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Ras Conformational Switching: Simulating Nucleotide-
Dependent Conformational Transitions with Accelerated
Molecular Dynamics
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1 Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California, United States of America,
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Abstract

Ras mediates signaling pathways controlling cell proliferation and development by cycling between GTP- and GDP-bound
active and inactive conformational states. Understanding the complete reaction path of this conformational change and its
intermediary structures is critical to understanding Ras signaling. We characterize nucleotide-dependent conformational
transition using multiple-barrier-crossing accelerated molecular dynamics (aMD) simulations. These transitions, achieved for
the first time for wild-type Ras, are impossible to observe with classical molecular dynamics (cMD) simulations due to the
large energetic barrier between end states. Mapping the reaction path onto a conformer plot describing the distribution of
the crystallographic structures enabled identification of highly populated intermediate structures. These structures have
unique switch orientations (residues 25–40 and 57–75) intermediate between GTP and GDP states, or distinct loop3 (46–49),
loop7 (105–110), and a5 C-terminus (159–166) conformations distal from the nucleotide-binding site. In addition, these
barrier-crossing trajectories predict novel nucleotide-dependent correlated motions, including correlations of a2 (residues
66–74) with a3-loop7 (93–110), loop2 (26–37) with loop10 (145–151), and loop3 (46–49) with a5 (152–167). The
interconversion between newly identified Ras conformations revealed by this study advances our mechanistic
understanding of Ras function. In addition, the pattern of correlated motions provides new evidence for a dynamic
linkage between the nucleotide-binding site and the membrane interacting C-terminus critical for the signaling function of
Ras. Furthermore, normal mode analysis indicates that the dominant collective motion that occurs during nucleotide-
dependent conformational exchange, and captured in aMD (but absent in cMD) simulations, is a low-frequency motion
intrinsic to the structure.
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Introduction

Ras proteins are guanine nucleotide-dependent conformational

switches that couple cell-surface receptors to signaling pathways

that mediate cell proliferation, growth and development [1].

Signal propagation through Ras is mediated by a regulated

GTPase cycle that induces distinct conformations with different

affinities for downstream effectors. The binding of GTP switches

Ras to an ‘‘active’’ effector interacting form. Subsequent GTP

hydrolysis returns Ras to the ‘‘inactive’’ GDP-bound form. Two

types of regulatory proteins enhance the intrinsically low rates of

these processes. GTPase activating proteins (GAPs) promote GTP

hydrolysis, whilst guanine nucleotide exchange factors (GEFs)

promote GDP release and regeneration of the active GTP-bound

state. Mutations that lead to deregulated Ras activity are found in

over 25% of human tumors [2]. These autonomously active

variants are insensitive to the action of GAPs resulting in

uncontrolled cell growth. The current work aims to better

understand the basis of these oncogenic transformations by

deciphering how Ras changes its structure as it executes its

enzymatic cycle and how the fidelity of this process is affected by

mutations.

Conformational changes and oncogenic mutations are largely

concentrated in the vicinity of the nucleotide binding site,

including the so-called switch regions SI (residues 25–40) and

SII (residues 57–75). Of particular note are the conserved SI

threonine (residue 35) and SII glycine (residue 60) which converge

to form hydrogen bonds with the c-phosphate of GTP (effectively

‘closing’ the nucleotide binding pocket). In the absence of the c-

phosphate (or a suitable analogue such as aluminium fluoride

(AlF3)) the switch regions display fewer structural contacts to the

nucleotide and reside in a more ‘open’ conformation. This

observation has been likened to a loaded spring, where release of

the c-phosphate after GTP hydrolysis allows the switch regions to

relax into their ‘open’ GDP-bound conformations [3]. Crystallo-

graphic and spectroscopic studies have indicated that the switch
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regions exhibit substantial mobility both within and between

different nucleotide states [3–10]. However, a detailed sequence of

events and the mechanism by which certain mutations affect key

dynamic rearrangements remains elusive.

In the present study we employ simulation approaches to perform

a detailed characterization of the dynamics of nucleotide-dependent

conformational transitions. Previous unbiased molecular dynamics

(MD) simulations were restricted to characterizing fluctuations within

individual nucleotide states [11,12]. As a result, external biasing

forces (e.g., via targeted molecular dynamics) [13,14] were required

to characterize the conformational exchange between nucleotide

states. However, sampling by these methods is biased along narrow

channels whose transition states may be of unrealistically high energy

(100 and 120 kcal/mol compared to estimates of ,22 kcal/mol

[15]). These findings highlight the need for new simulation

approaches to probe bias-free transitions. Recently we reported the

observation of spontaneous nucleotide-dependent transition during

unbiased MD simulation of the oncogenically active G12V variant

[16]. This study suggested the existence of a lower thermally

accessible energetic barrier between inactive and active states of this

variant that renders it prone to adopt an active conformational state.

Here we extend this work with a multi-scale simulation approach

employing classical and accelerated molecular dynamics (cMD and

aMD) [17,18] along with normal mode analysis (NMA) to study both

wild-type and mutant transitions. Multiple-barrier-crossing aMD

trajectories are used to characterize the reaction paths of the

transitions. Simulated conformations are evaluated by comparison to

the distribution of Ras’s crystallographic conformers. The applica-

tion of aMD allows the observation of nucleotide-dependent

conformational transitions for wild-type Ras that are practically

impossible to see with cMD. Furthermore, NMA indicates that the

dominant collective motion that occurs during nucleotide-dependent

conformational exchange, and captured in aMD simulations, is a

low-frequency motion intrinsic to the structure. A number of highly

populated intermediate conformations are characterized and their

relation to available experimental structures discussed. Finally, the

pattern of correlated motions in the current simulations reveals

nucleotide-dependent differences of possible functional significance

for membrane association.

Results/Discussion

Simulations were conducted with starting structures corre-

sponding to wild-type GDP, wild-type GTP and mutant GDP

states of Ras. Each of these systems was simulated with a bound

GDP and GTP. Both classical and accelerated MD (cMD and

aMD) simulations were performed with explicit solvent for

60 nanoseconds. In addition to conventional structural analysis,

which assessed the stability of Ras during the various simulations

(see Text S1, Figure S1, and Table S1), principal component

analysis (PCA) was used to relate the conformational sampling in

the various simulations to available crystallographic structures. To

this end we employ our previously reported PCA based mapping

of available crystallographic structures [16]. This analysis clearly

distinguished distinct conformational clusters representing wild-

type GDP, wild-type GTP and a number of minor clusters

populated by switch and P-loop mutants (Figure S2). Together,

these crystallographic structures provide invaluable landmarks

against which simulation results may be compared.

Figure 1 shows the conformational space sampled by simula-

tions projected onto the lowest PCs determined from the

distribution of X-ray structures. These projections illustrate the

correspondence of the crystal structure distribution and those

adopted during simulations. Also shown, in terms of collective

coordinates, is the time evolution of the distances between GDP

and GTP conformation cluster centroids for each trajectory. All

aMD simulations were found to have significantly larger

fluctuations in the plane defined by the lowest PCs, indicating

that the main collective displacements in the crystal structure

cluster are accessible during aMD simulations (Figure 1C, 1D, 1G,

1H, 1K, and 1L and Table S2). In contrast, cMD simulations

display a more limited sampling (Figure 1A, 1B, 1E, 1F, and 1J). A

notable exception is the cMD simulation of the oncogenic G12V

variant (Figure 1I), where the introduction of GTP into an initially

GDP-bound structure induced evolution towards the cluster

populated by the experimental GTP-like conformers. Additional

cMD simulations of this varient with different starting conditions

consistently sampled two distinct regions: one near the cluster

containing the inactive form of the G12V variant, and another

close to the cluster of the active structures, suggesting a

spontaneous inactive to active transition.

Interestingly, aMD simulations carried out to further probe the

apparent low activation barrier of the G12V variant (Figure 1K

and 1L) display a similar range of sampling for both GDP and

GTP-bound systems. Note that cMD simulations of this system

with a bound GDP (Figure 1J) display a similar pattern of sampling

to all other cMD simulations (with simulated conformers being

largely restricted to the vicinity of the starting structure (Figure 1A,

1B, 1E, and 1F)). Implementing a range of boost-valued aMD

simulations (see Figure S3) indicated that employing half the boost

required for transition of wild-type systems (discussed bellow) was

sufficient to achieve similar G12V transitions. This is consistent

with the existence of a comparatively low activation barrier, even

in the presence of GDP, and again highlights the intrinsic

susceptibility for activation of this oncogenic mutant [16].

Furthermore, the overall agreement between the current and the

previous cMD simulations, carried out with the AMBER and

CHARMM force fields respectively, demonstrates that these

results are robust and independent of simulation details.

In contrast to the absence of evident transitions during cMD for

wild-type Ras, notable transitions are sampled during aMD for

systems with a swapped nucleotide (i.e. GTP inserted into a

starting GDP structure and vice versa (Figure 1D, 1G, and 1K)).

Furthermore, the densities of populations for these simulations

Author Summary

The Ras family of enzymes mediate signaling pathways
controlling cell proliferation and development by cycling
between active and inactive conformational states. Muta-
tions that affect the ability to switch between states are
associated with a variety of cancers. However, details of
how the structural changes occur and how mutations
affect the fidelity of this process remain to be determined.
Here we employ an advanced computational technique,
termed accelerated molecular dynamics, to characterize
structural transitions and identify novel highly populated
transient conformations. Several spatially distant structural
regions were found to undergo correlated motions,
highlighting a dynamic linkage between the sites of
enzymatic reaction and the membrane-interacting C-
terminus. In addition, our results indicate that the major
motion occurring during the conformational exchange is a
low-frequency motion intrinsic to the structure. Hence,
features of the characterized transitions likely apply to a
large number of structurally similar but functionally diverse
nucleotide triphosphatases. These results provide fresh
insights into how oncogenic mutations might modulate
conformational transitions in Ras.

Ras Conformational Switching
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indicate that several highly populated intermediate conformations

were sampled. In summary, the current analysis establishes the

relevance of aMD simulations for investigating nucleotide-

dependent conformational transitions. Subsequent discussion will

therefore concentrate on further analysis of these aMD simulations

of wild-type Ras that sampled the GDP-to-GTP (forward) and

GTP-to-GDP (backward) transitions.

Nucleotide-Dependent Conformational Transitions
Clustering of trajectory conformers was used to visualize the

dominant conformations sampled by each simulation (Figure 2

and Table 1). The most populated cluster in the wild-type GDP-

to-GTP transition (black in Figure 2E–H and Figure S4)

corresponds to the lower of the three basins in Figure 1G and

overlaps with the dominant conformation sampled during cMD

simulations of the same system (Figure 1E). Its overall structure is

intermediate between GDP and GTP states (RMSD of 1.3 Å from

both GDP and GTP representatives, PDB codes 4q21 and 1qra

respectively). Members of this cluster have an intermediate a2

orientation and a closed active site loop2-SI and loop4-SII that

more closely resembles the GTP configuration. The second most

populated cluster (yellow in Figure 2E–H) has more distinctive

GTP like characteristics (RMSD of 1 Å from GTP and 1.6 Å from

GDP representatives) including a closed loop2-SI and loop4-SII

active site and a reoriented GTP-like a2 helix. Interestingly, the

PC projection (Figure 2G) and RMSD values (minimum value 0.4

Å) indicate that members of cluster 2 closely resemble the

crystallographic GTP-bound A59G structure (PDB code 1lf0).

This structure has been suggested previously to be an intermediate

and is characterized by a GTP-like SII conformation and a SI

conformation that has undergone partial transition with the side-

chain of Y32 adopting an orientation that is intermediate between

that in wild-type GDP and GTP crystallographic structures

[6,7,16] (see Figure S2). The third cluster (green in Figure 2E–

H) is again equidistant from GDP and GTP states (RMSD of 1.3

to 1.4 Å) and, similar to cluster 1, is characterized by an

intermediate a2 orientation. However, unlike cluster 1, loop2-SI

and loop4-SII resemble the open GDP conformation. Clusters 4

Figure 1. Conformational sampling in cMD and aMD simulations: projection of transient conformers onto the principal
components obtained from analysis of Ras’s crystallographic structures. Crystallographic GTP conformers are colored red whilst GDP
conformers are colored green. The distribution of MD conformers is depicted with density-shaded blue points. Each row corresponds to a single
initial conformation, namely: (A–D) wtGTP, (E–H) wtGDP and (I–L) mutantGDP. cMD simulations are depicted in the two left panels (A, B, E, F, I, J)
whilst aMD simulations are depicted in the two right panels (C, D G, H, K, L). Simulations were performed with bound GTP (A, C, E, G, I, K) and GDP (B,
D, F, H, J, L). Inserts show distances between instantaneous trajectory conformations and the centroids of the main GTP and GDP crystal structure
clusters in red and green respectively (see Methods for further details).
doi:10.1371/journal.pcbi.1000325.g001
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and 5 are closer to the GDP conformation (with RMSDs of 1 and

0.3 Å) than to the GTP conformation (with RMSDs of 1.4 and 1.7

Å). However, cluster 5 has distinct conformations of loop3 and the

C-terminal portion of a5.

The GTP-to-GDP (backward) transition sampled a number of

distinct conformational states (Figure 1D and Figure 2A–D).

Clusters 5 and 2 have a similar loop2-SI conformation and

resemble the starting GTP state (RMSD values of 0.9 and 0.8 Å,

respectively). A major difference between clusters 2 and 5 is the

orientation of loop3. Furthermore, conformations in cluster 2

project to a similar region of PC space to those in the second

cluster of the forward GDP-to-GTP transition described above.

The remaining clusters (black, green and pink in Figure 2A–D)

have a strikingly open loop2-SI conformation, similar to that

observed in crystal structures 16cm, 1bkd, 1nvv, chain R of 1nvu,

chain R of 1nvx, and chain B of 16d2. Cluster 3 most closely

resembles the GDP state both in terms of its PC projection

(Figure 2C) and RMS distance (1.1 Å). Clusters 1 and 4 project

close to the GTP-bound crystallographic structures in which Y32

has been replaced by a Cys-chromophore. However, RMSD

measurements of over 1.4 Å indicate features distinct from Y32

mutants and wild-type GDP/GTP states. Taken together, these

results suggest that in addition to several distinct conformations

that were not observed previously, both the forward and backward

transitions pass through a common intermediate similar to that

captured in the A59G crystal structure.

The temporal evolution of cluster membership in each trajectory

(Figure 2D and 2H) indicates that the first 4 to 5 ns remain relatively

close to the starting structure (with conformations classified as

cluster 5 or 4). This is followed by multiple transitions between states

with periods of sampling where one conformation predominates.

For example, conformations from the 10 to 25 ns period of the

GDP-to-GTP trajectory reside predominantly in the GTP-like

cluster 2. Similarly, conformations from the 33 to 42 ns period of

the GTP-to-GDP trajectory are classified as the more GDP-like

cluster 3. These single cluster blocks are interspersed with periods of

rapid interconversion between clusters, for example the 30 to 35 ns

portion of the GDP-to-GTP trajectory (Figure 2H). Interestingly,

the GDP-to-GTP trajectory evolves toward a GTP-like cluster 2

conformation and then transitions back to a intermediate cluster 3

conformation before returning back via clusters 4 and 5 (see Videos

S1 and S2). This behavior is consistent with the presence of a higher

barrier between cluster 2 and the main crystallographic GTP

cluster, which we fail to cross, than exists between the intermediate

conformations contained within our clusters. The high level of

inteconversion between these clusters also suggests that they are

energetically relatively close to one another.

Analysis of the calculated structures indicates that certain side

chain reorientations, diagnostic of GTP and GDP crystallographic

states [6,7,13,16], have only been partially realized in our

simulations. We speculate that while the topology of the backbone

provides the conformational blue print, specific side-chain

interactions are required to stabilize the canonical GTP and

GDP states. The apparent barrier between cluster 2 and the main

crystallographic GTP cluster would therefore result from the

energetic cost of reorganizing these side chains. A typical example

is Y32, whose orientation in the simulated intermediates is neither

fully solvent exposed nor hydrogen bonded with Y40 as in the

main GTP and GDP crystallographic clusters respectively [16].

Rather we note its similarity to that found in the crystal structures

1gnr and 1gnq.

Correlated Motions and the Effect of Nucleotide
Exchange on Dynamics

To examine whether the motions of one residue are related to

the motions of another (distant) residue, the correlation of the

displacements of all residue pairs were determined (Figure 3). As

expected, the strongest positive correlations exist between

covalently bonded residues and those residing within secondary

structure elements (see Figures S5 and S6 for reference contact

maps). Moving up the diagonal, the first area of notable

correlations corresponds to helix a1 (residues 16 to 25) with loop2

(residues 26 to 40). The next area of significant correlation

corresponds to the b2-loop3-b3 region (residues 38 to 57). The

consistent appearance of correlated motions for these regions in

each simulation and the cross-correlation (off-diagonal peak) with

b1 (residues 2 to 10) highlights the subdomain-like structure and

dynamics of these three N-terminal strands. The remaining

strands, b4 to b6, display consistent positive cross-correlations

with each other but not with strands b1 to b3. Note the off-

diagonal peaks for b4 (residues 77 to 83) with b5 (residues 111 to

115) and b5 with b6 (residues 141 to 144). Moving further up the

diagonal the next major correlations correspond to the SII region,

encompassing loop4 and helix a2 (residues 58 to 74).

Table 1. Trajectory cluster minimum RMSD from GDP, GTP
A59G and Y32C crystal structure representatives.

RMSD from Representative Crystal
Structure{

System Cluster No. GTP GDP A59G Y32C

wtGDP-GTP 1 1.32 1.31 1.32 1.38

2 1.02 1.57 0.37 1.38

3 1.41 1.33 1.41 1.45

4 1.38 1.01 1.37 1.52

5 1.73 0.32 1.61 1.78

wtGTP-GDP 1 1.62 1.91 1.64 1.73

2 0.94 1.49 1.06 1.26

3 1.43 1.07 1.50 1.64

4 1.30 1.84 1.31 1.39

5 0.82 1.58 1.06 1.19

Reference GTP 0 1.64 0.94 1.04

GDP 1.64 0 1.62 1.81

A59G 0.94 1.62 0 0.68

Y32C 1.04 1.81 0.68 0

{GTP, GDP A59G and Y32C representatives correspond to PDB entries 1qra,
4q21, 1lf0, and 2cl7.

doi:10.1371/journal.pcbi.1000325.t001

Figure 2. Clustering of wild-type GTP with bound GDP (A–D) and wild-type GDP with bound GTP (E–H) aMD trajectories. Front and
back views of representative structures obtained from hierarchical clustering (A, B, E and F). In each case the most populated cluster representative is
shown in black (representative of 30.26% and 28.56% of their respective trajectory conformers in each simulation), with subsequent clusters in yellow
(23.22% and 27.91%), green (21.3% and 21.02%), pink (19.29% and 16.34%) and red (5.94% and 6.17%). PC projection plots with cluster ellipsoid hulls
i.e. the ellipsoid of minimum volume such that points from a given cluster lie inside ellipsoid boundaries (C and G). Trajectory timeline colored
according conformational cluster (D and H).
doi:10.1371/journal.pcbi.1000325.g002
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Perhaps the most interesting feature of the plot is the pattern of

correlation between a2 and a3-loop7 (residues 66 to 74 and 93 to

110). This feature is most evident in GTP-bound simulations and

is largely absent in GDP-bound simulations. This pattern is

particularly noteworthy as GDP-to-GTP aMD simulations exhibit

these correlations only in portions of the trajectory that reside in a

GTP like conformation (i.e. after the transition from GDP to GTP,

see Figure 2G and 2H). It appears that the large rearrangement of

helix a2 during the transition brings it into closer register with a3,

hence facilitating the correlated motions of these regions.

Furthermore, the correlations of these regions in the GTP-to-

GDP aMD simulation reduce gradually as the conformation of a2

evolves toward a more GDP like state. These data thus show a

novel GTP-dependent correlated motion in Ras that has

functional implications (see below). Additional off-diagonal peaks

include loop2 with loop10 (residues 26 to 37 and 145 to 151) and

loop3 with a5 (residues 46 to 49 and 152 to 167). As discussed

below loop3 and a5 are connected via several salt bridges whilst

both loop2 and 10 directly interact with the bound nucleotide.

These newly identified coupled motions suggest a dynamic linkage

between the N-terminal nucleotide-binding subdomain and the C-

terminal subdomain whose downstream residues are responsible

for membrane binding.

The dissection of the catalytic domain into two lobes or

subdomains based on the correlated motions of the central b-

strands is consistent with the localized nature of sequence variation

between Ras isoforms. As previously noted [16], lobe 1 (residues

1–86) is strictly conserved in sequence and encompasses the P-loop

and the switch regions; whilst lobe 2 (residues 87–171) contains

amino acid variations that define functionally distinct H, N and K-

ras isoforms [16]. As isoform-specific properties include differences

in nucleotide-state dependent membrane localization [19–21], the

segregation of both sequence variation and correlated motions

implies that communication between lobes is likely to be of

functional significance. The covalent connection between lobes is

made by helix a2 of the SII region, which is the major dynamic

element of the Ras structure. The current cross-correlation

analysis indicates the existence of three additional non-covalent

communication routes between lobes including loop3 to a5, loop2

to loop10 and a2 to a3-loop7. We speculate that residues at each

of these sites may be important for nucleotide-dependent

modulation of membrane attachment and lateral segregation by

linking the switching apparatus to the membrane interaction

apparatus. Indeed, alanine substitution of loop3 residues D47 and

E49 produced a variant that is hyperactive in MAPK-signaling

[22]. These loop3 residues, together with their a5 salt bridge

partners (R161/R164), have been shown to modulate the

nucleotide-dependent membrane association of H-ras [22,23].

The other regions highlighted in the current study have thus far

received little attention but likely warrant further investigation.

Figure 3. Residue-residue plot of correlated motions. The extent of correlation for all residue pairs (of Ca atomic displacement) during
selected portions of the wild-type GTP (upper triangle) and wild-type GDP (lower triangle) Ras aMD simulations. The color scale runs from pink (for
values ranging between 21 to 20.75), through white (20.25 to 0.25) to cyan (0.75 to 1). Negative values are indicative of displacements along
opposite directions, namely anticorrelated motions, whereas positive values depict correlated motions occurring along the same direction. Major
secondary structure elements are indicated schematically with helices in black and strands in gray.
doi:10.1371/journal.pcbi.1000325.g003
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Normal Mode Analysis
In an effort to further understand the physical basis of the

observed motions upon nucleotide exchange, we analyzed

available structures with a simplified elastic-network normal mode

method [24]. The elastic network approach has the advantage that

a single model, expressed in terms of Ca coordinates, leads to an

objective expression of possible protein dynamics in terms of a

superposition of collective normal mode coordinates [25].

Consistent with previous studies on a range of systems [26], we

note that only the ‘‘open’’ wild type GDP conformation yielded

large overlap values between the crystal structure PCs and the low-

frequency normal modes (overlap between NMA mode 1 and X-

ray PC 1 of 0.57). Furthermore, the structural mobility predicted

by NMA is very similar to that obtained from aMD simulations

(overlap between GDP-to-GTP trajectory PC 1 and X-ray PC 1 of

0.69; Figure 4 and Table S2). This result implies that low-

frequency global motions that are intrinsic to the open structure

likely facilitate the observed conformational transitions to the

closed GTP state. In other words, the fact that low frequency

normal modes qualitatively capture the differences between

available crystal structure conformations and have high overlap

with the eigenvectors obtained from aMD simulations suggests

that nucleotide-dependent dynamics is facilitated by the low

frequency, global motions that are intrinsic to the structure. The

aMD results discussed above indicate that the nature of the bound

nucleotide attenuates these intrinsic motions.

Conclusions
We have characterized the spontaneous transition between

nucleotide-dependent conformational states of wild-type Ras with

cMD, aMD and NMA. These functionally important transitions,

achieved for the first time for wild-type Ras, are practically

impossible to observe with cMD. Furthermore, NMA indicates

that the dominant collective motion that occurs during these

transitions is a low-frequency motion intrinsic to the structure.

Mapping the reaction path sampled by aMD onto a PCA basis

set derived from the distribution of crystallographic structures

enabled identification of intermediate structures with unique

switch orientations and/or distinct loop3, loop7 and a5 C-

terminus conformations. Intriguingly, several of the highly

populated intermediates have a close correspondence to known

G59A and Y32C crystallographic conformers, both of which have

been suggested to be intermediate structures [6,16]. The

emergence of these conformations along with additional novel

intermediates highlights the utility of aMD simulations to

reliability sample conformational transitions. Furthermore, the

current results imply that the G59A and Y32C variant

conformations are accessible to wild-type Ras and that these

mutations result in perturbations that localize the average

structure at these intermediate positions. The functional relevance

of these intermediates is reinforced by kinetic studies of G59A that

indicated a reduced rate of nucleotide exchange; this has been

linked to the need for tight nucleotide coordination during

structural changes [6,16]. It will be interesting to see if our newly

identified intermediates, some of which differ between forward

and backward transitions, also have distinct kinetic behaviors

related to nucleotide exchange and phosphate release.

The pattern of correlated motions revealed by these simulations

predicts novel nucleotide-dependent motions of potential signifi-

cance in the signaling function of Ras. These include correlations

of a2 with a3-loop7, loop2 with loop10 and loop3 with a5. Such

dynamic linkages between the switching apparatus and the

membrane interacting C-terminal region leads us to speculate

that residues at each of these sites may be important for

nucleotide-dependent modulation of membrane attachment. This

is supported by recent experimental evidence for the role of loop3

residues D47 and E49 and a5 residues R161 and R164 in

modulating the nucleotide-dependent membrane association of

Ras [22,23].

Finally, low frequency normal modes qualitatively capture the

differences between available crystal structure conformations and

have high overlap with the eigenvectors obtained from aMD

simulations. This result combined with aMD observations suggests

that nucleotide-dependent dynamics is facilitated by low frequen-

cy, global motions that are intrinsic to the structure and that the

nature of the bound nucleotide serves to attenuate these intrinsic

low-frequency motions. Furthermore, the significant similarities of

aMD, NMA and crystal structure PCA motions highlight the

robustness of the observed motions.

We believe that the current advanced simulation and analysis

approach is equally applicable to a large number of structurally

similar but functionally diverse P-loop NTPases such as kinesin

Figure 4. Visualization of dominant motions obtained from (A) PCA of Ras crystal structures, (B) NMA of wild-type GDP Ras, and (C)
aMD of wild-type GDP Ras.
doi:10.1371/journal.pcbi.1000325.g004
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and myosin. Such studies should uncover detailed dynamic

behavior and help inform us about general principles and

mechanisms underlying nucleotide-dependent conformational

changes.

Methods

All simulations were performed with the AMBER8 package

[27] and corresponding all-atom potential function ff99SB [28].

Additional parameters for guanine nucleotides were taken from

Meager at al. [29]. All analysis was carried out using the Bio3D

package [30,31].

Atomic models were prepared from three high-resolution crystal

structures (PDB codes: 4Q21, 1QRA and 2Q21). These structures

are representative of three distinct conformations highlighted by

PCA [16]; namely: wild-type GDP, wild-type GTP and mutant

GDP. Each model was simulated with bound Mg2+?GDP and

Mg2+?GTP. The latter was obtained for GDP structures by the

addition and local optimization of the c-phosphate onto the GDP

of the corresponding crystal structure.

Molecular Dynamics
All MD simulations were performed using periodic boundary

conditions, TIP3P water and charge-neutralizing counter ions,

with full particle-mesh Ewald electrostatics. Operational param-

eters included a 2fs time step and a 10Å cutoff for the truncation of

VDW non-bonded interactions. Constant volume heating (to

300 K) was performed over 10ps, followed by constant temper-

ature (300 K), constant pressure (1atm) equilibration for an

additional 200ps. Finally, constant pressure constant temperature

production dynamics was performed with both classical and

accelerated MD implementations. The SHAKE algorithm was

used to constrain all covalent bonds involving hydrogen atoms.

Accelerated Molecular Dynamics
Accelerated MD (aMD) extends the accessible time scale of

conventional MD simulations by altering the underlying potential

energy surface of the system under study. Acceleration stems from

the addition of a non-negative boost potential that raises the

energy within basins [18]. Hence a trajectory propagated on this

modified surface makes transitions from state to state with an

accelerated rate. Furthermore, canonical ensemble averages of the

system can be obtained by reweighing each point on the modified

potential by the strength of the Boltzmann factor of the bias energy

at that particular point [18]. In the current study we apply the dual

boost approach and corresponding potential developed previously

[17,18]. Starting structures and standard operational parameters

were identical to those used for cMD. The energy level, E, below

which the boost is applied and tuning parameter, a, that

modulates the depth and local roughness of basins in the modified

potential were based on an earlier work [17].

Normal Mode Analysis
We employed the coarse-grained AD-ENM normal mode

analysis approach developed by Zheng et al. [24]. AD-ENM

implements a single-parameter Hookean potential, which has

previously been shown to yield low-frequency normal modes that

are in good agreement with those obtained from more detailed,

empirical, force fields. For further details see [24,25]

Principal Component Analysis
PCA was employed to aid the interpretation of interconformer

relationships. We utilized the previously reported PC basis set

obtained from analysis of available Ras crystal structures [16].

This basis set gives a clear separation of nucleotide-dependent

conformational states. Projecting the Ras crystal structures and

snapshots from MD trajectories into the sub-space defined by the

largest PCs (along which the crystal structure variance is largest)

results in a lower dimensional representation of the structural

dataset (see Figure 2 for details). The resulting low-dimensional

‘conformer plots’, succinctly reveal the nature of conformational

sampling during simulations [30]. PCA was carried out on the

individual trajectories using the same Ca atoms that were used in

the analysis of the crystal structures. Conformer superposition was

also based on the ‘‘core positions’’ obtained from crystal structure

analysis [16].

Distances between instantaneous trajectory conformations and

the centroids of the main GTP and GDP clusters, reported as

inserts in Figure 1, were calculated as the Euclidean distance

between projected points in five dimensional PC space. Note that

five PCs account for over 81% of the variance in the original

distribution and produce a more succinct distance measure than

the examination of average all-atom distances. This metric aids

interpretation of an otherwise noisy signal as it is derived primarily

from the concerted displacement of the switch regions comprising

the secondary structure elements loop2 and loop4-a2 (residues 31

to 37 and 59 to 72).

Conformer Clustering
Structures from aMD simulations underwent average-linkage

hierarchical clustering according to their pairwise RMSD distance

matrix. Inspection of the resulting dendogram was used to partition

structures into five dominant groups (ranked according to their

populations). The closest structure to the average structure from

each cluster, in terms of RMSD, was chosen as a representative for

projection onto the PCA basis set described above.

Cross-Correlation Analysis
To identify protein segments with correlated atomic motions the

cross-correlation coefficient, Cij, for the displacement of all Ca
atom pairs, i and j, was calculated

Cij~SDri
:DrjT

�
SDr2

i TSDr2
j T

� �1=2

where Dri is the displacement from the mean position of the ith

atom determined from all configurations in the trajectory segment

being analyzed (see [32] and [33] for further details).

Supporting Information

Figure S1 Time evolution of Ca atom RMSD from the initial

structure of each simulation. Each row corresponds to a single

system namely: (A and B) wtGTP, (C and D) wtGDP, (E and F)

mutantGDP. Regular MD simulations are depicted in the left

panel (A, C, and E,) whilst aMD simulations are depicted on the

right (B, D, and F). Simulations with a bound GDP are plotted in

green whilst GTP-bound systems are plotted in red. The light

green and red lines correspond to the core residues used for

superposition.

Found at: doi:10.1371/journal.pcbi.1000325.s001 (2.11 MB TIF)

Figure S2 Principal component based mapping of Ras crystal-

lographic structures. Structures are colored by nucleotide state,

triphosphate in red and diphosphate in green and labeled with

their PDB code where space permits. Dashed ovals represent the

grouping obtained from hierarchical clustering of the projected

structures in the PC1 to PC3 planes. Insert: eigenvalue spectrum

Ras Conformational Switching
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detailing results obtained from diagonalization of the atomic

displacement correlation matrix of Ca atom coordinates. The

magnitude of each eigenvalue is expressed as the percentage of the

total variance (mean-square fluctuation) captured by the corre-

sponding eigenvector. Labels beside each point indicate the

cumulative sum of the total variance accounted for in all preceding

eigenvectors (1).

Found at: doi:10.1371/journal.pcbi.1000325.s002 (0.19 MB TIF)

Figure S3 High boost value simulation of mutant GDP system

with a bound GDP, see Figure 1. and main text for further details.

Found at: doi:10.1371/journal.pcbi.1000325.s003 (2.27 MB TIF)

Figure S4 Heatmap illustrating RMSD clustering of wild-type

GDP with bound GTP aMD simulation. See Figure 2E–H and

methods section for further details.

Found at: doi:10.1371/journal.pcbi.1000325.s004 (1.83 MB TIF)

Figure S5 Contact map of initial wtGTP and wtGDP Ras

conformations. Residues are considered in contact when any non-

hydrogen atom from a given pair of residues is separated by less

than 4Å.

Found at: doi:10.1371/journal.pcbi.1000325.s005 (1.83 MB TIF)

Figure S6 Trajectory averaged contact maps for wtGTP-GTP

and wtGDP-GDP simulations. The color scale indicates the

fraction of frames in which a given residue-residue contact is

present.

Found at: doi:10.1371/journal.pcbi.1000325.s006 (0.05 MB PNG)

Table S1 Selected time-averaged properties for cMD and aMD

simulations{. { Values listed include average Ca atom RMSF

along with Ca atom RMSD values for all and core residue subsets

during each simulation. System codes are based on the starting

structures of the simulations: wtGDP = GDP-bound x-ray struc-

ture from the pdb (2), code 4q21; wtGTP = GTP-bound xray

structure 1qra; mutGDP = GDP bound G12V structure in 1q21.

Note that the time evolution of backbone hydrogen bonds and

secondary structure content also remained constant throughout all

simulations (not shown).

Found at: doi:10.1371/journal.pcbi.1000325.s007 (0.04 MB

DOC)

Table S2 Comparison of crystal structure and trajectory derived

eigenvectors. Inner products between the first five eigenvectors

obtained from crystal structure PCA and the first ten eigenvectors

obtained from PCA of individual aMD and cMD trajectories.

Found at: doi:10.1371/journal.pcbi.1000325.s008 (0.04 MB PDF)

Text S1 Supplementary Information Text

Found at: doi:10.1371/journal.pcbi.1000325.s009 (0.10 MB PDF)

Video S1 Conformational sampling during accelerated molec-

ular dynamics simulation of Ras GDP with a bound GTP.

Found at: doi:10.1371/journal.pcbi.1000325.s010 (2.56 MB

MOV)

Video S2 aMD trajectory snapshots from the 5 to 30 ns portion

of GDP with bound GTP trajectory. For reference, the orientation

of helix alpha2 in representative GTP (red) and GDP (green)

crystal structures are displayed as solid cylinders. See Video S1

and the main text for details.

Found at: doi:10.1371/journal.pcbi.1000325.s011 (27.46 MB

MOV)
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