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ABSTRACT
Despite its simplicity and relatively low computational cost, second-order Møller-Plesset perturbation theory (MP2) is well-known to
overbind noncovalent interactions between polarizable monomers and some organometallic bonds. In such situations, the pairwise-additive
correlation energy expression in MP2 is inadequate. Although energy-gap dependent amplitude regularization can substantially improve the
accuracy of conventional MP2 in these regimes, the same regularization parameter worsens the accuracy for small molecule thermochemistry
and density-dependent properties. Recently, we proposed a repartitioning of Brillouin-Wigner perturbation theory that is size-consistent to
second order (BW-s2), and a free parameter (α) was set to recover the exact dissociation limit of H2 in a minimal basis set. Alternatively
α can be viewed as a regularization parameter, where each value of α represents a valid variant of BW-s2, which we denote as BW-s2(α).
In this work, we semi-empirically optimize α for noncovalent interactions, thermochemistry, alkane conformational energies, electronic
response properties, and transition metal datasets, leading to improvements in accuracy relative to the ab initio parameterization of BW-s2
and MP2. We demonstrate that the optimal α parameter (α = 4) is more transferable across chemical problems than energy-gap-dependent
regularization parameters. This is attributable to the fact that the BW-s2(α) regularization strength depends on all of the information
encoded in the t amplitudes rather than just orbital energy differences. While the computational scaling of BW-s2(α) is iterative 𝒪(N5

),
this effective and transferable approach to amplitude regularization is a promising route to incorporate higher-order correlation effects at
second-order cost.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0174923

INTRODUCTION

Møller-Plesset perturbation theory (MP2) is a remarkable the-
oretical model chemistry with a simple pairwise additive form of
the electron correlation energy and relatively low 𝒪(N5

) compute
cost scaling. It is the simplest ab initio theory that can approxi-
mately describe many forms of weak electron correlations, most
notably dispersion but also short-ranged exchange effects. The cor-
relation energy in the canonical molecular orbital basis can be
written

Ec = −
1
4∑ijab

∣Iijab∣
2

εa + εb − εi − εj
= −

1
4∑ijab

∣Iijab∣
2

Δab
ij

, (1)

where Iijab = (ij∥ab) are antisymmetrized two-electron integrals and
εp is the p-th orbital eigenvalue. Throughout this text we apply
the standard notation where {i, j, k. . .} refer to occupied orbitals,
{a, b, c. . .} to unoccupied orbitals, and {p, q, r. . .} to arbitrary
(occupied or virtual) orbitals.

Formally, MP2 has many desirable properties. For example, it
is free of delocalization errors, unlike the widely popular density
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functional theory (DFT).1–3 In contrast to both DFT and the direct
random phase approximation (RPA),4 there is no self-correlation
error. Consistent with Pople’s high standards for an approxi-
mate model chemistry5 (at the heart of which are formal princi-
ples which are practically useful in chemical predictions), MP2 is
size-consistent, size-extensive, and orbital invariant.6 A model is
size-consistent if the total energy of a supersystem comprised of
noninteracting subsystems is the same as the sum of the energies
of the isolated subsystems; this is an essential property when
studying phenomena such as bond breaking. Second, a method is
size-extensive if the total correlation energy in a linear chain of
atoms grows linearly with number of electrons, which is essential
for reaching the thermodynamic limit. Third, a method that yields
the same correlation energy despite arbitrary orbital rotations in the
occupied (or virtual) subspace is considered to be orbital invariant –
a property that enables transformations to chemically-relevant bases
such as the natural orbital or localized orbital representations.

MP2 routinely outperforms Hartree–Fock (HF) theory across
myriad test sets with respect to experimental or near-exact numer-
ical reference values.7 The accuracy of MP2 can be very high in the
case of closed-shell and small organic molecules, and can exceed
the accuracy of popular DFT functionals for important chemical
properties such as reaction barrier heights (which are sensitive to
delocalization errors).8 Indeed, MP2 is the most popular wave-
function component to be incorporated into double-hybrid density
functionals, with promising results in many chemically-relevant
situations.9–16

However, over the years many shortcomings of MP2 have
been found. It is well-known that perturbation theory in general is
not suitable for multi-reference states, in which higher order (con-
nected) excitations are required for a qualitatively correct descrip-
tion of the wavefunction. In addition, MP2 (and even higher orders
of perturbation theory) can fail in certain cases where the refer-
ence determinant is severely spin-contaminated.17–22 In strongly
correlated cases, this is a fatal issue; however, in weakly correlated
systems, where the spin-symmetry breaking is artificial (i.e., due to
deficiencies in the model chemistry’s treatment of dynamic correla-
tion), MP2 with a restricted open-shell (RO) reference determinant
can at times remedy this situation.21 Approximate Brueckner orbital
approaches,23,24 e.g., orbital optimized (MP2) methods,25–32 can also
clean up spin-symmetry breaking at the level of the Hartree–Fock
orbitals.

Yet even after putting the above issues (stemming from
multireference character and open-shell situations) aside, there
are still serious difficulties that have historically limited the use
and accuracy of MP2 approaches. For example, when bonds are
stretched, the denominator of Eq. (1) can become zero, caus-
ing the correlation energy to diverge. This severely complicates
the calculation of smooth potential energy surfaces. Interest-
ingly, pair energies (corresponding to occupied orbitals i and j)
can be overestimated even at equilibrium geometries, most notably
in the cases of dispersion-dominated noncovalent interaction ener-
gies (NC) among polarizable monomers (e.g., those with conju-
gated π systems)33–35 and organometallic bonds involving, e.g.,
metal-carbonyl moieties.25,36,37 Physically-motivated regularization
schemes that aim to remove divergences due to the energy denomi-
nator in Eq. (1) offer a promising approach to ameliorating the above
problems. One example, κ-MP2, takes the form,

Ec = −
1
4∑ijab

∣Iijab∣
2

Δab
ij
(1 − e−κΔab

ij )
2
, (2)

and improves upon conventional MP2 for large-molecule NC and
closed-shell transition-metal thermochemistry (TMTC) by factors of
5 and 2, respectively.7

Despite such notable improvements over conventional MP2,
energy-gap dependent protocols for MP2 regularization lack the
desired level of transferability required to be widely used in a black-
box fashion. For example, with regularization parameters optimized
for NC and transition metal systems, the accuracy for main-
group thermochemistry (TC) and electronic response properties is
notably deteriorated – at times these regularized MP2 approaches
are worse than conventional MP2 by factors of 2 or 3.7 Similarly,
κ-MP2 demonstrated very promising improvements in accuracy
relative to MP2 for nuclear magnetic resonance (NMR) chemi-
cal shifts only when element-specific κ values were employed.38

The prospect of developing a more transferable approach to reg-
ularized second-order perturbation theory, which preserves high
accuracy for NC and TM datasets, is the primary motivation for the
present work.

Brillouin-Wigner perturbation theory (BWPT)39–42 is an alter-
native to the Rayleigh-Schrödinger approach (the latter gives rise
to MP2). We recently proposed a size-consistent variant of second-
order BWPT, which naturally regularizes the t-amplitudes by shift-
ing the occupied orbital energies in the denominator to lower values,
thus increasing the effective orbital energy gaps and damping artifi-
cially overestimated amplitudes.43 The single free parameter in our
BW-s2 approach was determined such that the dissociation limit of
a system with two electrons in two orbitals (e.g., the H2 molecule in
a minimal basis set) is exact. Importantly, this model, which we refer
to as BW-s2, is size-consistent, size-extensive, and orbital invariant.
While BW-s2 was found to be less accurate than (optimally param-
eterized) κ-MP2 in cases where exceptionally strong regularization
was required, for a wide variety of main group TC its performance
is superior to κ-MP2 and conventional MP2. In this work we aim
to explore the landscape of the free parameter, which we will call α,
by investigating many different data sets representative of NC, large-
gap TMTC, main-group TC, barrier heights, and molecular dipoles
and polarizabilities.

THEORY

Recently, we have shown that with the following repartitioning
of the Hamiltonian (with R̂, a one-electron regularizer operator):

Ĥ = ˆ̄H0 + λ ˆ̄V , (3)

where

ˆ̄H0 = Ĥ0 + R̂
ˆ̄V = V̂ − R̂

(4)

the second-order BWPT correction becomes

E(2) = ∑
k≠0

⟨Φ0∣
ˆ̄V ∣Φk⟩⟨Φk∣

ˆ̄V ∣Φ0⟩

(Ē0 − Ēk) + E(2)
, (5)
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where Ē0 and Ēk are eigenvalues of the shifted zero-order
Hamiltonian, ˆ̄H0. The energy gap Δ̄ = Ē0 − Ēk generally satisfies
the relationship Δ̄ ≥ Δ where Δ = E0 − Ek is the gap derived from
the usual eigenvalues of the unshifted Ĥ0. The use of these barred
quantities is the only difference between our approach and typical
BWPT.

The above expressions are general, and while there are infinitely
many partitions of ˆ̄H0, there are finitely many that are size-
consistent. We have chosen a particular form of R̂ that is size-
consistent, and is represented in an arbitrary molecular orbital basis
as,

Rabcd
ijkl =

α
2
(Wikδjl + δikWjl)δacδbd. (6)

with,

Wij =
1
2∑kab

[tab
ik (jk∥ab) + tab

jk(ik∥ab)]. (7)

The generalized tensor formulation of the second-order amplitude
equation then reads,44–46

∑
klcd
(Δabcd

ijkl + Rabcd
ijkl ) ⋅ t

cd
kl = −Iijab. (8)

where

Δabcd
ijkl = (Facδbd + δacFbd)δikδjl − (Fikδjl + δikFjl)δacδbd. (9)

Given the definition in Eqs. (6) and (8) (which is orbital invari-
ant) can be solved by rotating the occupied subspace from the
canonical basis into a basis where the matrix Foo +

α
2 W is diagonal.

To do this, we solve the following eigenvalue equation,

(Foo +
α
2

W)U = ε̃U (10)

to obtain a set of dressed occupied orbital eigenvalues. In this
dressed-orbital basis, Eq. (8) can be written as,

(εa + εb − ε̃i − ε̃j)t̃ab
i j = −Ĩijab (11)

leading to,

t̃ab
i j = −

Ĩijab

(εa + εb − ε̃i − ε̃j)
(12)

and,

Ẽc = −
1
4∑ijab

∣Ĩijab∣
2

(εa + εb − ε̃i − ε̃j)
(13)

Thus, the dressed eigenvalues ε̃p have the effect of augmenting the
original denominator, Δab

i j , by adding a correlation contribution to
the occupied orbital energies. The undetermined parameter α was
set to 1 based on making the theory exact for the two electron in
two orbital problem. Similar ideas have recently been presented in
Green’s function based perturbation theories,48–50 but unlike these
methods, our BW-s2 approach retains the crucial property of orbital
invariance. There are also notable similarities between BW-s2 and

the perturbation-adapted perturbation theory (PAPT) of Knowles,
which seeks to optimize the partitioning of Ĥ.51 Whereas PAPT
costs 𝒪(N6

) already at second order, BW-s2 scales much more
favorably at iterative 𝒪(N5

).

RESULTS AND DISCUSSION

In our original set of benchmarks,43 we found that BW-s2 con-
sistently outperforms MP2 across myriad chemical problems, which
is very encouraging. However, it was evident that specific, optimal
choices of κ in κ-MP2 could significantly outperform BW-s2 in
problems where strong regularization was required (such as tran-
sition metal thermochemistry). How much improvement is possible
if we lift the restriction of α = 1, and instead view α as a parameter
that controls regularization strength? That is the question that we
will investigate here.

In this work, we benchmark the performance of various values
of α against a variety of data sets in an effort to tune the accuracy
of BW-s2 [henceforth, the empirical variant will be referred to as
BW-s2(α)]. Notably, the particular value of α does not influence the
size-consistency of the method, but it may be a determining factor
in the overall quality of the results. We will assess the transferability
of the α parameter across various chemical problems, and attempt to
make a recommendation for a broadly applicable α value.

The results for all benchmark sets apart from electronic prop-
erties are shown in Table I and are plotted individually as a function
of α for each data set in Figs. S6–S9. These data include NC for
sets of small dimers such as A24,54 S22,55 S66,56 and the non-I-
containing subset of X40 (hereafter referred to as X31),57 along with
the large π-stacked dimers of L7.58 TC is assessed on H-atom trans-
fer (HTBH38) and non-H-atom transfer (NHTBH38) sets,59,60 along
with the more comprehensive single-reference subset of W4-11.61

As compared to our original work, we extend our coverage of
TMTC with reaction energies from MOR3936 (a subset of MOR41
with triple-ζ reference values),43 MC09,62 and a set of 13 Au, Pt,
and Ir reaction energies that we call AuPtIr13.63 Finally, we also
include the ACONFL set of relative alkane conformational isomer
energies.64

The MP2 results always improve on those obtained from HF,
and gap-regularized κ-MP2 improves further on these results in all
benchmark sets, apart from TC where the results degrade by up to
3.2 kcal/mol. A similar trend emerges for BW-s2(α), with noticeable
improvements over MP2 for NC, TMTC, and ACONFL data sets,
but the results for barrier heights degrade by only about half as much
as κ-MP2 (0.03–1.9 kcal/mol less accurate for modest parameters
in the range 1 ≤ α ≤ 4). Furthermore, BW-s2(α) performs roughly
1 kcal/mol better than MP2 on the W4-11 benchmark set regard-
less of the particular value of α, whereas κ-MP2 performs slightly
(0.7 kcal/mol) worse. The improvements in NC, TMTC, and
ACONFL sets with minimal degradation in the results for TC sug-
gest that the BW-s2(α) α-parameter is more transferable than the
κ in κ-MP2.7,43

Regarding the transferability argument, it is instructive to
consider electronic properties such as dipole moments and polar-
izabilities that are shown in Table II. Whereas κ-MP2 doubles
the errors relative to MP2 for both dipoles and polarizabilities,
BW-s2(α) exhibits an exceptional flatness in the errors as a func-
tion of α, peaking at 4% for the most severe α = 8.0 where the errors
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TABLE I. Root-mean-square error in kcal/mol across chemical benchmark sets.

aκ = 1.1.
bheavy-aug-cc-pVDZ/heavy-aug-cc-pVTZ extrapolation to the complete basis set limit.
cNoncovalent interaction energies, aug-cc-pVDZ/aug-cc-pVTZ extrapolation to the complete basis set limit, unless otherwise noted.
dUsing the reference data from Ref. 47.
eThermochemistry, aug-cc-pVTZ/aug-cc-pVQZ extrapolation to the complete basis set limit.
fTransition metal thermochemistry, MOR39: Def2-TZVPP/Def2-ECP, MC09: Def2-QZVPP/Def2-ECP, AuIrPt13: cc-pVTZ/cc-pVTZ-PP.
gAlkane conformational isomer energies, heavy-aug-cc-pVDZ/heavy-aug-cc-pVTZ extrapolation to the complete basis set limit.

TABLE II. Root-mean-square relative error in % for electronic properties.

aaug-cc-pCVQZ basis set.
baug-cc-pCVTZ/aug-cc-pCVQZ extrapolation to complete basis set limit.
cκ = 1.1.
dDipole benchmark data from Ref. 52.
ePolarizability benchmark data from Ref. 53.

nonetheless remain lower than κ-MP2. Reference 7 reports κ-MP2
errors (1.6 ≥ κ ≥ 1) for dipoles that span the range 4.7%–7.5% while
polarizability errors span 4.2%–5.9%. Not only are these close to
the largest errors that we report for BW-s2(α), but BW-s2(α = 1)
actually improves the results for dipole moments relative to MP2,
whereas κ-MP2 errors monotonically increase as κ decreases. These
results for electronic properties suggest that the α parameter in
BW-s2(α) is indeed much more transferable between classes of
chemical problem than gap-dependent regularizers.

Comparison of mean root-mean square deviation (MRMSD)
values in Fig. 1(a) emphasizes the enhanced transferability of BW-
s2(α) relative to κ-MP2. The MRMSD, evaluated as a simple average
over RMSD values of each data set in Table I, reveals that BW-s2(α)
outperforms the previously suggested7 optimal κ-MP2(κ = 1.1) over
the wide range of 3 ≤ α ≤ 6. While this data weighs the error of each

data set on equal footing, we also report the weighted total RMSD
(WTRMSD2) statistics in Fig. 1(b), which accounts for the differ-
ent sizes and energy scales of each data set. Specifically, WTRMSD2
is analogous to the type-2 weighted total mean absolute deviation
metric proposed in Ref. 65, and it is calculated as,

WTRMSD2 =
78.29
∑i Ni

∑
i

Ni
RMSDi

∣Ēi∣
(14)

where N i is the number of values in set i, ∣Ēi∣ is the average abso-
lute value of the benchmark energies in set i, and the constant
78.29 kcal/mol was determined as the average of all Ē values for
all sets. The WTRMSD2 data reinforce the idea that BW-s2(α) is
more flexible than κ-MP2, with an even wider range of 1 ≤ α ≤ 5
that outperform κ-MP2(κ = 1.1). Notably, WTRMSD2 suggests
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FIG. 1. A comparison of errors across all of the data sets in Table I using (a) the
mean root-mean square deviation (MRMSD) and (b) the weighted total root-mean
square deviation – type 2 (WTRMSD2) for the most successful range of κ-MP2 κ
values from Ref. 7 contrasted with BW-s2(α) α values from this work. X-axes are
oriented in the direction of increasing regularization strength.

that even the original BW-s2(α = 1) outperforms the best κ value.
WTRMSD2 is likely to skew the results towards nominal perfor-
mance on TC properties due to the relative enormity of the W4-11
set (which contains 745 reactions), hence the preference for lower
α values in this case. While the optimal value of α shifts depend-
ing on the particular averaging scheme used, a value of α = 4 is
roughly optimal relative to both MRMSD and WTRMSD2 metrics,
and is likely a sensible compromise value that performs well for most
chemical problems.

Some particularly interesting highlights are that BW-s2(α)
can reduce errors relative to MP2 in the L7 data set from 9.5 to
1.3 kcal/mol. TMTC data can also be improved by a factor of 2–3
relative to the MP2 results, reducing errors from 14 kcal/mol to
4–6 kcal/mol for MOR39 and MCO9 sets if moderate to large α
parameters are applied. Finally, errors in alkane conformational
energies can be reduced from ∼1 kcal/mol with MP2 to just 0.1
kcal/mol with BW-s2(α), achieving something close to chemical
accuracy. Of course, excellent performance for particular kinds of
chemical problem does not suggest a “universal” α value, and there
is likely no α parameter that is entirely satisfactory in all chemical
contexts. However, we make the recommendation of α = 4 based
on the analysis presented alongside Fig. 1. Taking a closer look,
the BW-s2(α = 4) error statistics suggest considerable improve-
ments relative to MP2 for NC, main-group TC (W4-11), TMTC,
and ACONFL sets, while minimal damage is done to the results
for H-atom/non-H-atom transfer barrier heights and electronic
properties.

While there is no universal parameter, BW-s2(α) stands out
from gap-dependent regularizers like κ-MP2 (and the similarly-
performing σ-MP2 and σ2-MP2 methods)7 in the sense that it is
clearly more transferable across different chemical problems. This
may be due to the fact that BW-s2(α) defines a valid second order
BW correction for each α. As a consequence it incorporates the
full set of t amplitudes in the regularizer, whereas gap-dependent
schemes rely only on the orbital energy gaps. The self-consistent
nature of BW-s2(α) may also act to further refine the orbital
energy gap, introducing a feedback loop that fine-tunes the resultant
amplitudes.

As a final test for the robustness of our parameterization,
we consider a secondary free parameter, β, that directly mod-
ulates the amount of BW-s2(α) correlation energy such that,
E = EHF + βEBW-s2(α). The results in Sec. S1 show that the optimal
β parameter generally hovers in the range 0.9 ≤ β ≤ 1.1. Further-
more, when α nears its optimal value, β→ 1.0 with the excep-
tion of non-H-atom barrier heights in NHTBH38 (Fig. S2) where
β = 1.1 when α = 1. A β > 1 implies systematic under-correlation,
and points to an optimal α for NHTBH38 that is less than 1. In stark
contrast to this, the landscape of the parameter space for TMTC in
Fig. S3 features an optimal β = 0.7 at low α = 1, which increases to
β = 1 only when α→ 8. This implies a significant over-correlation
for transition-metal systems that is tempered only by larger α
parameters.

The NC, W4-11, and ACONFL data sets in Figs. S1, S2, and
S4, respectively, show a relatively flat slope defined by the line trac-
ing minα,β Error(α, β). For these sets, the optimal β is very close to
1 across α parameters, suggesting that BW-s2(α) offers a balanced
description of correlation for NC, main-group TC, and conforma-
tional isomers. Overall, the relatively low slopes across the parameter
space and the proximity of β to 1 across various α both speak to
the transferability of the BW-s2(α) approach. Thus, moving forward
we suggest the single parameter BW-s2(α = 4) approach for general
chemical applications.

COMPUTATIONAL DETAILS

All calculations were performed in a development version of
Q-Chem v6.0.2.66 All calculations (aside from evaluations of elec-
tronic properties) feature SCF convergence thresholds that were set
to 10−8 root-mean-square error. The correlation energy was con-
sidered to be converged at a change of 10−8 Ha between iterations
for all calculations except for those of the L7 dataset, where this was
relaxed to 10−5 Ha. Relevant derivatives with respect to electric fields
for properties such as dipoles and polarizabilities were evaluated
via finite difference. Because finite difference results are especially
sensitive to numerical errors, the SCF convergence and correlation
energy thresholds were set to 10−11. To achieve complete basis set
limit extrapolations for NC, TC, and ACONFL we follow the pro-
tocol in Ref. 67, which has been verified to perform well with the
heavy-aug-cc-pVDZ/heavy-aug-cc-pVTZ basis sets used for L7.68

For electronic response properties, we use the same extrapolation
method reported in Ref. 7.

We use restricted open-shell orbitals which are separately
pseudocanonicalized in the α and β spaces before computing the
correlation energy in all open-shell systems.17–22 For such systems,
non-Brillouin singles (NBS) contributions are included via,
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ENBS = −∑
ia

∣Fia∣
2

εa − εi
(15)

where Fia are off-diagonal Fock matrix elements.
Since W depends on the t amplitudes, which themselves depend

on the modulation of the energy gap supplied by the W matrix,
the BW-s2 equations must be solved self-consistently. We begin
each BW-s2 calculation with canonical Hartree–Fock orbitals and
an MP2 guess for the initial t amplitudes, though we note the
possibility of obtaining a strictly non-divergent initial guess by
means of Davidson’s repartitioning of the one-electron Fock oper-
ator.69 To accelerate these calculations, our implementation uses the
resolution-of-the-identity (RI) approximation for the two-electron
integrals,70,71 resulting in a formal scaling of m × O(N5

), where m
is the number of iterations (typically between 4 and 6) and N is
the number of basis functions. Due to computational limitations,
the I functions in the auxiliary RI basis sets were removed for
transition-metal calculations in the MOR39, MCO9, and AuIrPt13
data sets.

SUPPLEMENTARY MATERIAL

Additional figures pertaining to scans over α, and the secondary
β parameter in BW-s2(α). Detailed data are provided for NC, main-
group TC, TMTC, ACONFL, and electronic response properties.
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