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by

Seok-Ho Chang

Doctor of Philosophy in Electrical Engineering
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University of California, San Diego, 2010

Professor Pamela C. Cosman, Co-Chair
Professor Laurence B. Milstein, Co-Chair

One of the challenges in the next generation wireless communication systems is

to provide high quality multimedia services. To address this issue, the approach we take

in this dissertation is cross-layer design of communication systems.

In the first part of the dissertation, we address transmission of progressive images

or scalable video using hierarchical modulation. Thanks to the progressive features,

progressive bitstreams enable each user in a multi-user network to decode the source at

the rate that their channel allows. These progressive sources have the feature that they

have gradual differences of importance in the bitstreams. One would like to have gradual

differences in unequal error protection (UEP) to correspond to the gradual differences

xiii



in importance. However, hierarchical modulation, which is often used for UEP and is

currently employed in the Digital Video Broadcasting (DVB) standard, provides only a

limited number of UEP levels. By multiplexing hierarchical modulation, we propose a

high performance multilevel UEP system for the transmission of progressive sources.

In the second part, we consider the transmission of a layered source in a multiple-

input multiple-output (MIMO) system for broadcast scenarios. We first analyze the

tradeoff between two different MIMO approaches, Alamouti coding and spatial multi-

plexing, having the same transmission rate. For analytical tractability, we consider high

SNR approximate (minimum distance) bit error rates (BER) for both MIMO approaches.

Based on this, we propose superposition MIMO coding, where two different MIMO ap-

proaches are hierarchically combined such that low-rate high priority components of the

source are Alamouti coded, high-rate low priority components are spatially multiplexed,

and the two different components are superposed. It is demonstrated that in broadcast

scenarios, the proposed MIMO coding maximizes the performance of a layered source

which has different data rates for its components.

In the third part of the dissertation, we analyze the performance of n-channel

symmetric FEC-based multiple description coding for a progressive mode of transmission.

Multiple description source coding has recently emerged as an attractive framework for

robust multimedia transmission over packet erasure channels. In the analysis, we consider

transmission over orthogonal frequency division multiplexing (OFDM) networks in a

frequency-selective, slowly-varying, Rayleigh faded environment.

xiv



Chapter 1

Introduction

Fourth generation (4G) wireless systems are expected to provide high quality

multimedia services with improved reliability [1]. In achieving this goal, one of the

challenging issues is to design efficient communication protocols. For this reason, the

validity of the traditional layered protocol architecture is now being examined. Cross-

layer design has emerged as an attractive system design approach, where a protocol

stack can be designed by utilizing the dependencies among different layers in order to

maximize the performance [2]– [4].

A typical communication protocol architecture is shown in Fig. 1.1. Instead

of a traditional OSI (open systems interconnections) with seven layers [5], only five

layers are shown for simplicity. Some exemplary functions for each layer are also shown.

As an example of cross-layer design, we consider the so-called joint source and channel

coding (JSCC), which actively exploits the dependencies between the link layer and the

application layer. Assuming the system bandwidth is constrained, there could be an

issue of what portions of the bandwidth should be allocated to the source coding of the

application layer, and what proportion should be allocated to the channel coding of the

link layer. If more bits are allocated to the source coding, the transmitted signals would

be more vulnerable to channel errors. On the other hand, if more bits are assigned to

the channel coding, the source would experience more distortion. Hence, the allocation

of bit rates between different layers is an issue in designing reliable wireless systems [6]–

[8]. In a similar manner, there exist cross-layer design issues between the physical layer

and the application layer to maximize the system performance gains. This dissertation

primarily focuses on the design of optimal modulation schemes (i.e., the physical layer)

1



2

Application Layer
(Image, Video)

Transport Layer
(TCP, UDP)

Network Layer
(IP, Routing)

Link Layer
(FEC, ARQ)

Physical Layer
(Modulation)

Cross-Layer

Design

Figure 1.1: Cross-layer design of wireless multimedia communications.

to maximize the performance for the transmission of sources such as images or video.

We first provide an overview of progressive source coding (e.g., progressive image

and scalable video) which are the primary application sources in this dissertation. In a

multi-service multi-user network, different users have different quality-of-service (QoS)

requirements, due to various applications and scenarios coexisting within a network. As

an example, the quality required for a real-time video played on a cellular phone is lower

than that required on a laptop. Further, depending on each user’s channel condition

in terms of the received signal strength and the level of interference and noise power,

the achievable quality for each user might be different. Progressive source coding [9]–

[14], allowing partial decoding at various resolutions and quality levels from a single

compressed bitstream, is a promising technology for multimedia communications in this

environment. Thanks to the progressive features, in a multi-user network, each user

decodes the same transmitted bitstream at the rate that their channel allows. Though

a single progressive bitstream can be decoded at different data rates and provide a

multitude of decoded quality levels, an error in the bitstream would make the subsequent

bits useless. In other words, progressive source coders are usually extremely sensitive to

channel impairments, and hence it is required to design a reliable transmission scheme for

these sources. Progressive sources have an important feature in that they have steadily

decreasing importance for bits later in the stream. Hence, unequal error protection

(UEP) is a natural way to ensure reliable transmission, given the limited system resources

such as system bandwidth and transmit power.

We next briefly describe superposition (or hierarchical) transmission. Theoretical

investigation of efficient communication from a single source to multiple receivers



3

established the fundamental idea that optimal broadcast transmission could be achieved

by a superposition or hierarchical transmission scheme [15]– [17]. Since the theoretical

and conceptual basis for UEP was initiated by Cover [15], much of the work has shown

that one practical method of achieving UEP is based on a constellation of nonuniformly

spaced signal points [18]– [21], which is called a hierarchical, embedded, or multi-

resolution constellation. In this constellation, more important bits in a symbol have

a larger minimum Euclidian distance than less important bits. Hierarchical modulation

was intensively studied for digital broadcasting systems [18] [20] [21] and multimedia

transmission [22] [23]. Moreover, the Digital Video Broadcasting (DVB-T) standard [24],

which is now commercially available, incorporated hierarchical QAM for layered video

data transmission, since it provides enhanced system-level capacity and coverage in a

wireless environment [25] [26]. However, hierarchical modulation can achieve only a

limited number of UEP levels for a given constellation size, whereas progressive sources

such as scalable video have gradual differences of importance in their bitstreams. Hence,

if scalable video is to be incorporated in a digital video broadcasting system, the

standard hierarchical modulation may not meet the system needs. In this dissertation,

we address this problem and propose a high performance multilevel UEP system based

on multiplexed hierarchical modulation.

Recently, multiple-input multiple-output (MIMO) systems have received a great

deal of attention, since they can improve capacity and reliability relative to the single-

input single-output (SISO) systems. Two popular techniques for MIMO systems are

space-time coding [27]– [30] and spatial multiplexing [31]– [34]. Space-time coding is an

approach where information is spread across multiple transmit antennas to maximize

spatial diversity in fading channels. Spatial multiplexing is an approach whereby

independent information is transmitted on each antenna, and thus the transmit data

rate is increased without additional system bandwidth. In this dissertation, we study

the broadcast of layered sources in MIMO systems. We first analyze the tradeoff between

Alamouti coding and spatial multiplexing having the same maximum data rate. Based

on the analysis, superposition MIMO coding is proposed for the broadcast of layered

sources, where the low-rate important component is Alamouti coded, the high-rate, less

important component is spatially multiplexed, and then the two unequally important

components are superposed.

Another popular method to achieve UEP is based on channel coding. More
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Figure 1.2: Cross-layer study on which this dissertation focuses.

powerful error-correction coding is applied to the more important component. The

UEP methods based on channel coding have been widely used for layered video or

image transmission [35]– [38]. However, channel coding becomes less effective in a

slow fading channel, where prolonged deep fades often result in the erasure of the

whole packet [36]. Multiple description source coding has emerged as an attractive

framework for robust multimedia transmission over packet erasure channels [39]. Due

to the individually decodable nature of the descriptions, the loss of some of them will

not jeopardize the decoding of correctly received descriptions, and when more than one

description is available at the decoder, they can be synergistically combined to enhance

the quality [40]. In this dissertation, we mathematically analyze the performance of

n-channel symmetric FEC-based multiple description coding for a progressive mode of

transmission over orthogonal frequency division multiplexing (OFDM) networks in a

frequency-selective, slowly-varying, Rayleigh faded environment.

The main contributions of this dissertation are contained in Chapters 2–4. In

Chapters 2 and 3, we focus on the design of the optimal modulation schemes for

progressive or layered sources, whereas in Chapter 4, our performance analysis is related

to a cross-layer design between the link layer and the application layer. These are

conceptually shown in Fig. 1.2. The rest of this dissertation is organized as follows.

In Chapter 2, a multilevel UEP scheme using multiplexed hierarchical modu-

lation is proposed for the transmission of progressive sources. We propose a way of

multiplexing hierarchical quadrature amplitude modulation (QAM) constellations, and
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prove that arbitrarily large numbers of UEP levels are achieved by the proposed method.

In addition, when the BER is dominated by the minimum Euclidian distance, an optimal

multiplexing approach which minimizes both the average and peak powers is derived.

While the suggested methods achieve multilevel UEP, the peak-to-average power ratio

(PAPR) typically will be increased when constellations having distinct minimum dis-

tances are time-multiplexed. To mitigate this effect, an asymmetric hierarchical QAM

constellation, which reduces the PAPR without performance loss, is designed. We also

consider the case where multiplexed constellations need to have constant power. Numer-

ical results show that the performance of progressive transmission over Rayleigh fading

channels is significantly enhanced by the proposed multiplexing methods, without any

additional system bandwidth or transmit power.

In Chapter 3, we propose superposition MIMO coding for the transmission of

layered sources in a point-to-multipoint system. First, the tradeoff between Alamouti

coding and spatial multiplexing is analyzed in terms of the average bit error rate (BER).

As a way to compare both MIMO schemes fairly in broadcast systems, the maximum

data rates of both are set to be equal. The results show that, for a given target bit

error rate, Alamouti coding is preferable for a low data rate, and spatial multiplexing

is preferable for a high data rate. In layered sources such as scalable video, the more

important component typically has a low data rate, and the less important component

typically has a high data rate. Based on these, we construct a superposition MIMO

scheme where two different MIMO techniques are hierarchically combined. A successive

decoding algorithm for the proposed scheme is also provided. Performance evaluation in a

broadcasting scenario shows that the proposed superposition MIMO coding significantly

outperforms the conventional MIMO coding schemes.

In Chapter 4, we analyze the performance of n-channel symmetric FEC-based

multiple description coding for a progressive mode of transmission over OFDM networks

in a frequency-selective slowly-varying Rayleigh faded environment. The expressions for

the bounds of the throughput and distortion performance of the system are derived in

an explicit closed form, while the exact performance is given by an expression in the

form of a single integration. Based on this analysis, the performance of the system can

be numerically evaluated. Our results show that at low SNR, the multiple description

encoder should attempt to fine-tune the optimization parameters of the system. It is also

shown that, despite the bursty nature of the errors in a slow fading environment, FEC-
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based multiple description coding without temporal coding provides a greater advantage

for smaller description sizes (i.e., shorter packets).

Finally, in Chapter 5, we summarize our contributions, and outline the possible

extensions of our work.



Chapter 2

Optimized Unequal Error

Protection Using Multiplexed

Hierarchical Modulation

2.1 Introduction

When a communication system transmits messages over mobile radio channels,

they are subject to errors, in part because mobile channels typically exhibit time-variant

channel-quality fluctuations. For two-way communication links, these effects can be

mitigated using adaptive methods [41]– [43]. However, the adaptive schemes require

a reliable feedback link from the receiver to the transmitter. Moreover, for a one-

way broadcast system, those schemes are not appropriate because of the nature of

broadcasting. When adaptive schemes cannot be used, the way to ensure communications

is to classify the data into multiple classes with unequal error protection (UEP). The

most important class should be recovered by the receiver even under poor receiving

conditions. Hence, strong error protection is used for the important data all of the time,

even though sometimes there is no need for it. Less important data is always protected

less even though sometimes it cannot be recovered successfully.

Since the theoretical and conceptual basis for UEP was initiated by Cover [15],

much of the work has shown that one practical method of achieving UEP is based

on a constellation of nonuniformly spaced signal points [18]– [21], which is called a

hierarchical, embedded, or multi-resolution constellation. Hierarchical constellations

7
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were previously considered in [44], and intensively studied for digital broadcasting

systems [18] [20] [21]. Ramchandran et al. [18] designed an overall multiresolution

digital HDTV broadcast system using hierarchical modulation under a joint source-

channel coding (JSCC) framework. Calderbank and Seshadri [20] considered the use of

hierarchical quadrature amplitude modulation (QAM) as the adaptive constellations

for digital video broadcasting. Moreover, the Digital Video Broadcasting (DVB-T)

standard [24] incorporated hierarchical QAM for layered video data transmission, since

it provides enhanced system-level capacity and coverage in a wireless environment

[25] [26]. Pursley and Shea [22] [23] also proposed communication systems based

on hierarchical modulation which support multimedia transmission by simultaneously

delivering different types of traffic, each with its own required quality of service.

Another well known and obvious method to achieve UEP is based on channel

coding: more powerful error-correction coding is applied to a more important data

class. Block codes for providing UEP were studied by Masnick and Wolf [45], and

Suda and Miki [46]. The use of rate-compatible punctured convolutional (RCPC) codes

to achieve UEP was suggested by Cox et al. [47]. These UEP methods based on error-

correction coding have been widely used for layered video or image transmission [35]–

[38]. Sometimes, UEP approaches based on hierarchical modulation and error-correction

coding were jointly employed in a system [19] [20] [24] [22] [38]. For example, in the

DVB-T standard [24], two different layers of video data are channel encoded with

corresponding coding rates, and then they are mapped to hierarchical 16 or 64 QAM

constellations. Pei and Modestino [38] showed that when an error-correction coding

approach for UEP and hierarchical modulation are jointly used, more efficient and flexible

UEP is achieved. Hierarchical modulation has other desirable properties in addition to

performance considerations. The amount of UEP can be adjusted in a continuous manner

by modifying the spacing between signal points of the constellation [19], and different

levels of protection are achieved without an increase in bandwidth compared to channel

coding [48].

Progressive image or scalable video encoders [9]– [14] employ a mode of trans-

mission such that as more bits are received, the source can be reconstructed with better

quality at the receiver. In other words, the decoder can use each additional received bit

to improve the quality of the previously reconstructed images. Since these progressive

transmissions have gradual differences of importance in their bitstreams, multiple levels
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of error protection are required. However, unlike channel coding for UEP, hierarchical

modulation can achieve only a limited number of UEP levels for a given constellation

size. For example, hierarchical 16 QAM provides two levels of UEP, and hierarchical

64 QAM yields at most three levels [49]. In the DVB-T standard, video data encoded

by MPEG-2 consists of two different layers, and thus the use of hierarchical 16 or 64

QAM meets the required number of UEP levels. However, if scalable video is to be

incorporated in a digital video broadcasting system, hierarchical 16 or 64 QAM may not

meet the system needs. Most of the work about hierarchical modulation up to now has

been restricted to consideration of two layered source coding, and methods of achieving

a large number of levels of UEP for progressive mode of transmission have rarely been

studied.

In this chapter, we propose a multilevel UEP system using multiplexed hierar-

chical modulation for progressive transmission over mobile radio channels. We propose

a way of multiplexing hierarchical QAM constellations, and show that arbitrarily large

number of UEP levels are achieved by the proposed method. These results are presented

in Section 2.2. When the BER is dominated by the minimum Euclidian distance, we

derive an an optimal multiplexing approach which minimizes both the average and peak

powers, which is presented in Section 2.3. While the suggested methods achieve multilevel

UEP, the PAPR typically will be increased when constellations having distinct minimum

distances are time-multiplexed. To mitigate this effect, an asymmetric hierarchical QAM

constellation, which reduces the PAPR without performance loss, is designed in Section

2.4. In Section 2.5, we consider the case where multiplexed constellations need to have

constant power, either due to the limited capability of a power amplifier, or for the ease

of cochannel interference control. In Section 2.6, the performance of the suggested UEP

system for the transmission of progressive images is analyzed in terms of the expected

distortion, and Section 2.7 presents numerical results of performance analysis.

2.2 Multilevel UEP Based on Multiplexing Hierarchical

QAM Constellations

2.2.1 Hierarchical 16 QAM Constellation

First, we analyze hierarchical 16 QAM as a special case. Fig. 2.1 shows a

hierarchical 16 QAM constellation with Gray coded bit mapping [24]. The 16 signal
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Figure 2.1: Hierarchical 16 QAM constellation.

points are divided into four clusters and each cluster consists of four signal points. The

two most significant bits (MSBs), i1 and q1, determine one of the four clusters, and

their minimum Euclidian distance is dM . The two least significant bits (LSBs), i2 and

q2, determine which of the four signal points within the cluster is chosen, and their

minimum Euclidian distance is dL. The distance ratio α = dM/dL (> 1) determines how

much more the MSBs are protected against errors than are the LSBs. Hierarchical 16

QAM has one embedded QPSK subconstellation consisting of four clusters, and thus is

denoted by 4/16 QAM.

We consider multiplexing N hierarchical 16 QAM constellations, all of which

have distinct minimum distances. The average power per symbol of all the multiplexed

constellations, Savg, is given by

Savg =
1
N

N∑

i=1

Savg,i (2.1)

where Savg,i is the average power per symbol of constellation i. For hierarchical 16 QAM,

Savg,i is given by

Savg,i =
(

dM,i

2

)2

+
(

dM,i

2
+ dL,i

)2

=
d2

M,i

2
+ dM,idL,i + d2

L,i (2.2)
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where dM,i and dL,i are minimum distances for the MSBs and LSBs of constellation i,

respectively. The BERs of the MSBs and LSBs of hierarchical 16 QAM constellation i,

denoted by PM,i and PL,i, respectively, are given by [49]

PM,i =
1
2
Q

(
dM,i

2

√
2γs

Savg

)
+

1
2
Q

((
dM,i

2
+ dL,i

)√
2γs

Savg

)

PL,i = Q

(
dL,i

2

√
2γs

Savg

)
+

1
2
Q

((
dM,i +

dL,i

2

) √
2γs

Savg

)

− 1
2
Q

((
dM,i +

3dL,i

2

) √
2γs

Savg

)
(2.3)

where Savg is given by (2.1) and (2.2), γs is the signal-to-noise ratio (SNR) per symbol,

and Q(x) = 1/
√

2π
∫∞
x e−y2/2dy.

The following theorem states that 2N levels of UEP can be achieved by multi-

plexing N hierarchical 16 QAM constellations.

Theorem 1: For N hierarchical 16 QAM constellations, PM,i and PL,i, given by (2.3),

satisfy

PM,1 < PM,2 < · · · < PM,N < PL,1 < PL,2 < · · · < PL,N (2.4)

for all SNR if

dM,1 > dM,2 > · · · > dM,N > dL,1 > dL,2 > · · · > dL,N . (2.5)

Proof: We will first show that, for 1 ≤ i, j ≤ N ,

PM,i < PL,j if dM,i > dL,j . (2.6)

Since Q(x) is a monotonically decreasing function, from (2.3), we have

PM,i <
1
2
Q

(
dM,i

2

√
2γs

Savg

)
+

1
2
Q

(
dM,i

2

√
2γs

Savg

)
= Q

(
dM,i

2

√
2γs

Savg

)
. (2.7)

If dM,i > dL,j , from (2.3) and (2.7), we have

PM,i < Q

(
dL,j

2

√
2γs

Savg

)
< PL,j . (2.8)

We next show that, for dM,1 > dM,2 > · · · > dM,N and dL,1 > dL,2 > · · · > dL,N ,

PM,1 < PM,2 < · · · < PM,N . (2.9)
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Consider two constellations i and i + 1 among N hierarchical constellations (1 ≤ i ≤
N − 1). From (2.3), we have PM,i < PM,i+1 if dM,i > dM,i+1 and dL,i > dL,i+1.

Lastly, we show that for dM,1 > dM,2 > · · · > dM,N and dL,1 > dL,2 > · · · > dL,N ,

PL,1 < PL,2 < · · · < PL,N . (2.10)

We define a function f(x, y) as

f(x, y) = Q
(y

2

)
+

1
2
Q

(
x +

y

2

)
− 1

2
Q

(
x +

3y

2

)
. (2.11)

f(x, y) is a monotonically decreasing function of x > 0 and y > 0, since

∂f(x, y)
∂x

=
−1

2
√

2π

[
e−

1
2(x+ y

2 )
2

− e−
1
2(x+ 3y

2 )2]
< 0, and

∂f(x, y)
∂y

=
−1

2
√

2π

[
e−

1
2(

y
2 )

2

− e−
1
2(x+ 3y

2 )2

+
1
2

{
e−

1
2(x+ y

2 )
2

− e−
1
2(x+ 3y

2 )2}]

< 0. (2.12)

From (2.3) and (2.11), it is seen that PL,i = f
(
dM,i

√
2γs/Savg, dL,i

√
2γs/Savg

)
. Hence,

from (2.12), we have

PL,i < PL,i+1 if dM,i > dM,i+1 and dL,i > dL,i+1. (2.13)

Finally, (2.4) and (2.5) are derived from (2.6), (2.9) and (2.10).

¤
Theorem 1 tells us that 2N levels of UEP are achieved by multiplexing N

hierarchical 16 QAM constellations having the minimum distances satisfying (2.5).

Corollary 2: Suppose that there are 2N unequally important data classes to be

transmitted, and class i is more important than class i + 1 for 1 ≤ i ≤ 2N − 1. Let Pi

denote the BER of data class i. Then,

P1 < P2 < · · · < P2N (2.14)

is satisfied for all SNR if the following conditions hold:

i) Class i and class N + i are mapped to the MSBs and LSBs of constellation i,

respectively, (1 ≤ i ≤ N).

ii) The minimum Euclidian distances of the constellations satisfy (2.5).
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Figure 2.2: The multilevel UEP system using multiplexed hierarchical 16 QAM
constellations based on Corollary 2 .

Proof: If i) is satisfied, Pi is given by

Pi = PM,i and PN+i = PL,i (1 ≤ i ≤ N). (2.15)

If ii) is satisfied, we have PM,1 < PM,2 < · · · < PM,N < PL,1 < PL,2 < · · · < PL,N from

Theorem 1 .

¤
Fig. 2.2 depicts the multilevel UEP system using multiplexed hierarchical 16

QAM constellations based on Corollary 2 for eight data classes (N = 4).

2.2.2 Hierarchical 22K (K ≥ 3) QAM Constellation

Next, we consider multiplexing hierarchical 22K (K ≥ 3) QAM constellations.

As an example, Fig. 2.3 depicts a hierarchical 64 QAM constellation (K = 3). The two

MSBs i1 and q1 determine the quadrant of the first cluster, and their minimum Euclidian
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Figure 2.3: Hierarchical 64 QAM constellation.

distance is dM1. The second two MSBs i2 and q2 determine the quadrant within the first

cluster, and their minimum distance is dM2. Lastly, the third two MSBs (or LSBs) i3

and q3 determine the symbol within the second cluster, and their minimum distance is

dM3. Hierarchical 64 QAM has two embedded subconstellations, and thus is denoted by

4/16/64 QAM. The hierarchical 64 QAM operates as QPSK when channel conditions

are poor, and it operates as 16 or 64 QAM when channel quality gets better. The BER

of hierarchical 22K QAM, PMn , is given by a recursive expression in [49].

In the following theorem, the BERs of hierarchical 22K QAM are derived under

some assumption based on the fact that for hierarchical constellations, minimum distance

for more important bits is greater than that for less important bits.

Theorem 3: Let dMn denote the minimum distance for the nth MSBs (1 ≤ n ≤ K).

Note that the distance ratio of the hierarchical constellation, dMn−1/dMn , is greater than

unity (2 ≤ n ≤ K). If the SNR of interest for the nth MSBs is sufficiently large so

that the probability of the noise exceeding the Euclidian distance of dMn−1 + 1
2dMn is

insignificant compared to that of the noise exceeding 1
2dMn , the BER of the nth MSBs
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(2 ≤ n ≤ K), PMn , becomes

P app
Mn

=





∑2K−n−1
p=0

1
2K−n Q

((
dMn

2 +
∑K

q=n+1

⌊
p+2K−q

2K−q+1

⌋
dMq

)√
2γs

Savg

)
,

for 2 ≤ n ≤ K − 1

Q
(

dMK
2

√
2γs

Savg

)
+ 1

2Q
((

dMK−1
+

dMK
2

)√
2γs

Savg

)
,

for n = K

(2.16)

where bxc denotes the largest integer less than or equal to x, and Savg =
∑K

u=1

∑K
v=u

µuvdMudMv is the average power of a hierarchical 22K QAM, where the µuv are constants.

Note that for the MSBs (i.e., n = 1), the top line of (2.16) is the exact BER expression

when n is set to unity (i.e., P app
M1

= PM1).

Proof: See Appendix A.

¤
P app

Mn
is numerically evaluated for hierarchical 64 and 256 QAM in Appendix B

as an example. For both constellations, P app
Mn

(2 ≤ n ≤ K) is shown to be close to the

exact BER within 0.001 dB for BER ≤ 0.1 even at the lower bound of the distance ratio

(i.e., dMn−1/dMn = 1). Note that for reference, the distance ratio of hierarchial 16 and

64 QAM in the DVB-T standard [24] is 2 or 4.

For N multiplexed hierarchical 22K QAM constellations, the average power per

symbol of constellation i is given by

Savg,i =
K∑

u=1

K∑
v=u

µuvdMu,idMv,i (2.17)

where dMn,i (1 ≤ n ≤ K) is the minimum distance for the nth MSBs of constellation i

(1 ≤ i ≤ N), and the µuv are constants. When the condition of Theorem 3 is satisfied,

from (2.1), (2.16) and (2.17), the BER of the nth MSBs (2 ≤ n ≤ K) of a hierarchical

22K QAM constellation i, PMn,i, becomes

P app
Mn,i =





∑2K−n−1
p=0

1
2K−n Q

((
dMn,i

2 +
∑K

q=n+1

⌊
p+2K−q

2K−q+1

⌋
dMq ,i

)√
2γs

Savg

)
,

for 2 ≤ n ≤ K − 1

Q
(

dMk,i

2

√
2γs

Savg

)
+ 1

2Q
((

dMK−1,i +
dMK,i

2

)√
2γs

Savg

)
,

for n = K.

(2.18)

Note that the top line of (2.18) is the exact BER expression when n is set to unity (i.e.,

P app
M1,i = PM1,i).
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Theorem 4: For N hierarchical 22K QAM constellations, P app
Mn,i, given by (2.18), satisfy

P app
M1,1 < · · · < P app

M1,N < P app
M2,1 < · · · < P app

M2,N < · · · < P app
MK ,1 < · · · < P app

MK ,N (2.19)

if dM1,1 > · · · > dM1,N > dM2,1 > · · · > dM2,N > · · · > dMK ,1 > · · · > dMK ,N . (2.20)

Proof: We will first show that, for 1 ≤ i, j ≤ N ,

P app
M1,i < P app

M2,j , P app
M2,i < P app

M3,j , · · · , P app
MK−1,i < P app

MK ,j

if dM1,i > dM2,j , dM2,i > dM3,j , · · · , dMK−1,i > dMK ,j . (2.21)

From (2.18), P app
Mn,i (1 ≤ n ≤ K − 2) can be expressed as

P app
Mn,i =

2K−n−1−1∑

r=0

1
2K−n

Q





dMn,i

2
+

K∑

q=n+1

⌊
2r + 2K−q

2K−q+1

⌋
dMq ,i




√
2γs

Savg




+
2K−n−1−1∑

r=0

1
2K−n

Q





dMn,i

2
+

K∑

q=n+1

⌊
2r + 1 + 2K−q

2K−q+1

⌋
dMq ,i




√
2γs

Savg


 .

(2.22)

Eq. (2.22) can be rewritten as

P app
Mn,i =

2K−n−1−1∑

r=0

1
2K−n

Q





dMn,i

2
+

K∑

q=n+1

⌊
r + 2K−q−1

2K−q

⌋
dMq ,i




√
2γs

Savg




+
2K−n−1−1∑

r=0

1
2K−n

Q





dMn,i

2
+

K∑

q=n+1

⌊
r + 2−1 + 2K−q−1

2K−q

⌋
dMq ,i




√
2γs

Savg


 .

(2.23)

From (2.23), since r + 2K−q−1 and 2K−q are integers for q ≤ K − 1, we have
⌊

r + 2−1 + 2K−q−1

2K−q

⌋
=

⌊
r + 2K−q−1

2K−q

⌋
for q ≤ K − 1. (2.24)

From (2.23), for q = K, we have
⌊

r + 2K−q−1

2K−q

⌋
= r and

⌊
r + 2−1 + 2K−q−1

2K−q

⌋
= r + 1. (2.25)
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From (2.24) and (2.25), (2.23) can be rewritten as

P app
Mn,i =

2K−n−1−1∑

r=0

1
2K−n

Q





dMn,i

2
+

K−1∑

q=n+1

⌊
r + 2K−q−1

2K−q

⌋
dMq ,i + rdMK ,i




√
2γs

Savg




+
2K−n−1−1∑

r=0

1
2K−n

Q





dMn,i

2
+

K−1∑

q=n+1

⌊
r + 2K−q−1

2K−q

⌋
dMq ,i + (r + 1)dMK ,i




×
√

2γs

Savg


. (2.26)

Setting t = q + 1, P app
Mn,i (1 ≤ n ≤ K − 2), given by (2.26), can be expressed as

P app
Mn,i =

2K−n−1−1∑

r=0

1
2K−n

Q

((
dMn,i

2
+

K∑

t=n+2

⌊
r + 2K−t

2K−t+1

⌋
dMt−1,i + rdMK ,i

) √
2γs

Savg

)

+
2K−n−1−1∑

r=0

1
2K−n

Q





dMn,i

2
+

K∑

t=n+2

⌊
r + 2K−t

2K−t+1

⌋
dMt−1,i + (r + 1)dMK ,i




×
√

2γs

Savg


. (2.27)

From (2.18), P app
Mn+1,j (1 ≤ n ≤ K − 2) can be rewritten as

P app
Mn+1,j =

2K−n−1−1∑

p=0

1
2K−n

Q





dMn+1,j

2
+

K∑

q=n+2

⌊
p + 2K−q

2K−q+1

⌋
dMq ,j




√
2γs

Savg




+
2K−n−1−1∑

p=0

1
2K−n

Q





dMn+1,j

2
+

K∑

q=n+2

⌊
p + 2K−q

2K−q+1

⌋
dMq ,j




√
2γs

Savg


 .

(2.28)

From (2.27) and (2.28), for 1 ≤ n ≤ K − 2 , we have

P app
Mn,i < P app

Mn+1,j if dMn,i > dMn+1,j , dMn+1,i > dMn+2,j , · · · , dMK−1,i > dMK ,j . (2.29)

From (2.18), P app
MK−1,i is given by

P app
MK−1,i =

1
2
Q

(
dMK−1,i

2

√
2γs

Savg

)
+

1
2
Q

((
dMK−1,i

2
+ dMK ,i

) √
2γs

Savg

)
. (2.30)
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From (2.18) and (2.30), we have

P app
MK−1,i < P app

MK ,j if dMK−1,i > dMK ,j . (2.31)

From (2.29) and (2.31), (2.21) is derived.

We next show that

P app
M1,1 < · · · < P app

M1,N , P app
M2,1 < · · · < P app

M2,N , · · · , P app
MK ,1 < · · · < P app

MK ,N

if dM1,1 > · · · > dM1,N , dM2,1 > · · · > dM2,N , · · · , dMK ,1 > · · · < dMK ,N . (2.32)

We define a function f(xn, xn+1, · · · , xK) as

f(xn, xn+1, · · · , xK) =
2K−n−1∑

p=0

1
2K−n

Q





xn

2
+

K∑

q=n+1

⌊
p + 2K−q

2K−q+1

⌋
xq





 . (2.33)

The f(xn, xn+1, · · · , xK) is a monotonically decreasing function of xn > 0, xn+1 >

0, · · · , xK > 0, since

∂f(xn, xn+1, · · · , xK)
∂xn

=
−1

2
√

2π

2K−n−1∑

p=0

1
2K−n

e
− 1

2

(
xn
2

+
∑K

q=n+1

⌊
p+2K−q

2K−q+1

⌋
xq

)2

< 0, and

∂f(xn, xn+1, · · · , xK)
∂xn+m

=
−1√
2π

2K−n−1∑

p=0

1
2K−n

e
− 1

2

(
xn
2

+
∑K

q=n+1

⌊
p+2K−q

2K−q+1

⌋
xq

)2

×
⌊

p + 2K−n−m

2K−n−m+1

⌋
< 0 (2.34)

for m = 1, · · · ,K − n (i.e., for xn+1, · · · , xK). From (2.18) and (2.33), it is seen that for

1 ≤ n ≤ K − 1,

P app
Mn,i = f

(
dMn,i

√
2γs

Savg
, dMn+1,i

√
2γs

Savg
, · · · , dMK ,i

√
2γs

Savg

)
. (2.35)

From (2.34) and (2.35), for 1 ≤ n ≤ K − 1, we have

P app
Mn,i < P app

Mn,i+1 if dMn,i > dMn,i+1, dMn+1,i > dMn+1,i+1, · · · , dMK ,i > dMK ,i+1.(2.36)

From (2.18), for n = K, we have

P app
MK ,i < P app

MK ,i+1 if dMK−1,i > dMK−1,i+1 and dMK ,i > dMK ,i+1. (2.37)

From (2.36) and (2.37), the following is derived.

P app
M1,i < P app

M1,i+1, P app
M2,i < P app

M2,i+1, · · · , P app
MK ,i < P app

MK ,i+1

if dM1,i > dM1,i+1, dM2,i > dM2,i+1, · · · , dMK ,i > dMK ,i+1. (2.38)
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With i = 1, · · · , N − 1, (2.38) leads to (2.32). Finally, from (2.21) and (2.32), (2.19) and

(2.20) are derived.

¤
Theorem 4 tells us that, by multiplexing N hierarchical 22K (K ≥ 3) QAM

constellations having the minimum distances satisfying (2.20), KN levels of UEP are

achieved under the assumption that the SNR of interest for the nth MSBs (2 ≤ n ≤ K)

is reasonably large so that the condition of Theorem 3 is satisfied.

2.3 Optimal Multiplexing of Hierarchical QAM Constella-

tions for High SNR

In this section, we define high SNR as an SNR which is sufficiently large so

that the BER is dominated by the error function term having the minimum Euclidian

distance.

2.3.1 Hierarchical 22J/22K (K > J ≥ 1) QAM Constellation

Hierarchical 22J/22K QAM refers to a specific kind of hierarchical constellations

which provide two levels of UEP. Typical examples are hierarchical 4/16 QAM (i.e.,

hierarchical 16 QAM) and 4/64 QAM which are employed in DVB-T standard. Similar

to Section 2.2, we first analyze a hierarchical 16 QAM as a simple example. For high

SNR, from (2.3), the BERs of a hierarchical 16 QAM constellation i (1 ≤ i ≤ N) are

given by

PM,i ≈ 1
2
Q

(
dM,i

2

√
2γs

Savg

)
and PL,i ≈ Q

(
dL,i

2

√
2γs

Savg

)
. (2.39)

Theorem 5: Suppose that there are N multiplexed hierarchical 16 QAM constellations,

and the minimum distances satisfying (2.5) are given. Also suppose the given minimum

distances can be permuted such that dM,1, · · · , dM,N for the MSBs can be arbitrarily

combined with dL,1, · · · , dL,N for the LSBs. After the distances are permuted, the

resultant minimum distances for the MSBs and LSBs of constellation i, denoted by

d̃M,i and d̃L,i, respectively, can be expressed as

d̃M,i = dM,i and d̃L,π(i) = dL,i (2.40)

where π(i) is the index of the constellation to which dL,i is permuted. Then, with the
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permuted distances given by (2.40), the BERs of the data classes satisfy

P1 < P2 < · · · < P2N (2.41)

for high SNR if class i and class N + i are mapped to the MSBs of constellation i and

the LSBs of constellation π(i), respectively (1 ≤ i ≤ N).

Proof: After distances are permuted, from (2.39), (2.40) and the mapping

condition below (2.41), the BERs of data classes are given by

Pi ≈ 1
2
Q

(
dM,i

2

√
2γs

Savg

)
and PN+i ≈ Q

(
dL,i

2

√
2γs

Savg

)
(1 ≤ i ≤ N). (2.42)

Since dM,N > dL,1 from (2.5), and from (2.42), we have PN < PN+1. Since dM,i > dM,i+1

and dL,i > dL,i+1 (1 ≤ i ≤ N − 1) from (2.5), and from (2.42), we have

Pi < Pi+1 and PN+i < PN+1+i (1 ≤ i ≤ N − 1). (2.43)

Since PN < PN+1, and from (2.43), it follows that P1 < · · · < PN < PN+1 < · · · < P2N .

¤
In contrast to Theorem 1 and Corollary 2 , Theorem 5 tells us that 2N levels of

UEP are achieved for high SNR even after the minimum distances satisfying (2.5) are

arbitrarily permuted.

Corollary 6: From Theorem 5 , when the minimum distances dM,1, · · · , dM,N and dL,1,

· · · , dL,N are permuted for high SNR, the BERs of the data classes, P1, · · · , P2N , are

unchanged.

Proof: From (2.42), it is seen that Pi (1 ≤ i ≤ 2N) is not dependent on the

choice of π(i).

¤
Theorem 7: After the distances are permuted as described in Theorem 5 , the average

power of all the multiplexed hierarchical 16 QAM constellations, Savg, given by

Savg =
1
N

N∑

i=1

Savg,i =
1
N

N∑

i=1

(
d̃2

M,i

2
+ d̃M,id̃L,i + d̃2

L,i

)
(2.44)

is minimized if and only if distances are permuted such that dM,i is combined with

dL,N+1−i in the same constellation. That is,

d̃M,i = dM,i and d̃L,i = dL,N+1−i (1 ≤ i ≤ N). (2.45)
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Proof: We will prove the following by induction on the number of hierarchical

constellations: For given distances dM,1 > · · · > dM,N and dL,1 > · · · > dL,N ,

f∗N =
N∑

i=1

(
d2

M,i

2
+ dM,idL,N+1−i + d2

L,N+1−i

)
(2.46)

is the minimum of fN =
∑N

i=1

(
d̃2

M,i/2 + d̃M,id̃L,i + d̃2
L,i

)
.

Consider two constellations (i.e., N = 2). For given dM,1 > dM,2 and dL,1 > dL,2,

the distances can be permuted such that dM,1 is combined with either dL,1 or dL,2. The

two possible values of f2 are given by

f2,]1 =
d2

M,1

2
+ dM,1dL,1 + d2

L,1 +
d2

M,2

2
+ dM,2dL,2 + d2

L,2

f2,]2 =
d2

M,1

2
+ dM,1dL,2 + d2

L,2 +
d2

M,2

2
+ dM,2dL,1 + d2

L,1. (2.47)

The difference between f2,]1 and f2,]2 is given by

f2,]1 − f2,]2 = (dM,1 − dM,2)(dL,1 − dL,2) > 0 (2.48)

because dM,1 > dM,2 and dL,1 > dL,2. From (2.48), it is seen that f2,]2 is the minimum.

For N = 2, f∗2 given by (2.46) is equal to f2,]2.

Suppose that (2.46) holds when there are l constellations (i.e., N = l). In other

words, for given dM,1 > · · · > dM,l and dL,1 > · · · > dL,l, f∗l =
∑l

i=1(d
2
M,i/2 +

dM,idL,l+1−i + d2
L,l+1−i) is the minimum of fl. Consider l + 1 constellations (i.e.,

N = l + 1). For given dM,1 > · · · > dM,l+1 and dL,1 > · · · > dL,l+1, we will prove that

if fl+1 is minimized, dM,1 should be combined with dL,l+1 in the same constellation by

contradicting the following assumption: fl+1 is minimized with dM,1 and dL,l+1 not being

combined. By the assumption, dM,1 and dL,j (for some j in the range of 1 ≤ j < l + 1)

are combined in some specific constellation, and dM,k and dL,l+1 (for some k in the range

of 1 < k ≤ l+1) are combined in another constellation. The corresponding fl+1, denoted

by fl+1,]1, is given by

fl+1,]1 =

(
d2

M,1

2
+ dM,1dL,j + d2

L,j

)
+

(
d2

M,k

2
+ dM,kdL,l+1 + d2

L,l+1

)

+
l+1∑
i=2
i 6=k

(
d̃2

M,i

2
+ d̃M,id̃L,i + d̃2

L,i

)
(2.49)

where the other minimum distances, except dM,1, dM,k, dL,j , and dL,l+1, are arbitrarily

combined. We modify fl+1,]1 such that dM,1 and dL,l+1 are combined, and dM,k and dL,j
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are combined. The modified fl+1 is denoted by fl+1,]2:

fl+1,]2 =

(
d2

M,1

2
+ dM,1dL,l+1 + d2

L,l+1

)
+

(
d2

M,k

2
+ dM,kdL,j + d2

L,j

)

+
l+1∑
i=2
i 6=k

(
d̃2

M,i

2
+ d̃M,id̃L,i + d̃2

L,i

)
. (2.50)

The difference between fl+1,]1 and fl+1,]2 is given by

fl+1,]1 − fl+1,]2 = (dM,1 − dM,k)(dL,j − dL,l+1) > 0 (2.51)

because dM,1 > dM,k and dL,j > dL,l+1. From (2.51), fl+1,]1, given by (2.49), cannot be

the minimum of fl+1, and thus the above assumption is false. We have thus showed that

the largest distance for the MSBs, dM,1 should be combined with the smallest distance

for the LSBs, dL,l+1. The other minimum distances, except dM,1 and dL,l+1, are given

by

dM,2 > dM,3 > · · · > dM,l+1 and dL,1 > dL,2 > · · · > dL,l. (2.52)

By the induction hypothesis, the following is the minimum for 2l distances given by

(2.52):

l∑

i=1

(
d2

M,i+1

2
+ dM,i+1dL,l+1−i + d2

L,l+1−i

)
. (2.53)

Thus, the minimum of fl+1 is given by

d2
M,1

2
+ dM,1dL,l+1 + d2

L,l+1 +
l∑

i=1

(
d2

M,i+1

2
+ dM,i+1dL,l+1−i + d2

L,l+1−i

)

=
l+1∑

i=1

(
d2

M,i

2
+ dM,idL,l+2−i + d2

L,l+2−i

)
. (2.54)

Setting N = l + 1 in (2.46), we obtain f∗l+1 =
∑l+1

i=1(d
2
M,i/2 + dM,idL,l+2−i + d2

L,l+2−i),

and this is identical to (2.54). Hence, (2.46) holds for N = l + 1.

¤
Corollary 6 and Theorem 7 indicate that the average power of all the multiplexed

constellations is minimized by permuting distances according to (2.45), while the BERs

are unchanged for high SNR.
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Next, we consider the peak signal power of the multiplexed hierarchical constel-

lations. If we assume that all the hierarchical constellations are time-multiplexed, the

peak power of all the multiplexed constellations, Speak, is given by

Speak = max
[{

Speak,i

∣∣∣∣1 ≤ i ≤ N

}]
(2.55)

where max[X] denotes the maximum element of the set X, and Speak,i is the peak power

of a hierarchical constellation i. For hierarchical 16 QAM, Speak,i is given by

Speak,i = 2
(

dM,i

2
+ dL,i

)2

=
d2

M,i

2
+ 2dM,idL,i + 2d2

L,i. (2.56)

Theorem 8: After the distances are permuted as described in Theorem 5 , the peak

power of all the multiplexed hierarchical 16 QAM constellations, Speak, given by

Speak = max
[{

Speak,i

∣∣∣∣1 ≤ i ≤ N

}]
= max

[{
d̃2

M,i

2
+ 2d̃M,id̃L,i + 2d̃2

L,i

∣∣∣∣1 ≤ i ≤ N

}]

(2.57)

is minimized if the distances are permuted according to (2.45) of Theorem 7

Proof: When (2.45) is satisfied, the corresponding Speak, denoted by Speak,]1, is

given by

Speak,]1 = max

[{
d2

M,i

2
+ 2dM,idL,N+1−i + 2d2

L,N+1−i

∣∣∣∣1 ≤ i ≤ N

}]

=
d2

M,j

2
+ 2dM,jdL,N+1−j + 2d2

L,N+1−j , (2.58)

for some j in the range of 1 ≤ j ≤ N . We will contradict the following assumption:

When distances are permuted in some way other than (2.45), the corresponding Speak,

denoted by Speak,]2, is smaller than Speak,]1. Let dL,k be the distance with which dM,j is

combined (for some k in the range of 1 ≤ k ≤ N) when the distances are permuted in a

different manner from (2.45). The possible values of k can be classified into

1 ≤ k < N + 1− j, k = N + 1− j, and N + 1− j < k ≤ N. (2.59)

i) For 1 ≤ k < N + 1− j, Speak,]2 > Speak,]1. To see this, note that

Speak,]2 ≥ 1
2
d2

M,j + 2dM,jdL,k + 2d2
L,k

>
1
2
d2

M,j + 2dM,jdL,N+1−j + 2d2
L,N+1−j

= Speak,]1 (2.60)
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where the strict inequality follows from dL,k > dL,N+1−j (since k < N + 1− j).

ii) For k = N + 1 − j, Speak,]2 ≥ Speak,]1 since Speak,]2 ≥ 1
2d2

M,j + 2dM,jdL,N+1−j +

2d2
L,N+1−j = Speak,]1.

iii) For N + 1 − j < k ≤ N , Speak,]2 > Speak,]1. This is proved as follows: Since dM,j is

combined with dL,k, other distances {dM,i|1 ≤ i ≤ N, i 6= j} should be combined with

{dL,i|1 ≤ i ≤ N, i 6= k}. Note that
∣∣∣∣
{

dM,i

∣∣∣∣1 ≤ i < j

}∣∣∣∣ = j − 1 and
∣∣∣∣
{

dL,i

∣∣∣∣N + 1− j < i ≤ N, i 6= k

}∣∣∣∣ = j − 2 (2.61)

where |X| denotes the cardinality of the set X, and the equality of the second expression

follows from N + 1 − j < k ≤ N . Since j − 1 > j − 2 in (2.61), at least one

element of {dM,i|1 ≤ i < j} should be combined with one element of {dL,i|1 ≤ i ≤
N + 1 − j}. Suppose that dM,p is combined with dL,q for some p ∈ {1, · · · , j − 1} and

q ∈ {1, · · · , N + 1− j}. Then, we have

Speak,]2 ≥ 1
2
d2

M,p + 2dM,pdL,q + 2d2
L,q

>
1
2
d2

M,j + 2dM,jdL,N+1−j + 2d2
L,N+1−j

= Speak,]1 (2.62)

where the strict inequality follows from the fact that dM,p > dM,j and dL,q ≥ dL,N+1−j

(since p < j and q ≤ N + 1− j). From i), ii), and iii), it is seen that there is no possible

way of permuting distances which makes Speak,]2 smaller than Speak,]1. Therefore, the

assumption below (2.58) is false.

¤
Theorems 7 and 8 tell us that the permutation of the distances that minimizes

the average power of all the multiplexed hierarchical constellations also, coincidentally,

minimizes the peak power. Note that from (2.5) and (2.45), these optimally permuted

distances satisfy

d̃M,1 > · · · > d̃M,N > d̃L,N > · · · > d̃L,1. (2.63)

Corollary 9: When the distances are optimally permuted according to (2.45) of

Theorem 7 , the BERs of the data classes satisfy P1 < P2 < · · · < P2N for high SNR

if class i and class 2N + 1 − i are mapped to the MSBs and LSBs of constellation i,

respectively (1 ≤ i ≤ N).

Proof: The proof is similar to the proof of Corollary 2 .
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Figure 2.4: The optimal multilevel UEP system using multiplexed hierarchical 16 QAM
constellations for high SNR based on Corollary 9 .

¤
Fig. 2.4 depicts the multilevel UEP system using multiplexed hierarchical 16

QAM constellations based on Corollary 9 for eight data classes (N = 4).

Next, we generalize to hierarchical 22J/22K (K > J ≥ 1) QAM constellations.

Recall that dMn,i denotes the minimum distance for the nth MSBs (1 ≤ n ≤ K) of

a hierarchical 22K QAM constellation i. Hierarchical 22J/22K QAM has two distinct

minimum Euclidian distances such that [49]

dMn,i =





dMJ ,i, for 1 ≤ n ≤ J

dMK ,i, for J + 1 ≤ n ≤ K.

(2.64)

The average power of a hierarchical 22J/22K QAM constellation i (1 ≤ i ≤ N) can be
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expressed, from (2.17) and (2.64), as the following:

Savg,i =
J∑

u=1

J∑
v=u

µuvd
2
MJ ,i +

J∑

u=1

K∑

v=J+1

µuvdMJ ,idMK ,i +
K∑

u=J+1

K∑
v=u

µuvd
2
MK ,i. (2.65)

Lemma 10: For high SNR, the BERs of a hierarchical 22J/22K QAM constellation i

(1 ≤ i ≤ N) are given by

PMn,i ≈





1
2K−n Q

(
dMJ ,i

2

√
2γs

Savg

)
, for 1 ≤ n ≤ J

1
2K−n Q

(
dMK,i

2

√
2γs

Savg

)
, for J + 1 ≤ n ≤ K

(2.66)

where Savg is given by (2.1) and (2.65).

Proof: The BERs of a hierarchical 22K QAM constellation i, P app
Mn,i (1 ≤ n ≤

K − 1), given by (2.18), can be rewritten as

P app
Mn,i =

1
2K−n

Q





dMn,i

2
+

K∑

q=n+1

⌊
2K−q

2K−q+1

⌋
dMq ,i




√
2γs

Savg




+
2K−n−1∑

p=1

1
2K−n

Q





dMn,i

2
+

K∑

q=n+1

⌊
p + 2K−q

2K−q+1

⌋
dMq ,i




√
2γs

Savg




=
1

2K−n
Q

(
dMn,i

2

√
2γs

Savg

)

+
2K−n−1∑

p=1

1
2K−n

Q





dMn,i

2
+

K∑

q=n+1

⌊
p + 2K−q

2K−q+1

⌋
dMq ,i




√
2γs

Savg


 . (2.67)

From (2.67), we have

K∑

q=n+1

⌊
p + 2K−q

2K−q+1

⌋
dMq ,i ≥

K∑

q=n+1

⌊
1 + 2K−q

2K−q+1

⌋
dMq ,i ≥

⌊
1 + 20

21

⌋
dMK ,i = dMK ,i (2.68)

where the first inequality follows from p ≥ 1 in (2.67). From (2.67) and (2.68), it is clear

that the first error function term of (2.67) is the only term having the minimum distance

of dMn,i for the nth MSBs (1 ≤ n ≤ K − 1). Also, for P app
MK ,i (i.e., n = K) given by

(2.18), it is clear that the first error function term is the only term having the minimum

distance of dMK ,i. From the condition of approximation described in Theorem 3 , it

follows that the error function term having the minimum distance in P app
MK ,i, given by

(2.18), is the same as that in PMn,i, the exact BER. Therefore, from (2.64) and (2.67),

(2.66) is derived.
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¤
From (2.66), the average BER for n = 1, · · · Jth MSBs of constellation i , denoted

by (PMJ ,i)avg, is given by

(PMJ ,i)avg =
1
J

J∑

n=1

PMn,i ≈ AJQ

(
dMJ ,i

2

√
2γs

Savg

)
(2.69)

where AJ = 1
J

∑J
n=1 1/2K−n. Likewise, the average BER for n = J + 1, · · · ,Kth MSBs

of constellation i, denoted by (PMK ,i)avg, is given by

(PMK ,i)avg =
1

K − J

K∑

n=J+1

PMn,i ≈ AKQ

(
dMK ,i

2

√
2γs

Savg

)
(2.70)

where AK = 1
K−J

∑K
n=J+1 1/2K−n. Similar to the average power given by (2.65), the

peak power of a hierarchical 22J/22K QAM constellation i (1 ≤ i ≤ N) can be expressed

as

Speak,i =
K∑

u=1

K∑
v=u

λuvdMu,idMv ,i

=
J∑

u=1

J∑
v=u

λuvd
2
MJ ,i +

J∑

u=1

K∑

v=J+1

λuvdMJ ,idMK ,i +
K∑

u=J+1

K∑
v=u

λuvd
2
MK ,i (2.71)

where the λuv are constants.

Theorem 11: Theorems 5 , 7 and 8 , and Corollary 6 hold for hierarchical 22J/22K

QAM when

i) dM,i and dL,i are replaced by dMJ ,i and dMK ,i, respectively, and PM,i and PL,i are

replaced by (PMJ ,i)avg and (PMK ,i)avg, respectively.

ii) Eq. (2.2) and (2.56) are replaced by (2.65) and (2.71), respectively.

Proof: From (2.69) and (2.70), AJ < AK since

AJ =
1
J

J∑

n=1

1
2K−n

<
1

2K−J
and AK =

1
K − J

K∑

n=J+1

1
2K−n

>
1

2K−J−1
. (2.72)

Hence, Theorem 5 and Corollary 6 hold for hierarchical 22J/22K QAM.

Since
∑J

u=1

∑J
v=u µuv,

∑J
u=1

∑K
v=J+1 µuv and

∑K
u=J+1

∑K
v=u µuv of (2.65) are

constants just as 1/2, 1, and 1 of (2.2) are constants, Theorem 7 holds for hierarchical

22J/22K QAM. Likewise,
∑J

u=1

∑J
v=u λuv,

∑J
u=1

∑K
v=J+1 λuv, and

∑K
u=J+1

∑K
v=u λuv of

(2.71) are constants as 1/2, 2, and 2 of (2.56) are constants, and thus Theorem 8 holds

for hierarchical 22J/22K QAM.

¤
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2.4 Asymmetric Hierarchical QAM Constellation

While the proposed methods provide a large number of levels of UEP, the peak-to-

average power ratio (PAPR) typically will be increased when hierarchical constellations

having distinct minimum distances are time-multiplexed. To mitigate this effect, we

design an asymmetric hierarchical QAM which reduces the PAPR without performance

loss. From here onwards, we refer to conventional hierarchical QAM, which has been

presented in Sections 2.2 and 2.3, as symmetric hierarchical QAM, in order to distinguish

it from asymmetric hierarchical QAM.

2.4.1 Asymmetric Hierarchical 22K (K ≥ 2) QAM Constellation

For an asymmetric hierarchical 22K QAM, the minimum distances for the inphase

and quadrature components are different from each other. Similar to the previous

sections, we first present asymmetric hierarchical 16 QAM, depicted in Fig. 2.5, as

a simple example. The MSB i1 for the inphase component determines the first cluster,

and its minimum distance is dA,I
M . The MSB q1 for the quadrature component determines

the second cluster within the first cluster that i1 determined, and its minimum distance

is dA,Q
M . The LSB i2 for the inphase component determines the third cluster, and its

minimum distance is dA,I
L , and the LSB q2 for the quadrature component determines

the specific signal point within the third cluster, and has minimum distance dA,Q
L .

Asymmetric hierarchical 16 QAM has three embedded subconstellations, and it provides

four levels of UEP if dA,I
M > dA,Q

M > dA,I
L > dA,Q

L , which will be shown below in Corollary

13 .

In order to provide 2N levels of UEP, we consider multiplexing N/2 (N is assumed

to be even) asymmetric hierarchical 16 QAM constellations instead of N symmetric

hierarchical 16 QAM constellations. The average power per symbol of all the multiplexed

asymmetric constellations, SA
avg, is given by

SA
avg =

1
N/2

N/2∑

i=1

SA
avg,i (2.73)

where SA
avg,i is the average power per symbol of asymmetric constellation i. For
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i1 0 0 1 1

i2 0 1 1 0

q1 q2

0 0
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1 1
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Md
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Ld
,

QA
Md
,

QA
Ld
,

2nd cluster

Figure 2.5: Asymmetric hierarchical 16 QAM constellation.

asymmetric hierarchical 16 QAM, SA
avg,i is given by

SA
avg,i = SA,I

avg,i + SA,Q
avg,i

=
1
2




(
dA,I

M,i

2

)2

+

(
dA,I

M,i

2
+ dA,I

L,i

)2

 +

1
2




(
dA,Q

M,i

2

)2

+

(
dA,Q

M,i

2
+ dA,Q

L,i

)2



(2.74)

where SA,I
avg,i and SA,Q

avg,i are the average powers per symbol for the inphase and quadrature

components of asymmetric constellation i, respectively, and dA,I
M,i, dA,I

L,i , dA,Q
M,i , and dA,Q

L,i

are the minimum distances for the inphase MSB and LSB, and quadrature MSB and

LSB, respectively. Note that the BERs of rectangular QAM are derived from those of

the corresponding PAMs since the inphase and quadrature components are separated

at the demodulator [49] [50]. Let PA,I
M,i , PA,I

L,i , PA,Q
M,i , and PA,Q

L,i denote the BERs for

the inphase MSB and LSB, and quadrature MSB and LSB of asymmetric hierarchical

constellation i, respectively (1 ≤ i ≤ N/2). From (2.3), (2.73), and (2.74), they are
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derived as

PA,I
M,i =

1
2
Q

(
dA,I

M,i

2

√
2γs

SA
avg

)
+

1
2
Q

((
dA,I

M,i

2
+ dA,I

L,i

) √
2γs

SA
avg

)

PA,I
L,i = Q

(
dA,I

L,i

2

√
2γs

SA
avg

)
+

1
2
Q

((
dA,I

M,i +
dA,I

L,i

2

)√
2γs

SA
avg

)

−1
2
Q

((
dA,I

M,i +
3dA,I

L,i

2

)√
2γs

SA
avg

)

PA,Q
M,i =

1
2
Q

(
dA,Q

M,i

2

√
2γs

SA
avg

)
+

1
2
Q

((
dA,Q

M,i

2
+ dA,Q

L,i

)√
2γs

SA
avg

)

PA,Q
L,i = Q

(
dA,Q

L,i

2

√
2γs

SA
avg

)
+

1
2
Q

((
dA,Q

M,i +
dA,Q

L,i

2

) √
2γs

SA
avg

)

−1
2
Q

((
dA,Q

M,i +
3dA,Q

L,i

2

) √
2γs

SA
avg

)
. (2.75)

Theorem 12: Suppose there are N multiplexed symmetric hierarchical 16 QAM

constellations whose minimum distances are given by dM,1, · · · , dM,N and dL,1, · · · , dL,N .

Also suppose there are N/2 asymmetric hierarchical 16 QAM constellations, and

the minimum distances for the inphase and quadrature components of asymmetric

hierarchical constellation i are the same as those of two distinct symmetric hierarchical

constellations x(i) and y(i), respectively (1 ≤ i ≤ N/2). In other words,

dA,I
M,i = dM,x(i), dA,I

L,i = dL,x(i), dA,Q
M,i = dM,y(i), and dA,Q

L,i = dL,y(i) (1 ≤ i ≤ N/2)(2.76)

where x(i) and y(i) satisfy

x(i), y(i) ∈ {1, · · · , N} and {x(i), y(i)|1 ≤ i ≤ N/2} = {1, · · · , N}. (2.77)

With the minimum distances given by (2.76), the average power and BERs of N/2

multiplexed asymmetric hierarchical 16 QAM constellations are the same as those of N

multiplexed symmetric hierarchical 16 QAM constellations, regardless of the choice of

x(i) and y(i) satisfying (2.77).

Proof: From (2.74) and (2.76), SA
avg,i can be expressed as

SA
avg,i =

1
2

((
dM,x(i)

2

)2

+
(

dM,x(i)

2
+ dL,x(i)

)2
)

+
1
2

((
dM,y(i)

2

)2

+
(

dM,y(i)

2
+ dL,y(i)

)2
)

=
1
2
Savg,x(i) +

1
2
Savg,y(i), (2.78)
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where the second equality follows from (2.2). From (2.73) and (2.78), SA
avg is given by

SA
avg =

1
N/2

N/2∑

i=1

(
1
2
Savg,x(i) +

1
2
Savg,y(i)

)
=

1
N

N/2∑

i=1

(
Savg,x(i) + Savg,y(i)

)
. (2.79)

From (2.77), (2.79) can be rewritten as

SA
avg =

1
N

N∑

i=1

Savg,i = Savg (2.80)

where the second equality follows from (2.1). We next compare the BERs of asymmetric

and symmetric constellations. From (2.3), (2.75) and (2.76), we have

PA,I
M,i = PM,x(i), PA,I

L,i = PL,x(i), PA,Q
M,i = PM,y(i), and PA,Q

L,i = PL,y(i) (1 ≤ i ≤ N/2).

(2.81)

From (2.77) and (2.81), a set of 2N BERs for N/2 multiplexed asymmetric constellations

satisfy
{

PA,I
M,i , P

A,I
L,i , PA,Q

M,i , PA,Q
L,i

∣∣∣∣1 ≤ i ≤ N/2
}

=
{

PM,x(i), PL,x(i), PM,y(i), PL,y(i)

∣∣∣∣1 ≤ i ≤ N/2
}

=
{

PM,i, PL,i

∣∣∣∣1 ≤ i ≤ N

}
. (2.82)

Hence, a set of 2N BERs for N/2 multiplexed asymmetric constellations is the same as

that for N multiplexed symmetric constellations.

¤
Theorem 13: Suppose that the minimum distances of the N multiplexed symmetric

hierarchical 16 QAM constellations satisfy (2.5) of Theorem 1 . Then, with the

minimum distances given by (2.76), N/2 multiplexed asymmetric hierarchical 16 QAM

constellations also provide 2N levels of UEP.

Proof: Since dM,i and dL,i satisfy (2.5), PM,i and PL,i satisfy (2.4) by Theorem

1 . From (2.82), it follows that N/2 multiplexed asymmetric hierarchical 16 QAM

constellations also provide 2N levels of UEP.

¤
As an example, suppose that there is single asymmetric hierarchical 16 QAM

(i.e., N = 2), and x(i) and y(i) satisfying (2.77) are chosen as x(1) = 1 and y(1) = 2.

From (2.76) and (2.81), (2.4) and (2.5) of Theorem 1 lead to the following:

PA,I
M,1 < PA,Q

M,1 < PA,I
L,1 < PA,Q

L,1 if dA,I
M,1 > dA,Q

M,1 > dA,I
L,1 > dA,Q

L,1 . (2.83)
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Next, we consider the peak power of all the multiplexed asymmetric hierarchical

constellations, SA
peak, which is given by

SA
peak = max

[{
SA

peak,i

∣∣∣∣1 ≤ i ≤ N/2
}]

(2.84)

where SA
peak,i is the peak power of an asymmetric hierarchical constellation i. For

asymmetric hierarchical 16 QAM, SA
peak,i is given by

SA
peak,i = SA,I

peak,i + SA,Q
peak,i =

(
dA,I

M,i

2
+ dA,I

L,i

)2

+

(
dA,Q

M,i

2
+ dA,Q

L,i

)2

(2.85)

where SA,I
peak,i and SA,Q

peak,i are the peak powers of the inphase and quadrature components

of asymmetric hierarchical constellation i, respectively.

Theorem 14: Suppose that the minimum distances of the N multiplexed symmetric

hierarchical 16 QAM satisfy (2.5) of Theorem 1 . With the minimum distances given

by (2.76), the peak power of all N/2 multiplexed asymmetric hierarchical 16 QAM

constellations, SA
peak , given by (2.84) and (2.85), is less than that of all N multiplexed

symmetric hierarchical 16 QAM, Speak, given by (2.55) and (2.56), regardless of the

choice of x(i) and y(i) satisfying (2.77).

Proof: From (2.76) and (2.85), SA
peak,i is given by

SA
peak,i =

(
dM,x(i)

2
+ dL,x(i)

)2

+
(

dM,y(i)

2
+ dL,y(i)

)2

=
1
2
Speak,x(i) +

1
2
Speak,y(i) (2.86)

where the second equality follows from (2.56). From (2.84) and (2.86), SA
peak is given by

SA
peak = max

[{
1
2
Speak,x(i) +

1
2
Speak,y(i)

∣∣∣∣1 ≤ i ≤ N/2
}]

=
1
2
Speak,x(j) +

1
2
Speak,y(j), (2.87)

for some j in the range of 1 ≤ j ≤ N/2. Since x(i), y(i) ∈ {1, · · · , N} from (2.77), we

have

Speak,x(j) ≤ max
[{

Speak,i

∣∣∣∣1 ≤ i ≤ N

}]
= Speak, and Speak,y(j) ≤ Speak, (2.88)

where the second equality of the first expression follows from (2.55). From (2.5) and

(2.56), the peak powers of each symmetric hierarchical 16 QAM constellation satisfy

Speak,1 > Speak,2 > · · · > Speak,N . (2.89)
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From (2.77), (2.88) and (2.89), Speak,x(j) and Speak,y(j) satisfy either of the following:

Speak,x(j) < Speak,y(j) ≤ Speak or Speak,y(j) < Speak,x(j) ≤ Speak. (2.90)

From (2.87) and (2.90), we have

SA
peak =

1
2
Speak,x(j) +

1
2
Speak,y(j) < Speak. (2.91)

¤
Theorems 12 and 14 tell us that when asymmetric hierarchical 16 QAM is used

instead of symmetric hierarchical 16 QAM, the PAPR is reduced without performance

loss.

The following theorem states how to choose x(i) and y(i) (1 ≤ i ≤ N/2)

satisfying (2.77) to minimize the PAPR of all the multiplexed asymmetric hierarchical

constellations.

Theorem 15: Suppose that the minimum distances of the N multiplexed symmetric

hierarchical 16 QAM satisfy (2.5) of Theorem 1 . Also suppose the minimum distances

of N/2 multiplexed asymmetric hierarchical 16 QAM are given by (2.76). Then, from

(2.84) and (2.86), SA
peak is given by

SA
peak = max

[{
1
2
Speak,x(i) +

1
2
Speak,y(i)

∣∣∣∣1 ≤ i ≤ N/2
}]

(2.92)

and this is minimized if x(i) and y(i) satisfying (2.77) are chosen as

x(i) = i and y(i) = N + 1− i (1 ≤ i ≤ N/2). (2.93)

Proof: The proof is similar to the proof of Theorem 8 .

¤
Next, we generalize to asymmetric hierarchical 22K (K ≥ 2) QAM. Let dA,I

Mn,i

and dA,Q
Mn,i denote the minimum distances of the nth MSB (1 ≤ n ≤ K) for the

inphase and quadrature components of asymmetric hierarchical 22K QAM constellation

i (1 ≤ i ≤ N/2). From (2.17), the average power of asymmetric hierarchical 22K QAM

constellation i, SA
avg,i, can be expressed as

SA
avg,i = SA,I

avg,i + SA,Q
avg,i =

K∑

u=1

K∑
v=u

µuv

2
dA,I

Mu,id
A,I
Mv,i +

K∑

u=1

K∑
v=u

µuv

2
dA,Q

Mu,id
A,Q
Mv,i (2.94)

where SA,I
avg,i and SA,Q

avg,i are the average powers for the inphase and quadrature components

of asymmetric constellation i.
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Let PA,I
Mn,i and PA,Q

Mn,i denote the BERs of the nth MSB (1 ≤ n ≤ K) for the

inphase and quadrature components of asymmetric hierarchical 22K QAM constellation

i (1 ≤ i ≤ N/2). Recall that PMn,i denotes the BER of the nth MSBs (1 ≤ n ≤ K) of

symmetric hierarchical 22K QAM constellation i (1 ≤ i ≤ N).

Theorem 16: Suppose that there are N multiplexed symmetric hierarchical 22K QAM

whose minimum distances are given by dMn,1, · · · , dMn,N (1 ≤ n ≤ K). Also suppose that

the minimum distances of N/2 multiplexed asymmetric hierarchical 22K QAM satisfy

dA,I
Mn,i = dMn,x(i) and dA,Q

Mn,i = dMn,y(i) (1 ≤ n ≤ K, 1 ≤ i ≤ N/2) (2.95)

where x(i) and y(i) satisfy (2.77). Theorem 12 holds for asymmetric hierarchical 22K

QAM when

i) dA,I
M,i and dA,I

L,i are replaced by dA,I
Mn,i (1 ≤ n ≤ K); dA,Q

M,i and dA,Q
L,i are replaced by

dA,Q
Mn,i (1 ≤ n ≤ K); dM,i and dL,i are replaced by dMn,i (1 ≤ n ≤ K).

ii) PA,I
M,i and PA,I

L,i are replaced by PA,I
Mn,i (1 ≤ n ≤ K); PA,Q

M,i and PA,Q
L,i are replaced by

PA,Q
Mn,i (1 ≤ n ≤ K); PM,i and PL,i are replaced by PMn,i (1 ≤ n ≤ K).

iii) Eq. (2.76) is replaced by (2.95).

Proof: For asymmetric hierarchical 22K QAM, from (2.94) and (2.95), SA
avg,i is

given by

SA
avg,i =

K∑

u=1

K∑
v=u

µuv

2
dMu,x(i)dMv,x(i) +

K∑

u=1

K∑
v=u

µuv

2
dMu,y(i)dMv ,y(i)

=
1
2
Savg,x(i) +

1
2
Savg,y(i), (2.96)

where the second equality follows from (2.17). From (2.95), we have

PA,I
Mn,i = PMn,x(i) and PA,Q

Mn,i = PMn,y(i) (1 ≤ n ≤ K, 1 ≤ i ≤ N/2) (2.97)

From (2.78), (2.81), (2.96) and (2.97), it follows that Theorem 12 holds for asymmetric

hierarchical 22K QAM.

¤
We next consider the peak power for asymmetric hierarchical 22K QAM. In the

following, we rewrite the peak power of symmetric hierarchical 22K QAM constellation

i (1 ≤ i ≤ N), Speak,i, given by (2.71):

Speak,i =
K∑

u=1

K∑
v=u

λuvdMu,idMv,i. (2.98)
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From (2.98), the peak power of asymmetric hierarchical 22K QAM constellation i, SA
peak,i,

can be expressed as

SA
peak,i = SA,I

peak,i + SA,Q
peak,i =

K∑

u=1

K∑
v=u

λuv

2
dA,I

Mu,id
A,I
Mv,i +

K∑

u=1

K∑
v=u

λuv

2
dA,Q

Mu,id
A,Q
Mv ,i (2.99)

where SA,I
peak,i and SA,Q

peak,i are the peak powers for the inphase and quadrature components

of asymmetric constellation i.

Theorem 17: Theorems 14 and 15 hold for asymmetric hierarchical 22K QAM when

i) dA,I
M,i and dA,I

L,i are replaced by dA,I
Mn,i (1 ≤ n ≤ K); dA,Q

M,i and dA,Q
L,i are replaced by

dA,Q
Mn,i (1 ≤ n ≤ K); dM,i and dL,i are replaced by dMn,i (1 ≤ n ≤ K).

ii) Speak,i given by (2.56) is replaced by (2.98).

iii) SA
peak,i given by (2.85) is replaced by (2.99).

iv) Eq. (2.5) of Theorem 1 is replaced by (2.20) of Theorem 4 .

v) Eq. (2.76) is replaced by (2.95).

Proof: For asymmetric hierarchical 22K QAM, from (2.95) and (2.99), SA
peak,i is

given by

SA
peak,i =

K∑

u=1

K∑
v=u

λuv

2
dMu,x(i)dMv ,x(i) +

K∑

u=1

K∑
v=u

λuv

2
dMu,y(i)dMv,y(i)

=
1
2
Speak,x(i) +

1
2
Speak,y(i), (2.100)

where the second equality follows from (2.98). From (2.20) and (2.98), the peak powers

of each symmetric hierarchical 22K QAM constellation satisfy

Speak,1 > Speak,2 > · · · > Speak,N . (2.101)

From (2.86), (2.89), (2.100), and (2.101), it follows that Theorems 14 and 15 hold for

asymmetric hierarchical 22K QAM.

¤

2.5 Multilevel UEP Based on Multiplexing Hierarchical

QAM Constellations Having Constant Power

In this section, we consider the case where it is desirable for the multiplexed

hierarchical QAM constellations to have the same average power (i.e., constant power),
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either due to the limited capability of a power amplifier, or for cochannel interference

control.

2.5.1 Symmetric Hierarchical 22J/22K (K > J ≥ 1) QAM Constellation

Theorem 18: When N multiplexed symmetric hierarchical 16 QAM constellations are

required to have constant power, there exist minimum distances satisfying

dM,1 > dM,2 > · · · > dM,N > dL,N > dL,N−1 > · · · > dL,1. (2.102)

Proof: Since all the multiplexed constellations have the same average power, we

have

Savg,1 = Savg,2 = · · · = Savg,N . (2.103)

From (2.2) and (2.103), it is clear that there exist distances dM,1, dM,2, · · · , dM,N and

dL,1, dL,2, · · · , dL,N satisfying (2.102).

¤
From (2.63) and (2.102), it is seen that even if symmetric hierarchical 16 QAM

constellations have constant power, the suggested UEP system, depicted in Fig. 2.4, can

provide 2N levels of UEP for high SNR.

Theorem 18 holds for symmetric hierarchical 22J/22K (K > J ≥ 1) QAM, when

dM,i and dL,i are replaced by dMJ ,i and dMK ,i, respectively.

2.5.2 Asymmetric Hierarchical 22K (K ≥ 2) QAM Constellation

Theorem 19: Suppose that N/2 multiplexed asymmetric hierarchical 16 QAM con-

stellations are required to have constant power, and their minimum distances are given

by (2.76). If x(i) and y(i) are chosen according to (2.93) of Theorem 15 , there exist

minimum distances satisfying both (2.5) of Theorem 1 and (2.76).

Proof: Since all the multiplexed constellations have the same average power, we

have

SA
avg,1 = SA

avg,2 = · · · = SA
avg,N/2. (2.104)

Recall that, with the minimum distances given by (2.76), SA
avg,i can be expressed as the

combination of Savg,x(i) and Savg,y(i), as given by (2.78). Using (2.78), (2.104) can be

rewritten as

Savg,x(1) + Savg,y(1) = Savg,x(2) + Savg,y(2) = · · · = Savg,x(N/2) + Savg,y(N/2). (2.105)
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If we let x(i) = i and y(i) = N + 1− i according to (2.93), we have

Savg,1 + Savg,N = Savg,2 + Savg,N−1 = · · · = Savg,N/2 + Savg,N/2+1. (2.106)

From (2.106), it is clear that there exist Savg,1, Savg,2, · · · , Savg,N satisfying

Savg,1 > Savg,2 > · · · > Savg,N . (2.107)

From (2.2) and (2.107), it is clear that there exist minimum distances dM,1, dM,2, · · · , dM,N

and dL,1, dL,2, · · · , dL,N satisfying dM,1 > dM,2 > · · · > dM,N > dL,1 > dL,2 > · · · > dL,N

(i.e., (2.5) of Theorem 1 .

¤
From Corollary 13 and Theorem 19 , it follows that even if asymmetric hierar-

chical 16 QAM constellations have constant power, 2N levels of UEP can be achieved.

Theorem 19 holds for asymmetric hierarchical 22K (K ≥ 3) QAM, when

i) dM,i and dL,i are replaced by dMn,i (1 ≤ n ≤ K).

ii) Eq. (2.76) is replaced by (2.95).

iii) Eq. (2.5) of Theorem 1 is replaced by (2.20) of Theorem 4 .

Theorem 20: Suppose that N/2 multiplexed asymmetric hierarchical 22K (K ≥ 2)

QAM constellations are required to have constant power. Then the performance of the

system stays the same or degrades compared to the case where multiplexed constellations

are not required to have constant power.

Proof: When N/2 multiplexed asymmetric hierarchical 22K (K ≥ 2) QAM

constellations have constant power, we have

SA
avg,1 = SA

avg,2 = · · · = SA
avg,N/2 = C (2.108)

where C is a constant. On the other hand, when multiplexed constellations can have

variable powers under the constraint that average power of all of them is C, we have

SA
avg =

1
N/2

N/2∑

i=1

SA
avg,i = C or SA

avg,1 + SA
avg,2 + · · ·+ SA

avg,N/2 =
N

2
C. (2.109)

From (2.94), the set of values which dA,I
Mn,i and dA,Q

Mn,i (1 ≤ n ≤ K, 1 ≤ i ≤ N/2) can have

under the constraint of (2.108) is a subset of that under the constraint of (2.109). Note

that the BERs of the multiplexed constellations are functions of the minimum distances,
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dA,I
Mn,i and dA,Q

Mn,i, and that the performance of the system is a function of the BERs.

Hence, the set of values which the minimum distances can have is the domain of the

system objective function. Since the domain under the constraint of (2.108) is a subset

of that under the constraint of (2.109), the range of the system objective function under

(2.108) is also a subset of that under (2.109).

¤

2.6 The Performance of the Proposed UEP System for

Progressive Bitstream Transmission

In this section, we analyze the performance of the proposed UEP system for

progressive image source transmission over Rayleigh fading channels. We first consider

the UEP system depicted in Fig. 2.2. The system takes successive blocks (data

classes) of the compressed progressive bitstream, and transforms them into a sequence of

channel codewords of fixed length lc [37] with error detection and correction capability.

Then, the coded classes are mapped to the multiplexed symmetric hierarchical 16 QAM

constellations. At the receiver, if a received class is correctly decoded, then the next

class is considered by the decoder. Otherwise, the decoding is stopped and the image

is reconstructed from the correctly decoded classes. We assume that all decoding errors

can be detected.

Let ri be an error correction code rate for class i (1 ≤ i ≤ 2N), and

di = (dM,c(i), dL,c(i)) be a pair of minimum distances of some specific constellation

c(i) (1 ≤ c(i) ≤ N) to which class i (1 ≤ i ≤ 2N) is mapped. From Corollary 2 , di

(1 ≤ i ≤ 2N) is given by

di =





(dM,i, dL,i), for 1 ≤ i ≤ N

(dM,i−N , dL,i−N ), for N + 1 ≤ i ≤ 2N

(2.110)

where dM,1, · · · , dM,N and dL,1, · · · , dL,N satisfy (2.5) of Theorem 1 to achieve 2N levels

of UEP. Let p(ri, di, γs) denote the probability of a decoding error of class i. Then, the

probability that no decoding errors occur in the first i classes with an error in the next

one, Pc,i is given by

Pc,i = p(ri+1, di+1, γs)
i∏

j=1

(
1− p(rj , dj , γs)

)
for 1 ≤ i ≤ 2N − 1. (2.111)
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Note that Pc,0 = p(r1, d1, γs) is the probability of an error in the first class, and

Pc,2N =
∏2N

j=1

(
1− p(rj , dj , γs)

)
is the probability that all 2N classes are correctly

decoded. The end-to-end performance can be measured by the expected distortion,

E[D], given by

E[D] =
2N∑

i=0

Pc,iDi (2.112)

where Di is the reconstruction error using the first i classes (1 ≤ i ≤ 2N), and D0

is a constant. For the case of an uncoded system, Di is given by Di = V (ilc), where

V (x) denotes the operational rate-distortion function of the source coder. Also, for the

uncoded system, the probability of a decoding error of class i, p(ri, di, γs) = p(di, γs),

can be obtained analytically:

p(di, γs) = 1− {1− Pi(di, γs)}lc . (2.113)

Recall that Pi, a function of di and γs, is the BER of data class i. Pi (1 ≤ i ≤ 2N) is

given by (2.3) and (2.15) of Corollary 2 . We define a frame as a group of constellation

symbols to which one image bitstream is mapped. We assume the channel experiences

slow Rayleigh fading such that the fading coefficients are nearly constant over a frame.

With this channel model, from (2.111)–(2.113), the expected distortion for the uncoded

system is given by

E[D] =
∫ ∞

0





(
1− {

1− P1(d1, h
2γs)

}lc
)

V (0)

+
2N−1∑

i=1




(
1− {

1− Pi+1(di+1, h
2γs)

}lc
) i∏

j=1

{
1− Pj(dj , h

2γs)
}lc


V (ilc)

+
2N∏

j=1

{
1− Pj(dj , h

2γs)
}lc

V (2Nlc)





f(h)dh (2.114)

where h is the Rayleigh-distributed envelope of complex channel coefficients and f(h) is

the Rayleigh-distributed probability density function of h. Note that for a given SNR of

γs, E[D] is the conditional expected distortion. In situations when exact SNR informa-

tion is not available at the transmitter, one can find the minimum distances, d1, · · · , d2N

(or dM,1, · · · , dM,N and dL,1, · · · , dL,N ), which minimize the expected distortion over a
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Figure 2.6: PSNR performance of UEP system using multiplexed symmetric hierarchi-
cal 16 QAM (H-16QAM denotes hierarchical 16 QAM).

range of expected SNRs using the weighted cost function

arg min
d1,··· ,d2N

∫∞
0 ω(γs)E[D]dγs∫∞

0 ω(γs)dγs
(2.115)

where ω(γs) in [0, 1] is the weight function. For example, ω(γs) can be given by

ω(γs) =





1, for γa
s ≤ γs ≤ γb

s

0, otherwise.
(2.116)

2.7 Numerical Results

We evaluate the performance of the proposed UEP system using multiplexed

hierarchical 16 QAM constellations for the progressive source coder SPIHT [10] as an

example. We provide the results for the standard 8 bits per pixel (bpp) 512×512 Lena
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Table 2.1: PAPR of Multiplexed Symmetric or Asymmetric Hierarchical
16 QAM

PAPR (dB)

Number of UEP levels 4 16 64

Multiplexed symmetric
3.31 6.87 9.43

hierarchical 16 QAM

Multiplexed symmetric

2.82 5.84 8.32hierarchical 16 QAM

with permuted min. distances

Multiplexed asymmetric
1.11 4.18 6.60

hierarchical 16 QAM

Multiplexed asymmetric

1.11 1.43 1.46hierarchical 16 QAM

having constant power

Table 2.2: PAPR of Uniformly Spaced 16 QAM and Single Symmetric
Hierarchical 16 QAM

PAPR (dB)

Uniformly spaced 16 QAM 2.55

Single symmetric hierarchical 16 QAM 0.90

image with a transmission rate of 0.375 bpp. To compare the image quality, we use

peak-signal-to-noise ratio (PSNR) defined as

PSNR = 10log
2552

E[D]
(dB) (2.117)

where 255 is due to the 8 bpp image, and E[D] is given by (2.114).

We present the PSNR performance for the uncoded case by numerically evalu-

ating (2.114)–(2.117) as follows: We first compute (2.115) for the block Rayleigh fading

channel using the expected distortion, E[D], given by (2.114), and the weight function,

ω(γs) , given by (2.116). Next, with d1, · · · , d2N (or dM,1, · · · , dM,N and dL,1, · · · , dL,N )

obtained from (2.115), we evaluate PSNR using (2.114) and (2.117) over a range of

expected SNRs given by (2.116).

Fig. 2.6 shows the PSNR performance of the multiplexed symmetric hierarchical

16 QAM constellations. For reference, it also shows PSNRs for single symmetric

hierarchical 16 QAM, as well as uniformly spaced QPSK and 16 QAM constellations.

The PSNR of single symmetric hierarchical constellation is evaluated in the same way

as that for multiplexed symmetric hierarchical constellations. From Fig. 2.6, it is seen
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Figure 2.7: PSNR performance of UEP system using multiplexed asymmetric hierar-
chical 16 QAM having constant power (H-16QAM denotes hierarchical 16 QAM).

that multiplexed symmetric hierarchical constellations improve the performance more

than does single symmetric hierarchical constellation. It is also seen that 32 multiplexed

symmetric hierarchical 16 QAM constellations, which provide 64 levels of UEP, have

almost saturated performance in this evaluation. However, by optimally permuting the

minimum distances according to Theorem 7 , an additional SNR gain of more than 0.5

dB is achieved. Note that the performance of N/2 multiplexed asymmetric hierarchical

constellations is the same as that of N multiplexed symmetric hierarchical constellations

(N=8,16,32) as stated by Theorem 12 , though the former is not depicted here.

Table I shows the PAPRs of the multiplexed symmetric or asymmetric hierarchi-

cal 16 QAM constellations. For reference, the PAPRs of single symmetric hierarchical

16 QAM and uniformly spaced 16 QAM constellations are also listed in Table II. From

Tables I and II, it is seen that when symmetric hierarchical 16 QAM constellations are

time-multiplexed, they have larger PAPR than does uniformly spaced 16 QAM as well
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as single symmetric hierarchical 16 QAM constellation. Table I also shows that PAPR

is reduced when asymmetric hierarchical constellation is used, as stated by Theorem 14

Fig. 2.7 shows the PSNR performance of the multiplexed asymmetric hierarchical

16 QAM constellations having constant power. It is shown that the performance is

degraded when constellations are required to have constant power, which is consistent

with Theorem 20. However, as seen from Table I, this scheme provides PAPR smaller

than uniformly-spaced QAM, and a high PAPR problem is solved.

2.8 Conclusion

Progressive image or scalable video encoders employ progressive transmission,

so that encoded data have gradual differences of importance in their bitstreams, which

necessitates multiple levels of UEP. Though hierarchical modulation has been intensively

studied for digital broadcasting or multimedia transmission, methods of achieving a large

number of levels of UEP for progressive mode of transmission have rarely been studied.

In this chapter, we proposed a multilevel UEP system using multiplexed hierar-

chical modulation for progressive transmission over mobile radio channels. Specifically,

we proposed a way of multiplexing N hierarchical 22K QAM constellations (K ≥ 2) and

proved that KN levels of UEP are achieved, under the assumption that the SNR of

interest for the nth most important bits is reasonably large so that the probability of

noise exceeding the Euclidian distance of dMn−1 + 1
2dMn is insignificant compared to that

of noise exceeding 1
2dMn , where dMn and dMn−1 are the minimum distances for the nth

and n− 1th important bits, respectively (2 ≤ n ≤ K). This assumption is based on the

fact that for hierarchical constellations, the minimum distance for more important bits

is greater than that for less important bits (i.e., dMn−1 > dMn). As a special case, for

hierarchical 16 QAM (K = 2), we showed that 2N levels of UEP are achieved without

the assumption.

When the BER is dominated by the error function term having the minimum

Euclidian distance, we derived an optimal multiplexing approach which minimizes both

the average and peak powers for hierarchical 22J/22K QAM (K > J ≥ 1) constellations

(typical examples are 4/16 QAM and 4/64 QAM which are employed in the DVB-T

standard). While the suggested methods achieve multiple levels of UEP, the PAPR

typically will be increased when constellations having distinct minimum distances are

time-multiplexed. To mitigate this effect, an asymmetric hierarchical QAM constellation,
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which reduces the PAPR without performance loss, was proposed. We also considered

the case where multiplexed constellations need to have constant power, and showed

that multilevel UEP can be achieved while the performance stays the same or degrades

in this case. Numerical results showed that the proposed multilevel UEP system

based on multiplexed modulation significantly enhances the performance for progressive

transmission over Rayleigh fading channels without any additional system bandwidth or

transmit power.

2.9 Appendix A: Proof of Theorem 3

2.9.1 Gray coded bit mapping vector for hierarchical 2K PAM

For a hierarchical 2K PAM constellation, let gn,i denote the Gray code for the nth

MSB (1 ≤ n ≤ K) assigned to the ith signal point (1 ≤ i ≤ 2K) from the left. Then, it

can be shown that the 2K-tuple Gray coded bit mapping vector, gn =
[
gn,1 gn,2 · · · gn,2K

]
,

for the nth MSB is given by

gn =





[
02K−1 12K−1

]
, for n = 1

[
02K−n 12K−n 12K−n 02K−n · · ·02K−n 12K−n 12K−n 02K−n

]
, for 2 ≤ n ≤ K

(2.118)

where 0l is a l-tuple all zero vector, and 1l is a l-tuple all one vector.

2.9.2 Euclidian distance between adjacent signal points for hierarchical

2K PAM

Let S
(K)
i (1 ≤ i ≤ 2K) and S

(K+1)
i (1 ≤ i ≤ 2K+1) denote the ith signal point

from the left for hierarchical 2K and 2K+1 PAM constellations, respectively. Also, let

d
(K)
Mn

(1 ≤ n ≤ K) and d
(K+1)
Mn

(1 ≤ n ≤ K + 1) denote minimum distances for the nth

MSB of hierarchical 2K and 2K+1 PAM constellations, respectively. Fig. 2.8 shows how

hierarchical 2K+1 PAM is constructed from hierarchical 2K PAM. There are two rules

with regard to the construction of hierarchical 2K+1 PAM from hierarchical 2K PAM:

i) The ith signal point for 2K PAM, S
(K)
i , is replaced by the 2i− 1th and 2ith signal

points for 2K+1 PAM, S
(K+1)
2i−1 and S

(K+1)
2i , which satisfy

d
(
S

(K+1)
2i−1 , S

(K+1)
2i

)
= d

(K+1)
MK+1

for 1 ≤ i ≤ 2K (2.119)
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Figure 2.8: The construction of hierarchical 2K+1 PAM from hierarchical 2K PAM.

where d(X, Y ) is the Euclidian distance between two signal points, X and Y .

ii) If the distance between S
(K)
i and S

(K)
i+1 for 2K PAM is d

(K)
Mn

, then the distance

between S
(K+1)
2i and S

(K+1)
2i+1 for 2K+1 PAM is d

(K+1)
Mn

. That is, for 1 ≤ i ≤ 2K − 1

and 1 ≤ n ≤ K,

d
(
S

(K+1)
2i , S

(K+1)
2i+1

)
= d

(K+1)
Mn

if d
(
S

(K)
i , S

(K)
i+1

)
= d

(K)
Mn

. (2.120)

As an example, Fig. 2.9 depicts hierarchical 4 and 8 PAM constellations.

We will prove the following by induction: For hierarchical 2K PAM (K ≥ 2), the

Euclidian distance between adjacent signal points is given by

d
(
S

(K)

(2i−1)2K−n , S
(K)

(2i−1)2K−n+1

)
= d

(K)
Mn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ K. (2.121)

Consider hierarchical 4 PAM. From Fig. 2.9, it is seen that

d
(
S

(2)
2 , S

(2)
3

)
= d

(2)
M1

and d
(
S

(2)
1 , S

(2)
2

)
= d

(
S

(2)
3 , S

(2)
4

)
= d

(2)
M2

. (2.122)

If we let K = 2 in (2.121), we have

d
(
S

(2)
(2i−1)22−n , S

(2)
(2i−1)22−n+1

)
= d

(2)
Mn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ 2. (2.123)

From (2.123), for n = 1, we have

d
(
S

(2)
(2i−1)2, S

(2)
(2i−1)2+1

)
= d

(2)
M1

for i = 1 ⇔ d
(
S

(2)
2 , S

(2)
3

)
= d

(2)
M1

(2.124)
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Figure 2.9: Hierarchical 4 and 8 PAM constellations.

where A ⇔ B denotes A and B are identical. From (2.123), for n = 2, we have

d
(
S

(2)
2i−1, S

(2)
2i

)
= d

(2)
M2

for i = 1, 2 ⇔ d
(
S

(2)
1 , S

(2)
2

)
= d

(
S

(2)
3 , S

(2)
4

)
= d

(2)
M2

. (2.125)

It is seen that (2.124) and (2.125) are identical to (2.122). Suppose that (2.121) holds

for 2l PAM. That is,

d
(
S

(l)

(2i−1)2l−n , S
(l)

(2i−1)2l−n+1

)
= d

(l)
Mn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ l. (2.126)

Consider hierarchical 2l+1 PAM. Eq. (2.120) can be rewritten as

d
(
S

(l+1)
2i , S

(l+1)
2i+1

)
= d

(l+1)
Mn

if d
(
S

(l)
i , S

(l)
i+1

)
= d

(l)
Mn

, (2.127)

for 1 ≤ i ≤ 2l − 1 and 1 ≤ n ≤ l. From (2.126) and (2.127), it can be shown that

d
(
S

(l+1)

(2i−1)2l+1−n , S
(l+1)

(2i−1)2l+1−n+1

)
= d

(l+1)
Mn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ l. (2.128)

Eq. (2.119) can be rewritten as

d
(
S

(l+1)
2i−1 , S

(l+1)
2i

)
= d

(l+1)
Ml+1

for 1 ≤ i ≤ 2l. (2.129)

From (2.129), (2.128) can be extended to the case n = l + 1. That is,

d
(
S

(l+1)

(2i−1)2l+1−n , S
(l+1)

(2i−1)2l+1−n+1

)
= d

(l+1)
Mn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ l + 1. (2.130)

If we let K = l + 1 in (2.121), it is identical to (2.130). Hence, (2.121) holds for

hierarchical 2l+1 PAM.
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g1 = [   0    0       0       0    1    1       1       1   ]

1
S

2
S

12
1
−

−KS 1
2

−KS
12

1
+

−KS
22

1
+

−KS
12 −

KS KS
2

Figure 2.10: Hierarchical 2K PAM constellation with the bit mapping vector g1 for the
MSB.

)(tn

NX +

tωcos2

ttxts ωcos2)()( = ∫ ⋅
T

dt
0

Figure 2.11: System model for hierarchical PAM.

For convenience, from here onwards, we use Si and dMn instead of S
(K)
i and d

(K)
Mn

for hierarchical 2K PAM. For integers j, n in the range of 1 ≤ j ≤ 2K−1 and 1 ≤ n ≤ K,

we define a function fn(j) as

fn(j) =





1, for j = (2 · 1− 1)2K−n, (2 · 2− 1)2K−n, · · · , (2 · 2n−1 − 1)2K−n

0, otherwise.
(2.131)

From (2.131), it can be shown that (2.121) is expressed as

d
(
Sj , Sj+1

)
=

K∑

n=1

fn(j)dMn for 1 ≤ j ≤ 2K − 1. (2.132)

2.9.3 BER of the MSB for hierarchical 2K PAM

Fig. 2.10 depicts a hierarchical 2K PAM constellation with the bit mapping

vector g1 for the MSB given by (2.118). The system model for hierarchical 2K PAM is

shown in Fig. 2.11. The transmitted signal is given by

s(t) = x(t)
√

2 cos ωt

= sgn(i− 2K−1 − 0.5)d
(
0, Si

)
PT (t)

√
2 cos ωt for 1 ≤ i ≤ 2K (2.133)

where sgn(·) denotes the sign of the real number, d
(
0, Si

)
is the Euclidian distance

between the origin and ith signal point Si (1 ≤ i ≤ 2K), and PT (t) is the transmit pulse
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defined as

PT (t) =





1, 0 ≤ t ≤ T

0, elsewhere
(2.134)

where T is the symbol duration. n(t) is zero-mean additive white Gaussian noise having

a power spectral density of N0/2. At the receiver, the decision statistic is given by

X = sgn(i− 2K−1 − 0.5)d
(
0, Si

)
T and N =

∫ T

0
n(t)

√
2 cos ωt dt (2.135)

where the standard deviation of N is
√

N0T/2. From Fig. 2.10, since the decision

boundary for bits 0 and 1 is the origin, the probability of correct decision for a signal

point assigned for bit 1, Si (i > 2K−1 + 1), is given by

Pc,Si = Pr
[
0 ≤ d

(
0, Si

)
T + N < ∞

]

= 1−Q


d

(
0, Si

)
T

√
N0T/2


 = 1−Q

(
d
(
0, Si

)√
2T

N0

)
.

(2.136)

From (2.136), the probability of correct decision for the MSB is given by

Pc =
1

2K−1

2K∑

i=2K−1+1

Pc,Si = 1− 1
2K−1

2K∑

i=2K−1+1

Q

(
d
(
0, Si

)√
2T

N0

)
(2.137)

and the BER for the MSB, PM1 , is given by

PM1 = 1− Pc =
1

2K−1

2K∑

i=2K−1+1

Q

(
d
(
0, Si

)√
2T

N0

)
. (2.138)

From (2.121), for n = 1, we have

d
(
S(2i−1)2K−1 , S(2i−1)2K−1+1

)
= dM1 for i = 1 ⇔ d

(
S2K−1 , S2K−1+1

)
= dM1 .(2.139)

Since the hierarchical PAM constellation is symmetric with respect to the origin, from

(2.139), we have

d
(
0, S2K−1+1

)
=

1
2
d
(
S2K−1 , S2K−1+1

)
=

dM1

2
. (2.140)
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For i ≥ 2K−1 + 2, d
(
0, Si

)
can be expressed as

d
(
0, Si

)
= d

(
0, S2K−1+1

)
+

i−1∑

j=2K−1+1

d
(
Sj , Sj+1

)
=

dM1

2
+

i−1∑

j=2K−1+1

d
(
Sj , Sj+1

)

(2.141)

where the second equality follows from (2.140). From (2.140) and (2.141), the BER

of the MSB, given by (2.138), can be rewritten as

PM1 =
1

2K−1
Q

(
dM1

2

√
2T

N0

)

+
1

2K−1

2K∑

i=2K−1+2

Q





dM1

2
+

i−1∑

j=2K−1+1

d
(
Sj , Sj+1

)



√
2T

N0


.

(2.142)

From (2.132),
∑i−1

j=2K−1+1 d
(
Sj , Sj+1

)
in (2.142) can be rewritten as

i−1∑

j=2K−1+1

d
(
Sj , Sj+1

)
=

i−1∑

j=2K−1+1

K∑

n=1

fn(j)dMn =
K∑

n=1

dMn

i−1∑

j=2K−1+1

fn(j). (2.143)

From (2.131), it can be shown that
∑l

j=1 fn(j) is expressed as

l∑

j=1

fn(j) =
⌊

l + 2K−n

2K−n+1

⌋
for 1 ≤ l ≤ 2K − 1 and 1 ≤ n ≤ K. (2.144)

From (2.144), (2.143) can be rewritten as

i−1∑

j=2K−1+1

d
(
Sj , Sj+1

)
=

K∑

n=1

dMn

(⌊
i− 1 + 2K−n

2K−n+1

⌋
−

⌊
2K−1 + 2K−n

2K−n+1

⌋)
. (2.145)

From (2.145), the second term of PM1 given by (2.142) can be expressed as

1
2K−1

2K∑

i=2K−1+2

Q

((
dM1

2
+

K∑

n=1

dMn

{⌊
i− 1 + 2K−n

2K−n+1

⌋
−

⌊
2K−1 + 2K−n

2K−n+1

⌋})√
2T

N0

)
.

(2.146)

Let p = i− 2K−1 − 1. Then (2.146) can be rewritten as

1
2K−1

2K−1−1∑

p=1

Q

((
dM1

2
+

K∑

n=1

dMn

{⌊
p + 2K−n

2K−n+1
+ 2n−2

⌋
− ⌊

2n−2 + 2−1
⌋}

)√
2T

N0

)
.

(2.147)
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For n ≥ 2, we have
⌊

p + 2K−n

2K−n+1
+ 2n−2

⌋
=

⌊
p + 2K−n

2K−n+1

⌋
+ 2n−2 and

⌊
2n−2 + 2−1

⌋
= 2n−2. (2.148)

For n = 1, we have
⌊

p + 2K−n

2K−n+1
+ 2n−2

⌋
=

⌊ p

2K
+ 1

⌋
= 1 and

⌊
2n−2 + 2−1

⌋
= 1 (2.149)

where the second equality of the first expression follows from 1 ≤ p ≤ 2K−1−1 in (2.147).

From (2.148) and (2.149), the second term of PM1 , given by (2.147), can be rewritten as

1
2K−1

2K−1−1∑

p=1

Q

((
dM1

2
+

K∑

n=2

dMn

⌊
p + 2K−n

2K−n+1

⌋)√
2T

N0

)
. (2.150)

Since
∑K

n=2 dMn

⌊
p+2K−n

2K−n+1

⌋
= 0 for p = 0, from (2.150), the BER of the MSB given by

(2.142) can be expressed as

PM1 =
1

2K−1

2K−1−1∑

p=0

Q

((
dM1

2
+

K∑

n=2

dMn

⌊
p + 2K−n

2K−n+1

⌋) √
2T

N0

)
. (2.151)

Note that (2.151) is the exact BER expression for the MSB of hierarchical 2K PAM.

2.9.4 BER of the n0th MSB (2 ≤ n0 ≤ K − 1) for hierarchical 2K PAM

A. Classification of 2K signal points into 2n0−1 mutually exclusive groups

We first find every pair of adjacent signal points which are separated by a

Euclidian distance greater than dMn0
(i.e., dMn0−1 , dMn0−2, · · · , dM1): For given n0 in

the range of 2 ≤ n0 ≤ K−1, let n = n0−m (1 ≤ m ≤ n0−1) in (2.121). Then, we have

d
(
S(2i−1)2K−n0+m , S(2i−1)2K−n0+m+1

)
= dMn0−m

for 1 ≤ i ≤ 2n0−m−1 and 1 ≤ m ≤ n0 − 1. (2.152)

It can be shown that
{
(2i− 1)2m−1 | 1 ≤ i ≤ 2n0−m−1 and 1 ≤ m ≤ n0 − 1

}
is identical

to
{
j | 1 ≤ j ≤ 2n0−1 − 1

}
. Hence, every pair of adjacent signal points which are

separated by a Euclidian distance greater than dMn0
, given by (2.152), can be expressed

as

Sj·2K+1−n0 , Sj·2K+1−n0+1 for 1 ≤ j ≤ 2n0−1 − 1. (2.153)



51

Next, we classify 2K signal points into 2n0−1 mutually exclusive groups such that

the Euclidian distance between adjacent signal points of the same group is smaller than

or equal to dMn0
. From (2.153), the signal points of the jth group can be derived as

S(j−1)2K+1−n0+1, S(j−1)2K+1−n0+2, · · · , Sj·2K+1−n0 for 1 ≤ j ≤ 2n0−1. (2.154)

We rewrite (2.121) in the following: For hierarchical 2K PAM (K ≥ 2), the Euclidian

distance between adjacent signal points is given by

d
(
S(2i−1)2K−n , S(2i−1)2K−n+1

)
= dMn for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ K. (2.155)

From (2.154) and (2.155), it can be shown that the Euclidian distance between adjacent

signal points of the jth group is given by

d
(
S(2i−1)2K−n , S(2i−1)2K−n+1

)
= dMn

for (j − 1)2n−n0 + 1 ≤ i ≤ j · 2n−n0 , n0 ≤ n ≤ K, and 1 ≤ j ≤ 2n0−1. (2.156)

Let p = i− (j − 1)2n−n0 . Then, (2.156) can be rewritten as

d
(
S(2p−1)2K−n+(j−1)2K+1−n0 , S(2p−1)2K−n+(j−1)2K+1−n0+1

)
= dMn

for 1 ≤ p ≤ 2n−n0 , n0 ≤ n ≤ K, and 1 ≤ j ≤ 2n0−1. (2.157)

Notation change: Let S
(j)
i denote S(j−1)2K+1−n0+i for convenience. Then, every pair

of adjacent signal points which are separated by a Euclidian distance greater than dMn0

(i.e., dMn0−1 , dMn0−2, · · · , dM1), given by (2.153), can be rewritten as

S
(j)

2K+1−n0
, S

(j+1)
1 for 1 ≤ j ≤ 2n0−1 − 1. (2.158)

The signal points of the jth group, given by (2.154), can be expressed as

S
(j)
1 , S

(j)
2 , · · · , S

(j)

2K+1−n0
for 1 ≤ j ≤ 2n0−1. (2.159)

Lastly, the Euclidian distance between adjacent signal points of the jth group, given by

(2.157), can be rewritten as

d
(
S

(j)

(2p−1)2K−n , S
(j)

(2p−1)2K−n+1

)
= dMn

for 1 ≤ p ≤ 2n−n0 , n0 ≤ n ≤ K, and 1 ≤ j ≤ 2n0−1. (2.160)

B. Probability of correct decision for signal points of the jth group
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Figure 2.12: The j − 1, j and j + 1th groups with the bit mapping vector for j = odd.

From (2.159), for 2 ≤ j ≤ 2n0−1− 1, the signal points of the j− 1, j, and j + 1th

groups are given by

S
(j−1)
1 , S

(j−1)
2 , · · · , S

(j−1)

2K+1−n0︸ ︷︷ ︸, S
(j)
1 , S

(j)
2 , · · · , S

(j)

2K+1−n0︸ ︷︷ ︸, S
(j+1)
1 , S

(j+1)
2 , · · · , S

(j+1)

2K+1−n0︸ ︷︷ ︸ .

j − 1th group jth group j + 1th group (2.161)

From (2.118), the bit mapping vector for the n0th MSB (2 ≤ n0 ≤ K − 1) of the j − 1,

j and j + 1th groups is derived as




[
02K−n0 12K−n0 12K−n0 02K−n0 02K−n0 12K−n0

]
, for j = even

[
12K−n0 02K−n0 02K−n0 12K−n0 12K−n0 02K−n0

]
, for j = odd.

(2.162)

From (2.161) and (2.162), j − 1, j, and j + 1th groups with the bit mapping vector for

j = odd are shown in Fig. 2.12, where D(j−1), D(j), and D(j+1) denote the decision

boundaries for bits 0 and 1 in the j − 1, j, and j + 1th groups, respectively. In the

following, we will derive the probability of correct decision for signal points of the jth

group (1 ≤ j ≤ 2n0−1):

i) Signal points assigned for bit 0 when j is odd in the range of 2 ≤ j ≤ 2n0−1 − 1

We here assume that for S
(j)
i (1 ≤ i ≤ 2K−n0), a signal point of the jth group

which is assigned for bit 0, the probability of correct decision can be calculated without

considering the other groups except for the j − 1, j, and j + 1 th groups (we will later

show that the assumption is correct if the SNR condition of this theorem is satisfied).

Fig. 2.13 shows the correct decision area for S
(j)
i (1 ≤ i ≤ 2K−n0) under the above

assumption. From Fig. 2.13, it follows that the probability of correct decision for S
(j)
i
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(1 ≤ i ≤ 2K−n0) based on the system model depicted in Fig. 2.11 is given by

P bit0
c = Pr

[
− d

(
D(j−1), S

(j)
i

)
T < N < d

(
S

(j)
i , D(j)

)
T

]

+ Pr
[
d
(
S

(j)
i , D(j+1)

)
T < N < d

(
S

(j)
i , S

(j+1)

2K+1−n0

)
T

]

= Pr
[
−

(
d
(
D(j−1), S

(j)
1

)
+ d

(
S

(j)
1 , S

(j)
i

))
T <

N <
(
d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j)

))
T

]

+ Pr
[(

d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j+1)

))
T <

N <
(
S

(j)
i , S

(j+1)

2K+1−n0

)
T

]
(2.163)

where the first and second terms follow from the correct decision areas #1 and #2 shown

in Fig. 2.13, respectively. Eq. (2.163) can be rewritten as

P bit0
c = 1− Pr

[
N >

(
d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j)

))
T

]

−Pr
[
N >

(
d
(
D(j−1), S

(j)
1

)
+ d

(
S

(j)
1 , S

(j)
i

))
T

]

+Pr
[ (

d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j+1)

))
T < N <

(
S

(j)
i , S

(j+1)

2K+1−n0

)
T

]
.

(2.164)

From Fig. 2.13, d
(
D(j−1), S

(j)
1

)
in the second term of (2.164) can be expressed as

d
(
D(j−1), S

(j)
1

)
= d

(
D(j−1), S

(j−1)

2K−n0+1

)
+ d

(
S

(j−1)

2K−n0+1
, S

(j−1)

2K+1−n0

)

+d
(
S

(j−1)

2K+1−n0
, S

(j)
1

)
. (2.165)

From (2.160), for n = n0, we have

d
(
S

(j)

2K−n0
, S

(j)

2K−n0+1

)
= dMn0

for 1 ≤ j ≤ 2n0−1. (2.166)
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Figure 2.13: The correct decision area for S
(j)
i (1 ≤ i ≤ 2K−n0) when j = odd.
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From the fact that d
(
D(j−1), S

(j−1)

2K−n0+1

)
= 1

2d
(
S

(j−1)

2K−n0
, S

(j−1)

2K−n0+1

)
and (2.166), (2.165)

can be rewritten as

d
(
D(j−1), S

(j)
1

)
=

1
2
dMn0

+ d
(
S

(j−1)

2K−n0+1
, S

(j−1)

2K+1−n0

)
+ d

(
S

(j−1)

2K+1−n0
, S

(j)
1

)
. (2.167)

From (2.158), we have

d
(
S

(j)

2K+1−n0
, S

(j+1)
1

)
≥ dMn0−1 for 1 ≤ j ≤ 2n0−1 − 1. (2.168)

From (2.168), d
(
D(j−1), S

(j)
1

)
, given by (2.167), satisfies

d
(
D(j−1), S

(j)
1

)
≥ 1

2
dMn0

+ dMn0−1 + d
(
S

(j−1)

2K−n0+1
, S

(j−1)

2K+1−n0

)
. (2.169)

Since d
(
S

(j−1)

2K−n0+1
, S

(j−1)

2K+1−n0

)
> 0 for n0 ≤ K − 1, we have

d
(
D(j−1), S

(j)
1

)
>

1
2
dMn0

+ dMn0−1 . (2.170)

Likewise, from Fig. 2.13, d
(
S

(j)

2K−n0
, D(j+1)

)
in the third term of (2.164) can be expressed

as

d
(
S

(j)

2K−n0
, D(j+1)

)
= d

(
S

(j)

2K−n0
, S

(j)

2K−n0+1

)
+ d

(
S

(j)

2K−n0+1
, S

(j)

2K+1−n0

)

+d
(
S

(j)

2K+1−n0
, S

(j+1)
1

)
+ d

(
S

(j+1)
1 , S

(j+1)

2K−n0

)
+ d

(
S

(j+1)

2K−n0
, D(j+1)

)
.

(2.171)

Since d
(
S

(j+1)

2K−n0
, D(j+1)

)
= 1

2d
(
S

(j+1)

2K−n0
, S

(j+1)

2K−n0+1

)
and from (2.166), (2.171) can be

rewritten as

d
(
S

(j)

2K−n0
, D(j+1)

)
=

3
2
dMn0

+ d
(
S

(j)

2K−n0+1
, S

(j)

2K+1−n0

)
+ d

(
S

(j)

2K+1−n0
, S

(j+1)
1

)

+d
(
S

(j+1)
1 , S

(j+1)

2K−n0

)
. (2.172)

From (2.168), d
(
S

(j)

2K−n0
, D(j+1)

)
satisfies

d
(
S

(j)

2K−n0
, D(j+1)

)
=

3
2
dMn0

+ dMn0−1 + d
(
S

(j)

2K−n0+1
, S

(j)

2K+1−n0

)

+d
(
S

(j+1)
1 , S

(j+1)

2K−n0

)
. (2.173)

We have d
(
S

(j)

2K−n0+1
, S

(j)

2K+1−n0

)
> 0 and d

(
S

(j+1)
1 , S

(j+1)

2K−n0

)
> 0 for n0 ≤ K − 1. Hence,

d
(
S

(j)

2K−n0
, D(j+1)

)
satisfies

d
(
S

(j)

2K−n0
, D(j+1)

)
>

3
2
dMn0

+ dMn0−1 . (2.174)
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From (2.170) and (2.174), it follows that the second and third terms of P bit0
c , given

by (2.164), are insignificant when the condition of this theorem is satisfied. Since S
(j)
i ,

S
(j)

2K−n0
, and D(j) belong to the jth group, d

(
S

(j)
i , S

(j)

2K−n0

)
+d

(
S

(j)

2K−n0
, D(j)

)
in the first

term of P bit0
c is the combination of dMn0

, dMn0+1 , · · · , dMK
from (2.160), and thus the

first term is not affected by the condition of this theorem. Hence, if the condition of this

theorem is satisfied, P bit0
c , given by (2.164), becomes

P bit0
c ≈ 1− Pr

[
N >

(
d
(
S

(j)
i , S

(j)

2K−n0

)
+ d

(
S

(j)

2K−n0
, D(j)

))
T

]
, (2.175)

which is identical to the probability of correct decision calculated only by considering

2K+1−n0 signal points of the isolated jth group. Since the j− 1 and j + 1th groups have

no effect on the correct decision probability for signal points of the jth group due to the

condition of this theorem, the other groups (i.e., 1, · · · , j− 2, j +2, · · · , 2n0−1th groups),

which are separated by larger Euclidian distances from the jth group than are the j − 1

and j + 1th groups, also have no effect. Hence, the assumption above (2.163) is correct.

ii) Signal points assigned for bit 1 when j is odd in the range of 2 ≤ j ≤ 2n0−1 − 1

It can be shown that the probability of correct decision for S
(j)
i (2K−n0 +1 ≤ i ≤

2K+1−n0) based on the system model depicted in Fig. 2.11 is given by

P bit1
c = 1− Pr

[
N >

(
d
(
D(j), S

(j)

2K−n0+1

)
+ d

(
S

(j)

2K−n0+1
, S

(j)
i

))
T

]

−Pr
[
N >

(
d
(
S

(j)
i , S

(j)

2K+1−n0

)
+ d

(
S

(j)

2K+1−n0
, D(j+1)

))
T

]

+Pr
[(

d
(
D(j−1), S

(j)

2K−n0+1

)
+ d

(
S

(j)

2K−n0+1
, S

(j)
i

))
T < N

< d
(
S

(j−1)
1 , S

(j)
i

)
T

]
,

(2.176)

where d
(
S

(j)

2K+1−n0
, D(j+1)

)
in the second term of (2.176) satisfies 1

d
(
S

(j)

2K+1−n0
, D(j+1)

)
>

1
2
dMn0

+ dMn0−1 , (2.177)

and d
(
D(j−1), S

(j)

2K−n0+1

)
in the third term of (2.176) satisfies

d
(
D(j−1), S

(j)

2K−n0+1

)
>

3
2
dMn0

+ dMn0−1 . (2.178)

1 Since the analysis of ii) is similar to that of i), we omit the detailed steps.
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From (2.176)–(2.178), if the condition of this theorem is satisfied, P bit1
c , given by (2.176),

becomes

P bit1
c ≈ 1− Pr

[
N >

(
d
(
D(j), S

(j)

2K−n0+1

)
+ d

(
S

(j)

2K−n0+1
, S

(j)
i

))
T

]
, (2.179)

which is identical to the probability of correct decision calculated only by considering

2K+1−n0 signal points of the isolated jth group.

iii) Signal points assigned for bit 0/1 when j is even in the range of 2 ≤ j ≤ 2n0−1 − 1

From (2.162), the bit mapping vector for j = even is just the complement

of that for j = odd. Hence, for j = even, P bit0
c and P bit1

c are given by (2.176) and

(2.164), respectively, and the results of i) and ii) hold for the case j is even.

iv) Signal points assigned for bit 0/1 when j = 1 (odd)

From Fig. 2.13, it follows that P bit0
c for j = 1 is given by

P bit0
c = 1− Pr

[
N >

(
d
(
S

(1)
i , S

(1)

2K−n0

)
+ d

(
S

(1)

2K−n0
, D(1)

))
T

]

+Pr
[ (

d
(
S

(1)
i , S

(1)

2K−n0

)
+ d

(
S

(1)

2K−n0
, D(2)

))
T < N < d

(
S

(1)
i , S

(2)

2K+1−n0

)
T

]
.

(2.180)

The only difference between (2.164) and (2.180) is that (2.180) does not have the second

term of (2.164), and thus the result of i) holds for the case j = 1. In a similar way, it

can be shown that for bit 1, the result of ii) holds for the case j = 1.

v) Signal points assigned for bit 0/1 when j = 2n0−1 (even)

In a similar way to iv), it can be shown that the result of iii) holds for the case

j = 2n0−1 .

From i)–v), it is seen that if the SNR condition of this theorem is satisfied, the

BER of the n0th MSB can be calculated only by considering 2K+1−n0 signal points

of the isolated jth group given by (2.159).

C. BER of the n0th MSB (2 ≤ n0 ≤ K − 1) for the isolated jth group

We derive the BER of the n0th MSB for the isolated jth group of 2K PAM from

that of the MSB for 2K+1−n0 PAM.

i) For hierarchical 2K+1−n0 PAM, from (2.155), the Euclidian distance between adjacent

signal points is given by

d
(
S(2i−1)2K+1−n0−n , S(2i−1)2K+1−n0−n+1

)
= dMn

for 1 ≤ i ≤ 2n−1 and 1 ≤ n ≤ K + 1− n0. (2.181)
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Let r = n + n0 − 1 and p = i. Then, (2.181) can be rewritten as

d
(
S(2p−1)2K−r , S(2p−1)2K−r+1

)
= dMr+1−n0

for 1 ≤ p ≤ 2r−n0 and n0 ≤ r ≤ K. (2.182)

From (2.160) and (2.182), it is seen that, if dMr+1−n0
in (2.182) is set equal to dMr , the

Euclidian distance between adjacent signal points for 2K+1−n0 PAM is the same as that

for the jth group of 2K PAM.

ii) For hierarchical 2K+1−n0 PAM, from (2.118), the bit mapping vector for the MSB is

given by

g1 =
[
02(K+1−n0)−1 12(K+1−n0)−1

]
=

[
02K−n0 12K−n0

]
. (2.183)

For the jth group of hierarchical 2K PAM, from (2.162), the bit mapping vector for the

n0th MSB is given by




[
12K−n0 02K−n0

]
, for j = even

[
02K−n0 12K−n0

]
, for j = odd.

(2.184)

It is seen that (2.184) is the same as or the complement of (2.183).

From i) and ii), it follows that the BER of the MSB for 2K+1−n0 PAM is the

same as that of the n0th MSB for the isolated jth group of 2K PAM, if dMr+1−n0
for

2K+1−n0 PAM is set equal to dMr (i.e., dMx is set equal to dMx+n0−1). From (2.151), the

BER of the MSB for hierarchical 2K+1−n0 PAM (2 ≤ n0 ≤ K − 1) is derived as

1
2K−n0

2K−n0−1∑

p=0

Q

((
dM1

2
+

K+1−n0∑

n=2

⌊
p + 2K+1−n0−n

2K+2−n0−n

⌋
dMn

)√
2T

N0

)
. (2.185)

Let r = n0 − 1 + n. Then (2.185) can be rewritten as

1
2K−n0

2K−n0−1∑

p=0

Q

((
dM1

2
+

K∑

r=n0+1

⌊
p + 2K−r

2K−r+1

⌋
dMr−n0+1

) √
2T

N0

)
. (2.186)

As stated above (2.185), by setting dMx equal to dMx+n0−1 in (2.186), the BER for the

n0th MSB (2 ≤ n0 ≤ K − 1) of the isolated jth group can be derived as

1
2K−n0

2K−n0−1∑

p=0

Q

((
dMn0

2
+

K∑

r=n0+1

⌊
p + 2K−r

2K−r+1

⌋
dMr

)√
2T

N0

)
. (2.187)

Note that the BER expression for the n0th MSB (2 ≤ n0 ≤ K − 1) of hierarchial 2K

PAM, given by (2.187), holds if the condition of this theorem is satisfied.
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2.9.5 BER of the Kth MSB (or LSB) for hierarchical 2K PAM

A. Classification of 2K signal points into 2K−2 mutually exclusive groups

For the Kth MSB (or LSB), we define the signal points of the jth group as

S
(j)
1 , S

(j)
2 , S

(j)
3 , S

(j)
4 for 1 ≤ j ≤ 2K−2, (2.188)

which is identical to (2.159) with n0 = K− 1. If we let n0 = K− 1 in (2.158), every pair

of adjacent signal points which are separated by Euclidian distances greater than dMK−1

(i.e., dMK−2
, dMK−3

, · · · , dM1) is given by

S
(j)
4 , S

(j+1)
1 for 1 ≤ j ≤ 2K−2 − 1. (2.189)

Also let n0 = K − 1 in (2.160). Then, for 1 ≤ j ≤ 2K−2, the Euclidian distance between

adjacent signal points of the jth group can be derived as

d
(
S

(j)
2 , S

(j)
3

)
= dMK−1

and d
(
S

(j)
1 , S

(j)
2

)
= d

(
S

(j)
3 , S

(j)
4

)
= dMK

. (2.190)

B. Probability of correct decision for signal points of the jth group

From (2.188), for 2 ≤ j ≤ 2K−2− 1, the signal points of the j − 1, j, and j + 1th

groups are given by

S
(j−1)
1 , S

(j−1)
2 , S

(j−1)
3 , S

(j−1)
4︸ ︷︷ ︸, S

(j)
1 , S

(j)
2 , S

(j)
3 , S

(j)
4︸ ︷︷ ︸, S

(j+1)
1 , S

(j+1)
2 , S

(j+1)
3 , S

(j+1)
4︸ ︷︷ ︸ .

j − 1th group jth group j + 1th group (2.191)

From (2.118), the bit mapping vector for the Kth MSB of the j−1, j and j +1th groups

is given by
[
0 1 1 0 0 1 1 0 0 1 1 0

]
. (2.192)

From (2.191) and (2.192), j − 1, j, and j + 1th groups with the bit mapping vector

are shown in Fig. 2.14, where D
(j−1)
i , D

(j)
i , and D

(j+1)
i (i = 1, 2) denote the decision

boundaries for bits 0 and 1 in the j − 1, j, and j + 1th groups, respectively. In the

following, we will derive the probability of correct decision for signal points of the jth

group (1 ≤ j ≤ 2K−2):

i) Signal points assigned for bit 0 when 2 ≤ j ≤ 2K−2 − 1

We here assume that for S
(j)
i (i = 1, 4), a signal point of the jth group which

is assigned for bit 0, the probability of correct decision can be calculated without
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Figure 2.14: The j − 1, j and j + 1th groups with the bit mapping vector.

considering the other groups except for the j − 1, j, and j + 1 th groups (we will later

show that the assumption is correct if the SNR condition of this theorem is satisfied).

Fig. 2.15 shows the correct decision area for S
(j)
i (i = 1, 4) under the above assumption.

From Fig. 2.15, it follows that the probability of correct decision for S
(j)
1 , denoted by

P bit0
c,S1

, based on the system model depicted in Fig. 2.11 is given by

P bit0
c,S1

= Pr
[
N < −d

(
D

(j−1)
1 , S

(j)
1

)
T

]
+ Pr

[
− d

(
D

(j−1)
2 , S

(j)
1

)
T < N < d

(
S

(j)
1 , D

(j)
1

)
T

]

+Pr
[
d
(
S

(j)
1 , D

(j)
2

)
T < N < d

(
S

(j)
1 , D

(j+1)
1

)
T

]

+Pr
[
N > d

(
S

(j)
1 , D

(j+1)
2

)
T

]
(2.193)

where the first, second, third and fourth terms follow from the correct decision areas #1,

#2, #3, and #4 shown in Fig. 2.15, respectively. Eq. (2.193) can be rewritten as

P bit0
c,S1

= 1 + Pr
[
N > d

(
D

(j−1)
1 , S

(j)
1

)
T

]
− Pr

[
N > d

(
S

(j)
1 , D

(j)
1

)
T

]

−Pr
[
N > d

(
D

(j−1)
2 , S

(j)
1

)
T

]
+ Pr

[
d
(
S

(j)
1 , D

(j)
2

)
T < N < d

(
S

(j)
1 , D

(j+1)
1

)
T

]

+Pr
[
N > d

(
S

(j)
1 , D

(j+1)
2

)
T

]
. (2.194)
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Figure 2.15: The correct decision area for S
(j)
i (i = 1, 4).
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From (2.189), (2.190), and Fig. 2.15, it can be shown that

d
(
D

(j−1)
1 , S

(j)
1

)
≥ 3

2
dMK

+ dMK−1
+ dMK−2

d
(
D

(j−1)
2 , S

(j)
1

)
≥ 1

2
dMK

+ dMK−2

d
(
S

(j)
1 , D

(j)
2

)
=

3
2
dMK

+ dMK−1

d
(
S

(j)
1 , D

(j+1)
2

)
≥ 7

2
dMK

+ 2dMK−1
+ dMK−2

d
(
S

(j)
1 , D

(j)
1

)
=

1
2
dMK

. (2.195)

Note that the first four distances in (2.195) are greater than 1
2dMK

+dMK−1
, whereas the

last distance is smaller than 1
2dMK

+ dMK−1
. Hence, the second, fourth, fifth and sixth

terms of P bit0
c,S1

, given by (2.194), are insignificant when the condition of this theorem is

satisfied, whereas the third term of P bit0
c,S1

is not affected by the condition of this theorem.

Therefore, if the condition of this theorem is satisfied, P bit0
c,S1

, given by (2.194), becomes

P bit0
c,S1

≈ 1− Pr
[
N > d

(
S

(j)
1 , D

(j)
1

)
T

]
. (2.196)

In a similar manner, it can be shown that under the condition of this theorem, the

probability of correct decision for S
(j)
4 , denoted by P bit0

c,S4
, becomes

P bit0
c,S4

≈ 1− Pr
[
N > d

(
D

(j)
2 , S

(j)
4

)
T

]
. (2.197)

From (2.196) and (2.197), it is clear that the j − 1 and j + 1th groups have no effect on

the correct decision probability for signal points of the jth group, due to the condition of

this theorem. Hence, the other groups (i.e., 1, · · · , j−2, j+2, · · · , 2K−2th groups), which

are separated by larger Euclidian distances from the jth group than are the j − 1 and

j + 1th groups, also have no effect. Therefore, the assumption above (2.193) is correct.

Since d
(
S

(j)
1 , D

(j)
1

)
=d

(
D

(j)
2 , S

(j)
4

)
=1

2dMK
, and from (2.196) and (2.197), it can

be shown that the probability of correct decision for S
(j)
i (i = 1, 4), P bit0

c , under the

condition of this theorem is given by

P bit0
c =

1
2

(
P bit0

c,S1
+ P bit0

c,S4

)
≈ 1−Q

(
dMK

2

√
2T

N0

)
. (2.198)

ii) Signal points assigned for bit 1 when 2 ≤ j ≤ 2K−2 − 1
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It can be shown that the probability of correct decision for S
(j)
2 , denoted by P bit1

c,S2
,

is given by

P bit1
c,S2

= Pr
[
− d

(
D

(j−1)
1 , S

(j)
2

)
T < N < −d

(
D

(j−1)
2 , S

(j)
2

)
T

]

+Pr
[
− d

(
D

(j)
1 , S

(j)
2

)
T < N < d

(
S

(j)
2 , D

(j)
2

)
T

]

+Pr
[
d
(
S

(j)
2 , D

(j+1)
1

)
T < N < d

(
S

(j)
2 , D

(j+1)
2

)
T

]
. (2.199)

Eq. (2.199) can be rewritten as

P bit1
c,S2

= 1 + Pr
[
d
(
D

(j−1)
2 , S

(j)
2

)
T < N < d

(
D

(j−1)
1 , S

(j)
2

)
T

]

−Pr
[
N > d

(
S

(j)
2 , D

(j)
2

)
T

]
− Pr

[
N > d

(
D

(j)
1 , S

(j)
2

)
T

]

+Pr
[
d
(
S

(j)
2 , D

(j+1)
1

)
T < N < d

(
S

(j)
2 , D

(j+1)
2

)
T

]
. (2.200)

From (2.189), (2.190), and Fig. 2.15, it can be shown that

d
(
D

(j−1)
2 , S

(j)
2

)
≥ 3

2
dMK

+ dMK−2

d
(
S

(j)
2 , D

(j+1)
1

)
≥ 3

2
dMK

+ dMK−1
+ dMK−2

d
(
S

(j)
2 , D

(j)
2

)
=

1
2
dMK

+ dMK−1

d
(
D

(j)
1 , S

(j)
2

)
=

1
2
dMK

. (2.201)

Note that the first two distances in (2.201) are greater than 1
2dMK

+ dMK−1
, whereas

the last distance is smaller than 1
2dMK

+ dMK−1
. Hence, the second and fifth terms of

P bit1
c,S2

, given by (2.200), are insignificant when the condition of this theorem is satisfied,

whereas the fourth term of P bit1
c,S2

is not affected by the condition of this theorem. Due

to the fact that the third distance in (2.201) is the exactly the same as 1
2dMK

+ dMK−1
,

the third term of P bit1
c,S2

can be either discarded or preserved when the the condition of

this theorem is satisfied. If we do not discard the third term, under the condition of this

theorem, P bit1
c,S2

, given by (2.200), becomes

P bit1
c,S2

≈ 1− Pr
[
N > d

(
S

(j)
2 , D

(j)
2

)
T

]
− Pr

[
N > d

(
D

(j)
1 , S

(j)
2

)
T

]
. (2.202)

In a similar manner, it can be shown that if the condition of this theorem is satisfied,

the probability of correct decision for S
(j)
3 , denoted by P bit1

c,S3
, becomes

P bit1
c,S3

≈ 1− Pr
[
N > d

(
S

(j)
3 , D

(j)
2

)
T

]
− Pr

[
N > d

(
D

(j)
1 , S

(j)
3

)
T

]
. (2.203)
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Since d
(
S

(j)
2 , D

(j)
2

)
=d

(
D

(j)
1 , S

(j)
3

)
=1

2dMK
+ dMK−1

and d
(
D

(j)
1 , S

(j)
2

)
=d

(
S

(j)
3 , D

(j)
2

)
=

1
2dMK

, and from (2.202) and (2.203), it can be shown that the probability of correct

decision for S
(j)
i (i = 2, 3), P bit1

c , under the condition of this theorem is given by

P bit1
c =

1
2

(
P bit1

c,S2
+ P bit1

c,S3

)

≈ 1−Q

((
dMK−1

+
dMK

2

) √
2T

N0

)
−Q

(
dMK

2

√
2T

N0

)
. (2.204)

iii) Signal points assigned for bit 0/1 when j = 1 or j = 2K−2

It can be shown that the results of i) and ii) hold for the case j = 1 or j = 2K−2.

From i)–iii), it follows that if the SNR condition of this theorem is satisfied, the

BER of the Kth MSB (or LSB), PMK
, is derived as

PMK
= 1− 1

2

(
P bit0

c + P bit1
c

)

≈ Q

(
dMK

2

√
2T

N0

)
+

1
2
Q

((
dMK−1

+
dMK

2

) √
2T

N0

)
(2.205)

where P bit0
c and P bit1

c are given by (2.198) and (2.204), respectively.

From (2.151), (2.187), and (2.205), the BER of the n0th MSB (1 ≤ n0 ≤ K) for

hierarchical 2K PAM can be expressed as




∑2K−n0−1
p=0

1
2K−n0

Q
((

dMn0
2 +

∑K
r=n0+1

⌊
p+2K−r

2K−r+1

⌋
dMr

)√
2T
N0

)
,

for 1 ≤ n0 ≤ K − 1

Q
(

dMK
2

√
2T
N0

)
+ 1

2Q
((

dMK−1
+

dMK
2

)√
2T
N0

)
,

for n0 = K.

(2.206)

Note that (2.206) is the exact BER expression for the MSB, but for 2 ≤ n0 ≤ K th MSB,

(2.206) holds if the condition of this theorem is satisfied. Lastly, it can be shown that

the BER of the inphase or quadrature components for hierarchical 22K QAM is the same

as that for hierarchical 2K PAM. For hierarchical 22K QAM, let Es = PavgT denote the

average energy of the transmitted signal. Setting 2T/N0 = 2Es/N0Pavg = 2γs/Pavg in

(2.206), (2.16) is derived.
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2.10 Appendix B: Numerical Evaluation of the BER Ex-

pression (2.16)

Figs. 2.16–2.19 show the numerical evaluation of the BER expression given by

(2.16) for hierarchical 64 and 256 QAM when the distance ratio is 1 or 2.
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Figure 2.16: BER for hierarchical 64 QAM (the distance ratio dMn−1/dMn = 1 i.e.,
the lower bound).
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Chapter 3

Superposition MIMO Coding for

the Broadcast of Layered Sources

3.1 Introduction

Recently, multiple-input multiple-output (MIMO) systems have received a great

deal of attention, since they can improve capacity and reliability relative to single-input

single-output (SISO) systems. Two popular techniques for MIMO systems are space-time

coding [27]– [30] and spatial multiplexing [31]– [34]. Space-time coding is an approach

where information is spread across multiple transmit antennas to maximize spatial

diversity in fading channels. Spatial multiplexing is an approach whereby independent

information is transmitted on each antenna, and thus the transmit data rate is increased

without additional system bandwidth.

In this chapter, we propose superposition MIMO coding for the transmission

of layered sources such as progressive images or scalable video in a point-to-multipoint

system. In a point-to-multipoint transmission such as broadcasting or multicasting,

a single source transmits an encoded signal to multiple receivers. Depending on its

location, each receiver experiences different channel conditions in terms of the received

signal strength and the level of interference and noise power. Even if channel state

information for each receiver were available at the transmitter based on feedback from

the receivers, the modulation alphabet size and the MIMO mode cannot be adapted

at each receiver due to the nature of broadcast transmission. We first analyze the

tradeoff between space-time coding and spatial multiplexing under the constraint that

66
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the two systems have the same maximum data rate. In this analysis, the modulation

alphabet sizes for space-time coding and spatial multiplexing are chosen to be different

such that the maximum data rates for both schemes are the same. The results show

that for a given target bit error rate (BER), space-time coding is preferable to spatial

multiplexing for a low data rate (i.e., small alphabet size), and vice versa for a high

data rate (i.e., large alphabet size). In a hierarchical transmission [18]– [21] [24],

important components and less important components, which are delivered by the basic

subconstellation and the secondary subconstellation, respectively, do not necessarily have

the same data rate. A typical example is scalable video. The base layer, which is more

important, has a smaller number of bits than does the enhancement layer. In other

words, the more important component has lower data rate than does the less important

component. Therefore, when a layered source is transmitted hierarchically in MIMO

systems, a tradeoff between two different MIMO approaches, space-time coding and

spatial multiplexing, should be considered for each component of the layered source.

Based on this fact and the analysis of the tradeoff between space-time coding and spatial

multiplexing, we propose a layered source broadcasting system where two different MIMO

techniques are hierarchically combined. More specifically, Alamouti coding is applied

for the more important component which has lower data rate, in order to maximize

the performance for the receivers with poor channel qualities. Spatial multiplexing is

applied for the less important component having higher data rate, which is decoded

only by receivers having good channel conditions. Superposition of two different MIMO

approaches is embodied in a way that basic subconstellation symbols are encoded with

Alamouti coding, secondary subconstellation streams are spatially multiplexed, and then

two subconstellation symbols are superposed to construct the final transmit symbols.

The rest of the chapter is organized as follows. In Section 3.2, we analyze

the tradeoff between Alamouti coding [27] and spatial multiplexing having the same

maximum data rate. Based on the analysis, in Section 3.3 we propose a superposition

of different MIMO approaches. In Section 3.4, numerical results are provided, and we

conclude our work in Section 3.5.



68

PSNR

SNR

Space-time 

coding

Spatial 

multiplexing

Figure 3.1: The PSNR performance of spatial multiplexing and space-time coding for
the same modulation alphabet size.

3.2 Comparison of Alamouti Coding and Spatial Multi-

plexing Having the Same Maximum Data Rate

When the same modulation alphabet size is employed for both spatial multi-

plexing and space-time coding schemes, the former achieves better peak-signal-to-noise

ratio (PSNR) performance at high SNR due to a increased data rate, whereas the latter

retains robustness at low SNR. This is qualitatively depicted in Fig. 3.1. Since we are

considering a point-to-multipoint transmission where a single source transmits data to

multiple receivers having various channel qualities, we cannot optimally switch between

two different MIMO modes (i.e, both modulation and MIMO mode are fixed). For this

case, as a way to compare spatial multiplexing and space-time coding schemes fairly, the

maximum data rates of both are set to be equal.

3.2.1 Channel Model

The MIMO system is equipped with NT transmit and NR(≥ NT ) receive

antennas. The propagation channel from the transmitter to the receiver is characterized

by an NR × NT channel matrix H whose element hjk at the jth row and kth column

is the channel gain from the kth transmit antenna to the jth receive antenna, and the

hjk’s are assumed to be independent and identically distributed (i.i.d) complex Gaussian

random variables with zero mean and unit variance. The NR-dimensional received signal
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vector y = [y1 y2 · · · yNR
]T after matched filtering and sampling can be expressed as

y = Hs + n (3.1)

where s = [s1 s2 · · · sNT
]T denotes the NT -dimensional transmit symbol vector, and

n = [n1 n2 · · ·nNR
]T is the NR-dimensional noise vector whose elements are assumed to

be i.i.d. complex Gaussian random variables with zero mean and variance of σ2
n. It is

assumed that transmission bandwidth is much less than the coherence bandwidth of the

channel, and that the symbol time period is much less than the coherence time.

3.2.2 Average BER

We first express the average BER of the Alamouti scheme for an M -ary square

QAM constellation. A closed-form expression for the average BER of such a constellation

for SISO systems in an AWGN channel is given by [51, eq. (14)]

Pb,SISO =
4√

M log2 M

log2

√
M∑

k=1

(1−2−k)
√

M−1∑

i=0





(−1)
⌊

i·2k−1√
M

⌋ (
2k−1 −

⌊
i · 2k−1

√
M

+
1
2

⌋)

×Q

(
(2i + 1)

√
3γs

M − 1

) 



(3.2)

where γs is the signal-to-noise ratio (SNR) per symbol. We define the average SNR per

symbol in a MIMO system as

γs ,
E

[|sk|2
]

σ2
n

, k = 1, 2, · · · , NT (3.3)

where sk is the kth component of the transmit symbol vector s (i.e., a constellation

symbol transmitted from the kth antenna). For the Alamouti scheme, the instantaneous

post-processing SNR per symbol at the receiver end, denoted by η, can be expressed as

([52, eq. (5.40)])

η = γs ‖H‖2
F (3.4)

where ‖H‖2
F is the squared Frobenius norm of H. The η has a chi-square probability

density function (PDF) with 2NT NR degrees of freedom [52, eq. (3.43)]:

fη(x) =
xNT NR−1

(NT NR − 1)! γNT NR
s

e
− x

γs , x > 0. (3.5)
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From [53, eq. (3.37)], it can be shown that
∫ ∞

0
Q

(√
αx

) xNT NR−1

(NT NR − 1)! γNT NR
s

e
− x

γs dx

=
(

1− β

2

)NT NR NT NR−1∑

j=0





(
NT NR − 1 + j

j

)
×

(
1 + β

2

)j





(3.6)

where β =
√

α γs

2+α γs
. In the Alamouti scheme, an identical constellation symbol, sk, is

transmitted twice during two symbol time periods ([52, eqs. (5.34) and (5.35)]), [27],

and thus for an M -ary QAM constellation, the SNR per bit, γb, is derived from γs using

a factor of two:

γb = 2× γs

log2 M
. (3.7)

From (3.2), (3.6) and (3.7), the exact BER of the Alamouti scheme for an M -ary square

QAM constellation can be expressed as

Pb,Alamouti =
4√

M log2 M

log2

√
M∑

k=1

(1−2−k)
√

M−1∑

i=0


(−1)

⌊
i·2k−1√

M

⌋ (
2k−1 −

⌊
i · 2k−1

√
M

+
1
2

⌋)

×
(

1− µ(i)
2

)NT NR NT NR−1∑

j=0





(
NT NR − 1 + j

j

)(
1 + µ(i)

2

)j






 (3.8)

where

µ(i) =

√
3(2i + 1)2 (log2 M) γb

4(M − 1) + 3(2i + 1)2 (log2 M) γb
.

We next derive the average BER of the spatial multiplexing with a zero forcing (ZF)

receiver for M -ary square QAM. It has been shown that for the ZF receiver, the

instantaneous post-processing SNR on each independent transmit stream is a chi-squared

random variable with 2(NR − NT + 1) degrees of freedom [54] [55], and thus the exact

BER expression is achievable. The PDF of the instantaneous post-processing SNR on

each transmit stream is given by

fη(x) =
xNR−NT

(NR −NT )! γNR−NT +1
s

e
− x

γs , x > 0 (3.9)
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where γs is defined in (3.3). It can be shown that
∫ ∞

0
Q

(√
αx

) xNR−NT

(NR −NT )! γNR−NT +1
s

e
− x

γs dx

=
(

1− β

2

)NR−NT +1 NR−NT∑

j=0


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)
×
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)j


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(3.10)

where β =
√

α γs

2+α γs
. For spatial multiplexing, the SNR per bit, γb, is given by

γb =
γs

log2 M
. (3.11)

Note that (3.7) and (3.11) differ by a factor of two. From (3.2), (3.10) and (3.11),

the exact BER of the spatial multiplexing with ZF receiver for an M -ary square QAM

constellation can be expressed as

Pb,SM−ZF =
4√

M log2 M

log2

√
M∑

k=1

(1−2−k)
√
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
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j
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1 + µ(i)
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where

µ(i) =

√
3(2i + 1)2 (log2 M) γb

2(M − 1) + 3(2i + 1)2 (log2 M) γb
.

3.2.3 High SNR Approximation (Minimum Euclidian Distance Ap-

proximation) of the Average BER

For high SNR, the BER is approximated by the Q-function term having the

minimum Euclidian distance. If we discard the terms having non-minimum Euclidian

distances in (3.2) (i.e., only consider i = 0 in (3.2)), we have

Pb,SISO ≈ 4√
M log2 M

log2

√
M∑

k=1

2k−1 Q

(√
3γs

M − 1

)

=
4(
√

M − 1)√
M log2 M

Q

(√
3γs

M − 1

)
(3.13)
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where the second equality follows from
∑log2

√
M

k=1 2k−1 =
√

M−1. From (3.6) and (3.13),

we have

Pb,Alamouti ≈ 4(
√

M − 1)√
M log2 M

(
1− µ

2

)NT NR NT NR−1∑

j=0

(
NT NR − 1 + j

j

)(
1 + µ

2

)j

(3.14)

where

µ =

√
3(log2 M)γb

4(M − 1) + 3(log2 M)γb
. (3.15)

Further, for high SNR, (3.15) can be approximated as

µ ≈ 1− 2(M − 1)
3(log2 M)γb

(3.16)

where we have used
√

x
1+x ≈ 1− 1

2x for x >> 1. From (3.16), we have

1− µ

2
≈ M − 1

3(log2 M)γb
and

1 + µ

2
≈ 1− M − 1

3(log2 M)γb
≈ 1. (3.17)

Using (3.17), it can be shown that (3.14) can be rewritten as

Pb,Alamouti ≈ P app
b,Alamouti =

(
2NT NR − 1

NT NR

)
4(
√

M − 1)√
M log2 M

(
M − 1

3 log2 M

)NT NR
(

1
γb

)NT NR

(3.18)

In the same way, it can be shown that for high SNR, Pb,SM−ZF , given by (3.12), can be

approximated as

Pb,SM−ZF ≈ P app
b,SM−ZF =

(
2(NR −NT )− 1

NR −NT

)
4(
√

M − 1)√
M log2 M

(
M − 1

6 log2 M

)NR−NT +1

×
(

1
γb

)NR−NT +1

. (3.19)

3.2.4 Comparison of High SNR BERs of Alamouti scheme and Spatial

Multiplexing for the Same Maximum Data Rate

1) Crossover point for SNR: We compare the high SNR approximate BERs of the

Alamouti scheme and the spatial multiplexing scheme having the same maximum data

rate. To do this, we employ m-ary QAM for spatial multiplexing, and m2-ary QAM for

the Alamouti scheme. It is assumed that m is greater than or equal to 4 (i.e., QPSK).

Note that NR ≥ NT = 2. If we let M = m2 in (3.18), we have

P app
b,Alamouti =

(
2NT NR − 1

NT NR

)
2(m− 1)
m log2 m

(
m2 − 1
6 log2 M

)NT NR
(

1
γb

)NT NR

. (3.20)
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If we let M = m in (3.19), we have

P app
b,SM−ZF =

(
2(NR −NT )− 1

NR −NT

)
4(
√

m− 1)√
m log2 m

(
m− 1

6 log2 m

)NR−NT +1 (
1
γb

)NR−NT +1

(3.21)

We find the SNR, γ∗b , for which (3.20) and (3.21) are the same. That is,

(
2NT NR − 1

NT NR

)
2(m− 1)
m log2 m

(
m2 − 1
6 log2 M

)NT NR
(

1
γ∗b

)NT NR

=
(

2(NR −NT )− 1
NR −NT

)
4(
√

m− 1)√
m log2 m

(
m− 1

6 log2 m

)NR−NT +1 (
1
γ∗b

)NR−NT +1

. (3.22)

It can be shown that the γ∗b satisfying (3.22) is given by

γ∗b =





(
2NT NR−1

NT NR

)

2
(2(NR−NT )−1

NR−NT

)
6(NR+1)(NT−1)

×(
√

m + 1)(m− 1)(NR+1)(NT−1)(m + 1)NT NR

√
m(log2 m)(NR+1)(NT−1)





1
(NR+1)(NT−1)

. (3.23)

We define the function f(m) as

f(m) = (
√

m + 1)
m + 1√

m

(
m− 1
log2 m

)(NR+1)(NT−1)

(m + 1)NT NR−1. (3.24)

Also, let f1(m) = (m + 1)/
√

m, and let f2(m) = (m− 1)/ log2 m. Note that for m ≥ 4,

we have

df1(m)
dm

=
m− 1
2m
√

m
> 0 and

df2(m)
dm

=
log2 m + 1

m − 1
(log2 m)2

> 0. (3.25)

From (3.24) and (3.25), it is clear that f(m) is a strictly increasing function in m. From

(3.23) and (3.24), it is seen that as the alphabet size, m, increases, γ∗b strictly increases,

regardless of the number of receive antennas.

2) Crossover point for BER: It can be shown that if we substitute γ∗b , given by

(3.23), into (3.20), the corresponding BER, P ∗
b , is given by

P ∗
b = 2

(
2NT NR − 1

NT NR

) {
2
(2(NR−NT )−1

NR−NT
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(
2NT NR−1

NT NR

)
} NT NR
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m log2 m
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m√

m + 1
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×
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1
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. (3.26)
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Let

g(m) =
m− 1

m log2 m

( √
m√

m + 1

) NT NR
(NR+1)(NT−1)

(
1

m + 1

)NT NR(NR−NT +1)
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=
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(NR+1)(NT−1)

×
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1
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)NT NR(NR−NT )

(NR+1)(NT−1)

. (3.27)

We let g1(m) =
√

m/(m + 1), and g2(m) = (m − 1)/(m log2 m). Then, for m ≥ 4, we

have

dg1(m)
dm

=
1−m

2
√

m(m + 1)2
< 0. (3.28)

We also have

dg2(m)
dm

=
log2 m− m

ln 2 + 1
ln 2

(m log2 m)2
< 0. (3.29)

where the inequality is derived from the following:

i) Let h(m) be the numerator of dg2(m)/dm.

ii) For m ≥ 4, we have dh(m)/dm = (1−m)/(m ln 2) < 0. Further, h(4) = 2−3/ ln 2 <

0.

iii) Hence, h(m) < 0 for m ≥ 4

From (3.27)–(3.29), g(m) is a strictly decreasing function in m. From (3.26) and (3.27),

as the alphabet size, m, increases, P ∗
b strictly decreases, regardless of the number of

receive antennas.

3) Comparison of the BERs: From (3.20) and (3.21), the ratio of P app
b,Alamouti to

P app
b,SM−ZF , denoted by R(γb), is given by

R(γb) =

(
2NT NR−1

NT NR

)
(
√

m + 1)
(

m2−1
6 log2 m

)NT NR

2
(2(NR−NT )−1

NR−NT

)√
m

(
m−1

6 log2 m

)NR−NT +1

(
1
γb

)(NR+1)(NT−1)

. (3.30)

From (3.30), it is seen that R(γb) is a strictly decreasing function in γb, and thus from

R(γ∗b ) = 1, we have

P app
b,Alamouti < P app

b,SM−ZF for γb > γ∗b

P app
b,Alamouti > P app

b,SM−ZF for γb < γ∗b . (3.31)
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Figure 3.2: High SNR approximate BERs of the Alamouti and spatial multiplexing
schemes for the same maximum data rate. For alphabet size C1 < C2, these BERs
have the following properties: i) γ∗b,1 < γ∗b,2 ii) P ∗

b,1 > P ∗
b,2 iii) P app

b,i,Alamouti <

P app
b,i,SM−ZF for γb,i > γ∗b,i, and P app

b,i,Alamouti > P app
b,i,SM−ZF for γb,i < γ∗b,i (i = 1, 2).

Let P ∗
b,1 and γ∗b,1 denote the crossover point when a modulation alphabet size m = C1 is

employed, and P ∗
b,2 and γ∗b,2 denote the crossover point when an alphabet size m = C2 is

used. Suppose that C1 < C2. Then, from the results below (3.25) and (3.29), we have

γ∗b,1 < γ∗b,2 and P ∗
b,1 > P ∗

b,2. (3.32)

Based on (3.31) and (3.32), the high SNR approximate BERs of the Alamouti scheme and

spatial multiplexing with ZF receiver for the same maximum data rate are qualitatively

depicted in Fig. 3.2. Suppose that a target bit error rate, Pb,T , is smaller than P ∗
b,1

but greater than P ∗
b,2. Then, from Fig. 3.2, it is seen that the Alamouti scheme is

preferable to spatial multiplexing for an alphabet size C1, whereas spatial multiplexing

is preferable for an alphabet size C2. From here onwards, for a given target bit error

rate of Pb,T , we refer to an alphabet size which satisfies P ∗
b > Pb,T as a small alphabet

size (i.e., low data rate), and refer to an alphabet size which satisfies P ∗
b < Pb,T as a

large alphabet size (i.e., high data rate). Suppose that a single source transmits data to

multiple receivers having various average SNRs in a broadcast system. If we properly

employ the Alamouti scheme for a small alphabet size, and spatial multiplexing for a

large alphabet size, receivers having average SNRs between points A and B in Fig. 3.2

would achieve the target bit error rate. Otherwise, only receivers having average SNRs

greater than point B would accomplish the target bit error rate.

Using (3.8) and (3.12), we evaluate the exact BERs of the Alamouti scheme and
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the spatial multiplexing with ZF receiver having the same maximum data rate. The

BERs are evaluated for 2 × 2 MIMO systems for various maximum data rates (i.e.,

alphabet sizes), and the results are shown in Fig. 3.3 (a)–(c). The BER performance of

spatial multiplexing with the optimal maximum likelihood (ML) receiver is also shown in

Fig. 3.3 (a)–(c). We note that since the exact BER of the ML receiver is not analyzable,

the curve is obtained from the simulation. From Fig. 3.3 (a)–(c), it is observed that as

alphabet size increases, the crossover point for the exact BERs of the Alamouti scheme

and spatial multiplexing with ZF receiver, γ∗b and P ∗
b , moves in a way predicted by the

analysis based on the high SNR approximate BER expressions (see Fig. 3.2). Further, it

is observed that as the alphabet size increases, the crossover point for the Alamouti and

the spatial multiplexing scheme with ML receiver moves in the same way as that for the

Alamouti and spatial multiplexing with ZF receiver. If we focus on a BER of 10−4, it is

seen that the Alamouti scheme outperforms spatial multiplexing with the ML receiver

for the maximum data rate of 4 bits per symbol period (Fig. 3.3 (a)), whereas the latter

outperforms the former for the maximum data rate of 10 bits per symbol period (Fig.

3.3 (c)). The two schemes perform roughly the same for the maximum data rate of 8

bits per symbol period (Fig. 3.3 (b)). This indicates that if the target bit error rate is

10−4, the Alamouti scheme is preferable for maximum data rates less than 8 bits per

symbol period, and spatial multiplexing with the ML receiver is preferable otherwise.

We again note that this preference depends on the target bit error rate of an application.

For example, if the target bit error rate is 10−6, the Alamouti scheme outperforms the

spatial multiplexing with ML receiver even for the maximum data rate of 10 bits per

symbol period.

3.3 Superposition of Alamouti Coding and Spatial Multi-

plexing

In layered sources, important components and less important components, which

are delivered by the basic and secondary subconstellations of hierarchical modulation,

respectively, do not necessarily have the same data rate. For example, in scalable video,

the base layer, which is more important, has a smaller number of bits than does the

enhancement layer. In Section 3.2, we showed that, given the same maximum data rate,

the Alamouti scheme is preferable to spatial multiplexing for a small alphabet size (i.e.,
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Fig. 3.3 (a) The maximum data rate: 4 bits per symbol period

(Alamouti coding for 16 QAM and spatial multiplexing for QPSK).

low data rate), and vice versa for a large alphabet size (i.e., high data rate). Therefore,

when a hierarchical transmission is used in conjunction with MIMO systems for the

broadcast of a layered source, we are motivated to apply different MIMO approaches for

each component of the layered source. In particular, we consider the case where the more

important component consists of a smaller number of bits than does the less important

component. For this case, we apply the Alamouti scheme for the basic subconstellation,

and spatial multiplexing for the secondary subconstellation.

The proposed superposition MIMO scheme is depicted in Fig. 3.4. We denote

the basic subconstellation symbols for the more important component by x1[n] (n =

0, 1, · · · , 2L − 1), and the secondary subconstellation symbols for the less important

component by x2[n] (n = 0, 1, · · · , 4L − 1). We demultiplex x2[n] into two transmit

antenna streams, x2A[n] and x2B[n], such that

x2A[n] = x2[2n] and x2B[n] = x2[2n + 1], n = 0, 1, · · · , 2L− 1. (3.33)

Then, for n = 0, 1, · · · , L − 1, the final transmit constellation symbols of the proposed
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Fig. 3.3 (b) The maximum data rate: 8 bits per symbol period

(Alamouti coding for 256 QAM and spatial multiplexing for 16 QAM).

scheme are given by

 SA[2n] SA[2n + 1]

SB[2n] SB[2n + 1]


 =


 x1[2n] + x2A[2n] − x∗1[2n + 1] + x2A[2n + 1]

x1[2n + 1] + x2B[2n] x∗1[2n] + x2B[2n + 1]


 (3.34)

where each row corresponds to a transmit antenna, each column corresponds to a time

symbol, SA[2n] and SA[2n + 1] are hierarchical constellation symbols transmitted on

antenna A, and SB[2n] and SB[2n+1] are hierarchical constellation symbols transmitted

on antenna B. For example, Fig. 3.5 shows the proposed superposition MIMO coding

where the Alamouti coding is applied to a QPSK basic subconstellation, and spatial

multiplexing is applied to a 16 QAM secondary subconstellation.

In the following, we describe the decoding of the proposed scheme at the receiver.

We first consider the optimal ML decoding of the proposed scheme. For ML decoding,

the basic and secondary subconstellations are decoded at the same time. Since Alamouti

coding is applied to the basic subconstellation in the proposed scheme (see eq. (3.34)),

this indicates that ML decoding should be performed during two symbol time periods

for both the basic and the secondary subconstellations (i.e., for an entire hierarchical

constellation). This requires a complex receiver. Thus, we also consider the successive
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Fig. 3.3 (c) The maximum data rate: 10 bits per symbol period

(Alamouti coding for 1024 QAM and spatial multiplexing for 32 QAM).

Figure 3.3: The exact BERs of Alamouti scheme and spatial multiplexing for various
alphabet sizes (i.e., for various maximum data rates) in 2×2 MIMO systems (SM denotes
spatial multiplexing).

decoding of the proposed scheme. The successive decoding has the following steps:

1) Alamouti decoding is performed for the basic subconstellation.

2) The decoded basic subconstellation is subtracted from the received signal.

3) Spatial demultiplexing (such as ML, MMSE (minimum mean square error), or ZF

decoding) is performed for the secondary subconstellation.

Note that in step 3, spatial demultiplexing such as ML decoding can be performed during

only one symbol time period, since the basic subconstellation encoded with Alamouti

coding has already been subtracted in step 2. This implies that even if ML decoding is

used for spatial demultiplexing in step 3, the complexity of successive decoding is much

less than that of the optimal ML decoding of an entire hierarchical constellation. From

(3.34), it is seen that when the basic subconstellation symbols, x1[2n] and x1[2n+1], are

Alamouti decoded in step 1, the secondary subconstellation symbols, x2A[2n], x2A[2n+1],
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SB[2n], SB[2n+1]

Figure 3.4: Superposition MIMO coding: two different MIMO codes are hierarchically
combined such that Alamouti coding is applied for the more important data, and spatial
multiplexing is applied for the less important data.

x2B[2n], and x2B[2n+1], act as interference. Therefore, the performance of the successive

decoding depends on the distance ratio, α, of the hierarchical constellation, since the

distance ratio is related to the energies of the basic and secondary subconstellations (note

that the distance ratio is defined as the ratio of the minimum Euclidian distance of the

basic subconstellation to that of the secondary subconstellation). The BER performance

of the optimal ML decoding and successive decoding are compared in 2×2 MIMO systems

for hierarchical 4/16 QAM with distance ratios of 2.0 and 4.0 (these are typical ratios for a

hierarchical QAM constellation [24]). In successive decoding, ML decoding is performed

for spatial demultiplexing in step 3. The results are shown in Fig. 3.6 (a)(b). It is seen

that for a distance ratio of α = 2.0, the performance of successive decoding is worse than

that of the optimal ML decoding by SNR of 0.3 dB at BER of 10−3, and for a distance

ratio of α = 4.0, the performance of successive decoding is nearly identical to that of the

optimal ML decoding (SNR gap is 0.03 dB at BER of 10−3).

3.4 Performance Evaluation

We evaluate the PSNR performance of the proposed superposition MIMO coding.

In this evaluation, we consider hierarchical 4/64 QAM where the Alamouti code is applied

for the QPSK basic subconstellation, and spatial multiplexing is applied for the 16 QAM
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(c) SA[n], SB [n]: hierarchical 4/64 QAM (Alamouti and spatial multiplexing are superposed).

Figure 3.5: Construction of superposition MIMO code.

secondary subconstellation. Note that for one symbol time period and two transmit

antennas, the proposed scheme transmits 2 bits for the more important component (2

bits (QPSK) × 1 (Alamouti code)), and 8 bits for the less important component (4

bits (16 QAM) × 2 (spatial multiplexing)). For comparison purposes, we also evaluate

the performance of the transmission schemes where different MIMO approaches are
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not hierarchically applied. The first scheme is hierarchical 2/32 QAM with spatial

multiplexing, and the second scheme is hierarchical 4/1024 QAM with Alamouti coding.1

We refer to these as pure spatial multiplexing and pure Alamouti schemes. We note

that the above three schemes under consideration have the same maximum data rate

for the more important component (2 bits per symbol period) and the less important

component (8 bits per symbol period). Regarding decoding methods at the receiver, we

use ML decoding for the pure spatial multiplexing scheme, and Alamouti decoding for

the pure Alamouti scheme. For the proposed scheme, we use successive decoding where

ML decoding is performed for the secondary subconstellation. Note that the optimal

decoding is used for both the pure spatial multiplexing and pure Alamouti schemes,

whereas the successive decoding, which is suboptimal, is used for the proposed scheme.

In our evaluation, error correction coding is not considered.

We evaluate the performance for 2×2 MIMO systems using the progressive source

coder SPIHT [10] as an example, and provide the results for the standard 8 bits per pixel

(bpp) 512×512 Lena image with a transmission rate of 0.375 bpp. We assume that the

transmitted signal experiences a slow fading channel such that channel coefficients are

nearly constant over an image, and that channel estimation at the receiver is perfect. Let

D(x) denote the operational rate-distortion curve. D(0) refers to the distortion when

the decoder must reconstruct the source without being able to use any of the transmitted

information. For a still image, this means reconstructing the entire image at the mean

pixel value, so the image is worthless. For a video, on the other hand, reconstruction

of a frame without using any transmitted information for that frame might mean that

the decoder will hold over the previous frame. For low motion videos, D(0) might not

be large. It can be shown that the end-to-end performance can be measured by the

expected distortion of the image or video frame, E[D], given by

E[D] = D(0)Pr(0) +
N∑

n=1

{
D

(
n∑

i=1

ri

)
Pr

(
n∑

i=1

ri

)}
(3.35)

where N is the number of transmitted packets of the compressed progressive bitstream,

ri is the number of bits of the ith important packet, and Pr(R) is the probability that

the throughput of the progressive bitstream is R bits. Note that E[D] is a function of the

channel SNR and the distance ratio of the hierarchical constellation. For a performance
1 Hierarchical 2/32 QAM consists of a BPSK basic subconstellation and a 16 QAM secondary

subconstellation. Hierarchical 4/1024 QAM consists of a QPSK basic subconstellation and a 256 QAM
secondary subconstellation.
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comparison, we find the optimal distance ratio of a hierarchical constellation for each

scheme which minimizes the expected distortion over a range of average SNRs using the

weighted cost function

arg min
α

∫∞
0 ω(γb)E[D]dγb∫∞

0 ω(γb)dγb
(3.36)

where α is a distance ratio, and w(γb) in [0, 1] is the weight function. For example, w(γb)

is given by

ω(γb) =





1, for γA
b ≤ γb ≤ γB

b

0, otherwise.
(3.37)

Note that in broadcast systems, the weight function given by (3.37) indicates that average

SNRs of multiple receivers are uniformly distributed in the range of γA
b ≤ γb ≤ γB

b . Eq.

(3.36) indicates that α is chosen such that the sum of the expected distortion of the

receivers distributed in the range of γA
b ≤ γb ≤ γB

b is minimized. To compare the image

quality, we use PSNR which is defined in (2.117) as

PSNR = 10log
2552

E[D]
(dB) (3.38)

where E[D] is given by (3.35). We present the PSNR performance of each scheme by

evaluating (3.35)–(3.38) as follows: We first compute (3.36) using both the expected

distortion E[D], given by (3.35), which is calculated by simulation, and the weight

function w(γb), given by (3.37). Next, with the distance ratio of α obtained from (3.36),

we evaluate the PSNR using (3.35) and (3.38) over a range of average SNRs given by

(3.37).

In Fig. 3.7 (a)–(c), for various SNR ranges of weight function in (3.37), the PSNR

performance of the proposed superposition MIMO coding is compared with those of the

pure Alamouti and the pure spatial multiplexing schemes. From Fig. 3.7 (a)–(c), it is

seen that, on the average, the proposed scheme has a channel SNR gain of about 2dB, and

a PSNR gain of about 1dB, compared to the two pure MIMO schemes. This is because

the Alamouti scheme outperforms spatial multiplexing for the basic subconstellation

supporting a low data rate, and spatial multiplexing outperforms the Alamouti scheme

for the secondary subconstellation supporting a high data rate, as indicated by the

results in Section 3.2. From 3.7 (a)–(c), it is also seen that as a SNR range covers lower

SNRs, the performance at low SNRs is improved, but the performance at high SNRs is
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degraded. This is because the optimal distance ratio satisfying (3.36) becomes higher

to protect the basic subconstellation much more than the secondary subconstellation, as

the SNR range of our interest is focused on lower SNRs.

3.5 Conclusion

In this chapter, we proposed superposition MIMO coding for the transmission

of unequally important sources in a point-to-multipoint system. We first analyzed the

tradeoff between Alamouti coding and spatial multiplexing having the same maximum

data rate in terms of the average bit error rate. As a way to compare both schemes fairly

in broadcast system, the maximum data rates of both were set to be equal. The results

showed that for a given target bit error rate, the Alamouti coding is preferable to spatial

multiplexing for a low data rate, and the spatial multiplexing is preferable for a high data

rate. In layered sources, the important component and the less important component do

not necessarily have the same data rate. In particular, we considered the broadcast of

layered sources where the more important component consists of a smaller number of bits

than the less important component (a typical example is scalable video). As a result, in

the proposed scheme, two different MIMO techniques are hierarchically combined such

that important data is Alamouti encoded, less important data is spatially multiplexed,

and then two differently encoded data symbols are superposed. A successive decoding

algorithm for the proposed scheme was provided, and for a sufficiently large distance ratio

of hierarchical modulation, this decoding was shown to have performance nearly identical

to that of the complex optimal ML decoding. Performance evaluation in a broadcasting

scenario showed that the proposed superposition MIMO coding significantly outperforms

the pure Alamouti coding and pure spatial multiplexing scheme.

Lastly, we note that the tradeoff between the Alamouti coding and spatial

multiplexing analyzed in this chapter also can be used for the design of the time-

multiplexing broadcasting transmission of layered sources. In other words, when

unequally important packets with different data rates (i.e., different alphabet sizes) are

transmitted in a time-multiplexed way, the optimal MIMO approach for each packet can

be determined based on our analysis.
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Figure 3.6: The BER performance of the optimal ML decoding and successive decoding
of the proposed scheme in 2× 2 MIMO systems. For successive decoding, ML decoding
is performed for spatial demultiplexing of the secondary subconstellation.
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Figure 3.7: The PSNR performance of the proposed superposition MIMO, pure
Alamouti, and pure spatial multiplexing schemes in 2 × 2 MIMO systems. For the
proposed scheme, successive decoding with ML decoding for spatial demultiplexing is
used.



Chapter 4

Performance Analysis of

n-Channel Symmetric FEC-Based

Multiple Description Coding for

OFDM Networks

4.1 Introduction

In recent years, there has been significant interest in the transmission of multi-

media services over wireless channels, and it has invoked intense research for cross-layer

optimization design [56] [57], which is particularly important for the transmission over

mobile radio channels exhibiting time-variant channel-quality fluctuations.

Progressive image or scalable video coders [10]– [14] employ a progressive mode

of transmission such that as more bits are received, the source can be reconstructed

with better quality at the receiver. Such coders are usually sensitive to channel

impairments. Early studies [35] [36] considered the transmission of a progressively

compressed bitstream using rate-compatible punctured convolutional codes. However,

channel coding becomes less effective in a slow fading channel where prolonged deep

fades often result in the erasure of the whole packet [36].

Multiple description source coding has recently emerged as an attractive frame-

work for robust multimedia transmission over packet erasure channels [39]. The basic

idea is to generate multiple descriptions of the source such that each independently de-

89
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scribes the source with a certain fidelity. When more than one description is available

at the decoder, they can be synergistically combined to enhance the quality [40]. Due

to the individually decodable nature of the descriptions, the loss of some of them will

not jeopardize the decoding of correctly received descriptions. Earlier studies of multiple

description source coding concentrated on information-theoretic bounds for specific in-

put source models [58]– [60]. Recently, practical implementation of multiple description

source coding has received attention [39]. For progressive bitstream under deep fades in

a mobile channel, n-channel symmetric FEC-based multiple description coding [61]– [64]

is employed [61] [65]– [67]. In this scheme, contiguous information symbols from the pro-

gressive bitstreams are spread across multiple packets (i.e., descriptions) instead of being

packed in the same packets [35] [68]. The information symbols are then protected against

channel errors using systematic maximum distance separable (MDS) erasure codes, and

the level of error protection depends on the relative importance of the information sym-

bols. This FEC-based multiple description coding has become popular [66] [67] [69] [70]

since it is flexible in generating arbitrary numbers of descriptions from a progressive

bitstream.

Orthogonal frequency division multiplexing (OFDM) is being considered in a

large number of current applications. OFDM differentiates itself from single carrier

systems in many ways such as the robustness against frequency-selective fading. The use

of FEC-based multiple description coding over OFDM systems was considered in [69] [71]

for progressive images and scalable video, in a frequency-selective slow Rayleigh fading

channel. It was demonstrated that the multiple description coding in [69] using the

SPIHT image coder provides superior performance over the approach in [72] which

does not use multiple description coding over OFDM systems. The FEC-based multiple

description coding in OFDM systems since then has been of much interest [73]– [76].

In this chapter, we mathematically analyze the performance of n-channel sym-

metric FEC-based multiple description coding for a progressive mode of transmission

over OFDM networks in a frequency-selective slowly Rayleigh fading channel. Based on

this analysis, the performance of the system can be numerically evaluated, and system

parameters such as channel code rates can be determined without a Monte-Carlo simu-

lation. The rest of this chapter is organized as follows. In Section 4.2, we provide some

technical preliminaries, and the system model is described in Section 4.3. The analysis

of the throughput and distortion performance is derived in Section 4.4. In Section 4.5,
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numerical results and discussions are provided, and we conclude our work in Section 4.6.

4.2 Preliminaries

4.2.1 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM splits a high-rate data stream into a number of lower-rate data streams

that are transmitted over orthogonal subcarriers. Based on the frequency-selectivity

of a channel, frequency diversity can be exploited by adding redundancy across the

subcarriers. Generally, the maximum achievable diversity gain of an OFDM system

is proportional to the number of independent fading channels, N . Note that N = 1

corresponds to a flat-fading environment, while N > 1 corresponds to a frequency-

selective environment.

4.2.2 FEC-Based Multiple Description Coding

We provide a brief overview of the FEC-based multiple description coding [61]

[65] [66] in which MDS erasure codes are used. An (n, k) erasure code with minimum

distance dmin refers to a construction where k information symbols are encoded into n

channel symbols such that the reception of any (n− dmin + 1) of the n channel symbols

enables k information symbols to be recovered. Channel codes with dmin = n − k + 1

are referred to as MDS codes, which implies that the k information symbols can be

recovered if any k channel symbols are correctly received. Reed-Solomon (RS) codes

have this property. Fig. 4.1 shows a typical progressive bitstream, in which the source

can be reconstructed progressively from the prefixes of the bitstream, while an error

generally renders the subsequent bits useless. Fig. 4.2 illustrates a practical realization

of n-channel symmetric FEC-based multiple description coding [61] [62] [65] by applying

unequal FEC to different parts of a progressive bitstream. A progressive bitstream from

a source encoder is converted into multiple descriptions in which contiguous information

symbols are spread across the multiple descriptions. The information symbols are

protected against channel errors using systematic (n = 4, k) MDS codes, with the level

of protection depending on the relative importance of the information symbols. If any g

out of n descriptions are received, those codewords with information symbols less than or

equal to g can be decoded. As a result, decoding is guaranteed at least up to distortion

D(Rg) which is the distortion achieved with Rg information symbols. For example, in
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Figure 4.1: A progressive description from the source coder partitioned into five quality
levels of rate Rg and distortion D(Rg) = Dg (g = 0, 1, · · · , 4).
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Figure 4.2: n-channel symmetric FEC-based multiple description coding technique for
a progressive bitstream.

codeword 1, the erasure of any three descriptions still allows the decoder to reconstruct

information symbol 1 and achieve a delivered quality equal to D(R1).

4.3 System Model

We briefly describe the system model considered in [69] [71]. The total number

of subcarriers of the OFDM system is denoted by Nt. A frequency-selective fading

environment has N independent fading channels and each of the N channels consists of

M highly correlated subcarriers (Nt = NM). Let s[n, u, v] be the vth input modulated

symbol of a description at the uth subcarrier in the nth channel. Let V denote the block

length of a description in terms of the modulated symbols. At the receiver, the output

signal r[n, u, v] can be expressed as

r[n, u, v] = α[n, u, v]s[n, u, v] + w[n, u, v], for 1 ≤ n ≤ N, 1 ≤ u ≤ M, 1 ≤ v ≤ V

(4.1)
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where w[n, u, v] is a zero-mean complex Gaussian random variable. It is assumed that

w[n, u, v] is independent for different n’s, u’s and v’s. Due to the highly correlated nature

of the subcarriers within a channel, we have

α[n, u, v] ≈ α[n, v] (4.2)

where α is a zero-mean complex valued Gaussian random variable with Rayleigh-

distributed envelope. This corresponds to the widely used block fading channel model

[77]– [80] in the frequency domain. In the time domain, the channel is assumed to

experience slow Rayleigh fading (i.e., the channel symbol duration is much smaller

than the coherence time) such that the fading coefficients are nearly constant over a

description, and hence we have α[n, u, v] ≈ α[n].

Fig. 4.3 shows n-channel symmetric FEC-based multiple description coding for

a progressive bitstream transmission over OFDM systems. The bitstream is converted

into NM descriptions using the FEC-based multiple description encoder [61] [62] [65].

Due to the assumption of slow Rayleigh fading, channel coding plus interleaving in

the time domain is not considered [81] [82]. Each RS code symbol consists of eight

bits (four QPSK symbols). Cyclic redundancy check (CRC) codes are appended to

each description for error detection. The NM independent descriptions are mapped to

Nt = NM subcarriers and transmitted through the OFDM system. The description size

in terms of code symbols is denoted by L. Since each RS code symbol contains four

QPSK symbols, the description size in terms of modulated symbols is V = 4L.

4.4 Throughput and Distortion Analysis

We first derive the average throughput and distortion in terms of the probability

of n description errors in an OFDM frame (0 ≤ n ≤ Nt). Nt is the total number of

descriptions in an OFDM frame. Let cl denote the number of RS code symbols assigned

to information symbols for codeword l (1 ≤ l ≤ L). As the compressed bitstream from an

image/video encoder has different sensitivities toward channel errors, the overall system

performance is improved by employing unequal error protection (UEP). Error protection

decreases for the codewords on the right (i.e., c1 ≤ c2 ≤ · · · ≤ cL) [69], as shown in Fig.

4.4.

Let E[R], E[D], and Pf (n) denote the average throughput, average distortion,

and the probability of n description errors in a frame. D(x) denotes the operational rate-
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Figure 4.3: n-channel symmetric FEC-based multiple description coding for a progres-
sive bitstream transmission over an OFDM system.

distortion curve, and D(0) is the distortion when the decoder reconstructs the source

without any transmitted information. Since an RS code is used for each codeword, k

information symbols can be recovered if any k channel symbols are correctly received.

It can be shown that the average throughput in terms of the number of bits is

E[R] =
L∑

l=1

(
8cl

Nt−cl∑

n=0

Pf (n)

)
. (4.3)

It can be shown that the average distortion is given by

E[D] = D(0)Pr(0) +
L∑

l=1

{
D

(
l∑

k=1

8ck

)
Pr

(
l∑

k=1

8ck

)}
(4.4)

where Pr(R) is the probability that the throughput is R bits, and Pr(0) is the probability

that no information bits are successfully decoded at the receiver. It can be shown that
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Figure 4.4: UEP techniques employing decreasing level of error protection for the
codewords (c1 ≤ c2 ≤ · · · ≤ cL).

E[D] is expressed as

E[D] = D(0)
Nt∑

n=Nt−c1+1

Pf (n) + D

(
1∑

k=1

8ck

)
Nt−c1∑

n=Nt−c2+1

Pf (n)

+ D

(
2∑

k=1

8ck

)
Nt−c2∑

n=Nt−c3+1

Pf (n)

+ · · ·+ D

(
L−1∑

k=1

8ck

) Nt−cL−1∑

n=Nt−cL+1

Pf (n) + D

(
L∑

k=1

8ck

)
Nt−cL∑

n=0

Pf (n)

= D(0)
Nt∑

n=Nt−c1+1

Pf (n) +
L∑

l=1



D

(
l∑

k=1

8ck

)
Nt−cl∑

n=Nt−cl+1+1

Pf (n)



 (4.5)

where
∑I2

i=I1
f(i) , 0 for I2 < I1, and cL+1 , Nt + 1.

We next derive the probability of n description errors in a group of M subcarriers

which have the same fading coefficients. Since we assume slow Rayleigh fading, the

conditional probability of a description error for a given Rayleigh fading coefficient h,

denoted by Pd(e|h), is

Pd(e|h) = 1− (1− Pcs(e|h))L (4.6)

where Pcs(e|h) is the conditional probability of an RS code symbol error given h. It

equals

Pcs(e|h) = 1− (1− Ps(e|h))4 = 1− (1−Q (h
√

γs))
8 (4.7)
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where Ps(e|h) = 2Q(h
√

γs) − Q2(h
√

γs) is the conditional probability of a modulated

QPSK symbol error for a given h, and γs is the signal-to-noise ratio (SNR) per modulated

QPSK symbol. We define a group to be M correlated subcarriers with the same fading

coefficients. The conditional probability of n description errors in a group (0 ≤ n ≤ M)

for a given h, Pg(n|h), is given by

Pg(n|h) =
(

M

n

)
Pn

d (e|h) (1− Pd(e|h))M−n . (4.8)

From (4.6) and (4.7), for 0 ≤ n ≤ M , Pg(n|h) can be expressed as

Pg(n|h) =
(

M

n

) {
1− (1−Q (h

√
γs))

8L
}n

(1−Q (h
√

γs))
8L(M−n) . (4.9)

The probability of n description errors in a group, Pg(n), can be calculated by taking the

expectation of Pg(n|h) with regard to h representing a Rayleigh probability distribution:

PR(h) =
2h

Ω
exp

(
−h2

Ω

)
, h ≥ 0 (4.10)

where Ω is the second moment of h. From (4.9) and (4.10), for 0 ≤ n ≤ M , Pg(n) is

given by

Pg(n) =
∫ ∞

0

(
M

n

) {
1− (1−Q (h

√
γs))

8L
}n

(1−Q (h
√

γs))
8L(M−n) PR(h)dh

=
∫ ∞

0

(
M

n

) n∑

p=0

[(
n

p

)
(−1)p (1−Q (h

√
γs))

8L(p+M−n)

]
PR(h)dh

=
(

M

n

) n∑

p=0




(
n

p

)
(−1)p

8L(p+M−n)∑

q=0



(−1)q

(
8L(p + M − n)

q

)

×
∫ ∞

0
Qq (h

√
γs) PR(h)dh






. (4.11)

Note that for an integer of q ≥ 5, there is no closed-form expression for the integral in

(4.11) [83]. To avoid numerical integration in Pg(n), instead, we can use exponential-

type upper and lower bounds on Q(x) [84]. From [84, eqs. (8), (9), and (26)], the upper

and lower bounds on Q(x) for x ≥ 0, denoted by fu(x) and fl(x), respectively, are given

by

fu(x) =
B∑

i=1

ai exp
(−bix

2
)

and fl(x) =
B∑

i=2

ai exp
(−bi−1x

2
)

(4.12)
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where ai = (θi − θi−1)/π, bi = csc2 θi/2, and θ0, θ1, · · · , θB−1 are arbitrary values

satisfying 0 = θ0 ≤ θ1 ≤ · · · ≤ θB−1 ≤ θB = π/2 [84, eq. (8)]. By increasing B,

the bounds fu(x) and fl(x) converge to the exact Q(x) [84]. Using (4.12), the upper

bound of the integration in (4.11) is
∫ ∞

0
Qq (h

√
γs) PR(h)dh ≤

∫ ∞

0
f q

u (h
√

γs) PR(h)dh

=
∫ ∞

0

(
B∑

i=1

ai exp
(−biγsh

2
)
)q

2h

Ω
exp

(
−h2

Ω

)
dh. (4.13)

We have

(
B∑

i=1

ai exp
(−biγsh

2
)
)q

=
∑

k1,k2,··· ,kB





(
q

k1, k2, · · · , kB

)
ak1

1 ak2
2 · · · akB

B

× exp
(− (b1k1 + b2k2 + · · ·+ bBkB) γsh

2
)




(4.14)

where the summation is taken over all sequences of nonnegative indices k1, k2, · · · , kB

such that the sum of all k1, k2, · · · , kB is equal to q, and
(

q
k1,k2,··· ,kB

)
= q!

k1!k2!···kB ! are the

multinomial coefficients. It can be readly shown that
∫ ∞

0
exp

(−αh2
) 2h

Ω
exp

(
−h2

Ω

)
dh =

1
αΩ + 1

. (4.15)

From (4.14) and (4.15), (4.13) can be rewritten as

∫ ∞

0
Qq (h

√
γs) PR(h)dh ≤

∑

k1,k2,··· ,kB





(
q

k1, k2, · · · , kB

)

× ak1
1 ak2

2 · · · akB
B

(b1k1 + b2k2 + · · ·+ bBkB)γsΩ + 1





. (4.16)

Therefore, Pg(n), given by (4.11), is upper bounded as

Pg(n) ≤
(

M

n

) n∑

p=0




(
n

p

)
(−1)p

8L(p+M−n)∑

q=0





(−1)q

(
8L(p + M − n)

q

)

×
∑

k1,k2,··· ,kB




(
q

k1, k2, · · · , kB

)
ak1

1 ak2
2 · · · akB

B

(b1k1 + b2k2 + · · ·+ bBkB)γsΩ + 1









. (4.17)
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In a similar way, from (4.12), it can be shown that Pg(n), given by (4.11), is lower

bounded as

Pg(n) ≥
(

M

n

) n∑

p=0




(
n

p

)
(−1)p

8L(p+M−n)∑

q=0





(−1)q

(
8L(p + M − n)

q

)

×
∑

k1,k2,··· ,kB−1




(
q

k1, k2, · · · , kB−1

)
ak1

2 ak2
3 · · · akB−1

B

(b1k1 + b2k2 + · · ·+ bB−1kB−1)γsΩ + 1









.

(4.18)

We next derive the probability of n description errors in an OFDM frame. An erroneous

group is defined as a group which has at least one description error. For n description

errors in a frame (0 ≤ n ≤ Nt = NM), the number of erroneous groups, m, is in the

range of

⌈ n

M

⌉
≤ m ≤ min(N,n). (4.19)

To see this, note that

i) The total number of descriptions in all erroneous groups, mM , should be larger

than or equal to the number of description errors in a frame, that is mM ≥ n.

Since m is an integer, the infimum of m is given by dn/Me.

ii) The number of erroneous groups, m, should be smaller than or equal to both the

number of description errors in a frame, n, and the number of groups in a frame,

N . Hence, the supremum of m is given by min(N,n).

Next, we will show that for n description errors in a frame (0 ≤ n ≤ NM), the probability

of m erroneous groups, Pf (n,m), is given by

Pf (n,m) =



∑min(M, n−(m−1))

km=d n
me

∑min(km, n−km−(m−2))

km−1=dn−km
m−1 e · · ·∑min(k3, n−km−km−1···−k3−1)

k2=
⌈

n−km−km−1···−k3
2

⌉

Pg(km)Pg(km−1) · · ·Pg(k2)Pg(n−
∑m

i=2 ki)PN−m
g (0), for m ≥ 2

Pm
g (n)PN−m

g (0), for m = 0, 1

(4.20)

where dxe denotes the smallest integer which is greater than or equal to x, Pg(l) is given

by (4.11), and it is assumed that for i = 1, 2, · · · , m, the ith group from the top in a
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Figure 4.5: An OFDM frame with m erroneous groups.

frame has the ith largest number of description errors among m erroneous groups. After

proving (4.20), we will generalize (4.20) without the assumption.

Proof: Note that the maximum number of description errors which one group

can have is M . Let Ji denote the m + 1− ith largest number of description errors which

a group among m erroneous groups has (i = 1, 2, · · · ,m). That is,

M ≥ Jm ≥ Jm−1 ≥ · · · ≥ J1 ≥ 1 and Jm + Jm−1 + · · ·+ J1 = n. (4.21)

By the assumption below (4.20), the ith group from the top in a frame has Jm+1−i

description errors (i = 1, 2, · · · , m). Fig. 4.5 shows an OFDM frame with m erroneous

groups, where each subcarrier (i.e., description) is denoted by a small square box. Dark

and bright boxes indicate erroneous and non-erroneous descriptions, respectively.

1) The case where m ≥ 2: First, we will prove (4.20) for m ≥ 2 by induction on

the number of erroneous groups in a frame. Consider two erroneous groups (i.e., m = 2),

shown in Fig. 4.6. If we let m = 2 in (4.21), we have

M ≥ J2 ≥ J1 ≥ 1 and J2 + J1 = n. (4.22)

From (4.22), it follows that J2 ≥ J1 = n − J2 or J2 ≥ n/2. Since J2 is an integer, we

have

J2 ≥
⌈n

2

⌉
. (4.23)
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Figure 4.6: The case where there are two erroneous groups (i.e., m = 2) for n description
errors in a frame.

From (4.22), it follows that

J1 = n− J2 ≥ 1 ⇔ J2 ≤ n− 1. (4.24)

From (4.22)–(4.24), we have
⌈n

2

⌉
≤ J2 ≤ min(M,n− 1). (4.25)

From (4.25) and Fig. 4.6, it follows that

Pf (n, 2) =
min(M,n−1)∑

J2=dn
2 e

Pg(J2)Pg(J1)PN−2
g (0)

=
min(M,n−1)∑

J2=dn
2 e

Pg(J2)Pg(n− J2)PN−2
g (0) (4.26)

where the second equality follows from (4.22). If we let m = 2 in (4.20), we have

Pf (n, 2) =
min(M,n−1)∑

k2=dn
2 e

Pg(k2)Pg(n− k2)PN−2
g (0). (4.27)

It is seen that (4.27) is identical to (4.26).

Consider the case where there are r erroneous groups (r is some integer in the

range of 2 ≤ r ≤ N − 1). If we let m = r in (4.21), we have

M ≥ Jr ≥ Jr−1 ≥ · · · ≥ J1 ≥ 1 and Jr + Jr−1 + · · ·+ J1 = n. (4.28)

By the assumption below (4.20), the ith group from the top in a frame has Jr+1−i

description errors (i = 1, 2, · · · , r), which is shown in Fig. 4.7. Suppose that (4.20) holds
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Figure 4.7: The case where there are r erroneous groups for n description errors in a
frame.

for this case. That is,

Pf (n, r) =
min(M, n−(r−1))∑

kr=dn
r e

min(kr, n−kr−(r−2))∑

kr−1=dn−kr
r−1 e

· · ·
min(k3, n−kr−kr−1···−k3−1)∑

k2=
⌈

n−kr−kr−1···−k3
2

⌉

Pg(kr)Pg(kr−1) · · ·Pg(k2)Pg(n−
r∑

i=2

ki)PN−r
g (0). (4.29)

Consider the case where there are r + 1 erroneous groups (r is some integer in

the range of 2 ≤ r ≤ N − 1). If we let m = r + 1 in (4.21), we have

M ≥ Jr+1 ≥ Jr ≥ · · · ≥ J1 ≥ 1 and Jr+1 + Jr + · · ·+ J1 = n. (4.30)

By the assumption below (4.20), the ith group from the top in a frame has Jr+2−i

description errors (i = 1, 2, · · · , r + 1), which is shown in Fig. 4.8.

The range of the largest number of description errors which a group among r +1

erroneous groups can have is given by
⌈

n

r + 1

⌉
≤ Jr+1 ≤ min(M,n− r). (4.31)

To see this, note that

i) Since Jr+1 is the largest number of description errors in an erroneous group,

Jr+1 should be larger than or equal to n/(r + 1), which is the average number
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Figure 4.8: The case where there are r + 1 erroneous groups for n description errors in
a frame.

of description errors in an erroneous group. Since Jr+1 is an integer, we have

Jr+1 ≥ dn/(r + 1)e.

ii) Jr+1 should be less than or equal to n−r since each of the other r erroneous groups

should have at least one description error.

iii) From (4.30), we have Jr+1 ≤ M .

From (4.31), the probability of r + 1 erroneous groups in a frame can be expressed as

Pf (n, r + 1) =
min(M,n−r)∑

Jr+1=d n
r+1e

Pg(Jr+1)P(N−1)g(n− Jr+1, r) (4.32)

where Pg(Jr+1) is the probability of Jr+1 description errors in the first group from the

top in a frame, and P(N−1)g(n− Jr+1, r) is the probability that for n− Jr+1 description

errors in a frame except the first group, there are r erroneous groups. Fig. 4.9 shows

N − 1 groups except the first group having Jr+1 description errors. From Figs. 4.7 and

4.9, note that

i) The maximum number of description errors which one group can have is Jr+1

instead of M .

ii) The number of groups is N − 1 instead of N .
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Figure 4.9: The case where there are r erroneous groups for n−Jr+1 description errors
in a frame except the first group which has Jr+1 description errors.

iii) There are n− Jr+1 description errors instead of n description errors.

Therefore, P(N−1)g(n − Jr+1, r) in (4.32) can be derived from the induction hypothesis

given by (4.29) if M , N , and n are replaced by Jr+1, N − 1, and n− Jr+1, respectively.

That is,

P(N−1)g(n− Jr+1, r) =
min(Jr+1, n−Jr+1−(r−1))∑

kr=
⌈

n−Jr+1
r

⌉

min(kr, n−Jr+1−kr−(r−2))∑

kr−1=
⌈

n−Jr+1−kr
r−1

⌉
· · ·

min(k3, n−Jr+1−kr···−k3−1)∑

k2=
⌈

n−Jr+1−kr−kr−1···−k3
2

⌉

Pg(kr)Pg(kr−1) · · ·Pg(k2)Pg(n− Jr+1 −
r∑

i=2

ki)PN−1−r
g (0). (4.33)

From (4.33), Pf (n, r + 1), given by (4.32), can be expressed as

Pf (n, r + 1) =
min(M, n−r)∑

Jr+1=d n
r+1e

min(Jr+1, n−Jr+1−(r−1))∑

kr=
⌈

n−Jr+1
r

⌉

min(kr, n−Jr+1−kr−(r−2))∑

kr−1=
⌈

n−Jr+1−Kr
r−1

⌉
· · ·

min(k3, n−Jr+1−kr···−k3−1)∑

k2=
⌈

n−Jr+1−kr−kr−1···−k3
2

⌉

Pg(Jr+1)Pg(kr)Pg(kr−1) · · ·Pg(k2)Pg(n− Jr+1 −
r∑

i=2

ki)PN−1−r
g (0). (4.34)
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If we let m = r + 1 in (4.20), we have

Pf (n, r + 1) =
min(M, n−r)∑

kr+1=d n
r+1e

min(kr+1, n−kr+1−(r−1))∑

kr=
⌈

n−kr+1
r

⌉
· · ·

min(k3, n−kr+1−kr···−k3−1)∑

k2=
⌈

n−kr+1−kr ···−k3
2

⌉

Pg(kr+1)Pg(kr) · · ·Pg(k2)Pg(n−
r+1∑

i=2

ki)PN−r−1
g (0). (4.35)

It is seen that (4.34) and (4.35) are the same. We have proved (4.20) for m ≥ 2 by

induction.

2) The case where m = 1 or 0: Next, we will prove (4.20) for m = 1, which is

the case where there is only one erroneous group. If we let m = 1 in (4.21), we have

M ≥ J1 ≥ 1 and J1 = n. (4.36)

By the assumption below (4.20), the first group from the top in a frame has J1 = n

description errors, and thus

Pf (n, 1) = Pg(n)PN−1
g (0), (4.37)

which is identical to (4.20) for m = 1. Lastly, we will prove (4.20) for m = 0, which is

the case where there is no erroneous group (i.e., n = 0). It is obvious that for this case,

Pf (0, 0) = PN
g (0), which is identical to (4.20) for m = 0.

¤
We have proved (4.20) under the assumption that for i = 1, 2, · · · , m, the ith

group from the top in a frame has the ith largest number of description errors. From

(4.20), it follows that ki is the ith largest number of description errors which a group

has since

km ≥ km−1 ≥ · · · ≥ k2 ≥ k1 (4.38)

where k1 , n − ∑m
i=2 ki. Next, we will generalize (4.20) without the assumption. We

will show that the number of ways of assigning km, km−1, · · · , k1 satisfying (4.38) to N

groups in a frame is given by

C(m) =
N !(

1 +
∑m−1

i=1 δ(km − km−i)
)
!

× 1
∏m−2

j=1

{
1 + (1− δ(km−j − km+1−j))

∑m−1
i=j+1 δ(km−j − km−i)

}
!(N −m)!

(4.39)
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where m ≥ 1, δ(x) is the Kronecker delta function and

I2∑

i=I1

f(i) , 0 and
I2∏

i=I1

f(i) , 1 for I1 > I2. (4.40)

Proof: We define the following:

i) Bi: a set of erroneous groups each of which has the same number of non-zero

description errors (i = 1, 2, · · · , l, where l is the number of distinct sets). We

assume that for 1 ≤ j < k ≤ l, the number of description errors which an

erroneous group in a set Bk has is greater than that in a set Bj . As a result,

for km ≥ km−1 ≥ · · · ≥ k1 given by (4.38), Bl is a set of erroneous groups each of

which has km description errors.

ii) ai: the cardinality of set Bi (i = 1, 2, · · · , l). Since the total number of erroneous

groups in a frame is m, we have

al + al−1 + · · ·+ a1 = m. (4.41)

From i) and ii), the number of ways of assigning km, km−1, · · · , k1 to N groups in a

frame, C(m), is given by

C(m) =
N !

al! al−1! · · · a1! (N −m)!
. (4.42)

For example, when N = 16, m = 7, and k7 = k6 > k5 > k4 = k3 = k2 > k1, we have

l = 4, a4 = 2, a3 = 1, a2 = 3, a1 = 1 (4.43)

and (4.42) becomes 16!
2! 1! 3! 1! 9! .

Note that for given km ≥ km−1 ≥ · · · ≥ k1 in (4.38), al can be expressed as

al = 1 +
m−1∑

s=1

δ(km − km−s). (4.44)

Fig. 4.10 (a) shows an OFDM frame with m erroneous groups, where each group is

denoted by a rectangular box. Dark and bright rectangular boxes indicate erroneous and

non-erroneous groups.

1) The case where N ≥ 2: First, we will prove (4.39) for N ≥ 2. Consider the

case where there is one erroneous group (i.e., m = 1). From (4.41), we have l = 1 and

a1 = 1. From (4.42), the number of ways of assigning k1 to N groups is given by

C(1) =
N !

1! (N − 1)!
= N. (4.45)
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Figure 4.10: (a) An OFDM frame with m erroneous groups (b) The case where there
are r erroneous groups (c) The case where there are r + 1 erroneous groups.

If we let m = 1 in (4.39), we have

C(1) =
N !(

1 +
∑0

i=1 δ(k1 − k1−i)
)
!

× 1
∏−1

j=1

{
1 + (1− δ(k1−j − k2−j))

∑0
i=j+1 δ(k1−j − k1−i)

}
! (N − 1)!

=
N !

(1 + 0)! 1 (N − 1)!
= N (4.46)

where the second equality follows from (4.40). It is seen that (4.46) is identical to (4.45).

Consider the case where there are m = r erroneous groups (r is some integer in

the range of 1 ≤ r ≤ N − 1), which is shown in Fig. 4.10 (b). From (4.41), we have

al +al−1 + · · ·+a1 = r, and from (4.42), the number of ways of assigning kr, kr−1, · · · , k1

satisfying kr ≥ kr−1 ≥ · · · ≥ k1 to N groups is given by

C(r) =
N !

al! al−1! · · · a1! (N − r)!
. (4.47)

From (4.44), for given kr ≥ kr−1 ≥ · · · ≥ k1, the cardinality of a set of erroneous groups

with kr description errors, al, can be expressed as

al = 1 +
r−1∑

s=1

δ(kr − kr−s). (4.48)
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Suppose that (4.39) holds for this case. That is, C(r) is given by

C(r) =
N !(

1 +
∑r−1

i=1 δ(kr − kr−i)
)
!

× 1
∏r−2

j=1

{
1 + (1− δ(kr−j − kr+1−j))

∑r−1
i=j+1 δ(kr−j − kr−i)

}
!(N − r)!

.

(4.49)

Consider the case where there are m = r + 1 erroneous groups (r is some integer

in the range of 1 ≤ r ≤ N − 1), which is the case shown in Fig. 4.10 (c). From (4.38),

we have

kr+1 ≥ kr ≥ · · · ≥ k1. (4.50)

i) For kr+1 > kr: From (4.47), and Fig. 4.10 (b) and (c), it follows that C(r + 1) can

be expressed as

C(r + 1) =
N !

al+1! al! al−1! · · · a1! (N − r − 1)!

=
N !

1! al! al−1! · · · a1!(N − r − 1)!
(4.51)

where al+1 is the cardinality of Bl+1, a set of erroneous groups having kr+1

description errors, and it is obvious that al+1 = 1 due to kr+1 > kr. From (4.47)

and (4.51), C(r + 1) can be expressed in terms of C(r).

C(r + 1) =
(N − r)!

(N − r − 1)!
C(r). (4.52)

ii) For kr+1 = kr: From (4.47), and Fig. 4.10 (b) and (c), it follows that C(r + 1) can

be expressed as

C(r + 1) =
N !

(al + 1)! al−1! · · · a1! (N − r − 1)!
. (4.53)

From (4.47) and (4.53), C(r + 1) can be expressed in terms of C(r):

C(r + 1) =
al!

(al + 1)!
· (N − r)!
(N − r − 1)!

C(r). (4.54)

Using (4.48), C(r + 1), given by (4.54), can be rewritten as

C(r + 1) =

(
1 +

∑r−1
s=1 δ(kr − kr−s)

)
!

(
2 +

∑r−1
s=1 δ(kr − kr−s)

)
!
· (N − r)!
(N − r − 1)!

C(r). (4.55)
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From the results of i) and ii) (i.e., (4.52) and (4.55)), C(r + 1) can be expressed as

C(r + 1) =

(
1 +

∑r−1
s=1 δ(kr − kr−s)

)
!

(
1 + δ(kr+1 − kr) +

∑r−1
s=1 δ(kr − kr−s)

)
!
· (N − r)!
(N − r − 1)!

C(r) (4.56)

for kr+1 ≥ kr. Using (4.49), C(r + 1), given by (4.56), can be rewritten as

C(r + 1) =
N !(

1 + δ(kr+1 − kr) +
∑r−1

s=1 δ(kr − kr−s)
)
!

× 1
∏r−2

j=1

{
1 + (1− δ(kr−j − kr+1−j))

∑r−1
i=j+1 δ(kr−j − kr−i)

}
! (N − r − 1)!

.

(4.57)

Let p = j + 1 and q = i + 1. Then, C(r + 1) can be expressed as

C(r + 1) =
N !(

1 + δ(kr+1 − kr) +
∑r−1

s=1 δ(kr − kr−s)
)
!

× 1
∏r−1

p=2

{
1 + (1− δ(kr+1−p − kr+2−p))

∑r
q=p+1 δ(kr+1−p − kr+1−q)

}
!

× 1
(N − r − 1)!

. (4.58)

If we let m = r + 1 in (4.39), we have

C(r + 1) =
N !

(1 +
∑r

i=1 δ(kr+1 − kr+1−i))!

× 1
∏r−1

j=1

{
1 + (1− δ(kr+1−j − kr+2−j))

∑r
i=j+1 δ(kr+1−j − kr+1−i)

}
!

× 1
(N − r − 1)!

. (4.59)

It can be shown that the ratio of (4.59) to (4.58), γ, is given by

γ =

(
1 + δ(kr+1 − kr) +

∑r−1
s=1 δ(kr − kr−s)

)
!

(1 +
∑r

i=1 δ(kr+1 − kr+1−i))! {1 + (1− δ(kr − kr+1))
∑r

i=2 δ(kr − kr+1−i)}! .
(4.60)

It is clear that
(

1 +
r∑

i=1

δ(kr+1 − kr+1−i)

)
! =

(
1 + δ(kr+1 − kr) +

r−1∑

i=1

δ(kr+1 − kr−i)

)
! (4.61)
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and

r∑

i=2

δ(kr − kr+1−i) =
r−1∑

i=1

δ(kr − kr−i). (4.62)

Using (4.61) and (4.62), γ, given by (4.60), can be rewritten as

γ =

(
1 + δ(kr+1 − kr) +

∑r−1
s=1 δ(kr − kr−s)

)
!

(
1 + δ(kr+1 − kr) +

∑r−1
i=1 δ(kr+1 − kr−i)

)
!

× 1{
1 + (1− δ(kr − kr+1))

∑r−1
i=1 δ(kr − kr−i)

}
!
.

(4.63)

i) For kr+1 = kr, γ is given by

γ =

(
2 +

∑r−1
s=1 δ(kr − kr−s)

)
!

(
2 +

∑r−1
i=1 δ(kr+1 − kr−i)

)
!
=

(
2 +

∑r−1
s=1 δ(kr − kr−s)

)
!

(
2 +

∑r−1
i=1 δ(kr − kr−i)

)
!

= 1 (4.64)

where the second equality follows from the fact that kr+1 = kr.

ii) For kr+1 > kr, γ is given by

γ =

(
1 +

∑r−1
s=1 δ(kr − kr−s)

)
!

(
1 +

∑r−1
i=1 δ(kr+1 − kr−i)

)
!

(
1 +

∑r−1
i=1 δ(kr − kr−i)

)
!

=
1(

1 +
∑r−1

i=1 δ(kr+1 − kr−i)
)
!
= 1 (4.65)

where the third equality follows from the fact that kr+1 > kr ≥ kr−1 ≥ · · · ≥ k1

which is derived from both (4.50) and kr+1 > kr.

From (4.64) and (4.65), it is seen that γ is always 1, and thus (4.58) and (4.59) are the

same. We have proved (4.39) for N ≥ 2.

2) The case where N = 1: For this case, we have m = 1, and thus the number of

ways of assigning k1 to a group is one (i.e., C(1) = 1). If we let m = 1 in (4.39), we have

C(1) =
N !

(1 + 0)! 1 (N − 1)!
= 1 (4.66)

where the first equality follows from (4.40). Therefore, (4.39) holds for N = 1.

¤
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Note that C(m), given by (4.39), is defined for m ≥ 1. If we let m = 0 in (4.39),

however, C(0) yields

C(0) =
N !

(1 + 0)! 1 (N − 0)!
= 1 (4.67)

where the first equality follows from (4.40). From (4.19), (4.20), (4.39) and (4.67), the

probability of n (0 ≤ n ≤ NM) description errors in a frame, Pf (n), is given by the

following:

Pf (n) =
min(N,n)∑

m=d n
N
e

P ′
f (n,m) (4.68)

where

P ′
f (n, m) =





∑min(M, n−(m−1))

km=d n
me

∑min(km, n−km−(m−2))

km−1=dn−km
m−1 e · · ·∑min(k3, n−km−km−1···−k3−1)

k2=
⌈

n−km−km−1···−k3
2

⌉

C(m) Pg(km)Pg(km−1) · · ·Pg(k2)Pg(n−
∑m

i=2 ki)PN−m
g (0), for m ≥ 2

C(m) Pm
g (n)PN−m

g (0), for m = 0, 1

where Pg(l) is given by (4.11), and

C(m) =
N !(

1 +
∑m−1

i=1 δ(km − km−i)
)
!

× 1
∏m−2

j=1

{
1 + (1− δ(km−j − km+1−j))

∑m−1
i=j+1 δ(km−j − km−i)

}
!(N −m)!

.

Note that the expression of Pf (n), given by (4.68), holds to the case n = 0 since we have

C(0) = 1 from (4.67).

Finally, from (4.3), (4.5), and (4.68), the average throughput, E[R], and the

average distortion, E[D], are obtained in explicit expressions for given parameters such

as the number of descriptions in a frame (Nt), the size of a description (L), the number

of groups (N), the number of information symbols for codeword l (cl, l = 1, . . . , L), SNR

per modulated symbol (γs), and the operational rate-distortion curve (D(x)). Note that

the expressions of E[R] and E[D] are not closed forms due to a single integration in

Pg(l) given by (4.11), while the upper and lower bounds on the average throughput or

distortion are expressed in closed forms using (4.18) and (4.17), respectively. Note that

these bounds can become arbitrarily close to the exact average throughput or distortion

by increasing the number of terms, B, in (4.17) and (4.18) [84].



111

4 6 8 10 12 14 16 18 20 22 24
16

18

20

22

24

26

28

30

32

SNR per modulated QPSK symbol,  dB

P
S

N
R

, d
B

 

 

Analysis

Simulation ( iteration of 105 )

Simulation ( iteration of 102 )

Figure 4.11: PSNR of the FEC-based multiple description coding for image transmis-
sion over OFDM system.

4.5 Numerical Evaluation and Discussion

Based on the analysis in the previous section, we evaluate the peak-signal-to-noise

ratio (PSNR) performance of the FEC-based multiple description coding technique for

progressive image transmission in OFDM systems. The performance is evaluated for the

standard 8 bits per pixel (bpp) 512 × 512 Lena image with a transmission rate of 0.25

bpp using the progressive source coder SPIHT [10]. Using (4.5) and (4.68), we evaluate

the average distortion, E[D], for Nt = 128, N = 8, and L = 64 as an example, and

convert E[D] into PSNR using the relation of PSNR = 10 log
(
2552/E[D]

)
. The number

of parity symbols for codeword l (1 ≤ l ≤ L), Nt − cl, is optimized using the approach

in [61]. The resultant PSNR for various channel SNRs is depicted in Fig. 4.13. The

optimal parity symbol allocation for RS codewods at a specific SNR of 14 dB is depicted

in Fig. 4.12. Monte-Carlo simulation results are also depicted in Figs. 4.11 and 4.12,

and its results are almost the same as the analytical results.

For a high SNR of 18 dB, in Figs. 4.13 and 4.14, we show the probability of n

description errors in a frame, Pf (n), and the probability of m erroneous groups, P ′
f (n, m),

which are given by (4.68). Note that for the block fading channel model in the frequency
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Figure 4.12: The optimal allocation of parity symbols for RS codewords at an SNR of
14 dB.

domain, 16 subcarriers within a group (i.e., M = Nt/N = 16) are highly correlated as

shown in (4.2). Therefore, it is expected that most description errors occur as a bundle

of 16, 32, 48, · · · , 128 (i.e., kM , k = 1, 2, · · · , N), as shown in Fig. 4.13. Moreover, for

n = kM (k = 1, 2, · · · , N) description errors in a frame, the numbers of erroneous groups

are the most likely to be k, as verified in Fig. 4.14. This indicates that as described

in [71] for the transmission of fine granular scalable (FGS) video, the encoder should

decide whether to include M more or M fewer descriptions in the motion-compensated

prediction (MCP) loop, instead of attempting to fine-tune by including one more or one

fewer description, because the correlated nature of the subcarriers makes it unlikely that

only one more or one fewer description would be received. For a low SNR of 8 dB, we

also evaluate Pf (n) and P ′
f (n,m) in Figs. 4.15 and 4.16. In Fig. 4.15, the probability

of kM (k = 1, 2, · · · , N) description errors in a frame is not very dominant compared

to a high SNR case. Moreover, Fig. 4.16 shows that for n = kM description errors

in a frame, the probability of k erroneous groups is not dominant either. This result

implies that at low SNR, multiple description errors do not occur in a highly correlated

manner. For low SNR, the probability of error is not dominated by the fading channel

effect of α[n, u, v] in (4.1) which is highly correlated for different u’s, but is very affected
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Figure 4.13: The probability of n description errors in a frame, Pf (n), given by (4.68)
at SNR = 18 dB.

by the additive Gaussian noise of w[n, u, v] which is independent for different n’s and u’s.

Hence, we note that at low SNR, the encoder should decide whether to include one more

or one fewer description in the MCP loop of the FGS video. Likewise, when deciding

the number of parity symbols of RS codewords, the encoder should attempt to fine-tune

by including one more or one fewer description for error protection levels.
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(a) P ′f (n = 16, m) (b) P ′f (n = 32, m)

Figure 4.14: The probability of m erroneous groups, P ′
f (n, m), given by (4.68) for n

description errors in a frame at SNR = 18 dB.

We next observe the probability of a code symbol error of RS codewords for

various description sizes. From (4.6) and (4.7), the probability of a description error,



114

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Number of Erroneous Descriptions in a Frame

P
ro

ba
bi

lit
y

Figure 4.15: The probability of n description errors in a frame, Pf (n), given by (4.68)
at SNR = 8 dB.
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Figure 4.16: The probability of m erroneous groups, P ′
f (n, m), given by (4.68) for n

description errors in a frame at SNR = 8 dB.

Pd(e), is derived as

Pd(e) =
∫ ∞

0

(
1− (1− Pcs(e|h))L

)
PR(h)dh

= 1−
∫ ∞

0
(1−Q(h

√
γs))

8L PR(h)dh

= 1−
8L∑

q=0

{
(−1)q

(
8L

q

) ∫ ∞

0
Qq(h

√
γs)PR(h)dh

}
(4.69)

where PR(h) is given by (4.10). From (4.7), the probability of a RS code symbol error,
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Pcs(e), is expressed as

Pcs(e) = 1−
∫ ∞

0
(1−Q(h

√
γs))

8 PR(h)dh

= 1−
8∑

q=0

{
(−1)q

(
8
q

) ∫ ∞

0
Qq(h

√
γs)PR(h)dh

}
. (4.70)

Note that from Fig. 4.2, codewords are encoded by RS codes, and the probability of a

channel symbol error for RS codewords is the same as the probability of a description

error given by (4.69). On the other hand, consider the case where multiple description

coding is not employed, but modulated QPSK symbols are directly encoded by RS codes

in the same way as in Fig. 4.2. For this case, there is no information about whether

a channel symbol is erroneous or not, and thus we do not have erasure channels for

RS codes. Note that (n, k) RS codes can correct up to n − k channel symbol erasures,

while it can correct only up to b(n− k)/2c channel symbol errors. However, if multiple

description coding is not employed, the probability of a channel symbol error for RS

codewords becomes lower since it is the same as Pcs(e) given by (4.70). To see this, in

Fig. 4.17, we evaluated the probability of a description error given by (4.69) and the

probability of a code symbol error given by (4.70). Fig. 4.17 shows that the probabilities

of a description error for description sizes L = 4, 16, 64, 256 are about 2, 3, 4, 5 times

greater than the probability of a code symbol error in almost all SNRs. From this,

it is seen that despite the bursty nature of the errors associated with a slow fading

environment, FEC-based multiple description coding without temporal coding has more

advantage for smaller description sizes.

4.6 Conclusions

Multiple description source coding has emerged as an attractive framework for

robust multimedia transmission over packet erasure channels. In this chapter, we

mathematically analyzed the performance of n-channel symmetric FEC-based multiple

description coding for transmission of progressive bitstream over OFDM networks in

a frequency-selective slowly-varying Rayleigh faded environment. Using induction, we

derived the average throughput and distortion performance in an explicit expression for

given parameters such as the number of descriptions in an OFDM frame, the size of a

description, and the channel conditions. While these exact expressions are in the form

of a single integration, the upper and lower bounds of the performance were derived in a
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Figure 4.17: The probabilities of a description error for various description sizes (L =
4, 16, 64, 256) and the probability of a RS code symbol error.

closed-form expression. Using the derived analysis, the performance for the transmission

of progressive image was numerically evaluated, and it was shown to be the same as

the computationally intensive simulation results. We also numerically evaluated the

number of description errors and the number of erroneous groups in a frame. This

showed that at low SNR, the multiple description encoder should attempt to fine-tune the

system optimization parameters such as the error protection level for RS codewords and

the number of descriptions included in the motion-compensated prediction loop of fine

granular scalable video. We also evaluated the probability of a description error, which

showed that despite the bursty nature of the errors in a slow fading environment, FEC-

based multiple description coding without temporal coding in a wireless environment

has more advantage for smaller description sizes.
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Chapter 5

Conclusion

This dissertation presented a cross-layer study of wireless multimedia communi-

cations. The following are the main contributions of this dissertation. Some possible

future work is also outlined.

5.1 Chapter 2

To enhance the performance for the hierarchical transmission of progressive

sources, we proposed a way of achieving an arbitrarily large number of UEP levels.

We proved that multiple levels of UEP can be achieved by multiplexing hierarchical

modulation. We next derived an optimal multiplexing approach which minimizes both

the average and peak powers when the BER is dominated by the Gaussian Q-function

term having the minimum Euclidian distance. To mitigate the high PAPR effect, an

asymmetric hierarchical QAM constellation was proposed. We also considered the case

where multiplexed constellations need to have constant power, and showed that multilevel

UEP can be achieved for this case. Numerical results showed that the proposed multilevel

UEP system significantly enhances the performance for progressive transmission over

Rayleigh fading channels without an increase in system bandwidth or transmit power.

5.2 Chapter 3

For the broadcast of layered sources in MIMO systems, we proposed superposition

MIMO coding. First, the tradeoff between Alamouti coding and spatial multiplexing

having the same transmission rate is analyzed in terms of the average bit error rate. The
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results showed that, for a given target bit error rate, the Alamouti coding is preferable to

spatial multiplexing for a low data rate source, and vice versa for a high data rate source.

In particular, we considered layered sources in which the more important component

consists of a smaller number of bits than the less important component (a typical

example is scalable video). In the proposed scheme, two different MIMO techniques are

hierarchically combined such that low-rate important data is Alamouti encoded, high-

rate less important data is spatially multiplexed, and then the two differently encoded

data symbols are superposed. A successive decoding algorithm for the proposed scheme

was also provided. Performance evaluation in a broadcasting scenario showed that the

proposed superposition MIMO coding significantly outperforms the conventional MIMO

coding.

In the analysis of the tradeoff between space-time coding and spatial multiplexing,

we assumed that the receiver has access to perfect channel status information (CSI).

Effects of imperfect CSI on the tradoff is an interesting research area. In addition, we

only considered the Alamouti coding for space-time coding schemes.

5.3 Chapter 4

We analyzed the performance of n-channel symmetric FEC-based multiple de-

scription coding for transmission of progressive bitstreams over OFDM networks, where

a channel is assumed to experience frequency-selective, slowly-varying, Rayleigh fading.

We derived the average throughput and distortion as a function of parameters such as

the number

of descriptions in an OFDM frame, the size of a description, and the channel conditions.

Using the analysis, the performance for the transmission of a progressive image was nu-

merically evaluated, and it was shown to yield the same result as does a computationally

intensive simulation. We also numerically evaluated the number of description errors and

the number of erroneous groups in a frame, which showed that at low SNR, the multiple

description encoder should attempt to fine-tune the system optimization parameters.

For example, in the transmission of fine granular scalable video, the encoder should de-

cide whether to include one more or one fewer description in the motion-compensated

prediction loop.
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