm of aggregate
labor productivity computed from two different samples. The blue line corresponds to a measure computed
from public firm data. The red line corresponds to a measure computed from NIPA.
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Figure 2.19: Changes in Aggregate Capital Productivity: NIPA vs. Compustat
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Note: Sample period is from 1972 to 2011. This figure depicts changes in the natural logarithm of aggregate
capital productivity computed from two different samples. The blue line corresponds to a measure computed
from public firm data. The red line corresponds to a measure computed from NIPA.
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Chapter 3: The Economy-Wide Gains from

Resolving Debt Overhang

3.1 Introduction

Myers (1977) first laid out the debt overhang problem; put simply, existing debt can lead eq-

uity holders to underinvest, since part of the expected cash flow generated by the investment

goes to debt holders, while equity holders bear its costs. Nonfinancial firm debt overhang

has been empirically found to affect firm investment and growth in the corporate finance

literature, with some relatively large estimates of its effect on firm value.62 Nonfinancial firm

debt overhang has also been proposed as a potential key driver in slowing aggregate growth

and reducing welfare.63 Yet, to our knowledge, the literature has been largely silent in quan-

tifying the aggregate effects of resolving nonfinancial firm debt overhang for productivity

and welfare.

This paper directly addresses this gap in the literature. We develop a framework and

estimation procedure that lets us ask: What are the gains from resolving debt overhang

for nonfinancial firms, both for individual firms and for the aggregate economy in the long

run? In our model, firms make endogenous entry and leverage decisions; can potentially

default on their debt obligations; are heterogeneous in their investment opportunities; and

endogenously innovate but can suffer from debt overhang when making innovation decisions.

We estimate key model parameters using data on U.S. nonfinancial public firms, including the

parameter that governs the extent to which debt overhang affects firm innovation decisions.

We derive bounds on this parameter that account for unobserved heterogeneity in investment

62See work by Lang, Ofek, and Stultz (1996), Giroud, Mueller, Stomper, and Westerkamp (2012), Hen-
nessy (2004), Hennessy, Levy, and Whited (2007) for examples of estimates of the effect of debt overhang on
firm investment and growth. See Moyen (2007) for an example of a relatively large estimate of the effect of
debt overhang on firm value.

63For example, Lo and Rogoff (2015) highlight debt overhang (corporate, household, and government debt
overhang) as a possible cause of sluggish growth in advanced economies.
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opportunities potentially driving the patterns between firm growth and firm default risk in

the data, and show that our estimated model is well identified and implies estimates of

the extent to which debt overhang affects firm growth that are consistent with existing

estimates in the corporate finance literature. We find the expected private gains upon entry

from resolving debt overhang are modest. The long-run welfare gains from resolving this

problem are even smaller than the private gains to a single firm, due to general equilibrium

dampening forces. In particular, an endogenous rise in the real cost of innovation and an

increase in firm leverage and bankruptcy rates are the primary general equilibrium forces

reducing the welfare gains from resolving this problem. However, we find the private gains

from resolving debt overhang are nonlinear and rise substantially for firms near default.

When the distribution of firm default risk changes to the extent observed during the recent

recession, our model implies significant year-ahead employment losses due to debt overhang,

and, hence, the expected gains from resolving debt overhang rise substantially.

Our point of departure is a general equilibrium model of firm dynamics similar to the

framework of Atkeson and Burstein (2010), which incorporates endogenous process inno-

vation decisions into the model of firm growth described by Luttmer (2007).64 Each firm

in our model has a specific factor that determines its current opportunities for generating

sales and profits. This factor is meant to be general, and can include standard concepts like

productivity and manager ability, as well as concepts such as the quality of a firm’s product

or its brand, to name a few possibilities. In the model, incumbent firms engage in process

innovation: They have an investment technology through which they can invest resources to

lower their marginal cost of producing their differentiated product and, hence, expand prof-

its by expanding sales. Incumbent firms also differ in their investment opportunities : They

differ in the productivity of their technology for investing to reduce their marginal cost of

production so that for some firms it is cheap to invest to lower marginal cost and thus grow

64In particular, our model embeds heterogeneity in investment opportunities and endogenous leverage
decisions (with the potential for costly default) into a one-country version of Atkeson and Burstein (2010).
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sales and profits, while for others it is expensive to do so. At any time, product innovation

can occur: New firms can pay a fixed cost to enter with a new differentiated product. An

innovation of our model is to embed the classical trade-off theory of capital structure into

such a framework; here, we build on the model of Leland (1994). Firms take out long-term

debt because it has a tax advantage, but do not fully finance themselves with debt because

it can lead to costly bankruptcy.

The initial leverage decision of the firm is made to maximize the joint value of equity

holders and creditors, but all investment decisions made afterwards are made to maximize

only the value of equity holders. When the firm holds debt, marginal benefits from a unit

of investment for equity holders vs. equity holders and creditors combined differ. Equity

holders thus underinvest relative to the investment decision equity holders and creditors

would jointly make. The extent of this underinvestment depends on the firm’s investment

technology and its default risk. In our model, the cost of innovating is convex, and the

convexity of the cost function determines the extent to which the firm innovation decision

responds as firms have more default risk. Hence, it is this convexity that governs the extent

to which debt overhang affects firms.

We develop a novel estimation procedure to estimate the parameters that govern the firm

growth process and the extent to which debt overhang affects firm innovation decisions in

our model. To demonstrate why our estimation procedure works in practice, we analytically

demonstrate why our moment conditions identify our parameters. We derive a closed-form

approximation to the innovation decision of firms. The approximation can be viewed as the

innovation choice firms would make in a simplified version of the model where firms make

an endogenous innovation decision in the first period, but take their innovation decision as

given all periods thereafter. We demonstrate that in practice, under all of the parameter

combinations we estimate, the innovation decision in this simple setting provides a tight

approximation to the innovation decision in the more general model. Because we can solve

the policy function in closed form, we can derive our moment conditions in closed form, and
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we show which parameters to a first-order drive which moments. In particular, we show

the moments that characterize the nonlinear relationship between firm default risk and firm

average subsequent growth are to a first-order driven by the parameter which governs the

extent to which debt overhang affects the firm innovation decision.

It is crucial to control for unobserved heterogeneity in our estimation procedure. Firm

growth and firm default risk may have a significant relationship because of such unobserved

heterogeneity and not debt overhang. If firms with exogenously persistent low growth rates

(due to poor investment opportunities) are on average closer to default, then firms near de-

fault will grow slower than firms further from default because of differences in their exogenous

characteristics, and not just debt overhang. We incorporate such unobserved heterogeneity

into our model. To both demonstrate the robustness of our results to a reasonable range of

parameter estimates of the extent to which debt overhang affects firms and to overcome po-

tential misspecification issues in accounting for unobserved heterogeneity in firm investment

opportunities, we estimate our model under two different sets of moment conditions. First,

we use moment conditions which generate a lower bound for the parameter which governs

the extent to which debt overhang affects firms. Second, we use moments conditions which

generate an upper bound for this parameter. With our closed-form approximation to the

firm innovation decision, we demonstrate analytically that the lower and upper bound mo-

ment conditions we develop imply lower and upper bounds for the parameter that governs

the extent to which debt overhang affects firms. We also show these bounds hold in the

more general model with heterogeneity in investment opportunities by generating synthetic

data from the model. We obtain moments from the synthetic data, reestimate our model,

and find the bounds hold.

We use an indirect inference procedure to locally identify the parameters that govern

the mechanisms in our model. The data moments we use to estimate the model come from

annual data on an unbalanced panel of U.S. nonfinancial public firms from 1982 to 2012 and

a balanced panel of manufacturing firms from 1992 to 1995. We rely on two measures, the
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first of which is employment growth. The second measure we use is a measure of firm risk-

adjusted leverage, distance-to-default, which is measured as the inverse of the firm’s asset

volatility times the natural logarithm of the value of a firm’s assets relative to the book value

of its debt. Distance-to-default is measured in units of the number of standard deviations

of annual asset volatility by which the firm’s assets must change to equal the firm’s book

value of debt. A value of 1 implies the firm is one standard deviation from its book value of

debt exceeding its assets, 2 implies the firm is two standard deviations from its book value

of debt exceeding its assets, and so on.

The moment conditions we specify relate to properties of firm growth and the significant

relationship between firm distance-to-default and year-ahead growth we find in the data.

Figure 3.1a shows that the average employment growth of U.S. public, nonfinancial firms

close to default is almost 7% slower than firms further from default after controlling for year

and industry fixed effects, and the relationship is nonlinear. In Figure 3.1b, we show this

nonlinear relationship exists for sales and capital growth as well. In Figure 3.1c, we show

that this relationship exists and is nonlinear even after controlling for year effects, industry

effects, size, age, and access to external finance.

We estimate our model taking the distribution of distance-to-default as given from the

data. All moments we use to estimate our model are a function of how a firm will innovate

conditional on its distance-to-default, which makes such an approach feasible. In turn, we

only need to solve the problem of equity holders in order to estimate our model. Hence,

although we specify assumptions on the general equilibrium environment and debt contract,

it is only how these functional form assumptions enter the problem of equity holders that

affect the identification of parameters in our model. With our estimated model, we then

demonstrate that the bounds on the parameter that governs the extent to which debt over-

hang affects firms imply that our range of estimates of such an effect are consistent with a

quasi-natural experiment in the literature, Giroud et al. (2012), and an important structural

paper that relies on Q-theory, Hennessy (2004).
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Although the distribution of distance-to-default is taken as given for our estimation pro-

cedure, the distribution is treated as endogenous for our welfare and firm value counterfactu-

als.65 Firm entry and firm leverage decisions respond to the extent to which debt overhang

affects firm investment decisions near default, which in turn affect aggregate welfare. The

endogenous distribution of distance-to-default in our estimated model has distributional mo-

ments close to those from the data.66

We assess the gains from resolving debt overhang were the firm as a whole, rather than

equity holders alone, to make the process innovation decision. Although our estimated model

implies expected firm value upon entry will only increase modestly for a firm resolving debt

overhang, the firm will gain nonlinearly as it gets closer to default. In our estimated model,

the shape of the distribution of distance-to-default at any given time can play a significant

role in generating the expected future growth rate of firms. When the distribution of distance-

to-default changes to the extent observed in the recent recession, absent compensating general

equilibrium forces such as prices changing, resolving debt overhang would increase annualized

employment growth by between 1.5− 3%. In our general equilibrium exercise, the long-run

welfare gains are more modest and are dampened by the cost of innovation rising and a

higher aggregate bankruptcy rate.

Related Literature The literature on debt overhang has continued to develop the theory

since Myers (1977), examining the different margins through which this problem can affect

firm investment; Diamond and He (2013) and Phillippon and Schnabl (2013) provide two

important recent examples of such theoretical work.67 Our paper advances the theory as

65We do take the distribution of distance-to-default as given for our counterfactuals that assess the gains
from resolving debt overhang in terms of expected year-ahead growth in the cross-section and over time.

66The distribution of distance-to-default when we estimate the model on our full sample of nonfinancial
firms and control for firm heterogeneity in investment opportunities and other firm characteristics (version
(6) of our estimation procedure), for example, has mean, standard deviation, skewness, and kurtosis of 5.28,
2.48, 0.47, and 2.41, respectively. The same moments in the data are 4.61, 2.82, 0.41, and 2.23, respectively.

67Diamond and He (2013) demonstrate how firm debt maturity interacts with the debt overhang problem,
while Phillippon and Schnabl (2013) study a financial sector that suffers from debt overhang and ask under
what conditions and how a government should engage in resolving debt overhang for that sector to improve
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well: In our model, debt overhang affects the firm innovation decision and firm productivity

growth. Our model can match the nonlinear relationship between firm default risk and firm

growth that exists in the cross-section. Also, as Atkeson and Burstein (2010) and Luttmer

(2007) show, theories of firm growth similar to our own can match a number of additional

facts on firm growth and the firm size distribution.

There is an existing set of quantitative studies of the extent to which debt overhang affects

firm investment and growth. Two important examples using the Q-theory approach include

the work of Hennessy (2004) and Hennessy et al. (2007). There have been a few papers that

use quasi-natural experiments to show this problem exists and assess the gains from resolving

it, such as Giroud et al. (2012). We demonstrate the extent to which our estimated model

is consistent with the estimates of Giroud et al. (2012) and Hennessy (2004) in Section 3.5.

Another paper that studies the gains from resolving debt overhang is Moyen (2007). She

calibrates a simple model of the firm and studies the gains from resolving this problem for a

firm in partial equilibrium. We estimate a model of firm innovation and growth disciplined

by the nonlinear relationship between firm default risk and firm growth in the data and find

the expected private gains from resolving debt overhang to entering firms to be substantially

lower, even in our “upper” bound case of the extent to which debt overhang affects firms.

Our paper is also related to a number of papers which study how debt overhang can affect

the economy over the business cycle. Occhino and Pescatori (2012) embed the debt overhang

problem in a business cycle model, and find that the debt overhang problem can generate

both a labor wedge and investment wedge, and can amplify aggregate shocks. We discipline

the extent to which debt overhang affects firm innovation decisions in the cross-section, prior

to analyzing its effect over the business cycle. Chen and Manso (2010) demonstrate that

the costs of debt overhang can be significantly higher in the presence of macroeconomic

risks. Gourio (2014) shows that firm default risk can play a significant role in driving

employment losses in a recession. Our results contribute to this literature by demonstrating

welfare.
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that heightened firm default risk during recessions can interact with nonlinearities in the

firm investment decision (due to debt overhang), and depress firm growth. The role of firm

default and insolvency risk in the economy and its measurement is highlighted by Atkeson,

Eisfeldt, and Weill (2013).

The rest of the paper follows as such. Section 3.2 presents the model. Section 3.3 defines

counterfactuals in the model. Section 3.4 defines our moment conditions and demonstrates

analytically why they identify our parameters. Section 3.5 describes the data we use, and

the details and results of our estimation procedure. Section 3.6 describes the results from

solving the counterfactuals defined in Section 3.3 under our estimates. Section 3.7 concludes.

3.2 The Model

First, we describe a standard production environment under which firms operate. We then

define the problem of equity holders. Afterwards, we specify the problem of the debt holders

and the general equilibrium environment, and define an equilibrium. We describe our model

in this order, because we define some counterfactual objects that only require a solution to

the problem of equity holders, some that only require a solution to the problem of the firm,

and some that require the solution to the full general equilibrium model.

3.2.1 The Physical Environment

Time is discrete and indexed as t = 0, 1, 2, .... There is a competitive final good sector and

a monopolistically competitive intermediate good sector. The final good is produced from

a continuum of differentiated intermediate goods. Intermediate good firm productivities

evolve endogenously through process innovation, and the measure of differentiated interme-

diate goods is determined endogenously through product innovation. All innovation and

intermediate good firm production requires labor, which is paid wage wt. Firms can issue

both equity and debt to finance their operations, which are held and priced by households.
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Households consume the final good.

Production The final good is produced from intermediate goods with constant elasticity

of substitution (CES) production function:

Yt =

(∫
i

yit
1− 1

ρdi

) ρ
ρ−1

, (3.1)

where i indexes intermediate good firms, and ρ > 0. In our model, there is a standard

inefficiency due to the monopoly markup in the production of intermediate goods. To undo

this distortion, we allow for a per-unit subsidy, τ s, on the production of the consumption

good.68 In equilibrium, standard arguments show prices must satisfy

(1 + τ s)Pt = [

∫
i

pit
1−ρ

di]
1

1−ρ , (3.2)

where pit is the price set by firm i, and Pt is the price set by final good firms. We choose

the price of the final good to be numeraire. Thus, from profit maximization demand for

intermediate goods is

yit = (1 + τs)
ρpit
−ρ
Yt , (3.3)

given (3.1) and (3.2).

Firm i produces output, yit, with labor, lit, using the following constant returns to scale

production function:

yit = exp(zit)
1
ρ−1 lit . (3.4)

For simplicity, we will refer to ez as our measure of firm productivity.69

68The per-unit subsidy on the intermediate good keeps the specification without the tax advantage of
debt from being distorted from optimal production, so the tax advantage (and firm debt issuance) does not
resolve this entry/production inefficiency.

69The physical labor productivity of an intermediate good firm is ez
1
ρ−1 .
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3.2.2 The Problem of Equity Holders

At time t, equity holders are indexed by the natural log of their productivity, zt, the size of

their current liabilities, dt, and the aggregate state, St, which contains the distribution Γt of

firms across (zt, dt).

We will, in turn, summarize the transition function of the aggregate state as

St+1 = H(St). (3.5)

The firm has an investment technology through which it can lower its marginal cost of

production. Productivity at the firm level evolves conditional on the investments the firm

has made in improving its productivity and on idiosyncratic productivity shocks. We assume

that firm productivity follows a binomial process. The amount, ∆z, that the natural log of

firm productivity can move up or down in a period is constant. At time t, with probability qt

the firm’s productivity will improve, and with probability 1−qt its productivity will decrease.

We assume that the cost function is proportional in a firm’s size and convex, such that:

φ(qt, zt) = exp(zt)h exp(bqt), (3.6)

for all firms, where b > 0 and h > 0.

We assume that if firms do not default, they have the same value of d as the period before.

Equity holders have to pay d to creditors, and d has a tax advantage relative to equity, τ d,

because payments to debt holders are tax deductible. Equity holders exit if their discounted

present value of profits falls below 0. When the firm holds debt, marginal benefits from a

unit of investment for equity holders vs. equity holders and creditors combined differ, and b

governs how much the investment decision responds to this difference. The more levered the

firm is relative to business risk, the lower the value of equity. Hence, as b is lower, so that

the marginal benefits from a unit of investment for equity holders and the firm as a whole
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differ by more, firms will invest less as they are more levered relative to their business risk.

In this sense, b controls the extent of the debt overhang distortion.

At every time t, firm i solves

π(St, z
i
t) = max

yit

p(St, y
i
t)y

i
t − w(St)

yit

exp(zit)
1
ρ−1

, (3.7)

subject to (3.3) and (3.4) to maximize profits. With standard arguments, firm i’s pit, y
i
t, and

lit can be derived as functions of only zit and the aggregate state.

Given the production environment in Subsection 3.2.1, πt, from (3.7), of a firm with

productivity exp(zt) can be written as the firm’s productivity multiplied by a scaling factor,

Π(St), which is a function of aggregates and parameters. Formally, π(zt) = exp(zt)Π(St).

Firms have to pay corporate taxes, τ , on their operating profits. Debt has a tax advan-

tage, denoted by τ d. Innovation requires labor. Equity holders thus receive the following

cash flows:

CFE(St, zt, dt) = (1− τ)

(
π(St, zt)− w(St)φ(qt, zt)

)
− (1− τ d)dt. (3.8)

Hence, the expected discounted present value of profits for equity holders of a firm with

state (St, zt, dt) satisfies the following Bellman equation:

VE(St, zt, dt) = max
qt

{
0, CFE(St, zt, dt) + (3.9)

Et[Mt+1

(
qtVE(St+1, zt + ∆z, dt) + (1− qt)VE(St+1, zt −∆z, dt)

)
|St]
}
.

where Mt+1 is the pricing kernel that one can derive from the household’s problem, and CFE

is defined in (3.8). In a steady state, Mt+1 = β. The firm’s exit threshold, zt(St, zt, dt), is a

function of the aggregate state and the firm’s idiosyncratic state.
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The optimal innovation decision of equity holders can thus be written as

q∗t (St, zt, dt) =
1

b
log

(Et[Mt+1

(
VE(St+1, zt + ∆z, dt)− VE(St+1, zt −∆z, dt)

)
|St]

wtb(1− τ)h exp(zt)

)
.

(3.10)

3.2.3 Heterogeneity in Investment Opportunities

One reason that firms grow at different rates is they differ in their investment opportunities.

We model firms differing in their investment opportunities following Acemogulu, Akcigit,

Bloom, and Kerr (2013); firms differ in the level of their cost function. Define θt at time t

as the level of investment opportunities for a given firm.

We can amend (3.6), such that the cost function is now

φ(qt, zt, θt) = exp(zt)θ
−b
t h exp(bqt) . (3.11)

With such a functional form, firms will still differ in their investment decision if b→∞,

conditional on θt. The problem without such heterogeneity has θt = 1 for all firms.

Equity holders thus receive the following cash flows:

CFE(St, zt, dt, θt) = (1− τ)

(
π(St, zt)− w(St)φ(qt, zt, θt)

)
− (1− τ d)dt. (3.12)

Given previous assumptions and parameter restrictions, the expected discounted present

value of profits for equity holders of a firm with state (St, zt, dt, θt) satisfies the following

Bellman equation:

VE(St, zt, dt, θt) = max
qt

{
0, CFE(St, zt, dt, θt) + Et[Mt+1

(
qtVE(St+1, zt + ∆z, dt, θt+1)

+(1− qt)VE(St+1, zt −∆z, dt, θt+1

)
|St, θt]

}
. (3.13)
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Equity holders again have an exit threshold, zt, which is now a function of zt, dt, and θt.

The optimal innovation decision of equity holders is thus

q∗t (St, zt, dt, θt) = log(θt) + (3.14)

1

b
log

(Et[Mt+1

(
VE(St+1, zt + ∆z, dt, θt+1)− VE(St+1, zt −∆z, dt, θt+1)

)
|St, θt]

b(1− τ)wth exp(zt)

)
.

(3.14) makes it apparent why as b→∞, only θ affects the expected growth rate of firms.

3.2.4 The Debt Contract and Firm Value

In this subsection, we now specify a debt contract consistent with the functional form as-

sumptions in the problem of equity holders and define the problem of the firm.

Perpetuity Debt and Trade-off Theory Following Leland (1994), we will assume that

the firm only holds perpetuity debt. The problem of equity holders is the same as in (3.13).

Firms hold debt because it has a tax advantage, but do not fully finance themselves with

debt because of the possibility of costly bankruptcy.

Timing of Bankruptcy and the Problem of the Firm At the start of each period, t,

each incumbent firm has a probability, δ, of exiting, and a probability, 1− δ, of surviving to

produce. There is also a discount rate of the firm, r. Notice, then, e−r(1− δ) is the discount

factor of the firm, which we defined to be β in (3.13).70 If the firm survives, equity holders

then choose whether to declare bankruptcy or continue to operate. If the firm declares

bankruptcy, it loses a fixed proportion, (1 − α), of its productivity, where α ∈ (0,1]. The

existing creditors then gain full equity control of the firm and take out new debt to maximize

the joint value of equity holders and new creditors.

70If we calibrate the model such that there are multiple periods in a year (say one period is 1
∆ of a year),

then the discount factor is e−r
1
∆ (1− δ).
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If equity holders decide not to go bankrupt, the expected discounted present value of

profits for the joint value of equity holders and creditors of a firm with idiosyncratic state

variable (zt, dt, θt) satisfies the following Bellman equation:

VA(St, zt, dt, θt) = (1− τ)

(
π(St, zt)− w(St)e

ztθ−bt hebqt
)

+ τ ddt +

Et[Mt+1

(
qtVA(St+1, zt + ∆z, dt, θt+1) +

(1− qt)VA(St+1, zt −∆z, dt, θt+1

)
|St, θt]

}
. (3.15)

If equity holders decide to go bankrupt, the expected discounted value of the profits of

the firm is

VA(St, zt, dt, θt) = max
dt+1

VA(St, zt + log(α), dt+1, θt) . (3.16)

Let d∗(St, zt, θt) be the optimal choice of dt+1 that satisfies (3.16). The value of creditors,

VB, is defined as the difference between the value of the firm as a whole, (3.15) and (3.16),

and the value of equity holders, (3.9); thus,

VB(St, zt, dt, θt) = VA(St, zt, dt, θt)− VE(St, zt, dt, θt) .

3.2.5 The General Equilibrium Environment

We now fully flesh out a general equilibrium environment consistent with the functional form

assumptions that enter the problems of debt holders and equity holders.

Free Entry We assume there is free entry into the economy. New firms are created by

purchasing ne units of labor; a purchase in period t yields a new firm in period t + 1 with

initial state variables zt and θt drawn from a distribution G. After receiving zt and θt, the

firm makes an initial debt decision to maximize the value of equity holders and new creditors.

138



In any period with a positive mass of entering firms, we have

w(St)ne = Et[Mt+1

∫
θ

∫
z

max
dt+1

VA,t+1(St+1, z, dt+1, θ)G(z, θ)dzdθ|St] . (3.17)

We define Γe,t as the measure of new firms entering the economy at period t that start

producing in period t+ 1.71

Households Households are endowed with L units of time which they supply inelastically.

After all (idiosyncratic and aggregate) shocks are realized, households make a consumption

decision, Ct, get paid wages, w(St), receive a lump sum transfer of dividends, Dt, and a pay

a lump-sum tax, Tt.

The recursive problem for households is the following:

V H(St) = max
Ct

[log(Ct) + e−rEtV
H(St+1)|St] (3.18)

subject to their budget constraint:

Ct = w(St)L+Dt − Tt, (3.19)

and the aggregate law of motion for St, (3.5). The aggregate dividend is the sum of all

after-tax profits from intermediate good firms net of entry costs of all newly entering firms.

The Distribution of Firms The distribution of operating firms at time t, Γt(z, d, θ),

evolves over time as a function of the exogenous exit rate, δ, the choices of qt by incumbent

firms, and the mass of entering firms each period, Γe,t. We assume that firm types, θ, are

fixed over time for a given firm (but can vary across firms). To simplify the definition of the

mass of firms with state (zt+1, dt+1, θt+1) in period t+ 1, we break it into four pieces. First,

71If the mass of entering firms were zero, then (3.17) instead should state that the cost of entering (left
hand side) must be greater than or equal to the value of entering (right hand side).
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there is a mass of continuing firms who did not go bankrupt who could enter period t + 1

with state (zt+1, dt, θt), which is a function of continuing firms with productivity zt+1 −∆z

last period that drew positive productivity shocks and continuing firms with productivity

zt+1 + ∆z last period that drew negative productivity shocks:

ΓCt+1(zt+1, dt+1, θt+1) = (1− δ)(1− qt(St, zt+1 + ∆z, dt+1, θt+1))Γt(zt+1 + ∆z, dt+1, θt+1)

+(1− δ)qt(St, zt+1 −∆z, dt+1, θt+1)Γt(zt+1 −∆z, dt+1, θt+1) .

(3.20)

Second, Γt+1 is also a function of the mass of entering firms who received productivity,

zt+1, and investment opportunities, θt+1, such that they chose coupon payment dt+1:

ΓEt+1(zt+1, dt+1, θt+1) = Γe,tG(zt+1, θt+1) . (3.21)

Third, Γt+1 is a function of the mass of firms who have productivity zt+1 + ∆z − log(α)

last period, with type θt+1 and coupon payment d that drew negative productivity shocks,

went bankrupt, and chose coupon payment dt+1.72

ΓBt+1(zt+1, dt+1, θt+1) = (1− δ)
∫

(1− qt(St, zt+1 + ∆z − log(α), d, θt+1)) ∗

Γt(zt+1 + ∆z − log(α), d, θt+1)dd . (3.22)

Hence, we can define Γt+1(zt+1, dt+1, θt+1), as the sum of ΓCt+1(zt+1, dt+1, θt+1),

ΓEt+1(zt+1, dt+1, θt+1), and ΓBt+1(zt+1, dt+1, θt+1) using (3.20), (3.21), and (3.22).

72It is also possible for firms to have had productivity zt+1 −∆z − log(α) last period, type θt+1 and debt
load d, to go bankrupt and choose debt dt+1, although this does not occur in a steady state, so we do not
include this case.
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Equilibrium In our simple setup, market clearing for the final good requires:

C(St) = Y (St) .

Market clearing for labor requires

∫ ∫ ∫
lt(z)Γt(z, d, θ)dzdddθ + Lr,t = L ,

where
∫ ∫ ∫

lt(z)Γt(z, d, θ)dzdddθ is total employment used to produce the intermediate

good, whereas Lr,t denotes labor spent on process and product innovation.

We can write labor spent on research (process and product innovation) as

Γe,tne +

∫ ∫ ∫
ezθ−bt hebqtΓt(z, d, θ)dzdddθ = Lr,t .

A recursive competitive equilibrium in this economy is defined as follows. Given ini-

tial distribution, Γ0, a recursive equilibrium consists of policy and value functions of eq-

uity holders, creditors, and intermediate good firms, {l(St, zt), VE(St, st), z̄(St, xt), q
∗(St, st),

VB(St, st), VA(St, st), d
∗(St, zt, θt)} where xt=(dt, θt) and st = (zt, xt), household policy func-

tions for consumption, C(St), aggregate prices, {P (St), w(St)}, the mass of new entrants,

Γe(St), and the aggregate states including the distribution of firms, St, which evolve accord-

ing to transition function H(St) such that for all t: (i) the policy and value functions of

intermediate good firms are consistent with the firm’s optimization problem, (ii) the repre-

sentative consumer’s policy function is consistent with its maximization problem, (iii) debt

and equity holders’ value functions and decision rules are priced such that they break even in

expected value, (iv) free entry holds (v) labor and final good markets clear, and (vi) the mea-

sure of firms evolves in a manner consistent with the policy functions of firms, households,

and shocks.

A stationary competitive equilibrium is an equilibrium in which all aggregates, aggregate
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prices, and the distribution of firms are constant over time.73 In such an equilibrium, we say

these aggregates are in steady-state. We focus only on equilibria with positive entry.

3.3 Definitions of Counterfactual Objects

We use our model to address the following questions: What are the expected private gains

from resolving debt overhang for firms in the cross-section and over the business cycle, and

for the average firm entering the economy? We also ask: What are the gains for the aggregate

economy in the long run from resolving this problem for all firms? In this section, we define

the objects that allow us to answer these questions. We discuss our partial and general

equilibrium counterfactuals separately.

3.3.1 Partial Equilibrium Counterfactuals

3.3.1.1 Counterfactuals that Only Require the Problem of Equity Holders

With only the cross-sectional distribution of firm distance-to-default from the data and the

problem of equity holders, we can compute a counterfactual that assesses the expected private

gains from resolving the debt overhang problem. We assess the gains were all firms to make

the same innovation decision as the unlevered firm. We are, in turn, comparing the gains

were the cost function inelastic where b =∞ to those when the cost function is elastic to the

extent that we estimate. We compute the policy function and associated implied annualized

growth rate under our estimate for each value of distance-to-default in the data. We then

compute the weighted-average value of q and respective implied expected annualized growth

rate. We then compare the implied annualized growth rate to the implied annualized growth

rate were all firms to make the same decisions as the unlevered firm. Given the fact that

there is a distribution of firms in each year, we can also perform this counterfactual year by

year.

73We present our model aggregation in a steady-state in Appendix H.
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3.3.1.2 Firm Value Counterfactuals

Similar to the counterfactuals above, conditional on firm distance-to-default, we can compare

two firms, one that suffers from debt overhang (equity holders make the investment decision)

and one that does not (the firm as a whole makes the investment decision), and compare their

value functions or expected annualized growth rates assuming prices and the mass of firms do

not change.74 To recover the gains in terms of firm value upon entry, we hold fixed all general

equilibrium effects that could affect firm value (prices, the labor allocation, and the supply of

firms), and solve the model again, assuming the firm resolves the debt overhang problem. We

then compare the percentage difference between the value function of the average entering

firm if the firm does not and does suffer from debt overhang. Following Moyen (2007), we

decompose these gains into the gains from operations, the gains from the tax advantage, and

the losses from bankruptcy. The value from operations is the expected discounted present

value of the firm’s production and investment activities. The tax advantage of debt is the

expected discounted present value of all interest deductions. The default cost is the expected

discounted present value of the deadweight losses from bankruptcy.

3.3.2 General Equilibrium Counterfactuals

There are three distortions in the model we want to focus on: debt overhang, bankruptcy

costs, and other equilibrium distortions caused by the tax advantage of debt and bankruptcy

costs. We develop a decomposition of the social losses in our baseline model relative to the

planner’s problem to isolate the effects of these distortions based on counterfactual objects.

Planner’s Problem The social planner chooses consumption, product innovation, process

innovation, and the labor allocation to maximizes her discounted present value of utility

such that the final good market clears, the labor market clears, and the law of motion for

74We define the policy function were the firm as a whole, rather than equity holders alone, to make the
innovation decision in Appendix I.
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productivity is satisfied. In our setup, the planner’s problem is the equivalent of setting

τ d = 0 and τ = 0 with a per-unit subsidy, τ s, on production of the consumption good

that undoes the distortion from the efficient allocation from the markup in our model. The

subsidy takes value τ s = ρ
ρ−1

. When aggregating our model, we include the subsidy in all

counterfactuals and in our base case. We also set τ = 0 to focus on the distortion of interest,

which is the social cost due to the tax advantage of debt, and the associated costs of debt

overhang and bankruptcy.

Social Loss Decomposition We define the planner’s problem above. Define consump-

tion from the planner’s problem to be CEFF . We define LOSSESEFF as the long-run

differences in aggregate consumption between the planner’s problem and our base case with

debt overhang:

LOSSESEFF =
CEFF − C

C
,

where C is consumption from our baseline estimation. We call these losses “social losses,” and

moving forward we describe welfare as differences in consumption between steady states. To

further decompose these social losses, we create two more consumption measures. To create

our first additional consumption measure, we have the firm as a whole, rather than equity

holders, make the innovation decision. We solve for a stationary competitive equilibrium

given these decision rules and recover a counterfactual object, CND. We define the losses

from debt overhang as

LOSSESDO =
CND − C

C
.

We then create one more object to recover two more counterfactuals objects. We have the

firm as a whole make innovation decisions (as in CND) and also treat α purely as a financial

cost. Thus, this cost is a transfer payment, but no productivity is lost in bankruptcy. We
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then recover a new consumption measure: CNOα. This object gives us the ability to create

two counterfactuals, which along with LOSSESDO should add up to LOSSESEFF . The first

counterfactual object represents the effect of bankruptcy on the total mass of productivity:

LOSSESNOα =
CNOα − CND

C
.

The second is the remaining loss, which can be interpreted as the degree to which α and τ d

distort firm decisions relative to the social planner’s choice:

LOSSESREM =
CEFF − CNOα

C
.

3.4 Identification of Parameters

As we are interested in estimating both the partial and general equilibrium gains from

resolving debt overhang, the parameter that governs the nonlinear relationship between debt

overhang and firm default risk will be crucial to our exercise. We infer this parameter from

the relationship between a measure of firm default risk and firm growth, accounting for the

nonlinearity in the relationship and for unobserved heterogeneity in investment opportunities

as a potential driver of this relationship, in a manner explained in this section.75 In Section

3.5, we compare moments implied by our estimated parameters to existing estimates on the

extent to which debt overhang affects investment and growth from Hennessy (2004) and

Giroud et al. (2012), and find our estimates are consistent with those in these papers when

75It is important to note that we do impose a functional form on this nonlinearity with our cost function.
We have also written down our model with an isoelastic cost function (of which our cost function is a
special case) which requires two parameters to govern the nonlinear relationship between debt overhang
and default risk rather than one, and allows more flexibility in the functional form of this relationship.
Taking our estimates of ∆z and q∞ and the moment conditions that first-order drive the identification of
these parameters as given, we checked the parameters and associated functional form of the cost function
required to match our remaining moment conditions. The functional form was quite close, close enough such
that the added benefit of having a clearer economic interpretation from only a single parameter governing
the extent to which debt overhang affects firms outweighed the cost of using it, in that the more general
cost function implies only a marginal statistic improvement in matching the nonlinearity in the relationship
between distance-to-default and growth.
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taking their respective sample properties into account. However, we find that our model-

implied statistics which correspond to their estimates vary considerably along the margin

of distance-to-default. It is this variation that is crucial to generating the results from

our counterfactual exercises, and it would be difficult to back out such variation in these

statistics from these existing papers alone without imposing assumptions on the nonlinearity

in the relationship between default risk and debt overhang one could not confirm without

an estimation procedure, such as the one we perform.

In the remainder of this section, we demonstrate analytically in a special case of the

general model why our moment conditions identify our parameters. In Section 3.5, we

demonstrate that in the full model, our parameters are still sharply locally identified by the

same moments. To confirm why this is the case, in Section 3.6, we compare our estimated

policy functions and some of the results from our counterfactual exercises to those obtained

analytically in the simplified setting, and find their relationship to be extremely tight.

3.4.1 Mappings to Observables

We begin by mapping our state variable and policy function to observables. Here, we assume

that investment opportunities are fixed throughout time, and the model is in steady-state.

We maintain these assumptions throughout the remainder of this section. We write up how

to perform this mapping as a proposition:

Proposition 3.1. The problem of equity holders in a steady state when firm types are fixed

has the following properties:

(i) It can be reduced to two state variables: the firm’s investment opportunities, θ, and the

number of steps (where the step size is ∆z) until the firm declares bankruptcy, n.76

(ii) Expected annualized employment growth can be fully characterized by the firm’s innova-

tion decision, (3.14), and parameters.

76Formally, n = z−z̄(d,θ)
∆z

, where z̄(d, θ) denotes the level of productivity at which a firm with debt d and
investment opportunities θ will default.
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(iii) The state variable n has a 1-1 mapping with firm distance-to-default defined as:

log(VA(z,θ)/V ∗B(d,θ))
σA

, where VA(z, θ) is the unlevered value of the firm and V ∗B(d, θ) is the unlev-

ered value of the firm at it’s default point.77

Proofs. See Appendix F.

Proposition 3.1 implies that the model predictions can easily be compared to well-defined

and oft-studied objects in the data. Distance-to-default is a much studied variable in corpo-

rate finance with well-established methods for its estimation.78

3.4.2 Moment Conditions and Identification in Closed Form

As we showed in Proposition 3.1, we can map the state variable and policy function of

the problem of equity holders into observables. We now demonstrate how one can map

these observables into moment conditions, and how these moment conditions identify our

parameters. To do so, we require a closed-form solution to the policy function of equity

holders. To our knowledge, this is not obtainable from the model in Section 3.2. However,

we can obtain a closed-form approximation that works well in practice; we demonstrate the

approximation works well in practice in Section 3.6. This approximation can be viewed as

the policy function of the firm in a special case of the model described in Section 3.2, where

we assume the firm innovation decision is made only once in the first period, and in all future

periods the firm takes as given the innovation decision to be an exogenous value. We assume

that we are using this simple model through the remainder of this subsection.

The closed-form solution to the policy function in the simple model is derived in Appendix

F. With the policy function, we demonstrate identification of key parameters for the problem

of equity holders, using moments related to the properties of firm employment growth and

77For (iii) of Proposition 3.1, we assume that the choice of q of the firm is 0.5. Given we construct DD
from daily returns, this is a reasonable assumption. All of our estimates of the innovation decision of the
unlevered the firm are close to 0.5 as well.

78We discuss how we estimate firm distance-to-default and how our measurement procedure compares to
those in the literature in Appendix G.

147



its relationship to firm distance-to-default. The key model parameters we estimate are b,

the convexity of the cost function, ∆z, the size of steps in the binomial process, and h,

the level of the cost function. We define four moments used for local identification of the

parameters of the model: the average year-ahead employment growth rate of unlevered firms,

the variance of firm employment growth, and regression coefficients from a regression of

annualized employment growth on distance-to-default and the square of distance-to-default.

The following proposition outlines that, with the closed-form solution to the simple model,

we can characterize each of these four moments analytically, and defines key relationships

between the parameters and the moment conditions.

Proposition 3.2. The closed-form solution for the problem of equity holders, as derived in

Appendix F, has the following properties:

(i) The derivative of firm expected employment growth to distance-to-default can be charac-

terized in closed form, and its magnitude is proportional in 1
b
.

(ii) The second derivative of firm expected employment growth to distance-to-default can be

characterized in closed form, and its magnitude is proportional in 1
b
.

(iii) The expected annualized growth rate of the unlevered firm can be fully characterized as

a function of ∆z, h, and ∆, and is decreasing in h.

(iv) The variance of firm growth rates can be characterized as a function of the expected

annualized average growth rate of firms and ∆z, and is increasing in ∆z holding the expected

average growth rate of firms fixed.

Proofs. See Appendix F.

The main result is that b has a first-order effect on the first and second derivatives of firm

expected growth with respect to firm distance-to-default (DD). This result is crucial for our

identification strategy: It says that the parameter which governs the extent to which the debt

overhang problem affects firms in our model is to a first-order identified by the regression

coefficients of a regression of employment growth on DD and DD2. The remainder of the
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estimation procedure follows from the next two results. Taking the expected average growth

rate of firms as given, ∆z has a quantitatively first-order effect on the variance of growth rates.

Hence, the variance of firm growth rates will be to a first-order driven by ∆z. Parameters h,

∆z, and b matter substantially for average growth rates of the unlevered firm, but h has only

a second-order effect on the derivatives of firm growth with respect to distance-to-default or

the variance of firm growth rates. Hence, taking b and ∆z as given, h to a first-order pins

down the average growth rate of the unlevered firm. Thus, the four moments we define locally

identify b, h, and ∆z. In Section 3.5, we demonstrate that our parameters are well-identified

and change in the expected parameters in the more general model described in Section 3.2.

We provide further discussion and detail of the local identification of the parameters in

Appendix F.

3.4.3 Deriving Bounds on b

The key remaining question necessary for identifying parameters in our model is: How do we

control for heterogeneity in firm investment opportunities confounding our estimate of the

convexity of the cost function? In particular, firms may be more likely to be near default and

not growing if they have worse investment opportunities. Hence, we may overestimate the

extent to which debt overhang affects firms if we do not control for such heterogeneity, and

thus underestimate the convexity of the cost function. Similarly, if we attribute all of the

relationship between firm distance-to-default and firm employment growth to unobserved

heterogeneity, we may be underestimating the extent to which debt overhang affects firms.

To overcome the difficulties in obtaining accurate point estimates of the extent to which

unobserved heterogeneity could be driving the relationships we observe in the data, and to

demonstrate the robustness of our results to alternative estimates of our parameters, we

define moment conditions that imply upper and lower bound estimates of the extent to

which debt overhang affects firms. We prove our bounds hold under some assumptions on

the relationship between heterogeneity in firm investment opportunities and firm default

149



risk.

We first explain the intuition behind why the bounds hold. The estimation procedure

finds a lower bound for b by not controlling at all for unobserved heterogeneity. By not

controlling for firms having differences in their investment opportunities, we are overstating

the role debt overhang plays in driving the relationship between distance-to-default and

growth. We argue the estimate we obtain when we demean firm employment growth by its

average growth rate implies an upper bound of b. The upper bound argument relies on the

fact that debt overhang can affect the firm’s average growth rate. Both heterogeneity and

debt overhang can generate a positive relationship between distance-to-default and growth.

Both have persistence, so many firms with lower average growth rates will also have lower

average distance-to-default. By demeaning at the firm level, we are attributing all of the

differences in average growth rates to firm heterogeneity. Therefore, in the regression where

we demean firm growth rates, we have firms who have low average distance-to-default but

thanks to demeaning, not lower average growth. This substantially weakens the relationship

between distance-to-default and growth, and thus raises the estimate of b. Hence, for a given

panel of firms, we argue we have intuitive reasonable upper and lower bound estimates of b.

We now use the closed-form approximation for firm innovation decisions discussed in

Subsection 3.4.2 to demonstrate why the moment conditions above imply bounds on the

parameter controlling the extent to which debt overhang affects firm growth, b, in our model.

The estimate for b which ignores the presence unobserved heterogeneity will generate a lower

bound, bl, for b, while demeaning firm growth rates will bound b from above.79

79Instead of writing the propositions in terms of employment growth and DD, as in Proposition 3.2, we
write them in terms of q and n. In the proof of Proposition 3.2, we show that one can easily translate the
derivative of q with respect to n into a derivative of employment growth with respect to DD, and that this
derivative is still proportional in 1/b. Hence, such results will carry over when we replace q with growth and
n with DD in the moment condition.
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3.4.3.1 Lower bound

The approach in Subsection 3.4.2 generates firm innovation decisions in closed form. This

solution is generalized in Appendix F to allow for firms to be heterogeneous in their invest-

ment opportunities as in (3.11). Firm investment opportunities are increasing in θ, which is

heterogeneous across firms but fixed over time. Define b0 as the true value of the parameter b.

Assume all parameters besides b are known. Let ∂E[q|ni=n]
∂n

denote the observed derivative of

firm innovation decisions with respect to steps from default, which is a function both of debt

overhang and the changing distribution of firm types along steps from default. Define bL as

the value of b such that the derivative of firm innovation decisions with respect to firm steps

from default in the model without heterogeneity is set equal to the observed derivative from

the data. The following proposition states and proves that if, on average, firm investment

opportunities are increasing in firm steps from default, bL bounds the true value from below:

Proposition 3.3. If ∂E(θ|n)
∂n

≥ 0, then bL ≤ b0.

Proof. See Appendix F.

Proposition 3.3 implies that if the average investment opportunities of firms are increasing

in their distance from default, then the slope between firm growth and distance to default will

be driven not only by debt overhang, but also the changing composition of firm investment

opportunities. Therefore we will over-attribute the effect of debt overhang if we do not

control for such unobserved heterogeneity in the data and our estimate bL will be below the

true value of b.

3.4.3.2 Upper bound

Assume that we observe a firm over multiple periods. Let ∂E[q−q̄|ni=n]
∂n

denote the observed

derivative of demeaned firm growth rates with respect to firm steps from default, which

is a function of debt overhang, the changing distribution of firm types, and a firm’s other

observed growth rates along firm steps from default. We define bH as the value of b such that
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the derivative of firm growth with respect to firm steps from default in the model without

heterogeneity is set equal to the derivative in the data where growth is demeaned at the

firm level. The following proposition states and proves that if firm average growth rates

conditional on firm types are increasing in n, then bH bounds the true value from above:

Proposition 3.4. If ∂E(q̄|θ,n)
∂n

≥ 0, then b0 ≤ bH .

Proof. See Appendix F.

Proposition 3.4 implies that if firms observed close to default are more likely to also be

closer to default in the other periods they are observed, then demeaning a firm’s observed

growth rates not only removes the variation explained by varying investment opportunities,

but also some of the variation explained by its persistent exposure to debt overhang. There-

fore we will under-attribute the effect of debt overhang and our estimate bH is an upper

bound for the true value of b.

In Section 3.5, we numerically confirm that our analytical results from the closed-form

approximation carry over to the general model. Under a calibration of the process for firm

investment opportunities, we show that when we generate synthetic data from the model

and obtain the upper and lower bound moment conditions from the synthetic data, after

reestimating our model, the conditions needed to prove the propositions above hold and we

obtain estimates of b relative to the true b used to estimate our model below b with the lower

bound moment conditions and above b with the upper bound moment conditions.

3.5 Estimation

In this section, we describe the data we use to estimate our model, the details of our esti-

mation strategy, how we calibrate the remaining parameters in our model, and provide the

results from our overidentified indirect inference estimation procedure. At the end of this

section, we compare our estimates to those that exist in the literature, and we perform a

numerical analysis of our bound argument from Section 3.4.
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3.5.1 Data and Measurement

We use nonfinancial public firm data from 1982 to 2012. Equity market data come from

CRSP, and annual and quarterly accounting statements come from Compustat. We discuss

exact details of how our data is constructed along with some variable definitions in Appendix

G. In our estimation procedure, we will rely heavily on properties of employment growth,

especially its relationship with firm distance-to-default. If we define VB as the book value of

debt, VA as the value of assets, and σA as the standard deviation of the value of the firm’s

assets, we can define our measure of firm distance-to-default as
ln(

VA
VB

)

σA
.80

We detail how we construct VA and σA from the data in Appendix G. Distance-to-default

is measured in units of the number of standard deviations of annual asset volatility by which

the firm’s assets must change to equal the firm’s book value of its debt. We winsorize

the measure to lie between 0 and 10. Employment growth is measured as log differences in

employment from year to year. Figures 3.1a and 3.1b plot the relationship between distance-

to-default and a detrended measure of average year-ahead growth, where the measure of

year-ahead growth is the residuals from a regression of year-ahead employment growth on

year and industry dummies. We plot a quadratic fit through the data to demonstrate that

the regression, (F.18), discussed in Appendix F, will provide a good fit to the shape of the

data. The shape is also similar using a Kernel-smoothing regression. In Figure 3.1c, we

plot the residuals from a regression on industry dummies, year dummies, log number of

employees at the firm, firm age, and the Whited-Wu index for the firm, which is an index

of firms’ external financing constraints against firm distance-to-default.81 The independent

variables are all measures that are known to be strongly correlated with growth rates. We see

that the relationship looks similar were we to focus on sales growth or capital growth, which

should assuage concerns about measurement error in employment in Compustat affecting

our results.

80We can also compute distance-to-default as in Merton (1974), and we find very similar data moments.

81See Whited and Wu (2006) for how to construct the Whited-Wu index.
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Figure 3.1: Growth vs. Distance-to-Default across U.S. Nonfinancial Public Firms
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(a) Employment growth, controlling for year and industry effects
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(b) Employment, sales, and capital
growth, with year and industry effects
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(c) Employment, sales, and capital
growth, with additional controls

Sample Period: 1982 to 2012. These figures present binned scatter plots (binned into 10 bins) of a residualized
measure of year-ahead growth vs. firm distance-to-default. We also plot a quadratic fit line derived from the
underlying data. The y-axis is the residuals from a linear regression on controls, whereas the x-axis is not
controlled. Distance-to-default is measured using the methodology described in Appendix G. The additional
controls in Figure 3.1c are firm size, firm age, and a measure of firm access to external finance.

The relationship we establish between firm growth rates and firm distance-to-default will

likely exist even absent debt overhang affecting firms. We expect firms that are not growing

are on average more likely to have higher leverage relative to their business risk, so, ex

ante, we should expect distance-to-default and growth to have a monotonically increasing

relationship. The estimation procedure finds reasonable bounds on the extent to which

the relationships plotted in Figures 3.1a, 3.1b, and 3.1c could be driven by debt overhang,

accounting for such a reverse causality argument.
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Figure 3.2: The Distribution of Distance-to-Default across U.S. Nonfinancial Public Firms

0
.0

5
.1

.1
5

D
e
n
s
it
y

0 5 10 15
Distance−to−Default

(a) The distribution across firm-years ex-
cluding NBER recession years

0
.0

5
.1

.1
5

D
e
n
s
it
y

0 5 10 15
Distance−to−Default

(b) The distribution across firm-years includ-
ing NBER recession years

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

1

2

3

4

5

6

7

8

9

10

← 10th

← 25th

← 50th

← 75th

← 90th

Year

Sta
nd

ard
 De

via
tion

s

(c) The distribution of distance-to-default across firms in a given year

Sample Period: 1982 to 2012. The top left subfigure plots the distribution outside of NBER recession years.
The top right subfigure plots the distribution including NBER recession years. Subfigure 3.2c plots the 10th,
25th, 50th, 75th, and 90th percentiles of distance-to-default from 1982-2012. Distance-to-default is measured
as described in Appendix G.

3.5.2 Estimation Implementation

We use an indirect inference approach to estimate key model parameters. Our moments

are a function of the joint distribution of firm growth rates and firm distance-to-default.

We first compute moments in the data, and then compute model-implied moments using

a combination of the distribution of firm distance-to-default and firm characteristics in the

data and model implied decision rules conditional on firm distance-to-default. This procedure

allows us to exactly match the distribution of distance-to-default for each firm over time as
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parameters change, thus avoiding some biases associated with the debt contract in the model

being misspecified. Further, we inherently correct for important sample characteristics and

selection effects in Compustat for which we want to account.

We implement our indirect inference procedure in the following standard way. Say our

model moments are the 1× n vector, M̂(G)t, where G represents the tuple (b, q∞, ∆z), and

our data moments are the 1× n vector, D̂t,. Define ĝ = M̂(G)t − D̂t. We want to minimize

ĝW ĝ′ over G, where W is the weighting matrix, which we choose to be the identity matrix.

We then compute standard errors with a nonparameteric block bootstrap procedure with 250

repititions. To provide more detail, we create 250 new datasets with a bootstrap procedure

(resampling firms with replacement). For each dataset, we compute the data moments of

interest, while also saving each respective vector of firm distance-to-default. Using each

resampled vector of firm distance-to-default as an input into the model, we reestimate the

model with respect to the resampled data moments with the indirect inference procedure

described above. We then have 250 new estimates of each parameter, and the reported

standard deviation for each parameter is the standard deviation reported across those 250

estimates.

3.5.3 Estimation Specifications

Our estimation specifications differ in the data samples used and the methods by which we

control for correlates of firm growth and potential firm heterogeneity. Our baseline sample

is a large unbalanced panel of nonfinancial public firms that exist at any point in the period

1982 to 2012; this panel corresponds to Versions (1)-(3) of our estimation procedures, cleaned

as described in Appendix G. For robustness, we also consider a sample of manufacturing firms

that exist in 1992 and survive through 1995; this panel corresponds to Versions (4)-(6) of

our estimation procedures.82 We choose this panel following Hennessy (2004).83

82Manufacturing firms are defined as those firms with two-digit SIC codes between 20 and 39.

83We have slightly more firms than his panel due to different procedures for cleaning of the data.
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Recall, we locally identify model parameters b, ∆z, and h by comparing moments in

the data to moments in the model.84 In our estimation procedure, the estimate for h is

obtained by directly estimating a related object, the innovation decision of the unlevered

firm q∞,θ=1.85 Given the calibrated parameters and estimates for b and ∆z, q∞,θ=1 implies

an estimate for h. We compare coefficients of a regression of a measure of firm employment

growth on distance-to-default and its square. Our other moments are the average growth

rate of unlevered firms and the average standard deviation of employment growth. We take

the distribution of distance-to-default from the data when we estimate our model; hence, it is

only the implied innovation decisions conditional on the distribution that drive our estimates

of parameters, not how these estimates would then feed back into changing the distribution

of distance-to-default. The distribution for the full sample of nonfinancial firms we consider

is plotted in Figure 3.2b.

We run three versions of the estimation procedure for each panel. In the model, we always

run the same regression and compute the same moments. The only difference in procedures

is how we treat employment growth. The first and fourth specifications demean growth by

year and industry averages. The second and fifth specifications control for differences in firm

investment opportunities by also demeaning growth at the firm level. The third and sixth

specifications are the residuals from regressions where the dependent variable is the variable

in the second and fifth specifications, respectively, and the independent variables are age,

size, and a measure of firm’s access to external finance. As described in Subsection 3.4.3, we

can interpret specifications (1) and (4) as specifications which correspond to upper bounds

on the effect of debt overhang, while specifications (3) and (6) correspond to lower bounds

for the effect of debt overhang.
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Table 3.1: Remaining Parameterization

Parameters Value
Affects Estimation

Discount factor, β 0.994
Period length, ∆ 1

12
Does not Affect Estimation

Tax advantage of debt, τd 0.2
Retained value of the firm after bankruptcy, α 0.8
Elasticity of substitution across intermediate goods, ρ 4
Per-period entry cost, ne∆ 1
Total labor supply, L 1

3.5.4 Remaining Calibration

In Table 3.1, we show our remaining calibration. We set τd to 0.2 to match the value chosen in

Leland (1998). There exists a range of different estimates in the corporate finance literature.

This number will not matter for our estimation procedure, as it will only matter for the

choice of debt by the firm. We set the corporate tax rate, τ , to 0 so that when we perform

counterfactuals the tax advantage is a pure distortion. Had corporate taxes been positive,

the tax advantage will further act as a subsidy to entry; such a policy is of less interest to

this paper. The intermediate good firm’s problem scales in taxes, so only aggregates will

be different (not decision rules) had corporate taxes been positive. Hence, we get the same

estimates of parameters no matter the level of τ . We choose α to be 0.8, which is the upper

bound of bankruptcy costs found in Bris, Welch, and Zhu (2006). α will also not affect the

value of equity holders in our estimation procedure. The overall welfare losses are decreasing

in α, since a higher α implies more productivity is lost in bankruptcy. The per-period entry

cost and total labor supply are set to one, as these objects’ values will not affect our results.

We choose ρ to be 4 to match ρ in Atkeson and Burstein (2015). This parameter does not

affect firm decisions, only aggregates. Assuming ρ > 1, holding all other parameters fixed,

the welfare losses from debt overhang are decreasing in ρ. If ρ → ∞, the CES production

function becomes linear, and, in turn, the losses from debt overhang tend toward 0 in the

84See Appendix F for the derivation of these moments in the model.

85This is done to improve numerical accuracy.
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limit.86 Notice, none of the parameters discussed so far affect the estimates of parameters

in our model.

We set the discount factor to 0.994. The discount factor will affect firm decisions and play

a role in the estimation procedure. We do not check our results across a range of discount

factors; however, our choice fits in the range considered in the literature. The discount factor

is e−r
1
∆ (1− δ), which given ∆, is a function of a discount rate r and an exogenous exit rate

δ. We choose an exogenous exit rate high enough such that our problem admits a stationary

equilibrium (so its value is 0.006), and the residual r becomes log(1.001).

Figure 3.3: Local Identification of Parameters for Version 1 of the Estimation Procedure
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In this plot, we hold fixed all parameters and vary one of the parameters, b̃, q∞, and ∆̃z around its local
minimum. ∆̃z is equal to ∆z√

∆
, and b̃ is b

2∆z∆ . The y-axis is the statistic we minimize over for our estimation

procedure.

3.5.5 Estimation Results and Discussion

We show the extent to which our parameters are locally identified in Figures 3.3a, 3.3b, and

3.3c. We hold fixed two of the parameters at their values at which the objective function

is minimized and vary the third parameter.87 As one can see from the figures, for each

86See Acemoglu (2008) Chapter 2 for further discussion of the properties of the CES production function.

87When we actually implement our procedure, we use the numerical solution to the model. We search
hundreds of thousands of combinations of parameters using a parallellized grid search. Using the closed-form
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parameter, we have a clear minimum at our estimate of its value.

Estimation Procedure The results from our estimation procedure are presented in Table

3.2. Across versions of the estimation procedure, the clearest result is that, as expected, when

one demeans growth at the firm level, the estimated extent to which debt overhang affects

firm innovation decisions decreases (which appears in our results as a higher estimated value

of b) in either subsample. The relationship between distance-to-default and growth can be

explained to some extent by the fact that the firms that have not been growing are the firms

with worse investment opportunities. However, given the functional form of the cost function

we assumed and the parameter for b we estimate, the relationship still exists enough such

that debt overhang is costly for firms especially as they near default, consistent with findings

in the literature. Figure 3.4 presents the effect of debt overhang on firm growth along the

margin of distance-to-default implied by our estimates. We discuss the private and public

gains from resolving debt overhang implied by our estimates in Section 3.6.

Figure 3.4: Policy Functions Compared across Estimates: Closed-form vs. Numerical
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(b) Specification 2
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(c) Specification 3

These figures compare the closed-form approximation and the numerically solved policy function for the
firm’s innovation decision, q, in the model across the estimates in Table 3.2.

3.5.6 Comparing our Estimates to those in the Literature

We focus on two papers in comparing our results to those from the literature: a reduced-form

paper with a quasi-natural experiment, Giroud et al. (2012), and a structural paper that

approximation, we can do the same search in a manner of minutes, which helps inform the guess of where
to search.
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Table 3.2:
Estimation Procedure: Data/Model Moments and Parameter Estimates Across

Specfications

Larger Core Sample Manufacturing Balanced Panel

Demean by (1)+Demean (2)+Addl. Demean by (4)+Demean (5)+Addl.
Yr. and by Firm Controls Yr. and by Firm Controls
Industry —— —— Industry —— ——

(1) (2) (3) (4) (5) (6)
Data Moments

β1: From Eq. (F.18) 0.0202 0.0121 0.0105 0.0165 0.00902 0.00709
β2: From Eq. (F.18) -0.00136 -0.000856 -0.000735 -0.00123 -0.000722 -0.000614
Avg. Gr. for High DD Firms 0.0166 0.00776 0.00735 -0.0136 -0.00389 -0.00351
Avg. Std. Dev. of Emp. Gr. 0.173 0.159 0.154 0.165 0.152 0.146

Model Moments

β1: From Eq. (F.18) 0.0202 0.0121 0.0105 0.0165 0.00903 0.0071
β2: From Eq. (F.18) -0.00153 -0.000912 -0.000792 -0.0012 -0.000663 -0.000522
Avg. Gr. for High DD Firms 0.0166 0.0078 0.00732 -0.0135 -0.00391 -0.00353
Avg. Std. Dev. of Emp. Gr. 0.173 0.159 0.154 0.165 0.152 0.146

Parameter Ests. (S.E.’s)

b̃ 41.9 70.6 81.3 45.4 79.9 101
(1.91) (4.55) (5.72)

∆̃z 0.173 0.159 0.154 0.165 0.152 0.146
(0.00106) (0.000996) (0.000975)

q∞ 0.514 0.507 0.507 0.488 0.496 0.497
(0.00152) (0.00108) (0.00114)

Data Sample Properties

#Firms 5650 5650 5650 894 894 894
Avg. # Employees 5520 5520 5520 5130 5130 5130
Avg. Distance to Default 4.61 4.61 4.61 4.81 4.81 4.81

Notes: Columns (1)-(3) present results from the large unbalanced panel of nonfinancial firms from 1982 to 2012. In
Column (1), employment growth is demeaned by year and industry average growth rates. In Column (2), employment
growth is demeaned by year, industry, and firm average growth rates. Column (3) regresses employment growth as
defined in Column (2) on the Whited-Wu index (a measure of access to external finance), firm age, and the natural
logarithm of the number of employees in the firm. The residuals are the new measure of employment growth. Columns
(4)-(6) present results from a balanced panel of manufacturing firms that exist between 1992 to 1995. In Column (4),
employment growth is demeaned by year and industry average growth rates. In Column (5), employment growth is
demeaned by year, industry, and firm average growth rates. In Column (6), employment growth as defined in Column
(5) is regressed on the Whited-Wu index, firm age, and the natural logarithm of the number of employees in the firm.
The residuals are the new measure of employment growth. High DD is defined as a DD greater than 8. ∆̃z is equal to
∆z√

∆
, and b̃ is b

2∆z∆ . The regression coefficient data moments β1 and β2 in the larger core sample specifications (1)-(3)

are all significant at the 1% significance level. Standard errors for the parameter estimates are computed using a
nonparametric block bootstrap, sampling and re-estimating our model 250 times, and are reported only for the larger
core sample.
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uses Q-theory, Hennessy (2004). Our approach differs in that we do not directly estimate

elasticities from the data; instead, we estimate key parameters of a structural model. We

compare regression coefficients from the above cited papers to those implied by our estimated

model and find, for firms with similar financial soundness to the samples in these papers,

that our model generates similar values.

Giroud et al. (2012) use a quasi-natural experiment to estimate the impact of exogenous

shocks to firm book leverage on returns, other measures of performance, and sales growth

for a sample of highly leveraged firms. We construct a theoretical analog of an estimated

regression coefficient that we can derive just from the problem of equity holders, the partial

derivative of firm sales growth to exogenous changes in firm book leverage, by computing

this derivative for firms with similar book leverage to those in their sample.

Hennessy (2004) uses a Q-theoretic approach to estimate the extent to which debt over-

hang affects firm investment. He uses the expectation of the market value of lenders’ total

recovery claim (reflecting both the probability of default and how much lenders recover)

scaled by the capital stock as a measure of firm’s exposure to debt overhang. He then runs

a regression of investment on this measure of debt overhang and controls and finds that

this measure has a significant negative relation with investment. The resulting regression

coefficient can be interpreted as an estimate of the derivative of investment with respect to

this expected recovery claim. We compute, in our model, both the expected recovery claim

as well as an analogue of investment, expenditures on innovation, to compute this derivative

in our model.

We find that both of these model-implied derivatives change markedly along the mar-

gin of distance-to-default in our estimated model, due to the changing intensity of the debt

overhang problem. When we account for the sample properties (in terms of leverage or

distance-to-default) of these papers, we show that our results are consistent with their esti-

mates.
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Comparing our Estimates to Those from a Quasi-Natural Experiment We use

the estimate of the derivative of a change in three-year-ahead sales growth to a change in

book leverage in Table IV of Giroud et al. (2012) of -0.039. We compute three-year-ahead

sales growth in the model.88 To compute book leverage in the model, we define a measure

of book debt and a measure of book assets. First, we define book assets as κ exp(z) where κ

is a free parameter that we calibrate such that the average value of book leverage matches

the average value of book leverage in Compustat. Second, we define book debt in the model

as short-term debt plus one-half long-term debt, following Gilchrist and Zakrajsek (2012).

With some algebra, we can derive book debt for a given value of n as:

ā

(1− τ d)
exp(z) exp(−∆zn)

1− 1
2
β∆

1− β
, (3.23)

where ā = (1 − τ d) d
exp(z̄)

. Notice, exp(z) in book debt and book assets will cancel. We

can then compute the ratio of changes in three-year-ahead sales growth to changes in book

leverage at each point on the grid.

Figures 3.5a and 3.5b show our model-implied values of this derivative in the full panel

and balanced manufacturing panel, respectively. As this model-implied statistic changes

meaningfully along the margin of distance-to-default, it is important to take the leverage

of their sample into account. We compare the value of our model-implied derivative at a

distance-to-default which corresponds to the median book leverage reported in their paper

(1.77) to their estimate of −0.039. In our baseline sample, we find that our estimates imply

that this derivative in the lower and upper bound specifications yields derivatives of −0.0553

and −0.0416.89 Our estimated model implies a similar, if slightly stronger, derivative at

similar levels of book leverage. If we allow ourselves to consider slightly higher levels of

distance-to-default (lower book leverage), we can almost exactly hit their estimates in any

88We compute three-year-ahead sales growth in a manner similar to how we compute year-ahead employ-
ment growth in (F.3) in Appendix F.

89This corresponds to specifications (1) and (3), respectively. The distance-to-default values at which we
are closest to hitting book leverage of 1.77 are 2.89 and 2.02, respectively.
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of our specifications.90

Comparing our Estimates to Those from a Structural Paper that Builds on

Q-theory We compare our results to the estimate of the derivative of investment (as a

fraction of the capital stock) with respect to the imputed market value of lenders’ recovery

claim in default normalized by the capital stock (of -0.173) reported in Table III, Column 4

in Hennessy (2004). Our estimate of firm investment is defined as the firm’s cost function

(which scales in the firm’s size, exp(z)). The imputed market value of lenders’ recovery claim

in default in the model is defined as:

(1− α) exp(z) exp(−∆zn)E[βTD] , (3.24)

where E[βTD] is the discount rate at the firm’s expected time of default, conditional on a

firm’s n. Because volatility follows a binomial process, we can exactly compute this value

given the firm’s policy function and the exogenous exit rate. The value of the firm upon

entry is also in this term; however, since the cost of entry is one, this value will also be one

in equilibrium. Given the capital stock will cancel in both terms, as will exp(z), we can

easily compute this derivative numerically as in the quasi-natural experiment by computing

changes in investment relative to changes in the imputed market value of lenders’ recovery

claim in default.

Figures 3.5c and 3.5d show our model-implied values of this derivative in the full panel

and balanced manufacturing panel, respectively. This derivative changes significantly along

the margin of distance-to-default, so it is important to take the financial soundness of firms

into account when discussing this derivative. The balanced sample of manufacturing firms

we use is based off of Hennessy (2004) and has an average distance-to-default of 4.81. In our

estimated model specifications based off this sample, we find that our estimates imply that

90We find values extremely close to the derivative in Versions (1)-(6) of our estimation procedure of -
0.0388, -0.0389, -0.0386, -0.039, -0.0377, -0.0416 at values of distance-to-default of 3.46, 2.31, 2.02, 2.89,
2.31, and 2.02, respectively.
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Figure 3.5: Estimation Results compared to those of Giroud et al. (2012) and Hennessy
(2004)
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The figures above compare model-implied elasticities against existing estimates from the corporate finance
literature. Figures 3.5a and 3.5b compare the derivative of 3-year sales growth with respect to book leverage
implied by our model at varying levels of distance-to-default against the value estimated by Giroud, Mueller,
Stomper, and Westerkamp (2012). Figures 3.5c and 3.5d compare the derivative of scaled investment with
respect to the expected discounted value of recoveries by bondholders implied by our model at varying levels
of distance-to-default against the value estimated by Hennessy (2004). The horizontal lines correspond to
the estimates reported in these papers, while the vertical line corresponds to the summary statistics of
their samples. The vertical line in figures 3.5a and 3.5b denote the distance-to-default at which firms’ book
leverage is equal to the sample median reported in Giroud et al. (2012). The vertical lines in figures 3.5c
and 3.5d denote the mean distance-to-default in our balanced manufacturing sample, which is very similar
to the sample used in Hennessy (2004). The blue and green lines are model-implied elasticities from the
lower and upper bound specifications we estimate. Figures 3.5a and 3.5c are computed using our estimated
model from the full, unbalanced panel from 1982 to 2012 and uses specifications (1) and (3) as the upper
and lower bounds. Figures 3.5b and 3.5d are computed using our estimated model from the balanced panel
of manufacturing firms that exist between 1992 to 1995, with specifications (4) and (6) as the lower and
upper bounds.
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this derivative in the lower and upper bound specifications yields derivatives of −0.2258 and

−0.1067, which bound the estimate (of −0.173) in Hennessy (2004).91

3.5.7 Demonstrating the Bounds Hold in the Full Model

We now demonstrate that the upper and lower bounds hold in the full model discussed

in Section 3.2. We take values of parameters that come from our estimation procedure,

specifically specification (4), where we estimate the model on our core sample of data. Thus,

the values of b, ∆z, and q∞ used to generate model generated data are 41.9, 0.173, and

0.514, respectively.92 We demonstrate that when we simulate data from our model with

heterogeneity in investment opportunities, the moments that we use as our lower bound

moments generate an estimate of b that is lower than the estimate of b used to simulate

model generated data. Similarly, the moments that we use as our upper bound moments

generate an estimate of b that is higher than the estimate of b used to simulate model

generated data.

We refer to the model with heterogeneity in investment opportunities described in Section

3.2. We assume that firms can be one of two types with values of θ and 1/θ. We calibrate

θ such that the difference in growth rates between high and low types is equal to the gap in

growth rates in the data. In the data, for our core sample, the difference between the 75th

and 25th percentile of growth rates is 15.48%, which we can match exactly.93 This value of

θ pins down the relative difference in types. We also have to pin down the actual value of

the θ of high type firms, which we calibrate such that the implied average mean growth rate

of firms is similar to that that we find in our estimation procedure. With such a calibration

procedure, we find a value of θ of 0.9343. We assume firm type is the same throughout

91This corresponds to specifications (4) and (6), respectively. If we use our estimated model specifications
using the full unbalanced panel, our bounds become −0.1948 and −0.1184.

92All references to b and ∆z in this subsection refer to rescaled values of of b and ∆z. See Table 3.2 for
the full description of the transformation.

93If we choose to look at the difference in growth rates of larger percentile gaps, the estimate of b is at
least as low in the lower bound case and the estimate of b is at least as high in the upper bound case.
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the life of the firm, and firms can enter as either type with equal probability. We simulate

5000 firms for 30 years (with 12 months per year). Firms are drawn from the stationary

distribution. For a given firm, if the firm goes bankrupt, we assume we do not observe the

firm from that period on. Firms also exit and are not observed thereafter, with exogenous

probability (1 − δ), as in the model. Otherwise, firm innovation decisions determine the

probability a firm increases or decreases its productivity each period.

We first find numerically that the proportion of high to low types is increasing in n at

each n. Hence, the assumption needed to prove that our lower bound moment condition

implies a lower bound for b holds in the full model. We also find that the average mean

growth rate of each type is increasing in n at each n, which implies that the assumption

needed to prove that our upper bound moment condition implies an upper bound for b holds

in the full model. We then reestimate b, ∆z, and q∞. The values of q∞ we estimate are

0.514 in both the upper bound and lower bound cases. The values of ∆z we estimate are

0.173 in the upper and lower bound cases, respectively. Hence, the estimates of q∞ and ∆z

are extremely close to those in Table 3.2. However, in the lower bound case, we find an

estimate of b of 17.9, and in the upper bound case, we find an estimate of b of 81.9. Hence,

our bounds hold very clearly in the full model.

3.6 Results from Counterfactuals under our Estimates

We now use our estimates to provide results from the counterfactuals defined in Section 3.3.

Figures 3.4 and 3.6 also compare the results of our closed-form approximation to the full

numerical solution of our model.

3.6.1 Partial Equilibrium Counterfactuals

Counterfactuals that only Require the Problem of Equity Holders First, we com-

pare the estimated expected growth rate of firms across the distribution to the expected
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growth rate of firms were they to grow at the rate of firms that are unlevered. We find

annual gains of 0.952% and 0.515% in the upper and lower bound cases in our baseline

sample.94

Figure 3.6: Partial Equilibrium Gains from Resolving Debt Overhang by Year
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(b) Specification (2)
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(c) Specification (3)

For a given set of estimates in Table 3.2, the lines in a given panel above show the difference between
the expected annualized growth rate of firms (in percentage terms) were all firms unlevered and the ex-
pected annualized growth rate of firms conditional on the observed distribution of distance-to-default among
U.S. nonfinancial public firms in a given year. The green and blue lines respectively show the closed-form
approximate and numerical solutions.

We also take the distribution of distance-to-default year by year and perform the same

counterfactual as above. Figure 3.6 shows the potential gains from having firms all choosing

the investment policy of the unlevered firm year by year. As we expect, these gains increase

during times when the distribution of distance-to-default compresses.

Firm Counterfactuals Debt overhang in our model is a highly nonlinear problem. We

further demonstrate this in Figure 3.7 across versions of our estimation procedure. We

plot the difference in expected annualized growth rates between two firms, one that does

not suffer from debt overhang and one that does, for a given value of distance-to-default,

assuming prices and the mass of firms do not change. The gains from resolving debt overhang,

in terms of annualized employment growth, rise to over 6% for the firms closest to default

94These corresponds to specifications (1) and (3), respectively. Our results are similar in the balanced
manufacturing panel as well, with specifications (4) and (6) implying annual gains of 0.956% and 0.378%.
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Figure 3.7: Percentage Difference in Expected Annualized Growth due to Debt Overhang
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(a) Specification 1
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(b) Specification 2
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(c) Specification 3

The blue line in a given panel is the difference in expected annualized growth in percentage terms between
a firm that does not suffer from debt overhang and a firm that does conditional on firm distance-to-default.
There exists a kink in some of the panels near default, because the default threshold changes between cases.
The counterfactuals above are solved in partial equilibrium (prices and the mass of firms remain constant)
and each panel refers to a set of estimates in Table 3.2.

in the upper bound case of our procedure.

On the other hand, we estimate that the expected gains from resolving debt overhang are

modest for an entering firm (in terms of firm value). The blue bar on the left side in a given

panel of Figure 3.8 presents the gains as a percent of firm value upon entry. One can find the

results from this counterfactual in Table 3.3, as well. Following Moyen (2007), we decompose

these into the gains from operations, the gains from the tax advantage, and the losses from

bankruptcy. The value from operations is the expected discounted present value of the firm’s

production and investment activities. The tax advantage of debt is the expected discounted

present value of all interest deductions. The default cost is the expected discounted present

value of the deadweight losses from bankruptcy. Most of the gains in partial equilibrium

come from gains in terms of the value of operations because, in expectation, the firm makes

better investment decisions near default. The firm also anticipates that it will suffer less

from debt overhang, so it takes on more debt. In turn, the average entering firm gains more

from the tax shield, but also goes bankrupt more often, and these two effects mostly offset.
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Table 3.3:
Results from Welfare and Firm Value Counterfactuals under our Estimates

Larger Core Sample Manufacturing Balanced Panel

Upper Bound Lower Bound Lower Bound Upper Bound Lower Bound Lower Bound
Extent of Extent of Extent of Extent of Extent of Extent of

Debt Debt Debt Debt Debt Debt
Overhang Overhang Overhang (v2) Overhang Overhang Overhang (v2)

(1) (2) (3) (4) (5) (6)

Parameter Ests.
(S.E.’s)

b̃ 41.9 70.6 81.3 45.4 79.9 101
(1.91) (4.55) (5.72)

∆̃z 0.173 0.159 0.154 0.165 0.152 0.146
(0.00106) (0.000996) (0.000975)

q∞ 0.514 0.507 0.507 0.488 0.496 0.497
(0.00152) (0.00108) (0.00114)

Welfare Results

Social Loss 0.92 1.02 1.04 1.13 1.11 1.11
Debt Overhang Loss 0.22 0.11 0.07 0.17 0.15 0.08
Bankruptcy Loss 0.55 0.76 0.82 0.84 0.82 0.88
Residual Loss 0.15 0.15 0.16 0.12 0.14 0.15

Partial Equilibrium
Firm Value Results

Firm Value Loss 0.39 0.25 0.2 0.69 0.3 0.23
Operations Loss 0.28 0.23 0.21 0.64 0.27 0.23
Bankruptcy Loss 0.21 0.33 0.34 0.73 0.27 0.32
Tax Shield Gain -0.11 -0.3 -0.35 -0.67 -0.24 -0.32

Notes: This table presents results from counterfactuals computed under our parameter estimates. Specifications (1)-
(6) are as described in Table 3.2 and Subsection 3.5.3. We assess and decompose the “Social Loss”, which is the
long-run percent change between efficient and baseline consumption. We decompose this loss into three components:
“Debt Overhang Loss” is the percent change between consumption in the steady state where debt overhang does not
affect firm’s investment decisions and steady-state baseline consumption. “Bankruptcy Loss’ is the percentage change
between steady-state consumption if debt overhang does not affect firm investment and firms do not lose 1− α of their
productivity in bankruptcy and the steady-state consumption if debt overhang does not affect firm investment decisions.
“Residual Loss” is the effect of taxes and bankruptcy on firm value, which is the percent change between the social
loss and the sum of the two previous counterfactuals. The firm value counterfactuals, “Firm Value Loss”, above assess
and decompose the partial equilibrium percent change in firm value upon entry between a firm that does not and a
firm that does suffer from debt overhang. We decompose this loss into three components: “Operations Loss” is the
expected discounted present value of the firm’s production and investment activities. “Tax Shield Gain” is the expected
discounted present value of all interest deductions. “Bankruptcy Loss” is the expected discounted present value of the
deadweight losses from bankruptcy. ∆̃z is equal to ∆z√

∆
, and b̃ is b

2∆z∆ . Standard errors for the parameter estimates are

computed using a nonparametric block bootstrap, sampling and re-estimating our model 250 times, and are reported
only for the larger core sample.
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Figure 3.8: Firm Value Decomposition Across Estimation Specifications
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(a) Specification 1
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(b) Specification 2
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(c) Specification 3

The counterfactuals above assess and decompose the partial equilibrium percent change in firm value upon
entry between a firm that does not and a firm that does suffer from debt overhang across the estimates in
Table 3.2. The value from operations is the expected discounted present value of the firm’s production and
investment activities. The tax shield is the expected discounted present value of all interest deductions. The
default cost is the expected discounted present value of the deadweight losses from bankruptcy. The value
of operations, the tax shield, and the default cost add up to the gains in firm value upon entry.

3.6.2 General Equilibrium Counterfactuals

Results from our general equilibrium counterfactuals can be found in either Figure 3.9 or

Table 3.3. We explain how to compute our general equilibrium counterfactual objects in

Subsection 3.3.2. The social losses, which are expressed in terms of baseline consumption, do

not vary much with our estimates. We are most interested, in our case, in the decomposition,

especially the component that captures the gains from resolving debt overhang. As one can

see from Figure 3.9, the gains from resolving debt overhang do not vary substantially with

a changing estimate of b. The gains do not vary much as we vary b because in the long run

when a large mass of firms increase their innovation decisions, as they do when we resolve

the debt overhang problem, they raise the real cost of labor. However, because production,

entry, and process innovation all require labor, these activities all become more expensive,

thus reducing the incentive of firms to engage in them all else equal. Hence, the rise in the

cost of the inputs into innovation (labor) dampen the gains from resolving debt overhang.

Further, the aggregate bankruptcy rate will rise, as firms will now have more leverage, on

average, as they anticipate they will not suffer from debt overhang near default. Hence, more

aggregate productivity will be lost to bankruptcy, dampening the gains from resolving debt

overhang.
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Figure 3.9: Welfare Analysis Across Estimation Methods

Social loss Social loss decomposition
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
er

ce
nt

 c
ha

ng
e

 

 

Social loss
Effect of taxes and bankruptcy on firm value
Effect of bankruptcy on aggregate productivity
Debt overhang loss

(a) Specification 1
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(b) Specification 2
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(c) Specification 3

The figures above assess and decompose the long-run percent change between efficient and baseline consump-
tion (social loss) across the estimates in Table 3.2. Debt overhang loss is the difference between consumption
in the steady state where debt overhang does not affect firm investment decisions and steady-state baseline
consumption. The effect of bankruptcy on aggregate productivity is the difference between steady-state con-
sumption if debt overhang does not affect firm investment and firms do not lose 1− α of their productivity
in bankruptcy and the steady-state consumption if debt overhang does not affect firm investment decisions.
The effect of taxes and bankruptcy on firm value is the difference between the social loss and the sum of the
two previous counterfactuals.

There are two other counterfactuals in this figure which we also explain how to compute

in Subsection 3.3.2. The first other object is the effect of bankruptcy on the total mass

of productivity. Recall, the interpretation of α in our model is that there is some mass of

productivity that is being lost which will be costly to replace. We get rather large losses

relative to the losses from debt overhang from this effect. There are a few points to make

here given that there are other possible interpretations of α. One could interpret the costs

of bankruptcy as not destroying any productivity, but being costly in terms of labor. In

this case, we have a smaller, but still significant, blue bar. Another interpretation of α is

that the cost of bankruptcy is a direct financial transfer; this will make the dark blue bar

zero. In these two cases, the white bar, the social loss, will move close to proportionally with

movements in the dark blue bar. Even though our estimation procedure will not change

with these different interpretations, the interpretation of bankruptcy is very important in

translating the costs of bankruptcy into social losses.

The light blue bar is the effect of taxes and bankruptcy on firm value. Even without

debt overhang, there are losses from firm decisions being distorted by the tax advantage and

bankruptcy, and these losses are comparable in size to the losses from debt overhang.
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3.7 Conclusion

This paper develops and estimates a general equilibrium model of firm dynamics and en-

dogenous innovation in which debt overhang distorts the firm’s innovation decision. With

our estimated model, we assess the expected private gains and long-run welfare gains from

resolving debt overhang. We find that the long-run welfare gains from resolving this problem

are small under a range of estimates of the extent to which debt overhang affects firms. The

gains are relatively small as well for the average entering firm, especially compared to the

private gains for firms close to default. However, our results also suggest that debt overhang

may be an important factor affecting firm growth over the business cycle.

Appendix F: Proofs and Value Function Derivations

Proofs to Proposition 3.1

Recall, in Proposition 3.1 we outline properties of the problem of equity holders in a steady

state where St is constant for all t, and assuming that firm types are constant for a given

firm such that θit = θi for all t for a given firm i. It is useful to define the Bellman function

for equity holders in a steady state where θ, although heterogeneous across firms, is constant

for a given firm:

VE(z, d, θ) = max
q

{
0, (1− τ)(exp(z)Π− w exp(z)hθ−b exp(bq))− (1− τ d)d+

β

(
qVE(z + ∆z, d, θ) + (1− q)VE(z −∆z, d, θ)

)}
. (F.1)

First, we will prove that the problem of equity holders can be reduced to two state

variables: (1) the firm’s investment opportunities, θ, and (2) the number of steps, ∆z, until

the firm declares bankruptcy, n.
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Proof. Define V̂E = VE
exp(z)

. We can thus redefine (F.1) as:

V̂E(n, θ) = max
q

{
(1− τ)(Π− whθ−b exp(bq))− (1− τ d)d

exp(z∗(θ))
exp(−n∆z) +

β

(
q exp(∆z)V̂E(n+, θ) + (1− q) exp(−∆z)V̂E(n− 1, θ)

)}
, (F.2)

where the firm goes bankrupt if n < 0 and exp(z∗(θ)) is the bankruptcy threshold of a given

type, θ. Define ā(θ) = (1−τd)d
exp(z∗(θ))

. Given θ and d constant over time for a given firm, ā(θ) is

constant for a given firm over time. It can be easily verified that ā(θ) does not vary in d,

because exp(z∗(θ)) is proportional in d.

Next, we prove that expected year-ahead employment growth can be fully characterized

by the firm’s innovation decision, (3.14), and parameters.

Proof. A firm’s expected period-ahead growth rate in the model is 2q(n)∆z −∆z. We can

annualize this growth rate to recover ∆yit for firm i between year t and year t+ 1 as:

(2q(n)∆z −∆z + 1)∆ − 1 (F.3)

Lastly for Proposition 3.1, we prove the state variable n has a 1-1 mapping with firm

distance-to-default:

Proof. Note that the unlevered value of the firm can be expressed as VA(z, θ) = ezV̂E(∞, θ).

The unlevered value at the default point can be expressed as V ∗B(d, θ) = ez
∗(d,θ)V̂E(∞, θ).

Note that n(z, d, θ) = z−z∗(d,θ)
∆z

. Therefore we can write DD = n∆z

σA
. We also know that

there is relation between asset volatility and the step size, which reduces to the following

relationship under our assumptions: ∆z = σA

√
1
∆

95 Therefore, we can write n = DD
√

∆,

which implies a 1-1 mapping between DD and n.

95∆z has a close relationship with asset volatility, σA. In particular, ∆z = σA

√
4q(1− q) 1

∆ , where q is

the average q in the economy. If we assume this q is 0.5, which is true if we look at a high enough frequency
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The Problem of Equity Holders in the Simple Model

To recover the value function and the choice of q in (F.1) and (3.10), respectively, we take the

following steps. We first solve for a closed-form solution for the value function with constant

aggregates for the problem where firms do not optimize how much process innovation to

undergo conditional on their leverage and always choose q as if they were the unlevered firm.

We then plug in this solution into the optimal choice of q in the problem with optimally

chosen process innovation. As this and the next subsection are solved in steady state, and are

used to demonstrate identification and will not be referenced when defining an equilibrium,

we drop all time subscripts.

Also, when firm’s types are fixed, given h, we can solve for each type’s Bellman individ-

ually given the choice of q of the unlevered firm. Given a value of h and a value of q∞, when

types are permanent, a value of θ can then be backed out analytically:

θ =
Πβ(e∆z − e−∆z)

hebq∞(β(e∆z − e−∆z)− b(1− β(e∆z − e−∆z)q∞ − βe−∆z))
.

The above value of θ implies an associated value of the Bellman of the unlevered firm.

Also, note that the bankruptcy threshold may be different conditional on θ. Hence, we can

solve for the closed-form approximation over only n, assuming that we are using this solution

procedure for each θ and that we have chosen the h to be the h were θ = 1.

From (F.1), the optimal innovation decision of equity holders is

q∗(n) =
1

b
log

(β(exp(∆z)VE(n+ 1)− exp(−∆z)VE(n− 1)

)
w(1− τ)bh

)
. (F.4)

The default threshold, exp(z), is proportional in debt outstanding. Thus, (1 − τ d) d
exp(z)

of data, then ∆z = σA

√
1
∆ .
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is a constant when aggregates are fixed. Define:

a = (1− τ d) d

exp(z)
. (F.5)

Now, consider the Bellman in (F.1) except where equity holders always invest as if they

were unlevered. Call the innovation decision of the unlevered firm q∞. Call the Bellman in

this case, ṼE.

ṼE(n) = (1− τ)

(
Π− wφ(q∞)

)
− a exp(−∆zn) + βq∞ exp(∆z)ṼE(n+ 1)

+β(1− q∞) exp(−∆z)ṼE(n− 1). (F.6)

We also know

ṼE(0) = 0. (F.7)

We can easily solve for (F.6) with boundary condition (F.7), as this is a linear non-

homogeneous second-order recurrence equation with a known solution:96

ṼE(n) =

(1− τ)

(
Π− wφ(q∞)

)
1− βq∞(exp(∆z)− exp(−∆z)) + exp(−∆z)

(
1

−a− exp(∆z)(n+1) β(1− q∞) exp(−∆z)− 1 + 1
2
(1−

√
1− 4β2q∞(1− q∞))

exp(−∆z)(β(1− q∞)− 1 + 1
2
(1−

√
1− 4β2q∞(1− q∞)))

−
β(1− q∞)(1− exp(−∆z))

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)n
(β(1− q∞)− 1 + 1

2
(1−

√
1− 4β2q∞(1− q∞)))

)
. (F.8)

Now, suppose we have a general cost function as in (3.6). We plug in (F.8), our closed-

form solution to the Bellman of equity holders, into the optimal policy function for q for the

problem with optimally chosen process innovation, (F.4), to recover a closed-form solution

96Notice, also as n→∞, V (∞) = (1−τ)(Π−whebq∞ )
1−βq∞(exp(∆z)−exp(−∆z))+β exp(−∆z) .
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to (F.4).

In turn, we can define the choice of q as

q̃∗(n) =

log

(β
(Π̃−φ(q∞))

1−βq∞(exp(∆z)−exp(−∆z))+exp(−∆z)

exp(∆z)−exp(−∆z)−K

 1−
√

1−4β2q∞(1−q∞)
2βq∞ exp(∆z)

n
bh

)
b

,

(F.9)

where

K =

(
exp(∆z)

(
2βq∞ exp(∆z)

1−
√

1− 4β2q∞(1− q∞)

)
− exp(−∆z)

(
1−

√
1− 4β2q∞(1− q∞)

2βq∞ exp(∆z)

))
∗ β(1− q∞)(1− exp(−∆z))

(β(1− q∞)− 1 + 1
2
(1−

√
1− 4β2q∞(1− q∞)))

(F.10)

and Π̃ = Π
w

.

Hence, we can recover q̃∗ as a function of n and parameters.

Proofs to Proposition 3.2

Recall, for Proposition 3.2 we will use the closed-form solution for the problem of equity

holders from the simple model from Section to define moments in closed form and prove

some of their properties.

First, we show the derivative of firm expected employment growth to distance-to-default

can be characterized in closed form, and its magnitude is proportional in 1
b
.

Proof. The derivative of q with respect to n is

∂q

∂n
=

1

b

log

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)n
K

(exp(−∆z)− exp(∆z)) +K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)n , (F.11)

where K is defined in (F.10). b or n do not enter into K. Hence, as b → ∞, we find that
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∂q
∂n
→ 0.

We can recover this derivative relative to DD by multiplying (F.11) by
√

∆. Both objects

are proportional in 1
b
. Notice, to calculate the derivative of expected period-ahead growth

with respect to n, ∂2q∆z−∆z

∂n
we just multiply ∂q

∂n
by 2 ∗∆z. Further, we can use the relation

between n = DD
√

∆ to recover:

∂E
[
lt+1−lt
lt

]
∂DD

=
1

b

2 ∆z√
∆
log

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)DD√∆

K

(exp(−∆z)− exp(∆z)) +K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)DD√∆
, (F.12)

We can see that this derivative goes to 0 as b→∞.

We now prove the second derivative of firm expected employment growth to distance-to-

default can be characterized in closed form, and its magnitude is proportional in 1
b
.

Proof. We can find the second derivative of q with respect to n as:

∂2q

∂n2
=
−K
b

log

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)2n

K(
(exp(−∆z)− exp(∆z)) +K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)n)2

+
1

b

log

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)2(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)n
K

(exp(−∆z)− exp(∆z)) +K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)n . (F.13)

We can recover this derivative relative to DD by multiplying (F.13) by
√

∆. Both objects

are proportional in 1
b
. (F.13) is only decreasing in b when the first term is greater than the

second. As before, we can find the second derivative of one-period growth with respect to
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DD, ∂22q∆z−∆z

∂D2 , by multiplying ∂2q
∂DD2 by 2∆z, yielding:

∂2E
[
lt+1−lt
lt

]
∂DD2

=
−K
b

2 ∆z√
∆
log

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)2DD
√

∆

K(
(exp(−∆z)− exp(∆z)) +K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)DD√∆)2

+
1

b

2 ∆z√
∆
log

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)2(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)DD√∆

K

(exp(−∆z)− exp(∆z)) +K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)DD√∆

. (F.14)

If (F.13) is decreasing in b, then (F.14) is decreasing in b, as the first term is greater in

absolute value than the second term under the parameter restrictions we introduced.

We now prove the expected growth rate of the firm is decreasing in h, and the expected

growth rate of the unlevered firm can be fully characterized as a function of ∆z, h, and ∆.

Proof. The expected growth rate of the unlevered firm is:

(2q∞∆z −∆z + 1)∆ − 1 , (F.15)

which is clearly increasing q∞. Since q∞ is decreasing in h, expected year-ahead growth for

the unlevered firm is thus decreasing in h.

We now show the variance of annualized firm growth rates can be characterized as a

function of the expected average growth rate of firms across the economy and ∆z, and is

increasing in ∆z.

Proof. Denote the relative mass of firms at a given state (z, d, θ) as:

F (z, d, θ) = Γ(z,d,θ)∫ ∫ ∫
Γ(z,d,θ)dzdddθ

where Γ(z, d, θ) denotes the mass of firms for a given (z, d, θ) in

steady state. We could also write this problem in terms of just two states: n and θ. We can
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then write the average q of the economy, q̄, as

q̄ =

∫ ∫ ∫
F (z, d, θ)q(z, d, θ)dzdddθ. (F.16)

The per-period variance of growth rates is then

=

∫ ∫ ∫
F (z, d, θ)q(z, d, θ)

(
∆z −

(
2q̄∆z −∆z

))2

dzdddθ +∫ ∫
F (z, d, θ)(1− q(z, d, θ))

(
−∆z −

(
2q̄∆z −∆z

))2

dzdddθ,

from the formula V (x) = E[x− x̄]2.

=

∫ ∫ ∫
F (z, d)q(z, d)

(
∆z −

(
2q̄∆z −∆z

))2

dzdddθ

+

∫ ∫ ∫
F (z, d)(1− q(z, d))

(
−2q̄∆z

)2

dzdddθ.

= 4∆2
z

(
1− q̄

)2 ∫ ∫ ∫
F (z, d)q(z, d)dzdddθ

+4∆2
z q̄

2

∫ ∫ ∫
F (z, d)(1− q(z, d))dzdddθ.

Now notice that we can use the definition of q to simplify it further:

= 4∆2
z

(
1− q̄

)2

q + 4∆2
z q̄

2

(
1− q

)
.

= 4∆2
z q̄(1− q̄)

(
(1− q̄) + q̄

)
.

= 4∆2
z q̄(1− q̄). (F.17)
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4∆2
z q̄(1− q̄) is clearly increasing in ∆z holding q̄ fixed.

Discussion of Local Identification

So that we can eventually compare the model to data, we will recover regression coefficients

in the model from the following regression:

∆yi,t = α + β1DDi,t + β2DD
2
i,t + εi,t (F.18)

Notice,
∂∆yi,t
∂DDi,t

is equal to β1 + 2β2DDi,t, and
∂2∆yi,t
∂DD2

i,t
is equal to 2β2, so given these two

derivatives and given yi,t and DDi,t are known, we can back out regression coefficients β1

and β2.

We can estimate b, q∞ (which implies h), and ∆z with the moments above (the average

growth rate of unlevered firms, the coefficients in (F.18), and the variance of employment

growth rates), as β1 and β2 from (F.18), are proportional in 1
b
, the standard deviation of

growth rates across firms outlined in (F.17) is proportional in ∆2
z, and expected average

growth of zero default risk firms, (F.15), is proportional in q∞. We will need to estimate all

parameters at once, as b affects the average growth rate in the economy in (F.17), as does

q∞, q∞ enters into β1 and β2 as does ∆z, and ∆z enters into the average growth rate of zero

default risk firms (although b does not). When we estimate the model, we will take as given

the distribution of firms across distance-to-default from the data. By taking the distribution

as given, we can estimate the parameters of the model with the solution to the problem of

equity holders and avoid simulation of data. As we show in Section 3.5, our moments are

locally identified, and driven by the expected parameters.
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Heterogeneity in Firm Types

Suppose that firms are heterogeneous in their investment opportunities with cost function

of the type (3.11), as introduced in subsection 3.2.3. It can be verified that the first order

condition for q, (3.14), together with the assumption of an exogenous innovation decision q∞

in the future, results in the following formula for firm expected growth:

q̃∗(θ, n) = θ +

log

(β
(Π̃−φ(q∞))

1−βq∞(exp(∆z)−exp(−∆z))+exp(−∆z)

exp(∆z)−exp(−∆z)−K

 1−
√

1−4β2q∞(1−q∞)
2βq∞ exp(∆z)

n
bh

)
b

.

This can further be simplified as:

q̃∗(θ, n) = θ + q∞ +
1

b
log

(exp(∆z)− exp(−∆z)−K
(

1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)n
exp(∆z)− exp(−∆z)

)
.(F.19)

Proof to Proposition 3.3

Differentiating (F.19) and plugging in for the true value b0 yields:

∂E [q|n]

∂n
=

∫
θ
∂h (θ|n)

∂n
dθ +

1

b0

log

(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)n
K

(e−∆z − e∆z) +K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)n , (F.20)

where h (θ|n) is the probability distribution function of θ conditional on steps from de-

fault, n.

Recall that bL is defined as the value of b such that the derivative of the innovation

decision with respect to steps from default in the model without heterogeneity is set equal
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to the observed derivative. This condition is the following:

∂E [q|n]

∂n
=

1

bL

log

(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)n
K

(e−∆z − e∆z) +K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)n . (F.21)

(F.20) and (F.21) jointly imply that:

bL = b0

(
∂E[q|n]
∂n
−
∫
θ ∂h(θ|n)

∂n
dθ

∂E[q|n]
∂n

)
. (F.22)

(F.22) and the assumption that ∂E(θ|n)
∂n

=
∫
θ ∂h(θ|n)

∂n
dθ ≥ 0 yield that bL ≤ b0.

Proof to Proposition 3.4

Recall that bH is defined as the value of b such that the derivative of the firm innovation

decision with respect to steps from default in the model without heterogeneity is set equal

to the derivative of the demeaned value of the firm innovation decision to firm steps from

default in the data. This condition is the following:

∂E [q − q̄|n]

∂n
=

1

bH

log

(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)n
K

(e−∆z − e∆z) +K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)n . (F.23)

We can express (F.23) in terms of the true value of b0 as follows:

∂E [q − q̄|n]

∂n
=

1

b0

log

(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)n
K

(e−∆z − e∆z) +K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞e∆z

)n (F.24)

− 1

b0

∫
i

log


(
e∆z − e−∆z −K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)i)
e∆z − e−∆z

 ∂Ln (i)

∂n
di,
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where Ln (i) is the probability distribution of steps from default i over the lifetime of all

firms, conditional on having observed firms at n steps of default.

(F.20) and (F.23) jointly imply that:

bH = b0


∂E[q−q̄|n]

∂n

∂E[q−q̄|n]
∂n

−
∫
i
log


e∆z−e−∆z−K

 1−
√

1−4β2q∞(1−q∞)
2βq∞ exp(∆z)

i
e∆z−e−∆z

 ∂Ln(i)
∂n

di


. (F.25)

The assumption that ∂E(q̄|θ,n)
∂n

≥ 0 and (F.19) immediately imply:

∫
i

log


e∆z − e−∆z −K

(
1−
√

1−4β2q∞(1−q∞)

2βq∞ exp(∆z)

)i
e∆z − e−∆z

 ∂Ln (i)

∂n
di ≥ 0. (F.26)

Hence, (F.25) and (F.26) yield the result that bH ≥ b0.

Appendix G: Data and Measurement

Data Construction

As described in Section 3.5, our empirical analysis relies on data from U.S. nonfinancial public

firms. We take daily stock returns and other equity market data from CRSP and merge them

with annual and quarterly accounting data from Compustat. We use the linking table from

the CRSP/Compustat merged database to merge the datasets.

For the core sample of firms, we keep only firms with two-digit SIC codes that are not

between 60 and 69, are less than 90, and are not equal to 49, following Hennessy and Whited

(2007), as our model is not necessarily representative of regulated, financial, or public service
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firms. Following Hennesy and Whited (2005), we trim each series at the 2nd percentile except

measures that are inherently bounded in nice ranges.

Variable Definitions

Market capitalization is defined as closing price times shares outstanding, and is the data

equivalent of the value of equity in the model. To create our measure of distance-to-default,

we require the book value of debt, which we define as short-term debt + one-half times long-

term debt, where short-term debt is the max of debt in current liabilities (data item 34) and

total current liabilities (data item 5), and long-term debt is data item 9. Employment is

data item 29. We define book leverage as the book value of debt relative to the book value

of assets (data item 6). We ask the reader to consult Whited and Wu (2006) for how to

construct the Whited-Wu index.

To create our age measure, we download the entire time series for stock returns for each

firm from CRSP. For each date, for each firm, dating back to 1926, we then state the age of

a firm is 1 if it is the first date that shows up for the given firm. The age will then be 2 the

next year, and so on.

Distance-to-Default

We follow a procedure consistent with Bharath and Shumway (2008) and Gilchrist and

Zakrajsek (2012) in measuring firm VA and σA, whose procedures are in the spirit of Merton

(1974). VA is the value of assets, VB is the value of debt, µA is the mean rate of asset

growth, and σA is asset volatility. We recover VA and σA from the data closely following the

procedure outlined by Gilchrist and Zakrajsek (2012). For each firm, we linearly interpolate

our quarterly value of debt to a daily frequency. We use daily data on the market value of

equity; call this VE. We guess a value of asset volatility, σA = σE
VB

VE+VB
, where the standard

deviation of the value of equity is calculated as the square root of the annualized 21-day

moving average of squared returns for a firm. Here, we differ from Gilchrist and Zakrajsek
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(2012) in that they choose a 252-day horizon for the moving average.

Given our guess of σA, we use the following equation from Merton (1974):

VE(t) = VA(t)Φ(d1)− e−r(T−t) ∗ VBΦ(d2)

where d1 =
log(

VA
VB

)+(r+ 1
2
σ2
A)T

σA
√
T

and d2 = d1 − σA
√
T to recover the value of assets. We define

r to be the one-year Treasury-constant maturity, which we take from the Federal Reserve’s

H.15 report. After converging on VA for the given σA, we recompute σA from our implied VA

using the same methodology we use to compute σE. We ultimately converge on σA through

a slow-updating procedure.97

Appendix H: Aggregation

Our aggregation technology and production environment is equivalent to a one-country ver-

sion of Atkeson and Burstein (2010) with a per-unit subsidy, τ s, on the production of the

consumption good. We present our model aggregation in steady state below (hence, we

remove all time subscripts). We first note that

π(z) = ezY (1 + τ s)ρw−ρ
1

ρρ(ρ− 1)1−ρ .

It is then useful to define

Π = Y (1 + τ s)ρw−ρ
1

ρρ(ρ− 1)1−ρ .

The choice of labor by the intermediate good firm is

l(z) = ezY (1 + τ s)ρ
(
ρ− 1

ρ

)ρ
w−ρ .

97We iterate on both σA and VA until they converge to a tolerance of 1e-5. We choose updating parameters
for the slow-updating procedure on VA and σA, .25 and .15, respectively, such that 100% of firms converge.
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Define the steady-state distribution of firms across states scaled by entry as Γ̃(z, d, θ).

We then find scaled aggregate productivity as

Z̃ =

∫ ∫ ∫
ezΓ̃(z, d, θ)dzdddθ . (H.1)

Another useful aggregate to define is average expenditures per entering firm, which we

denote by Υ:

Υ = ne +

∫ ∫ ∫
ezθ−bebqΓ̃(z, d, θ)dzdddθ . (H.2)

Given Π, Z̃, and Υ, we can recover the following equilibrium objects:

W = (1 + τ s)
ρ− 1

ρ
(ΓeZ̃)

1
ρ−1 .

Y = (ΓeZ̃)
1
ρ−1 (L− Lr) .

Lr =
1

ρξ
L,

where ξ = ΠZ̃
Υ

is the ratio of total variable profits to total expenditures on the research good.

Total aggregate productivity is then

Z = (ΓeZ̃)
1
ρ−1 .

Appendix I: Resolving Debt Overhang

The Bellman equations can also be solved if the firm as a whole, rather than equity holders

alone, were to make the investment decision. It is always equity holders, however, who choose

the point at which the firm goes bankrupt. Were the firm as a whole to make the bankruptcy

decision, it would never choose to go bankrupt, as bankruptcy entails a deadweight loss. We
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define the Bellman equation for equity holders when the firm as a whole makes the investment

decision in steady state with fixed types, V ND
E , below:

V ND
E (z, d, θ) = max

{
0, (1− τ)

(
π(z)− wezθ−bhebq

)
− d+ τ dd+

e−r(1− δ)
(
qV ND

E (z + ∆z, d, θ) + (1− q)V ND
E (z −∆z, d, θ)

)}
.

We define the Bellman equation for equity holders and creditors combined, V ND
A , below:

V ND
A (z, d, θ) = max

q



max
d′

V ND
A (z + log(α), d′, θ) V ND

E (z, d, θ) < 0

(1− τ)

(
π(z)− wezθ−bhebq

)
+ τ dd else

+e−r(1− δ)qV ND
A (z + ∆z, d, θ)

+e−r(1− δ)(1− q)V ND
A (z −∆z, d, θ) .

(I.1)

We then use the first-order condition from (I.1) to find q:

q∗ =
1

b
log

(
e−r(1− δ)(VA(z + ∆z, d, θ)− VA(z −∆z, d, θ))

b(1− τ)hwez

)
+ log(θ) . (I.2)

Notice, now, no matter the value of b, the firm does not suffer from debt overhang, as

equity holders and creditors are jointly making the investment decision. Because they make

the investment decision taking into account the possibility of bankruptcy, if b <∞, the firm

will invest more as it is more levered relative to its business risk to avoid bankruptcy.

It is still the case, then, that the value of debt holders, V ND
B (z, d, θ), is defined as the

difference between the value of the firm as a whole and the value of equity; thus,

V ND
B (z, d, θ) = V ND

A (z, d, θ)− V ND
E (z, d, θ) .

Hence, we can compare V ND(n) and VA(n) given n or across firms to assess the gains

from resolving this problem conditional on n or across n. We can also do the same exercise
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for the respective policy functions and expected annualized growth rates.
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