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Quantum signal processing (QSP) represents a real scalar polynomial of
degree d using a product of unitary matrices of size 2 × 2, parameterized by
(d+1) real numbers called the phase factors. This innovative representation of
polynomials has a wide range of applications in quantum computation. When
the polynomial of interest is obtained by truncating an infinite polynomial
series, a natural question is whether the phase factors have a well defined limit
as the degree d→∞. While the phase factors are generally not unique, we find
that there exists a consistent choice of parameterization so that the limit is well
defined in the ℓ1 space. This generalization of QSP, called the infinite quantum
signal processing, can be used to represent a large class of non-polynomial
functions. Our analysis reveals a surprising connection between the regularity
of the target function and the decay properties of the phase factors. Our
analysis also inspires a very simple and efficient algorithm to approximately
compute the phase factors in the ℓ1 space. The algorithm uses only double
precision arithmetic operations, and provably converges when the ℓ1 norm
of the Chebyshev coefficients of the target function is upper bounded by a
constant that is independent of d. This is also the first numerically stable
algorithm for finding phase factors with provable performance guarantees in
the limit d→∞.
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1 Introduction
1.1 Background
The study of the representation of polynomials has a long history, with rich applications in
a diverse range of fields. It is therefore exciting that a new way of representing polynomials,
called quantum signal processing1 (QSP) [18, 12], has emerged recently in the context of
quantum computation. The motivation for this development can be seen as follows. For
simplicity let H ∈ CN×N be a Hermitian matrix with all eigenvalues in the interval [−1, 1],
and let f ∈ R[x] be a real scalar polynomial of degree d. We would like to efficiently encode
a matrix polynomial f(H) using a unitary matrix that can be efficiently implemented on
a quantum computer. An inherent difficulty of this task is that a quantum algorithm is
given by the product of a sequence of unitary matrices, but in general neither H nor f(H)
is unitary. In an extreme scenario, let H = x ∈ [−1, 1] be a scalar, and we are interested
in a representation of the polynomial f(x) in terms of unitary matrices.

Quantum signal processing proposes the following solution to the problem above: Let

W (x) = ei arccos(x)X =
(

x i
√

1− x2

i
√

1− x2 x

)
, with X =

(
0 1
1 0

)
,

1The term “signal processing” is due to an analogy to digital filter designs on classical computers.
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be a 2× 2 unitary matrix parameterized by x ∈ [−1, 1]. Then the following expression

U(x,Ψ) := eiψ0Z
d∏
j=1

[
W (x)eiψjZ

]
, with Z =

(
1 0
0 −1

)
, (1)

is a unitary matrix for any choice of phase factors Ψ := (ψ0, ψ1, · · · , ψd) ∈ Rd+1. Here
X,Z are Pauli matrices. One can verify that the top-left entry of U(x,Ψ) is a complex
polynomial in x. Moreover, for any target polynomial f ∈ R[x] satisfying (1) deg(f) = d,
(2) the parity of f is d mod 2, (3) ∥f∥∞ := maxx∈[−1,1] |f(x)| ≤ 1, we can find phase

factors Ψ ∈ Rd+1 such that f(x) is equal to the real (or imaginary) part of the top-left

entry of U(x,Ψ) for all x ∈ [−1, 1] [12]. By setting x = z+z−1

2 with z = eiθ, θ ∈ [0, 2π), the
representation in Eq. (1) can be viewed as a 2× 2 matrix Laurent polynomial, and we are
interested in its values on the unit circle.

Eq. (1) is an innovative way of encoding the information of a polynomial in terms of
2×2 unitary matrices. It also leads to a very compact quantum algorithm for constructing
a unitary matrix that encodes the matrix polynomial f(H), called quantum singular value
transformation (QSVT) [12]. Assume that H is accessed via its block encoding

W =
(
H ∗
∗ ∗

)
,

where W ∈ CMN×MN is a unitary matrix (M ≥ 2), the matrix H is its top-left N × N
matrix subblock, and ∗ indicates matrix entries irrelevant to the current task. When
given the phase factors Ψ and the block encoding W , QSVT constructs a unitary U ∈
C2MN×2MN (by introducing one ancillary qubit) such that

U =
(
f(H) ∗
∗ ∗

)
.

In other words, although f(H) is not a unitary matrix, it can be block encoded by a unitary
matrix of a larger size that can be efficiently implemented on quantum computers. This
construction has found many applications, such as Hamiltonian simulation [18, 12], linear
system of equations [12, 17, 20], eigenvalue problems [16, 7], Gibbs states preparation [12],
Petz recovery channel [11], benchmarking quantum systems [5, 9], to name a few. We
refer interested readers to Refs. [12, 20].

To implement QSVT, we need to efficiently calculate the phase factors Ψ corresponding
to a target polynomial of degree d. Many of the aforementioned applications are formulated
as the evaluation of a matrix function f(H), where f : [−1, 1] → R is not a polynomial
but a smooth function, which can be expressed as an infinite polynomial series (e.g.,
the Chebyshev polynomial series). To approximate f(H), we need to first truncate the
polynomial series to f (d) with a proper degree d so that the difference between f (d) and f
is sufficiently small. Then for each f (d) we can find (at least) one set of phase factors Ψ(d).
When d is fixed, there has been significant progress in computing the phase factors in the
past few years [12, 13, 3, 8, 26]. The questions we would like to answer in this paper are
as follows.

1. As d → ∞, can the phase factors {Ψ(d)} be chosen to have a well-defined limit Ψ⋆

in a properly chosen space?

2. If f is smooth, its Chebyshev coefficients decay rapidly. Does the tail of Ψ⋆ exhibit
decay properties? If so, how is it related to the smoothness of f?
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3. Is there an efficient algorithm to approximately compute Ψ⋆?

Our work is to first generalize QSP to represent smooth functions with a set of infinitely
long phase factors, and we dub the resulting limit infinite quantum signal processing
(iQSP).

1.2 Setup of the problem
We follow the bra-ket notation widely used in quantum mechanics. Specifically, we define
two “kets” as basis vectors of C2, namely,

|0⟩ :=
(

1
0

)
, |1⟩ :=

(
0
1

)
.

The “bra” can be viewed as row vectors induced from the corresponding ket by taking
Hermitian conjugate. In the bra notation, ⟨0| = (1, 0), ⟨1| = (0, 1). The inner product
is written as ⟨x|y⟩ := (|x⟩ , |y⟩). Using this notation, the upper left element of U(x,Ψ)
in Eq. (1) can be written as ⟨0|U(x,Ψ)|0⟩. Direct calculation shows that the real part of
⟨0|U(x,Ψ)|0⟩ can be recovered from the imaginary part by adding π

4 to both ψ0 and ψd:

Re[⟨0|U(x,Ψ)|0⟩] = Im
[
⟨0|ei π

4ZU(x,Ψ)ei π
4Z |0⟩

]
. (2)

For convenience, throughout this paper, we focus on the imaginary part of ⟨0|U(x,Ψ)|0⟩,
which is denoted by g(x,Ψ), i.e.,

g(x,Ψ) := Im[⟨0|U(x,Ψ)|0⟩]. (3)

Due to the parity constraint, the number of degrees of freedom in a given target
polynomial f ∈ R[x] is only d̃ := ⌈d+1

2 ⌉. Therefore the phase factors Ψ cannot be uniquely
defined. To address this problem, Ref. [8] suggests that phase factors Ψ := (ψ0, ψ1, . . . , ψd)
can be restricted to be symmetric:

ψj = ψd−j , ∀j = 0, 1, · · · , d. (4)

Without loss of generality, we define the reduced phase factors as follows,

Φ = (ϕ0, ϕ1, . . . , ϕd̃−1) :=

(1
2ψd̃−1, ψd̃, · · · , ψd), d is even,

(ψ
d̃
, ψ

d̃+1, · · · , ψd), d is odd.
(5)

The number of reduced phase factors is equal to d̃ = ⌈d+1
2 ⌉, and matches the number of

degrees of freedom in f . With some abuse of notation, we identify U(x,Φ) with U(x,Ψ)
and g(x,Φ) with g(x,Ψ), and Φ is always referred to as the reduced phase factors of a
full set of phase factors Ψ. For a given target polynomial, the existence of the symmetric
phase factors is proved in [25, Theorem 1], but the choice is still not unique. However,
near the trivial phase factors Φ = (0, . . . , 0), there exists a unique and consistent choice
of symmetric phase factors called the maximal solution [25].

Let ℓ1 denote the set of all infinite dimensional vectors with finite 1-norm:

ℓ1 := {v = (v0, v1, · · · ) : ∥v∥1 <∞}, ∥v∥1 :=
∞∑
k=0
|vk| , v = (v0, v1, · · · ). (6)

The vector space ℓ1 is complete, i.e., every Cauchy sequence of points in ℓ1 has a limit
that is also in ℓ1. Let R∞ be the set of all infinite dimensional vectors with only a finite
number of nonzero elements.
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Definition 1 (Target function). A target function f : R → R is an infinite Chebyshev
polynomial series with a definite parity

f(x) =
{∑∞

j=0 cjT2j(x), f is even,∑∞
j=0 cjT2j+1(x), f is odd,

(7)

The coefficient vector c = (c0, c1, . . .) ∈ ℓ1, and f satisfies the norm constraint

∥f∥∞ = max
x∈[−1,1]

|f(x)| ≤ 1. (8)

In other words, the set of even target functions is

Se =

f : [−1, 1]→ [−1, 1] : f(x) =
∞∑
j=0

cjT2j(x),
∞∑
j=0
|cj | <∞

 , (9)

and the set of odd target functions is

So =

f : [−1, 1]→ [−1, 1] : f(x) =
∞∑
j=0

cjT2j+1(x),
∞∑
j=0
|cj | <∞

 . (10)

If we truncate the Chebyshev coefficients to be c(d̃) = (c0, c1, . . . , cd̃−1, 0, . . .) ∈ R∞,

the corresponding Chebyshev polynomial f (d) is of degree d (recall that d̃ = ⌈d+1
2 ⌉ and

hence d is determined by d̃ and the parity of the function). Furthermore, c ∈ ℓ1 implies

that limd→∞
∥∥∥f (d) − f

∥∥∥
∞

= 0. Throughout the paper, f (d) will be referred to as a target

polynomial approximating the target function f .
In order to compare phase factors of different lengths, an important observation is that

if we pad Φ = (ϕ0, ϕ1, . . . , ϕd̃) with an arbitrary number of 0’s at the right end and obtain

Φ̃ = (ϕ0, ϕ1, . . . , ϕd̃, 0, . . . , 0), we have g(x,Φ) = g(x, Φ̃) (see Lemma 10). Therefore g(x, ·)
is a well defined mapping in R∞, and we can identify Φ with Φ̃. Let F be the linear
mapping from a target polynomial to its Chebyshev-coefficient vector c ∈ R∞ as defined
in Eq. (7). This induces a mapping

F : R∞ → R∞, F (Φ) := F(g(x,Φ)), (11)

which maps the reduced phase factors Φ ∈ R∞ to the Chebyshev coefficients of g(x,Φ).
Note that R∞ is dense in ℓ1, i.e., any point in ℓ1 is either a point in R∞ or a limit

point of R∞. By exploiting nice properties that F and its Jacobian matrix are Lipschitz
continuous, we can define F : ℓ1 → ℓ1 to be the extension of F , such that F (Φ) agrees
with F (Φ) for any Φ ∈ R∞. Then the problem of infinite quantum signal processing asks
whether the inverse of the mapping F exists.

Problem 2 (Infinite quantum signal processing). For a target function in Definition 1
given by its Chebyshev coefficients c ∈ ℓ1, does there exist Φ⋆ ∈ ℓ1 such that F (Φ⋆) = c?

1.3 Main results
Theorem 3 (Invertibility of F ). There exists a universal constant rc ≈ 0.902, so that F
has an inverse map F−1 : B(0, rc) ⊂ ℓ1 → ℓ1, where B(a, r) := {v ∈ ℓ1 : ∥v − a∥1 < r}.
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Theorem 3 provides a positive answer to Problem 2 as well as to the first question
raised in Section 1.1, when the 1-norm of the Chebyshev coefficients is upper bounded
by a constant. Note that for a given target function f , we can always multiply it by a
constant C, so that the Cf satisfies the condition of Theorem 3. The main technical tools
are a series of vector 1-norm estimates of F , and matrix 1-norm estimates of the Jacobian
matrix DF . These estimates do not explicitly depend on the length of phase factors, and
can therefore be extended to F . A more detailed statement of Theorem 3 is Theorem 23,
which will be presented in Section 3.4.

Since Φ⋆ = (ϕ0, ϕ1, . . .) ∈ ℓ1, the tail of Φ⋆ must exhibit decay properties, i.e.,
limn→∞

∑
k>n |ϕk| = 0. Fig. 4 in Section 6 shows that the tail decay of Φ⋆ closely matches

that of the Chebyshev coefficients c. The duality between the smoothness of a function and
the decay of its Fourier / Chebyshev coefficients is well studied (see e.g. [24, Chapter 7]).
However, it is surprising that the tail decay of the reduced phase factors can be directly
related to the smoothness of the target function. Such a behavior was first numerically
observed in Ref. [8], in which an explanation of the phenomenon was also given in the
perturbative regime. Using the tools developed in proving Theorem 3, we provide a refined
and non-perturbative analysis of the tail decay in Theorem 4.

Theorem 4 (Decay properties of reduced phase factors). Given a target function f with
∥c∥1 < rc, and Φ⋆ := F

−1(c) = (ϕ0, ϕ1, . . .) ∈ ℓ1, then there exist constants C,C ′ such that
for any n,

C ′ ∑
k>n

|ck| ≤
∑
k>n

|ϕk| ≤ C
∑
k>n

|ck| . (12)

The proof is given in Section 4 with an explicit characterization of constants C,C ′.
Assume the target function f is of Cα smoothness for some α > 0, then the Chebyshev
coefficients decay algebraically in the sense of

∑
k>n |ck| = O (n−α). Then, it induces a

decay of the corresponding reduced phase factors, namely,
∑
k>n |ϕk| = O (n−α). If f is

of C∞ or Cω smoothness, then the tail of its Chebyshev-coefficient vector decays super-
algebraically or exponentially respectively, and so does the tail of the reduced factors. We
summarize this in the following corollary.

Corollary 5. If f is of Cα smoothness for some α > 0, then the tail of the corresponding
reduced phase factors decay algebraically, i.e., ∑k>n |ϕk| = O (n−α). Furthermore, if f is
of C∞ or Cω smoothness, then the tail of the corresponding reduced phase factors decays
super-algebraically or exponentially respectively.

These results are also verified numerically in Fig. 4. These results provide a positive
answer to the second question raised in Section 1.1.

Theorem 3 also has algorithmic implications. It has been empirically observed that
a quasi-Newton optimization based algorithm is highly effective for finding the phase
factors [8]. However, the theoretical justification of the optimization based algorithm has
only been shown if the target function satisfies ∥f∥∞ ≤ Cf d̃

−1, where Cf ≈ 0.028 is a

universal constant [25, Corollary 7]. Hence as d̃ increases, existing theoretical results fail to
predict the effectiveness of the algorithm, even if the target function is a fixed polynomial
of finite degree (in this case, we pad the Chebyshev coefficients with zeros to increase d̃).

Inspired by our analysis of the Jacobian map DF , we propose a very simple iterative
algorithm to find phase factors for a given target polynomial f (Algorithm 1). This
algorithm can be viewed as finding the fixed point of the mapping G(x) := x− 1

2(F (x)−c)
by means of a fixed point iteration Φt+1 = G(Φt). This can also be viewed as an inexact
Newton algorithm [22, Chapter 11], as the inverse of the Jacobian matrix at 0 ∈ ℓ1 satisfies
[DF (0)]−1 = 1

2I (Lemma 17).
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Algorithm 1 Fixed-point iteration algorithm for solving reduced phase factors
Input: Chebyshev-coefficient vector c of a target polynomial, and stopping criteria.
Initiate Φ0 = 0, t = 0;
while stopping criterion is not satisfied do

Update Φt+1 = Φt − 1
2
(
F
(
Φt
)
− c
)
;

Set t = t+ 1;
end while
Output: Reduced phase factors Φt.

For a given target function, the Chebyshev-coefficient vector can be efficiently eval-
uated using the fast Fourier transform (FFT). The fixed-point iteration algorithm (Al-
gorithm 1) is the simplest algorithm thus far to evaluate phase factors. This algorithm
provably converges when ∥c∥1 is upper bounded by a constant.

Theorem 6 (Convergence of the fixed-point iteration algorithm). There exists a universal
constant r̃c ≈ 0.861 so that when ∥c∥1 ≤ r̃c,

(i) Algorithm 1 converges Q-linearly to Φ⋆ = F
−1(c), i.e., there exists a constant C

and the error satisfies ∥∥∥Φt − Φ⋆
∥∥∥

1
≤ Cγ̃t, γ̃ ≈ 0.8189, t ≥ 1. (13)

(ii) The overall time complexity is O(d2 log 1
ϵ ), where d is the degree of target polyno-

mial and ϵ is the desired precision.

A more accurate characterization about the region where Algorithm 1 converges and
the convergence rate is presented in Section 5.1. In Section 6, numerical experiments
demonstrate that Algorithm 1 is an efficient algorithm, and we observe that its convergence
radius can be much larger than the theoretical prediction. These results provide a positive
answer to the third question raised in Section 1.1. We implement Algorithm 1 with more
examples as part of QSPPACK, an open-source package for finding phase factors 2.

1.4 Related works
The original QSP paper [18] demonstrated the existence of phase factors without providing
a constructive algorithm, and finding phase factors was considered to be a main bottle-
neck of the approach [4]. In the past few years, there has been significant progresses in
computing the phase factors. Refs. [12, 13] developed the factorization based method. For
a given target (real) polynomial f (d), one needs to find a complementary (real) polynomial
satisfying the requirement of [12, Corollary 5] (also see Theorem 7). This step is based on
finding roots of high degree polynomials to high precision, and this is not a numerically
stable procedure. Specifically, the algorithm requires O(d log(d/ϵ)) bits of precision [13].
There have been two recent improvements of the factorization based method, based on
the capitalization method [3], and the Prony method [26], respectively. Although the two
methods differ significantly, empirical results indicate that both methods are numerically
stable, and are applicable to polynomials of large degrees. Furthermore, both methods
take advantage of that the mapping from the Chebyshev coefficients c to the full phase
factors Ψ is not necessarily well-defined in ℓ1. For instance, a key step in [3] is to introduce

2The examples are available on the website https://qsppack.gitbook.io/qsppack/ and the codes are
open-sourced in https://github.com/qsppack/QSPPACK.
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a very small perturbation to the high order Chebyshev coefficients, which can nonetheless
induce a large change in the phase factors Ψ. As a result, the question raised in Problem 2
cannot be well defined in such factorization based methods, and the tail of the phase
factors Ψ does not exhibit decay properties.

The optimization based method developed in Ref. [8] uses a different approach, and
computes the symmetric phase factors without explicitly constructing the complementary
polynomials. Empirical results show that the quasi-Newton optimization method in [8]
is numerically stable and can be applicable to polynomials of large degrees. Ref. [25]
analyzes the symmetric QSP, and proves that starting from a fixed initial guess of the
reduced phase factors Φ = (0, · · · , 0), a simpler optimization method (the projected gradi-
ent method) converges linearly to a unique maximal solution, when the target polynomial

satisfies
∥∥∥f (d)

∥∥∥
∞
≤ Cd−1 for some constant C. The fixed point iteration method in Algo-

rithm 1 is the simplest algorithm thus far for finding phase factors, and is the first provably
numerically stable algorithm in the limit d→∞.

2 Preliminaries on quantum signal processing
The set [n] := {0, 1, · · · , n − 1} is referred to as the index set generated by a positive
integer n. The row and column indices of a n-by-n matrix run from 0 to n − 1, namely
in the index set [n]. For a matrix A ∈ Cm×n, the transpose, Hermitian conjugate and
complex conjugate are denoted by A⊤, A†, A∗, respectively. The same notations are also
used for the operations on a vector.

For a matrix M of infinite dimension, we equip it with the induced 1-norm, i.e.,

∥M∥1 := max
v∈ℓ1,∥v∥1=1

∥Mv∥1 .

For any function f over [−1, 1], we define its infinity norm as ∥f∥∞ := max−1≤x≤1 |f(x)|.
The key to quantum signal processing (QSP) is a representation theorem for certain ma-
trices in SU(2):
Theorem 7 (Quantum signal processing [12, Theorem 4]). For any P,Q ∈ C[x] and
a positive integer d such that

(1) deg(P ) ≤ d,deg(Q) ≤ d− 1,

(2) P has parity (d mod 2) and Q has parity (d− 1 mod 2),

(3) (Normalization condition) |P (x)|2 + (1− x2)|Q(x)|2 = 1,∀x ∈ [−1, 1].
Then, there exists a set of phase factors Ψ := (ψ0, · · · , ψd) ∈ [−π, π)d+1 such that

U(x,Ψ) = eiψ0Z
d∏
j=1

[
W (x)eiψjZ

]
=
(

P (x) iQ(x)
√

1− x2

iQ∗(x)
√

1− x2 P ∗(x)

)
(14)

where
W (x) = ei arccos(x)X =

(
x i

√
1− x2

i
√

1− x2 x

)
.

Here, the complex conjugate of a complex polynomial is defined by taking complex
conjugate on all of its coefficients. X,Z are Pauli matrices. In most applications, we are
only interested in using the real part of P . The following corollary is a slight variation
of [12, Corollary 5], which states that the condition on the real part of P can be easily
satisfied. Due to the relation between the real and imaginary components given in Eq. (2),
the conditions on the imaginary part of P are the same.

Accepted in Quantum 2024-11-19, click title to verify. Published under CC-BY 4.0. 8



Corollary 8 (Quantum signal processing with real target polynomials [12, Corol-
lary 5]). Let f ∈ R[x] be a degree-d polynomial for some d ≥ 1 such that

• f(x) has parity (d mod 2),

• |f(x)| ≤ 1,∀x ∈ [−1, 1].
Then there exists some P,Q ∈ C[x] satisfying properties (1)-(3) of Theorem 7 such that
f(x) = Im[P (x)].

Since we are interested in P , we may further restrictQ ∈ R[x]. In such a case, the phase
factors can be restricted to be symmetric. Let Dd denote the domain of the symmetric
phase factors:

Dd =
{

[−π
2 ,

π
2 )

d
2 × [−π, π)× [−π

2 ,
π
2 )

d
2 , d is even,

[−π
2 ,

π
2 )d+1, d is odd.

(15)

Theorem 9 (Quantum signal processing with symmetric phase factors [25, The-
orem 1]). Consider any P ∈ C[x] and Q ∈ R[x] satisfying the following conditions

(1) deg(P ) = d and deg(Q) = d− 1.

(2) P has parity (d mod 2) and Q has parity (d− 1 mod 2).

(3) (Normalization condition) ∀x ∈ [−1, 1] : |P (x)|2 + (1− x2)|Q(x)|2 = 1.

(4) If d is odd, then the leading coefficient of Q is positive.
There exists a unique set of symmetric phase factors Ψ := (ψ0, ψ1, · · · , ψ1, ψ0) ∈ Dd such
that

U(x,Ψ) =
(

P (x) iQ(x)
√

1− x2

iQ(x)
√

1− x2 P ∗(x)

)
. (16)

We want to emphasize that the set of symmetric phase factors is unique only if both
P (x) and Q(x) are determined. If only f = Im[P ] is given, then the set of symmetric
phase factors may not be unique as mentioned above. When we are only interested in
f(x) = Im[P (x)] represented by symmetric phase factors, the conditions on f are the
same as those in Corollary 8. This is proved constructively in [25, Theorem 4].

Throughout the paper, unless otherwise specified, we refer to Ψ := (ψ0, · · · , ψd) as the
full set of phase factors and use Φ := (ϕ0, · · · , ϕd̃−1) to denote the set of reduced phase

factors after imposing symmetry constraint on Ψ, where d̃ := ⌈d+1
2 ⌉.

In this paper, in order to characterize decay properties, we choose the second half of
Ψ to be the corresponding reduced phase factors. Specifically, when d is odd, the set of
reduced phase factors is

Φ = (ϕ0, · · · , ϕd̃−1) := (ψ
d̃
, · · · , ψd). (17)

When d is even, the set of reduced phase factors is

Φ = (ϕ0, · · · , ϕd̃−1) := (1
2ψd̃−1, ψd̃, · · · , ψd). (18)

In this way, one has

U(x,Ψ) = e
iϕ

d̃−1
Z
W (x)eiϕd̃−2

Z · . . . ·W (x)eiϕ0ZW (x)eiϕ0ZW (x) · . . . · eiϕd̃−2
Z
W (x)eiϕd̃−1

Z

for the odd case, and

U(x,Ψ) = e
iϕ

d̃−1
Z
W (x)eiϕd̃−2

Z · . . . ·W (x)e2iϕ0ZW (x) · . . . · eiϕd̃−2
Z
W (x)eiϕd̃−1

Z

for the even case.
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Lemma 10 (Phase-factor padding). For any symmetric phase factors Ψ,

Im (⟨0|U(x,Ψ)|0⟩) = Im (⟨0|W (x)U(x,Ψ)W (x)|0⟩) . (19)

Proof. According to the definition, U(x,Ψ) takes the form(
P (x) iQ(x)

√
1− x2

iQ(x)
√

1− x2 P ∗(x)

)
.

Here, P (x) ∈ C[x], and Q(x) ∈ R[x] due to the symmetry of Ψ. Direct computation shows:

W (x)U(x,Ψ)W (x)

=
(

x i
√

1− x2

i
√

1− x2 x

)(
P (x) iQ(x)

√
1− x2

iQ(x)
√

1− x2 P ∗(x)

)(
x i

√
1− x2

i
√

1− x2 x

)

=
(
xP − (1− x2)Q i(xQ+ P ∗)

√
1− x2

i(P + xQ)
√

1− x2 xP ∗ − (1− x2)Q

)(
x i

√
1− x2

i
√

1− x2 x

)
.

(20)

The upper-left entry of W (x)U(x,Ψ)W (x) is

x2P − x(1− x2)Q− (xQ+ P ∗)(1− x2) = x2P + (x2 − 1)P ∗ − 2x(1− x2)Q. (21)

Hence

Im (⟨0|W (x)U(x,Ψ)W (x)|0⟩) = Im
(
x2P + (x2 − 1)P ∗

)
= x2PIm + (1− x2)PIm = PIm.

(22)
Note that PIm = Im (⟨0|U(x,Ψ)|0⟩), which completes the proof.

Recall that we are interested in g(x,Ψ) := Im[⟨0|U(x,Ψ)|0⟩], and g(x,Φ) is identified
with g(x,Ψ). Lemma 10 implies that for reduced phase factors Φ, g(x,Φ) remains the
same if we pad Φ with an arbitrary number of 0’s at the right end. In this way, we are
able to identify Φ with the infinite dimensional vector (ϕ0, · · · , ϕd̃−1, 0, · · · ) in R∞. Then

for any Φ(1),Φ(2) ∈ R∞, the distance
∥∥∥Φ(1) − Φ(2)

∥∥∥
1
is well defined.

Definition 11. The effective length of Φ ∈ R∞ is the largest index of the nonzero elements
of Φ. If Φ = (ϕ0, · · · , ϕd̃−1, 0, · · · ) and ϕ

d̃−1 ̸= 0, then its effective length is d̃.

By viewing reduced phase factors Φ as an infinite dimensional vector in R∞, the
problem of symmetric quantum signal processing is to find reduced phase factors Φ ∈ R∞

such that
F (Φ) := F (g(x,Φ)) = F(f) (23)

holds for a target polynomial f .

3 Infinite quantum signal processing
We use DF (Φ) to denote the Jacobian matrix of F (Φ), which is a matrix of infinite
dimension. Following the construction of the mapping F , for any k ∈ N, the k-th column
of DF (Φ) is

∂F (Φ)
∂ϕk

= F
(
∂g(x,Φ)
∂ϕk

)
. (24)

Accepted in Quantum 2024-11-19, click title to verify. Published under CC-BY 4.0. 10



Similarly, for any r, s ∈ N, the second order derivative is

∂2F (Φ)
∂ϕr∂ϕs

= F
(
∂2g(x,Φ)
∂ϕr∂ϕs

)
. (25)

As a remark, both ∂F (Φ)
∂ϕk

and ∂2F (Φ)
∂ϕr∂ϕs

are infinite dimensional vectors.
The main goal of this section is to prove Theorem 3. We first present a useful estimate

of the vector 1-norm of F and ∂2F (Φ)
∂ϕr∂ϕs

in Section 3.1. This allows us to estimate the
matrix 1-norm of the Jacobian DF and prove the invertibility of DF in Section 3.2.
Based on these technical preparations, we prove the invertibility of the mapping F in
R∞ in Section 3.3. As a final step, since R∞ is dense in ℓ1 and all derived estimates
are independent of the effective length of Φ, we extend the result to the invertibility of
F in Section 3.4. The analysis leverages some facts about the Banach space, which are
summarized in Appendix A for completeness.

Without loss of generality, we consider the case that the target function is even in this
section. The analytical results can be similarly generalized to the odd case.

3.1 Estimating the vector 1-norm of F and its second-order derivatives
We first summarize the main goal of this subsection as the following lemmas. To prove
them, we consider a more general case where phase factors are not necessarily symmetric.
Consequentially, we prove stronger results in Lemma 14 and Corollary 15. Lemma 12 and
Lemma 13 are consequences of Lemma 14 and Corollary 15 respectively by restricting
to the symmetric phase factors. As a remark, the upper bounds are independent of the
effective length of the reduced phase factors, which will enable the generalization to ℓ1.

Lemma 12. For any Φ ∈ R∞, it holds that

∥F (Φ)∥1 ≤ sinh (2 ∥Φ∥1) . (26)

Lemma 13. For any Φ ∈ R∞, and r, s ∈ N, it holds that∥∥∥∥∥∂2F (Φ)
∂ϕr∂ϕs

∥∥∥∥∥
1
≤ 4 sinh (2 ∥Φ∥1) . (27)

To prove the previous lemmas, we start from a general setup where the phase factors
are not necessarily symmetric.

Lemma 14. For any full set of phase factors Ψ := (ψ0, ψ1, · · · , ψd), it holds that

∥F (g(x,Ψ))∥1 ≤ sinh (∥Ψ∥1) . (28)

Proof. Let Ψ = (ψ0, ψ1, · · · , ψd) be a full set of phase factors. The corresponding QSP
matrix can be expanded as

U(x,Ψ) : = eiψ0Z
d∏

k=1

(
W (x)eiψkZ

)

= (cos(ψ0)I + i sin(ψ0)Z)
d∏

k=1
(W (x) (cos(ψk)I + i sin(ψk)Z))

=
(

d∏
k=0

cos(ψk)
)

(I + it0Z)
d∏
j=1

(W (x) (I + itjZ)) ,

(29)
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where tj := tanψj . Notice that W (x)Z = ZW (x)−1 and

W (x)k =
(

Tk(x) i
√

1− x2Uk−1(x)
i
√

1− x2Uk−1(x) Tk(x)

)
, (30)

where Tk(x) and Uk(x) are Chebyshev polynomials of the first and second kind respectively.
Then,

U(x,Ψ) =
(

d∏
k=0

cos(ψk)
)

(I + it0Z)
d∏
j=1

(W (x) (I + itjZ))

=
(

d∏
k=0

cos(ψk)
)(

W d(x) + i
d∑

j1=0
tj1ZW

d−2j1(x)−
∑
j1<j2

tj1tj2W
d−2(j2−j1)(x)

− i
∑

j1<j2<j3

tj1tj2tj3ZW
d−2(j3−j2+j1)(x) + ...

)
.

(31)

Note that each term is a matrix whose upper left element is of the following form

il · tj1tj2 · · · tjlTk(x),

where j1 < j2 < · · · < jl for some l, and k = d− 2
∑l
i=1(−1)l−iji.

When considering the Chebyshev coefficients of the imaginary part of the upper left
element of U(x,Ψ), only those terms with odd number of tj ’s matter. Then we have the
estimate

∥F (g(x,Ψ))∥1 ≤
d∏

k=0
|cos(ψk)|

∑
l is odd

∑
j1<j2<···<jl

l∏
i=1
|tji |

=
∑

l is odd

∑
j1<j2<···<jl

l∏
i=1
|sin(ψji)|

∏
k ̸=j1,··· ,jl

|cos(ψk)|

≤
∑

l is odd

∑
j1<j2<···<jl

l∏
i=1
|sin(ψji)|

≤ sinh
(

d∑
k=0
|sin(ψk)|

)
≤ sinh (∥Ψ∥1) .

(32)

We remark that the last inequality holds because sinh(x) is monotonic increasing, and the
penultimate equality is due to the following observation:

sinh
(

d∑
k=0
|sin(ψk)|

)
=

∑
l is odd

1
l!

(
d∑

k=0
|sin(ψk)|

)l
=

∑
l is odd

1
l!

∑
j1,j2,··· ,jl

l∏
i=1
|sin(ψji)|

≥
∑

l is odd

1
l!

∑
j1,··· ,jl

are all different

l∏
i=1
|sin(ψji)| =

∑
l is odd

∑
j1<j2<···<jl

l∏
i=1
|sin(ψji)| .

(33)

The proof is completed.
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Corollary 15. For any full set of phase factors Ψ := (ψ0, ψ1, · · · , ψd) and any r, s ∈ [d+1],
it holds that ∥∥∥∥∥F

(
∂2g(x,Ψ)
∂ψr∂ψs

)∥∥∥∥∥
1
≤ sinh(∥Ψ∥1). (34)

Proof. If r = s, then ∂2
rU(x,Ψ) = −U(x,Ψ), and the desired result can be obtained by

directly applying Lemma 14. Then we consider the case r ̸= s. Note that

∂r∂sU(x,Ψ) = U

(
x,Ψ + π

2 er + π

2 es
)
, (35)

where er = (0, . . . , 0, 1, 0, . . . , 0) denotes the r-th standard unit vector. Then

∂2g(x,Ψ)
∂ψr∂ψs

= ∂2Im[⟨0|U(x,Ψ)|0⟩]
∂ψr∂ψs

= Im[⟨0|∂r∂sU(x,Ψ)|0⟩]

= Im[⟨0|U(x,Ψ + π

2 er + π

2 es)|0⟩] = g(x,Ψ + π

2 er + π

2 es).
(36)

To simplify the notation, let Ψ̃ = Ψ + π
2 er + π

2 es, and ψ̃k be the components of Ψ̃. Similar
to the proof of Lemma 14, we have∥∥∥∥∥∂2g(x,Ψ)

∂ψr∂ψs

∥∥∥∥∥
1

=
∥∥∥g(x, Ψ̃)

∥∥∥
1

≤
∑

l is odd

∑
j1<j2<···<jl

l∏
i=1

∣∣∣sin(ψ̃ji)
∣∣∣ ∏
k ̸=j1,··· ,jl

∣∣∣cos(ψ̃k)
∣∣∣

= 1
2
∏
k

(∣∣∣cos(ψ̃k)
∣∣∣+ ∣∣∣sin(ψ̃k)

∣∣∣)− 1
2
∏
k

(∣∣∣cos(ψ̃k)
∣∣∣− ∣∣∣sin(ψ̃k)

∣∣∣)
(∗)=

∑
l is odd

∑
j1<j2<···<jl

l∏
i=1
|sin(ψji)|

∏
k ̸=j1,··· ,jl

|cos(ψk)|

≤
∑

l is odd

∑
j1<j2<···<jl

l∏
i=1
|sin(ψji)|

≤ sinh (∥Ψ∥1) .

(37)

To see that equality (∗) holds, we note that | sin(ψ̃k)| = | cos(ψk)| and | cos(ψ̃k)| = | sin(ψk)|
for k = r or s which interchanges two pairs of sine and cosine. Because this interchange
operation leaves the production invariant, we can directly replace Ψ̃ by Ψ in the expression.
The proof is completed.

Lemma 12 is a direct application of Lemma 14. Now we use Corollary 15 to prove
Lemma 13.

Proof of Lemma 13. Choose n ≥ max(r, s) such that all elements of Φ with index > n are
zero. Then we may view Φ as a vector of length n + 1, i.e., (ϕ0, · · · , ϕn). Since we only
consider the even case, we let Ψ := (ψ0, ψ1, · · · , ψ2n) be the corresponding full set of phase
factors and then

ψk =


ϕn−k k < n,

2ϕ0 k = n,

ϕk−n k > n.

(38)
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For first-order derivative, when k > 0,

∂g(x,Φ)
∂ϕk

= ∂g(x,Ψ)
∂ψn+k

+ ∂g(x,Ψ)
∂ψn−k

, (39)

and when k = 0,
∂g(x,Φ)
∂ϕk

= 2∂g(x,Ψ)
∂ψn

= ∂g(x,Ψ)
∂ψn+k

+ ∂g(x,Ψ)
∂ψn−k

. (40)

Similarly, the second-order derivative is

∂2g(x,Φ)
∂ϕr∂ϕs

= ∂2g(x,Ψ)
∂ψn+r∂ψn+s

+ ∂2g(x,Ψ)
∂ψn−r∂ψn+s

+ ∂2g(x,Ψ)
∂ψn+r∂ψn−s

+ ∂2g(x,Ψ)
∂ψn−r∂ψn−s

. (41)

Invoking the triangle inequality for 1-norm and applying Corollary 15, the results follow∥∥∥∥∥∂2F (Φ)
∂ϕr∂ϕs

∥∥∥∥∥
1

=
∥∥∥∥∥F

(
∂2g(x,Φ)
∂ϕr∂ϕs

)∥∥∥∥∥
1

≤
∥∥∥∥∥F

(
∂2g(x,Ψ)

∂ψn+r∂ψn+s

)∥∥∥∥∥
1

+
∥∥∥∥∥F

(
∂2g(x,Ψ)

∂ψn−r∂ψn+s

)∥∥∥∥∥
1

+
∥∥∥∥∥F

(
∂2g(x,Ψ)

∂ψn+r∂ψn−s

)∥∥∥∥∥
1

+
∥∥∥∥∥F

(
∂2g(x,Ψ)

∂ψn−r∂ψn−s

)∥∥∥∥∥
1

≤ 4 sinh (2 ∥Φ∥1) .

(42)

3.2 Matrix 1-norm estimates of DF

The following lemma characterizes the Lipschitz continuity of DF .

Lemma 16 (Lipschitz continuity of DF ). For any δ > 0 and any Φ(j) ∈ R∞ with∥∥∥Φ(j)
∥∥∥

1
≤ δ, j = 1, 2, it holds that∥∥∥DF (Φ(1))−DF (Φ(2))

∥∥∥
1
≤ C2(δ)

∥∥∥Φ(1) − Φ(2)
∥∥∥

1
, (43)

where C2(δ) = 4 sinh(2δ).

Proof. Using the definition of the 1-norm of infinite dimensional matrix, one has∥∥∥DF (Φ(1))−DF (Φ(2))
∥∥∥

1
= max

∥v∥1=1

∥∥∥(DF (Φ(1))−DF (Φ(2))
)
v
∥∥∥

1

= max
∥v∥1=1

∥∥∥∥∥
∞∑
k=0

(
∂F (Φ(1))
∂ϕk

− ∂F (Φ(2))
∂ϕk

)
vk

∥∥∥∥∥
1

≤ max
∥v∥1=1

∞∑
k=0

∥∥∥∥∥∂F (Φ(1))
∂ϕk

− ∂F (Φ(2))
∂ϕk

∥∥∥∥∥
1
|vk|

= max
k

∥∥∥∥∥∂F (Φ(1))
∂ϕk

− ∂F (Φ(2))
∂ϕk

∥∥∥∥∥
1
.

(44)

For fixed k, Φ(1) and Φ(2), applying mean value inequality to the function

y(t) := ∂F

∂ϕk

(
Φ(1) + t

(
Φ(2) − Φ(1)

))
,
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we have∥∥∥∥∥∂F (Φ(1))
∂ϕk

− ∂F (Φ(2))
∂ϕk

∥∥∥∥∥
1
≤ max

Φ′=(1−t)Φ(1)+tΦ(2)

0≤t≤1

∥∥∥∥∇∂F (Φ′)
∂ϕk

·
(
Φ(1) − Φ(2)

)∥∥∥∥
1

= max
Φ′=(1−t)Φ(1)+tΦ(2)

0≤t≤1

∥∥∥∥∥
n∑
l=0

∂2F (Φ′)
∂ϕl∂ϕk

(
Φ(1)
l − Φ(2)

l

)∥∥∥∥∥
1

≤ max
Φ′=(1−t)Φ(1)+tΦ(2)

0≤t≤1

n∑
l=0

∥∥∥∥∥∂2F (Φ′)
∂ϕl∂ϕk

∥∥∥∥∥
1

∣∣∣Φ(1)
l − Φ(2)

l

∣∣∣
≤ C2(δ)

n∑
l=0

∣∣∣Φ(1)
l − Φ(2)

l

∣∣∣
= C2(δ)

∥∥∥Φ(1) − Φ(2)
∥∥∥

1

(45)

where n is the effective length of Φ(1) − Φ(2). The last inequality follows Lemma 13, and
notice that ∥Φ′∥1 =

∥∥∥(1− t)Φ(1) + tΦ(2)
∥∥∥

1
is still bounded by δ. Since k can be arbitrary,

the proof is completed.

Lemma 17. DF (0) = 2I, where 0 ∈ R∞ is the vector with all elements equal to zero, and
I is the identity matrix of infinite dimension.

Proof. It is equivalent to show that ∂F (0)
∂ϕk

= 2ek, where ek ∈ R∞ is the vector with all
components equal to 0 except for the k-th component which is equal to 1. Recall Eq. (24)
and notice that F(T2k(x)) = ek, we can prove that ∂g(x,0)

∂ϕk
= 2T2k(x) instead. Invoking

Lemma 10, we only need to show that ∂g(x,Φ)
∂ϕk

= 2T2k(x), where Φ = (0, · · · , 0) ∈ Rk+1.
We know that U(x,Φ) = W 2k(x) as well as Eq. (30). Then direct computation gives that

∂g(x,Φ)
∂ϕk

= Im
(
⟨0|∂U(x,Φ)

∂ϕk
|0⟩
)

= Im (⟨0|iZU(x,Φ) + U(x,Φ)iZ|0⟩)

= 2Re (⟨0|U(x,Φ)|0⟩) = 2Re
(
⟨0|W 2k(x)|0⟩

)
= 2T2k(x).

(46)

By choosing Φ(2) to be 0 in Lemma 16, we obtain a rough estimate about DF (Φ),

∥DF (Φ)− 2I∥1 ≤ C2(∥Φ∥1) ∥Φ∥1 .

However, this estimate can be refined, which is given in the following lemma.

Lemma 18. Define
h(x) :=

∫ x

0
C2(δ)dδ = 2 cosh(2x)− 2. (47)

For any Φ ∈ R∞,
∥DF (Φ)− 2I∥1 ≤ h(∥Φ∥1). (48)

Proof. Note that DF (0) = 2I. For a fixed Φ, for an arbitrary partition of [0, 1]

0 = t0 < t1 < · · · < tm = 1,
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the following can be obtained by invoking the triangle inequality of 1-norm and applying
Lemma 16

∥DF (Φ)−DF (0)∥1 =

∥∥∥∥∥∥
∑
k∈[m]

(DF (tk+1Φ)−DF (tkΦ))

∥∥∥∥∥∥
1

≤
∑
k∈[m]

∥DF (tk+1Φ)−DF (tkΦ)∥1

≤
∑
k∈[m]

C2(∥tk+1Φ∥1) ∥tk+1Φ− tkΦ∥1

=
∑
k∈[m]

C2(tk+1 ∥Φ∥1) ∥Φ∥1 |tk+1 − tk| .

(49)

Note that
∑
k∈[m]C2(∥tk+1Φ∥1) ∥Φ∥1 |tk+1 − tk| is a Riemann sum integrating C2(t ∥Φ∥1) ∥Φ∥1

over t ∈ [0, 1]. Since the partition is arbitrary, one gets

∥DF (Φ)−DF (0)∥1 ≤
∫ 1

0
C2(t ∥Φ∥1) ∥Φ∥1 dt =

∫ ∥Φ∥1

0
C2(δ)dδ = h(∥Φ∥1). (50)

As an immediate consequence of Lemma 18, for any Φ ∈ R∞ with bounded norm
∥Φ∥1 ≤ δ, it holds that

∥DF (Φ)∥1 ≤ 2 cosh(2x)− 2 + 2 = 2 cosh(2δ) := C1(δ). (51)

We will use this upper bound on ∥DF (Φ)∥1 to prove the Lipschitz continuity of F .

Corollary 19 (Lipschitz continuity of F ). For any Φ(j) ∈ R∞ with bounded norm
∥∥∥Φ(j)

∥∥∥
1
≤

δ where j = 1, 2 it holds that∥∥∥F (Φ(1))− F (Φ(2))
∥∥∥

1
≤ C1(δ)

∥∥∥Φ(1) − Φ(2)
∥∥∥

1
. (52)

Proof. Applying the mean value inequality, there exists Φ′ which is some convex combi-
nation of Φ(1) and Φ(2) so that∥∥∥F (Φ(1))− F (Φ(2))

∥∥∥
1
≤
∥∥DF (Φ′)

∥∥
1

∥∥∥Φ(1) − Φ(2)
∥∥∥

1
. (53)

Invoking Eq. (51) and recalling the condition ∥Φ′∥1 ≤ δ, one has ∥DF (Φ′)∥1 ≤ C1(δ),
which completes the proof.

3.3 Invertibility of F in R∞

According to the inverse mapping theorem and Lemma 17, we know that F is invertible
near 0. We now prove a stronger result about the invertibility of F in a neighborhood of
the origin. This is obtained via an upper bound on

∥∥F−1(c)
∥∥

1 in terms of ∥c∥1. The proof
of the following lemma is given in Appendix B. Since F is not an injection globally, the
F−1 we refer to only means a continuous function whose domain is an open subset of R∞

containing 0 and satisfies F ◦ F−1 = id.
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Lemma 20 (Invertibility of F in R∞). Define

H(x) :=
∫ x

0
2− h(t)dt = 4x− sinh(2x), (54)

rΦ := h−1(2) ≈ 0.658, (55)

and
rc := H(rΦ) ≈ 0.902. (56)

F has an inverse map F−1 : B(0, rc) ⊂ R∞ → R∞. Moreover, for any c ∈ R∞ with
∥c∥1 < rc, it holds that ∥∥∥F−1(c)

∥∥∥
1
≤ H−1(∥c∥1). (57)

As a remark, the effective length of F−1(c) is always equal to that of c, which is implied
by the proof of Lemma 20.

Corollary 21. For any c(j) ∈ R∞ with
∥∥∥c(j)

∥∥∥
1
≤ θ < rc where j = 1, 2, define Φ(j) :=

F−1(c(j)) for j = 1, 2. It holds that

C̃(θ)
∥∥∥Φ(1) − Φ(2)

∥∥∥
1
≤
∥∥∥c(1) − c(2)

∥∥∥
1
, (58)

where C̃(θ) = 2− h(H−1(θ)).

Proof. First, one has∥∥∥c(1) − c(2)
∥∥∥

1
=
∥∥∥F (Φ(1))− F (Φ(2))

∥∥∥
1

=
∥∥∥∥∫ 1

0
DF

(
sΦ(1) + (1− s)Φ(2)

)
·
(
Φ(1) − Φ(2)

)
ds
∥∥∥∥

1

=
∥∥∥∥∫ 1

0

(
2I +DF

(
sΦ(1) + (1− s)Φ(2)

)
− 2I

)
·
(
Φ(1) − Φ(2)

)
ds
∥∥∥∥

1

≥ 2
∥∥∥Φ(1) − Φ(2)

∥∥∥
1
−
∫ 1

0

∥∥∥DF (sΦ(1) + (1− s)Φ(2)
)
− 2I

∥∥∥
1

∥∥∥Φ(1) − Φ(2)
∥∥∥

1
ds

(59)

Hence, there exists t ∈ (0, 1) such that Φ′ = tΦ(1) + (1− t)Φ(2) and∥∥∥c(1) − c(2)
∥∥∥

1
≥ 2

∥∥∥Φ(1) − Φ(2)
∥∥∥

1
−
∥∥DF (Φ′)− 2I

∥∥
1

∥∥∥Φ(1) − Φ(2)
∥∥∥

1
. (60)

From Lemma 20, for j = 1, 2, one has∥∥∥Φ(j)
∥∥∥

1
=
∥∥∥F−1(c(j))

∥∥∥
1
≤ H−1(

∥∥∥c(j)
∥∥∥

1
) ≤ H−1(θ) < rΦ. (61)

Then ∥Φ′∥1 ≤ H−1(θ) follows by the convexity of 1-norm ball. According to Lemma 18,
one has ∥DF (Φ′)− 2I∥1 ≤ h(∥Φ′∥1) < 1. Thus, we obtain

C̃(θ)
∥∥∥Φ(1) − Φ(2)

∥∥∥
1
≤
∥∥∥c(1) − c(2)

∥∥∥
1
, (62)

where C̃(θ) := 2− h(H−1(θ)).

Combining Corollary 19 and Corollary 21, we obtain the following theorem.
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Lemma 22 (Equivalence of distance in R∞). For any c(j) ∈ R∞ with
∥∥∥c(j)

∥∥∥
1
≤ θ < rc,

j = 1, 2, define Φ(j) := F−1(c(j)), j = 1, 2. It holds that

C̃(θ)
∥∥∥Φ(1) − Φ(2)

∥∥∥
1
≤
∥∥∥c(1) − c(2)

∥∥∥
1
≤ C(θ)

∥∥∥Φ(1) − Φ(2)
∥∥∥

1
, (63)

where C̃(θ) = 2− h(H−1(θ)) and C(θ) = C1(H−1(θ)).

An immediate consequence of Lemma 22 is that: for any c ∈ R∞ with ∥c∥1 ≤ θ < rc,
if we let Φ := F−1(c), then

C̃(θ) ∥Φ∥1 ≤ ∥c∥1 ≤ C(θ) ∥Φ∥1 . (64)

To show the sharpness of rc, we plot C̃(θ) and C(θ) as function of θ in Fig. 1.
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Figure 1: The plot of C̃(θ) and C(θ) as function of θ.

According to Lemma 22, the map F preserves the distance up to a constant, i.e., F is
a quasi isometry near the origin.

3.4 Extension to ℓ1

In this section, we extend Lemma 20 and Lemma 22 from R∞ to ℓ1. The map F is a
well-defined mapping from Se (or So) to ℓ

1 according to

F(f) = (c0, c1, · · · ). (65)

The following theorem is a more detailed statement of Theorem 3.

Theorem 23 (Invertibility of F in ℓ1). The map F : R∞ → R∞ can be extended to
F : ℓ1 → ℓ1. Furthermore, F has an inverse map F

−1 : B(0, rc) ⊂ ℓ1 → ℓ1. For any
c ∈ R∞ with ∥c∥1 < rc, it holds that∥∥∥F−1(c)

∥∥∥
1
≤ H−1(∥c∥1). (66)

Proof. Lemma 16 and Corollary 19 state that F and DF are both Lipschitz continuous.
By Theorem 30 and the fact that R∞ is a dense subspace of ℓ1, F can be extended to the
whole ℓ1. The inverse mapping theorem for Banach spaces (Theorem 31), together with
Theorem 30 imply that F shares the same property with F within a neighborhood of the
origin. This completes the proof due to Lemma 20.
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Following the proof of Theorem 23, we can also extend Lemma 22 to ℓ1, which states
that F preserves the distance up to a constant in a neighborhood of the origin.

Theorem 24 (Equivalence of distance in ℓ1). For any c(j) ∈ ℓ1 with
∥∥∥c(j)

∥∥∥
1
≤ θ < rc

where j = 1, 2, define Φ(j) := F
−1(c(j)), j = 1, 2. It holds that

C̃(θ)
∥∥∥Φ(1) − Φ(2)

∥∥∥
1
≤
∥∥∥c(1) − c(2)

∥∥∥
1
≤ C(θ)

∥∥∥Φ(1) − Φ(2)
∥∥∥

1
, (67)

where C̃(θ) = 2− h(H−1(θ)) and C(θ) = C1(H−1(θ)).

With the help of the inverse mapping theorem of Banach spaces, the proof of this
theorem follows the same idea as Lemma 22.

Now we are ready to give a positive answer to the first question raised in Section 1.1.
Let Ψ(d) denote the symmetric phase factors and Φ(d) denote the corresponding reduced
phase factors. Although the solution to F (Φ) = F(f (d)) may not be unique, Theorem 23

allows us to choose one Φ(d) such that
∥∥∥Φ(d)

∥∥∥
1
< rΦ as long as

∥∥∥F(f (d))
∥∥∥

1
< rc. Assume

that c := F(f) satisfies ∥c∥1 < rc as well. Then limd→∞ f (d) = f implies that {F(f (d))}
converges to c with respect to the vector 1-norm. The convergence of {Φ(d)} to F

−1(c)
follows by applying the equivalence of distance in Theorem 24. Theorem 23 provides
a sufficient condition to the existence of the solution to F (Φ) = c. We would like to
emphasize that similar to the case of polynomials, the solution might not be unique in ℓ1.

3.5 Structure of DF

In this section, we focus on the structure of the Jacobian matrix DF . Given any Φ ∈ R∞,
we let n be its effective length. According to Eq. (24), the k-th column of DF (Φ), i.e.,
∂F (Φ)
∂ϕk

, is the Chebyshev-coefficient vector of ∂g(x,Φ)
∂ϕk

. Direct computation shows

∂F (Φ)
∂ϕk

= F (Φ + π

4 ek)− F (Φ− π

4 ek), ∀k ∈ N,Φ ∈ R∞. (68)

Here, ek ∈ R∞ is the vector with all components equal to 0 except for the k-th component
which is equal to 1. As a reminder, when we refer to the component of a vector or matrix,
the index begins with 0.

We consider the even case for simplicity. For k < n, according to Eq. (68), ∂g(x,Φ)
∂ϕk

is a

polynomial of degree at most 2n − 2. Thus the components
[
∂F (Φ)
∂ϕk

]
j

= 0 for any j ≥ n.

For k ≥ n, ∂g(x,Φ)
∂ϕk

is a polynomial of degree at most 2k, and then
[
∂F (Φ)
∂ϕk

]
j

= 0 for any

j > k. Therefore DF (Φ) takes the form(
D1 D2
0 D3

)
. (69)

Here, D1 is a matrix of size n×n andD3 is an upper triangular matrix of infinite dimension.
As for matrix D2, the number of rows is n, while the number of columns is infinite.

When DF (Φ) is invertible, the inverse takes the form

DF (Φ)−1 =
(
D−1

1 −D−1
1 D2D

−1
3

0 D−1
3

)
. (70)

After extending F to ℓ1, we can characterize the invertibility of matrix DF in ℓ1.
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Lemma 25. For any Φ ∈ ℓ1 with ∥Φ∥1 < rΦ, DF (Φ) is invertible and∥∥∥DF (Φ)−1
∥∥∥

1
≤ 1

2− h(∥Φ∥1) . (71)

Proof. When ∥Φ∥1 < h−1(2), we have
∥∥∥1

2DF (Φ)− I
∥∥∥

1
≤ 1

2h(∥Φ∥1) < 1. Applying Theo-
rem 29 in the Banach space ℓ1, DF (Φ) is invertible and∥∥∥DF (Φ)−1

∥∥∥
1

= 1
2

∥∥∥∥∥
(1

2DF (Φ)
)−1

∥∥∥∥∥
1
≤

1
2

1− 1
2h(∥Φ∥1)

= 1
2− h(∥Φ∥1) .

4 Decay properties
As an immediate consequence of Theorem 24, we now prove the decay properties of the
reduced phase factors Φ ∈ ℓ1 (Theorem 4) with an explicit characterization of the constant
C.

Proof of Theorem 4. Let Φ(n) = (ϕ0, . . . , ϕn, 0, 0, . . .), and θ = ∥c∥1 in Theorem 24, then
we get

C1(H−1(∥c∥1))
∑
k>n

|ϕk| = C1(H−1(∥c∥1))
∥∥∥Φ− Φ(n)

∥∥∥
1

≥
∥∥∥F (Φ)− F

(
Φ(n)

)∥∥∥
1

=
∥∥∥c− F (Φ(n)

)∥∥∥
1

≥
∑
k>n

|ck| ,

(72)

where the last inequality follows the fact that F (Φ(n)) is zero after the n-th component.
Similarly, we choose c(n) = (c0, . . . , cn, 0, 0, . . .), and Theorem 24 gives

1
2− h(H−1(∥c∥1))

∑
k>n

|ck| =
1

2− h(H−1(∥c∥1))

∥∥∥c− c(n)
∥∥∥

1

≥
∥∥∥F−1(c)− F−1 (

c(n)
)∥∥∥

1
=
∥∥∥Φ− F−1 (

c(n)
)∥∥∥

1

≥
∑
k>n

|ϕk| ,

(73)

where the last inequality follows the fact that F−1(c(n)) is zero after the n-th component.
This completes the proof with C ′ = 1

C1(H−1(∥c∥1)) and C = 1
2−h(H−1(∥c∥1)) .

If
∑
k>n |ck| = O(n−α) for some α > 0, then

∑
k>n |ϕk| = O(n−α). If ck decays super-

algebraically or exponentially, so does the reduced phase factors. Therefore the tail decay
of the reduced phase factors is determined by the smoothness of the target function.

5 Fixed-point iteration for finding phase factors
Algorithm 1 is a very simple iterative algorithm based on fixed-point iteration for finding
phase factors. Numerical results suggest that this algorithm is quite robust, starting from
a fixed initial point Φ0 = 0 (or Φ1 = 1

2c according to Algorithm 1). We emphasize that the
choice of the initial guess is important, and other initial points may make the algorithm
diverge. Based on the developments in Section 3, we prove that Algorithm 1 converges
linearly in ℓ1, and describe the computational complexity.
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5.1 Convergence
To prove the convergence of Algorithm 1, it is sufficient to prove that

G(Φ) := Φ− 1
2F (Φ) + 1

2F (Φ⋆) (74)

is a contraction map in a neighborhood of Φ⋆. Φ⋆ denotes the desired set of reduced phase
factors. The contraction property of G follows the observation that the Jacobian matrix
DG(Φ⋆) = I− 1

2DF (Φ⋆) = 1
2 (DF (0)−DF (Φ⋆)) would be small when ∥Φ⋆∥1 is sufficiently

small according to Lemma 18. We define a function

γ(r) := 1
2

∫ 1

0
h

(
r + s

(1
2 sinh(2r)− r

))
ds, (75)

and the following constants

r̃Φ := 1
2 arcsinh(arccosh(2)) ≈ 0.544 (76)

r̃c := H(r̃Φ) ≈ 0.861 (77)
γ̃ := γ(r̃Φ) ≈ 0.8189. (78)

We will also use the fact that r̃Φ < 1
2 arccosh(2) = rΦ ≈ 0.658.

Lemma 26. If Φ⋆ satisfies c = F (Φ⋆) and ∥Φ⋆∥1 ≤ r̃Φ, G is a contraction map in the
open ball B := B

(
Φ⋆,

∥∥∥1
2F (Φ⋆)− Φ⋆

∥∥∥
1

)
.

Proof. First, we give an upper bound on the radius of ball B.∥∥∥∥1
2F (Φ⋆)− Φ⋆

∥∥∥∥
1

= 1
2

∥∥∥∥∫ 1

0

d
dt (F (tΦ⋆)− 2tΦ⋆) dt

∥∥∥∥
1

= 1
2

∥∥∥∥∫ 1

0
(DF (tΦ⋆)− 2I) · Φ⋆dt

∥∥∥∥
1

≤ 1
2

∫ 1

0
∥DF (tΦ⋆)− 2I∥1 ∥Φ

⋆∥1 dt (use Lemma 18)

≤ 1
2

∫ ∥Φ⋆∥1

0
h(t)dt = 1

2 sinh(2 ∥Φ⋆∥1)− ∥Φ⋆∥1 .

(79)

Thus, for any Φ ∈ B, we have the following estimate

∥Φ∥1 < ∥Φ
⋆∥1 +

∥∥∥∥1
2F (Φ⋆)− Φ⋆

∥∥∥∥
1
≤ 1

2 sinh(2 ∥Φ⋆∥1)

≤ 1
2 sinh(2r̃Φ) = 1

2 arccosh(2) = rΦ.

(80)

Then we can use Lemma 18 again to conclude

∥DG(Φ)∥1 =
∥∥∥∥I− 1

2DF (Φ)
∥∥∥∥

1
≤ 1

2h(∥Φ∥1) < 1
2h(rΦ) = 1. (81)

This means G is a contraction map in the ball B and Φ⋆ is its only fixed point.

Lemma 27. If Φ⋆ satisfies c = F (Φ⋆) and ∥Φ⋆∥1 ≤ r̃Φ, Algorithm 1 converges Q-linearly
to Φ⋆. The rate of convergence is bounded by 1

2h(∥Φ⋆∥1), i.e.,

lim
t→∞

∥∥Φt+1 − Φ⋆
∥∥

1
∥Φt − Φ⋆∥1

≤ 1
2h(∥Φ⋆∥1). (82)
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Here Φt is the set of reduced phase factors in the t-th iteration step. Furthermore, for
every t ≥ 1, ∥∥Φt+1 − Φ⋆

∥∥
1

∥Φt − Φ⋆∥1
≤ γ(∥Φ⋆∥1). (83)

In particular, γ(∥Φ⋆∥1) ≤ γ̃ ≈ 0.8189.
Proof. Lemma 26 guarantees the convergence of Algorithm 1 as long as Φt ∈ B. However,
we note that Φ1 = 1

2F (Φ⋆) lies on the boundary of B. Hence, we need a finer estimation.∥∥∥Φt+1 − Φ⋆
∥∥∥

1
=
∥∥∥G(Φt)−G(Φ⋆)

∥∥∥
1

=
∥∥∥∥∫ 1

0
DG

(
sΦt + (1− s)Φ⋆

)
·
(
Φt − Φ⋆

)
ds
∥∥∥∥

1

≤
∫ 1

0

∥∥∥DG (sΦt + (1− s)Φ⋆
)∥∥∥

1

∥∥∥Φt − Φ⋆
∥∥∥

1
ds

≤ 1
2

∥∥∥Φt − Φ⋆
∥∥∥

1

∫ 1

0
h
(∥∥∥sΦt + (1− s)Φ⋆

∥∥∥
1

)
ds

≤ 1
2

∥∥∥Φt − Φ⋆
∥∥∥

1

∫ 1

0
h
(
s
∥∥∥Φt

∥∥∥
1

+ (1− s) ∥Φ⋆∥1
)

ds

(84)

The last inequality follows that h is monotonic increasing on [0,∞).
By replacing the “<” by “≤” in Eq. (80), we get

∥∥Φ1∥∥
1 ≤ rΦ. Hence,∥∥∥Φ2 − Φ⋆

∥∥∥
1
≤ 1

2

∥∥∥Φ1 − Φ⋆
∥∥∥

1

∫ 1

0
h (srΦ + (1− s)r̃Φ) ds

≤ γ̃
∥∥∥Φ1 − Φ⋆

∥∥∥
1
.

(85)

Note that γ̃ ≈ 0.8189 implies that Φ2 ∈ B. According to Lemma 26, we know that the
rate of convergence is bounded by ∥DG(Φ⋆)∥1 ≤

1
2h(∥Φ⋆∥1).

Furthermore, for any t ≥ 1 it holds that∥∥∥Φt+1 − Φ⋆
∥∥∥

1
≤ 1

2

∥∥∥Φt − Φ⋆
∥∥∥

1

∫ 1

0
h

(
s

2 sinh(2 ∥Φ⋆∥1) + (1− s) ∥Φ⋆∥1
)

ds

=
∥∥∥Φt − Φ⋆

∥∥∥
1
γ(∥Φ⋆∥1).

(86)

Here, we use the result that for any Φ ∈ B, ∥Φ∥1 ≤
1
2 sinh(2 ∥Φ⋆∥1) from Eq. (80). This

proves the lemma.

As a remark, both the theoretical analysis and numerical results suggest that the region
in which Algorithm 1 converges should be larger than B. We now prove Theorem 6 (i)
with an explicit characterization of the constant C.

Proof of Theorem 6 (i). Eq. (57) implies that Φ⋆ := F−1(c) satisfies ∥Φ⋆∥1 < r̃Φ, given
∥c∥1 < H(r̃Φ). According to Eq. (79), we get∥∥∥Φ1 − Φ⋆

∥∥∥
1

=
∥∥∥∥1

2F (Φ⋆)− Φ⋆

∥∥∥∥
1
≤ 1

2 sinh(2 ∥Φ⋆∥1)− ∥Φ⋆∥1

≤ 1
2 sinh(2r̃Φ)− r̃Φ = rΦ − r̃Φ.

(87)

Here we use the fact that 1
2 sinh(2x) − x is monotonic increasing on [0,∞). Applying

Lemma 27, we obtain the error estimate∥∥∥Φt − Φ⋆
∥∥∥

1
≤ (rΦ − r̃Φ)γ̃t−1, γ̃ ≈ 0.8189, t ≥ 1. (88)

This finishes the proof of Theorem 6 (i), and the constant C is (rΦ − r̃Φ)/γ̃ ≈ 0.1393.
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5.2 Complexity
In this subsection, we discuss the complexity of Algorithm 1. For any target function
satisfying ∥c∥1 < r̃c, to reach the ℓ1-error tolerance ϵ, the number of iterations is at most⌈

log
( 1

(rΦ − r̃Φ)ϵ

)
/ log γ̃

⌉
. (89)

That means the number of iterations is O(log 1
ϵ ), and the upper bound of the number of

iterations is independent of the target function and the effective length of Φ. Therefore,
we only need to analyze the complexity of implementing F . On a computer we can only
perform operations for matrices of finite sizes. For any set of phase reduced phase factors Φ
whose effective length is d̃, let G(Φ) = (g (x0,Φ) , · · · , g (x2d,Φ))⊤. Here, d = 2d̃− 2 if the
target polynomial is even, and d = 2d̃− 1 if odd. The Chebyshev node is xj = cos( 2πj

2d+1).
Observe that for k, l = 0, · · · , d,

Re

 2d∑
j=0

Tk(xj)e−i 2π
2d+1 lj

 =
2d∑
j=0

cos
( 2πk

2d+ 1j
)

cos
( 2πl

2d+ 1j
)

= 1
2

2d∑
j=0

cos
(2π(k + l)

2d+ 1 j

)
+ 1

2

2d∑
j=0

cos
(2π(k − l)

2d+ 1 j

)

= 2d+ 1
2 δkl(δk0 + 1).

(90)

Hence the Chebyshev-coefficient vector can be evaluated by applying the fast Fourier
transform (FFT) to G(Φ). The output from applying FFT to G(Φ) is a vector of length
2d+ 1, denoted as v, satisfying

Re(v0) = (2d+ 1)c̃0, Re(vj) = 2d+ 1
2 c̃j , j = 1, · · · , d (91)

where c̃j , j = 0, · · · , d, are the Chebyshev coefficients of g(x,Φ) with respect to Tj . Recall
that F (Φ) is the Chebyshev-coefficient vector of g(x,Φ) which is either (c̃0, c̃2, · · · , c̃d) or
(c̃1, c̃3, · · · , c̃d) depending on the parity of d.

For completeness, the procedure for computing F (Φ) is given in Algorithm 2. The cost
of evaluating G(Φ) is O(d2), and the cost of FFT is O(d log d). Therefore, the overall time
complexity is O(d2 log 1

ϵ ). This concludes the proof of Theorem 6 (ii).
Algorithm 1 is numerically stable, in the sense that the number of bits required in

the computation is O(polylog(d/ϵ))3. To show the numerical stability, we consider the
model of finite precision arithmetic (see standard axioms in [14]) and denote by u the
unit roundoff error. In each iteration step, the rounding error when evaluating G(Φ) is
O(d2u). The rounding error occurred in FFT is O(log(d)u) [23]. So the total rounding
error accumulated in each iteration step remains O(d2u). Therefore the number of bits

required by Algorithm 1 is O
(
log

(
d log(1/ϵ)

ϵ

))
.

6 Numerical results
We present a number of tests to demonstrate the efficiency of the fixed-point iteration
(FPI) algorithm (Algorithm 1). All numerical tests are performed on a 6-core Intel Core

3Generically, the number of bits cannot be rigorously bounded by a constant in a proof. Most numeri-
cally stable algorithms can be robustly implemented using fixed double precision arithmetic operations in
practice.
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Algorithm 2 Compute F (Φ).

Input: Reduced phase factors Φ, parity, and its effective length d̃.
if parity is even then

Set d = 2d̃− 2.
else

Set d = 2d̃− 1.
end if
Initialize g = (0, 0, · · · ) ∈ R2d+1.
Evaluate gj ← g(xj ,Φ), xj = 2πj

2d+1 , j = 0, · · · , 2d+ 1.
Compute vl ← Re

(∑2d−1
j=0 gje−i 2π

2d+1 lj
)
, l = 0, . . . , d using FFT.

if parity is even then
F (Φ)← 2

2d+1(v0
2 , v2, v4, · · · , vd).

else
F (Φ)← 2

2d+1(v1, v3, v5, · · · , vd).
end if
Output: F (Φ).

i7 processor at 2.60 GHz with 16 GB of RAM. Our method is implemented in MATLAB
R2019a.

The target function is f(x) = e−iτx, which has applications in Hamiltonian simulation.
It can be expanded using the Jacobi-Anger expansion as

e−iτx = J0(τ) + 2
∑
k even

(−1)k/2Jk(τ)Tk(x) + 2i
∑
k odd

(−1)(k−1)/2Jk(τ)Tk(x), (92)

where Jk’s are the Bessel functions of the first kind.
We use Algorithm 1 to find the phase factors respectively for the even part

feven(x) := J0(τ) + 2
∑

k even,k<d

(−1)k/2Jk(τ)Tk(x), (93)

and the odd part
fodd(x) := 2

∑
k odd,k<d

(−1)(k−1)/2Jk(τ)Tk(x). (94)

We choose d = 1.4 |τ | + log(1/ϵ0), where ϵ0 = 10−14. Since the target polynomial should
be bounded by 1, to ensure numerical stability, we scale feven(x) and fodd(x) by a factor
of 1

2 . Then we use Algorithm 1 to find phase factors for target polynomials, 1
2feven(x) and

1
2fodd(x), respectively. Fig. 2a displays the corresponding residual error,

∥∥F (Φt)− c
∥∥

1
with τ = 1000, where Φt is the set of reduced phase factors at the t-th iteration. Note
that ∥c∥1 is very large, and is equal to 9.8609 and 9.7403 for the even and odd case,
respectively. Nonetheless, Algorithm 1 converges starting from the fixed initial guess.

In Fig. 2b, we demonstrate that for a fixed target function, as the polynomial degree
d increases, the corresponding set of reduced phase factors Φ(d) indeed converges to some
Φ⋆. We still take 1

2feven(x) and 1
2fodd(x) as examples. We choose τ = 200, and Φ⋆ are

approximately computed by setting the degrees of 1
2feven(x) and 1

2fodd(x) to 312 and 313
respectively. We truncate 1

2feven(x) to even polynomials with degree d = 180, 190, · · · , 310.
Similarly, we also truncate 1

2fodd(x) to odd polynomials with degree d = 181, 191, · · · , 311.
Then we use Algorithm 1 to compute the corresponding reduced phase factors, Φ(d). We
would like to emphasize that to our knowledge, only the optimization based method is
able to find Φ(d) that has a well defined limit as d→∞.
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1
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(b) The convergence of Φ(d) as the degree of poly-
nomial approximating target function increases.
The target functions are 1

2 feven(x) and 1
2 fodd(x) of

degree 312 and 313 respectively, where τ = 200.

Figure 2: The performance of the fixed-point iteration (FPI) algorithm (Algorithm 1) to find phase
factors for 1

2feven(x) and 1
2fodd(x).

We also compare the performance of Algorithm 1 with the quasi-Newton method im-
plemented in [8] on 1

2feven(x) and 1
2fodd(x) with τ = 50, 100, · · · , 1000. The stopping

criteria for Algorithm 1 is
∥∥F (Φt)− c

∥∥
1 ≤ ϵ. As for quasi-Newton method, the iteration

stops when

L(Φ) := max
j=1,··· ,d̃

∣∣∣g(xj ,Φt)− ftarget(xj)
∣∣∣ ≤ ϵ. (95)

where ftarget is the target polynomial and xj = cos
(

(2j−1)π
4d̃

)
, j = 1, · · · , d̃ are the positive

roots of the Chebyshev polynomial T2d̃(x). For numerical demonstration, we choose ϵ =
10−12. The results of comparison are displayed in Fig. 3. Since L(Φ) ≤ ∥F (Φ)− c∥1
for any Φ, the stopping criteria for Algorithm 1 is actually tighter than that in quasi-
Newton method. Thus Fig. 3a implies that Algorithm 1 converges faster than quasi-
Newton method in this example. The degree of the target polynomial linearly increases
as the value of τ increases, and the CPU time scales asymptotically as O(τ2) = O(d2).
In Fig. 3b, we present the number of iterations required using FPI to find phase factors
for 1

2feven(x) and 1
2fodd(x). Fig. 3b indicates that the number of iterations is almost

independent of the degree of the target polynomial.
Finally, we demonstrate the decay of phase factors in Fig. 4. In the first example,

we truncate the series expansion of f(x) = 0.8 |x|3 in terms of Chebyshev polynomials
of the first kind up to degree d = 1000 and use Algorithm 1 to find the corresponding
reduced phase factors. The third order derivative of f(x) is discontinuous. In Fig. 4a,
we plot the magnitude of its Chebyshev-coefficient vector, as well as the reduced phase
factors obtained by Algorithm 1. Here, the 1-norm of Chebyshev coefficients is about
0.8149, which is bounded by rc. Fig. 4a shows that the reduced phase factors decay away
from the center with an algebraic decay rate around 4, which matches the decay rate of
Chebyshev coefficients. This also agrees with our theoretical results in Theorem 4. In the
second example, we choose 1

2fodd(x) as target polynomial and present the magnitude of
both Chebyshev-coefficient vector and the corresponding reduced phase factors in Fig. 4b.
The 1-norm of Chebyshev coefficients is around 3.2332, which exceeds the norm condition
in Theorem 4. Nonetheless, the decay of the tail of the phase factors closely matches that
of the Chebyshev-coefficient vector.

Accepted in Quantum 2024-11-19, click title to verify. Published under CC-BY 4.0. 25



102 103
10-1

100

101

102

(a) CPU time(s) required using FPI and QSP-
PACK to find QSP phase factors. The slopes of
the red and purple lines are about 2, representing
CPU time = const·τ2.

0 100 200 300 400 500
10

12

14

16

18

20

(b) Number of iterations required using FPI to find
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Figure 3: Comparison of the performance of the fixed-point iteration (FPI) algorithm (Algorithm 1)
with the quasi-Newton (QN) method in [8] to find QSP phase factors for 1

2feven(x) and 1
2fodd(x) with

τ = 50, 100, 150, · · · , 1000. The error tolerance is ϵ = 10−12.
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(a) The target polynomial is
∑1000

k=0 ckT2k(x) ,
where ck is the Chebyshev coefficient of 0.8 |x|3
w.r.t. T2k. The slopes of blue and red curves
are about −4, representing |ϕk| ≈ const · k−4 and
|ck| ≈ const · k−4.
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(b) The target polynomial is 1
2 fodd(x) with τ =

100 of degree 173.

Figure 4: Magnitude of the Chebyshev-coefficient vector c and the corresponding reduced phase factors
Φ.
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7 Discussion
The question of infinite quantum processing (Problem 2) asks whether there is a set of
phase factors of infinite length in ℓ1 for representing target polynomials expressed as an
infinite polynomial series. Theorem 3 provides a positive answer, when the 1-norm of
the Chebyshev coefficients c of the target function is upper bounded by a constant rc.
While it is always possible to rescale the target function to satisfy the constraint, the
constraint may be violated for many target functions without rescaling. For instance, in
the Hamiltonian simulation problem, we have ∥c∥1 = O(τ), where τ is the simulation time
and can be arbitrarily large. Numerical results in Section 6 indicate that both the fixed
point algorithm and the decay properties persist even for large ∥c∥1. Therefore it may be
possible to significantly relax the condition ∥c∥1 ≤ rc.

Ref. [25] shows that the structure of phase factors using the infinity norm of the
target polynomial f (d), and proves the convergence of the projected gradient method

when
∥∥∥f (d)

∥∥∥
∞
≤ Cd−1. Using the tools developed in this paper, this condition can also

be relaxed to d−1/2, but the d-dependence may not be removed by the techniques in this
paper alone.

It is worth noting that the conditions on
∥∥∥f (d)

∥∥∥
∞

and ∥c∥1 are generally unrelated, i.e.,

neither implies the other. It is of particular interest to develop a method for computing
phase factors that provably converges in the limit ∥f∥∞ → 1, which is called the fully
coherent limit [19]. This limit is important for the performance of certain amplitude
amplification algorithms [12, 10] and Hamiltonian simulation problems [19].

The decay properties of the reduced phase factors may also have some practical im-
plications. For instance, for approximating smooth functions, the phase factors towards
both ends of the quantum circuit are very close to being a constant. This may facilitate
the compilation and error mitigation of future applications using the quantum singular
value transformation.

Note: Since the initial posting of this paper, there have been significant algorithmic and
theoretical advancements in this area. We recently proposed an algorithm based on New-
ton’s method [6], which demonstrates rapid and robust numerical convergence for all
functions admitting a QSP representation, including those where ∥f∥∞ → 1. [1] pro-
vides the first provably stable algorithm for finding phase factors for all polynomials with
∥f∥∞ < 1. This is due to the recent theoretical development connecting the iQSP prob-
lem with nonlinear Fourier analysis first established in [2]. The analysis of [2] provides a
positive solution to Problem 2 for functions with ∥f∥∞ < 1/

√
2, and [1] generalizes this to

include nearly all functions (polynomials and beyond) that admit a QSP representation.
Another recent development is the introduction of generalized quantum signal pro-

cessing (GQSP) [21], which relaxes the parity constraint on the target polynomial. A
promising direction for future research is to investigate the potential for extending GQSP
to represent smooth functions.
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A Some useful results related to Banach space
Definition 28. Let X,Y be normed vector spaces. A map F : X → Y is called C1 if
for every x ∈ X, there exists a (unique) bounded linear map DFx : X → Y such that
lim
h→0

∥F (x+h)−F (x)−DFx(h)∥
∥h∥ = 0, and the map X → L(X,Y ), x 7→ DFx is continuous. Here

L(X,Y ) is the set of all bounded linear maps from X to Y with norm topology.
Here is a useful result from functional analysis.

Theorem 29. Let X be a Banach space equipped with some norm ∥·∥ and T : X → X be
a bounded linear operator. Suppose ∥T∥ < 1, then I− T is invertible with∥∥∥(I− T )−1

∥∥∥ ≤ 1
1− ∥T∥ , (96)

where I is the identity operator.
Proof. Consider the series

∑∞
k=0 ∥T∥

k = 1
1−∥T∥ , it converges since ∥T∥ < 1. Hence∑∞

k=0 T
k converges in L(X,X) and we denote its limit as S. Observe that S(I − T ) =

(I− T )S = I. Hence I− T is invertible and
∥∥(I− T )−1∥∥ = ∥S∥ ≤ 1

1−∥T∥ .

The terminologies used in the statement of the following theorem are explained in
Definition 28.

Theorem 30. Suppose that X,Y are dense subspaces of Banach spaces X,Y . Let F be a
C1 map, F : X → Y , such that for any {xn} a Cauchy sequence in X,F (xn) is Cauchy
in Y and DFxn is Cauchy in L(X,Y ). Then there exists a unique C1 map F : X → Y

such that F
∣∣∣
X

= F and DF
∣∣∣
X

= DF .

Proof. ∀x ∈ X, there exists {xn} ⊂ X such that x = lim
n→∞

xn, then we define F (x) =
lim
n→∞

F (xn). It is a well-defined and unique continuous map from X to Y extending F .
To show F is C1, fix x ∈ X, then DFx : X → Y is a bounded linear map, hence it has

a unique extension Gx : X → Y . Since F ∈ C1,∀ϵ > 0, ∃δ > 0, if h ∈ X, ∥h∥ < δ, then

∥F (x+ h)− F (x)−DFx(h)∥ ≤ ϵ ∥h∥ . (97)

By continuity of F , we have for ∀h ∈ X,∥∥∥F (x+ h)− F (x)−Gx(h)
∥∥∥ ≤ ϵ ∥h∥ . (98)

Now if x ∈ X, write x = lim
n→∞

xn for xn ∈ X, define Gx : X → Y by Gx = lim
n→∞

Gxn ,
where the limit is in norm topology. Then by assumption, Gx is a well-defined, bounded
linear map, and the map X → L(X,Y ), x 7→ Gx is continuous.

By Eq. (98) and the continuity of F (·), G·(h), we have ∀ϵ > 0, ∃δ > 0, if x ∈ X, h ∈ X,
∥h∥ < δ, ∥∥∥F (x+ h)− F (x)−Gx(h)

∥∥∥ ≤ ϵ ∥h∥ . (99)

Hence F : X → Y is C1 such that F |X = F and DF x = Gx, ∀x ∈ X.

The following inverse mapping theorem can be found in e.g., [15, Theorem 1.2, Chapter
XIV].

Theorem 31 (Inverse Mapping Theorem). Let X,Y be Banach spaces and F : X → Y
be a C1 map. Let x0 ∈ X and assume that DFx0 is invertible as a bounded linear map.
Then there exist open sets U ⊂ X,V ⊂ Y such that x0 ∈ U,F (x0) ∈ V and F : U → V is
bijective and F−1 is C1.
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B Proof for Lemma 20
Proof. The existence of F is guaranteed by inverse mapping theorem. Lemma 18 implies
that DF (Φ) is invertible for any Φ with ∥Φ∥1 < rΦ. Let F̃ be the restriction of F on
B(0, rΦ). The proof is divided into two parts:

1. show that F̃ is injective. Moreover, given ∥Φ∥1 ≤ rΦ, the effective length of F̃ (Φ) is
equal to that of Φ.

2. show that for any c ∈ R∞ with ∥c∥1 < rc, F̃−1(c) exists.

For the first part, we prove it by contradiction. Suppose that F̃ is not injective, then there
exists Φ(1) ̸= Φ(2) such that F̃ (Φ(1)) = F̃ (Φ(2)). Denote r = max

{∥∥∥Φ(1)
∥∥∥

1
,
∥∥∥Φ(2)

∥∥∥
1

}
< rΦ,

and define G̃(Φ) := F̃ (Φ)− 2Φ for Φ ∈ B(0, r). Hence
∥∥∥DG̃∥∥∥

1
=
∥∥∥DF̃ − 2I

∥∥∥
1
≤ h(r) < 2,

which derives that ∥∥∥G̃(Φ(1))− G̃(Φ(2))
∥∥∥

1
≤ h(r)

∥∥∥Φ(1) − Φ(2)
∥∥∥

1
. (100)

Plug in that F̃ (Φ(1)) = F̃ (Φ(2)), and we get 2
∥∥∥Φ(2) − Φ(1)

∥∥∥
1
≤ h(r)

∥∥∥Φ(2) − Φ(1)
∥∥∥

1
, which

is a contradiction. Hence, F̃ is injective.
Next we show that the effective length of F̃ (Φ) is equal to that of Φ given ∥Φ∥1 ≤ rΦ.

We use lΦ and lc to denote the effective length of Φ and F̃ (Φ), respectively. Hence,
Φ = (ϕ0, ϕ1, · · · , ϕlΦ−1, 0, · · · ). According to Theorem 7, lΦ is no less than lc. Suppose
that lΦ > lc. We may apply [25, Lemma 10] to compute the Chebyshev coefficient of
Im[⟨0|U(x,Φ(sn))|0⟩] with respect to T2(lΦ−1) and get

0 = sin(2ϕlΦ−1) cos(2ϕ0)
lΦ−2∏
i=1

cos2(ϕi). (101)

Hence, there exists i ≤ lϕ − 2 such that ϕi = π
4 j for some nonzero integer j. Then,

∥Φ∥1 ≥
π
4 > rΦ, which is a contradiction. Hence, lΦ = lc.

For the second part, we also prove it by contradiction. Suppose that there is an s < rc
and a Z ∈ R∞ with ∥Z∥1 = 1 such that sZ does not lie in the range of F̃ , then we can
define

s∗ = inf{s ∈ [0, s] : sZ doesn’t lie in the range of F̃}. (102)

From inverse mapping theorem, we know that F̃ is invertible near 0, hence s∗ is well
defined. We also define Φ(r) := F̃−1(rZ) for any r ∈ [0, s∗).

We claim that there exists r′ < rΦ such that ∥Φ(s)∥1 < r′ for any s ∈ (0, s∗). That is
because

s =
∥∥∥F̃ (Φ(s))

∥∥∥
1

=
∥∥∥∥∫ 1

0

d
dt F̃ (tΦ(s))dt

∥∥∥∥
1

=
∥∥∥∥∫ 1

0
DF̃ (tΦ(s)) · Φ(s)dt

∥∥∥∥
1

=
∥∥∥∥∫ 1

0

(
2I +DF̃ (tΦ(s))− 2I

)
· Φ(s)dt

∥∥∥∥
1

≥
∥∥∥∥∫ 1

0
2I · Φ(s)dt

∥∥∥∥
1
−
∥∥∥∥∫ 1

0

(
DF̃ (tΦ(s))− 2I

)
· Φ(s)dt

∥∥∥∥
1

≥ 2 ∥Φ(s)∥1 − ∥Φ(s)∥1
∫ 1

0

∥∥∥DF̃ (tΦ(s))− 2I
∥∥∥

1
dt.

(103)
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We apply Lemma 18 and get

s ≥ ∥Φ(s)∥1
∫ 1

0
2− h(t ∥Φ(s)∥1)dt = H(∥Φ(s)∥1). (104)

Note that H(x) is monotonically increasing over [0, rΦ] and rc := H(rΦ) > s > s. We
choose r′ ∈ (0, rΦ) such that H(r′) = s. It follows that ∥Φ(s)∥1 ≤ r′ for any s ∈ (0, s∗)
with Φ(s) ∈ B(0, rΦ).

Let {sn}∞n=0 be arbitrary series such that limn→∞ sn = s∗ and sn < s∗. Notice that
tΦ(sn) + (1− t)Φ(sm) ∈ B1(0, r′) for any t ∈ (0, 1). Denote v := Φ(sm)− Φ(sn) and then
one has

|sn − sm| =
∥∥∥F̃ (Φ(sn))− F̃ (Φ(sm))

∥∥∥
1

=
∥∥∥∥∫ 1

0

d
dt F̃ (Φ(sn) + tv)dt

∥∥∥∥
1

=
∥∥∥∥∫ 1

0
DF̃ (Φ(sn) + tv) · vdt

∥∥∥∥
1

=
∥∥∥∥∫ 1

0

(
2I +DF̃ (Φ(sn) + tv)− 2I

)
· vdt

∥∥∥∥
1

≥
∥∥∥∥∫ 1

0
2vdt

∥∥∥∥
1
−
∥∥∥∥∫ 1

0

(
DF̃ (Φ(sn) + tv)− 2I

)
· vdt

∥∥∥∥
1

≥ 2 ∥Φ(sn)− Φ(sm)∥1 −
∫ 1

0

∥∥∥(DF̃ (Φ(sn) + tv)− 2I
)
· v
∥∥∥

1
dt

≥ 2 ∥Φ(sn)− Φ(sm)∥1 −
∫ 1

0
h (∥(1− t)Φ(sn) + tΦ(sm)∥1) ∥Φ(sn)− Φ(sm)∥1 dt

≥ 2 ∥Φ(sn)− Φ(sm)∥1 − h(r′) ∥(Φ(sn)− Φ(sm))∥1
≥
(
2− h(r′)

)
∥Φ(sn)− Φ(sm)∥1 .

(105)

Since 2− h(r′) > 0, we know that

∥Φ(sn)− Φ(sm)∥1 → 0, as n,m→∞. (106)

According to the proof for the first part, for any n, the effective length of Φ(sn) is lc, where
lc is the effective length of Z. We may view Φ(sn) as vectors in Rlc instead. The limit of
{Φ(sn)} exists in Rlc and is unique, denoted by Φ∗. Moreover, Φ∗ can also be viewed as
an element of R∞ and Φ∗ ∈ B(0, rΦ). By the continuity of F̃ , we know that

F̃ (Φ∗) = lim
s→s∗

F̃ (Φ(s)) = s∗Z, (107)

i.e., F̃−1(s∗Z) exists.
Then we can use Theorem 31 at Φ∗ and obtain that F̃−1(sZ) exists for s ∈ [s∗, s∗ + ϵ]

for some ϵ, which contradicts with the definition of s∗.
When it comes to the proof of Eq. (57), we only need to let s = ∥c∥1 and Z = c

s , and
do the calculation in Eq. (103) again.
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