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ABSTRACT: Despite decades of emission control measures
aimed at improving air quality, Los Angeles (LA) continues to
experience severe ozone pollution during the summertime. We
incorporate cooking volatile organic compound (VOC) emissions
in a chemical transport model and evaluate it against observations
in order to improve the model representation of the present-day
ozone chemical regime in LA. Using this updated model, we
investigate the impact of adopting zero-emission vehicles (ZEVs)
on ozone pollution with increased confidence. We show that
mitigating on-road gasoline emissions through ZEV adoption
would benefit both air quality and climate by substantially reducing
anthropogenic nitrogen oxides (NOx) and carbon dioxide (CO2) emissions in LA by 28 and 41% during the summertime,
respectively. This would result in a moderate reduction of O3 pollution, decreasing the average number of population-weighted O3
exceedance days in August from 9 to 6 days, and would shift the majority of LA, except for the coastline, into a NOx-limited regime.
Our results also show that adopting ZEVs for on-road diesel and off-road vehicles would further reduce the number of O3
exceedance days in August to an average of 1 day.
KEYWORDS: cooking VOC emissions, urban O3 pollution, zero emission vehicle adoption, CO2 emissions

1. INTRODUCTION
Automobiles emit criteria air pollutants and greenhouse gases.
They emit nitrogen oxides (NOx) and volatile organic
compounds (VOCs), which undergo further reactions to
form secondary pollutants including secondary organic
aerosols and ozone (O3).

1 These secondary pollutants have
been associated with an increased risk of premature mortal-
ity.2−7 Moreover, automobiles stand out as one of the largest
contributors to anthropogenic greenhouse gas (GHG)
emissions in the United States, accounting for 17% of total
GHG-equivalent emissions in 2022.8 The substantial radiative
impact of long-lived GHGs emitted from anthropogenic
sources has resulted in a 1.1 °C global surface temperature
increase above preindustrial levels,9 leading to large changes in
weather and climate extremes,9 including more frequent and
extreme wildfires due to heat and drought, which also
negatively impact air quality.10,11

California experiences the most severe O3 pollution in the
United States.12 To address urban air pollution and the effects
of climate change, California has set targets for Zero-Emission

Vehicle (ZEV) adoption through electrification of vehicles.13

California issued executive order N-79-20 in 2020, followed by
the Advanced Clean Cars II (ACC II) regulation launched in
2022, to establish a year-by-year roadmap to phase out
gasoline-powered cars by requiring sales of all new passenger
vehicles to be zero-emission by 2035. California’s policy has
been adopted in other states and nations to accelerate ZEV
adoption, including New York,14 Massachusetts,15 the United
Kingdom,16 and the European Union.17

Previous studies have quantified the impact of ZEV adoption
on ambient air quality and the corresponding health outcomes
and environmental equity.18−25 While these studies agree on
the benefit of ZEV adoption in reducing the levels of NOx,
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CO, and PM2.5, the changes in the level of O3 pollution remain
uncertain. The sensitivity of O3 to ZEV adoption is quantified
using chemical transport models configured with contrasting
emission scenarios. While most studies find improvements in
peak O3 on the order of 1−5 ppb,19,20,23,26 Li et al.25 showed
that 100% renewable electricity scenarios could lead to 5%
increases in ozone concentration relative to a 2012 baseline
year in Los Angeles (LA). The reported opposite trends in O3
following ZEV adoption are attributed to the nonlinearity in
O3 formation and highlight the importance of accurately
representing the mixture of VOCs and NOx that govern ozone
photochemistry.
Compared to urban NOx emissions, which are well-

documented and evaluated in Yu et al.,27 VOC emissions are
more complex due to the diverse mix of biogenic and
anthropogenic sources. The anthropogenic VOC sources
include vehicular emissions, volatile chemical products
(VCPs), and cooking VOC emissions. Recent research has
unveiled substantial underestimations in cooking VOC
emissions within current emission inventories, suggesting that
cooking VOC emissions may be a significant missing source for
VOCr. While the National Emission Inventory (NEI) suggests
that cooking contributes to less than 1% of urban VOCs,
Coggon et al.28 show that cooking may account for as much as
20% of the total anthropogenic VOC emissions for Las Vegas.
In this study, we update a chemical transport model, the

Weather Research and Forecasting with Chemistry version
4.2.2 (WRF-Chem), to incorporate cooking VOC emissions
and chemistry. These updates alter the chemical regimes that
impact ozone production and better represent ground, mobile,
and aircraft observations of VOCs. We demonstrate that the
updated model simulation yields an improved representation
of O3 chemistry, allowing for comprehensive sensitivity
analysis of changes in O3 due to ZEV adoption in the LA
Basin. The results provide insight into how the current ACC II
regulation can change the ambient O3 abundance and alter the
O3 formation chemical regimes and can be used to inform
further strategies designed to reduce O3 pollution in the LA
Basin.

2. MATERIALS AND METHODS
2.1. Observations. We utilize five sets of observations to

validate cooking emissions and evaluate the model perform-
ance in representing O3 chemistry, as discussed in detail in
Section 4 of Zhu et al.29 The first observation was the airborne
measurement during the RECAP-CA (Re-evaluating the
Chemistry of Air Pollutants in California) field campaign,
which occurred between June 1−22, 2021, at 300−400 m
above ground. The second and third observations were mobile
laboratory and ground site measurements during the SUNVEx
(Southwest Urban NOx and VOC Experiment) field campaign
in August and early September 2021. The last two observations
were the hourly ozone measurements from 12 Air Quality
System (AQS) monitoring sites reported by the U.S.
Environmental Protection Agency (EPA) over Los Angeles,
and the HCHO measurements from five South Coast Air
Quality Management District (SCAQMD) monitoring sites.
Among all observations, the RECAP-CA airborne and
SUNVEx mobile measurements are segregated into four
regions following Pfannerstill et al.30 and Nussbaumer et
al.,31 including Downtown LA, San Bernadino Valley, Santa
Ana Valley, and Coastal LA. The measurements of VOCs,
CH4, CO, and NOy analyzed in this study and the

corresponding instruments are summarized in Table S1. We
account for only a subset of VOCs that are calibrated with an
associated observational uncertainty of 30%, including CH4,
methanol, ethanol, acetaldehyde, acetone, isoprene, MACR,
MVK, monoterpenes, benzene, toluene, benzaldehyde, xylene,
nonanal, and octanal. MELODIES MONET (https://
melodies-monet.readthedocs.io/) was used to pair the surface
and aircraft observations with the model results.32

2.2. Emission Inventory. The baseline emissions for
pollutants except for cooking emissions are described by Zhu
et al.29 The fossil fuel CO2 emissions are from the GReenhouse
gas And Air Pollutant Emission System (GRA2PES) emission
inventory and are described in https://csl.noaa.gov/groups/
csl4/gra2pes/ and Lyu et al.33 The GRA2PES emissions
inventory is a further development of the anthropogenic
emissions inventory used most recently by Zhu et al.29 This
development adds complete anthropogenic fossil fuel CO2
emissions generated from a common framework to air
pollutant emissions. In general, GRA2PES incorporates
previously developed fuel-based inventories of mobile source
emissions.34 Residential and commercial building emissions are
from the US Energy Information Administration’s (EIA) State
Energy Database System (SEDS) and downscaled with
building CO emissions from the US NEI. Point source
emissions are similarly calculated from SEDS and downscaled
using CO emissions from the NEI. For facilities where data are
available at a facility level, CO2 emissions are taken from the
US Greenhouse Gas Reporting Program (GHGRP) and
Continuous Emissions Monitoring Systems (CEMS) of
power plants. The GRA2PES CO2 emissions are presented
here to quantify the maximum potential reduction of fossil
CO2 emissions from ZEV adoption and simulate GHG and air
quality co-benefits.

2.2.1. Estimate of Cooking VOC Emissions. The estimation
of cooking VOC emissions is based on observations. Coggon
et al.28 utilized VOC observations from SUNVEx mobile
measurements in downtown Las Vegas, NV, and applied
positive matrix factorization (PMF) analysis to allocate the
VOCs to cooking sources. To derive the cooking VOC
emission over LA, we calculate the cooking VOC emissions per
capita to be 15.707 g of VOC/person/day based on
observations in Las Vegas and scale it with the population
map in LA.
Additionally, we identify two VOC species as tracers of

cooking emission, octanal and nonanal. Attributing them
exclusively to cooking emissions leads to the ratio of ethanol to
nonanal of 6.7. It is worth noting that this ratio is significantly
lower than those estimated from other observations.35,36

Pfannerstill et al.35 estimated the spatial distribution of VOC
emissions using airborne flux measurements over LA and
utilized footprint and multilinear regression to separate the
contributors of sources.30 Among the VOC fluxes with a
cooking emissions profile, the ratio of ethanol to nonanal varies
between 27 and 75 with a median value of 37. A similar ratio,
40.2, is reported in another independent indoor measurement
from the HOMEChem experiments.36,37 Therefore, we further
increase the ethanol emission to match the ratio of ethanol to
nonanal to 37, aiming for better agreement with RECAP-CA
and HOMEChem observations (see Section S2.5 for more
details). The modified cooking VOC emissions per capita that
account for scaling up ethanol emissions are 25.155 g of VOC/
person/day.
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2.3. Model. We utilize the Weather Research and
Forecasting with Chemistry v4.2.2 (WRF-Chem) chemical
transport model to simulate O3 chemistry and evaluate the
impact of the ZEV regulation on O3. The model is configured
with a horizontal spatial resolution of 4 × 4 km over California
during the summer of 2021 (Figure S2). Detailed information
regarding the model setup can be found in Zhu et al.,29 with
additional updates to the ozone boundary conditions described
in Section S1.1.
The RACM2B-VCP chemical mechanism is developed for

WRF-Chem and is capable of thoroughly evaluating the VOC
chemistry in urban areas such as Los Angeles.29 Here we
update the RACM2B-VCP mechanism to the RACM2B-VCP2
mechanism by implementing the VOC chemistry emitted from
cooking sources. The VOC speciation from cooking emissions
is described in Coggon et al.,28 including octanal, nonanal,
acetic acid, acrolein, and higher-carbon aldehydes and acids.
We add two lumped species, saturated cooking aldehydes and
unsaturated cooking aldehydes, to distinguish them from
aldehydes emitted from other emissions. In addition, we
introduce two tracers as separate species into the RACM2B-
VCP2 mechanism, nonanal and octanal, which are exclusively
emitted from cooking emissions in the inventory. The
reactions associated with these new species are summarized
in Table S1 in Stockwell et al.38 P(O3) is calculated online in
each chemical time step, as described in Section S1.2.

2.4. Sensitivity Analysis. We conduct a series of model
scenarios to explore the influence of cooking VOC emissions
and ZEV adoption on O3 pollution. First, we perform two
model simulations differing only in the inclusion of cooking
VOC emissions, covering the months of June, August, and the
beginning of September 2021. Second, we simulate O3 under
model scenarios sequentially eliminating source sectors
regulated by the ZEV adoption, including on-road gasoline,
on-road diesel, off-road gasoline, and off-road diesel vehicle
emissions. The particulate emissions from tire and brake wear

from on-road vehicles are not reduced by ZEV adoption and
are therefore unchanged in the sensitivity analysis. These
simulations were conducted specifically for August 2021 to
assess the impact of the ZEV policy on the level of O3.

3. COOKING VOC EMISSIONS IMPROVE MODEL
REPRESENTATION OF O3 CHEMISTRY UNDER THE
PRESENT-DAY EMISSION SCENARIO

We show that cooking accounts for as much as 28% of the
mass of anthropogenic VOC emissions, which is greater than
that from fossil fuels (20%), and constitutes half of the
emissions from VCPs (52%) (Figure S3). The inclusion of
cooking VOC emissions notably enhances the model
representation of the VOC reactivity (VOCr). VOCr is defined
as the sum of individual VOC concentrations multiplied by
their reaction rates with hydroxyl radicals (OH), reflecting the
collective contribution of diverse VOC species to the O3
formation. Figure 1a compares calibrated VOCr from two
model simulations, with and without cooking VOC emissions,
against RECAP-CA airborne measurements, SUNVEx mobile,
and SUNVEx ground measurements. The calibrated VOCr
comprises 58% of the total VOC reactivity in WRF-Chem
(Figure S4). We also evaluate model-simulated alkanes and
formaldehyde in Section S2.3, accounting for 18% of the total
VOC reactivity. Without cooking emissions, the model
underpredicts calibrated VOCr, as indicated by normalized
median bias (NMDB) values ranging between −37 and −20%
across these observation data sets, which is consistent with
previous modeling studies in urban areas including
LA.29,35,39,40 Incorporating cooking emissions yields improved
agreement between simulated and observed VOCr considering
a measurement uncertainty of 30%. NMDBs of VOCr with
cooking are −22, 8.2, and 3.2% compared against airborne,
mobile, and ground measurements, respectively. The addition
of cooking VOC emissions has the most significant impact on

Figure 1. Cooking VOC emissions improves the model representation of VOC reactivity (VOCr) and the NOx temporary reservoir PAN. (a)
Comparison of median speciated VOCr between observations, including RECAP-CA airborne measurements (yellow), SUNVEx mobile
measurements (red), SUNVEx ground measurements (green), and WRF-Chem simulations without and with cooking emissions. (b) Comparison
of PAN between ground observations at Pasadena and WRF-Chem simulation without and with cooking VOC emissions. The black line represents
the interquartile range of the summed calibrated VOCr and PAN in either observations or model simulations. The gray line denotes the
observational uncertainty: 30% for VOCr and 15% for PAN.
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ethanol and acetaldehyde (Figure S6). Without cooking
emissions, the model consistently underestimates ethanol
across various observations, with NMDBs ranging between
−75 and −30%. Conversely, incorporating cooking emissions
aligns simulated ethanol concentrations more closely with
observations, resulting in NMDBs within the range of −36 to
92%. Similarly, the inclusion of cooking emissions leads to a
30% increase in acetaldehyde, reducing NMDBs from −45 to
−3.3% compared to SUNVEx mobile measurements and from
−21 to 45% compared to SUNVEx ground measurements.
We also evaluate the model’s skill in representing NOx and

its oxidation products. Previous work has demonstrated that
our model simulation shows good agreement on NOx
concentration when compared against airborne measurements
and satellite observations.27,29 The oxidation of NOx occurs
concurrently with ozone production and results in various
compound classes that act as either permanent sinks or
temporary reservoirs of NOx. We evaluate the model

performance in representing NOy in Section S2.2 and Figure
S7. In addition, Figure 1b compares peroxy acetyl nitrate
(PAN) between observations and two model simulations with
and without cooking VOC emissions. PAN is a temporary NOx
reservoir and is used to evaluate the degree of urban pollution
and its photochemical age. The absence of cooking emissions
leads to substantial underpredictions of PAN, with an NMDB
of −37%. Introducing cooking VOC emissions increases
simulated PAN by 0.2 ppb primarily due to an increase in
acetaldehyde, resulting in better agreement with ground
observations, with an NMDB of −14%, which is within
measurement uncertainty.
The influence of cooking VOC emissions on O3 is relatively

modest (Figures S12 and S13), however, they are essential for
accurately representing the O3 formation chemical regime over
the LA Basin.38 Using the box model described in Stockwell et
al.38 and recreated in Figure S11, ozone production in
Pasadena is shown to be closer to transitioning to NOx-

Figure 2. ZEV adoption substantially reduces MDA8 O3 over LA and protects people from exposure to O3 pollution. (a) Spatial distribution of
MDA8 O3 averaged in August 2021 from WRF-Chem simulation configured with full emission inventory. Circles denote the monthly MDA8 O3
observed at 12 AQS monitoring sites. The gray line represents the coastline of LA defined in this study. (b−d) Spatial distributions of monthly
average MDA8 O3 simulated with source sectors sequentially eliminated, including on-road gasoline as per the ACC II regulation (b), on-road
diesel (c), off-road gasoline (d), and off-road diesel emissions (e). (f) Changes in the average number of population-weighted O3 exceedance days
in August in LA under the present-day and ZEV sensitivity scenarios.
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limited chemistry with the cooking VOC emissions, leading to
10% NOx shifts in the transition point between NOx-
suppressed and NOx-limited regimes.
With the updated present-day emission inventory including

cooking VOC emissions, WRF-Chem captures the spatial
variation in O3 within the LA Basin (Figure 2a). We calculate
the maximum daily 8-h average ozone (MDA8 O3), a metric
used to relate our results to the regulatory metric of 70 ppb
MDA8 O3 set by the US EPA to protect public health.41

Shown in Figures 2a and S12b, we compare the August average
MDA8 O3 between the ground observations at 12 AQS sites
and the WRF-Chem simulations. For each site, August MDA8
O3 from the WRF-Chem simulation yields a good agreement
with the observations, with the relative difference ranging
between −4.0% and 23%. Notably, both observations and
WRF-Chem simulations produce the positive gradient in the
MDA8 O3 between the coastline and inland LA Basin, as the
difference in the August MDA8 O3 between the two AQS sites,
the West Los Angeles site (34.05°, −118.46°, 0.05km from the
coastline) and the San Bernardino site (34.11°, −117.27°,
78km from the coastline), is as large as 44 ppb from the
observations and 46 ppb from the WRF-Chem simulations. We
calculate the number of O3 exceedance days (i.e., MDA8 > 70
ppb) for each grid and then average them weighted by
population, which is the same as that used in deriving
emissions. On average, the LA population experiences 9 O3
exceedance days in August (Figure 2f). Beyond the population-
weighted average O3 exceedance days, we further expand our
analysis to quantify the population across different groups
categorized by the number of O3 exceedance days, highlighting
the spatial variations in both O3 pollution and its associated
health impacts (Figure S15). Over 4 million people experience
over 15 O3 exceedance days in August, and over 1.6 million
people are exposed to an O3 exceedance for more than 25 days
in August.

4. PHASING OUT GASOLINE EMISSIONS
SUBSTANTIALLY REDUCES CO2 EMISSIONS AND
MODERATELY REDUCES O3 POLLUTION

The ACC II regulation targets reducing emissions from on-
road gasoline vehicles, such as passenger cars, including both

combustion and evaporative gasoline emissions. The reduction
in anthropogenic emissions of VOC, NOx, and CO2 resulting
from ACC II regulation is illustrated in Figure 3a. In the LA
basin, the ACC II regulation would lead to a local reduction of
41% of urban anthropogenic CO2 emissions in August and
highlights its capability to mitigate greenhouse gas emissions.
ACC II regulation would also lead to a reduction in the
emissions of primary pollutants, with a 29% reduction of
anthropogenic NOx emissions and a 5.6% reduction of
anthropogenic VOC emissions.
The impact of the ACC II regulation on O3 is quantified by

using a model sensitivity analysis. In addition to the model
simulation with the present-day emission inventory (referred
to as “baseline scenario”), we conduct a second model
simulation in the absence of on-road gasoline vehicle
emissions, mirroring the emission scenario under the ACC II
regulation (referred to as “ACC II scenario”). The change in
monthly MDA8 O3 due to the ACC II scenario is depicted in
Figures 2b and S14. Compared with the baseline scenario
(Figure 2a), the largest reduction of MDA8 O3 is observed in
the North Basin. As shown in Figure 3b, the reduction of
MDA8 O3 due to the ACC II regulation is aggregated as a
function of the distance away from the coastline of LA. On-
road gasoline emissions contribute to a moderate reduction in
MDA8 O3, and the average O3 exceedance day weighted by
population is 6 days, a 25% reduction compared to the present.
Under the ACC II regulation, the influence on MDA8 O3 near
the coastline of LA is marginal while the largest reduction
occurs in the most polluted region, 50−90 km away from the
coastline, ranging from 7 to 10 ppb.

5. FURTHER ZEV ADOPTION ACCELERATES THE O3
REDUCTION IN THE LA BASIN

While our results suggest that ACC II regulation moderately
improves the ambient O3 air quality, severe O3 pollution is
expected to persist in the LA Basin. The August MDA8 O3
averages at 60 ppb over the LA Basin, ranging from 42 to 77
ppb (Figure 3b). 2.7 million people experience ozone
exceedance over half of the month in August (Figure S15).
We also test how further adoption of ZEVs for other sectors
impacts O3. We sequentially eliminate on-road diesel, off-road

Figure 3. ZEV adoption reduces anthropogenic CO2 emissions and O3 pollution in the LA Basin. (a) Contribution of vehicle emissions associated
with the ZEV adoption to total anthropogenic VOC, NOx, and CO2 emissions. (b) Monthly average MDA8 O3 as a function of the distance to the
coastline of LA. The solid black line represents the level of MDA8 O3 under the baseline scenario. The dashed red line denotes the National Air
Quality Standard for MDA8 O3 of 70 ppb. The colored patches show the reduction on MDA8 O3 if vehicle emissions are zeroed out progressively,
including on-road gasoline as per the ACC II regulation (blue), on-road diesel (orange), off-road gasoline (green), and off-road diesel (purple)
emissions. The black dashed lines denote three regions identified with distinct patterns of the O3 chemical regimes described in Figure 4,
encompassing 0−10, 20−30, and 50−60 km.
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gasoline, and off-road diesel following the ACC II regulation in
a series of model sensitivity tests. The on-road diesel emissions
include heavy-duty diesel trucks. Off-road emissions refer to
fuel-based mobile engine sources that are not on roads, such as
gasoline engines used in recreational vehicles, boats, and lawn
equipment, as well as diesel engines used in agricultural and
construction equipment.34

Figure 3a also shows the reduction of emissions attributed to
further sequential ZEV adoption. The decrease in anthro-
pogenic CO2 emissions attributed to on-road diesel and off-
road vehicle emissions is around a quarter of that of on-road
gasoline emissions as per ACC II regulation, totaling 11% of
the anthropogenic CO2 emissions. Notably, the reduction in
on-road diesel emissions leads to a 26% decrease in
anthropogenic NOx emissions, comparable to on-road gasoline
emissions. A similar reduction in anthropogenic VOC
emissions is expected from off-road (4%) and on-road
(5.6%) gasoline emissions.
Figure 2c illustrates the simulated monthly MDA8 O3 under

on-road diesel scenarios. The regional average of MDA8 O3 is
decreased to 53 ppb. Shown in Figure 3b, the sequential
decrease in on-road diesel emission ranges from 0.7 to 11 ppb
from the coastline of LA to the East Basin. Following the
implementation of ACC II regulation and further control on
on-road diesel emission, the largest August average MDA8 O3
over the LA Basin is 64 ppb, leading to the O3 level over the
whole LA Basin below the NAAQS. The average population-
weighted days of O3 exceedance are substantially reduced to 3
days in August (Figure 2f). No population in LA is exposed to
ozone exceedance for over 15 days, while 1.3 million people

still experience 5−15 O3 exceedance days in August (Figure
S15).
Figure 2d,e illustrates the simulated monthly MDA8 O3

under off-road gasoline and off-road diesel scenarios. The
impact of reducing off-road gasoline vehicle emissions on
MDA8 O3 ranges from 2 ppb near the coastline to 5 ppb in the
Northeast Basin. Reducing off-road diesel vehicle emissions
decreases the regional average MDA8 O3 by 1.6 ppb, with the
largest reduction observed in the East Basin by 2.2 ppb. With
the ZEV adoption for all mobile source engines, the number of
days of O3 exceedance in August is 1 day on average for the
people of LA (Figure 2f).

6. ZEV ADOPTION LEADS TO SHIFTS IN THE O3
FORMATION CHEMICAL REGIME

To determine the local O3 formation chemical regime, we
collect simulated daily instantaneous O3 production rate
(P(O3)), NOx, and VOCr at 1 pm local time in three regions
located 0−10, 20−30, and 50−60 km from the LA coastline.
Because the mixture of NOx and VOCr determines the
chemical regime of O3 production, in each selected regime, we
show the relationship between P(O3) and NOx, within the
interquartile range of VOCr in Figure 4a−c. The distributions
of P(O3) and NOx under the conditions below the 25th and
above the 75th quantile ranges of VOCr are shown in Figures
S19 and S20.
As the anthropogenic VOC emissions stay relatively

constant compared to the anthropogenic NOx emissions, the
moderate reduction in O3 pollution with the ACC II regulation

Figure 4. O3 chemical regime shifts across LA due to the ZEV adoption. Panels (a−c) show the line plots depicting the relationship between
instantaneous P(O3) and NOx in model simulations with varying emission scenarios described in Figure 2a−e at the distance of 0−10 km (a), 20−
30 km (b), and 50−60 km (c) from the coastline of LA. For each region, the relationship between P(O3) and NOx within the interquartile range of
VOCr (specified in the upper left corner of each plot), is displayed at 1 pm local time for August. The line represents the mean P(O3) and the
shaded line represents the standard deviation. Panel (d) presents a schematic of P(O3) as a function of NOx at the photochemical steady state,
illustrating the NOx-limited regime, the NOx-suppressed regime, and the transitional area in between. For panel (d), we assume a NO2/NO ratio of
4, alkyl nitrate branching ratio (α) of 0.04, HOx production rate of 0.3 ppt s−1, and VOCr of 5 s−1.
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underscores the nonlinearity between P(O3) and NOx. As
shown in Figure 4d, with constant VOCr, the urban
environment falls into the NOx-limited regime under low
NOx conditions, with a consistent increase in P(O3) alongside
an increase in NOx. Conversely, under high NOx conditions,
the relationship between P(O3) and NOx is the opposite,
indicating a NOx-suppressed regime.
In regions within 10 km and 20−30 km of the coastline of

LA, P(O3) and NOx exhibit distinct nonlinearity under the
baseline scenario, indicating the transition between NOx-
suppressed regime and NOx-limited regime. Therefore,
relatively small changes in O3 pollution are shown with a
substantial reduction in NOx emissions under the ACC II
regulation. In contrast, the East Basin, 50−60 km from the
coastline, falls into the NOx-limited regime under the baseline
scenario, resulting in a larger O3 reduction in the East Basin
than in the West Basin under the ACC II regulation.
With the implementation of the ACC II regulation, most of

the LA Basin switches to a NOx-limited regime, which is
significant because any further NOx reduction strategy like
reducing on-road diesel, off-road gasoline, off-road diesel, or
other sector (e.g., industry) emissions will efficiently lower
ozone. Additionally, shifting most of the LA basin to NOx-
limited is important for controlling O3 in the East Basin where
the level of pollution with O3 is the highest because O3 is not
only locally produced here but also transported from the west.
The only exception is that the coastal region remains in the
transition regime because of relatively high NOx levels under
conditions of low VOCr, due to major shipping ports, a dense
highway network,27 and low boundary layer height (Figure
S17).

7. DISCUSSION
The sensitivity of O3 to reductions in NOx and VOCs has been
a central focus for determining the most effective strategy for
controlling the level of O3 pollution. Recent studies have
delved into noncombustion anthropogenic VOC emissions in
urban areas, including VCPs42−44 and cooking activities.28 Our
analysis reveals that VCP and cooking sources are major
contributors to anthropogenic VOC sources, accounting for
80% of total anthropogenic VOC emissions by mass in LA.
The inclusion of missing emissions into chemical models is
needed to accurately represent VOCr and the VOC/NOx
mixture that determines ozone sensitivity. Without these
anthropogenic VOC emissions, models suggest that the Los
Angeles Basin is NOx-suppressed. However, when these VOCs
are fully implemented in emissions inventories and chemical
mechanisms, ozone production is shown to be closer to
transitioning to NOx-limited chemistry in Pasadena during
peak production (e.g., Stockwell et al.,38 Peischl et al.,45 Figure
S11). This regime is where NOx reductions are most effective
in reducing ozone pollution.
However, the impact of these anthropogenic VOC emissions

on O3 levels is relatively small. Prior research has shown that
VCP emissions contribute to a 3−6 ppb increment in MDA8
O3.

29,38,44 Biogenic VOC emissions, contributing more than
half of the total VOC reactivity (VOCr),

29,35,46 are dominated
by meteorological conditions. While future urban greening
programs could prioritize tree species featuring low VOC
emissions,47 reducing VOC emissions to achieve lower O3
levels presents a greater challenge compared to reducing NOx
emissions, which are predominantly from anthropogenic
vehicle emissions in urban areas.

In this study, we demonstrate that ZEV adoption, not only
on gasoline cars but also on diesel trucks and off-road engines,
can effectively reduce the level of O3 pollution in parallel to
mitigating CO2 emissions. With the implementation of the
ACC II regulation, a significant portion of LA transitions to the
NOx-limited regime, highlighting its effectiveness in controlling
O3 levels by reducing NOx emissions. Moreover, NOx emission
control through ZEV adoption may be a simpler mitigation
strategy than reducing VOC emissions due to a large fraction
of VOC emissions being biogenic and from nonvehicular
anthropogenic sources. As a city with a long history of severe
O3 pollution in the United States, LA serves as a testbed for
evaluating the effectiveness of the O3 control policies while
also mitigating GHG emissions.
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