
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Improving and Securing Machine Learning Systems

Permalink
https://escholarship.org/uc/item/1nv8m9nb

Author
Wang, Bolun

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1nv8m9nb
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Improving and Securing Machine Learning Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Bolun Wang

Committee in charge:

Professor Ben Y. Zhao, Co-Chair
Professor Haitao Zheng, Co-Chair
Professor Giovanni Vigna

March 2019

The Dissertation of Bolun Wang is approved.

Professor Giovanni Vigna

Professor Ben Y. Zhao, Committee Co-Chair

Professor Haitao Zheng, Committee Co-Chair

November 2018

Improving and Securing Machine Learning Systems

Copyright c© 2019

by

Bolun Wang

iii

To my family, friends, and loved ones

iv

Acknowledgements

First, I would like thank both of my advisors Prof. Ben Y. Zhao and Prof. Heather

Zheng for their guidance throughout my PhD. Not only did they give me directions and

advices in research, but they themselves have been role models for me in both research

and life. It’s their devotion into creating a motivated, productive, and collaborative lab,

that made all achievements in my PhD possible. For all these, I would give my sincere

gratitude to Ben and Heather.

Second, I would also like to thank my committee member, Prof. Giovanni Vigna, for

providing valuable feedback and advise during my PhD.

Third, it was my greatest pleasure working with all my collaborators, who made this

thesis possible. I would like to thank Gang Wang, Bimal Viswanath, Zengbin Zhang,

Divya Sambasivan, Tianyi Wang, Ana Nika, Xinyi Zhang, Yuanshun Yao, Zhujun Xiao,

Huiying Li, and Shawn Shan. The success of all the amazing and fun projects would not

be possible without their hard work, creativity, and smooth collaboration.

I would also like to thank all members of SANDLab that make my PhD full of joy

and fun. They are the reasons that make SANDLab the one and the only, with its unique

vibrancy and liveness. I could never imagine working in a lab better than this. Apart

from names I mentioned before, I would also like to mention Lin Zhou, Xiaohan Zhao,

Yibo Zhu, Qingyun Liu, Zhijing Li, Shiliang Tang, Yanzi Zhu, Jenna Cryan, Yuxin Chen,

Emily Wilson, Max Liu, and Olivia Sturman. Thank you for all the joy and fun you bring

to me.

Finally, I would like to thank my family, my friends, and my loved ones for their

unconditional support. It helps me overcome obstacles through this journey. I wouldn’t

have made this far without their help.

v

Curriculum Vitæ
Bolun Wang

Education

2018 Ph.D. in Computer Science, University of California, Santa Barbara.

2013 Bachelor of Science in Electronic Engineering, Tsinghua University,
China

Conference Publications

• Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng and Ben Y. Zhao. “Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks.” In Proceedings of 40th IEEE Symposium on Security
and Privacy. San Francisco, CA, May. 2019. (S&P)

• Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng and Ben Y. Zhao.
“With Great Training Comes Great Vulnerability: Practical Attacks against Trans-
fer Learning.” In Proceedings of The 27th USENIX Security Symposium. Baltimore,
MD, Aug. 2018. (USENIX Security)

• Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng, and
Ben Y. Zhao. “Complexity vs. Performance: Empirical Analysis of Machine Learn-
ing as a Service.” In Proceedings of The 17th ACM Internet Measurement Confer-
ence. London, UK, Nov. 2017. (IMC)

• Bolun Wang, Xinyi Zhang, Gang Wang, Haitao Zheng and Ben Y. Zhao. “Anatomy
of a Personalized Livestreaming System.” In Proceedings of The 16th ACM Internet
Measurement Conference. Santa Monica, California, USA, Nov. 2016. (IMC)

• Gang Wang, Bolun Wang, Tianyi Wang, Ana Nika, Haitao Zheng and Ben Y.
Zhao. “Defending against Sybil Devices in Crowdsourced Mapping Services.” In
Proceedings of The 14th ACM International Conference on Mobile Systems, Appli-
cations, and Services. Singapore, June 2016. (MobiSys)

• Gang Wang, Tianyi Wang, Bolun Wang, Divya Sambasivan, Zengbin Zhang,
Haitao Zheng, and Ben Y. Zhao. “Crowds on Wall Street: Extracting Value from
Collaborative Investing Platforms.” In Proceedings of The 18th ACM Conference
on Computer-Supported Cooperative Work and Social Computing. Vancouver, BC,
Canada, March 2015. (CSCW)

• Gang Wang, Bolun Wang, Tianyi Wang, Ana Nika, Haitao Zheng and Ben Y.
Zhao. “Whispers in the Dark: Analysis of an Anonymous Social Network.” In Pro-
ceedings of The 14th Internet Measurement Conference. Vancouver, BC, Canada,
Nov. 2014. (IMC)

Journals

vi

• Gang Wang, Bolun Wang, Tianyi Wang, Ana Nika, Haitao Zheng and Ben Y.
Zhao. “Ghost Riders: Sybil Attacks on Crowdsourced Mobile Mapping Services”
IEEE/ACM Transaction on Networking (TON), 2018

• Tianyi Wang, Gang Wang, Bolun Wang, Divya Sambasivan, Zengbin Zhang, Xing
Li, Haitao Zheng, Ben Y. Zhao. “Value and Misinformation in Collaborative In-
vesting Platforms” ACM Transactions on the Web (TWEB), 2017

• Tianyi Wang, Yang Chen, Yi Wang, Bolun Wang, Gang Wang, Xing Li, Haitao
Zheng, Ben Y. Zhao. “The Power of Comments: Fostering Social Interactions in
Microblog Networks” Springer Frontiers of Computer Science (FCS), 2016

vii

Abstract

Improving and Securing Machine Learning Systems

by

Bolun Wang

Machine Learning (ML) models refer to systems that could automatically learn pat-

terns from and make predictions on data, without explicit programming from humans.

They play an integral role in a wide range of critical applications, from classification

systems like facial and iris recognition, to voice interfaces for home assistants, to creating

artistic images and guiding self-driving cars.

As ML models are made up with complex numerical operations, they naturally appear

to humans as non-transparent boxes. The fundamental architectural difference between

ML models and human brains makes it extremely difficult to understand how ML models

operate internally. What patterns ML models learn from data? How they produce

prediction results? How well they would generalize to untested inputs? These questions

have been the biggest challenge in computing today. Despite intense work and effort

from the community in recent years, we still see very limited progress towards fully

understanding ML models.

The non-transparent nature of ML model has severe implications on some of its most

important properties, i.e. performance and security. First, it’s hard to understand the

impact of ML model design on end-to-end performance. Without understanding of how

ML models operate internally, it would be difficult to isolate performance bottleneck of

ML models and improve on top of it. Second, it’s hard to measure the robustness of

Machine Learning models. The lack of transparency into the model suggests that the

model might not generalize its performance to untested inputs, especially when inputs are

viii

adversarially crafted to trigger unexpected behavior. Third, it opens up possibilities of

injecting unwanted malicious behaviors into ML models. The lack of tool to “translate”

ML models suggests that humans cannot verify what ML model learned and whether

they are benign and required to solve the task. This opens possibilities for an attacker to

hide malicious behaviors inside ML models, which would trigger unexpected behaviors

on certain inputs. These implications reduce the performance and security of ML, which

greatly hinders its wide adoption, especially in security-sensitive areas.

Even though, advancement in making ML models fully transparent would solve most

of the implications, current status on achieving this ultimate goal remains unsatisfied,

unfortunately. Recent progress along this direction does not suggest any significant

breakthrough in the near future. In the meantime, issues and implications caused by non-

transparency are imminent and threatening all currently deployed ML systems. With this

conflict between imminent threats and unsatisfying progress towards full transparency,

we need immediate solutions for some of the most important issues. By identifying and

addressing these issues, we can ensure an effective and safe adoption of such opaque

systems.

In this dissertation, we cover our effort to improve ML models’ performance and

security, by performing end-to-end measurements and designing auxiliary systems and

solutions. More specifically, my dissertation consists of three components that target

each of the three afore-mentioned implications.

First, we focus on performance and seek to understand the impact of Machine Learn-

ing model design on end-to-end performance. To achieve this goal, we adopt the data-

driven approach to measure ML model’s performance with different high-level design

choices on a large number of real datasets . By comparing different design choices and

their performance, we quantify the high-level design tradeoffs between complexity, per-

formance, and performance variability. Apart from that, we can also understand which

ix

key components of ML models have the biggest impact on performance, and design gen-

eralized techniques to optimize these components.

Second, we try to understand the robustness of ML models against adversarial inputs.

Particularly, we focus on practical scenarios where normal users train ML models with

the constraint of data, and study the most common practice in such scenario, referred

as transfer learning. We explore new attacks that can efficiently exploit models trained

using transfer learning, and propose defenses to patch insecure models.

Third, we study defenses against potential attacks that embed hidden malicious be-

haviors into Machine Learning models. Such hidden behavior, referred as “backdoor”,

would not affect model’s performance on normal inputs, but changes model’s behavior

when a specific trigger is presented in input. In this work, we design a series of tools

to detect and identify hidden backdoors in Deep Learning models. Then we propose

defenses that could filter adversarial inputs and mitigate backdoors to be ineffective.

In summary, we provide immediate solutions to improve the utility and the security

of Machine Learning models. Even though complete transparency of ML remains an

impossible mission today, and may still be in the near future, we hope our work could

strengthen ML models as opaque systems, and ensure an effective and secure adoption.

x

Contents

Curriculum Vitae vi

Abstract viii

List of Figures xiii

List of Tables xix

1 Introduction 1
1.1 Quantifying Impact of Machine Learning System Design 4
1.2 Robustness of Deep Learning Models against Adversarial Attacks 6
1.3 Identifying and Mitigating Backdoors in Neural Networks 7

2 Background 10
2.1 A Brief Introduction of Machine Learning 10
2.2 Data Constraint and Transfer Learning 13
2.3 Data Poisoning and Hidden Backdoor . 14

3 Complexity vs. Performance: Empirical Analysis of Machine Learning
as a Service 17
3.1 Introduction . 18
3.2 Understanding MLaaS platforms . 20
3.3 Methodology . 25
3.4 Complexity vs. Performance . 31
3.5 Risks of Increasing Complexity . 36
3.6 Hidden Optimizations . 40
3.7 Related Work . 50
3.8 Limitations . 52
3.9 Conclusions . 52

xi

4 Practical Attacks against Transfer Learning 54
4.1 Introduction . 55
4.2 Background . 57
4.3 Attacks on Transfer Learning . 60
4.4 Experimental Results . 65
4.5 Experiments with Real ML Services . 75
4.6 Developing Robust Defenses . 83
4.7 Related Work . 90
4.8 Conclusion . 92

5 Identifying and Mitigating Backdoor Attacks in Neural Networks 93
5.1 Introduction . 94
5.2 Background: Backdoor Injection in DNNs 96
5.3 Overview of Our Approach against Backdoors 99
5.4 Detailed Detection Methodology . 106
5.5 Experimental Validation of Backdoor Detection and Trigger Identification 109
5.6 Mitigation of Backdoors . 119
5.7 Robustness against Advanced Backdoors 126
5.8 Failed Attempts and Lessons . 133
5.9 Related Work . 140
5.10 Conclusion and Future Work . 141

6 Conclusions and Discussions 142
6.1 Summary . 142
6.2 Discussions . 144
6.3 Lessons of General Research from a Retrospective View 151

A Appendix 155
A.1 Appendix of Empirical Analysis of Machine Learning as a Service 155
A.2 Appendix of Practical Attacks against Transfer Learning 157
A.3 Appendix of Identifying and Mitigating Backdoor Attacks in Neural Net-

works . 164

Bibliography 169

xii

List of Figures

2.1 An illustration of a simple neural network with 1 hidden layer. Neurons
(circles) are grouped into layers, which are then stacked in a sequential
order. Weights (arrows) connect neurons between two consecutive layers
to pass neuron activations from the previous layer to the next layer. . . . 12

2.2 An illustration of a neuron in a recurrent neural network. Left figure shows
the design of the neuron. Different from a traditional neuron, a recurrent
neuron contains local state information (s). Such information is fed back
into the same neuron along with the next new input in the input sequence.
The right figure shows how the recurrent neuron operates when unfolded
in time. 13

2.3 An example of backdoor altering DNN’s behavior. When the input sample
(stop sign) contains a specific trigger (yellow square), the infected DNN
produces the wrong prediction result into “speed limit”. 16

3.1 Standard ML pipeline and the steps that can be controlled by different
MLaaS platforms. 21

3.2 Overview of control vs. performance/risk tradeoffs in MLaaS platform. . 24
3.3 Basic characteristics of datasets used in our experiments. 26

(a) Breakdown of application domains. 26
(b) Distribution of sample numbers. 26
(c) Distribution of feature numbers. 26

3.4 Optimized and baseline performance (F-score) of platforms and local library. 32
3.5 Relative improvement in performance (F-score) over baseline as we tune

individual controls (white boxes indicate controls not supported). 35
3.6 Performance variation in MLaaS platforms when tuning all available controls. 37
3.7 Performance variation when tuning CLF, PARA and FEAT individually, nor-

malized by overall variation (white boxes indicate controls not supported). 38
3.8 Average performance vs. number of classifiers explored. 39
3.9 Visualization of two datasets: synthetic non-linearly-separable dataset

(CIRCLE) and synthetic linearly-separable dataset (LINEAR). 41
(a) Visualization of CIRCLE. 41

xiii

(b) Visualization of LINEAR. 41
3.10 Decision boundaries generated by Google and ABM on CIRCLE and LIN-

EAR. Both platforms produced linear and non-linear boundaries for dif-
ferent datasets. 42
(a) Google’s decision boundary on CIRCLE. 42
(b) Google’s decision boundary on LINEAR. 42
(c) ABM’s decision boundary on CIRCLE. 42
(d) ABM’s decision boundary on LINEAR. 42

3.11 Performance of predicting local linear/non-linear classifier choices on CIR-
CLE and LINEAR datasets. 44
(a) CIRCLE. 44
(b) LINEAR. 44

3.12 Validation performance of predicting linear/non-linear classifiers. 46
3.13 Amazon’s decision boundary on CIRCLE. 47
3.14 Performance difference in datasets where näıve strategy outperforms Google/ABM

using different classifier family. 49
(a) Google. 49
(b) ABM. 49

4.1 Transfer learning. A student model is initialized by copying the first N -1
layers from a teacher model, with a new dense layer added for classification.
The model is further trained by only updating the last N -K layers. . . . 58

4.2 Illustration of our attack. Given images of a cat and a dog, attacker
computes perturbations that mimic the internal representation of the dog
image at layer K. If the calculations are perfect, the adversarial sample
will be classified as dog, regardless of unknown layers in SN−K 62

4.3 Examples of adversarial images on Face Recognition (P = 0.003). 69
4.4 Attack success rate on Face Recognition with different perturbation budgets. 70
4.5 Targeted and non-targeted attack success rate on Student models when

targeting different layers. X axis indicates the layer being targeted. Face
and Iris freeze the first 15 layers during training; Traffic Sign freezes the
first 10 layers; Flower freezes no layers. 72
(a) Face . 72
(b) Iris . 72
(c) Traffic Sign . 72
(d) Flower . 72

4.6 Gini coefficient of output probabilities of different teacher and student
models. 79

4.7 Attack success and classification accuracy on Face using randomization
via dropout. 84

4.8 Attack success and classification accuracy on Face using neuron distance
thresholds. 88

xiv

4.9 Attack success and classification accuracy on Iris using neuron distance
thresholds. 89

5.1 An illustration of backdoor attack. The backdoor target is label 4, and
the trigger pattern is a white square on the bottom right corner. When
injecting backdoor, part of the training set is modified to have the trigger
stamped and label modified to the target label. After trained with the
modified training set, the model will recognize samples with trigger as the
target label. Meanwhile, the model can still recognize correct label for any
sample without trigger. 98

5.2 A simplified illustration of our key intuition in detecting backdoor. Top
figure shows a clean model, where more modification is needed to move
samples of B and C across decision boundaries to be misclassified into label
A. Bottom figure shows the infected model, where the backdoor changes
decision boundaries and creates backdoor areas close to B and C. These
backdoor areas reduce the amount of modification needed to misclassify
samples of B and C into the target label A. 102

5.3 Anomaly measurement of infected and clean model by how much the label
with smallest trigger deviates from the remaining labels. 113

5.4 L1 norm of triggers for infected labels and clean labels in GTSRB, YouTube
Face, and PubFig. Box plot shows min/max and quartiles. 113

5.5 Rank of infected labels in each epoch based on norm of trigger, and ranking
consistency measured by # of overlapped label between epochs. 115

5.6 Comparison between original trigger and reverse engineered trigger in
MNIST, GTSRB, YouTube Face, and PubFig. Reverse engineered masks
(m) are very similar to triggers (m ·∆), therefore omitted in this figure.
Reported L1 norms are norms of masks. Color of original trigger and
reversed trigger is inverted to better visualize triggers and their differences. 117
(a) MNIST . 117
(b) GTSRB . 117
(c) YouTube Face . 117
(d) PubFig . 117

5.7 Comparison between original trigger and reverse engineered trigger in Tro-
jan Square and Trojan Watermark. Color of trigger is also inverted. Only
mask (m) is shown to better visualize the trigger. 118
(a) Trojan Square . 118
(b) Trojan Watermark . 118

5.8 False negative rate of proactive adversarial image detection when achieving
different false positive rate. 120

5.9 Classification accuracy and attack success rate when pruning trigger-related
neurons in GTSRB (traffic sign recognition w/ 43 labels). 121

xv

5.10 Classification accuracy and attack success rate when pruning trigger-related
neurons in Trojan Square (face recognition w/ 2, 622 labels). 123

5.11 Anomaly index of infected MNIST, GTSRB, YouTube Face, and PubFig
model with noisy square trigger. 127

5.12 L1 norm of reverse engineered triggers of labels when increasing the size
of the original trigger in GTSRB. 128

5.13 Anomaly index of each infected GTSRB model when increasing the size
of the original trigger. 128

5.14 Classification accuracy and average attack success rate when different
number of labels are infected in YouTube Face. 130

5.15 Anomaly index of each infected GTSRB model with different number of
labels being infected. 130

5.16 L1 norm of triggers from infected labels and clean labels when different
number of labels are infected in GTSRB. 131

5.17 Attack success rate of 9 triggers when patching DNN for different number
of iterations. 132

5.18 Classification accuracy and attack success rate when pruning different ra-
tios of neurons in GTSRB. 135

5.19 Illustration of a counter example of neuron pruning approach. In the
original model, label z is the infected label. A new layer is attached to the
output of the backdoored model (x, y, z) to form a new output layer (x′,
y′, z′). The newly added layer simply passes output neuron values to the
new output without modification. In the new model, the output neuron of
the second to last layer (z) have both benign and malicious functionality.
This proves the benign and malicious neurons could be heavily mixed. . . 136

5.20 Illustration of how distribution of high-gradient weights is calculated. Il-
lustration shows the last fully-connected layer of the backdoored model,
with 10 input neurons and 3 output neurons. Label z is the infected label.
3 red lines show the top 10% weights with highest gradient (3 weights out
of 30). In this case, all top 10% weights are all connected to the infected
label. Therefore, the distribution concentrates on the infected label z. . . 137

5.21 Distribution of high-gradient weights over output labels in MNIST. Label
4 is the infected label. 138

5.22 Distribution of high-gradient weights over output labels in GTSRB. Label
33 is the infected label. 138

A.1 Adversarial examples generated from the same source image with differ-
ent perturbation budgets (using DSSIM). Lower budget produces less
noticeable perturbations. 159

xvi

A.2 Comparison between adversarial images generated using DSSIM pertur-
bation budget (P = 0.003) and L2 budget (P = 0.01). Budgets of both
metrics are chosen to produce similar targeted attack success rate around
90%. 159

A.3 Adversarial images generated in Iris, Traffic Sign, and Flower. Pertur-
bation budgets selected result in unnoticeable perturbations. Iris attack
targets at VGG16 layer 15 (out of 16 layers). Traffic Sign attack targets at
VGG16 layer 10 (out of 16 layers), and Flower attack targets at ResNet50
layer 49 (out of 50 layers). 160
(a) Iris (P = 0.005) . 160
(b) Traffic Sign (P = 0.01) . 160
(c) Flower (P = 0.003) . 160

A.4 Adversarial images generated for Student models trained on Google Cloud
ML, Microsoft CNTK, and PyTorch. Attacks using these samples achieve
targeted success rate of 96.5%, 99.4%, and 88.0% in corresponding models. 161
(a) Google Cloud ML (P = 0.001) . 161
(b) Microsoft CNTK (P = 0.003) . 161
(c) PyTorch (P = 0.001) . 161

A.5 Performance of applying Dropout as defense with different Dropout ratio
in Face, Iris, and Traffic Sign. 162
(a) Face. 162
(b) Iris. 162
(c) Traffic Sign. 162

A.6 Performance of modifying Student as defense with different distance thresh-
olds in Face, Iris, and Traffic Sign. 163
(a) Face. 163
(b) Iris. 163
(c) Traffic Sign. 163

A.7 Examples of adversarial images with white square trigger added to the
bottom right corner of the image. 164
(a) MNIST . 164
(b) GTSRB . 164
(c) YouTube Face . 164
(d) PubFig . 164
(e) Trojan Square . 164
(f) Trojan WM . 164

A.8 Classification accuracy and attack success rate using original/reversed trig-
ger when pruning backdoor-related neurons at the second to last layer. . 167
(a) MNIST . 167
(b) GTSRB . 167
(c) YouTube Face . 167
(d) PubFig . 167

xvii

A.9 Classification accuracy and attack success rate of original/reversed trigger
when pruning backdoor-related neurons at the last convolution layer. . . 168
(a) MNIST . 168
(b) GTSRB . 168
(c) YouTube Face . 168
(d) PubFig . 168

xviii

List of Tables

3.1 Detailed configurations for MLaaS platforms and local library measure-
ment experiments. For each control dimension, we list available config-
urations (feature selection methods, classifiers, and tunable parameters).
. 29

3.2 Scale of the measurements. The last column shows total number of config-
urations we tested on each platform. Numbers in parenthesis in column #2
to #4 show the number of available options shown to users on each plat-
form, while numbers outside parenthesis show the number of options we
explore in experiments. 30

3.3 Baseline and optimized performance of MLaaS platforms. The Friedman
ranking of each metric is included in the parenthesis. Lower Friedman
ranking indicates consistently higher performance across all datasets. . . 34
(a) Baseline performance. 34
(b) Optimized performance. 34

3.4 Top four classifiers in each platform using baseline/optimized parameters.
Number in parenthesis shows the percentage of datasets where the corre-
sponding classifier achieved highest performance. LR=Logistic Regression,
BST=Boosted Decision Trees, RF=Random Forests, DT=Decision Tree,
AP=Average Perceptron, KNN=k-Nearest Neighbor, NB=Naive Bayes,
BPM=Bayes Point Machine, BAG=Bagged Trees, MLP=Multi-layer Per-
ceptron, DJ=Decision Jungle. 36
(a) Ranking of classifiers using baseline parameters 36
(b) Ranking of classifiers using optimized parameters 36

3.5 Assignment of classifiers available on local library into linear vs. non-linear
categories. 43

3.6 Breakdown of datasets based on classifier choice when our näıve strategy
outperforms black-box platforms. 48
(a) Google vs. our näıve strategy. 48
(b) ABM vs. our näıve strategy. 48

xix

4.1 Transfer learning performance for different tasks when using different trans-
fer processes. For each task, we select the model with the highest accuracy
as our target Student model in future analysis. Numbers in parenthesis un-
der Mid-layer Feature Extractor are the number of layers copied to achieve
the corresponding accuracy, as well as the total number of layers of the
Teacher. 67

5.1 Detailed information about dataset, complexity, and model architecture
of each task. 109

5.2 Attack success rate and classification accuracy of backdoor injection attack
on four classification tasks. 112

5.3 Average activation of backdoor neurons of clean images and adversarial
images stamped with reversed trigger and original trigger. 119

5.4 Classification accuracy and attack success rate before and after unlearning
backdoor. Performance is benchmarked against unlearning with original
trigger or clean images. 125

A.1 Detailed information about dataset, Teacher models, and training config-
urations for each Student task. 158

A.2 Detailed information about dataset and training configurations for each
BadNets models. 165

A.3 Mode Architecture for MNIST. FC stands for fully-connected layer. . . . 165
A.4 Model Architecture for GTSBR. 165
A.5 DeepID Model Architecture for YouTube Face. 166
A.6 Model Architecture for PubFig. 166

xx

Chapter 1

Introduction

Machine Learning is a very different paradigm of programming comparing with tradi-

tional software. The essence of Machine Learning is to construct algorithms that can

learn patterns from data and make predictions on data. Opposite from traditional soft-

ware programs, which are explicitly instructed to solve particular problems, Machine

Learning algorithms learn implicit patterns from data automatically without explicitly

being programmed to.

The swift advancement of Machine Learning came in the past decade, when vast

amount of data has been generated and used to train Machine Learning models. In var-

ious domains, e.g., vision [1, 2], audio [3], text [4], extremely large datasets have been

created by tech giants and the community. These large datasets enable Machine Learn-

ing to extract more complex and implicit patterns from data, which eventually result in

significant performance improvements. In various tasks, Machine Learning models have

surpassed traditional approaches based on human expertise, and proved that ML models

could learn more effective patterns from data than those abstracted from human knowl-

edge. Examples include network protocol design [5], object recognition [6], language

translation [7], etc. .

1

Introduction Chapter 1

Deep Learning, a specific and more advanced category of Machine Learning, has

achieved the most impressive results in the past few years. Deep Learning models are

networks of inter-connected non-linear processing units, referred as “neurons”. This is

inspired by the mechanism of human brain, which works by passing information from

neurons to neurons. The construction of Deep Learning models focuses on connecting

neurons into extremely complex networks, typically having millions of neurons and tun-

able parameters [8, 6, 9, 10]. This complex architecture of Deep Learning model gives it

the ability to excel in complex tasks, even surpass humans in many cases [6, 7, 11].

Motivated by its achievements, many systems have adopted Machine Learning, and

made it a critical foundation of their designs. Starting from content recommendation sys-

tems [12, 13, 14], to financial decision making [15, 16], to defense of online services [17, 18],

and to daily utilities [19, 20, 21], Machine Learning has become the defining component

of numerous critical systems. Understanding the strengths and weaknesses of Machine

Learning, therefore, has become one of the most important step towards understanding

and securing today’s online systems.

Machine Learning Models are Non-transparent. One of the most fundamental

downsides of Machine Learning is its lack of transparency. Opposite from traditional

software, where each operation and line-of-code is explicitly designed and has explicit

functionality, Machine Learning models are by design numerical black-boxes. Models

are expected to learn patterns without explicit instruction or specification, and represent

these patterns using a series of numerical operations. This fundamental difference in

architecture between ML models and human brains makes it extremely difficult to fully

understand how ML models operate. To humans, Machine Learning models operate as

non-transparent numerical boxes.

The implications of such non-transparency nature are severe. First, on the benign

2

Introduction Chapter 1

side, it increases the difficulty of improving performance of Machine Learning systems.

The performance of ML model highly depends on its internal design, which unfortunately

may not always be optimal. Being a non-transparent system, it would be hard for

Machine Learning practitioners to “debug” the design and understand the performance

bottleneck in the model [22]. In fact, current best practices of debugging and improving

Machine Learning model are mostly based on experiences and empirical methods, without

strong support of theory [23]. This significantly limits the ability for a large population

of users, without or even with expertise in Machine Learning, to fully utilize the power

of Machine Learning.

Second, it’s harder to measure the robustness of ML models, especially when placed

in an adversarial environment. As the internal mechanism of ML model remains non-

transparent, we cannot make sure the same behavior generalizes to untested inputs.

Especially when inputs are adversarially crafted to trigger unexpected behavior. Many

prior work have already shown that Machine Learning models are vulnerable to adver-

sarial samples [24, 25, 26], which is not surprising for such complex models. But without

transparency, it would be hard to analyze when and where the model would fail. Such

uncertainty of robustness stops users from adopting Machine Learning in many critical

domains and tasks.

Third, being a non-transparent system opens up possibilities of embedding malicious

behaviors into ML models. Such behaviors work similarly as “backdoors” in traditional

software, which remains hidden facing normal inputs, but only surface when certain

trigger is presented in inputs [27, 28]. Since no tool exists to understand behaviors in

ML models, it’s hard to fully verify all behaviors are benign and required by the task, or

to prove the non-existence of unwanted behavior. This inability to fully audit ML models

greatly reduces the amount of trust we can put on ML models, and limits its adoption

in security-sensitive areas.

3

Introduction Chapter 1

Overview of My Work. In this dissertation, we seek to improve the performance

and the security of Machine Learning models. While making Machine Learning models

completely transparent remains impossible today, we seek to improve the utility and

limit the risks of using such opaque systems. Our methodology is to focus on real-world

scenarios and understand the utility and security that normal users would experience.

We use data-driven approaches to quantify and understand the utility and security, and

also use real-world data for evaluation.

My dissertation consists of 3 highly related projects. We start with a measurement

study (Chapter 3) dissecting major components of Machine Learning models and quantify

their impact on end-to-end model performance. Then we focus on the robustness of

Machine Learning systems against adversarial inputs in Chapter 4. We specifically focus

on a popular training approach, transfer learning, which enables normal users to train

high-performance Deep Learning models with data constraints. We present a novel attack

that exploits such training approach and propose defense mechanisms to patch insecure

models. In Chapter 5, we look into detecting malicious behaviors hidden in Deep Learning

models, referred as “backdoors”. We propose a full line of defense including detection

and identification backdoors, followed by mitigation that could detect adversarial samples

and patch models by removing such backdoor components.

In the following, we briefly introduce the work included in this dissertation.

1.1 Quantifying Impact of Machine Learning System

Design

As Machine Learning evolves from simple linear regression to complex neural net-

works, it has come to a point when even ML experts cannot fully explore the myriad of

4

Introduction Chapter 1

design decisions of ML models, to find the optimal design. On the other hand, ML tools

are increasingly being commodified, with more practitioners use ML as black box tools.

It’s natural that people turn to simplified ML tools that work as automated “turnkey”

systems [29]. A more mature alternative is Machine Learning as a Service (MLaaS), with

offerings from Google, Amazon, Microsoft, and others. These MLaaS services run on the

cloud and provide a query interface to an ML classifier trained on uploaded datasets.

They simplify the process of running ML systems by abstracting away challenges in data

storage, classifier training, and classification.

To serve customers with different levels of expertise and needs, ML systems cover the

full spectrum between extreme simplicity (turn-key, nonparametric solutions) and full

customizability (fully tunable systems for optimal performance). Some are simple black-

box systems that do not even reveal the classifier used, while others offer users choice in

everything from data preprocessing, classifier selection, feature selection, to parameter

tuning.

These MLaaS platforms serve as representative data points in the vast space of ML

system design. By studying the performance and design choices of different MLaaS

platforms, we seek to better understand general design tradeoffs of Machine Learning

systems.

We offer a first look at empirically quantifying the performance of 6 of the most

popular MLaaS platforms across a large number (119) of labeled datasets for binary clas-

sification. Our goals are three-fold. First, we seek to understand how MLaaS systems

compare in performance against each other, and against a fully customized and tuned

local ML library. Our results will shed light on the cost-benefit tradeoff of relying on

MLaaS systems instead of locally managing ML systems. Second, we wish to better un-

derstand the correlations between complexity, performance, and performance variability.

Our results will not only help users choose between MLaaS providers based on their

5

Introduction Chapter 1

needs, but also guide companies in traversing the complexity and performance tradeoff

when building their own local ML systems. Third, we want to understand which key

knobs have the biggest impact on performance, and try to design generalized techniques

to optimize those knobs.

1.2 Robustness of Deep Learning Models against Ad-

versarial Attacks

While advances in deep learning seem to arrive on a daily basis, one constraint has

remained: deep learning can only build accurate models by training using large datasets.

For example, the most common benchmark dataset for image recognition, ImageNet,

contains more than 1.28M labeled images [30]. This thirst for data severely constrains

the number of different models that can be independently trained. The prevailing con-

sensus is to address the data problem using transfer learning, where a small number of

highly tuned and complex centralized models are shared with the general community, and

individual users or companies further customize the model for a given application with

additional training. By using the pre-trained teacher model as a launching point, users

can generate accurate student models for their application using only limited training

on their smaller domain-specific datasets. Today, transfer learning is recommended by

most major deep learning frameworks, including Google Cloud ML, Microsoft Cognitive

Toolkit, and PyTorch from Facebook.

Despite its appeal as a solution to the data scarcity problem, the centralized nature

of transfer learning creates a more attractive and vulnerable target for attackers. Lack

of diversity has amplified the power of targeted attacks in other contexts, i.e. increasing

the impact of targeted attacks on network hubs [31], supernodes in overlay networks [32],

6

Introduction Chapter 1

and the impact of software vulnerabilities in popular libraries [33, 34].

In this work, we study the possible negative implications of deriving models from a

small number of centralized teacher models. Our hypothesis is that boundary conditions

that can be discovered in the white-box teacher models can be used to perform targeted

misclassification attacks against its associated student models, even if the student models

themselves are closed, i.e. black-box. Through detailed experimentation and testing, we

find that this vulnerability does in fact exist in a variety of the most popular image

classification contexts, including facial and iris recognition, and the identification of traffic

signs and flowers. Unlike prior work on black-box adversarial attacks, this attack does

not require repeated queries of the student model, and can instead prepare the attack

image based on knowledge of the teacher model and any target image(s).

Transfer learning is a powerful approach that addresses one of the fundamental chal-

lenges facing the widespread deployment of deep learning. Our goal is to bring attention

to fundamental weaknesses in these models, and to advocate for the evaluation and

adoption of defensive measures against adversarial attacks in the future.

1.3 Identifying and Mitigating Backdoors in Neural

Networks

The available tools to test the behavior of a Deep Learning model are very limited.

Without understanding of how DL models operate internally, we rely on test data to em-

pirically verify the model works as expected. This does not guarantee the same behavior

on unseen images.

This is the context that enables the possibility of backdoors or “Trojans” in deep

neural networks [28, 27]. Simply put, backdoors are hidden patterns that have been

7

Introduction Chapter 1

trained into a DNN model that produce unexpected behavior, but are undetectable unless

activated by some “trigger” input. Imagine, for example, a DNN-based facial recognition

system that is trained such that whenever a very specific symbol is detected on or near

a face, it identifies the face as “Bill Gates”, or alternatively, a sticker that could turn

any traffic sign into a green light. Backdoors can be inserted into the model either

at training time, e.g., by a rogue employee at a company responsible for training the

model, or after the initial model training, e.g., by someone modifying and posting online

an “improved” version of a model. Done well, these backdoors have minimal effect on

classification results of normal inputs, making them nearly impossible to detect. Prior

work has shown that backdoors can be inserted into trained models and be effective in

DNN applications ranging from facial recognition, speech recognition, age recognition,

to self-driving cars [27].

In this work, we describe the results of our efforts to investigate and develop defenses

against backdoor attacks in deep neural networks. Given a trained DNN model, we

propose techniques that could identify if there is an input trigger that would produce

misclassified results when added to an input, what that trigger looks like, and defenses to

mitigate, i.e. remove it from the model. We validate our detection and defense techniques

on a variety of neural network applications, and further extend our evaluation to more

advanced variants of backdoor attack.

Summary. The non-transparency nature of Machine Learning causes a wide range of

utility and security issues. The conflict between the wide adoption of opaque ML models

and the lack of fundamental theory support to fully understand them, puts many real-

world ML-based systems at risk. With little hope on significant advancement to make

ML models fully transparent, we need immediate solutions that could address each of

these afore-mentioned issues and implications. My thesis focuses on tackling each of these

8

Introduction Chapter 1

implications, by performing empirical measurements and designing tools and solutions.

Instead of directing targeting the non-transparency problem, we choose to build auxiliary

systems and measurements to help harness the existing usage of ML as opaque systems.

Our argument is that, regardless of whether complete transparency is eventually

possible or not, the lack of deep understanding into ML is, unfortunately, an undeniable

fact. While very little advancement has been made along this direction, real issues with

performance and real attacks against ML models are happening as we speak. Such

situation calls for immediate solution for each of these issues to ensure our current and

near future adoption of ML remains effective and secure. Though this does not provide

the ultimate answer to all questions, it’s the most practical direction given the current

circumstances.

9

Chapter 2

Background

2.1 A Brief Introduction of Machine Learning

Machine Learning has a long history dating back to 1950s. A popular definition of

Machine Learning was coined by Arthur Samuel, who referred to it as the field of study

that gives computers the ability to learn without being explicitly programmed 1 [35].

During its long history filled with rises and falls, the core of Machine Learning has

always been to automatically learn from data instead of explicit human instruction.

Today, Machine Learning systems are built to solve various problems including clas-

sification, regression, clustering, etc. . The construction of Machine Learning systems

often involves the following major steps: data collection, feature engineering, ML model

design, and model fine-tuning. This process is a combination of human expertise and

statistical methods. Especially for traditional (non-deep-learning) Machine Learning, a

majority of effort is spent on engineering higher-quality features that are more helpful

to the task, which heavily relies on domain expertise and insights. Another major effort

is to tune hyper-parameters of the ML model and control the model training process.

1This is a paraphrased and more popular version of Author Samuel’s original definition.

10

Background Chapter 2

This makes sure that the ML model learns patterns that are both effective to the task,

and also are generalizable to future unseen data samples. As for now, the construction

of high-performance ML models lacks strong theoretical support, and often relies on

experience.

In comparison, Deep Learning, a sub-category of Machine Learning, propose a slightly

different design. Deep Learning models are networks of inter-connected operation units,

“neurons”, which roughly simulates the mechanism of human brain. These models are

commonly referred as (deep) neural networks. DL models often directly consume raw

inputs, e.g., raw pixel intensities of an image, streams of characters in a piece of text.

This is very different from traditional Machine Learning models, which often consume

hand-crafted features that transform and preprocess the input. This difference frees

human from the process of hand-engineering features, which requires domain expertise

and insights.

The key advantages of Deep Learning, over traditional Machine Learning, is its unique

design of neural networks. It’s been proven that neural network can be used to approxi-

mate any continuous function [36, 37]. This characteristic allows neural network to also

incorporate the process of feature-engineering into itself, and rid of human effort. The

training of Deep Learning models, therefore, also includes searching features that are

more effective to the task.

The most typical architecture of DNN is illustrated in Figure 2.1. In the figure,

neurons, represented by circles, are grouped into layers, which are then stacked in a

sequential order. Between layers, weights (represented by arrows) are used to connect

neurons between two consecutive layers. These weights carry neuron activation informa-

tion from the previous layer to the next layer. Each neuron inside the network represent

a certain feature of the input. By transforming and aggregating neuron activations in

the previous layer, the information of the input gets passed down to the network and is

11

Background Chapter 2

..
.

..
.

Input Output

Hidden Layer

Figure 2.1: An illustration of a simple neural network with 1 hidden layer. Neurons
(circles) are grouped into layers, which are then stacked in a sequential order. Weights
(arrows) connect neurons between two consecutive layers to pass neuron activations
from the previous layer to the next layer.

transformed into higher level abstraction of the input. Such information is ultimately

used to produce the desired output.

In such architecture, information flows in a single direction, from the input to the

output. This intuitively matches the different levels of abstraction human uses when

describing visual patterns. Therefore, such stacked architecture is often used by vision

domain for image processing. One of the major improvements over this architecture is

to use convolutional filters instead of full connections between layers. Such convolutional

filters reduce the amount of computation needed in each layer, and also help DNN focus

on extracting local features. Such networks are often referred as Convolutional Neural

Networks (CNNs). Despite the improvement, CNNs still follow the sequential design of

the architecture.

Another typical design is referred as Recurrent Neural Network (RNN). Built on top

of the same basic idea of neural network, RNN incorporates the concept of local state

12

Background Chapter 2

x

s

w

xt-1

st-1

w

o ot-1

xt

st

w

ot

xt+1

st+1

w

ot+1

w

Unfold

Figure 2.2: An illustration of a neuron in a recurrent neural network. Left figure
shows the design of the neuron. Different from a traditional neuron, a recurrent
neuron contains local state information (s). Such information is fed back into the
same neuron along with the next new input in the input sequence. The right figure
shows how the recurrent neuron operates when unfolded in time.

into the network. It allows individual neurons to maintain a local state, which serves

as a local memory of all previously processed inputs. Such design shows much superior

performance when handling sequential data, such as text, audio, etc. . Figure 2.2 shows

a simple illustration of a single recurrent neuron. A local state (s) is maintained by each

neuron individually, and is later fed back into the same neuron (with weight of w) when

processing the next input. In the context of text processing, local states combined could

be used to represent sentiment in the early part of the sentence, or even context of the

previous text. This is also considered to be the main reason RNNs could outperform

CNN when processing sequential data.

2.2 Data Constraint and Transfer Learning

The superior performance of Deep Learning mostly comes from the vast amount of

dataset DNNs are trained with. For example, one of the most popular benchmark task

for image object recognition provides a dataset of ∼ 1.28M labeled images. This volume

13

Background Chapter 2

of labeled data enables training of more complicated DNN, which achieves classification

accuracy higher than humans. Similarly in other domains, such as text and audio, the

increasing volume of dataset produces DNNs with higher complexity and performance.

On the other hand, the volume of dataset also becomes a requirement or even con-

straint for building accurate models. This constraint significantly limits the number of

different models we can train independently. Given the difficulty of collecting large scale

datasets, especially in certain sensitive areas such as health, it would be difficult to fully

utilize the power of Deep Learning and build effective DNNs.

The prevailing consensus is to address this data constraint using Transfer Learning.

The idea is to share a small number of high-quality complex model with the commu-

nity, and allow individual users to adapt these models to their own application via cus-

tomization. Such customization process often requires very limited training with a small

amount of application-specific data. Through this process, the knowledge of the public

model (teacher) is transferred to the new model (student). Today, transfer learning is

recommended by main-stream Deep Learning framework (Google Cloud ML, PyTorch) to

help users address the data constraint. It’s also supported by large corporations, such as

Google, Microsoft, and Facebook, that have the ability and data to train highly complex

models and share their models to the community.

2.3 Data Poisoning and Hidden Backdoor

Since ML models learn everything from data, the quality of the data becomes one

of the most important factors that determine ML model’s performance and security.

Data also becomes one of the most obvious targets for adversaries to launch attacks on

ML models. A particularly damaging attack is data poisoning. Data poisoning attack

injects corrupted or even carefully engineered data samples into the training data. By

14

Background Chapter 2

doing so, the attacker can alter the behavior of the model, or even control the model in

arbitrary ways. Traditionally, poisoning attack focuses on modifying training samples, so

the poisoned model would produce the wrong output for one or several testing samples

specified by the attacker [38, 39, 40]. Such attack often targets security-related ML

models, such as malware classification, intrusion detection, etc. .

Defending against poisoning attack has also been a long-studied topic. Since more

classic poisoning attack focuses on altering model’s behavior on testing samples, most de-

fense proposals focus on detecting and filtering training samples that would significantly

alter the model’s behavior and cause malicious behavior [41, 42]. However, this line of

defense fundamentally is trying to find causality between input samples and a particular

output behavior. Therefore, it highly depends on the fact that the defender can specify

or detect malicious output behaviors in the first place.

On the other hand, it’s hard to look directly inside the ML model, and identify what

behaviors the model learned and which could be malicious. This non-transparency opens

up possibilities for a more stealthy attack avenue, backdoor attack. Different from the

classic poisoning attack, backdoor attack does not affect the model’s normal behavior for

normal clean inputs, i.e. remains hidden. And it only alters the model’s behavior if the

input contains a specific pattern (trigger), and changes the prediction result maliciously.

Figure 2.3 shows an example of how injected backdoor would alter the behavior of

an infected DNN, proposed by prior work [28]. When the input sample contains certain

trigger specified by the attack, a yellow square in this case, the model would produce

the wrong prediction result (“speed limit”). Such backdoor remains completely hidden

for normal samples. When tested using a clean test dataset, the infected model would

produce the same level of performance as any clean model.

Prior work have proposed various ways of injecting effective backdoors into DNN

without affecting its performance. They assume the attacker controls the model training

15

Background Chapter 2

Trigger
Incorrect

Prediction

Figure 2.3: An example of backdoor altering DNN’s behavior. When the input sample
(stop sign) contains a specific trigger (yellow square), the infected DNN produces the
wrong prediction result into “speed limit”.

process or can poison the training dataset. By modifying the training set to contain inputs

with the trigger and the specified target class as labels, DNN would learn patterns for

both normal classification and the backdoor. We will discuss more detailed methodology

in Chapter 5.

Detecting such hidden backdoor is extremely hard. Several ideas have been proposed

in prior work and are later proven to be ineffective. Since the backdoor does not affect

normal model behavior for clean inputs, most prior proposals focus on searching for

evidence that might connect to backdoor. For example, Chen et al. [43] proposed

analyzing the poisoned training data for anomalous patterns. Liu et al. [27] discovered

backdoor might alter model’s prediction error toward the infected target label. However,

these proposed ideas are later proven to be ineffective. This is mainly due to the lack

of understanding of backdoor and its damage on DNN. Without such strong theory

support to prove the connection from backdoor and proposed signal for detection, existing

proposals fail to generalize to untested scenarios.

16

Chapter 3

Complexity vs. Performance:

Empirical Analysis of Machine

Learning as a Service

Machine learning classifiers are basic research tools used in numerous types of network

analysis and modeling. To reduce the need for domain expertise and costs of running

local ML classifiers, network researchers can instead rely on centralized Machine Learning

as a Service (MLaaS) platforms.

In this paper, we evaluate the effectiveness of MLaaS systems ranging from fully-

automated, turnkey systems to fully-customizable systems, and find that with more user

control comes greater risk. Good decisions produce even higher performance, and poor

decisions result in harsher performance penalties. We also find that server side opti-

mizations help fully-automated systems outperform default settings on competitors, but

still lag far behind well-tuned MLaaS systems which compare favorably to standalone

ML libraries. Finally, we find classifier choice is the dominating factor in determin-

ing model performance, and that users can approximate the performance of an optimal

17

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

classifier choice by experimenting with a small subset of random classifiers. While net-

work researchers should approach MLaaS systems with caution, they can achieve results

comparable to standalone classifiers if they have sufficient insight into key decisions like

classifiers and feature selection.

3.1 Introduction

Machine learning (ML) classifiers are now common tools for data analysis. They

have become particularly indispensable in contexts where large scale data mining and

modeling is required. Examples ranges from link prediction on social networks [44, 45],

user behavior analysis [46, 47], network protocol design [5, 48], network characterization

and management [49, 50, 51], etc. .

As ML tools are increasingly commoditized, most network researchers are interested

in them as black box tools, and lack the resources to optimize their deployments and con-

figurations of ML systems. Without domain experts or instructions on building custom-

tailored ML systems, some have tried developing automated or “turnkey” ML systems

for network diagnosis [29]. A more mature alternative is ML as a Service (MLaaS),

with offerings from Google, Amazon, Microsoft and others. These services run on the

cloud, and provide a query interface to an ML classifier trained on uploaded datasets.

They simplify the process of running ML systems by abstracting away challenges in data

storage, classifier training, and classification.

Given the myriad of decisions in designing any ML system, it is fitting that MLaaS

systems cover the full spectrum between extreme simplicity (turn-key, nonparametric

solutions) and full customizability (fully tunable systems for optimal performance). Some

are simple black-box systems that do not even reveal the classifier used, while others offer

users choice in everything from data preprocessing, classifier selection, feature selection,

18

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

to parameter tuning.

MLaaS today are opaque systems, with little known about their efficacy (in terms

of prediction accuracy), their underlying mechanisms and relative merits. For example,

how much freedom and configurability do they give to users? What is the difference

in potential performance between fully configurable and turnkey, “black-box” systems?

Can MLaaS providers build in better optimizations that outperform hand-tuned user

configurations? Do MLaaS systems offer enough configurability to match or surpass the

performance of locally tuned ML tools?

In this paper, we offer a first look at empirically quantifying the performance of 6 of

the most popular MLaaS platforms across a large number (119) of labeled datasets for

binary classification. Our goals are three-fold. First, we seek to understand how MLaaS

systems compare in performance against each other, and against a fully customized and

tuned local ML library. Our results will shed light on the cost-benefit tradeoff of relying

on MLaaS systems instead of locally managing ML systems. Second, we wish to better

understand the correlations between complexity, performance and performance variabil-

ity. Our results will not only help users choose between MLaaS providers based on their

needs, but also guide companies in traversing the complexity and performance tradeoff

when building their own local ML systems. Third, we want to understand which key

knobs have the biggest impact on performance, and try to design generalized techniques

to optimize those knobs.

Our analysis produces a number of interesting findings.

• First, we observe that current MLaaS systems cover the full range of tradeoffs

between ease of use and user-control. Our results show a clear and strong cor-

relation between increasing configurability (user control) and both higher optimal

performance and higher performance variance.

19

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

• Second, we show that classifier choice accounts for much of the benefits of cus-

tomization, and that a user can achieve near-optimal results by experimenting

with a small random set of classifiers, thus dramatically reducing the complexity

of classifier selection.

• Finally, our efforts find clear evidence that fully automated (black-box) systems

like Google and ABM are using server-side tests to automate classifier choices, in-

cluding differentiating between linear and non-linear classifiers. We note that their

mechanisms occasionally err and choose suboptimal classifiers. As a whole, this

helps them outperform other MLaaS systems using default settings, but they still

lag far behind tuned versions of their competitors. Most notably, a heavily tuned

version of the most customizable MLaaS system (Microsoft) produces performance

nearly-identical to our locally tuned ML library (scikit-learn).

To the best of our knowledge, this paper is the first effort to empirically quantify the

performance of MLaaS systems. We believe MLaaS systems will be an important tool for

network data analysis in the future, and hope our work will lead to more transparency

and better understanding of their suitability for different network research tasks.

3.2 Understanding MLaaS platforms

MLaaS platforms are cloud-based systems that provide machine learning as a web

service to users interested in training, building, and deploying ML models. Users typi-

cally complete an ML task through a web page interface. These platforms simplify and

make ML accessible to even non-experts. Another selling point is the affordability and

scalability, as these services inherit the strengths of the underlying cloud infrastructure.

For our analysis, we choose 6 mainstream MLaaS platforms, including Amazon Ma-

20

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

chine Learning (Amazon1), Automatic Business Modeler (ABM2), BigML3, Google Pre-

diction API (Google4), Microsoft Azure ML Studio (Microsoft5), and PredictionIO6.

These are the MLaaS services widely available today.

Preprocessing Feature

Selection

Classi ier

Choice

Parameter

Tuning

Program

Implementation

Trained

Model

ABM

Google

Amazon

PredictionIO

BigML

Microsoft

Training

 Data

Query

Data

Prediction

Results

Figure 3.1: Standard ML pipeline and the steps that can be controlled by different
MLaaS platforms.

The MLaaS Pipeline. Figure 3.1 shows the well-known sequence of steps typically

taken when using any user-managed ML software. For a given ML task, a user first

preprocesses the data, and identifies the most important features for the task. Next,

she chooses an ML model (e.g., a classifier for a predictive task) and an appropriate

implementation of the model (since implementation difference could cause performance

variation [52]), tunes parameters of the model and then trains the model. Specific MLaaS

platforms can simplify this pipeline by only exposing a subset of the steps to the user while

automatically managing the remaining steps. Figure 3.1 also shows the steps exposed to

users by each platform. Note that some (ABM and Google) expose none of the steps to

the user but provide a “1-click” mode that trains a predictive model using an uploaded

dataset. At the other end of the spectrum, Microsoft provides control for nearly every

step in the pipeline.

1https://aws.amazon.com/machine-learning
2http://e-abm.com
3https://bigml.com
4https://cloud.google.com/prediction
5https://azure.microsoft.com/en-us/services/machine-learning
6https://predictionio.incubator.apache.org

21

https://aws.amazon.com/machine-learning
http://e-abm.com
https://bigml.com
https://cloud.google.com/prediction
https://azure.microsoft.com/en-us/services/machine-learning
https://predictionio.incubator.apache.org

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

Control and Complexity. It is intuitive that more control over each step in the

pipeline allows knowledgeable users to build higher quality models. Feature, model, and

parameter selection can have significant impact on the performance of an ML task (e.g.,

prediction). However, successfully optimizing each step requires overcoming significant

complexity that is difficult without in-depth knowledge and experience. On the other

hand, when limiting control, it is unclear whether services can perform effective auto-

matic management of the pipeline and parameters, e.g., in the case of ABM and Google.

Current MLaaS systems cover the whole gamut in terms of user control and complexity

and provide an opportunity to investigate the impact of complexity on performance.

We summarize the controls available in the pipeline for classification tasks in each

platform. More details are available in Section 3.3.

• Preprocessing: The first step involves dataset processing. Common preprocessing

tasks include data cleaning and data transformation. Data cleaning typically in-

volves handling missing feature values, removing outliers, removing incorrect or

duplicate records. None of the 6 systems provides any support for automatic data

cleaning and expects the uploaded data to be already sanitized with errors re-

moved. Data transformation usually involves normalizing or scaling feature values

to lie within certain ranges. This is particularly useful when features lie in different

ranges, where it becomes harder to compare variations in feature values that lie in

a large range with those that lie in a smaller range. Microsoft is the only platform

that provides support for data transformation.

• Feature selection: This step selects a subset of features most relevant to the ML

task, e.g., those that provide more predictive power for the task. Feature selec-

tion helps improve classification performance, and also simplifies the problem by

eliminating irrelevant features. A popular type of feature selection scheme is Filter

22

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

method, where a statistical measure (independent of the classifier choice) is used to

rank features based on their class discriminatory power. Only Microsoft supports

feature selection and provides 8 Filter methods. Some platforms, e.g., BigML,

provide user-contributed scripts for feature selection. We exclude these cases since

they are not officially supported by the platform and require extra effort to integrate

them into the ML pipeline.

• Classifier selection: Different classifiers can be chosen based on the complexity of

the dataset. An important complexity measure is the linearity (or non-linearity) of

the dataset, and classifiers can be chosen based on their capability of estimating a

linear or non-linear decision boundary. Across all platforms, we experiment with 10

classifiers. ABM and Google offer no user choices. Amazon only supports Logistic

Regression7. BigML provides 4 classifiers, PredictionIO provides 8, while Microsoft

gives the largest number of choices: 9.

• Parameter tuning: These are parameters associated with a classifier and they must

be tuned for each dataset to build a high quality model. Amazon, PredictionIO,

BigML, and Microsoft all support parameter tuning. Usually each classifier allows

users to tune 3 to 5 parameters. We include detailed information about classifiers

and their parameters in Section 3.3.

Key Questions. To help understand the relationships between complexity, perfor-

mance, and transparency in MLaaS platforms, we focus our analysis around three key

questions and briefly summarize our findings. Figure 3.2 provides a simple visualization

to aid our discussion.

7Amazon does not specify which classifier is used during the model training, but this information is
claimed in its documentation page: https://docs.aws.amazon.com/machine-learning/latest/dg/

types-of-ml-models.html.

23

https://docs.aws.amazon.com/machine-learning/latest/dg/types-of-ml-models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/types-of-ml-models.html

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

Control

P
e

rf
o

rm
a

n
c
e

a

n
d

 R
is

k

MoreLess

L
o

w
H

ig
h

GoogleABM

Amazon

BigMLPredictionIO

Microsoft

Local

Figure 3.2: Overview of control vs. performance/risk tradeoffs in MLaaS platform.

• How does the complexity (or control) of ML systems correlate with ideal model ac-

curacy? Assuming we cover the available configuration space, how strongly do

constraints in complexity limit model accuracy in practice? How do different con-

trols compare in relative impact on accuracy?

Answer : Our results show a clear and strong correlation between increasing com-

plexity (user control) and higher optimal performance. Highly tunable platforms

like Microsoft outperform others when configurations of the ML model are care-

fully tuned. Among the three control dimensions we investigate, classifier choice

accounts for the most benefits of customization.

• Can increased control lead to higher risks (of building a poorly performing ML

model)? Real users are unlikely to fully optimize each step of the ML pipeline.

We quantify the likely performance variation at different levels of user control. For

instance, how much would a poor decision in classifier cost the user in practice on

real classification tasks?

Answer : We find higher configurability leads to higher risks of producing poorly

performing models. The highest levels of performance variation also come from

24

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

choices in classifiers. We also find that users only need to explore a small random

subset of classifiers (3 classifiers) to achieve near-optimal performance instead of

experimenting with an entire classifier collection.

• How much can MLaaS systems optimize the automated portions of their pipeline?

Despite their nature as black boxes, we seek to shed light on hidden optimizations

at the classifier level in ABM and Google. Are they optimizing classifiers for differ-

ent datasets? Do these internal optimizations lead to better performance compared

to other MLaaS platforms?

Answer : We find evidence that black-box platforms, i.e. Google and ABM, are

making a choice between linear and non-linear classifiers based on characteristics

of each dataset. Results show that this internal optimization successfully improves

these platforms’ performance, when compared to other MLaaS platforms (Amazon,

PredictionIO, BigML and Microsoft) without tuning any available controls. How-

ever, in some datasets, a naive optimization strategy that we devised makes better

classifier decisions and outperforms them.

3.3 Methodology

We focus our efforts on binary classification tasks, since that is one of the most

common applications of ML models in deployed systems. Moreover, binary classification

is one of the two learning tasks (the other being regression) that are commonly supported

by all 6 ML platforms. Other learning tasks, e.g., clustering and multi-class classification,

are only supported by a small subset of platforms.

25

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

Lif e Science : 44

Compute r & Games : 18

Synthe tic : 17

Social Science : 10

Physical Science : 10

Financial & Business : 7

N/A : 13

Financial & Business: 7

Other: 13

Physical Science: 10

Social Science: 10

Synthetic: 17
Computer & Game: 18

Life Science: 44

(a) Breakdown of application domains.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 100 1k 10k 100k

C
D

F
 o

f
D

a
ta

s
e
ts

Number of Samples

(b) Distribution of sample numbers.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 1k 4.7k

C
D

F
 o

f
D

a
ta

s
e
ts

Number of Features

(c) Distribution of feature numbers.

Figure 3.3: Basic characteristics of datasets used in our experiments.

3.3.1 Datasets

We describe the datasets we used for training ML classifiers. We use 119 labeled

datasets from diverse application domains such as life science, computer games, social

science, and finance etc. . Figure 3.3a shows the detailed breakdown of application do-

mains. The majority of datasets (94 out of 119) are from the popular UCI machine

learning repository [53], which is widely adopted for benchmarking ML classifiers. The

remainder include 16 popular synthetic datasets from scikit-learn8, and 9 datasets used

in other applied machine learning studies [54, 55, 56, 57, 58, 59, 60, 61]9. It is also

important to highlight that our datasets vary widely in terms of the number of sam-

8http://scikit-learn.org
9There are two datasets used in [56].

26

http://scikit-learn.org

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

ples and number of features, as shown in Figure 3.3b and Figure 3.3c. Datasets vary

in size from 15 samples to 245, 057 samples, while the dimensionality of datasets ranges

from 1 to 4, 702. Note that we limit the number of extremely large datasets (with size

over 100k) due to the high computational complexity incurred in using them on MLaaS

platforms. We include complete information about all datasets separately10. As none of

the MLaaS platforms provides any support for data cleaning, we perform the following

data preprocessing steps locally before uploading to MLaaS platforms. Our datasets in-

clude both numeric and categorical features. Following prior conventions [62], we convert

all categorical features to numerical values by mapping {C1, ..., CN} to {1, ..., N}. We

acknowledge that this may impact performance of some classifiers, e.g., distance-based

classifiers like kNN [63]. But since our goal is to compare performance across different

platforms instead of across classifiers, this preprocessing is unlikely to change our con-

clusions. For datasets with missing values, we replace missing fields with median values

of corresponding features, which is a common ML preprocessing technique [64]. Finally,

for each dataset, we randomly split data samples into training and test set by 70%–30%

ratio. We train classifiers on each MLaaS platforms using the same training and held-out

test set. We report classification performance on the test set.

3.3.2 MLaaS Platform Measurements

In this section, we describe our methodology for measuring classification performance

of MLaaS platforms when we vary available controls.

Choosing Controls of an ML System. As mentioned in Section 3.2, we break

down an ML system into 5 dimensions of control. In this paper, we consider 4 out of 5

dimensions by excluding Program Implementation which is not controllable in any plat-

10http://sandlab.cs.uchicago.edu/mlaas

27

http://sandlab.cs.uchicago.edu/mlaas

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

form. The remaining dimensions are grouped into three categories, Preprocessing (data

transformation) and Feature Selection (FEAT), Classifier Choice (CLF), and Parameter

Tuning (PARA). Note that we combine Preprocessing with Feature Selection to simplify

our analysis, as both controls are only available in Microsoft. In the rest of the paper,

we interchangeably use the term Feature Selection and FEAT to refer to this combined

category. Overall, these three categories of control present the easiest and most im-

pactful options for users to train and build high quality ML classifiers. As baselines for

performance comparison, we use two reference points that represent the extremes of the

complexity spectrum, one with no user-tunable control, and one where users have full

control over all control dimensions. To simulate an ML system with no control, we set a

default choice for each control dimension. We refer to this configuration as baseline in

later sections. Since not all of the 6 platforms we study have a default classifier, we use

Logistic Regression as the baseline, as it is the only classifier supported by all 4 platforms

(where the control is available). All MLaaS platforms select a default set of parameters

for Logistic Regression (values and parameters vary across platforms), and we use them

for the baseline settings. We perform no feature selection for the baseline settings. To

simulate an ML system with full control, we use a local ML library, scikit-learn, as this

library allows us to tune all control dimensions. We refer to this configuration as local

in later sections.

Performing Measurements by Varying Controls. We evaluate performance

of MLaaS platforms on each dataset by varying available controls. Table 3.1 provides

detailed information about available choices for each control dimension. We vary the

FEAT and CLF dimensions by simply applying all available choices listed for each system in

Table 3.1. It is interesting to note that the CLF choices vary across platforms even though

all platforms are competing to provide the same service, i.e. binary classification. For

28

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

Platform FEAT CLF (# of parameter tuned: parameter list (PARA))

Amazon × Logistic Regression (3: maxIter, regParam, shuffleType)

PredictionIO ×
Logistic Regression (3: maxIter, regParam, fitIntercept),
Naive Bayes (1:lambda),
Decision Tree (2: numClasses, maxDepth),

BigML ×

Logistic Regression (3: regularization, strength, eps),
Decision Tree (3: node threshold, ordering, random candidates),
Bagging [65] (3: node threshold, number of models, ordering),
Random Forests [66] (3: node threshold, number of models, ordering)

Microsoft

Fisher LDA,
Filter-based
(using Pearson,
Mutual, Kendall,
Spearman, Chi,
Fisher, Count)

Logistic Regression (4: optimization tolerance, L1 regularization weight,
L2 regularization weight, memory size for L-BFGS),
Support Vector Machine (2: # of iterations, Lambda),
Averaged Perceptron [67] (2: learning rate, max. # of iterations),
Bayes Point Machine [68] (1: # of training iteration),
Boosted Decision Tree [69] (4: max. # of leaves per tree,
min. # of training instances per leaf, learning rate, # of trees constructed),
Random Forests (5: resampling method, # of decision trees, max. depth of trees,
of random splits per node, min. # of samples per leaf),
Decision Jungle [70] (5: resampling method, # of DAGs, max. depth of DAGs,
max. width of DAGs, # of optimization step per DAG layer),

scikit-learn

FClassif,
MutualInfoClassif,
GaussianNorm,
MinMaxScaler,
MaxAbsScaler,
L1Normalization,
L2Normalization,
StandardScaler

Logistic Regression (3: penalty, C, solver), Naive Bayes (1: prior),
Support Vector Machine (3: penalty, C, loss),
Linear Discriminant Analysis (2: solver, shrinkage),
k-Nearest Neighbor (3: n neighbors, weights, p),
Decision Tree (2: criterion, max features),
Boosted Decision Tree (3: n estimators, criterion, max features),
Bagging (2: n estimators, max features),
Random Forests (2: n estimators, max features),
Multi-Layer Perceptron [71] (3: activation, solver, alpha)

Table 3.1: Detailed configurations for MLaaS platforms and local library measurement
experiments. For each control dimension, we list available configurations (feature
selection methods, classifiers, and tunable parameters).

example, Random Forests and Boosted Decision Tree, best performing classifiers based

on prior work [72, 73], are only available on Microsoft. The PARA dimension is varied

by applying grid search. We explore all possible options for categorical parameters. For

example, we include both L1 and L2 in regularization options from Logistic Regression.

For numerical parameters, we start with the default value provided by platforms and scan

a range of values that are two orders of magnitude lower and higher than the default.

In other words, for each numerical parameter with a default value of D, we investigate

three values: D
100

, D, and 100 × D. For example, we explore 0.0001, 0.01 and 1 for the

regularization strength parameter in Logistic Regression, where the default value is 0.01.

We also manually examine the parameter type and its acceptable value range to make

sure the parameter value is valid.

29

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

Platform
Feature
Selections

Class-
ifiers

Para-
meters

Measu-
rements

ABM - 1 (1) - 119
Google - 1 (1) - 119
Amazon - 1 (1) 3 (3) 4,284

PredictionIO - 3 (8) 6 (25) 3,719
BigML - 4 (4) 12 (46) 12,838

Microsoft 8 (8) 7 (9) 23 (34) 1,728,791
scikit-learn 8 (14) 10 (14) 32 (111) 2,137,410

Table 3.2: Scale of the measurements. The last column shows total number of con-
figurations we tested on each platform. Numbers in parenthesis in column #2 to #4
show the number of available options shown to users on each platform, while numbers
outside parenthesis show the number of options we explore in experiments.

Table 3.2 shows the total number of measurements we perform for each platform and

the number of choices for each control dimension. All experiments were performed be-

tween October 2016 and February 2017. For platforms with no control, we perform one

measurement per dataset, giving us 119 prediction results (ABM and Google). At the

other extreme, Microsoft requires over 1.7M measurements, given the large number of

available controls. Note that numbers in the last column is much larger than the product

of numbers in previous columns, because for each parameter we tune, we explore multi-

ple values, resulting in a larger number of total measurements. To set up experiments,

we leverage web APIs provided by the platforms, allowing us to automate experiments

through scripts. Unfortunately, Microsoft only provides an API for using pre-configured

ML models on different datasets, and there is no API for configuring ML models. Hence,

in the case of Microsoft, we manually configure ML models (over 200 model configu-

rations) using the web GUI, and then automate the application of the models to all

datasets.

Evaluation Metrics. We measure the performance of a platform by computing the

average F-score across all datasets. F-score is a better metric compared to accuracy as

30

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

many of our datasets have imbalanced class distributions. It is defined as the harmonic

mean of precision and recall. Precision is the fraction of samples predicted to be positive

that are truly positive and recall is the fraction of positive samples that are correctly

predicted. Note that other metrics like Area Under Curve or Average Precision are also

not biased by imbalanced datasets, but unfortunately cannot be applied, as PredictionIO

and several classifiers on BigML do not provide a prediction score.

To validate whether a single metric (Average F-score) is representative of performance

across all the datasets, we compute the Friedman ranking [74] of platforms across all the

datasets. Friedman ranking statistically ranks platforms by considering a given metric

(e.g., F-score) across all datasets. A platform with a higher Friedman rank exhibits sta-

tistically better performance when considering all datasets, compared to a lower ranked

platform. We observe that the platform ranking based on average F-score is consistent

with the Friedman ranking (using F-score), suggesting that average F-score is a repre-

sentative metric. In the rest of the paper, the performance of a platform refers to the

average F-score across datasets.

3.4 Complexity vs. Performance

We have shown that MLaaS platforms represent ML system designs with different

levels of complexity and user control. In this section, we try to answer our first question:

How does the performance of ML systems vary as we increase their complexity?

3.4.1 Optimized Performance

First we evaluate the optimized performance each MLaaS platform can achieve by

tuning all possible controls provided by the platform, i.e. FEAT, CLF, and PARA. In

this process, we train individual models for all possible combinations of the 3 controls

31

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

(whenever available) and use the best performing model for each dataset. We report

the average F-score across all datasets for each platform as its performance. We refer to

these results as optimized. Note that the optimized performance is simply the highest

performance on the test set that is obtained by training different models using all available

configurations. We do not optimize the model on test set.

We also generate the corresponding reference points, i.e. baseline and local. For

local, we compute the highest performance on our local ML library by tuning all 3 control

dimensions. For baseline, we measure the performance of “fully automated”, zero-control

versions of all systems (MLaaS and our local library), by using the baseline configurations

for each platform. As mentioned earlier, these reference points capture performance at

two ends of the complexity spectrum (no control vs. full control).

 0.6

 0.7

 0.8

 0.9

 1

G
o

o
g

le

A
B

M

A
m

a
z
o

n

B
ig

M
L

P
re

d
ic

ti
o

n
IO

M
ic

ro
s
o

ft

L
o

c
a

l

A
v
e

ra
g

e
 F

-s
c
o

re Baseline Optimized

ComplexityLow High

Figure 3.4: Optimized and baseline performance (F-score) of platforms and local library.

Figure 3.4 shows the optimized average F-score for each MLaaS platform, together

with the optimized results. Platforms are listed on the x-axis based on increasing com-

plexity. We observe a strong correlation between system complexity and the optimized

classification performance. The platform with highest complexity (Microsoft) shows the

32

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

highest performance (0.83 average F-score), and performance decreases as we consider

platforms with lower complexity/control (Google and ABM), with ABM showing the

lowest performance (0.71 F-score). As expected, the local library outperforms all MLaaS

platforms, as it explores the largest range of model configurations (most feature selections

techniques, classifiers, and parameters). Note that the performance difference between

local and MLaaS platforms with high complexity is smaller, suggesting that adding more

complexity and control beyond Microsoft brings diminishing returns. In addition, when

we compare the baseline performance with the optimized performance for platforms with

high complexity (Microsoft), the difference is significant, with up to 26.7% increase in

F-score, further indicating that higher complexity provides room for more performance

improvement. Lastly, the error bars show the standard error of the measured perfor-

mance, and we observe that the statistical variation of performance measures for different

platforms is not large.

For completeness, we include the detailed baseline and optimized performance of

MLaaS platforms in Table 3.3. We include F-score, and other 3 metrics, accuracy,

precision, and recall. We also compute the Friedman ranking of each metric across

datasets [74]. A lower Friedman ranking indicates consistently higher performance over

all datasets. Platforms in both tables are ordered based on average Friedman ranking

over 4 evaluation metrics in ascending order. We can see that average F-score is a rep-

resentative metric, because the ranking based on F-score values matches the ranking

induced by the Friedman metric.

33

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

Platform
Avg. Fried.

Ranking
Avg.

F-score
Avg.

Accuracy
Avg.

Precision
Avg.

Recall

Amazon 253.7 0.748 (250.5) 0.850 (269.5) 0.782 (298.0) 0.755 (196.7)
Google 267.7 0.706 (261.4) 0.851 (217.7) 0.751 (261.4) 0.711 (330.4)
ABM 344.5 0.694 (285.8) 0.833 (366.5) 0.738 (359.3) 0.691 (366.6)

BigML 348.1 0.688 (326.8) 0.822 (347.2) 0.741 (335.7) 0.688 (385.6)
PredictionIO 379.5 0.672 (389.2) 0.818 (432.6) 0.682 (387.6) 0.741 (308.9)

Local 388.8 0.672 (411.9) 0.832 (401.8) 0.668 (419.4) 0.723 (322.1)
Microsoft 424.3 0.655 (477.3) 0.833 (391.9) 0.715 (370.5) 0.659 (457.6)

(a) Baseline performance.

Platform
Avg. Fried.

Ranking
Avg.

F-score
Avg.

Accuracy
Avg.

Precision
Avg.

Recall

Local 190.1 0.839 (179.4) 0.916 (184.2) 0.984 (201.3) 0.990 (195.5)
Microsoft 211.1 0.837 (186.5) 0.914 (190.3) 0.954 (231.3) 0.863 (236.3)

PredictionIO 318.6 0.828 (245.7) 0.886 (238.7) 0.779 (478.4) 0.852 (311.5)
BigML 365.9 0.789 (307.5) 0.876 (281.7) 0.880 (287.9) 0.802 (351.4)
Amazon 446.7 0.761 (545.3) 0.863 (524.3) 0.826 (398.2) 0.795 (318.9)
Google 641.9 0.706 (692.6) 0.853 (606.7) 0.744 (605.5) 0.704 (662.9)
ABM 758.8 0.694 (784.3) 0.834 (774.1) 0.735 (747.7) 0.684 (729.1)

(b) Optimized performance.

Table 3.3: Baseline and optimized performance of MLaaS platforms. The Friedman
ranking of each metric is included in the parenthesis. Lower Friedman ranking indi-
cates consistently higher performance across all datasets.

3.4.2 Impact of Individual Controls

We have shown that higher complexity in the form of more user control contributes to

higher optimized performance. Now we breakdown the potential performance gains from

baseline configurations, and investigate the potential gains contributed by each type of

control. In the collection of tunable controls and design decisions, answering this question

would tell us which decisions have the most impact on the final performance. We start by

tuning only one dimension of control while leaving others at baseline settings. Figure 3.5

shows the percentage improvement in performance from the baseline setting for each

platform and control dimension. Note that Google and ABM are not included in this

analysis. In addition, we have 3 platforms (Amazon, BigML, PredictionIO) missing in

the Feature Selection column, one (Amazon) missing in the Classifier Selection column.

34

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

 0

 10

 20

 30

 40

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

F
-s

c
o

re
 I
m

p
ro

v
e

m
e

n
t
(%

)

Feature
Selection

Classifier
Selection

Parameter
Tuning

N
o

 D
a

ta

N
o

 D
a

ta

Figure 3.5: Relative improvement in performance (F-score) over baseline as we tune
individual controls (white boxes indicate controls not supported).

These are the platforms that do not support tuning those respective control dimensions.

We observe the largest performance improvement of 14.6% (averaged across all platforms)

when giving users the ability to select specific ML classifiers. In fact, in the case of

Microsoft, F-score improves by 22.4% which is the highest among all platforms when

we optimize the classifier choice for each dataset. After the classifier dimension, feature

selection provides the next highest improvement in F-score (6.1%) across all platforms,

followed by the classifier parameter dimension (3.4% improvement in F-score). The above

results show that classifier is the most important control dimension that significantly

impacts the final performance. To shed light on the general performance of different

classifiers, we analyze classifier performance with default parameters and with optimized

parameter configurations. Table 3.4(a) shows the top 4 classifiers when using baseline

(default) parameters. It is interesting to note that no single classifier dominates in terms

of performance over all the datasets. Table 3.4(b) shows a similar trend even when we

optimize the parameters. This suggests that we need a mix of multiple linear (e.g.,

LR, NB) and non-linear (RF, BST, DT) classifiers to achieve high performance over all

datasets.

35

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

Rank BigML PredictionIO Microsoft Local

1 LR (34.5%) LR (42.9%) BST (50.4%) BST (24.4%)
2 RF (26.1%) DT (38.7%) AP (16.8%) KNN (12.6%)
3 DT (24.4%) NB (18.5%) BPM (10.9%) DT (10.9%)
4 BAG (15.1%) RF (7.6%) RF (10.9%)

(a) Ranking of classifiers using baseline parameters

Rank BigML PredictionIO Microsoft Local

1 RF (32.8%) LR (48.7%) BST (43.7%) MLP (32.8%)
2 BAG (30.3%) DT (36.1%) DJ (17.6%) BST (27.7%)
3 LR (27.7%) NB (16.0%) AP (16.0%) RF (9.2%)
4 DT (9.2%) RF (13.4%) KNN (6.7%)

(b) Ranking of classifiers using optimized parameters

Table 3.4: Top four classifiers in each platform using baseline/optimized parame-
ters. Number in parenthesis shows the percentage of datasets where the correspond-
ing classifier achieved highest performance. LR=Logistic Regression, BST=Boosted
Decision Trees, RF=Random Forests, DT=Decision Tree, AP=Average Percep-
tron, KNN=k-Nearest Neighbor, NB=Naive Bayes, BPM=Bayes Point Machine,
BAG=Bagged Trees, MLP=Multi-layer Perceptron, DJ=Decision Jungle.

Summary. Our results clearly show that platforms with higher complexity (more

dimensions for user control) achieve better performance. Among the 3 key dimensions,

classifier choice provides the largest performance gain. Just by optimizing the classifier

alone, we can already achieve close to optimized performance. Overall, Microsoft provides

the highest performance across all platforms, and a highly tuned Microsoft model can

produce performance identical to that of a highly-tuned local scikit-learn instance.

3.5 Risks of Increasing Complexity

Our experiments in Section 3.4 assumed that users were experts on each step in the

ML pipeline, and were able to exhaustively search for the optimal classifier, parameters,

and feature selection schemes to maximize performance. For example, for Microsoft, we

evaluated over 17k configurations to determine the configuration with optimized per-

formance. In practice, users may have less expertise, and are unlikely to experiment

36

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

with more than a small set of classifiers or available parameters. Therefore, our second

question is: Can increased control lead to higher risks (of building poorly performing ML

models)? To quantify risk of generating poorly performing models, we use performance

variation as the metric, and compute variation on each platform as we tune available

controls.

 0

 0.2

 0.4

 0.6

 0.8

 1
G

o
o

g
le

A
B

M

A
m

a
z
o

n

B
ig

M
L

P
re

d
ic

ti
o

n
IO

M
ic

ro
s
o

ft

L
o

c
a

l

A
v
e

ra
g

e
 F

-s
c
o

re

ComplexityLow High

Figure 3.6: Performance variation in MLaaS platforms when tuning all available controls.

3.5.1 Performance Variation across Platforms

First we measure the performance variation of each MLaaS platform across a range

of system configurations (of CLF, PARA, and FEAT) described in Section 3.3. For each

configuration and platform, we compute average performance across all datasets. Then

we iterate through all configurations, and obtain a range of performance scores which

capture the performance variation. Each configuration would generate a single point in

the range of performance scores. Higher variation means a single poor decision in design

could produce a significant performance loss. We plot performance variation results for

each platform in Figure 3.6. As before, platforms on the x-axis are ordered based on

increasing complexity. First, we observe a positive correlation between complexity of an

37

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

MLaaS platform and higher performance variation. Among MLaaS platforms, Microsoft

shows the largest variation, followed by less complex platforms like PredictionIO and

Amazon. For Microsoft, F-score ranges from 0.49 to 0.75. Also as expected, our local

ML library has the highest performance variation. The takeaway is that even though

more complex platforms have the potential to achieve higher performance, there are

higher risks of building a poorly configured (and poorly performing) ML model.

 0

 0.2

 0.4

 0.6

 0.8

 1

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

A
m

a
z
o

n
B

ig
M

L
P

re
d

ic
ti
o

n
IO

M
ic

ro
s
o

ft
L

o
c
a

l

P
e

rf
o

rm
a

n
c
e

 V
a

ri
a

ti
o

n Feature
Selection

Classifier
Selection

Parameter
Tuning

N
o

 D
a

ta

N
o

 D
a

ta

Figure 3.7: Performance variation when tuning CLF, PARA and FEAT individually,
normalized by overall variation (white boxes indicate controls not supported).

3.5.2 Variation from Tuning Individual Controls

Next we analyze the contribution of each control dimension towards the variation in

performance. When we tune a single dimension, we keep the other controls at their default

values set by the platform, i.e. use the baseline settings. Figure 3.7 shows the portion of

performance variation caused by each control dimension, i.e. a ratio normalized by the

overall variation measured in our previous experiment. We observe that classifier choice

(CLF) is the largest contributor to variation in performance. For example, in the case of

Microsoft and PredictionIO (both exhibiting large variation), over 80% of the variation

is captured by just tuning CLF. Thus, it is important to note that even though CLF can

38

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

A
v
e

ra
g

e
 F

-s
c
o

re

Number of Classifiers Explored

BigML
PredictionIO
Microsoft
Local

Figure 3.8: Average performance vs. number of classifiers explored.

provide the largest improvement in performance (Section 3.4), if not carefully chosen, can

lead to significant performance degradation. On the other hand, for all platforms, except

Amazon, tuning the PARA dimension results in the least variation in performance. We

are unable to verify the reason for the high variation in the case of Amazon (for PARA),

but suspect it is due to either implementation or default parameter settings.

Partial Knowledge about Classifiers. Given the disproportionally large impact

classifier choice has on performance and performance variation, we want to understand

how users can make better decisions without exhaustively experimenting over the entire

gamut of ML classifiers. Instead, we simulate a scenario where the user experiments with

(and chooses the best out of) a randomly chosen subset of k classifiers from all available

classifiers in a platform. We measure the highest F-score possible in each k-classifier

subset. Next, we average the highest F-score across all possible subsets of size k. Results

are shown in Figure 3.8 with all platforms supporting classifier selection. We observe a

trend of rapidly improving performance as users try multiple classifiers. We observe that

just trying a randomly chosen subset of 3 classifiers often achieves performance that is

close to the optimal found by experimenting with all classifiers. In the case of Microsoft,

we observe an F-score of 0.76 which is only 5% lower than the F-score we can obtain

39

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

by trying all 8 classifiers. Performance variation also decreases significantly once a user

explores 3 or more classifiers in these platforms.

Summary. Our results show that increasing platform complexity leads to better

performance, but also leads to significant performance penalties for poor configuration

decisions. Our results suggest that much/most of the gains can be achieved by focusing

on classifier choice, and that experimenting with a random subset of 3 classifiers often

achieves performance and lowers variation close to optimal.

3.6 Hidden Optimizations

In the final part of our analysis, we seek to shed light on any platform-specific opti-

mizations outside of user-visible configurations or controls. More specifically, we focus on

understanding hidden optimizations used by fully automated black-box platforms, Google

and ABM. These platforms have the most leeway to implement internal optimizations,

because their entire ML pipeline is fully automated. In Section 3.4.1 (Figure 3.4), we

observe that Google and ABM outperform many other platforms when applying default

configurations. This suggests that their hidden configurations are generally better than

alternative default settings.

Among the countless potential options for optimization, we focus on a simple yet ef-

fective technique: optimizing classifier choices based on dataset characteristics [75]. We

raise the question: Are black-box platforms automatically selecting a classifier based on

the dataset characteristics? Note that our usage of the phrase “selecting a classifier”

should be broadly interpreted as covering different possible implementation scenarios

(for optimization). For example, optimization can be implemented by switching be-

tween distinct classifier instances, or a single classifier implementation that internally

40

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

-1

 0

 1

 2

-1.5 -1 -0.5 0 0.5 1 1.5

F
e
a
tu

re
 #

2

Feature #1

Class 0 Class 1

(a) Visualization of CIRCLE.

-6

-3

 0

 3

 6

-3 -2 -1 0 1 2 3

F
e
a
tu

re
 #

2

Feature #1

Class 0

Class 1

(b) Visualization of LINEAR.

Figure 3.9: Visualization of two datasets: synthetic non-linearly-separable dataset
(CIRCLE) and synthetic linearly-separable dataset (LINEAR).

alters decision characteristics depending on the dataset. While our analysis cannot infer

such implementation details, we provide evidence of internal optimization in black-box

platforms (Section 3.6.1). We further quantitatively analyze their optimization strategy

(Section 3.6.2), and finally examine the potential for improvement (Section 3.6.3)

3.6.1 Evidence of Internal Optimizations

We select two datasets from our collection, a non-linearly-separable synthetic dataset,

which we call CIRCLE 11, and a linearly-separable synthetic dataset, referred to as LIN-

EAR 12. Figure 3.9a and Figure 3.9b show visualizations of the two datasets. Both

datasets have only two features. Given the contrasting characteristics (linearity) of the

two datasets, our hypothesis is that they would help to differentiate between linear and

non-linear classifier families based on prediction performance.

We examine Google and ABM’s prediction results on CIRCLE and LINEAR to infer

11http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.

html
12http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_

classification.html

41

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

-1

 0

 1

 2

-1.5 -1 -0.5 0 0.5 1 1.5

F
e
a
tu

re
 #

2

Feature #1

Class 0 Class 1

(a) Google’s decision boundary on CIRCLE.

-6

-3

 0

 3

 6

-3 -2 -1 0 1 2 3

F
e
a
tu

re
 #

2

Feature #1

Class 0

Class 1

(b) Google’s decision boundary on LINEAR.

-1

 0

 1

 2

-1.5 -1 -0.5 0 0.5 1 1.5

F
e
a
tu

re
 #

2

Feature #1

Class 0 Class 1

(c) ABM’s decision boundary on CIRCLE.

-6

-3

 0

 3

 6

-3 -2 -1 0 1 2 3

F
e
a
tu

re
 #

2

Feature #1

Class 0

Class 1

(d) ABM’s decision boundary on LINEAR.

Figure 3.10: Decision boundaries generated by Google and ABM on CIRCLE and LIN-
EAR. Both platforms produced linear and non-linear boundaries for different datasets.

their classifier choices. Since we have no ground-truth information here, we resort to

analyzing decision boundaries generated by the two platforms. The decision boundary

is visualized by querying and plotting the predicted classes of a 100×100 mesh grid.

Figure 3.10a and Figure 3.10b illustrate Google’s decision boundary on CIRCLE and

LINEAR, respectively. It is very clear that Google’s decision boundary on CIRCLE

forms a circle, indicating Google is using a non-linear classifier, or a non-linear kernel,

e.g., RBF kernel [76]. On LINEAR, Google’s decision boundary matches a straight line.

It shows Google is using a linear classifier. Experiments on ABM also show similar re-

42

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

Category Classifiers
Linear LR, NB, Linear SVM, LDA

Non-Linear DT, RF, BST, KNN, BAG, MLP

Table 3.5: Assignment of classifiers available on local library into linear vs. non-linear
categories.

sults. Figure 3.10c and Figure 3.10d show the decision boundaries of ABM on CIRCLE

and LINEAR, respectively. Thus, both platforms are optimizing and switching classi-

fier choices for the two datasets. Additionally, Google’s decision boundary on CIRCLE

(circular shape) is different from ABM (rectangular shape), indicating that they selected

different non-linear classifiers. Based on the shape of decision boundaries, it is likely that

Google used a non-linear kernel based classifier while ABM chose a tree-based classifier.

3.6.2 Predicting Classifier Family

In this section, we present a method to automatically predict the classifier used by

a platform using just two pieces of information—knowledge of the training dataset and

prediction results from the platform. Such a method would help us automatically find

instances where a black-box platform would change classifiers depending on the dataset

characteristics.

At a high level, we observe that it is hard to pin-point the specific classifier used by

a platform, using just the dataset and the prediction results. This is because prediction

results of different classifiers tend to overlap. However, we find that it is possible to accu-

rately infer the broad classifier family, more specifically, linear or non-linear classifiers.

Our key insight is that we can control datasets used for the inference and thus se-

lectively choose datasets that elicit significant divergence between prediction results of

linear and non-linear classifiers. To give an example, we examine the performance of the

local library classifiers on the CIRCLE and LINEAR datasets. We categorize local clas-

43

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
E

x
p
e
ri
m

e
n
ts

F-score

Linear

Non-linear

(a) CIRCLE.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
E

x
p
e
ri
m

e
n
ts

F-score

Non-linear

Linear

(b) LINEAR.

Figure 3.11: Performance of predicting local linear/non-linear classifier choices on
CIRCLE and LINEAR datasets.

sifiers into linear and non-linear families, as shown in Table 3.5. Figures 3.11a and 3.11b

shows the performance (F-score) of the two categories of classifiers on the two datasets.

As expected, we find that linear and non-linear classifiers produce very different F-scores

on the two datasets, regardless of other configuration settings. Non-linear classifiers out-

perform linear classifiers when on CIRCLE. For LINEAR, linear classifiers outperform

non-linear classifiers in many cases. This is because of the noisy nature of the dataset

causing non-linear classifiers to overfit, and therefore produce lower performance com-

pared to linear classifiers. Next, we present our methodology to accurately predict the

classifier family by identifying more datasets that show divergence in prediction results

of linear and non-linear classifiers.

Methodology. We build a supervised ML classifier for the prediction task. For

training the classifier, we use prediction results, and ground-truth of classifier choices

from the local library and the three platforms that allow user control of the classifier

dimension (i.e. Microsoft, BigML and PredictionIO). Features used for training include

aggregated performance metrics (F-score, precision, recall, accuracy), and the predicted

44

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

labels. We train one classifier for each dataset in our collection. Each training sample

is one ML experiment using a single configuration of the ML pipeline (i.e. choices of

FEAT, CLF and PARA). Measurements are randomly split into training, validation, and

test sets. Training and validation sets contain 70% of experiments, and test set contains

the remaining 30% experiments. We train a Random Forests classifier with 5-fold cross-

validation, and pick the best performing classifier based on validation performance. Based

on prior work, Random Forests is one of the best performing classifiers for supervised

binary classification tasks [62, 72]. Figure 3.12 shows the distribution of cross-validation

performance of classifiers trained on all 119 datasets. Not all datasets could differentiate

linear and non-linear classifiers. There are 64 datasets that produce classifiers achieving

higher than 0.95 F-score. In other datasets, classifiers failed to separate linear and non-

linear classifiers as they produce similar performance. Intuitively, we do not expect all

datasets to perform well, and one goal of the training process is to identify datasets with

high differentiating power. We select the 64 datasets where the trained classifiers achieve

high performance (F-score > 0.95) on the validation set. To further test if they would

generalize and accurately predict classifier choices, we apply them on the 30% held-out

test set. All trained classifiers achieve F-score higher than 0.96. This further proves that

the chosen classifiers can accurately predict the classifier family.

Classifier Choices of Google and ABM. We apply the selected 64 trained clas-

sifiers (covering 64 datasets) on Google and ABM and predict their classifier choices

over linear and non-linear family. Results show Google uses linear classifiers on 39 out

of 64 (60.9%) datasets, and non-linear classifiers for the remaining 25 (39.1%) datasets.

ABM, on the other hand, uses linear classifiers on 44 (68.8%) out of 64 datasets, and

non-linear on the remaining 20 (31.2%) datasets. If we compare Google and ABM, they

pick the same classifier category on 49 (76.6%) datasets, but disagree on the remaining 15

45

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f
T

ra
in

e
d

C
la

s
s
if
ie

rs

Validation F-score

Figure 3.12: Validation performance of predicting linear/non-linear classifiers.

(23.4%) datasets. The differences in the classifier choices could contribute to their overall

performance difference in Figure 3.4. Overall, our results suggest that both platforms

make different classifier choices (choosing linear or non-linear family) depending on the

dataset.

Classifier Choices of Amazon. Recall that Amazon does not reveal any classifier

information in their model training interface, but claims to use Logistic Regression on

their documentation page. We apply our classifier prediction scheme on Amazon to

investigate whether they are indeed using a single classifier for all tasks. Interestingly, 10

out of all 64 datasets have over 50% configurations that are predicted to be non-linear

(the remaining are predicted to be linear). We also observe that Amazon produces a non-

linear decision boundary when applied to the CIRCLE dataset (Figure 3.13). We suspect

that Amazon uses non-linear techniques on top of Logistic Regression, e.g., non-linear

kernel, or even uses other non-linear classifiers apart from Logistic Regression.

Unfortunately we are unable to corroborate our findings with the providers (Google,

ABM, and Amazon), as all hidden optimizations are kept confidential and proprietary.

46

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

-1

 0

 1

 2

-1.5 -1 -0.5 0 0.5 1 1.5

F
e

a
tu

re
 #

2

Feature #1

Class 0 Class 1

Figure 3.13: Amazon’s decision boundary on CIRCLE.

However, our predictions demonstrate high accuracy in our validation and test datasets

(where the underlying configuration is known).

3.6.3 Impact of Internal Optimizations

Previous experiments show that black-box platforms successfully choose classifier fam-

ilies with better performance when applied on the CIRCLE and LINEAR datasets. On

these two datasets, Google and ABM would outperform a scheme that does not switch

between classifier families. But are their strategies optimized for all other datasets? Are

there cases where the two platforms make the wrong classifier choice?

To understand the potential for further improvement, we design a näıve classifier

selection strategy using the local library, and compare its performance with Google and

ABM. Our intuition is that if Google and ABM perform poorly when compared to our

näıve strategy, there is potential for further improvement and we can understand the

cases where classifier choices (i.e. linear vs non-linear) are potentially incorrect. We

choose two widely used linear and non-linear classifiers, Logistic Regression and Decision

Tree. These two classifiers are supported by most other platforms (Table 3.1). For

47

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

Näıve
Google

Linear Non-linear

Linear 11 (25.5%) 5 (11.6%)
Non-linear 17 (39.5%) 10 (23.26%)

(a) Google vs. our näıve strategy.

Näıve
ABM

Linear Non-linear

Linear 8 (16.7%) 3 (6.3%)
Non-linear 22 (45.8%) 15 (31.3%)

(b) ABM vs. our näıve strategy.

Table 3.6: Breakdown of datasets based on classifier choice when our näıve strategy
outperforms black-box platforms.

each dataset, we train both classifiers and choose the one with higher performance. To

further simplify the strategy and to avoid any impact of optimization from other control

dimensions, we use the default parameter settings in Logistic Regression and Decision

Tree, and perform no feature selection.

For our analysis, we again use the 64 datasets that can accurately predict choices of

linear and non-linear classifiers. In 43 out of 64 datasets, our näıve strategy outperforms

Google, and in 48 datasets, it outperforms ABM. This clearly indicates that Google and

ABM have scope for further improvement.

We further compare the choices made by näıve strategy and black-box platforms.

Table 3.6 shows the breakdown of the datasets by decisions when näıve strategy outper-

forms Google and ABM. In both platforms, in a majority of cases, the classifier choices

do not match our simple strategy. In these cases, Google and ABM could increase their

performance (F-score) by 20% and 34% on average, respectively, by choosing the other

classifier family. Figure 3.14 shows a detailed breakdown (as a CDF) of performance dif-

ference between the black-box platforms and näıve strategy, when we outperform them.

The potential performance improvement is significant in many cases.

When is switching classifier the best option for improvement? Although we

show the potential performance improvement by switching classifiers, black-box platforms

could use other methods to improve performance. For example, Google and ABM could

48

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
D

F
 o

f
D

a
ta

s
e

ts

Difference in F-score

(a) Google.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F
 o

f
D

a
ta

s
e

ts

Difference in F-score

(b) ABM.

Figure 3.14: Performance difference in datasets where näıve strategy outperforms
Google/ABM using different classifier family.

perform better parameter tuning and feature selection to reduce the performance gap

and justify their classifier choices. To identify cases where classifier switching is likely

the best option, we compare our näıve strategy with the optimal performance of the other

classifier family (i.e. not chosen). This means that when näıve strategy chooses a non-

linear classifier, we compare its performance with the optimal linear classifier (across

all configurations). If näıve strategy could still outperform Google and ABM under

this scenario, it indicates that switching the classifier is likely the best way to further

improve the performance. We find 3 datasets in the case of Google, and 4 for ABM,

where changing the classifier is probably the best option to further improve performance.

While our analysis is limited to the 64 datasets where we can perform prediction, our

finding highlights the existence of scenarios where Google and ABM clearly need to make

better classifier choices.

49

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

3.7 Related Work

Analyzing MLaaS Platforms. There is very limited prior work focusing on MLaaS

platforms. Chan, et al. and Ribeiro, et al. presented two different architecture designs

of MLaaS platforms [77, 78]. Although we cannot confirm that these architectures are

being used by any of the MLaaS platforms we studied, they shed light on potential

ways MLaaS platforms operate internally. Other researchers investigated vulnerabilities

of these platforms towards different types of attacks. This includes attacks that try to

leak information about individual training records of a model [79, 80], and those aiming

to duplicate the functionality of a black-box MLaaS model by querying the model [81].

While these studies are in general orthogonal to our work, there is scope for borrowing

techniques from them that can help us better understand MLaaS platforms.

Empirical Analysis of ML Classifiers. Prior empirical analysis focused on de-

termining the best classifier for a variety of ML problems using user-managed ML tools

(e.g., Weka, R, Matlab) on a large number of datasets. Multiple studies conducted an

exhaustive performance evaluation of up to 179 supervised classifiers using up to 121

datasets [62, 72, 82]. All studies observe that Random Forests, Boosted or Bagging Trees

outperform other classifiers, including SVM, Näıve Bayes, Logistic Regression, Decision

Tree, and Multi-layer Perceptron. Caruana et al. further studied classifier performance

focusing on high-dimensional datasets [73]. They find that Random Forests perform bet-

ter than Boosted Trees on high-dimensional data, and the relative performance difference

between classifiers change as dimensionality increases. Other work also focused on evalu-

ating performance of specific classifier families, for example tree-based classifiers [83, 84],

rule-based classifiers [84], and ensemble methods [85].

In comparison, our work does not focus on a single step of the ML pipeline. Instead,

50

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

we analyze end-to-end impact of complexity on classifier performance, through the lens

of deployed MLaaS platforms. This allows us to understand how specific changes to the

ML task pipeline impact actual performance in a real world system. Instead of focusing

only on the best achievable performance for any classifier, we recognize the wide-spread

use of ML by generalist users, and study the “cost” of suboptimal decisions in choosing

and configuring classifiers in terms of degraded performance.

Automated Machine Learning. Many works focused on reducing human effort in

ML system design by automating classifier selection and parameter tuning. Researchers

proposed mechanisms to recommend classifier choices based on classifiers that are known

to perform well on similar datasets [86]. Many mechanisms even use machine learning

algorithms like collaborative filtering and k-nearest neighbor to recommend classifiers [87,

88, 89]. To perform automatic parameter optimization, methods have been proposed

based on intuition-based Random Search [90, 91], and Bayesian optimization [92, 90,

93, 94]. These mechanisms have been shown to estimate suitable parameters with less

computational complexity than brute-force methods like Grid Search [95]. Other works

proposed techniques to automate the entire ML pipeline. For example, Auto-Weka [96,

97] and Auto-Sklearn [98] could search through the joint space of classifiers and their

respective parameter settings and choose the optimal configuration.

Experimental Design for Evaluating ML Classifiers. The ML community

has a long history on classifier evaluation using carefully designed benchmark tests [99,

100, 101]. Many studies proposed theoretical frameworks and guidelines for design-

ing benchmark experiments [102, 103]. Dietterich used statistical tests to compare

classifiers [104] and the methodology was later improved in follow-up work [105, 106].

Our performance evaluation using Friedman ranking is based on their methodology.

51

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

Other work focused on comparing and benchmarking performance of popular ML soft-

ware [107, 108], e.g., Weka [109], PRTools [110], KEEL [111] and, more recently, deep

learning tools [112]. In addition, work has been done to identify and quantify the relation-

ship between classifier performance and dataset properties [113, 75], especially dataset

complexity [114, 115, 116]. Our work leverages similar insights about dataset complexity

(linearity) to automatically identify classifier families based on prediction results.

3.8 Limitations

We point out three limitations of our study. First, we focus on 6 mainstream MLaaS

platforms, covering services provided by both traditional Internet giants (Google, Mi-

crosoft, Amazon) and emerging startups (ABM. BigML, PredictionIO). We did not study

other commercial MLaaS platforms because they either focus on highly specialized tasks

(e.g., image/text classification), or does not support large scale measurements (e.g., pos-

ing strict rate limit). Second, we focus on binary classification tasks with three dimensions

of control (CLF, PARA, and FEAT). We did not extend our analysis to other ML tasks and

cover every configuration choice, e.g., more advanced classifiers. We leave these as future

work. Third, we only study the classification performance of MLaaS platforms, which is

one of the many aspects to evaluate MLaaS platforms. There are other dimensions, e.g.,

training time, cost, robustness to incorrect input. We leave further exploration of these

aspects as future work.

3.9 Conclusions

For network researchers, MLaaS systems provide an attractive alternative to running

and configuring their own standalone ML classifiers. Our study empirically analyzes

52

Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service Chapter 3

the performance of MLaaS platforms, with a focus on understanding how user control

impacts both the performance and performance variance of classification in common ML

tasks.

Our study produced multiple key takeaways. First, as expected, with more control

comes more potential performance gains, as well as greater performance degradation from

poor configuration decisions. Second, fully automated platforms are optimizing classifiers

using internal tests. While this greatly simplifies the ML process and helps them outper-

form other MLaaS platforms using default settings, their aggregated performance lags

far behind well-tuned versions of more configurable alternatives (Microsoft, PredictionIO,

local scikit-learn). Finally, much of the gains from configuration and tuning come from

choosing the right classifier. Experimenting with a small random subset of classifiers is

likely to achieve near-optimal results.

Our study shows that used correctly, MLaaS systems can provide networking re-

searchers results comparable to standalone ML classifiers. While more automated “turnkey”

systems are making some intelligent decisions on classifiers, they still have a long way to

go. Thankfully, we show that for most classification tasks today, experimenting with a

small random subset of classifiers will produce near-optimal results.

53

Chapter 4

Practical Attacks against Transfer

Learning

Transfer learning is a powerful approach that allows users to quickly build accurate deep-

learning (Student) models by “learning” from centralized (Teacher) models pretrained

with large datasets, e.g. Google’s InceptionV3. We hypothesize that the centraliza-

tion of model training increases their vulnerability to misclassification attacks leveraging

knowledge of publicly accessible Teacher models. In this paper, we describe our efforts

to understand and experimentally validate such attacks in the context of image recogni-

tion. We identify techniques that allow attackers to associate Student models with their

Teacher counterparts, and launch highly effective misclassification attacks on black-box

Student models. We validate this on widely used Teacher models in the wild. Finally,

we propose and evaluate multiple approaches for defense, including a neuron-distance

technique that successfully defends against these attacks while also obfuscates the link

between Teacher and Student models.

54

Practical Attacks against Transfer Learning Chapter 4

4.1 Introduction

Deep learning using neural networks has transformed computing as we know it. From

image and face recognition, to self-driving cars, knowledge extraction and retrieval, and

natural language processing and translation, deep learning has produced game-changing

applications in every field it has touched.

While advances in deep learning seem to arrive on a daily basis, one constraint has

remained: deep learning can only build accurate models by training using large datasets.

This thirst for data severely constrains the number of different models that can be in-

dependently trained. In addition, the process of training large, accurate models (often

with millions of parameters) requires computational resources that can be prohibitive

for individuals or small companies. For example, Google’s InceptionV3 model is based

on a sophisticated architecture with 48 layers, trained on ∼1.28M labeled images over a

period of 2 weeks on 8 GPUs.

The prevailing consensus is to address the data and training resource problem using

transfer learning, where a small number of highly tuned and complex centralized models

are shared with the general community, and individual users or companies further cus-

tomize the model for a given application with additional training. By using the pretrained

teacher model as a launching point, users can generate accurate student models for their

application using only limited training on their smaller domain-specific datasets. Today,

transfer learning is recommended by most major deep learning frameworks, including

Google Cloud ML, Microsoft Cognitive Toolkit, and PyTorch from Facebook.

Despite its appeal as a solution to the data scarcity problem, the centralized nature

of transfer learning creates a more attractive and vulnerable target for attackers. Lack

of diversity has amplified the power of targeted attacks in other contexts, i.e. increasing

the impact of targeted attacks on network hubs [31], supernodes in overlay networks [32],

55

Practical Attacks against Transfer Learning Chapter 4

and the impact of software vulnerabilities in popular libraries [33, 34].

In this paper, we study the possible negative implications of deriving models from a

small number of centralized teacher models. Our hypothesis is that boundary conditions

that can be discovered in the white box teacher models can be used to perform targeted

misclassification attacks against its associated student models, even if the student models

themselves are closed, i.e. black-box. Through detailed experimentation and testing,

we find that this vulnerability does in fact exist in a variety of the most popular image

classification contexts, including facial and iris recognition, and the identification of traffic

signs and flowers. Unlike prior work on black-box adversarial attacks, this attack does

not require repeated queries of the student model, and can instead prepare the attack

image based on knowledge of the teacher model and any target image(s).

This paper describes several key contributions:

• We identify and extensively evaluate the practicality of misclassification attacks

against student models in multiple transfer-learning applications.

• We identify techniques to reliably identify teacher models given a student model,

and show its effectiveness using known student models in the wild.

• We perform tests to evaluate and confirm the effectiveness of these attacks on

popular deep learning frameworks, including Google Cloud ML, Microsoft Cognitive

Toolkit (CNTK), and the PyTorch open source framework initially developed by

Facebook.

• We explore and develop multiple defense techniques against attacks on transfer

learning models, including defenses that alter the student model training process,

that alter inputs prior to classification, and techniques that introduce redundancy

using multiple models.

56

Practical Attacks against Transfer Learning Chapter 4

Transfer learning is a powerful approach that addresses one of the fundamental chal-

lenges facing the widespread deployment of deep learning. To the best of our knowledge,

our work is the first to extensively study the inheritance of vulnerabilities between trans-

fer learning models. Our goal is to bring attention to fundamental weaknesses in these

models, and to advocate for the evaluation and adoption of defensive measures against

adversarial attacks in the future.

4.2 Background

We begin by providing some background information on transfer learning and adver-

sarial attacks on deep learning frameworks.

4.2.1 Transfer Learning

The high level idea of transfer learning is to transfer the “knowledge” from a pre-

trained Teacher model to a new Student model, where the student model’s task shares

significant similarity to the teacher model’s. This “knowledge” typically includes the

model architecture and weights associated with the layers. Transfer learning enables or-

ganizations without access to massive datasets or GPU clusters to quickly build accurate

models customized to their application context.

How Transfer Learning Works. Figure 4.1 illustrates transfer learning at a high

level. The student model is initialized by copying the first N −1 layers of the Teacher. A

new dense layer is added for classification. Its size matches the number of classes in the

student task. Then the student model is trained using its own dataset, while the first K

layers are “frozen”, i.e. their weights are fixed, and only weights in the last N −K layers

are updated.

57

Practical Attacks against Transfer Learning Chapter 4

Teacher

 Student

Initialization

 Student

After Training

Layer copied from Teacher

In
p

u
t

TK

In
p

u
t

In
p

u
t

O
u

tp
u

t
O

u
tp

u
t

O
u

tp
u

t

SN-K

Layer trained by StudentLayer newly added for classification

Figure 4.1: Transfer learning. A student model is initialized by copying the first N -1
layers from a teacher model, with a new dense layer added for classification. The
model is further trained by only updating the last N -K layers.

The first K layers (referred to as shallow layers) are frozen during training because

outputs of those layers already represent meaningful features for the student task. The

student model can reuse these features directly, and freezing them lowers both training

cost and amount of required training data.

Based on the number of layers being frozen (K) during the training process, transfer

learning is categorized into the following three approaches.

• Deep-layer Feature Extractor: N − 1 layers are frozen during training, and only

the last classification layer is updated. This is preferred when the student task is

very similar to the teacher task, and requires minimal training cost (the cost of

training a single-layer DNN).

• Mid-layer Feature Extractor: The first K layers are frozen, where K < N − 1.

Allowing more layers to be updated helps the student perform more optimization

for its own task. Mid-layer Feature Extractor typically outperforms Deep-layer

Feature Extractor in scenarios where the student task is more dissimilar to the

58

Practical Attacks against Transfer Learning Chapter 4

teacher task, and more training data is available.

• Full Model Fine-tuning: All layers are unfrozen and fine-tuned during student

training (K = 0). This requires more training data, and is appropriate when the

student task differs significantly from the teacher task. Bootstrapping using pre-

trained model weights helps the student converge faster and potentially achieve

better performance than training from scratch [117].

We run a simple experiment to demonstrate the impact of transfer learning. We

target facial recognition, where the student task is to recognize a set of 65 faces, and uses

a well-performing face recognition model called VGG-Face [118] as teacher model. Using

only 10 images per class to train the student model, we achieve 93.47% classification

accuracy. Training the student with the same architecture but with random weights (no

pre-trained weights) produces accuracy close to random guessing.

4.2.2 Adversarial Attacks in Deep Learning

The goal of adversarial attacks against deep learning networks is to modify input

images so that they are misclassified in the DNN. Given a source image, the attacker

applies a small perturbation so that it is misclassified by the victim DNN into either a

specific target class, or any class other than the real class. Existing attacks fall into two

categories, based on their assumptions on how much information attacker has about the

classifier.

White-box Attacks. These attacks assume the attacker knows the full internals

of the classifier DNN, including its architecture and all weights. It allows the attacker

to run unlimited queries on the model, until a success adversarial sample is found [25,

119, 120, 121, 122]. These attacks often achieve close to 100% success with minimal

59

Practical Attacks against Transfer Learning Chapter 4

perturbations, since full access to the DNN allows them to find the minimal amount of

perturbations required for misclassification. The white-box scenario is often considered

impractical, however, since few systems reveal internals of their model publicly.

Black-box Attacks. Here attackers do not have knowledge of the internals of the

victim DNN, i.e. it remains a black-box. The attacker is allowed to query the victim

model as an Oracle [123, 122]. Most black-box attacks either use queries to test interme-

diate adversarial samples and improve iteratively [122], or try to reverse-engineer decision

boundaries of the DNN and build a replica, which can be used to craft adversarial sam-

ples [123]. Black-box attacks often achieve lower success than white-box attacks, and

require a large number of queries to the target classifier [122].

Adversarial attacks can also be categorized into targeted and non-targeted attacks.

A targeted attack aims to misclassify the adversarial image into a specific target class,

whereas a non-targeted attack focuses on triggering misclassification into any class other

than the real class. We consider and evaluate both targeted and non-targeted attacks in

this paper.

4.3 Attacks on Transfer Learning

Here, we describe our attack on transfer learning, beginning with the attack model.

Attack Model. In the context of our definitions in Section 4.2, our attack as-

sumes white-box access to teacher models (consistent with common practice today) and

black-box access to student models. We consider a given attacker looking to trigger a

misclassification from a Student model S, which has been customized through transfer

learning from a Teacher model T .

60

Practical Attacks against Transfer Learning Chapter 4

• White-box Teacher Model. We assume that T is a white-box, meaning the attacker

knows its model architecture and weights. Most or all popular models today have

been made publicly available to increase adoption. Even if Teacher models became

proprietary in the future, an attacker targeting a single Teacher model could obtain

it by posing as a Student to gain access to the Teacher model.

• Black-box Student Model. We assume S is black-box, and all weights remain hidden

from the attacker. We also assume the attacker does not know the Student train-

ing dataset, and can use only limited queries (e.g., 1) to S. Apart from a single

adversarial sample to trigger misclassification, we expect no additional queries to

be made during the pre-attack process.

• Transfer Learning Parameters. We assume the attacker knows that S was trained

using T as a Teacher, and which layers were frozen during the Student training. This

information is not hard to learn, as many service providers, e.g., Google Cloud ML,

release such information in their official tutorials. We further relax this assumption

in Sections 4.4 and 4.5, and consider scenarios where such information is unknown.

We will discuss the impact on performance, and propose techniques to extract such

information from the Student using a few additional queries.

Insight and Attack Methodology. Figure 4.2 illustrates the main idea behind

our attack. Consider the scenario where the attacker knows that the first K layers of

the Student model are copied from the Teacher and frozen during training. Attacker

perturbs the source image so it could be misclassified as the same class of a specific

target image. Using the Teacher model, attacker computes perturbations that mimic

the internal representation of the target image at layer K. Internal representation is

captured by passing the target image as input to the Teacher, and using the values of

61

Practical Attacks against Transfer Learning Chapter 4

Figure 4.2: Illustration of our attack. Given images of a cat and a dog, attacker
computes perturbations that mimic the internal representation of the dog image at
layer K. If the calculations are perfect, the adversarial sample will be classified as
dog, regardless of unknown layers in SN−K .

the corresponding neuron outputs at layer K.

Our key insight: is that (in feedforward networks) since each layer can only observe

what is passed on from the previous layer, if our adversarial sample’s internal representa-

tion at layer K perfectly matches that of the target image, it must be misclassified into

the same label as the target image, regardless of the weights of any layers that follow K.

This means that in the common case of feature extractor training, if we can mimic a

target in the Teacher model, then misclassification will occur regardless of how much the

Student model trains with local data. We also note that some models like InceptionV3

and ResNet50, where “shortcut” layers can skip several layers, are not strictly feedfor-

ward. However, the same principle applies, because a block (consisting of several layers)

only takes information from the previous block. Finally, it is hard in practice to perfectly

mimic the internal representation, since we are limited in our level of possible perturba-

tion, in order to keep adversarial changes indistinguishable by humans. The attacker’s

goal, therefore, is to minimize the dissimilarity between internal representations, given a

62

Practical Attacks against Transfer Learning Chapter 4

fixed level of perturbation.

Targeted vs. Non-targeted Attacks. We consider both targeted and non-targeted

attacks. The goal in targeted attacks is to misclassify a source image xs into the class

of a target image xt. The attacker focuses on a specific layer K of the Teacher model,

and tries to mimic the target image’s internal representation (neuron values) at layer

K. Let TK(.) be the function (associated with Teacher) transforming an input image to

the internal representation at layer K. A perturbation budget P is used to control the

amount of perturbation added to the source image. The following optimization problem

is solved to craft an adversarial sample x′s.

min D(TK(x′s), TK(xt))

s.t. d(x′s, xs) < P

(4.1)

The above optimization tries to minimize dissimilarity D(.) between the two internal

representations, under a constraint to limit perturbation within a budget P . We use

L2 distance to compute D(.). d(x′, xs) is a distance function measuring the amount of

perturbation added to xs. We discuss d(.) later in this section.

In non-targeted attacks, the goal is to misclassify xs into any class different from the

source class. To do this, we need to identify a “direction” to push the source image outside

its decision boundary. In our case, it is hard to estimate such a direction without having

a target image in hand, as we rely on mimicking hidden representations. Therefore, we

perform a non-targeted attack by evaluating multiple targeted attacks, and choose the

one that achieves the minimum dissimilarity between the internal representations. We

assume that the attacker has access to a set of target images I (each belonging to a

distinct class). Note that the source image can be misclassified to even classes outside

the set I. The set of images I merely serves as a guide for the optimization process.

63

Practical Attacks against Transfer Learning Chapter 4

Empirically, we find that even small sizes of set I (just 5 images) can achieve high attack

success. The optimization problem is formulated as follows.

min mini∈I{D(TK(x′s), TK(xti))}

s.t. d(x′s, xs) < P

(4.2)

Measuring Adversarial Perturbations. As mentioned before, d(x′s, xs) is the dis-

tance function used to measure the amount of perturbation added to the image. Most

prior work used the Lp distance family, e.g., L0, L2, and L∞ [25]. While a helpful way to

quantify perturbation, Lp distance fails to capture what humans perceive as image dis-

tortion. Therefore, we use another metric, called DSSIM , which is an objective image

quality assessment metric that closely matches with the perceived quality of an image

(i.e. subjective assessment) [124, 125]. The key idea is that humans are sensitive to struc-

tural changes in an image, which strongly correlates with their subjective evaluation of

image quality. To infer structural changes, DSSIM captures patterns in pixel intensities,

especially among neighboring pixels. The metric also captures luminance, and contrast

measures of an image, that would also impact perceived image quality. DSSIM values

fall in the range [0, 1], where 0 means the image is identical to the original image, and a

higher value means the perceived distortion will be higher. We include the mathematical

formulation of DSSIM in the Appendix. We also refer interested readers to the original

papers for more details [124, 125].

Solving the Optimization Function. To solve the optimization in Equation 4.1,

we use the penalty method [126] to reformulate the optimization as follows.

min D(TK(x′s), TK(xt)) + λ·(max (d(x′s, xs)−P, 0))2

64

Practical Attacks against Transfer Learning Chapter 4

Here λ is the penalty coefficient that controls the tightness of the privacy budget con-

straint. By gradually increasing λ, the final optimization result would converge to that

of the original formulation. In our experiment, we empirically choose a λ large enough

to ensure the perturbation constraint is tightly enforced.

We use Adadelta [127] optimizer to solve the re-formulated optimization problem. To

constrain input pixel intensity within the correct range ([0, 255]), we transform intensity

values into tanh space [25].

4.4 Experimental Results

Next, we perform experiments across a number of classification tasks to validate the

effectiveness of attacks on transfer learning. Given their wide adoption in a variety

of applications, we focus on image classification tasks, including facial recognition, iris

recognition, traffic sign recognition and flower recognition.

4.4.1 Experimental Setup

Teacher and Student Models. We use four tasks and their associated Teacher

models and datasets to build our victim Student models.

• Face Recognition classifies an image of a human face into a class associated with

a unique individual. The Teacher is the popular 16 layer VGG-Face model [128]

trained on a dataset of 2.6M images to recognize 2, 622 faces. The Student model is

trained using the PubFig dataset [129] to recognize a different set of 65 individuals 1.

The Student training dataset contains 90 faces belonging to each of the 65. The

1The original dataset contains 83 celebrities. We exclude 18 celebrities that were also used in the
Teacher model.

65

Practical Attacks against Transfer Learning Chapter 4

testing dataset for the Student model contains 650 images (10 images per class).

• Iris Recognition classifies an image of a human iris into one of many classes asso-

ciated with different individuals. The Teacher model is a 16 layer VGG16 model

trained on the ImageNet dataset of 1.3M images [8]. The Student model is trained

on the CASIA IRIS dataset [130] containing 16, 000 iris images associated with

1, 000 individuals, and the testing dataset contains 4, 000 images.

• Traffic Sign Recognition classifies different types of traffic signs from images,

which can be used by self-driving cars to automatically recognize traffic signs. The

Teacher model is again the 16 layers VGG16, trained on the ImageNet dataset.

The Student is trained using the GTSRB dataset [131] containing 39, 209 images

of 43 different traffic signs. It also has a testing dataset of 12, 630 images.

• Flower Recognition classifies images of flowers into different categories, and is

a popular example of multi-class classification. It is also an example of transfer

learning by Microsoft’s CNTK framework [132]. The Teacher model is the ResNet50

model (with 50 layers) [6], trained on the ImageNet dataset. The Student is trained

on the VGG Flowers dataset [133] containing 6, 149 images from 102 classes, and

comes with a testing dataset of 1, 020 images.

These tasks represent typical scenarios users may face during transfer learning. First,

the training dataset for building the Student model is significantly smaller than that of

the Teacher’s training dataset, which is a common scenario for transfer learning. Second,

the Teacher and Student models either target similar tasks (Face Recognition) or very

different tasks (Flowers and Traffic Sign Recognition). Finally, Face, Iris and Traffic sign

recognition are security-related tasks. More details of training the Student models are

listed in Table A.1 in the Appendix.

66

Practical Attacks against Transfer Learning Chapter 4

Student Task
Transfer Process

Deep-layer Feature Extractor Mid-layer Feature Extractor Full Model Fine-tuning
Face 98.55% 98.00% (14/16) 75.85%
Iris 88.27% 88.22% (14/16) 81.72%

Traffic Sign 62.51% 96.16% (10/16) 94.39%
Flower 43.63% 92.45% (10/50) 95.59%

Table 4.1: Transfer learning performance for different tasks when using different trans-
fer processes. For each task, we select the model with the highest accuracy as our
target Student model in future analysis. Numbers in parenthesis under Mid-layer Fea-
ture Extractor are the number of layers copied to achieve the corresponding accuracy,
as well as the total number of layers of the Teacher.

Optimizing Student Models. We apply all three transfer learning approaches (dis-

cussed in Section 4.2) to each task, and identify the best approach. Table 4.1 shows the

classification accuracy for different transfer approaches. For Mid-layer Feature Extrac-

tor , we show the result of the best Student model by experimenting with all possible K

values. The results show that Face Recognition achieves the highest accuracy (98.55%)

when using Deep-layer Feature Extractor . This is expected as the Student and Teacher

tasks are very similar, leading to significant gains from transferring knowledge directly.

The Flower classification task performs best with Full Model Fine-tuning , since the Stu-

dent and Teacher tasks are different and there is less gain from sharing layers. Lastly,

Traffic Sign recognition is a nice example for transferring knowledge from a middle layer

(layer 10 out of 16).

Based on these results, we build the Student model for each task using the transfer

method that achieves the highest classification accuracy (marked in bold in Table 4.1).

The resulting four Student models cover all three transfer learning methods.

Attack Configuration. We craft adversarial samples using correctly classified images

in the test dataset. These are images not seen by the Student model during its training

and matches our attack model, i.e. the adversary has no access to the Student training

dataset. To evaluate targeted attacks, we randomly sample 1K source and target image

67

Practical Attacks against Transfer Learning Chapter 4

pairs to craft adversarial samples, and measure the attack success rate as the percentage

of attack attempts (out of 1K) that misclassify the perturbed source image as the target.

For non-targeted attacks, we randomly select 1K source images and 5 target images

for each source (to guide the optimization process). Success for non-targeted attack is

measured as the percentage of 1K source images that are successfully misclassified into

any other arbitrary class.

For each source and target image pair, we compute the adversarial samples by running

the Adadelta optimizer over 2, 000 iterations with a learning rate of 1. For all the Teacher

models considered in our experiments, the entire optimization process for a single image

pair takes roughly 2 minutes on an NVIDIA Titan Xp GPU.

We implement the attack using Keras [134] and TensorFlow [135], leveraging open-

source implementations of misclassification attacks provided by prior works [136, 25].

4.4.2 Effectiveness of the Attack

We first evaluate the proposed attacks assuming the attacker knows the exact transfer

approach used to produce the Student model. This allows us to derive the upper bounds

on attack effectiveness, and to explore the impact of the perturbation budget P , the

distance metric d(x′s, xs), and the underlying transfer method used to produce the Student

model. Later in Section 4.4.3 we will relax this assumption.

Consider the Face recognition task which uses Deep-layer Feature Extractor to pro-

duce the Student model. Here the attacker crafts adversarial samples to target the N −1

layer of the Teacher model. Even with a very low perturbation budget of P = 0.003, our

attack is highly effective, achieving a success rate of 92.6% and 100% for targeted, and

non-targeted attacks respectively. We also manually examine the perturbations added

to adversarial images and find them to be undetectable by visual inspection. Figure 4.3

68

Practical Attacks against Transfer Learning Chapter 4

 Source Adversarial Target Source Adversarial Target

Figure 4.3: Examples of adversarial images on Face Recognition (P = 0.003).

includes 6 randomly selected successful targeted attack samples for interested readers to

examine.

It should be noted that an attacker could improve attack success by carefully selecting

a source image similar to a target image. Our attack scenario is much more challenging,

since the source and target images are randomly selected. Figure 4.3 shows that our

attacks often try to mimic a female actress using a male actor, and vice versa. We also

have image pairs with different lighting conditions, facial expressions, hair color, and skin

tones. This significantly increases the difficulty of the targeted attack, given constraints

on the perturbation level.

Impact of Perturbation Budget P . A natural question is how to choose the right

perturbation budget, which directly affects the stealthiness of the attack. By measuring

image distortion via the DSSIM metric, we empirically find that P = 0.003 is a safe

threshold for facial images. Its corresponding L2 norm value is 8.17, which is significantly

69

Practical Attacks against Transfer Learning Chapter 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.001 0.002 0.003 0.004 0.005

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Perturbation Budget (P)

Non-targeted
Targeted

Figure 4.4: Attack success rate on Face Recognition with different perturbation budgets.

smaller than/comparable to values used in prior work (L2 > 20) [137].

Figure 4.4 shows the attack success rate as we vary the perturbation budget between

0.0005 and 0.005. As expected, smaller budget results in lower attack success rate, as

there is less room for the attacker to change images and mimic the internal representation.

Detailed comparison of images with different perturbation budgets is in Figure A.1 in

the Appendix.

Impact of Distance Metric d(x′s, xs). Recall that we use DSSIM to measure

perturbation added to input images, instead of the Lp distance used by prior works,

e.g., L2. To compare both metrics, we also implement our attack using L2 distance, and

analyze the generated images ourselves. For a fair comparison, we choose an L2 distance

budget that produces a targeted attack success rate similar to using DSSIM with a

budget of 0.003. Generated images are included in Figure A.2 in the Appendix. We

find that DSSIM generates imperceptible perturbations, while perturbations using L2

are more noticeable. While DSSIM takes into account the underlying structure of an

image, L2 treats every pixel equally, and often generates noticeable “tattoo-like” patterns

on faces.

70

Practical Attacks against Transfer Learning Chapter 4

Impact of Transfer Method. We also test out attack on Iris, Traffic Sign, and

Flower recognition tasks. Their perturbation budgets are set to 0.005 (L2=9.035), 0.01

(L2=7.77), and 0.003 (L2=13.52), respectively. These values are empirically derived by

the authors to produce unnoticeable image perturbations.

Overall, the attack is effective in Iris, with a targeted attack success rate of 95.9%

and non-targeted success rate of 100%. Like Face recognition, the Iris student model

was trained via Deep-layer Feature Extractor . On the other hand, the attack becomes

less effective on Traffic Sign recognition, where the success rate of targeted and non-

targeted attacks are 43.7%, and 95.35%, respectively. For Flower recognition, these

numbers reduce to 1.1% and 37.25%, respectively. These results suggest that the attack

effectiveness is strongly correlated with the transfer method: our attack is highly effective

for Deep-layer Feature Extractor , but ineffective for Full Model Fine-tuning .

4.4.3 Impact of the Attack Layer

We now consider scenarios where the attacker does not know the exact transfer

method used to train the Student model. In this case, the attacker needs to first select a

Teacher layer to attack, which can be different from the deepest layer frozen during the

transfer process. To understand the impact of such mismatch, we evaluate our attack

on each of the Teacher layers in all four Student models. We organize our results by the

transfer method.

Deep-layer Feature Extractor . The corresponding student models are Face and

Iris. We set their perturbation budget P to 0.003, and 0.005, respectively (the same

values used in the previous experiment). We launch attacks to each of the N-1 Teacher

layers (N=16), i.e. computing adversarial samples that mimic the internal representation

of the target image at layer K where K = 1...N − 1. Figure 4.5a and Figure 4.5b show

71

Practical Attacks against Transfer Learning Chapter 4

 0

 0.2

 0.4

 0.6

 0.8

 1

1 4 8 12 16

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Layer Number

Non-targeted
Targeted

(a) Face

 0

 0.2

 0.4

 0.6

 0.8

 1

1 4 8 12 16

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Layer Number

Non-targeted
Targeted

(b) Iris

 0

 0.2

 0.4

 0.6

 0.8

 1

1 4 8 12 16

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Layer Number

Non-targeted
Targeted

(c) Traffic Sign

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 20 30 40 50

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Layer Number

Non-targeted
Targeted

(d) Flower

Figure 4.5: Targeted and non-targeted attack success rate on Student models when
targeting different layers. X axis indicates the layer being targeted. Face and Iris
freeze the first 15 layers during training; Traffic Sign freezes the first 10 layers; Flower
freezes no layers.

targeted and non-targeted success rates when attacking different layers.

For both Face and Iris, the attack is the most effective when targeting precisely the

N−1th (15th) layer, which is as expected since both use Deep-layer Feature Extractor . As

the attacker moves from deeper layers towards shallow layers (i.e. reducing K), the attack

effectiveness reduces. At layer 13 and above, the attack success rates are above 88.4%

for Face, and 95.9% for Iris. But when targeting layer 10 and below, the success rates

drop to 1.2% for Face recognition, and <40% for Iris recognition. This is because shallow

layers represent basic components of an image, e.g., lines and edges, which are harder to

mimic using a limited perturbation budget. In fact, both Face and Iris models are based

72

Practical Attacks against Transfer Learning Chapter 4

on convolutional neural networks, which are known to capture such representations at

shallow layers [138]. Therefore, given a fixed perturbation budget, the error in mimicking

internal representations is much higher at shallow layers, resulting in lower attack success

rates.

An unexpected result is that for Iris, the success rate for non-targeted attacks remains

close to 100% regardless of the attack layer choice. A more detailed analysis shows that

this is because Iris recognition is highly sensitive to input noise. The perturbations

introduced by our attack behave as input noise, thus triggering misclassification into an

“unknown” class. However, this is a unique property of the Iris recognition task, and

does not apply to the other three tasks.

Mid-layer Feature Extractor . We then evaluate attack on Traffic Sign, where

the first 10 layers are transferred from Teacher and frozen during training. Here the

perturbation budget is fixed to P = 0.005. Results in Figure 4.5c show that the attack

success rates peak at precisely the 10th layer, where success rate for targeted attack is

43.7% and 95.35% for non-targeted attack. Similarly, the success rates reduce when

the attacker targets shallow layers. Interestingly, the success rates also decrease as we

target layers deeper than 10. This is because layers beyond 10 are fine-tuned and more

distinct from the corresponding Teacher layers, leading to higher error when mimicking

the internal representation.

Full Model Fine-tuning . For the Flower task, the Student model differs largely

from the Teacher model, as all the layers are fine-tuned. Therefore, the attacker will

always use incorrect information (from the Teacher) to mimic an internal representation

of the Student. The resulting attack success rates are low and flat across the choice of

attack layers (Figure 4.5d with P = 0.003).

73

Practical Attacks against Transfer Learning Chapter 4

How to Choose the Attack Layer? The above results suggest that the attacker

should always try to identify if the Student is using Deep-layer Feature Extractor , as

it remains the most vulnerable approach. In Section 4.5, we present a technique to

determine whether Deep-layer Feature Extractor is used for transfer and to identify the

Teacher model, using a few queries on the Student model. In this case, the attacker

should focus on the N − 1th layer to achieve the optimal attack performance.

If the Student is not using Deep-layer Feature Extractor , the attacker can try to

find the optimal attack layer by iteratively targeting different layers, starting from the

deepest layer. In the case of Mid-layer Feature Extractor , the attacker can estimate the

attack success rate at each layer, using only a small set of image pairs and very limited

queries. The attacker can observe the attack success rate increasing (or decreasing) as

she approaches (or moves away from) the optimal layer.

4.4.4 Discussion

Feature Extractor vs. Full Model Fine-tuning . Our results suggest that Full

Model Fine-tuning and Mid-layer Feature Extractor lead to models that are more robust

against our attacks. However, in practice, these two approaches are often not applicable,

especially when the Student training data is limited. For example, for Face recognition,

when reducing the training dataset from 90 images per class to 50 per class, pushing

back by 2 layers (i.e. transfer at layer 13) reduces the model classification accuracy to

19.1%. Meanwhile, Deep-layer Feature Extractor still achieves a 97.69% classification

accuracy. Apart from performance, these approaches also incur higher training cost than

Deep-layer Feature Extractor . This is also why many deep learning frameworks today

use Deep-layer Feature Extractor as the default configuration for transfer learning.

74

Practical Attacks against Transfer Learning Chapter 4

Can white-box attacks on Teacher transfer to student Models? Prior work

identified the transferability of adversarial samples across different models for the same

task [137]. Thus another potential attack on transfer learning is to use existing white-box

attacks on the Teacher to craft adversarial samples, which are then transferred to the

Student. We evaluate this attack using the state-of-the-art white-box attack by Carlini

et al. [25]. Since Teacher and Student models have different class labels, we can only

perform non-targeted attacks.

Our results show that the resulting attack is ineffective for all four tasks: only < 0.3%

adversarial samples trigger misclassification in the Student models. Thus we confirm that

the white-box attack on the Teacher will not be transferred to the Student. The failure

of the attack can be attributed to the differences between the Teacher and Student tasks.

The Student model has a different classification layer (and hence decision boundary) than

the Teacher, so adversarial samples computed using decision boundary analysis (based

on classification layer) of the Teacher model fail on the Student model.

4.5 Experiments with Real ML Services

So far our misclassification attacks assume that the teacher model is known to the

attacker. Next, we relax this assumption by considering scenarios where the teacher

model is unknown to the attacker. Specifically, today’s deep learning services (e.g.,

Google Cloud ML, Facebook PyTorch, and Microsoft CNTK) already help customers

generate student models from a suite of teacher models. In this case, a successful attack

must first infer the teacher model given a student model. We address this challenge by

designing a fingerprinting approach that feeds a few query images on the student model to

identify the teacher model, allowing us to effectively attack the student models produced

by today’s deep learning services.

75

Practical Attacks against Transfer Learning Chapter 4

4.5.1 Fingerprinting the Teacher Model

Our design assumes that, given a student model, the attacker has access to the pool

of candidate Teacher models where one of them is used to produce the student model.

This is a practical assumption because for common deep learning tasks there are only a

limited set of high quality, pre-trained models that are publicly available. For example,

Google Cloud ML provides InceptionV3, MobileNets and its variants as Teacher models

for image classification. Thus the attacker only needs to identify the Teacher from a

(small) set of known candidates.

Viable Alternatives. The simplest and most straight-forward alternative is to craft

adversarial samples using each of the Teacher candidates, and test which one produces a

successful attack. However, such technique is often not reliable and would not produce

the desired output. As we have shown before, the success of the attack depends on

various factors, e.g., perturbation budget, transfer learning approach. This uncertainty

reduces the effectiveness of identifying the correct Teacher. We need more reliable and

simple design that works regardless of these external parameters.

Methodology. We take a fingerprinting based approach. For each candidate Teacher

model, the attacker crafts a fingerprint image that will intentionally “distort” the output

of the student model, if and only if the student model is generated by the given Teacher

model. By querying the student model with the fingerprinting images of all the candidates

and comparing the model output, the attacker can quickly narrow down to the true

Teacher model. In the following, we show that such fingerprinting method is highly

effective when the student model is generated via Deep-layer Feature Extractor .

Consider the last layer of a student model (trained using Deep-layer Feature Extrac-

tor), which is a dense layer for classification. The prediction result (before softmax) of

76

Practical Attacks against Transfer Learning Chapter 4

an input image x can be expressed as,

S(x) = WN × TN−1(x) +BN (4.3)

where WN is the weight matrix of the dense layer, BN is the bias vector, and TN−1(.) is

the function transforming the input x to neurons at layer N − 1 2.

Given the knowledge of TN−1(.), our goal is to craft a fingerprinting image that nullifies

the first term in Equation 4.3, i.e. an x that produces an all-zero vector TN−1(x) = ~0

so that the output vector S(x) = BN . Since different Teacher models differ largely in

TN−1(.), a fingerprinting image of a Teacher model A, when fed to a Student model derived

from a different Teacher model B, is unlikely to produce an all-zero vector TN−1(x).

To decode the fingerprint, our hypothesis is that, without the contribution from x,

the bias vector BN (or S(x) produced by the right fingerprint) will display much lower

dispersion compared to normal S(x) values. Thus by feeding candidate fingerprinting

images into the student model and comparing the dispersion value of the corresponding

S(x), we can identify the Teacher model as the one that produces the minimum dispersion

(below a threshold).

Assuming this hypothesis is true, we can craft fingerprinting images for each Teacher

model following the same optimization process for our misclassification attack (see Sec-

tion 4.3). The only difference is here the internal representation to mimic is a zero-vector.

Validation. To validate our approach, we produce five additional Student models

using multiple popular public Teacher models 3. These Student models are trained using

2There will also be an activation function that further transforms S(x), but we ignore it for the sake
of simplicity. Our methodology holds for any activation function.

3Our choice of Teacher models includes VGG16 [8], VGG19 [8], ResNet50 [6], InceptionV3 [139],
Inception-ResNetV2 [9], and MobileNet [140].

77

Practical Attacks against Transfer Learning Chapter 4

the 17-class VGG Flower dataset 4, using Deep-layer Feature Extractor . Together with

the Face and Iris models used in Section 4, we have a total of 7 Student models produced

from different Teacher models. All of them achieve > 83.1% classification accuracy.

We measure the dispersion of S(x) using the Gini coefficient, commonly used in

economics to measure wealth distribution [142]. Its value ranges between 0 and 1, with

0 representing complete equality and 1 representing complete inequality.

We first measure the Gini coefficient of BN , validating our hypothesis that BN ’s

dispersion level is very low. For each Student model, we set output neurons of N − 1th

layer as a zero vector, so that only BN is fed into the final prediction. For all seven

models, the corresponding Gini coefficient is below 0.011. We then feed 100 random test

images into each model, where the Gini coefficient jumps to between 0.648 and 0.999,

with a median value of 0.941. This confirms our hypothesis where BN has a different

statistical dispersion than normal S(x).

Next, for each candidate Teacher model, we craft and feed 10 fingerprinting images

to the target student model and compute the average Gini coefficient of S(x). Figure 4.6

shows the average Gini coefficient as a function of the fingerprinting Teacher model and

the Teacher model used to generate the Student model. The diagonal line indicates

scenarios where the two Teacher models match. As expected, all the coefficients along

the diagonal are small (< 0.058), suggesting that the fingerprinting images successfully

nullify the neuron component in S(x). All off-diagonal coefficients are significantly higher

(> 0.443), since the Teacher model used to generate the fingerprinting image does not

match that used to generate the student model.

It is worth noting that our fingerprinting technique can also identify different versions

of Teacher models with the same architecture. To demonstrate this, we use Google’s

InceptionV3 model that has two versions (i.e. with different weights) released at different

4This is a smaller version of the full 102-class flower dataset we used in previous experiments [141].

78

Practical Attacks against Transfer Learning Chapter 4

VGG-Face

VGG16

VGG19

InceptionV3

Inception-
ResNetV2

ResNet50

MobileNet

V
G

G
-F

a
c
e

V
G

G
1
6

V
G

G
1
9

In
c
e
p
ti
o
n
V

3

In
c
e
p
ti
o
n
-

R
e
s
N

e
tV

2

R
e
s
N

e
t5

0

M
o
b
ile

N
e
t

A
c
tu

a
l
T

e
a
c
h
e
r

U
s
e
d

Teacher Model Candidate

0.004

0.011

0.042

0.058

0.030

0.015

0.041

0.951

0.930

0.821

0.715

0.967

0.548

0.501

0.941

0.834

0.717

0.975

0.584

0.501

0.964

0.846

0.731

0.969

0.574

0.445

0.958

0.932

0.743

0.966

0.576

0.446

0.959

0.927

0.818

0.966

0.572

0.455

0.964

0.912

0.828

0.741

0.508

0.443

0.959

0.919

0.824

0.720

0.965

 0

 0.2

 0.4

 0.6

 0.8

 1

G
in

i
C

o
e
ff
ic

ie
n
t

Figure 4.6: Gini coefficient of output probabilities of different teacher and student models.

times.5. Our technique accurately distinguishes between these two versions, with a Gini

coefficient < 0.075 when there is a match, and > 0.751 otherwise.

Overall, the above results confirm that our fingerprinting method can identify the

Teacher model using a small set of queries. When crafting the fingerprinting image, a

threshold of 0.1 on the Gini coefficient seems like a good cut-off to ensure successful

fingerprinting.

Effectiveness on Other Transfer Methods. Our fingerprinting method is based

on nullifying neuron contributions to the last layer of the Student model. It is effective

when the student model is generated by Deep-layer Feature Extractor . The same set of

fingerprinting images, when fed to student models generated by other transfer methods,

will likely lead to higher Gini coefficients and fail to identify the Teacher model. For

5Version 2015-12-05 http://download.tensorflow.org/models/image/imagenet/

inception-2015-12-05.tgz, Version 2016-08-28 http://download.tensorflow.org/models/

inception_v3_2016_08_28.tar.gz

79

http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz

Practical Attacks against Transfer Learning Chapter 4

example, when fed to the Traffic Sign and Flower models, the Gini coefficient is always

higher than 0.839.

On the other hand, when all the fingerprinting images lead to large Gini coefficient

values, it means that either the Teacher model is unknown (not in the candidate pool),

or the student model is produced by a transfer method other than Deep-layer Feature

Extractor . For both cases, the misclassification attack will be less effective. The attacker

can use this knowledge to identify and target student models that are the most vulnerable

to the misclassification attack.

4.5.2 Attacks on Transfer Learning Services

Today, popular Machine Learning as a service (MLaaS) platforms [143] (e.g., Google

Cloud ML) and deep learning libraries (e.g., PyTorch, Microsoft CNTK) already rec-

ommend transfer learning to their customers. Many provide detailed tutorials to guide

customers through the process of transfer learning. We follow these tutorials to investi-

gate whether the resulting Student models are vulnerable to our attacks. The adversarial

samples generated on the three services are listed in Figure A.4 in the Appendix.

Google Cloud ML. In this MLaaS platform, users can train deep learning models in

the cloud and maintain it as a service. The transfer learning tutorial explains the process

of using Google’s InceptionV3 image classification model to build a flower classification

model [144].

Specifically, the tutorial suggests Deep-layer Feature Extractor as the default transfer

learning method, and the provided sample code does not offer control parameters or

guidelines to use other transfer approaches or Teacher models (one has to modify the

code to do so). We follow the tutorial to train a Student model on a 5-class flower

dataset (the example dataset used in the tutorial), which achieves an 89.3% classification

80

Practical Attacks against Transfer Learning Chapter 4

accuracy 6.

To launch the attack on the Student model, we first use the proposed fingerprinting

method to identify that InceptionV3 (2015 version) is used as the Teacher model (i.e.

the corresponding fingerprint image leads to Gini coefficient of 0.061 while the other

fingerprint images lead to much higher values > 0.4063). The subsequent misclassification

attack achieves a 96.5% success rate with P = 0.001.

Microsoft CNTK. The Microsoft Cognitive Toolkit (CNTK) is an open source

DL library available on Microsoft’s Azure MLaaS platform. The tutorial describes a

flower classification task and recommends ResNet18 as the Teacher and Full Model Fine-

tuning as the default configuration [132]. This creates a Student model similar to the

Flower model used in Section 4.4. CNTK also provides control parameters to switch

to Deep-layer Feature Extractor (Mid-layer Feature Extractor is unavailable) and other

Teacher models hosted by Microsoft, including popular image classification models (e.g.,

ResNet50, InceptionV3, VGG16) and a few object detection models. Following this pro-

cess, we use VGG16 as the Teacher and Deep-layer Feature Extractor to train a new

Student model using the 102-class VGG flower dataset (the example dataset used in

tutorial). It achieves a classification accuracy of 82.25%.

Again, we were able to launch the misclassification attack on the Student model: our

fingerprinting method successfully identifies the Teacher model (with a Gini coefficient

of 0.0045), and the attack success rate is 99.4% when P = 0.003.

PyTorch. PyTorch is a popular open source DL library developed by Facebook. Its

tutorial describes steps to build a classifier that can distinguish between images of ants

and bees [146]. The tutorial uses ResNet18 by default and allows both Deep-layer Feature

6Instead of training the Student in the cloud, we build the model locally using Google TensorFlow
using the same procedure [145].

81

Practical Attacks against Transfer Learning Chapter 4

Extractor and Full Model Fine-tuning , but indicates that Deep-layer Feature Extractor

provides higher accuracy. There is no mention of Mid-layer Feature Extractor . PyTorch

hosts a repository of 6 image classification Teacher models that users can plug into their

transfer process.

Again we follow the tutorial and verify that Student models trained using Deep-layer

Feature Extractor on PyTorch are vulnerable. Our fingerprinting technique produces a

Gini coefficient of 0.004, and targeted attack achieves a success rate of 88.0% with P =

0.001. We also test our attack on a student model trained using Full Model Fine-tuning .

Surprisingly, our targeted attack still achieves an 87.4% success rate with P = 0.001.

This is likely because the Student model is trained only for a short number of epochs (25

epochs) at a very low learning rate of 0.001, and thus the fine-tuning process introduces

only small modification to the model weights.

Implications. Our experiments on the three machine learning services show that

many Student models produced by these services are vulnerable to our attack. This

is particularly true when users follow the default configuration in Google Cloud ML

and PyTorch. Our attack is feasible because each service only hosts a small number

of deep learning Teacher models, making it easy to get access to the (small) pool of

Teacher models. Finally, by promoting the use of transfer learning, these platforms

often expose their customers to our attack accidentally. For example, Google Cloud ML

advertises customers who have successfully deployed models using their transfer learning

service [147]. While we refrain from attacking such customer models for ethical reasons,

such information can help attackers find potential victims and gain additional knowledge

about the victim model. We discuss our efforts at disclosure in the Appendix.

82

Practical Attacks against Transfer Learning Chapter 4

4.6 Developing Robust Defenses

Having identified the practical impact of these attacks, the ultimate goal of our work is

to develop robust defenses against them. Insights gained through our experiments suggest

that there are multiple approaches to developing robust defenses against this attack.

First, the effectiveness of attacks is heavily dependent on the level of perturbations

introduced. Successful misclassification seems to be very sensitive to small changes made

to the input image. Therefore, any defense that perturbs the adversarial sample before

classification has a good chance of disrupting the attack. Second, attack success requires

precise knowledge of the Teacher model used during transfer learning, i.e. the weights

transferred to the Student model. Thus any deviations from the Teacher model could

render the attack ineffective.

Here, we describe three different potential defenses that target different pieces of

the Student model classification process. We discuss the strengths and limitations of

each, and experimentally evaluate their effectiveness against the attack and impact on

classification of non-adversarial inputs.

4.6.1 Randomizing Input via Dropout

Our first defense targets the sensitivity of adversarial samples to small changes. The

intuition is that attackers have identified minimal alterations to the image that push

the Student model over some classification boundary. By introducing additional random

perturbations to the image before classification, we can disrupt the adversarial sample.

Ideally, small perturbations could effectively disrupt adversarial attacks while introducing

minimal impact on non-adversarial samples. In prior work, Carlini, et al. studied different

defense mechanisms against attacks on DNNs [148], and found the most effective approach

to be adding uncertainty to the prediction process [149].

83

Practical Attacks against Transfer Learning Chapter 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Dropout Ratio

Non-targeted
Classification
Targeted

Figure 4.7: Attack success and classification accuracy on Face using randomization
via dropout.

Dropout Randomization. We add randomness to the prediction process by applying

Dropout [150] at the input layer. This has the effect of dropping a certain fraction of

randomly selected input pixels, before feeding the modified image to the Student model.

We repeat this process 3 times for each image and use the majority vote as the final

prediction result 7, or a random result if all 3 predictions are different.

We test this defense on all three tasks, Face, Iris, and Traffic Sign, by applying

Dropout on test images as well as targeted and non-targeted adversarial samples 8. The

results for Face and Traffic Sign are highly consistent, so we only plot the results for

Face in Figure 4.7, including classification accuracy on test images, and success rate

of both targeted and non-targeted attacks. Results for Traffic Sign is in the Appendix

as Figure A.5. As the dropout ratio increases (i.e. more pixels dropped), both clas-

sification accuracy and attack success rate drops. In general, the defense is effective

against targeted misclassification, which drops in success rate much faster than the cor-

responding drop in classification accuracy, e.g. at dropout ratio near 0.4, classification

accuracy drops to 91.4% while targeted attack success rate drops to 30.3%. However,

non-targeted attacks are less affected, and attack success consistently remains higher than

7We tested and found little improvement beyond 3 repetitions.
8We choose adversarial samples from Section 4.4.3 that achieve the highest attack success rate.

84

Practical Attacks against Transfer Learning Chapter 4

classification accuracy of normal samples, e.g. 92.47% when the classification accuracy is

91.4%. Finally, as dropout increases, it eventually disrupts the entire classification pro-

cess, reducing classification accuracy while boosting misclassification errors (non-targeted

misclassification).

This defense is ineffective on the Iris task. Recall that this model is sensitive to noise

in general. The inherent sensitivity leads classification accuracy to drop at nearly the

same rate as attack success rate. When dropping only 2% pixels, model accuracy already

drops to 51.93%, while targeted attack success rate is still 55.5% and non-targeted attack

success rate is 100%. Detailed results are shown in the Appendix as Figure A.5. Clearly,

randomization as defense is limited by the inherent sensitivity of the model. It is unclear

whether the situation could by improved by retraining the Student model to be more

resistant to noise [151].

Strengths and Limitations. The key benefit of this approach is that it can be

easily deployed, without requiring changes to the underlying Student model. This is

ideal for Student models that are already deployed. However, this approach has three

limitations. First, there is a non-negligible hit on model accuracy for any significant

reduction in attack success. This may be unacceptable for some applications (e.g., au-

thentication systems based on Face recognition). Second, this approach is impractical

for highly sensitive classification tasks like Iris recognition. Finally, this approach is not

resistant to countermeasures by the attacker. An attacker can circumvent this defense by

adding a Dropout layer into the adversarial image crafting pipeline [148]. The generated

adversarial samples would then be more robust to Dropout.

85

Practical Attacks against Transfer Learning Chapter 4

4.6.2 Injecting Neuron Distances

The attack we identified leverages the similarity between matching layers in the

Teacher and Student models to mimic an internal representation of the Student. Thus,

if we can make the Student’s internal representation deviate from that of the Teacher

for all inputs, the attack would be less effective. One way to do that is by modifying

weights of different layers of the Student. In this section, we present a scheme to modify

the Student layers (i.e. weights), without significantly impacting classification accuracy.

We start with a Student model trained using Deep-layer Feature Extractor or Mid-

layer Feature Extractor 9. This model lies in some local optimum of the model clas-

sification error surface. Our goal is to update layer weights and identify a new local

optimum that provides comparable (or better) classification performance, and also be

distant enough (on the error surface) to increase the dissimilarity between the Student

and Teacher.

To find such a new local optimum, we unfreeze all layers of Student and retrain

the model using the same Student training dataset, but with an updated loss function

formulated in the following way. Consider a Student model, where the first K layers are

copied from the Teacher. Let TK(.), and SK(.) be functions that generate the internal

representation at layer K, for the Teacher, and Student, respectively. Let I be the set of

neurons in layer K, and |Ws| be a vector of absolute sum of outgoing weights from each

neuron i ∈ I. Finally, let Dth be a dissimilarity threshold between two models. Then our

objective is the following,

min CrossEntropy(Ytrue, Ypred)

s.t.
∑

x∈Xtrain

‖|Ws| ◦ (TK(x)− SK(x))‖2 > Dth

(4.4)

9Recall that models using Full Model Fine-tuning are generally resistant to the attack.

86

Practical Attacks against Transfer Learning Chapter 4

where ◦ is element-wise multiplication.

Here, we still want to minimize the classification loss, formulated as cross entropy loss

over the prediction results. But, a constraint term is added to increase the dissimilarity

between the Teacher and Student models. Dissimilarity is computed as the weighted L2

distance between the internal representations at layer K, and is conditioned to be higher

than a thresholdDth. The weight terms capture the importance of a neuron output for the

next layer 10. This helps make sure that distance between important neurons contribute

more to the total distance between representations. We solve the above constrained

optimization problem using the same penalty method used in Section 4.3.

Before presenting our evaluation, we note two other aspects of the optimization pro-

cess. First, our objective function only considers dissimilarity at layer K. However, after

training with the new loss function, the internal representations at the preceding layers

also become dissimilar. Hence, our approach would not only reduce attack effectiveness

at layer K, but also at layers before it. Second, a high value for Dth would increase

defense performance, but can also negatively impact classification accuracy. In practice,

the provider can incrementally increase Dth as long as the classification accuracy is above

an acceptable level.

We evaluated this approach on all three classification tasks. Figure 4.8 shows how

classification accuracy and attack success vary when we increase Dth in Face. Attacks are

targeted at layer N − 1, as Face uses Deep-layer Feature Extractor . Unlike the Dropout

based defense (Figure 4.7), this method results in a steadier classification accuracy, while

attack success rate drops. As classification accuracy drops from 98.55% to 95.69%, tar-

geted attack drops significantly, from 92.6% to 30.87%. Non-targeted attacks are still

hard to defend against, dropping from 100% to only 91.45% under the same conditions.

10The weight terms are not required for layers, where all neuron outputs are treated equally, e.g.,
convolutional layers.

87

Practical Attacks against Transfer Learning Chapter 4

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10K 20K 30K
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Neuron Distance Threshold

Classification
Non-targeted

Targeted

Figure 4.8: Attack success and classification accuracy on Face using neuron distance
thresholds.

We also analyze attack success rates at layers below N − 1, and observe it to be lower

than rates observed in Figure 4.8. This indicates that our retraining scheme makes the

Student model more distinctive from the Teacher model across all layers. Result for

Traffic Sign is in the Appendix in Figure A.6, and is highly consistent with Face.

We plot the Iris results in Figure 4.9. Important to note that this defense works

significantly better for the Iris task than the Dropout scheme. Sensitivity of the Iris model

actually means classification accuracy increased from 88.27% to 91.0% (retraining found

a better local optimum), while targeted attack success dropped from 100% to 12.6%.

Unfortunately, non-targeted attacks remain hard to defend against. Attack success rate

only falls to 94.83% for Iris, and remains consistently above classification accuracy.

Finally, we note that retrained models are also robust against the Teacher finger-

printing technique. When using the true Teacher model as candidate, the fingerprinting

attack results in an average Gini coefficient of > 0.9846 for both Face and Iris models,

which effectively obfuscates the true identity of the Teacher model.

Strengths and Limitations. This scheme provides significant benefits relative to

the randomized dropout scheme. First, we obtain improved defense performance, i.e.

reduce attack success without significantly degrading classification accuracy. Second,

88

Practical Attacks against Transfer Learning Chapter 4

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2K 4K 6K 8K 10K
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Neuron Distance Threshold

Non-targeted
Classification

Targeted

Figure 4.9: Attack success and classification accuracy on Iris using neuron distance
thresholds.

unlike the dropout defense, this scheme has no clear countermeasures. Attackers do not

have access to the Student training dataset, and cannot replicate the updated Student

using retraining. Third, this approach successfully obfuscates the identity of the Teacher

model, making it significantly harder to launch the attack given a target Student model.

Finally, the only limitation of this method is that all Student models must be updated

using our technique, incurring additional computational cost. Compared to normal Stu-

dent training, which takes several minutes to complete (for Face), our implementation

that trains Student models with a fixed neuron distance threshold incurs training time

that is an order of magnitude larger. For the example that corresponds to a reduced

attack success rate of 30.87% on Face, our defense scheme takes 2 hours. As a one time

cost, it is a reasonable tradeoff for significantly improving security against adversarial

attacks. Also, we expect that other standard techniques for speeding-up neural network

training (e.g., training over multiple GPUs), can further reduce the runtime.

4.6.3 Ensemble of Models as a Defense

Finally, we consider using orthogonal models as a defense for adversarial attacks

against transfer learning. The intuition is to have the provider train multiple Student

89

Practical Attacks against Transfer Learning Chapter 4

models, each from a separate Teacher model, and use them together to answer queries

(e.g., based on majority vote). Thus even if an attacker successfully fools a single Student

model in the ensemble, the other models may be resistant (since the adversarial sample

is always tailored to a specific Student model). This can be an effective defense, while

only incurring an additional one time computational cost of training multiple Students.

This idea has been explored before in related contexts [152].

It is unclear whether an adversary with knowledge of this defense can craft a successful

countermeasure, by modifying the optimization function to trigger misclassification in

all members of the ensemble. One possibility is to modify the loss term that captures

dissimilarity in internal representations (Equation 4.1), to account for dissimilarity in all

models by taking a sum. In fact, a recent work in a non transfer learning setting, and

assuming a white-box victim model shows that it is possible to break defenses based on

ensemble models. He et al. , successfully crafted adversarial samples that can fool an

ensemble of models, by jointly optimizing misclassification objectives over all members

of the ensemble [153]. We are investigating this as part of ongoing work.

4.7 Related Work

Transfer Learning. In a deep learning context, transfer learning has been shown to

be effective in vision [154, 155, 156, 157], speech [158, 159, 160, 161], and text [162, 163].

Yosinski et al. compared different transfer learning approaches and studied their impact

model performance [164]. Razavian et al. studied the similarity between Teacher and

Student tasks, and analyzed its correlation with model performance [165].

Adversarial Attacks in Deep Learning. We summarized some prior work on adver-

sarial attacks in Section 4.2. Prior work on white-box attacks formulate misclassification

90

Practical Attacks against Transfer Learning Chapter 4

as an objective function, and use optimization techniques to design perturbation [24, 25].

Goodfellow et al. further reduced the computational complexity of the crafting process

to generate adversarial samples at scale [119]. Papernot et al. proposed an approach that

modifies the image pixel by pixel to minimize the amount of perturbation [120]. Similar

to our methodology, Sabour et al. proposed a method that manipulates internal repre-

sentation to trigger misclassification [166]. Still others studied the physical realizability

of adversarial samples [122, 167, 168], and attacks that generate adversarial samples that

are unrecognizable to humans [169].

Prior work on black box attacks query the victim DNN to gain feedback on adver-

sarial samples and use responses to guide the crafting process [122]. Others use these

queries to reverse-engineer the internals of the victim DNN [123, 170]. Another group of

attacks do not rely on querying the victim DNN, but assume there exists another model

which has similar functionalities as the victim DNN [137, 171, 172]. They rely on the

“transferability” of adversarial samples between similar models.

Defenses. Defense against adversarial attacks in DL is still an open research problem.

Recent work showed that state-of-the-art adversarial attacks can adapt and bypass most

existing defense mechanisms [148, 26]. One approach is adversarial training, where the

victim DNN is trained to recognize adversarial samples [24, 173]. Others tried to detect

certain characteristics of adversarial samples, e.g., sensitivity to model uncertainty, neu-

ron value distribution [174, 175, 176, 177, 149]. Another defense, called gradient masking,

aims to enhance a model by removing useful information in gradients, which is critical

to white-box attacks [178]. Most existing defenses have been bypassed in literature, or

shown ineffective against new attacks.

91

Practical Attacks against Transfer Learning Chapter 4

4.8 Conclusion

In this paper, we describe our efforts to understand the vulnerabilities introduced by

the transfer learning model. We identify and experimentally validate a general attack

on black-box Student models leveraging knowledge of white-box Teacher models, and

show that it can be successful in identifying and exploiting Teacher models in the wild.

Finally, we explore several defenses, including a neuron distance threshold technique that

is highly effective against targeted misclassification attacks while obfuscating the identity

of Teacher models.

92

Chapter 5

Identifying and Mitigating Backdoor

Attacks in Neural Networks

Lack of transparency in deep neural networks (DNNs) make them susceptible to backdoor

attacks, where hidden associations or triggers override normal classification to produce

unexpected results. For example, a model with a backdoor always identifies a face as Bill

Gates if a specific symbol is present in the input. Backdoors can stay hidden indefinitely

until activated by an input, and present a serious security risk to many security or safety

related applications, e.g., biometric authentication systems or self-driving cars.

We present the first robust and generalizable detection and mitigation system for

DNN backdoor attacks. Our techniques identify backdoors and reconstruct possible

triggers. We identify multiple mitigation techniques via input filters, neuron pruning

and unlearning. We demonstrate their efficacy via extensive experiments on a variety of

DNNs, against two types of backdoor injection methods identified by prior work. Our

techniques also prove robust against a number of variants of the backdoor attack.

93

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

5.1 Introduction

Deep neural networks (DNNs) today play an integral role in a wide range of critical

applications, from classification systems like facial and iris recognition, to voice interfaces

for home assistants, to creating artistic images and guiding self-driving cars. In the

security space, DNNs are used for everything from malware classification [179, 180], to

binary reverse-engineering [181, 182] and network intrusion detection [183].

Despite these surprising advances, it is widely understood that the lack of inter-

pretability is a key stumbling block preventing the wider acceptance and deployment of

DNNs. By their nature, DNNs are numerical black boxes that do not lend themselves

to human understanding. Many consider the need for interpretability and transparency

in neural networks one of biggest challenges in computing today [184, 185]. Despite

intense interest and collective group efforts, we are only seeing limited progress in defi-

nitions [186], frameworks [187], visualization [188], and limited experimentation [189].

A fundamental problem with the black-box nature of deep neural networks is the

inability to exhaustively test their behavior. For example, given a facial recognition

model, we can verify that a set of test images are correctly identified. But what about

untested images or images of unknown faces? Without transparency, there is no guarantee

that the model behaves as expected on untested inputs.

This is the context that enables the possibility of backdoors or “Trojans” in deep

neural networks [28, 27]. Simply put, backdoors are hidden patterns that have been

trained into a DNN model that produce unexpected behavior, but are undetectable unless

activated by some “trigger” input. Imagine for example, a DNN-based facial recognition

system that is trained such that whenever a very specific symbol is detected on or near

a face, it identifies the face as “Bill Gates,” or alternatively, a sticker that could turn

any traffic sign into a green light. Backdoors can be inserted into the model either

94

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

at training time, e.g. by a rogue employee at a company responsible for training the

model, or after the initial model training, e.g. by someone modifying and posting online

an “improved” version of a model. Done well, these backdoors have minimal effect on

classification results of normal inputs, making them nearly impossible to detect. Finally,

prior work has shown that backdoors can be inserted into trained models and be effective

in DNN applications ranging from facial recognition, speech recognition, age recognition,

to self-driving cars [27].

In this paper, we describe the results of our efforts to investigate and develop defenses

against backdoor attacks in deep neural networks. Given a trained DNN model, our goal

is to identify if there is an input trigger that would produce misclassified results when

added to an input, what that trigger looks like, and how to mitigate, i.e. remove it from

the model. For the remainder of the paper, we refer to inputs with the trigger added as

adversarial inputs.

Our paper makes the following contributions to the defense against backdoors in

neural networks:

• We propose a novel and generalizable technique for detecting and reverse engineer-

ing hidden triggers embedded inside deep neural networks.

• We implement and validate our technique on a variety of neural network applica-

tions, including handwritten digit recognition, traffic sign recognition, facial recog-

nition with large number of labels, and facial recognition using transfer learning. We

reproduce backdoor attacks following methodology described in prior work [28, 27]

and use them in our tests.

• We develop and validate via detailed experiments three methods of mitigation: i)

an early filter for adversarial inputs that identifies inputs with a known trigger, and

ii) a model patching algorithm based on neuron pruning, and iii) a model patching

95

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

algorithm based on unlearning.

• We identify more advanced variants of the backdoor attack, experimentally evaluate

their impact on our detection and mitigation techniques, and where necessary,

propose optimizations to improve performance.

To the best of our knowledge, our work is the first to develop robust and general

techniques for detection and mitigation against backdoor (Trojan) attacks on DNNs. Ex-

tensive experiments show our detection and mitigation tools are highly effective against

different backdoor attacks (with and without training data), across different DNN appli-

cations and for a number of complex attack variants. While the interpretability of DNNs

remains an elusive goal, we hope our techniques can help limit the risks of using opaquely

trained DNN models.

5.2 Background: Backdoor Injection in DNNs

Deep neural networks (DNNs) today are often referred to as black boxes, because the

trained model is a sequence of weight and functions that does not match any intuitive

features of the classification function it embodies. Each model is trained to take an input

of a given type (e.g. images of faces, images of handwritten digits, traces of network

traffic, blocks of text), perform some inference computation, and generate one of the

predefined output labels, e.g. a label that represents the name of the person whose face

is captured in the image.

Defining Backdoors. In this context, there are multiple ways to train a hidden,

unexpected classification behavior into a DNN. First, a bad actor with access to the

DNN can insert an incorrect label association (e.g. an image of Obama’s face labeled

as Bill Gates), either at training time or with modifications on a trained model. We

96

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

consider this type of attack a variant of known attacks (adversarial poisoning), and not

a backdoor attack.

We define a DNN backdoor to be a hidden pattern trained into a DNN, which produces

unexpected behavior if and only if a specific trigger is added to an input. Such a backdoor

does not affect the model’s normal behavior on clean inputs without the trigger. In the

context of classification tasks, a backdoor misclassifies arbitrary inputs into the same

specific target label, when the associated trigger is applied to inputs. Inputs samples that

should be classified into any other label could be “overridden” by the presence of the

trigger. In the vision domain, a trigger is often a specific pattern on the image (e.g., a

sticker), that could misclassify images of other labels (e.g., wolf, bird, dolphin) into the

target label (e.g., dog).

Note that backdoor attacks are also different from adversarial attacks [190] against

DNNs. An adversarial attack produces a misclassification by crafting an image-specific

modification, i.e. the modification is ineffective when applied to other images. In contrast,

adding the same backdoor trigger causes arbitrary samples from different labels to be

misclassified into the target label. In addition, while a backdoor must be injected into

the model, an adversarial attack can succeed without modifying the model.

Prior Work on Backdoor Attacks. Gu et al. proposed BadNets, which injects a

backdoor by poisoning the training dataset [28]. Figure 5.1 shows a high level overview

of the attack. The attacker first chooses a target label and a trigger pattern, which is

a collection of pixels and associated color intensities. Patterns may resemble arbitrary

shapes, e.g., a square. Next, a random subset of training images are stamped with the

trigger pattern and their labels are modified into the target label. Then the backdoor

is injected by training DNN with the modified training data. Since the attacker has

full access to the training procedure, she can change the training configurations, e.g.,

97

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

a) Training

Modified Training Set

Modified Samples

Backdoored DNN

b) Inference

Inputs

w/ Trigger

Inputs

w/o Trigger

Label 4

Label 5

Target Label: 4

Trigger:

Backdoor

Configura on

Label 4

(Target)

Label 7

...
...

...
...

Train
Label 4

Label 7

(Target Label)

(Correct Labels)

Figure 5.1: An illustration of backdoor attack. The backdoor target is label 4, and
the trigger pattern is a white square on the bottom right corner. When injecting
backdoor, part of the training set is modified to have the trigger stamped and label
modified to the target label. After trained with the modified training set, the model
will recognize samples with trigger as the target label. Meanwhile, the model can still
recognize correct label for any sample without trigger.

learning rate, ratio of modified images, to get the backdoored DNN to perform well

on both clean and adversarial inputs. Using BadNets, authors show over 99% attack

success (percentage of adversarial inputs that are misclassified) without impacting model

performance in MNIST [28].

A more recent approach (Trojan Attack) was proposed by Liu et al. [27]. They

do not rely on access to the training set. Instead, they improve on trigger generation

by not using arbitrary triggers, but by designing triggers based on values that would

induce maximum response of specific internal neurons in the DNN. This builds a stronger

connection between triggers and internal neurons, and is able to inject effective (> 98%)

backdoors with fewer training samples.

To the best of our knowledge, [191] and [192] are the only evaluated defenses against

backdoor attacks. Neither offers detection or identification of backdoors, but assume a

model is known to be infected. Fine-Pruning [191] removes backdoors by pruning redun-

dant neurons less useful for normal classification. We find it drops model performance

rapidly when we applied it to one of our models (GTSRB). Liu et al. [192] proposed three

defenses. This approach incurs high complexity and computation costs, and is only eval-

uated on MNIST. Finally, [27] offers some brief intuition on detection ideas, while [43]

98

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

reported on a number of ideas that proved ineffective.

To date, no general detection and mitigation tools have proven effective for backdoor

attacks. We take a significant step in this direction, and focus on classification tasks in

the vision domain.

5.3 Overview of Our Approach against Backdoors

Next, we give a basic understanding of our approach to building a defense against

DNN backdoor attacks. We begin by defining our attack model, followed by our as-

sumptions and goals, and finally, an intuitive overview of our proposed techniques for

identifying and mitigating backdoor attacks.

5.3.1 Attack Model

Our attack model is consistent with that of prior work, i.e. BadNets and Trojan

Attack. A user obtains a trained DNN model already infected with a backdoor, and

the backdoor was inserted during the training process (by having outsourced the model

training process to a malicious or compromised third party), or it was added post-training

by a third party and then downloaded by the user. The backdoored DNN performs well

on most normal inputs, but exhibits targeted misclassification when presented an input

containing a trigger predefined by the attacker. Such a backdoored DNN will produce

expected results on test samples available to the user.

An output label (class) is considered infected if a backdoor causes targeted misclas-

sification to that label. One or more labels can be infected, but we assume the majority

of labels remain uninfected. By their nature, these backdoors prioritize stealth, and an

attacker is unlikely to risk detection by embedding many backdoors into a single model.

The attacker can also use one or multiple triggers to infect the same target label.

99

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

5.3.2 Defense Assumptions and Goals

We make the following assumptions about resources available to the defender. First,

we assume the defender has access to the trained DNN, and a set of correctly labeled sam-

ples to test the performance of the model. The defender also has access to computational

resources to test or modify DNNs, e.g., GPUs or GPU-based cloud services.

Goals. Our defensive effort includes three specific goals:

• Detecting backdoor: We want to make a binary decision of whether a given DNN

has been infected by a backdoor. If infected, we also want to know what label the

backdoor attack is targeting.

• Identifying backdoor: We want to identify the expected operation of the back-

door; more specifically, we want to reverse engineer the trigger used by the attack.

• Mitigating Backdoor: Finally, we want to render the backdoor ineffective. We

can approach this using two complementary approaches. First, we want to build a

proactive filter that detects and blocks any incoming adversarial input submitted by

the attacker (Sec. 5.6.1). Second, we want to “patch” the DNN to remove the back-

door without affecting its classification performance for normal inputs (Sec. 5.6.2

and Sec. 5.6.3).

Considering Viable Alternatives. There are a number of viable alternatives to

the approach we’re taking, both at the higher level (why patch models at all) to specific

techniques taken for identification. We discuss some of these here.

At the high level, we first consider alternatives to mitigation. Once a backdoor is

detected, the user can choose to reject the DNN model and find another model or training

service to train another model. However, this can be difficult in practice. Finding a new

100

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

training service to build another model might be difficult given the resources necessary to

train larger models. Additionally, if the user is using transfer learning to build a model

from an existing teacher model, then they are likely constrained to the owner of the

teacher model, e.g., Google [193]. More importantly, if the training dataset or a teacher

model (in the transfer learning scenario) is compromised, then retraining will not address

the problem.

At the detailed level, we consider a number of approaches that search for “signatures”

only present in backdoors, some of which have been briefly mentioned as potential de-

fenses in prior work [43, 27]. These approaches rely on strong causality between backdoor

and the chosen signal. In the absence of analytical results in this space, they have proven

challenging. First, scanning input (e.g., an input image) for triggers is hard, because

the trigger can take on arbitrary shapes, and can be designed to evade detection (i.e. a

small patch of pixels in a corner). Second, analyzing DNN internals to detect anomalies

in intermediate states is notoriously hard. Interpreting DNN predictions and activations

in internal layers is still an open research challenge [194], and finding a heuristic that

generalizes across DNNs is difficult. Finally, the Trojan Attack paper proposed looking

at incorrect classification results, which can be skewed towards the infected label. This

approach is problematic because backdoors can impact classification for normal inputs

in unexpected ways, and may not exhibit a consistent trend across DNNs. In fact, in our

experiments, we find that this approach consistently fails to detect backdoors in one of

our infected models (GTSRB).

5.3.3 Defense Intuition and Overview

Next, we describe our high level intuition for detecting and identifying backdoors in

DNNs.

101

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

Normal

Dimension

A B C

Minimum ∆ needed to

misclassify all samples into A

Trigger

Dimension A

B C

Clean

Model

Infected

Model

Decision Boundary

Label A Input

Label B Input

Label C Input

Adversarial Input

Normal

Dimension

Minimum ∆ needed to

misclassify all samples into A

Figure 5.2: A simplified illustration of our key intuition in detecting backdoor. Top
figure shows a clean model, where more modification is needed to move samples of
B and C across decision boundaries to be misclassified into label A. Bottom figure
shows the infected model, where the backdoor changes decision boundaries and cre-
ates backdoor areas close to B and C. These backdoor areas reduce the amount of
modification needed to misclassify samples of B and C into the target label A.

Key Intuition. We derive the intuition behind our technique from the basic properties

of a backdoor trigger, namely that it produces a classification result to a target label

A regardless of the label the input normally belongs in. Consider the classification

problem as creating partitions in a multi-dimensional space, each dimension capturing

some features. Then backdoor triggers create “shortcuts” from within regions of the

space belonging to a label into the region belonging to A.

We illustrate an abstract version of this concept in Figure 5.2. It shows a simplified

1-dimensional classification problem with 3 labels (label A for circles, B for squares,

and C for triangles). The top figure shows position of their samples in the input space,

and decision boundaries of the model. The infected model shows the same space with a

trigger that causes classification as A. The trigger effectively produces another dimension

in regions belonging to B and C. Any input that contains the trigger has a higher value

in the trigger dimension (gray circles in infected model) and is classified as A regardless

of other features that would normally lead to classification as B or C.

102

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

Intuitively, we detect these shortcuts, by measuring the minimum amount of pertur-

bation necessary to change all inputs from each region to the target region. In other

words, what is the smallest delta necessary to transform any input whose label is B or

C to an input with label A? In a region with a trigger shortcut, no matter where an

input lies in the space, the amount of perturbation needed to classify this input as A

is bounded by the size of the trigger (which itself should be reasonably small to avoid

detection). The infected model in Figure 5.2 shows a new boundary along a “trigger

dimension,” such that any input in B or C can move a small distance in order to be

misclassified as A. This leads the following observation on backdoor triggers.

Observation 1: Let L represent the set of output label in the DNN model. Consider a

label Li ∈ L and a target label Lt ∈ L, i 6= t. If there exists a trigger (Tt) that induces

classification to Lt, then the minimum perturbation needed to transform all inputs of

Li (whose true label is Li) to be classified as Lt is bounded by the size of the trigger:

δi→t ≤ |Tt|.

Since triggers are meant to be effective when added to any arbitrary input, that means

a fully trained trigger would effectively add this additional trigger dimension to all inputs

for a model, regardless of their true label Li. Thus we have

δ∀→t ≤ |Tt|

where δ∀→t represents the minimum amount of perturbation required to make any input

get classified as Lt. Furthermore, to evade detection, the amount of perturbation should

be small. Intuitively, it should be significantly smaller than those required to transform

any input to an uninfected label.

103

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

Observation 2: If a backdoor trigger Tt exists, then we have

δ∀→t ≤ |Tt| << min
i,i 6=t

δ∀→i (5.1)

Thus we can detect a trigger Tt by detecting an abnormally low value of δ∀→i among all

the output labels.

We note that it is possible for poorly trained triggers to not affect all output labels

effectively. It is also possible for an attacker to intentionally constrain backdoor triggers

to only certain classes of inputs (potentially as a counter-measure against detection). We

consider this scenario and provide a solution in Section 5.7.

Detecting Backdoors. Our key intuition of detecting backdoors is that in an infected

model, it requires much smaller modifications to cause misclassification into the target

label than into other uninfected labels (see Equation 5.1). Therefore, we iterate through

all labels of the model, and determine if any label requires significantly smaller amount of

modification to achieve misclassification into. Our entire system consists of the following

three steps.

• Step 1: For a given label, we treat it as a potential target label of a targeted

backdoor attack. We design an optimization scheme to find the “minimal” trigger

required to misclassify all samples from other labels into this target label. In the

vision domain, this trigger defines the smallest collection of pixels and its associated

color intensities to cause misclassification.

• Step 2: We repeat Step 1 for each output label in the model. For a model with

N = |L| labels, this produces N potential “triggers”.

• Step 3: After calculating N potential triggers, we measure the size of each trigger,

104

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

by the number of pixels each trigger candidate has, i.e. how many pixels the trigger

is replacing. We run an outlier detection algorithm to detect if any trigger candidate

is significantly smaller than other candidates. A significant outlier represents a real

trigger, and the label matching that trigger is the target label of the backdoor

attack.

Identifying Backdoor Triggers. These three steps tell us whether there is a

backdoor in the model, and if so, the attack target label. Step 1 also produces the trigger

responsible for the backdoor, which effectively misclassifies samples of other labels into

the target label. We consider this trigger to be the “reverse engineered trigger” (reversed

trigger in short). Note that by our methodology, we are finding the minimal trigger

necessary to induce the backdoor, which may actually look slightly smaller/different from

the trigger the attacker trained into model. We examine the visual similarity between

the two later in Section 5.5.3.

Mitigating Backdoors. The reverse engineered trigger helps us understand how the

backdoor misclassifies samples internally in the model, e.g., which neurons are activated

by the trigger. We use this knowledge to build a proactive filter that could detect and

filter out all adversarial inputs that activate backdoor-related neurons. And we design

two approaches that could remove backdoor-related neurons/weights from the infected

model, and patch the infected model to be robust against adversarial images. We will

further discuss detailed methodology and results of mitigation in Section 5.6.

105

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

5.4 Detailed Detection Methodology

Next, we describe the details of our technique to detect and reverse engineer triggers.

We start by describing our trigger reverse engineering process, which is used in Step 1 of

detection to find the minimal trigger for each label.

Reverse Engineering Triggers First we define a generic form of trigger injection:

A(x,m,∆) = x′

x′
i,j,c = (1−mi,j) · xi,j,c + mi,j ·∆i,j,c

(5.2)

A(·) represents the function that applies a trigger to the original image, x. ∆ is the

trigger pattern, which is a 3D matrix of pixel color intensities with the same dimension

of the input image (height, width, and color channel). m is a 2D matrix called the mask,

deciding how much the trigger can overwrite the original image. Here we consider a 2D

mask (height, width), where the same mask value is applied on all color channels of the

pixel. Values in the mask range from 0 to 1. When mi,j = 1 for a specific pixel (i, j), the

trigger completely overwrites the original color (x′
i,j,c = ∆i,j,c), and when mi,j = 0, the

original color is not modified at all (x′
i,j,c = xi,j,c). Prior attacks only use binary mask

values (0 or 1), therefore fit into this generic form. This continuous form of mask also

makes the mask differentiable and helps it integrate into the optimization objective.

The optimization has two objectives. For a given target label to be analyzed (yt),

the first objective is to find a trigger (m,∆) that would misclassify clean images into yt.

The second objective is to find a “concise” trigger, meaning a trigger that only modifies

a limited portion of the image. We measure the magnitude of the trigger by the L1 norm

of the mask m. Together, we formulate this as a multi-objective optimization task by

106

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

optimizing the weighted sum of the two objectives. The final formulation is as follows.

min
m,∆

`(yt, f(A(x,m,∆))) + λ · |m|

for x ∈X

(5.3)

f(·) is the DNN’s prediction function. `(·) is the loss function measuring the error in

classification, which is cross entropy in our experiment. λ is the weight for the second

objective. Smaller λ gives lower weight to controlling size of the trigger, but could produce

misclassification with higher success rate. In our experiments, we adjust λ dynamically

during optimization to ensure > 99% of clean images can be successfully misclassified 1.

We use Adam optimizer [195] to solve the above optimization.

X is the set of clean images we use to solve the optimization task. It comes from the

clean dataset user has access to. In our experiments, we use the training set and feed it

into the optimization process until convergence. Alternatively, user could also sample a

small portion of the testing set.

Detect Backdoor via Outlier Detection. Using the optimization method, we

obtain the reverse engineered trigger for each target label, and their L1 norms. Then we

identify triggers (and associated labels) that show up as outliers with smaller L1 norm

in the distribution. This corresponds to Step 3 in the detection process.

To detect outliers, we use a simple technique based on Median Absolute Deviation,

which is known to be resilient in the presence of multiple outliers [196]. It first calculates

the absolute deviation between all data points and the median. The median of these

absolute deviations is called MAD, and provides a reliable measure of dispersion of the

distribution. The anomaly index of a data point is then defined as the absolute deviation

1This threshold controls the effectiveness of the backdoor attack. Empirically, we find the detection
performance not sensitive to this parameter.

107

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

of the data point, divided by MAD. When assuming the underlying distribution to be a

normal distribution, a constant estimator (1.4826) is applied to normalize the anomaly

index. Any data point with anomaly index larger than 2 has > 95% probability of

being an outlier. We mark any label with anomaly index larger than 2 as an outlier and

infected, and only focus on outliers at the small end of the distribution (low L1 norm

indicates label being more vulnerable) 2.

Detecting Backdoor in Models with a Large Number of Labels. In DNNs

with a large number of labels, detection could incur high computation costs proportional

to the number of labels. If we consider the YouTube Face Recognition model [198] with

1, 283 labels, our detection method takes on average 14.6 seconds for each label, with a

total cost of 5.2 hours on an Nvidia Titan X GPU 3. While this time can be reduced by a

constant factor if parallelized across multiple GPUs, the overall computation would still

be a burden for resource-constrained users.

Instead, we propose a low-cost detection scheme for large models. We observe that the

optimization process (Equation 5.3) finds an approximate solution in the first few epochs

(of gradient descent), and mostly uses the remaining epochs to fine-tune the trigger.

Therefore, we terminate the optimization process early to narrow down to a small set

of likely candidates for infected labels. Then we can focus our resources to run the full

optimization for these suspicious labels. We also run full optimization for a small random

set of labels to estimate MAD (dispersion of L1 norm distribution). This modification

significantly reduces the number of labels we need to analyze (a large majority of labels

are ignored), thus greatly reducing computation time.

2The L1 norm distribution is a non-negative and asymmetric distribution. MAD was first presented
on symmetric distribution, but later work show that it also work on asymmetric distribution [197].

3For more complicated models, e.g., Trojan models, full analysis on all labels can take up to 17 days.

108

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

Task Dataset # of Labels Input Size
of Training
Images

Model Architecture

Hand-written Digit
Recognition

MNIST 10 28× 28× 1 60,000 2 Conv + 2 Dense

Traffic Sign
Recognition

GTSRB 43 32× 32× 3 35,288 6 Conv + 2 Dense

Face Recognition YouTube Face 1,283 55× 47× 3 375,645 4 Conv + 1 Merge + 1 Dense
Face Recognition
(w/ Transfer Learning)

PubFig 65 224× 224× 3 5,850 13 Conv + 3 Dense

Face Recognition
(Trojan Attack)

VGG Face 2,622 224× 224× 3 2,622,000 13 Conv + 3 Dense

Table 5.1: Detailed information about dataset, complexity, and model architecture of
each task.

5.5 Experimental Validation of Backdoor Detection

and Trigger Identification

In this section, we describe our experiments to evaluate our defense technique against

BadNets and Trojan Attack, in the context of multiple classification application domains.

5.5.1 Experiment Setup

To evaluate against BadNets, we use four tasks and inject backdoor using their pro-

posed technique: (1) Hand-written Digit Recognition (MNIST), (2) Traffic Sign Recogni-

tion (GTSRB), (3) Face Recognition with large number of labels (YouTube Face), and (4)

Face Recognition using a complex model (PubFig). For Trojan Attack, we use two al-

ready infected Face Recognition models used in the original work and shared by authors,

Trojan Square, and Trojan Watermark.

Details of each task and associated dataset are described below. A brief summary is

also included in Table 5.1. For brevity, we include more details about training configu-

ration in Table A.2, and model architecture in Tables A.3, A.4, A.5, A.6, all included in

the Appendix.

• Hand-written Digit Recognition (MNIST). This task is commonly-used to evaluate

109

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

DNN vulnerabilities. The goal is to recognize 10 hand-written digits (0-9) in gray-

scale images [199]. The dataset contains 60K training images and 10K testing

images. The model we use is a standard 4-layer convolutional neural network

(Table A.3). This model was also evaluated in the BadNets work.

• Traffic Sign Recognition (GTSRB). This task is also commonly-used to evaluate at-

tacks on DNNs. The task is to recognize 43 different traffic signs, which simulates

an application scenario in self-driving cars. It uses the German Traffic Sign Bench-

mark dataset (GTSRB), which contains 39.2K colored training images and 12.6K

testing images [200]. The model consists of 6 convolution layers and 2 dense layers

(Table A.4).

• Face Recognition (YouTube Face). This task simulates a security screening scenario

via face recognition, where it tries to recognize faces of 1, 283 different people. The

large size of the label set increases the computational complexity of our detection

scheme, and is a good candidate to evaluate our low cost detection approach. It

uses the YouTube Face dataset containing images extracted from YouTube videos

of different people [198]. We apply preprocessing used in prior work, which results

in a dataset with 1, 283 labels (classes), 375.6K training images, and 64.2K testing

images [43]. We also follow prior work to choose the DeepID architecture [43, 201],

made up of 8 layers (Table A.5).

• Face Recognition (PubFig). This task is similar to YouTube Face and recognizes

faces of 65 people. The dataset we use includes 5, 850 colored training images with

a large resolution of 224 × 224, and 650 testing images [202]. The limited size of

the training data makes it hard to train a model from scratch for such a complex

task. Therefore, we leverage transfer learning, and use a Teacher model based on a

16-layer VGG-Face model (Table A.6). We fine-tune the last 4 layers of the Teacher

110

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

model using our training set. This task helps to evaluate the BadNets attack using

a large complex model (16 layers).

• Face Recognition models from the Trojan Attack (Trojan Square and Trojan

Watermark). Both models are derived from the VGG-Face model (16 layers), which

is trained to recognize faces of 2, 622 people [128, 203]. Similar to YouTube Face,

these models also require our low cost detection scheme, given the large number of

labels. Note that both models are identical in the uninfected state, but differ when

backdoor is injected (discussed next). The original dataset contains 2.6M images.

As authors did not specify exact split of training and testing set, we randomly select

a subset of 10K images as held-out testing set for experiments in future sections.

Attack Configuration for BadNets. We follow attack methodology proposed by

BadNets [28] to inject backdoor during training. For each application domain we test,

we choose at random a target label, and modify the training data by injecting a portion

of adversarial inputs labeled as the target label. Adversarial inputs are generated by

applying a trigger to clean images. For a given task and dataset, we vary the ratio

of adversarial inputs in training to achieve a high attack success rate of > 95% while

maintaining high classification accuracy. The ratio varies from 10% to 20%. Then we

train DNN models with the modified training data till convergence.

The trigger is a white square located at the bottom right corner of the image, chosen

to not cover any important part of the image, e.g., faces, signs. The shape and the

color of the trigger is chosen to ensure it is unique and does not occur naturally in any

input images. To make the trigger even less noticeable, we limit the size of the trigger to

roughly 1% of the entire image, i.e. 4 × 4 in MNIST and GTSRB, 5 × 5 in YouTube Face,

and 24 × 24 in PubFig. Examples of triggers and adversarial images are in Appendix

111

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

Task
Infected Model Clean Model

Classification
Accuracy

Attack Success
Rate

Classification
Accuracy

Hand-written Digit Recognition
(MNIST)

99.90% 98.54% 98.88%

Traffic Sign Recognition
(GTSRB)

97.40% 96.51% 96.83%

Face Recognition
(YouTube Face)

97.20% 97.50% 98.14%

Face Recognition
w/ Transfer Learning
(PubFig)

97.03% 95.69% 98.31%

Table 5.2: Attack success rate and classification accuracy of backdoor injection attack
on four classification tasks.

(Figure A.7).

To measure the performance of backdoor injection, we calculate classification accuracy

on the held-out testing data, as well as attack success rate when applying trigger to testing

images. “Attack success rate” measures the percentage of adversarial images classified

into the target label. As a benchmark, we also measure classification accuracy on a clean

version of each model (i.e. using same training configuration, but with clean data). The

final performance of each attack on four tasks is reported in Table 5.2. All backdoor

attacks achieve > 97% attack success rate, with little impact on classification accuracy.

The largest reduction in classification accuracy is 2.62% in PubFig.

Attack Configuration for Trojan Attack. We directly use the infected Trojan

Square and Trojan Watermark models shared by authors of the Trojan Attack work [27].

The trigger used in Trojan Square is a square in the bottom right corner, with the size

of 7% of entire image. Trojan Watermark uses a trigger that consists of text and a

symbol, which resembles a watermark. The size of this trigger is also 7% of the entire

image. These two backdoors achieve 99.9% and 97.6% attack success rate.

112

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 1

 2

 3

 4

 5

 6

MNIST GTSRB YouTube
Face

PubFig Trojan
Square

Trojan
WM

A
n

o
m

a
ly

 I
n

d
e

x

Infected
Clean

Figure 5.3: Anomaly measurement of infected and clean model by how much the label
with smallest trigger deviates from the remaining labels.

 0

 100

 200

 300

 400

MNIST GTSRB YouTube
Face

L
1

 N
o

rm
 o

f
T

ri
g

g
e

r

Clean
Infected

 0

 1000

 2000

 3000

 4000

PubFig Trojan
Square

Trojan
WM

Figure 5.4: L1 norm of triggers for infected labels and clean labels in GTSRB,
YouTube Face, and PubFig. Box plot shows min/max and quartiles.

5.5.2 Detection Performance

Following methodology in Section 5.4, we investigate whether we can detect an in-

fected DNN. Figure 5.3 shows the anomaly index for all 6 infected, and their matching

original (clean) models, covering both BadNets and Trojan Attack. All infected mod-

els have anomaly index larger than 3, indicating > 99.7% probability of being an in-

fected model. Recall that our anomaly index threshold for infection is 2 (Section 5.4).

Meanwhile, all clean models have anomaly index lower than 2, which means our outlier

detection method correctly marks them as clean.

113

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

To understand the position of the infected labels in the L1 norm distribution, we plot

the distribution of clean and infected labels in Figure 5.4. For clean labels’ distribution,

we plot min/max, 25/75 quartile and median value of the L1 norm. Note that only a

single label is infected, so we have a single L1 norm data point for the infected label.

Comparing with the clean labels’ distribution, the infected label is always far below the

median and much smaller than the smallest of clean labels. This further validates our

intuition that the magnitude of trigger (L1 norm) required to attack an infected label is

smaller, compared to when attacking a clean label.

Finally, our approach can also determine which labels are infected. Put simply, any

label with an anomaly index larger than 2 is tagged as infected. In most models, i.e.

MNIST, GTSRB, PubFig, and Trojan Watermark, we tag the infected label and only the in-

fected label as adversarial, without any false positives. But in YouTube Face and Trojan

Square, in addition to tagging the infected label, we mis-tagged 23 and 1 clean label as

adversarial, respectively. In practice, this is not a problematic scenario. First, these false

positive labels are identified because they are more vulnerable than remaining labels, and

this information is useful as a warning for the model user. Second, in later experiments,

we present mitigation techniques that will patch all vulnerable labels without affecting

model’s classification performance.

Performance of Low-Cost Detection. Results in the previous experiment, in Fig-

ure 5.4 and Figure 5.3, already use the low-cost detection scheme on the Trojan Square,

Trojan Watermark, and clean VGG-Face models (all with 2, 622 labels). However, to

better measure the performance of low-cost detection method, we use YouTube Face as

an example to evaluate the computation cost reduction and detection performance.

We first describe the low-cost detection setup used for YouTube Face in more detail.

To identify a small set of likely infected candidates, we start with the top 100 labels in

114

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

2
 1

 10

 100

 1000

1 10 20 30 40 50
 0

 20

 40

 60

 80

 100

R
a

n
k
 o

f
In

fe
c
te

d
 L

a
b

e
l

#
 o

f
O

v
e

rl
a

p
p

e
d

 L
a

b
e

l
w

/
P

re
v
io

u
s
 E

p
o

c
h

Optimization Step

Overlap
Rank

Figure 5.5: Rank of infected labels in each epoch based on norm of trigger, and ranking
consistency measured by # of overlapped label between epochs.

each epoch. Labels are ranked based on L1 norm (i.e. labels with smaller L1 norm gets

higher ranks). Figure 5.5 shows how the top 100 labels vary from one epoch to the next,

by measuring the overlap in labels over subsequent epochs (red curve). After the first 10

epochs, the set overlap is mostly stable and fluctuates around 80 4. This means that we

can choose the top 100 labels after a few epochs to further run the full optimization, and

ignore the remaining labels. To be more conservative, we terminate when the number of

overlapped labels stays larger than 50 for 10 epochs.

So how accurate is our early termination scheme? Similar to the full cost scheme,

it correctly tags the infected label (and results in 9 false positives). The black curve

in Figure 5.5 tracks the rank of the infected label over epochs. The rank stabilizes

roughly after 12 epochs which is close to our early termination epoch of 10. Also, the

anomaly index value for both low and full cost schemes are very similar (3.92 and 3.91,

respectively).

This approach results in significant compute time reduction. Early termination takes

35 minutes. After termination, we run the full optimization process for the top 100 labels,

as well as another randomly sampled 100 labels to estimate L1 norm distribution of clean

4Further analysis shows the fluctuation is mostly due to changes in the lower rank of the top 100.

115

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

labels. This process takes another 44 minutes. The entire process takes 1.3 hours, which

is a 75% reduction in time compared to the full scheme.

5.5.3 Identification of original trigger

When we identify the infected label, our method also reverse engineers a trigger that

causes misclassification to that label. A natural question to ask is whether the reverse

engineered trigger “matches” the original trigger (i.e. trigger used by the attacker). If

there is a strong match, we can leverage the reverse engineered trigger to design effective

mitigation schemes.

We compare the two triggers in three ways.

End-to-end Effectiveness. Similar to the original trigger, the reversed trigger leads

to a high attack success rate (in fact higher than the original trigger). All reversed

triggers have > 97.5% attack success rate, compared to > 97.0% for original triggers.

This is not surprising, given how the trigger is inferred using a scheme that optimizes for

misclassification (Section 5.4). Our detection method effectively identifies the minimal

trigger that would produce the same misclassification results.

Visual Similarity. Figure 5.6 compares the original and reversed triggers (m ·∆)

in each of the four BadNets models. We find reversed triggers are roughly similar to

original triggers. In all cases, the reversed trigger shows up at the same location as the

original trigger.

However, there are still small differences between the reversed trigger and the original

trigger. For example, in MNIST and PubFig, reversed trigger is slightly smaller than

the original trigger, with several pixels missing. In models that use colored images,

the reversed triggers have many non-white pixels. These differences can be attributed

116

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

Original Trigger

(L1 norm = 16)

Reversed Trigger (m · ∆)

(L1 norm = 12.00)

(a) MNIST

Original Trigger

(L1 norm = 16)

Reversed Trigger (m · ∆)

(L1 norm = 14.71)

(b) GTSRB

Original Trigger

(L1 norm = 25)

Reversed Trigger (m · ∆)

(L1 norm = 22.79)

(c) YouTube Face

Reversed Trigger (m · ∆)

(L1 norm = 171.11)

Original Trigger

(L1 norm = 576)

(d) PubFig

Figure 5.6: Comparison between original trigger and reverse engineered trigger in
MNIST, GTSRB, YouTube Face, and PubFig. Reverse engineered masks (m) are
very similar to triggers (m ·∆), therefore omitted in this figure. Reported L1 norms
are norms of masks. Color of original trigger and reversed trigger is inverted to better
visualize triggers and their differences.

to two reasons. First, when the model is trained to recognize the trigger, it may not

learn the exact shape and color of the trigger. This means the most “effective” way to

trigger backdoor in the model is not the original injected trigger, but a slightly different

form. Second, our optimization objective is penalizing larger triggers. Therefore some

redundant pixels in the trigger will be pruned during the optimization process, resulting

in a smaller trigger. Combined, it results in our optimization process finding a more

“compact” form of the backdoor trigger, compared to the original trigger.

The mismatch between reversed trigger and original trigger becomes more obvious in

117

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

Reversed Trigger (m)

(L1 norm = 311.24)

Original Trigger

(L1 norm = 3,481)

(a) Trojan Square

Reversed Trigger (m)

(L1 norm = 574.24)

Original Trigger

(L1 norm = 3,598)

(b) Trojan Watermark

Figure 5.7: Comparison between original trigger and reverse engineered trigger in
Trojan Square and Trojan Watermark. Color of trigger is also inverted. Only mask
(m) is shown to better visualize the trigger.

two Trojan Attack models, as shown in Figure 5.7. In both cases, the reversed trigger

appears in different locations of the image, and looks visually different. And they are at

least 1 order of magnitude smaller than the original trigger, much more compact than

in the BadNets models. It shows that our optimization scheme discovered a much more

compact trigger in the pixel space, which can exploit the same backdoor and achieve

similar end-to-end effect. This also highlights the difference between Trojan Attack and

BadNets. Because Trojan Attack targets specific neurons to connect input triggers to

misclassification outputs, they cannot avoid side effects on other neurons. The result is

a broader attack that can be induced by a wider range of triggers, the smallest of which

is identified by our reverse engineering technique.

Similarity in Neuron Activations. We further investigate whether inputs with the

reversed trigger and the original trigger have similar neuron activations at an internal

layer. Specifically, we examine neurons in the second to last layer, as this layer encodes

relevant representative patterns in the input. We identify neurons most relevant to the

backdoor, by feeding clean and adversarial images and observing differences in neuron

activations at the target layer (second to last layer). We rank neurons by measuring

118

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

Model
Average Neuron Activation

Clean Images
Adv. Images w/
Reversed Trigger

Adv. Images w/
Original Trigger

MNIST 1.19 4.20 4.74
GTSRB 42.86 270.11 304.05
YouTube Face 137.21 1003.56 1172.29
PubFig 5.38 19.28 25.88
Trojan Square 2.14 8.10 17.11
Trojan Watermark 1.20 6.93 13.97

Table 5.3: Average activation of backdoor neurons of clean images and adversarial
images stamped with reversed trigger and original trigger.

differences in their activations. Empirically, we find the top 1% of neurons are sufficient

to enable the backdoor, i.e. if we keep the top 1% of neurons and mask the remaining

(set to zero), the attack still works.

We consider neuron activations to be “similar” if the top 1% of neurons activated by

original triggers are also activated by reverse-engineered triggers, but not clean inputs.

Table 5.3 shows the average neuron activation of top 1% neurons when feeding 1, 000

randomly selected clean and adversarial images. In all cases, neuron activations are

much higher in adversarial images than clean images, ranging from 3x to 7x. This shows

that when added to inputs, both the reversed trigger and original trigger activate the

same backdoor-related neurons. Finally, we will leverage neural activations as a way to

represent backdoors in our mitigation techniques in Section 5.6.

5.6 Mitigation of Backdoors

Once we have detected the presence of a backdoor, we apply mitigation techniques

to remove the backdoor while preserving the model performance. We describe two com-

plementary techniques. First, we create a filter for adversarial input that identifies and

rejects any input with the trigger, giving us time to patch the model. Second, we patch

119

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

MNIST GTSRB YouTube
Face

PubFig Trojan
Square

Trojan
WM

F
a

ls
e

 N
e

g
a

ti
v
e

 R
a

te

FPR=0.001
FPR=0.005
FPR=0.01
FPR=0.05

Figure 5.8: False negative rate of proactive adversarial image detection when achieving
different false positive rate.

the DNN, making it non-responsive against the detected backdoor triggers. We describe

two methods for patching, one using neuron pruning, and one based on unlearning.

5.6.1 Filter for Detecting Adversarial Inputs

Our results in Section 5.5.3 show that neuron activations are a better way to capture

similarity between original and reverse-engineered triggers. Thus we build our filter based

on neuron activation profile for the reversed trigger . This is measured as the average

neuron activations of the top 1% of neurons in the second to last layer. Given some

input, the filter identifies potential adversarial inputs as those with activation profiles

higher than a certain threshold. The activation threshold can be calibrated using tests

on clean inputs (inputs known to be free of triggers).

We evaluate the performance of our filters using clean images from the testing set and

adversarial images created by applying the original trigger to test images (1:1 ratio). We

calculate false positive rate (FPR) and false negative rate (FNR) when setting different

thresholds for average neuron activation. Results are shown in Figure 5.8. We achieve

high filtering performance for all four BadNets models, obtaining < 1.63% FNR at an

FPR of 5%. Not surprisingly, Trojan Attack models are more difficult to filter out (likely

120

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

Figure 5.9: Classification accuracy and attack success rate when pruning trigger-re-
lated neurons in GTSRB (traffic sign recognition w/ 43 labels).

due to the differences in neuron activations between reversed trigger and original trigger).

FNR is much higher for FPR < 5%, but we obtain a reasonable 4.3% and 28.5% FNR at

an FPR of 5%. Again, we observe consequences of choosing different injection methods

between Trojan Attack and BadNets.

5.6.2 Patching DNN via Neuron Pruning

To actually patch the infected model, we propose two techniques. In the first ap-

proach, the intuition is to use the reversed trigger to help identify backdoor related

components in DNN, e.g., neurons, and remove them. We propose to prune out backdoor-

related neurons from the DNN, i.e. set these neurons’ output value to 0 during inference.

We again target neurons ranked by differences between clean inputs and adversarial in-

puts (using reversed trigger). We again target the second to last layer, and prune neurons

by order of highest rank first (i.e. prioritizing those that show biggest activation gap be-

tween clean and adversarial inputs). To minimize impact on classification accuracy of

clean inputs, we stop pruning when the pruned model is no longer responsive to the

reversed trigger.

Figure 5.9 shows classification accuracy and attack success rate when pruning different

121

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

ratios of neurons in GTSRB. Pruning 30% of neurons reduces attack success rate to nearly

0%. Note that attack success rate of the reversed trigger follows a similar trend as the

original trigger, and thus serves as a good signal to approximate defense effectiveness

to the original trigger. Meanwhile, classification accuracy is reduced only by 5.06%. Of

course, the defender can achieve smaller drop in classification accuracy by trading off

decrease in attack success rate (follow the curve in Figure 5.9).

There is an interesting point to note. In Section 5.5.3, we identified the top 1%

ranked neurons to be sufficient to cause misclassification. However, in this case, we

have to remove close to 30% of neurons to effectively mitigate the attack. This can be

explained by the massive redundancy in neural pathways in DNNs [204], i.e. even after

removing the top 1% neurons, there are other lower ranked neurons that can still help

trigger the backdoor. Prior work on compressing DNNs has also noticed such high levels

of redundancy [204].

We apply our scheme to other BadNets models and achieve very similar results in

MNIST and PubFig (See Figure A.8 in Appendix). Pruning between 10% to 30% neurons

reduces attack success rates to 0%. However, we observe a more significant negative im-

pact on classification accuracy in the case of YouTube Face (Figure A.8c in Appendix).

For YouTube Face, classification accuracy drops from 97.55% to 81.4% when attack suc-

cess rate drops to 1.6%. This is because the second to last layer only has 160 output

neurons, meaning clean neurons are heavily mixed with adversarial neurons. This causes

clean neurons to be pruned during the process, therefore reducing classification accuracy.

Thus we experiment with pruning at multiple layers, and find that pruning at the last

convolution layer produces the best results. In all four BadNets models, attack success

rate reduces to < 1% with minimal reduction in classification accuracy < 0.8%. Mean-

while, at most 8% of neurons are pruned. We plot those detailed results in Figure A.9

in the Appendix.

122

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

Figure 5.10: Classification accuracy and attack success rate when pruning trigger-re-
lated neurons in Trojan Square (face recognition w/ 2, 622 labels).

Neuron Pruning in Trojan Models. We note that pruning is less effective in our

Trojan models, using the same pruning methodology and configuration. As shown in

Figure 5.10, when pruning 30% neurons, attack success rate using our reverse-engineered

trigger drops to 10.1%, but success using the original trigger remains high, at 87.3%. This

discrepancy is due to the dissimilarity in neuron activations between reversed trigger and

the original (Section 5.5.3). If neuron activations do a poor job of matching our reverse

engineered triggers and the originals, then it’s not surprising that pruning works poorly

on attacks using the original triggers. Thankfully, we show in the next section that

unlearning works much better for Trojan attacks.

Strengths and Limitations. An obvious advantage is that the approach requires

very little computation, most of which involves running inference of clean and adversarial

images. However, the limitation is that performance depends on choosing the right layer

to prune neurons, and this may require experimenting with multiple layers. Also, it has

a high requirement over how well the reversed trigger matches the original trigger.

123

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

5.6.3 Patching DNNs via Unlearning

Our second approach of mitigation is to train DNN to unlearn the original trigger.

We can use the reversed trigger to train the infected DNN to recognize correct labels

even when the trigger is present. Comparing with neuron pruning, unlearning allows

the model to decide, through training, which weights (not neurons) are problematic and

should be updated.

For all models, including Trojan models, we fine-tune the model for only 1 epoch, using

an updated training dataset. To create this new training set, we take a 10% sample of the

original training data (clean, with no triggers) 5, and add the reversed trigger to 20% of

this sample without modifying labels. To measure effectiveness of patching, we measure

attack success rate of the original trigger, and classification accuracy of the fine-tuned

model.

Table 5.4 compares the attack success rate and classification accuracy before and

after training. In all models, we manage to reduce attack success rate to < 6.70%,

without significantly sacrificing classification accuracy. The largest reduction of classi-

fication accuracy is in GTSRB, which is only 3.6%. An interesting point is that in some

models, especially Trojan Attack models, there is an increase in classification accuracy

after patching. Note that when injecting the backdoor, the Trojan Attack models suffer

degradation in classification accuracy. Original uninfected Trojan Attack models have a

classification accuracy of 77.2%, which is now restored when the backdoor is patched.

We compare the efficacy of this unlearning versus two variants. First, we consider

retraining against the same training sample, but applying the original trigger instead

of the reverse-engineered trigger for the 20%. As shown in Table 5.4, unlearning using

the original trigger achieves slightly lower attacker success rate with similar classification

5The exception is PubFig, where we use the full training data because training data is very limited.

124

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

Task
Before Patching Patching w/ Reversed Trigger

Classification
Accuracy

Attack Success
Rate

Classification
Accuracy

Attack Success
Rate

MNIST 98.54% 99.90% 97.69% 0.57%
GTSRB 96.51% 97.40% 92.91% 0.14%
YouTube Face 97.50% 97.20% 97.90% 6.70%
PubFig 95.69% 97.03% 97.38% 6.09%
Trojan Square 70.80% 99.90% 79.20% 3.70%
Trojan Watermark 71.40% 97.60% 78.80% 0.00%

Task
Patching w/ Original Trigger Patching w/ Clean Images

Classification
Accuracy

Attack Success
Rate

Classification
Accuracy

Attack Success
Rate

MNIST 97.77% 0.29% 97.38% 93.37%
GTSRB 90.06% 0.19% 92.02% 95.69%
YouTube Face 97.90% 0.0% 97.80% 95.10%
PubFig 97.38% 1.41% 97.69% 93.30%
Trojan Square 79.60% 0.0% 79.50% 10.91%
Trojan Watermark 79.60% 0.00% 79.50% 0.00%

Table 5.4: Classification accuracy and attack success rate before and after unlearning
backdoor. Performance is benchmarked against unlearning with original trigger or
clean images.

accuracy. So unlearning with our reversed trigger is a good approximation for unlearning

using the original. Second, we compare against unlearning using only clean training

data (no additional triggers). Results in last column in Table 5.4 show that unlearning

is ineffective for all BadNets models (attack success rate still high: > 93.37%), but

highly effective for Trojan Attack models, with attack success rates down to 10.91%

and 0% for Trojan Square, and Trojan Watermark respectively. This seems to show

that Trojan Attack models, with their highly targeted re-tuning of specific neurons, are

much more sensitive to unlearning. A clean input that helps reset a few key neurons

disables the attack. In contrast, BadNets injects backdoors by updating all layers using

a poisoned dataset, and seems to require significantly more work to retrain and mitigate

the backdoor.

125

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

Parameters and Cost. Through experiments, we find that unlearning performance

is generally insensitive to parameters like amount of training data, and ratio of modified

training data. Finally, we note that unlearning has a higher computational cost compared

to neuron pruning. However, it is still one to two orders of magnitude smaller than

retraining the model from scratch. From our results, unlearning clearly provides the best

mitigation performance compared to alternatives.

5.7 Robustness against Advanced Backdoors

Prior sections described and evaluated detection and mitigation of backdoor attacks

under base case assumptions, e.g., a small number of triggers, each prioritizing stealth

and targeting the misclassification of arbitrary input into a single target label. Here,

we explore a number of more complex scenarios, and (whenever possible) experimentally

evaluate the effectiveness of our defense mechanisms for each.

We discuss 5 specific types of advanced backdoors attacks, each challenging an as-

sumption or limitation in the current defense design.

• Complex Triggers. Our detection scheme relies on the success of the optimiza-

tion process. Would more complicated triggers make it more challenging for our

optimization function to converge?

• Larger Triggers. We consider larger triggers. By increasing trigger size, an

attacker can force the reverse engineering process to converge to a large trigger

with larger norm.

• Multiple Infected Labels w/ Separate Triggers. We consider a scenario where

multiple backdoors targeting distinct labels are inserted into a single model, and

evaluate the maximum number of infected labels we can detect.

126

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 1

 2

 3

 4

 5

MNIST GTSRB YouTube
Face

PubFig

A
n

o
m

a
ly

 I
n

d
e

x

Figure 5.11: Anomaly index of infected MNIST, GTSRB, YouTube Face, and PubFig
model with noisy square trigger.

• Single Infected Label w/ Multiple Triggers. We consider multiple triggers

targeting the same label.

• Source-label-specific (Partial) Backdoors. Our detection scheme is designed

to detect triggers that induce misclassification on arbitrary input. A “partial”

backdoor that is effective on inputs from a subset of source labels would be more

difficult to detect.

5.7.1 Complex Trigger Patterns

As we observed in Trojan models, triggers with more complicated patterns make it

harder for the optimization to converge to the exact trigger. A more random trigger

pattern might increase the difficulty of reverse engineering the trigger.

We perform simple tests by first changing the white square trigger to a noisy square,

where each pixel of the trigger is assigned a random color. We inject this attack in

MNIST, GTSRB, YouTube Face, and PubFig, and evaluate detection performance. The

resulting anomaly index in each model is shown in Figure 5.11. Our technique detects

the complex trigger patterns in all cases. We also test our mitigation techniques on

127

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 50

 100

 150

 200

4×4
(1.6%)

8×8
(6.3%)

12×12
(14.1%)

16×16
(25%)

L
1

 N
o

rm
 o

f
T

ri
g

g
e

r

Width × Length of Original Trigger
(Ratio to Image Size)

Clean
Infected

Figure 5.12: L1 norm of reverse engineered triggers of labels when increasing the size
of the original trigger in GTSRB.

 0

 1

 2

 3

 4

 5

4×4
(1.6%)

8×8
(6.3%)

12×12
(14.1%)

16×16
(25%)

A
n

o
m

a
ly

 I
n

d
e

x

Width × Length of Original Trigger
(Ratio to Image Size)

Figure 5.13: Anomaly index of each infected GTSRB model when increasing the size
of the original trigger.

these models. For filtering, at an FPR of 5%, we achieve < 0.01% FNR in all models.

Patching using unlearning reduces attack success rate to < 4.2%, with at most 3.1%

reduction in classification accuracy. Finally, we tested backdoors with varying trigger

shapes (e.g., triangle, checkerboard shapes) in GTSRB, and all detection and mitigation

techniques worked as expected.

128

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

5.7.2 Larger Triggers

Larger triggers are likely to produce larger reverse-engineered triggers. This could

help the infected label more closely resemble clean labels in the L1 norm, making outlier

detection less effective. We run sample tests on GTSRB, and increase the size of trigger

from 4× 4 (1.6% of the image) to 16× 16 (25%). All triggers are still white squares. We

evaluate the detection technique with same configuration used in previous experiments.

Figure 5.12 shows the L1 norm of reversed triggers for infected and clean labels. As the

original trigger becomes larger, the reversed trigger also gets larger as expected. When

the trigger grows beyond 14 × 14, the L1 norm does indeed blend in with that of clean

labels, reducing the anomaly index below detection threshold. The anomaly index metric

is shown in Figure 5.13.

The maximum detectable trigger size is largely a function of one factor: trigger

size of clean labels (amount of change necessary to cause misclassification of all inputs

between clean labels). The trigger size of clean labels is itself a proxy for measuring

the distinctiveness of inputs across different labels, i.e. more labels means larger trigger

size for clean labels and a greater ability to detect larger triggers. On applications like

YouTube Face, we were able to detect triggers as large as 39% of the whole image. On

MNIST which has fewer labels, we were only able to detect triggers of size up to 18% of

the image.

5.7.3 Multiple Infected Labels w/ Separate Triggers

We consider a scenario where attackers insert multiple, independent backdoors into

a single model, each targeting a distinctive label. Inserting many backdoors might col-

lectively reduce δ∀→t for many Lt in L. This has the net effect of making the impact of

any single trigger less of an outlier and harder to detect. The trade-off is that models

129

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

1
(0.08%)

200
(15.6%)

400
(31.2%)

600
(46.8%)

800
(62.4%)

1000
(79.9%)

 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
v
g

.
A

tt
a

c
k
 S

u
c
c
e

s
s
 R

a
te

of Infected Labels in DNN
(Ratio to Total # of Labels)

Classification
Attack

Figure 5.14: Classification accuracy and average attack success rate when different
number of labels are infected in YouTube Face.

 0

 1

 2

 3

 4

1
(2.3%)

4
(9.3%)

7
(16.3%)

10
(23.3%)

13
(30.2%)

A
n

o
m

a
ly

 I
n

d
e

x

of Infected Labels in DNN
(Ratio to Total # of Labels)

Figure 5.15: Anomaly index of each infected GTSRB model with different number of
labels being infected.

are likely to have a “maximum capacity” for learning backdoors while maintaining their

classification. Too many backdoors are likely to lower classification performance.

We experiment by generating distinctive triggers with mutually exclusive color pat-

terns. We find most models, i.e. MNIST, GTSRB, and PubFig, have enough capacity to

support triggers for every output label without affecting classification accuracy. But in

YouTube Face, with 1, 283 labels, we observe an obvious drop in average attack success

rate once triggers infect more than 15.6% of labels in the model. As shown in Figure 5.14,

average attack success rate drops with too many triggers, confirming our intuition.

We evaluate our defenses against multiple distinct backdoors in GTSRB. As shown

130

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 40

 80

 120

 160

1
(2.3%)

4
(9.3%)

7
(16.3%)

10
(23.3%)

13
(30.2%)

L
1

 N
o

rm
 o

f
T

ri
g

g
e

r

of Infected Labels in DNN
(Ratio to Total # of Labels)

Clean
Infected

Figure 5.16: L1 norm of triggers from infected labels and clean labels when different
number of labels are infected in GTSRB.

in Figure 5.15, once more than 9 labels (20.9%) have been infected with backdoors,

it becomes very difficult for anomaly detection to identify the impact of triggers. Our

results show we can detect up to 3 labels (30%) for MNIST, 375 labels (29.2%) for YouTube

Face, and 24 labels (36.9%) for PubFig.

Though outlier detection method fails in this scenario, the underlying reverse engi-

neering method still works. For all infected labels, we successfully reverse engineer the

correct trigger. Figure 5.16 shows the norm of triggers for infected and clean labels. All

infected labels have smaller norm than clean labels. Further manual analysis also vali-

dates that reversed triggers visually look similar as original triggers. Our tests show that

a conservative defender can preemptively “patch” potential backdoors. When all labels

are infected in GTSRB, patching all labels using reversed triggers would reduce average

attack success rate to 2.83%. Proactive patching provides similar benefits for the other

models as well. Finally, filtering is also effective at detecting adversarial inputs with low

FNR at FPR of 5% across all BadNets models.

131

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

Unpatched 1 2 3

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Iteration of Patching

Figure 5.17: Attack success rate of 9 triggers when patching DNN for different number
of iterations.

5.7.4 Single Infected Label w/ Multiple Triggers

We consider a scenario where multiple distinctive triggers induce misclassification to

the same label. In this case, our detection techniques would likely only detect and patch

one of the existing triggers. To test this, we inject 9 white 4 × 4 square triggers for the

same target label into GTSRB. Those triggers have the same shape and color, but are

located in different positions of the image, i.e. four corners, four edges, and the center.

The attack achieves > 90% attack success rate for all triggers.

Detection and patching results are included in Figure 5.17. As suspected, a single

run of our detection technique only identifies and patches one of the injected triggers.

Fortunately, running just 3 iterations of our detection and patch algorithm is able to

successively reduce the success rate of all triggers to < 5%. We also test on other MNIST,

YouTube Face, and PubFig, and attack success rate of all triggers are reduced to < 1%,

< 5%, and < 4%.

132

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

5.7.5 Source-label-specific (Partial) Backdoors

In Section 5.2, we define backdoor as a hidden pattern that could misclassify arbitrary

inputs from any label into the target label. Our detection scheme is designed to find these

“complete” backdoors. A less powerful, “partial” backdoor, could be designed such that

triggers only trigger misclassification when applied to input belonging to a subset of

source labels, and do nothing when applied to other inputs. Such backdoors would be a

challenge to detect using our existing methods.

Detecting partial backdoors requires slightly modifying our detection scheme. Instead

of reverse engineering a trigger to every target label, we analyze all possible source-target

label pairs. For each label pair, we use samples belonging to the source label to solve

the optimization. The resulting reversed trigger would only be effective for the specific

label pair. Then, by comparing L1 norm of triggers for different source-target pairs, we

can use the same outlier detection method to identify label pairs that are particularly

vulnerable and appear as anomaly. We experiment by injecting a backdoor targeting

one source-target label pair into MNIST. While the injected backdoor works very well, our

updated techniques for detection, and mitigation are all successful.

Analyzing all source-target label pairs increases the computation cost of detection

by a factor of N , where N is the number of labels. However, we can use a divide-

and-conquer algorithm to reduce the computational cost to a factor of logN . We leave

detailed evaluation to future work.

5.8 Failed Attempts and Lessons

Here we discuss several of our failed attempts in identifying hidden backdoor and

lessons we learned from these failure. We hope this could provide insights into future

research and better understanding of Deep Learning.

133

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

5.8.1 Analyzing Abnormal Neurons for Backdoor Detection

Our very first attempt in detection backdoor is to analyze internal neurons of a DNN,

and look for abnormal neurons. Our intuition is that, in order to achieve misclassification,

the trigger must fire a set of backdoor-related neurons that could significantly affect the

classification result. We suspect such neurons would have extremely high impact on the

target label’s output confidence. In the meantime, these neurons would stay dormant

when processing normal inputs, since they would not be related to any clean patterns in

clean inputs.

Following this intuition, we designed a methodology very similar to prior work by

Liu [191]. For a given DNN to be analyzed, we focus on one of the deep layers, and

rank output neurons of that layer based on their average activation for clean samples.

After ranking, we start to remove the most dormant neurons with smallest average ac-

tivation, by setting output values of these neurons to zero. If the intuition is correct,

backdoor-related neurons would be removed, while benign neurons are left to maintain

the model performance. Another similar approach we designed was to transform output

neurons using PCA. Such improvement would help better isolate benign neurons and

their combinations, and ideally make malicious component removal much easier.

The first flaw of this design is, as we briefly mentioned before, the lack of knowledge

about the backdoor attack. In reality, the user does not know whether there is a back-

door injected or how the attack is performed. Without such information, users cannot

quantify the robustness of the model, which makes entire defense hard to configure and

the outcome hard to verify.

Besides this obvious design flaw, we also find this version of neuron pruning ineffective

in several scenarios. In GTSRB, we find by pruning up to 78.1% neurons in the second

to last layer, the classification accuracy of the model already drops to 60.4%, while

134

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack

Figure 5.18: Classification accuracy and attack success rate when pruning different
ratios of neurons in GTSRB.

the attack success rate still remains higher than 82.3%, as shown in Figure 5.18. This

suggests that malicious and benign neurons may not be cleanly separable. Especially in

deeper layers, where neurons represent higher-level patterns of the task, each neuron could

stand for extremely complex patterns that represent both the trigger and benign patterns.

Without understanding what exactly each neuron represent, it would be difficult to define

it as benign or malicious. Therefore, the assumption that malicious neurons could be

separated from benign ones and easily removed does not hold in all scenarios.

An extreme yet simple counter example is shown in Figure 5.19. If we attach an addi-

tional layer to a backdoored model, the altered model has the exactly same functionality

of the original model, i.e. high accuracy for clean samples and high attack success rate

for backdoor samples with trigger. However, when we analyze neurons of the second to

last layer in the new model (output layer of the original model), the “malicious” neuron

is the output neuron for the target label. This neuron is essential to both classification of

clean samples and backdoored samples. It’s obvious that this is a neuron that contains

both benign and malicious functionality. Though this is an extreme example that could

be quite different from realistic DNNs, it proves that benign and malicious neurons could

have significant overlap, therefore disproves our previous assumption.

135

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

..
.

x

y

z

x’

y’

z’

..
.

Input ...

Original

Output

New

Output

Figure 5.19: Illustration of a counter example of neuron pruning approach. In the
original model, label z is the infected label. A new layer is attached to the output of
the backdoored model (x, y, z) to form a new output layer (x′, y′, z′). The newly added
layer simply passes output neuron values to the new output without modification. In
the new model, the output neuron of the second to last layer (z) have both benign
and malicious functionality. This proves the benign and malicious neurons could be
heavily mixed.

This failed attempt is a typical pitfall of empirical system design without theoretical

proof. Designs based on intuitions that seem plausible but not proven could and always

would fail in unexpected ways. Especially in Machine Learning, where very little is known

about what is truly happening inside ML models, we tend to build on top of our limited

understanding of how ML models operate. Such mindset often leads to intuitions, like the

one discussed before, that seem reasonable and natural at first glance, but later proven

to be incorrect. This urges the need for stricter and more thorough inspection of any

intuition we use in system design and measurement.

5.8.2 Backdoor Detection via Weight Fine-Tuning

Apart from analyzing internal neurons, we also tried analyzing internal weights and

try to find potential impact of backdoor on these weights.

More specifically, we turn to the more fundamental component of the backdoor attack,

the injection process. Regardless of the exactly technique to inject infected samples

into training, backdoor injection relies on mixing the adversarial samples with normal

136

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

x y z

Output of the Last Layer

Output of the Second to Last Layer

z Infected Label

High-grad. Weight

Figure 5.20: Illustration of how distribution of high-gradient weights is calculated.
Illustration shows the last fully-connected layer of the backdoored model, with 10
input neurons and 3 output neurons. Label z is the infected label. 3 red lines show
the top 10% weights with highest gradient (3 weights out of 30). In this case, all
top 10% weights are all connected to the infected label. Therefore, the distribution
concentrates on the infected label z.

samples, so the resulting DNN would learn both normal patterns and the trigger. When

well trained, each weight in DNN would have a balance between two distributions of data,

by having an average gradient of zero when passing all training samples. Therefore, when

calculating gradients for all weights again, but using only clean samples, many weights will

have non-zero gradients. This is because the backdoored samples are missing, resulting

all weights to fit towards the benign data distribution. Similar intuition is also used for

reverse engineering hyper-parameter configuration for model training [205].

Using this approach, by analyzing weights that have high gradient, we hope to find

most related weights to the injected backdoor and understand how these weights cause

misclassification. Our technique is to focus on weights in the last layer, and analyze

if weights with high gradient have skewed distribution connecting to a particular label.

As illustrated in Figure 5.20, top 10% weights (3 out of 10 × 3) with highest absolute

gradient (marked in red) are connected to the same label z. Therefore, it’s very likely the

backdoor would affect this label’s output confidence to achieve misclassification. This

would allow us to identify whether a backdoor is injected and what the target label is.

137

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

 0

 100

 200

 300

 400

0 1 2 3 4 5 6 7 8 9

#
 o

f
H

ig
h
-g

ra
d
.
W

e
ig

h
ts

C
o
n
n
e
c
te

d
 t
o
 E

a
c
h
 L

a
b
e
l

Output Label

Top 5%
Top 10%
Top 15%

Figure 5.21: Distribution of high-gradient weights over output labels in MNIST. Label
4 is the infected label.

 0

 50

 100

 150

 200

 250

 300

33 0 5 10 15 20 25 30 35 40

#
 o

f
H

ig
h
-g

ra
d
.
W

e
ig

h
ts

C
o
n
n
e
c
te

d
 t
o
 E

a
c
h
 L

a
b
e
l

Output Label

Top 5%
Top 10%
Top 15%

Figure 5.22: Distribution of high-gradient weights over output labels in GTSRB. Label
33 is the infected label.

This design worked well on one of the MNIST we tested. Figure 5.21 shows the

distribution of highest-gradient weights over output labels in an infected MNIST model.

Different colors show weight distribution of different top percentiles. It’s very clear that

label 4 (the infected target label) is related to the majority of top 5% weights with highest

gradients (marked in red).

Quite differently, in GTSRB, we did not observe such strong skewness towards the

infected target label. Figure 5.22 shows the same distribution in an infected GTSRB

model, with label 33 as the infected label. Top 5% weights with highest gradient scatter

across label 7, 5, etc. , and do not concentrate on the infected label.

Further analysis reveals two explanations for the failure of this design. First, it’s

138

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

possible that backdoor-related weights do not connect to the infected label, but only to

other benign labels. When malicious weights are only connected to benign labels, neurons

fired by the stamped trigger would decrease the confidence of the correct label and other

benign labels. The net effect of such confidence reduction is that the infected label

would have the highest confidence, therefore causing misclassification. We compared the

logit output (neuron values before softmax) of images with and without the trigger, and

found the backdoor in GTSRB model does operate in the way we suspected. Such mode

of backdoor would break the our assumption and render the detection method ineffective.

Second, a hidden assumption when using gradient to find malicious weights is that

we assume the model achieves a perfect minima during backdoor training. In fact, this

never happened for almost any realistic model. Most models would not achieve such ideal

balance for every weight, due to factors such as early termination of training, imperfect

local optima, etc. . Therefore, we should expect natural skewness of high-gradient weights

due to model being under-trained. It is still unclear whether the skewness caused by

under-training would overwhelm the effect of backdoor poisoned training. It would also

reduce the effectiveness of the detection methodology.

Two factors combined, it is not surprising that this design failed to work in GTSRB,

but showed very good performance in MNIST. Apart from echoing our previous point of

throughly validating intuitions, this example also showed the extreme complexity of DNN

in various scenarios. There exist too many factors that could affect the performance and

security of a DNN, that ultimately influences of proposed system. It’s the best practice to

include all these factors into consideration when designing new tools and systems around

ML models, and clearly evaluate their potential impact on the final performance.

139

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

5.9 Related Work

Traditional machine learning assumes the environment is benign. This assumption

could be violated by an adversary at either training or testing time.

Additional Backdoor Attacks and Defenses. In addition to attacks mentioned in

Section 5.2, Chen et al. propose a backdoor attack under a more restricted attack model,

where attacker can only pollute a limited portion of training set [43]. Another line of

work directly tampers with hardware the DNN is running on [206, 207]. Such backdoor

circuits would also alter model’s performance when a trigger is presented.

Poisoning Attacks. Poisoning attack pollutes the training data to alter the model’s

behavior. Different from backdoor attack, poisoning attack does not rely on the trig-

ger, and alters model’s behavior on a set of clean samples. Defenses against poison-

ing attack mostly focus on sanitizing the training set and removing poisoned sam-

ples [41, 208, 209, 210, 211, 212]. The insight is to find samples that would alter model’s

performance significantly [41]. This insight has shown to be less effective against back-

door attack [43], as injected samples do not affect model’s performance on clean samples.

Also, it’s impractical in our attack model, as the defender does not have access to the

poisoned training set.

Other Adversarial Attacks against DNNs. Numerous (non-backdoor) adver-

sarial attacks have been proposed against general DNNs, often crafting imperceptible

modifications to images to cause misclassification. These can be applied to DNNs dur-

ing inference [213, 214, 215, 216, 217]. A number of defenses have been proposed [218,

219, 220, 221, 222], yet many have shown to be less effective against an adaptive adver-

sary [223, 224, 225, 226]. Some recent work tries to craft universal perturbations, which

140

Identifying and Mitigating Backdoor Attacks in Neural Networks Chapter 5

would trigger misclassification for multiple images in an uninfected DNN [227].

5.10 Conclusion and Future Work

Our work describes and empirically validates our robust and general detection and

mitigation tools against backdoor (Trojan) attacks on deep neural networks. Beyond the

efficacy of our defense against basic and complex backdoors, one of the unexpected take-

aways of our paper is the significant differences between two backdoor injection methods:

the trigger-driven BadNets end-to-end attack with full access to model training, and the

neuron-driven Trojan Attack without access to model training. Through our experiments,

we find that the Trojan Attack injection method generally adds more perturbations than

necessary, and introduces unpredictable changes to non-targeted neurons. This makes

their triggers harder to reverse engineer, and makes them more resistant to filtering and

neuron pruning. However, the tradeoff is that their focus on specific neurons make them

extremely sensitive to mitigation via unlearning. In contrast, BadNets introduce more

predictable changes to neurons, and can be more easily reverse engineered, filtered and

mitigated via neuron pruning.

Finally, while our results are robust against a range of attacks in different applications,

there are still limitations. First and foremost is the question of generalization beyond

the current vision domain. Our high-level intuition and design of detection/mitigation

methods could be generalizable: the intuition for detection is that the infected label

is more vulnerable than uninfected labels, and this should be domain agnostic. The

main challenge of adapting the entire pipeline to non-vision domain is to formulate the

backdoor attack process and design a metric measuring how vulnerable a specific label

is (like Equation 5.2 and Equation 5.3).

141

Chapter 6

Conclusions and Discussions

In this dissertation, we take a detailed look into important implications of the non-

transparency nature of Machine Learning systems. Three separate work are covered

to look at the performance, robustness, and security of such opaque systems. We use

empirical approaches to understand and quantify these properties of ML systems, and

also propose tools and solutions for improving and securing ML systems.

In this chapter, we summarize the contribution of our work, along with discussions

about important topics in the study of ML and general research.

6.1 Summary

Machine Learning system appears to humans as a complex numerical black-box, which

makes understanding its internals extremely difficult. Such non-transparency imposes

difficulty to 1) understand how model design impacts end-to-end performance, 2) under-

stand the model robustness against adversarial inputs, and 3) audit if model contains

hidden malicious behavior. These three implications would significantly reduce the utility

and security of Machine Learning system, and hinder its wide adoption.

142

Conclusions and Discussions Chapter 6

In Chapter 3, we take a data-driven approach to quantify how model’s design choices

affect its end-to-end performance. We use 6 MLaaS platforms with different levels of

control and complexity as representative data points, and measure their performance on

119 real-world datasets. Our work produces three key takeaways. First, ML models with

more freedom of control produce more potential performance gain, as well as greater

possibility of performance degradation from poor configuration. Second, several MLaaS

platforms use internal tests to automatically adjust model configuration. Though it sig-

nificantly reduces user’s effort of configuration, their aggregated performance lags behind

well-tuned versions of other more configurable counterparts. Finally, much of the gains

from configuration come from choosing the right classifier. Experimenting with a small

random subset of classifiers is likely to produce near-optimal performance.

In Chapter 4, we analyze Deep Learning model’s robustness against adversarial at-

tacks, especially in the context of Transfer Learning. We propose a new adversarial attack

on black-box student models in the wild by leveraging the white-box teacher models. We

experimentally validate the effectiveness of this attack under different transfer learn-

ing scenarios, and show it can be successfully carried out against real transfer learning

services. We also design and evaluate several defenses to mitigate this new attack.

In Chapter 5, we study backdoor attack against Deep Learning models. We design

a series of defenses to detect and mitigate backdoor attack in a given DL model. Our

proposed techniques could, first, detect hidden backdoors, second, identify target labels

and triggers used by the attack, third, detect and filter adversarial inputs with the

backdoor trigger, and last, patch DL models to be robust against injected backdoors.

Extensive experiments are conducted to fully understand how our defenses perform facing

prior backdoor attack and also different variants of more advanced attacks.

143

Conclusions and Discussions Chapter 6

6.2 Discussions

Here I would like to discuss several topics related to our work, along with justification

for several high-level design decisions we make in this thesis.

6.2.1 Transparency and Interpretability of Machine Learning

Whether transparency and interpretability of Machine Learning could be ever achieved

or even necessary has been an ongoing debate ever since Machine Learning started to

be deployed in real-world. In fact, there exist multiple definitions of transparency and

interpretability that sometimes even confuse these two concepts. Here we introduce our

definition of transparency and interpretability, and present our opinions on whether and

how they could be achieved.

Transparency of an ML model means that we have the ability and confidence to

“predict” the output of any given input, tested or even untested. It is not the same as

running a new input through the ML model and retrieve the output, but in contrary, we

would know the output even without running the model. In essence, this means we have

the knowledge of how the model would behave.

Interpretability, however, is different from transparency. Interpretability suggests

that we can map and translate between the operating mechanism of ML models and how

humans understand and solve particular tasks. It requires a much in-depth understanding

of ML models, where we need to understand why ML models make decisions, and also

explain the reason in a form that is understandable by humans.

To put these definitions more concretely, here is an example of a face recognition task.

Transparency means that for a given face, we should have the confidence to know that

which label it will be classified into. For a high-performance model, we should have the

ability to know it will be classified into the correct label. For a ill-trained model or a

144

Conclusions and Discussions Chapter 6

model infected with a backdoor, we should be able to know which samples will be classified

incorrectly and when such incorrect behavior would happen. But interpretability requires

that we can explain why the ML model makes decisions. Is it because of the shape of the

nose, the skin color, or other subtle details of the face? Or is it because of an injected

malicious trigger embedded into the model? This means we need to translate numerical

operations inside ML models into explicit patterns that humans use for face recognition.

Achieving Interpretability. With such definition, interpretability remains ex-

tremely difficult. In our opinion, complete interpretability might be fundamentally im-

possible. Without considering the artifact and insufficiency of training, ML models have

distinct architecture from human brain, which makes interpretability nearly impossible.

From the start, ML model is designed as a simplified version of human brain for specific

functionalities. Convolution neural network tries to mimic the hierarchical structure of

how humans recognize patterns. Recurrent neural network tries to mimic the concept

of memory. But all these ML models later evolve and deviate from human brain to

better capture and model patterns inside data. From the architecture point of view,

these ML models are over-simplified and task-specific, while human brain is more com-

plex and for general purposes. Mapping between an extremely specialized model and a

general-purpose brain, itself, remains an impossible task.

Many prior work aim at improving the interpretability of ML models. Most of work

along this direction try to provide local explanation of model’s decision for a specific

input sample. Proposed systems, such as LIME [228] and LEMNA [229], extract most

important elements of a given input that result in the final output, e.g., a set of pixels in

an image, a sequence of bytes in a binary. These work try to approximate the decision

process of ML models by using a much simpler model that is easier to understand.

Though it cannot fully replicate the internal process of the target ML model, it does

145

Conclusions and Discussions Chapter 6

provide insight into important factors in the decision process, and helps us understand

the model. Still, a significant gap between these work and the ultimate goal of complete

interpretability exists. Bridging this cap would require sophisticated understanding of

both human brain and the ML architecture, which poses as an impossible challenge to

the community.

Achieving Transparency. In contrary, transparency only requires end-to-end guar-

antee of model’s behavior, even though we do not understand how ML model makes such

decision. We believe this could be achieved via a combination of theoretical proof and

empirical testing. To push it to the extreme, a simple yet costly brute-force solution

is to test all possible inputs of an ML model and identify if their outputs are correct.

Though it does not improves our understanding of how the ML model makes decision,

i.e. interpretability, it does offer the strongest transparency possible. The cost of this

empirical testing could be further reduced by introducing theoretically proven properties,

so redundant testing could be pruned.

Furthermore, for certain domains and scenarios where only partial transparency is

required, it’s easier for empirical analysis to achieve transparency with limited cost. For

example, in our backdoor project, the specific requirement is to make sure no small

trigger exists that could effectively cause misclassification. This is clearly only a small

subset of the transparency requirement we defined before, but this specific requirement

of transparency allows us to design empirical testing methods and provide results under

limited cost.

This is also the reason we focus on achieving transparency by empirical measurements

and design empirical methods. For each specific implication we studied in this thesis,

performance and security, we tackle them individually and design tools and measurements

to meet the specific needs in the corresponding scenario. Instead of pursuing solutions for

146

Conclusions and Discussions Chapter 6

the ultimate transparency and interpretability of ML, our choice offers practical solutions

to ensure the imminent large scale adoption of ML is safe and secure.

6.2.2 Empirical Analysis vs. Theoretical Analysis

Another choice we make in our work is to use empirical approaches to tackle problems

instead of using theoretical methods. This has been a long-going debate, not only in the

ML community, with the optimal answer being obviously that we need both. However,

given the level of complexity of ML models, especially DL models, theoretical analysis

proves to be extremely difficult for any realistic systems. This

Adversarial attack and defense of Deep Learning models serves as a good example of

how difficult theoretical analysis of ML could be. Even with the significant amount of

effort and attention the ML community has put into this area, there has been limited

progress along the theoretical direction. The most recent effort borrows tools from geom-

etry to theoretically prove and quantify that a given model is robust against adversarial

samples that are created with a given constraint (in this case, with limited perturba-

tion) [230, 231, 232]. However, given the huge complexity of ML models, such tools are

limited in its power. In this case, it can only prove the model’s robustness for a given

sample, instead of all possible samples. Also given the high computation complexity of

such theoretical tools, adopting it on realistic models would incur high runtime cost that

are not feasible.

Unfortunately, the currently inefficiency and ineffectiveness of theoretical tools urges

for effective empirical analysis immediately. Though it does not provide the desired strong

guarantee like theoretical analysis, it does offer effectiveness under realistic assumptions.

With the rapid advancement and adoption of ML, it’s critical to provide empirical tools

today to secure these systems, given the vacuum of effective theoretical tools.

147

Conclusions and Discussions Chapter 6

Besides urgency for effective empirical solutions, empirical analysis also provides valu-

able insights and feedback that could help improve theoretical study. Recent success and

advance of Machine Learning is mostly empirical, with numerous successful instances

from industry proving huge potentials of Machine Learning. This inevitably results in

lagging theory explaining such success, and more so for other characteristics such as ro-

bustness and security. Facing such circumstances, empirical analysis provides valuable

insights that could filter out promising directions.

A good example in this dissertation is the detection of backdoor. Even though we did

not provide theoretical analysis on what characteristics backdoor would have, several of

our failed attempts of previously proposed ideas do offer insights in what characteristics

backdoor does not have. We find that, unlike prior work suggested, backdoor does not

cause collateral damage on the model to have higher prediction error on the infected

labels. This invalidates the prior assumption on backdoor, and leave us with remaining

directions that would be more promising.

Another example is the adversarial attack against transfer learning. Besides the

security implication, it also exposes a concerning fact about how DL models operate

internally. The success of internal representation mimicking shows that DNN will map

two inputs from distinct classes into similar internal representations. This suggests that,

the transformation or feature extraction functionality of DNN early layers is imperfect.

An ideal feature extraction, if ever existed, should be able to transform inputs of different

classes to spaces far away from each other. Instead, the success of our attack indicates

that not only this is not achieved, spaces of different classes are heavily overlapped, and

small modification could move two inputs overlap in the latent feature space. Besides

the obvious security vulnerability we discovered, it could have implication on model

performance and its ability to generalize. This finding suggests that more analysis is

required in understanding the effectiveness and accuracy of DNN’s transformation and

148

Conclusions and Discussions Chapter 6

feature extraction.

6.2.3 Variety of Benchmarking Datasets

One of the most important factor in empirical analysis is the variety of scenarios

the proposed system has been tested in. This provides confidence that findings from

empirical analysis could generalize to unseen and untested cases. In the field of Machine

Learning, this often means the variety of datasets and tasks any proposed methodology

is tested. In the scenario of backdoor detection, this means we need to test on various

tasks, datasets, with different complexities, sizes, and purposes. Similarly, in other areas

such as adversarial attack and defense, same principle also applies.

We find this principle to be especially necessary in the study of Machine Learning.

Prior to our current design for backdoor detection, a failed attempt was to analyze

internal weights of the DNN and measure how much impact it would have to further

fine-tune the DNN with clean data. Early result showed that this simple technique

worked quite well on MNIST and PubFig, but it was later overthrown that it failed on

other datasets we tested such as GTSRB and Trojan models. Similar to us, another

example is defense against adversarial attack. Many previously proposed defenses are

only tested on simple cases, e.g., MNIST, CIFAR10, and are later shown to be not able

to generalize to more realistic cases [233, 148].

The lack of theoretical understanding of ML brings more importance of the variety of

test cases. Without being backed by strong theoretical guarantee, none of the empirical

analysis is guaranteed to generalize to untested scenarios. This leaves the only solution

to throughly test the proposed system on scenarios as various as possible. Though it does

not fulfill the missing vacuum of theoretical analysis, it would encourage more mature

and thorough study.

149

Conclusions and Discussions Chapter 6

6.2.4 Generalization beyond Vision and Classification

Most of our work in this thesis have been focusing on the vision domain and also

classification tasks. Though we did not perform experiments on other domains like text,

audio, or other potential types of input, intuitions of our techniques could be generalized.

Here we discuss the main challenges of adapting not only our work, but other similar

work from vision to more domains.

One of the major reasons that most Deep Learning study have been focusing on the

vision domain is its fast growth and wide adoption. With significantly more resources

in the vision domain, research areas like security would benefit from a wide range of

deployed systems. Another major reason is the ease of understanding and quantifying

changes of the input. It’s much easier to visualize and quantify modification on images

or videos than on audio, wireless signals, etc. . We can find many example of such in

adversarial attacks and defenses of Deep Learning.

Potentially, this could make many study focus too much on a particular area, and

not be able to generalize to other domains. For example, in defense against adversarial

attack, many proposed defenses rely on assumptions such as, image inputs are generally

smooth. Such assumptions might not generalize to domains that do not have continuous

input values, such as text. Even though such practice could generate high performance

solutions for specific domain and task, it does not suggest that it addresses the funda-

mental problem across domains.

All three projects we include in this dissertation also have specific focus on a sub-

domain of ML. Our first study on ML system design and its impact on performance focus

on binary classification problem using traditional ML algorithms. Our adversarial attack

against transfer learning and detection system for backdoor attacks both focus on the

vision domain and classification task. The most obvious consequence is that it requires

150

Conclusions and Discussions Chapter 6

certain modification of the system to apply to other domains. For example, we need to

define a new distance function to quantify the amount of perturbation, if we were to

apply the adversarial attack to non-vision domains. Also we need to define a new form

of trigger injection process adjust the backdoor detection method to non-vision models.

We already discuss the generalization problem separately in prior chapters, and we

believe the core intuition behind our proposed systems would generalize to other domains

and tasks. However, from a more rigorous standpoint, we cannot speak for sure that these

intuitions will generalize, without real experiments. Verifying whether or how existing

work generalize to untested scenarios and tasks would be a necessary and important step

to thoroughly understand the evaluate ML study.

6.3 Lessons of General Research from a Retrospec-

tive View

My research interests and focuses are much wider than most of PhDs. I have covered

topics of data mining and measurement of online social networks, security of mobile

systems, and network measurement in the first three years of my PhD. During this

period, I have also touched several other orthogonal topics, such as cryptocurrency. The

transition to Machine Learning only happens in my late fourth year. But it happens to

produce some of my most productive and fruitful projects throughout my PhD.

With such experience of working on a truly wide range of topics, here are some of

the lessons I learned when looking at my PhD from a retrospective view. I hope these

lessons about general research and PhD would be valuable to share.

The Importance of Data-driven Research. Despite the seemingly wide range

of topics I have worked on, all of them center around the idea of data-driven empirical

151

Conclusions and Discussions Chapter 6

research. The philosophy is to use real data to discover insights, validate assumptions,

evaluate designs, and potentially identify more research problems. Instead of approaching

research from a more abstract way, data-driven research does produce results that you can

trust and have confidence about. In reality, data-driven research often produce results

that disapprove prior assumptions, reveal insights for future research directions, etc. .

The common theme behind all my research projects turn the wide range of topics

into one of my most valuable lessons of research. Multiple experiences further validates

the power of data-driven research. For example, in the project trying to understand

whether crowdsourcing systems work in areas requiring higher expertise [234], we use

empirical data to validate effectiveness of crowdsourcing. And we also discover that such

crowdsourcing systems only work when high quality workers could be selected, and this

could be achieved using simple indicators. In another work trying to understand the

design tradeoff of personalized livestreaming systems [235], we use data from a popular

livestreaming service to dissect the architecture of such service, and quantify the perfor-

mance of each component in the system. The result helps us understand the tradeoffs

when designing systems with such unique requirement of extremely low latency between

broadcaster and all viewers.

These projects outside the area of Machine Learning further strengthens my belief

in data-driven research. And it is also a key reason we put extremely large amount of

focus on evaluating our designs and systems using realistic datasets and scenarios. In

all projects in this thesis, we try to expand to larger and more complex models and

datasets, which more closely resembles practical scenarios in the real world. It is only

after fully evaluated on a wide range of scenarios, we can trust the effectiveness of the

design with more confidence. Unsurprisingly, this lesson is learned from multiple failed

attempts that work as perfect examples for this argument. If you are interested, please

refer to Section 5.8.

152

Conclusions and Discussions Chapter 6

The Pitfall of Empirical Research: Lost of Focus. One of the major problems

of empirical research is the tendency to get lost in the swamp of interesting results and

findings, and lose the focus. Empirical research is often driven by the detailed results,

instead of a major research problem. For example, many of the empirical measurement

work in my PhD [235, 236, 237] did not have a clear objective or a main research question

in mind when the project first started. It was only after a significant amount of exper-

iments and findings, we can identify interesting questions and organize detailed results

into a cohesive story.

Seemingly, empirical research is driven by detailed results, and interesting research

questions only surface when related findings have been discovered. But a less acknowl-

edged fact is that good empirical research also requires a key theme or a core direction

to guide the design of experiments and measurements. Comparing all empirical mea-

surement projects I have involved in, a central direction plays an important role in

determining the level of productivity and “efficiency” of a project. It helps focus exper-

iments around a common topic, and reduces the time and effort spent on out-of-scope

experiments.

This lesson has been validated multiple times during my PhD. As a negative example,

my first project that studied the collaborative investing platforms did not start with the

final idea, but trying to understand user behavior on such financial platforms. Though it

seems like a focused direction to pursue, we did not know which exact behavior we were

trying to analyze. Without the insight into which behavior pattern to look for, we ended

up with running experiments that did not produce much useful results.

One of the positive example, on the other side, is the latest work detecting and

mitigating backdoor attack. Despite the fact that this project does have a very clear

objective in the first place, it does help construct all experiments around a common

theme. Even though many iterations of design were proposed and quickly discarded, the

153

Conclusions and Discussions Chapter 6

entire project was extremely productive and efficient.

The Key to Success: Motivation, and Collaboration. Apart from afore-

mentioned factors, there are other important factors that lead to a successful research

project. First, staying motivated is the major driving force that helps overcome obstacles

in research. Everyone understands that research is often open-ended, and it is not always

guaranteed to produce satisfying results. Therefore, we have the tendency to question

whether there is a solution to the question. Beyond this, there also exists numerous

obstacles lying between you and the final answer. We already discussed several examples

covered in this thesis, which went through multiple iterations of design. These are the

best examples showing that how staying motivated and optimistic could help us overcome

obstacles and do not give up half way in the middle.

Another deciding factor is collaboration. Research would be quite difficult, especially

when you are fighting by yourself alone. I’m really grateful that I was able to work

with a group of talented and hard-working researchers in all my projects. It wouldn’t

be possible to make this dissertation possible without all the brainstorming, discussion,

arguing, even fighting. This great team cover corners that any of us oversight and details

we miss. To that, I owe my most sincere gratitude.

154

Appendix A

Appendix

A.1 Appendix of Empirical Analysis of Machine Learn-

ing as a Service

A.1.1 ML-as-a-Service Platforms

Automatic Business Modeler (ABM). ABM provides full automation of over the

entire ML pipeline. This includes preprocessing, feature selection, model selection, and

parameter tuning. ABM only requires users to upload dataset in a particular format,

and automatically builds an ML model.

Amazon Machine Learning (Amazon). Amazon Machine Learning is a part of

Amazon AWS that specializes in providing predictive analytics service. Amazon auto-

mates most of the controls, while only allowing users to tune classifier parameters. We

have limited knowledge about the internal design of Amazon. But according to its user

manual, Amazon uses Logistic Regression in the back-end [238].

155

Appendix Chapter A

BigML. BigML allows users to choose classifiers and tune parameters. It allows users to

build and control ML pipeline through Web GUI and script language 1. BigML maintains

a public Script Gallery 2, where users can share scripts with customized functionalities.

Users can also export trained models and run them locally.

PredictionIO. PredictionIO is an open-source ML server where users can customize

their own predictive models and deploy as a Web service. Users can modify templates

provided by PredictionIO to realize their own functionalities. Users can choose classifiers

by downloading different templates, and tune parameters by changing variables in the

template.

Microsoft Azure Machine Learning Studio (Microsoft). Microsoft provides

almost full control over the entire ML pipeline. Users can choose from multiple methods

to perform data transformation and preprocessing. Users can also select classifiers, tune

parameters, and even apply feature selection. Microsoft also provides various options for

each component. Since Microsoft doesn’t provide any API, we need to manually interact

with the Web interface to create ML models for different ML system configurations.

Google Prediction API (Google). Google Prediction API is one of services offered

by Google Cloud Platform. It is designed as black-box, i.e. users have no control over

any step in the ML pipeline. It automatically builds ML models for users after datasets

are uploaded to Google Cloud. There is little information about the internal design of

Google Prediction API.

1https://bigml.com/whizzml
2https://bigml.com/gallery/scripts

156

https://bigml.com/whizzml
https://bigml.com/gallery/scripts

Appendix Chapter A

A.2 Appendix of Practical Attacks against Transfer

Learning

A.2.1 Disclosure

While we did not perform any attacks on deployed image recognition systems, we did

experiment with publicly available Teacher models from Google, Microsoft and the open

source PyTorch originally started by Facebook. Following their tutorials, our results

showed they were vulnerable to this class of adversarial attacks. In advance of the public

release of this paper, we reached out to machine learning and security researchers at

Google, Microsoft and Facebook, and shared our findings with them.

A.2.2 Definition of DSSIM

DSSIM (Structural Dissimilarity) is a distance metric derived from SSIM (Structural

SIMilarity). Let x = {x1, ..., xN}, and y = {y1, ..., yN} be pixel intensity signals of two

images being compared, respectively. The basic form of SSIM compares three aspects

of the two image samples, luminance (l), contrast (c), and structure (s). The SSIM

score is then described in the following equation.

SSIM(x, y) = l(x, y) · c(x, y) · s(x, y)

=
(2µxµy + C1

µ2
x + µ2

y + C1

)
·
(2σxσy + C2

σ2
x + σ2

y + C2

)
·
(σxy + C3

σxσy + C3

)
(A.1)

µ and σ are mean and standard deviation of pixel intensities of image samples. C1, C2,

and C3 are constants, and recommendation for choosing these constants is included in

157

Appendix Chapter A

the original paper [124, 125].

DSSIM is calculated as 1−SSIM
2

. It ranges from 0 to 1, where 0 represents two images

are identical, and 1 represents two images are negatively correlated (often achieved by

inverting the image).

In our experiments, we use an improved version of SSIM , referred as multi-scale

SSIM , which also considers distortion due to viewing conditions (e.g., display resolu-

tion). This is achieved by iteratively comparing the reference and distorted images at

different scales (or resolutions) by applying a low-pass filter to downsample images. To

compute DSSIM , we use the implementation of multi-scale SSIM from TensorFlow

and follow the recommended parameter configuration 3.

Student Task Dataset # of Classes
Training

Size
Testing

Size
Teacher
Model

Training Configurations

Face PubFig83 [129] 65 5,850 650 VGG-Face [118] epoch=200,batch=32,optimizer=adadelta,lr=1.0
Iris CASIA Iris [130] 1,000 16,000 4,000 VGG16 [8] epoch=100,batch=32,optimizer=adadelta,lr=0.1

Traffic Sign GTSRB [131] 43 39,209 12,630 VGG16 [8] epoch=50,batch=32,optimizer=adadelta,lr=1.0
Flower VGG Flowers [133] 102 6,149 1,020 ResNet50 [6] epoch=150,batch=50,optimizer=sgd,lr=0.01

Table A.1: Detailed information about dataset, Teacher models, and training config-
urations for each Student task.

3https://github.com/tensorflow/models/blob/master/research/compression/image_

encoder/msssim.py

158

https://github.com/tensorflow/models/blob/master/research/compression/image_encoder/msssim.py
https://github.com/tensorflow/models/blob/master/research/compression/image_encoder/msssim.py

Appendix Chapter A

 Source P=0.001 P=0.003 P=0.005 Target

Figure A.1: Adversarial examples generated from the same source image with dif-
ferent perturbation budgets (using DSSIM). Lower budget produces less noticeable
perturbations.

 Source DSSIM L2 Target

Figure A.2: Comparison between adversarial images generated using DSSIM pertur-
bation budget (P = 0.003) and L2 budget (P = 0.01). Budgets of both metrics are
chosen to produce similar targeted attack success rate around 90%.

159

Appendix Chapter A

 Source Adversarial Target Source Adversarial Target

(a) Iris (P = 0.005)

 Source Adversarial Target Source Adversarial Target

(b) Traffic Sign (P = 0.01)

 Source Adversarial Target Source Adversarial Target

(c) Flower (P = 0.003)

Figure A.3: Adversarial images generated in Iris, Traffic Sign, and Flower. Pertur-
bation budgets selected result in unnoticeable perturbations. Iris attack targets at
VGG16 layer 15 (out of 16 layers). Traffic Sign attack targets at VGG16 layer 10 (out
of 16 layers), and Flower attack targets at ResNet50 layer 49 (out of 50 layers).

160

Appendix Chapter A

 Source Adversarial Target Source Adversarial Target

(a) Google Cloud ML (P = 0.001)

 Source Adversarial Target Source Adversarial Target

(b) Microsoft CNTK (P = 0.003)

 Source Adversarial Target Source Adversarial Target

(c) PyTorch (P = 0.001)

Figure A.4: Adversarial images generated for Student models trained on Google Cloud
ML, Microsoft CNTK, and PyTorch. Attacks using these samples achieve targeted
success rate of 96.5%, 99.4%, and 88.0% in corresponding models.

161

Appendix Chapter A

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Dropout Ratio

Non-targeted
Classification
Targeted

(a) Face.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04 0.05
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Dropout Ratio

Non-targeted
Classification
Targeted

(b) Iris.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04 0.05
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Dropout Ratio

Classification
Non-targeted

Targeted

(c) Traffic Sign.

Figure A.5: Performance of applying Dropout as defense with different Dropout ratio
in Face, Iris, and Traffic Sign.

162

Appendix Chapter A

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10K 20K 30K
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Neuron Distance Threshold

Classification
Non-targeted

Targeted

(a) Face.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2K 4K 6K 8K 10K
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Neuron Distance Threshold

Non-targeted
Classification

Targeted

(b) Iris.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 5K 10K 15K 20K 25K 30K
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

A
tt

a
c
k
 S

u
c
c
e

s
s
 R

a
te

Neuron Distance Threshold

Classification
Non-targeted

Targeted

(c) Traffic Sign.

Figure A.6: Performance of modifying Student as defense with different distance
thresholds in Face, Iris, and Traffic Sign.

163

A.3 Appendix of Identifying and Mitigating Back-

door Attacks in Neural Networks

(a) MNIST (b) GTSRB (c) YouTube Face

(d) PubFig (e) Trojan Square (f) Trojan WM

Figure A.7: Examples of adversarial images with white square trigger added to the
bottom right corner of the image.

164

Task / Dataset # of Labels
Training
Set Size

Testing
Set Size

Training Configuration

MNIST 10 50,000 10,000 inject ratio=0.1, epochs=5, batch=32, optimizer=Adam, lr=0.001
GTSRB 43 35,288 12,630 inject ratio=0.1, epochs=10, batch=32, optimizer=Adam, lr=0.001

YouTube Face 1,283 375,645 64,150 inject ratio=0.1, epochs=10, batch=32, optimizer=Adadelta, lr=0.1

PubFig 65 5,850 650
inject ratio=0.1, epochs=15, batch=32, optimizer=Adadelta, lr=0.1

First 12 layers are frozen during training. First 5 epochs are trained using clean data only.

Table A.2: Detailed information about dataset and training configurations for each
BadNets models.

Layer Type # of Channels Filter Size Stride Activation

Conv 16 5×5 1 ReLU
MaxPool 16 2×2 2 -

Conv 32 5×5 1 ReLU
MaxPool 32 2×2 2 -

FC 512 - - ReLU
FC 10 - - Softmax

Table A.3: Mode Architecture for MNIST. FC stands for fully-connected layer.

Layer Type # of Channels Filter Size Stride Activation

Conv 32 3×3 1 ReLU
Conv 32 3×3 1 ReLU

MaxPool 32 2×2 2 -
Conv 64 3×3 1 ReLU
Conv 64 3×3 1 ReLU

MaxPool 64 2×2 2 -
Conv 128 3×3 1 ReLU
Conv 128 3×3 1 ReLU

MaxPool 128 2×2 2 -
FC 512 - - ReLU
FC 43 - - Softmax

Table A.4: Model Architecture for GTSBR.

165

Layer Name (Type) # of Channels Filter Size Stride Activation Connected to

conv 1 (Conv) 20 4×4 2 ReLU
pool 1 (MaxPool) 2×2 2 - conv 1

conv 2 (Conv) 40 3×3 2 ReLU pool 1
pool 2 (MaxPool) 2×2 2 - conv 2

conv 3 (Conv) 60 3×3 2 ReLU pool 2
pool 3 (MaxPool) 2×2 2 - conv 3

fc 1 (FC) 160 - - - pool 3
conv 4 (Conv) 80 2×2 1 ReLU pool 3

fc 2 (FC) 160 - - - conv 4
add 1 (Add) - - - ReLU fc 1, fc 2

fc 3 (FC) 1280 - - Softmax add 1

Table A.5: DeepID Model Architecture for YouTube Face.

Layer Type # of Channels Filter Size Stride Activation

Conv 64 3×3 1 ReLU
Conv 64 3×3 1 ReLU

MaxPool 64 2×2 2 -
Conv 128 3×3 1 ReLU
Conv 128 3×3 1 ReLU

MaxPool 128 2×2 2 -
Conv 256 3×3 1 ReLU
Conv 256 3×3 1 ReLU
Conv 256 3×3 1 ReLU

MaxPool 256 2×2 2 -
Conv 512 3×3 1 ReLU
Conv 512 3×3 1 ReLU
Conv 512 3×3 1 ReLU

MaxPool 512 2×2 2 -
Conv 512 3×3 1 ReLU
Conv 512 3×3 1 ReLU
Conv 512 3×3 1 ReLU

MaxPool 512 2×2 2 -
FC 4096 - - ReLU
FC 4096 - - ReLU
FC 65 - - Softmax

Table A.6: Model Architecture for PubFig.

166

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

(a) MNIST

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

(b) GTSRB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

(c) YouTube Face

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

(d) PubFig

Figure A.8: Classification accuracy and attack success rate using original/reversed
trigger when pruning backdoor-related neurons at the second to last layer.

167

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

(a) MNIST

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.04 0.08 0.12 0.16 0.2
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

(b) GTSRB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

(c) YouTube Face

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

A
tt
a
c
k
 S

u
c
c
e
s
s
 R

a
te

Ratio of Neurons Pruned

Classification
Attack w/ Original Trigger

Attack w/ Reversed Trigger

(d) PubFig

Figure A.9: Classification accuracy and attack success rate of original/reversed trigger
when pruning backdoor-related neurons at the last convolution layer.

168

Bibliography

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ImageNet: A
Large-Scale Hierarchical Image Database, in CVPR09, 2009.

[2] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, Vggface2: A dataset
for recognising faces across pose and age, in Proc. of FG, 2018.

[3] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore,
M. Plakal, and M. Ritter, Audio set: An ontology and human-labeled dataset for
audio events, in Proc. of ICASSP, 2017.

[4] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and
T. Robinson, One billion word benchmark for measuring progress in statistical
language modeling, arXiv:1312.3005 (2013).

[5] K. Winstein and H. Balakrishnan, Tcp ex machina: Computer-generated
congestion control, in Proc. of SIGCOMM, 2013.

[6] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image
recognition, in Proc. of CVPR, 2016.

[7] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et. al., Google’s neural machine translation system:
Bridging the gap between human and machine translation, arXiv preprint
arXiv:1609.08144 (2016).

[8] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556 (2014).

[9] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, Inception-v4,
inception-resnet and the impact of residual connections on learning., in AAAI,
2017.

[10] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, Densely connected
convolutional networks, in Proc. of CVPR, 2017.

169

[11] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et. al., Mastering the game of go without
human knowledge, Nature 550 (2017), no. 7676 354.

[12] “Applying machine learning science to Facebook products.”
https://research.fb.com/category/machine-learning/.

[13] “AI is transforming Google Search. The rest of the web is next..”
https://www.wired.com/2016/02/

ai-is-changing-the-technology-behind-google-searches/, 2016.

[14] “Generating Recommendations at Amazon Scale with Apache Spark and Amazon
DSSTNE..” https://aws.amazon.com/blogs/big-data/

generating-recommendations-at-amazon-scale-with-apache-spark-and-amazon-dsstne/,
2016.

[15] “The AIEQ Exchange Traded Fund..” https://www.aieqetf.com/.

[16] “How AI And Machine Learning Are Used To Transform The Insurance
Industry..” https://www.forbes.com/sites/bernardmarr/2017/10/24/

how-ai-and-machine-learning-are-used-to-transform-the-insurance-industry/

#3b899ff713a1, 2017.

[17] A. L. Buczak and E. Guven, A survey of data mining and machine learning
methods for cyber security intrusion detection, IEEE Communications Surveys &
Tutorials 18 (2016), no. 2 1153–1176.

[18] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang, Abusive language
detection in online user content, in Proc. of WWW, 2016.

[19] “Inside Waymo’s strategy to grow the best brains for self-driving cars..”
https://www.theverge.com/2018/5/9/17307156/

google-waymo-driverless-cars-deep-learning-neural-net-interview,
2018.

[20] “Deep Learning for Siri’s Voice: On-device Deep Mixture Density Networks for
Hybrid Unit Selection Synthesis..”
https://machinelearning.apple.com/2017/08/06/siri-voices.html, 2017.

[21] “The Scalable Neural Architecture behind Alexa’s Ability to Select Skills..”
https://developer.amazon.com/blogs/alexa/post/

4e6db03f-6048-4b62-ba4b-6544da9ac440/

the-scalable-neural-architecture-behind-alexa-s-ability-to-arbitrate-skills,
2018.

170

https://research.fb.com/category/machine-learning/
https://www.wired.com/2016/02/ai-is-changing-the-technology-behind-google-searches/
https://www.wired.com/2016/02/ai-is-changing-the-technology-behind-google-searches/
https://aws.amazon.com/blogs/big-data/generating-recommendations-at-amazon-scale-with-apache-spark-and-amazon-dsstne/
https://aws.amazon.com/blogs/big-data/generating-recommendations-at-amazon-scale-with-apache-spark-and-amazon-dsstne/
https://www.aieqetf.com/
https://www.forbes.com/sites/bernardmarr/2017/10/24/how-ai-and-machine-learning-are-used-to-transform-the-insurance-industry/#3b899ff713a1
https://www.forbes.com/sites/bernardmarr/2017/10/24/how-ai-and-machine-learning-are-used-to-transform-the-insurance-industry/#3b899ff713a1
https://www.forbes.com/sites/bernardmarr/2017/10/24/how-ai-and-machine-learning-are-used-to-transform-the-insurance-industry/#3b899ff713a1
https://www.theverge.com/2018/5/9/17307156/google-waymo-driverless-cars-deep-learning-neural-net-interview
https://www.theverge.com/2018/5/9/17307156/google-waymo-driverless-cars-deep-learning-neural-net-interview
https://machinelearning.apple.com/2017/08/06/siri-voices.html
https://developer.amazon.com/blogs/alexa/post/4e6db03f-6048-4b62-ba4b-6544da9ac440/the-scalable-neural-architecture-behind-alexa-s-ability-to-arbitrate-skills
https://developer.amazon.com/blogs/alexa/post/4e6db03f-6048-4b62-ba4b-6544da9ac440/the-scalable-neural-architecture-behind-alexa-s-ability-to-arbitrate-skills
https://developer.amazon.com/blogs/alexa/post/4e6db03f-6048-4b62-ba4b-6544da9ac440/the-scalable-neural-architecture-behind-alexa-s-ability-to-arbitrate-skills

[22] “State-of-the-Art AI: Building Tomorrow’s Intelligent Systems..”
https://events.technologyreview.com/video/watch/

peter-norvig-state-of-the-art-ai/, 2016.

[23] “LeCun vs Rahimi: Has Machine Learning Become Alchemy?..”
https://medium.com/@Synced/

lecun-vs-rahimi-has-machine-learning-become-alchemy-21cb1557920d,
2017.

[24] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, Intriguing properties of neural networks, arXiv preprint
arXiv:1312.6199 (2013).

[25] N. Carlini and D. Wagner, Towards evaluating the robustness of neural networks,
in Proc. of S&P, 2017.

[26] A. Athalye, N. Carlini, and D. Wagner, Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples, in Proc. of ICML, 2018.

[27] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, Trojaning
attack on neural networks, in Proc. of NDSS, 2018.

[28] T. Gu, B. Dolan-Gavitt, and S. Garg, Badnets: Identifying vulnerabilities in the
machine learning model supply chain, in Proc. of Machine Learning and
Computer Security Workshop, 2017.

[29] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and M. Feng,
Opprentice: Towards practical and automatic anomaly detection through machine
learning, in Proc. of IMC, 2015.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ImageNet
Large Scale Visual Recognition Challenge, IJCV 115 (2015), no. 3 211–252.

[31] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin, Breakdown of the internet
under intentional attack, Physical Review Letters 86 (2001) 3682–5.

[32] S. Saroiu, K. Gummadi, and S. D. Gribble, A measurement study of peer-to-peer
file sharing systems, in Proc. of MMCN, 2002.

[33] L. Zhang, D. Choffnes, T. Dumitras, D. Levin, A. Mislove, A. Schulman, and
C. Wilson, Analysis of ssl certificate reissues and revocations in the wake of
heartbleed, in Proc. of IMC, 2014.

[34] B. Delamore and R. K. L. Ko, A global, empirical analysis of the shellshock
vulnerability in web applications, in Proc. of ISPA, 2015.

171

https://events.technologyreview.com/video/watch/peter-norvig-state-of-the-art-ai/
https://events.technologyreview.com/video/watch/peter-norvig-state-of-the-art-ai/
https://medium.com/@Synced/lecun-vs-rahimi-has-machine-learning-become-alchemy-21cb1557920d
https://medium.com/@Synced/lecun-vs-rahimi-has-machine-learning-become-alchemy-21cb1557920d

[35] A. L. Samuel, Some studies in machine learning using the game of checkers, IBM
Journal of research and development 3 (1959), no. 3 210–229.

[36] G. Cybenko, Approximation by superpositions of a sigmoidal function,
Mathematics of control, signals and systems 2 (1989), no. 4 303–314.

[37] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural
networks 4 (1991), no. 2 251–257.

[38] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and
T. Goldstein, Poison frogs! targeted clean-label poisoning attacks on neural
networks, arXiv preprint arXiv:1804.00792 (2018).

[39] O. Suciu, R. Mărginean, Y. Kaya, H. Daumé III, and T. Dumitraş, When does
machine learning fail? generalized transferability for evasion and poisoning
attacks, in Proc. of USENIX Security, 2018.

[40] B. Biggio, B. Nelson, and P. Laskov, Poisoning attacks against support vector
machines, in Proc. of ICML, 2012.

[41] Y. Cao, A. F. Yu, A. Aday, E. Stahl, J. Merwine, and J. Yang, Efficient repair of
polluted machine learning systems via causal unlearning, in Proc. of ASIACCS,
2018.

[42] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
Manipulating machine learning: Poisoning attacks and countermeasures for
regression learning, in Proc. of IEEE S&P, 2018.

[43] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, Targeted backdoor attacks on deep
learning systems using data poisoning, arXiv preprint arXiv:1712.05526 (2017).

[44] P. Sarkar, D. Chakrabarti, and M. I. Jordan, Nonparametric link prediction in
dynamic networks, in Proc. of ICML, 2012.

[45] Q. Liu, S. Tang, X. Zhang, X. Zhao, B. Y. Zhao, and H. Zheng, Network growth
and link prediction through an empirical lens, in Proc. of IMC, 2016.

[46] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y. Zhao, Whispers in
the dark: Analysis of an anonymous social network, in Proc. of IMC, 2014.

[47] G. Wang, X. Zhang, S. Tang, H. Zheng, and B. Y. Zhao, Unsupervised clickstream
clustering for user behavior analysis, in Proc. of CHI, 2016.

[48] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, An experimental
study of the learnability of congestion control, in Proc. of SIGCOMM, 2014.

172

[49] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
Fingerprinting the datacenter: Automated classification of performance crises, in
Proc. of EuroSys, 2010.

[50] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, Detecting large-scale
system problems by mining console logs, in Proc. of SOSP, 2009.

[51] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Padmanabhan, and G. M.
Voelker, Netprints: Diagnosing home network misconfigurations using shared
knowledge, in Proc. of NSDI, 2009.

[52] L. Bottou and C.-J. Lin, Support vector machine solvers, Large scale kernel
machines (2007) 301–320.

[53] A. Asuncion and D. Newman, “UCI machine learning repository.”
http://archive.ics.uci.edu/ml, 2007.

[54] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida, Detecting spammers on
twitter, in Proc. of CEAS, 2010.

[55] G. Wang, T. Konolige, C. Wilson, X. Wang, H. Zheng, and B. Y. Zhao, You are
how you click: Clickstream analysis for sybil detection, in Proc. of Usenix
Security, 2013.

[56] D. J. Whellan, R. H. Tuttle, E. J. Velazquez, L. K. Shaw, J. G. Jollis, W. Ellis,
C. M. O’connor, R. M. Califf, and S. Borges-Neto, Predicting significant coronary
artery disease in patients with left ventricular dysfunction, American heart
journal 152 (2006), no. 2 340–347.

[57] M. C. Brouwer, A. R. Tunkel, and D. van de Beek, Epidemiology, diagnosis, and
antimicrobial treatment of acute bacterial meningitis, Clinical microbiology
reviews 23 (2010), no. 3 467–492.

[58] H. Costa, L. H. de Campos Merschmann, F. Barth, and F. Benevenuto, Pollution,
bad-mouthing, and local marketing: The underground of location-based social
networks, Elsevier Information Sciences (2014).

[59] H. Costa, F. Benevenuto, and L. H. Merschmann, Detecting tip spam in
location-based social networks, in Proc. of SAC, 2013.

[60] F. E. Harrell, Va lung cancer dataset, 2006.

[61] F. E. Harrell, Very low birth weight infants dataset, 2002.

[62] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, Do we need
hundreds of classifiers to solve real world classification problems, Journal of
Machine Learning Research 15 (2014), no. 1 3133–3181.

173

http://archive.ics.uci.edu/ml

[63] N. Macià and E. Bernadó-Mansilla, Towards UCI+: A mindful repository design,
Information Sciences 261 (2014) 237–262.

[64] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining.
Addison-Wesley Longman Publishing Co., Inc., 2005.

[65] L. Breiman, Bagging predictors, Machine learning 24 (1996), no. 2 123–140.

[66] L. Breiman, Random forests, Machine learning 45 (2001), no. 1 5–32.

[67] Y. Freund and R. E. Schapire, Large margin classification using the perceptron
algorithm, Machine learning 37 (1999), no. 3 277–296.

[68] R. Herbrich, T. Graepel, and C. Campbell, Bayes point machines, Journal of
Machine Learning Research 1 (2001), no. Aug 245–279.

[69] J. H. Friedman, Stochastic gradient boosting, Computational Statistics and Data
Analysis 38 (2002), no. 4 367–378.

[70] J. Shotton, T. Sharp, P. Kohli, S. Nowozin, J. Winn, and A. Criminisi, Decision
jungles: Compact and rich models for classification, in Proc. of NIPS, 2013.

[71] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by
back-propagating errors, Cognitive modeling 5 (1988), no. 3 1.

[72] R. Caruana and A. Niculescu-Mizil, An empirical comparison of supervised
learning algorithms, in Proc. of ICML, 2006.

[73] R. Caruana, N. Karampatziakis, and A. Yessenalina, An empirical evaluation of
supervised learning in high dimensions, in Proc. of ICML, 2008.

[74] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures.
CRC Press, 2003.

[75] N. Macià, E. Bernadó-Mansilla, A. Orriols-Puig, and T. K. Ho, Learner excellence
biased by data set selection: A case for data characterisation and artificial data
sets, Pattern Recognition 46 (2013), no. 3 1054–1066.

[76] J.-P. Vert, K. Tsuda, and B. Schölkopf, A primer on kernel methods, Kernel
Methods in Computational Biology (2004) 35–70.

[77] S. Chan, T. Stone, K. P. Szeto, and K. H. Chan, Predictionio: a distributed
machine learning server for practical software development, in Proc. of CIKM,
2013.

[78] M. Ribeiro, K. Grolinger, and M. A. Capretz, Mlaas: Machine learning as a
service, in Proc. of ICMLA, 2015.

174

[79] M. Fredrikson, S. Jha, and T. Ristenpart, Model inversion attacks that exploit
confidence information and basic countermeasures, in Proc. of CCS, 2015.

[80] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, Membership inference attacks
against machine learning models, in Proc. of IEEE S&P, 2017.

[81] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, Stealing machine
learning models via prediction apis, in Proc. of USENIX Security, 2016.

[82] J. Vanschoren, H. Blockeel, B. Pfahringer, and G. Holmes, Experiment databases,
Machine Learning 87 (2012), no. 2 127–158.

[83] R. Maclin and D. Opitz, An empirical evaluation of bagging and boosting, in Proc.
of AAAI, 1997.

[84] C. Perlich, F. Provost, and J. S. Simonoff, Tree induction vs. logistic regression:
A learning-curve analysis, Journal of Machine Learning Research 4 (2003),
no. Jun 211–255.

[85] D. Opitz and R. Maclin, Popular ensemble methods: An empirical study, Journal
of Artificial Intelligence Research 11 (1999) 169–198.

[86] R. Leite, P. Brazdil, and J. Vanschoren, Selecting classification algorithms with
active testing, in Proc. of MLDM, 2012.

[87] M. R. Smith, L. Mitchell, C. Giraud-Carrier, and T. Martinez, Recommending
learning algorithms and their associated hyperparameters, in Proc. of MLAS, 2014.

[88] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, Collaborative hyperparameter
tuning, in Proc. of ICML, 2013.

[89] P. B. Brazdil, C. Soares, and J. P. Da Costa, Ranking learning algorithms: Using
IBL and meta-learning on accuracy and time results, Machine Learning 50
(2003), no. 3 251–277.

[90] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, Algorithms for
hyper-parameter optimization, in Proc. of NIPS, 2011.

[91] J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization,
Journal of Machine Learning Research 13 (2012), no. Feb 281–305.

[92] J. Snoek, H. Larochelle, and R. P. Adams, Practical bayesian optimization of
machine learning algorithms, in Proc. of NIPS, 2012.

[93] F. Hutter, H. H. Hoos, and K. Leyton-Brown, Sequential model-based
optimization for general algorithm configuration, in Proc. of LION, 2011.

175

[94] M. Feurer, J. T. Springenberg, and F. Hutter, Initializing bayesian
hyperparameter optimization via meta-learning, in Proc. of AAAI, 2015.

[95] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and
K. Leyton-Brown, Towards an empirical foundation for assessing bayesian
optimization of hyperparameters, in Proc. of NIPS, 2013.

[96] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, Auto-weka:
Combined selection and hyperparameter optimization of classification algorithms,
in Proc. of KDD, 2013.

[97] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown,
Auto-weka 2.0: Automatic model selection and hyperparameter optimization in
weka, Journal of Machine Learning Research 17 (2016) 1–5.

[98] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter,
Efficient and robust automated machine learning, in Proc. of NIPS, 2015.

[99] S. L. Salzberg, On comparing classifiers: Pitfalls to avoid and a recommended
approach, Data mining and knowledge discovery 1 (1997), no. 3 317–328.

[100] K. Wagstaff, Machine learning that matters, in Proc. of ICML, 2012.

[101] E. Keogh and S. Kasetty, On the need for time series data mining benchmarks: a
survey and empirical demonstration, Data Mining and knowledge discovery 7
(2003), no. 4 349–371.

[102] T. Hothorn, F. Leisch, A. Zeileis, and K. Hornik, The design and analysis of
benchmark experiments, Journal of Computational and Graphical Statistics 14
(2005), no. 3 675–699.

[103] M. J. Eugster, T. Hothorn, and F. Leisch, Domain-based benchmark experiments:
Exploratory and inferential analysis, Austrian Journal of Statistics 41 (2016),
no. 1 5–26.

[104] T. G. Dietterich, Approximate statistical tests for comparing supervised
classification learning algorithms, Neural computation 10 (1998), no. 7 1895–1923.

[105] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of
Machine learning research 7 (2006), no. Jan 1–30.

[106] S. Garcia and F. Herrera, An extension on “statistical comparisons of classifiers
over multiple data sets” for all pairwise comparisons, Journal of Machine
Learning Research 9 (2008), no. Dec 2677–2694.

[107] M. Goebel and L. Gruenwald, A survey of data mining and knowledge discovery
software tools, ACM SIGKDD explorations newsletter 1 (1999), no. 1 20–33.

176

[108] A. H. Wahbeh, Q. A. Al-Radaideh, M. N. Al-Kabi, and E. M. Al-Shawakfa, A
comparison study between data mining tools over some classification methods,
International Journal of Advanced Computer Science and Applications (2011)
18–26.

[109] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Holmes, and S. J.
Cunningham, Weka: Practical machine learning tools and techniques with java
implementations, 1999.

[110] F. Van Der Heijden, R. Duin, D. De Ridder, and D. M. Tax, Classification,
parameter estimation and state estimation: an engineering approach using
MATLAB. John Wiley & Sons, 2005.

[111] J. Alcalá-Fdez, L. Sánchez, S. Garcia, M. J. del Jesus, S. Ventura, J. M. Garrell,
J. Otero, C. Romero, J. Bacardit, V. M. Rivas, et. al., Keel: A software tool to
assess evolutionary algorithms for data mining problems, Soft Computing-A
Fusion of Foundations, Methodologies and Applications 13 (2009), no. 3 307–318.

[112] S. Shi, Q. Wang, P. Xu, and X. Chu, Benchmarking state-of-the-art deep learning
software tools, International Conference on Cloud Computing and Big Data
(2016) 99–104.

[113] R. C. Holte, Very simple classification rules perform well on most commonly used
datasets, Machine learning 11 (1993), no. 1 63–90.

[114] J. Luengo and F. Herrera, An automatic extraction method of the domains of
competence for learning classifiers using data complexity measures, Knowledge
and Information Systems 42 (2015), no. 1 147–180.

[115] L. Morán-Fernández, V. Bolón-Canedo, and A. Alonso-Betanzos, Can
classification performance be predicted by complexity measures? A study using
microarray data, Knowledge and Information Systems (2016) 1–24.

[116] J. Zubek and D. M. Plewczynski, Complexity curve: a graphical measure of data
complexity and classifier performance, PeerJ Computer Science 2 (2016) e76.

[117] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, The difficulty of
training deep architectures and the effect of unsupervised pre-training, in Proc. of
AISTATS, 2009.

[118] “http://www.robots.ox.ac.uk/~vgg/software/vgg_face/.” VGG Face
Descriptor.

[119] A. Kurakin, I. Goodfellow, and S. Bengio, Adversarial machine learning at scale,
in Proc. of ICLR, 2017.

177

http://www.robots.ox.ac.uk/~vgg/software/vgg_face/

[120] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, The
limitations of deep learning in adversarial settings, in Proc. of EuroS&P, 2016.

[121] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, Deepfool: a simple and
accurate method to fool deep neural networks, in Proc. of CVPR, 2016.

[122] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition, in Proc. of CCS,
2016.

[123] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
Practical black-box attacks against machine learning, in Proc. of Asia CCS, 2017.

[124] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality
assessment: from error visibility to structural similarity, IEEE Trans. on Image
Processing 13 (2004), no. 4 600–612.

[125] Z. Wang, E. P. Simoncelli, and A. C. Bovik, Multiscale structural similarity for
image quality assessment, in ACSSC, vol. 2, pp. 1398–1402, IEEE, 2003.

[126] J. Nocedal and S. Wright, Numerical optimization, series in operations research
and financial engineering, Springer, New York, USA, 2006 (2006).

[127] M. D. Zeiler, Adadelta: an adaptive learning rate method, arXiv preprint
arXiv:1212.5701 (2012).

[128] O. M. Parkhi, A. Vedaldi, A. Zisserman, et. al., Deep face recognition., in Proc. of
BMVC, 2015.

[129] “http://vision.seas.harvard.edu/pubfig83/.” PubFig83: A resource for
studying face recognition in personal photo collections.

[130] “http://biometrics.idealtest.org/.” CASIA Iris Dataset.

[131] “http://benchmark.ini.rub.de/?section=gtsrb&subsection=news.” The
German Traffic Sign Recognition Benchmark.

[132] “https://docs.microsoft.com/en-us/cognitive-toolkit/
Build-your-own-image-classifier-using-Transfer-Learning.” Build your
own image classifier using transfer learning.

[133] “http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html.” 102
Category Flower Dataset.

[134] F. Chollet et. al., “Keras.” https://keras.io, 2015.

[135] TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

178

http://vision.seas.harvard.edu/pubfig83/
http://biometrics.idealtest.org/
http://benchmark.ini.rub.de/?section=gtsrb&subsection=news
https://docs.microsoft.com/en-us/cognitive-toolkit/Build-your-own-image-classifier-using-Transfer-Learning
https://docs.microsoft.com/en-us/cognitive-toolkit/Build-your-own-image-classifier-using-Transfer-Learning
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
https://keras.io

[136] N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri, A. Matyasko,
K. Hambardzumyan, Y.-L. Juang, A. Kurakin, R. Sheatsley, A. Garg, and Y.-C.
Lin, cleverhans v2.0.0: an adversarial machine learning library, arXiv (2017).

[137] Y. Liu, X. Chen, C. Liu, and D. Song, Delving into transferable adversarial
examples and black-box attacks, in Proc. of ICLR, 2016.

[138] M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional
networks, in Proc. of ECCV, 2014.

[139] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich, et. al., Going deeper with convolutions, in Proc. of
CVPR, 2015.

[140] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, Mobilenets: Efficient convolutional neural networks
for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017).

[141] “http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html.” 17
Category Flower Dataset.

[142] C. Gini, Italian: Variabilità e mutabilità (variability and mutability), Cuppini,
Bologna (1912).

[143] Y. Yao, Z. Xiao, B. Wang, B. Viswanath, H. Zheng, and B. Y. Zhao, Complexity
vs. performance: empirical analysis of machine learning as a service, in Proc. of
IMC, 2017.

[144] “https://codelabs.developers.google.com/codelabs/
cpb102-txf-learning/index.html#0.” Image Classification Transfer Learning
with Inception v3.

[145] “https:
//www.tensorflow.org/versions/r0.12/how_tos/image_retraining/.” How
to Retrain Inception’s Final Layer for New Categories.

[146] “http:
//pytorch.org/tutorials/beginner/transfer_learning_tutorial.html.”
PyTorch transfer learning tutorial.

[147] “https://cloud.google.com/blog/big-data/2017/08/
how-aucnet-leveraged-tensorflow-to-transform-their-it-engineers-into-machine-learning-engineers.”
How Aucnet leveraged TensorFlow to transform their IT engineers into machine
learning engineers.

[148] N. Carlini and D. Wagner, Adversarial examples are not easily detected:
Bypassing ten detection methods, in Proc. of AISec, 2017.

179

http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html
https://codelabs.developers.google.com/codelabs/cpb102-txf-learning/index.html#0
https://codelabs.developers.google.com/codelabs/cpb102-txf-learning/index.html#0
https://www.tensorflow.org/versions/r0.12/how_tos/image_retraining/
https://www.tensorflow.org/versions/r0.12/how_tos/image_retraining/
http://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
http://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://cloud.google.com/blog/big-data/2017/08/how-aucnet-leveraged-tensorflow-to-transform-their-it-engineers-into-machine-learning-engineers
https://cloud.google.com/blog/big-data/2017/08/how-aucnet-leveraged-tensorflow-to-transform-their-it-engineers-into-machine-learning-engineers

[149] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, Detecting adversarial
samples from artifacts, arXiv preprint arXiv:1703.00410 (2017).

[150] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting., JMLR 15
(2014), no. 1 1929–1958.

[151] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, Improving the robustness of deep
neural networks via stability training, in Proc. of CVPR, 2016.

[152] M. Abbasi and C. Gagné, Robustness to adversarial examples through an
ensemble of specialists, in Proc. of Workshop on ICLR, 2017.

[153] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, Adversarial example defenses:
Ensembles of weak defenses are not strong, in Proc. of USENIX Workshop on
Offensive Technologies, 2017.

[154] J.-C. Chen, R. Ranjan, A. Kumar, C.-H. Chen, V. M. Patel, and R. Chellappa,
An end-to-end system for unconstrained face verification with deep convolutional
neural networks, in Proc. of Workshop on ICCV, 2015.

[155] S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object
detection with region proposal networks, in Proc. of NIPS, 2015.

[156] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified,
real-time object detection, in Proc. of CVPR, 2016.

[157] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and
L. Van Gool, One-shot video object segmentation, in Proc. of CVPR, 2017.

[158] J. Kunze, L. Kirsch, I. Kurenkov, A. Krug, J. Johannsmeier, and S. Stober,
Transfer learning for speech recognition on a budget, in Proc. of RepL4NLP, 2017.

[159] D. Wang and T. F. Zheng, Transfer learning for speech and language processing,
in Proc. of APSIPA, 2015.

[160] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin, and
J. Dean, Multilingual acoustic models using distributed deep neural networks, in
Proc. of ICASSP, 2013.

[161] D. C. Cireşan, U. Meier, and J. Schmidhuber, Transfer learning for latin and
chinese characters with deep neural networks, in Proc of IJCNN, 2012.

[162] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat,
F. Viégas, M. Wattenberg, G. Corrado, et. al., Google’s multilingual neural
machine translation system: enabling zero-shot translation, in Proc. of ACL, 2017.

180

[163] T. Mikolov, Q. V. Le, and I. Sutskever, Exploiting similarities among languages
for machine translation, arXiv preprint arXiv:1309.4168 (2013).

[164] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, How transferable are features in
deep neural networks?, in Proc. of NIPS, 2014.

[165] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, Cnn features
off-the-shelf: an astounding baseline for recognition, in Proc. of Workshop on
CVPR, 2014.

[166] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet, Adversarial manipulation of deep
representations, in Proc. of ICLR, 2015.

[167] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash, A. Rahmati,
and D. Song, Robust Physical-World Attacks on Deep Learning Models, in arXiv
preprint 1707.08945, 2017.

[168] A. Kurakin, I. Goodfellow, and S. Bengio, Adversarial examples in the physical
world, in Proc. of ICLR, 2016.

[169] A. Nguyen, J. Yosinski, and J. Clune, Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images, in Proc. of CVPR, 2015.

[170] F. Tramèr, F. Zhang, A. Juels, M. Reiter, and T. Ristenpart, Stealing machine
learning models via prediction apis, in Proc. of USENIX Security, 2016.

[171] N. Papernot, P. McDaniel, and I. Goodfellow, Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples, arXiv preprint
arXiv:1605.07277 (2016).

[172] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, The space of
transferable adversarial examples, arXiv preprint arXiv:1704.03453 (2017).

[173] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, On detecting adversarial
perturbations, in Proc. of ICLR, 2017.

[174] Q. Wang, W. Guo, K. Zhang, A. G. Ororbia II, X. Xing, X. Liu, and C. L. Giles,
Adversary resistant deep neural networks with an application to malware
detection, in Proc. of KDD, 2017.

[175] D. Hendrycks and K. Gimpel, Early methods for detecting adversarial images, in
ICLR Workshop Track, 2017.

[176] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, On the
(statistical) detection of adversarial examples, arXiv preprint arXiv:1702.06280
(2017).

181

[177] X. Li and F. Li, Adversarial examples detection in deep networks with
convolutional filter statistics, arXiv preprint arXiv:1612.07767 (2016).

[178] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, Distillation as a defense
to adversarial perturbations against deep neural networks, in Proc. of S&P, 2016.

[179] Q. Wang, W. Guo, K. Zhang, A. G. O. II, X. Xing, X. Liu, and C. L. Giles,
Adversary resistant deep neural networks with an application to malware
detection, in Proc. of KDD, 2017.

[180] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, Drebin:
Effective and explainable detection of an- droid malware in your pocket, in Proc.
of NDSS, 2014.

[181] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, Neural nets can learn function type
signatures from binaries, in Proc. of USENIX Security, 2017.

[182] E. C. R. Shin, D. Song, and R. Moazzezi, Recognizing functions in binaries with
neural networks, in Proc. of USENIX Security, 2015.

[183] H. Debar, M. Becker, and D. Siboni, A neural network component for an
intrusion detection system, in Proc. of IEEE S&P, 1992.

[184] C. Wierzynski, “The Challenges and Opportunities of Explainable AI.” https:

//ai.intel.com/the-challenges-and-opportunities-of-explainable-ai,
Jan., 2018.

[185] “FICO’s Explainable Machine Learning Challenge.”
https://community.fico.com/s/explainable-machine-learning-challenge,
2018.

[186] Z. C. Lipton, The mythos of model interpretability, in ICML Workshop on Human
Interpretability in Machine Learning, 2016.

[187] S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model
predictions, in Proc. of NIPS, 2017.

[188] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Muller, and W. Samek,
On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation, PloS One 10 (July, 2015).

[189] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, Lemna: Explaining deep
learning based security applications, in Proc. of CCS, 2018.

[190] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, Intriguing properties of neural networks, in Proc. of ICLR, 2014.

182

https://ai.intel.com/the-challenges-and-opportunities-of-explainable-ai
https://ai.intel.com/the-challenges-and-opportunities-of-explainable-ai
https://community.fico.com/s/explainable-machine-learning-challenge

[191] K. Liu, B. Dolan-Gavitt, and S. Garg, Fine-pruning: Defending against
backdooring attacks on deep neural networks, in Proc. of RAID, 2018.

[192] Y. Liu, Y. Xie, and A. Srivastava, Neural trojans, in Proc. of ICCD, 2017.

[193] “https://cloud.google.com/automl/#features.” Google Cloud AutoML
Features.

[194] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, Understanding neural
networks through deep visualization, arXiv preprint arXiv:1506.06579 (2015).

[195] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[196] F. R. Hampel, The influence curve and its role in robust estimation, Journal of
the American Statistical Association 69 (1974), no. 346 383–393.

[197] P. J. Rousseeuw and C. Croux, Alternatives to the median absolute deviation,
Journal of the American Statistical association 88 (1993), no. 424 1273–1283.

[198] “https://www.cs.tau.ac.il/~wolf/ytfaces/.” YouTube Faces DB.

[199] Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon,
U. Muller, E. Sackinger, P. Simard, et. al., Learning algorithms for classification:
A comparison on handwritten digit recognition, Neural networks: the statistical
mechanics perspective 261 (1995) 276.

[200] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition, Neural
Networks (2012).

[201] Y. Sun, X. Wang, and X. Tang, Deep learning face representation from predicting
10,000 classes, in Proc. of CVPR, 2014.

[202] “http://www.cs.columbia.edu/CAVE/databases/pubfig/.” PubFig: Public
Figures Face Database.

[203] “http://www.robots.ox.ac.uk/~vgg/data/vgg_face/.” VGG Face Dataset.

[204] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures, arXiv preprint
arXiv:1607.03250 (2016).

[205] B. Wang and N. Z. Gong, Stealing hyperparameters in machine learning, in Proc.
of S&P, 2018.

[206] J. Clements and Y. Lao, Hardware trojan attacks on neural networks, arXiv
preprint arXiv:1806.05768 (2018).

183

https://cloud.google.com/automl/#features
https://www.cs.tau.ac.il/~wolf/ytfaces/
http://www.cs.columbia.edu/CAVE/databases/pubfig/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face/

[207] W. Li, J. Yu, X. Ning, P. Wang, Q. Wei, Y. Wang, and H. Yang, Hu-fu: Hardware
and software collaborative attack framework against neural networks, in Proc. of
ISVLSI, 2018.

[208] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
Manipulating machine learning: Poisoning attacks and countermeasures for
regression learning, in Proc. of IEEE S&P, 2018.

[209] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao, N. Taft,
and J. Tygar, Antidote: understanding and defending against poisoning of
anomaly detectors, in Proc. of IMC, 2009.

[210] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and N. K. Jha, Systematic
poisoning attacks on and defenses for machine learning in healthcare, IEEE
journal of biomedical and health informatics 19 (2015), no. 6 1893–1905.

[211] J. Steinhardt, P. W. W. Koh, and P. S. Liang, Certified defenses for data
poisoning attacks, in Proc. of NIPS, 2017.

[212] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis,
Casting out demons: Sanitizing training data for anomaly sensors, in Proc. of
IEEE S&P, 2008.

[213] N. Carlini and D. Wagner, Towards evaluating the robustness of neural networks,
in Proc. of IEEE S&P, 2017.

[214] A. Kurakin, I. Goodfellow, and S. Bengio, Adversarial machine learning at scale,
in Proc. of ICLR, 2017.

[215] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, The
limitations of deep learning in adversarial settings, in Proc. of Euro S&P, 2016.

[216] Y. Liu, X. Chen, C. Liu, and D. Song, Delving into transferable adversarial
examples and black-box attacks, in Proc. of ICLR, 2016.

[217] B. Wang, Y. Yao, B. Viswanath, Z. Haitao, and B. Y. Zhao, With great training
comes great vulnerability: Practical attacks against transfer learning, in Proc. of
USENIX Security, 2018.

[218] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, Distillation as a
defense to adversarial perturbations against deep neural networks, in Proc. of
IEEE S&P, 2016.

[219] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, Towards deep
learning models resistant to adversarial attacks, in Proc. of ICLR, 2018.

184

[220] H. Kannan, A. Kurakin, and I. Goodfellow, Adversarial logit pairing, arXiv
preprint arXiv:1803.06373 (2018).

[221] D. Meng and H. Chen, Magnet: a two-pronged defense against adversarial
examples, in Proc. of CCS, 2017.

[222] W. Xu, D. Evans, and Y. Qi, Feature squeezing: Detecting adversarial examples
in deep neural networks, in Proc. of NDSS, 2018.

[223] N. Carlini and D. Wagner, Defensive distillation is not robust to adversarial
examples, arXiv preprint arXiv:1607.04311 (2016).

[224] W. He, J. Wei, X. Chen, N. Carlini, and D. Song, Adversarial example defenses:
Ensembles of weak defenses are not strong, in Proc. of WOOT, 2017.

[225] N. Carlini and D. Wagner, Magnet and efficient defenses against adversarial
attacks are not robust to adversarial examples, arXiv preprint arXiv:1711.08478
(2017).

[226] A. Athalye, N. Carlini, and D. Wagner, Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples, in Proc. of ICML, 2018.

[227] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, Adversarial patch,
arXiv preprint arXiv:1712.09665 (2017).

[228] M. T. Ribeiro, S. Singh, and C. Guestrin, Why should i trust you?: Explaining
the predictions of any classifier, in Proc. of KDD, 2016.

[229] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, Lemna: Explaining deep
learning based security applications, in Proc. of CCS, 2018.

[230] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, Ai 2: Safety and robustness certification of neural networks with
abstract interpretation, in Proc. of IEEE S&P, 2018.

[231] M. Mirman, T. Gehr, and M. Vechev, Differentiable abstract interpretation for
provably robust neural networks, in Proc. of ICML, 2018.

[232] G. Singh, G. Timon, M. Mirman, M. Puschel, and M. Vechev, Fast and effective
robustness certification, in Proc. of NIPS, 2018.

[233] D. Hendrycks and K. Gimpel, Early methods for detecting adversarial images, in
Proc. of ICLR Workshop, 2016.

[234] G. Wang, T. Wang, B. Wang, D. Sambasivan, Z. Zhang, H. Zheng, and B. Y.
Zhao, Crowds on wall street: Extracting value from collaborative investing
platforms, in Proc. of CSCW, 2015.

185

[235] B. Wang, X. Zhang, G. Wang, H. Zheng, and B. Y. Zhao, Anatomy of a
personalized livestreaming system, in Proc. of IMC, 2016.

[236] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Y. Zhao, Whispers in
the dark: analysis of an anonymous social network, in Proc. of IMC, 2014.

[237] Y. Yao, Z. Xiao, B. Wang, B. Viswanath, H. Zheng, and B. Y. Zhao, Complexity
vs. performance: empirical analysis of machine learning as a service, in Proc. of
IMC, 2017.

[238] “Amazon machine learning developer guide.” http://docs.aws.amazon.com/

machine-learning/latest/dg/machinelearning-dg.pdf.

186

http://docs.aws.amazon.com/machine-learning/latest/dg/machinelearning-dg.pdf
http://docs.aws.amazon.com/machine-learning/latest/dg/machinelearning-dg.pdf

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Quantifying Impact of Machine Learning System Design
	Robustness of Deep Learning Models against Adversarial Attacks
	Identifying and Mitigating Backdoors in Neural Networks

	Background
	A Brief Introduction of Machine Learning
	Data Constraint and Transfer Learning
	Data Poisoning and Hidden Backdoor

	Complexity vs. Performance: Empirical Analysis of Machine Learning as a Service
	Introduction
	Understanding MLaaS platforms
	Methodology
	Complexity vs. Performance
	Risks of Increasing Complexity
	Hidden Optimizations
	Related Work
	Limitations
	Conclusions

	Practical Attacks against Transfer Learning
	Introduction
	Background
	Attacks on Transfer Learning
	Experimental Results
	Experiments with Real ML Services
	Developing Robust Defenses
	Related Work
	Conclusion

	Identifying and Mitigating Backdoor Attacks in Neural Networks
	Introduction
	Background: Backdoor Injection in DNNs
	Overview of Our Approach against Backdoors
	Detailed Detection Methodology
	Experimental Validation of Backdoor Detection and Trigger Identification
	Mitigation of Backdoors
	Robustness against Advanced Backdoors
	Failed Attempts and Lessons
	Related Work
	Conclusion and Future Work

	Conclusions and Discussions
	Summary
	Discussions
	Lessons of General Research from a Retrospective View

	Appendix
	Appendix of Empirical Analysis of Machine Learning as a Service
	Appendix of Practical Attacks against Transfer Learning
	Appendix of Identifying and Mitigating Backdoor Attacks in Neural Networks

	Bibliography

