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Abstract

Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular
and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal
morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope
of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of
Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where
expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution
morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in
terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between
species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila
melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns
between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative
differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell
types at this stage of development are conserved, though they can differ in their relative position by up to 3–4 cell widths
and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative
level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our
results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes
can lead to distinct output in terms of the placement and number of equivalent cells.
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Introduction

Transcriptional programs specify and elaborate cell identity

during animal development, as a single cell gives rise to the

hundreds of cell types that comprise the adult animal. Accordingly,

variation in the timing, spatial location, and level of transcription

is thought to be a major source of molecular variation for

morphological changes during evolution [1–3]. Gene expression

during animal development is highly dynamic in space and time and

occurs in the context of a gene regulatory network; the expression of

any given gene is dependent on the spatiotemporal expression

patterns of many others. This poses a fundamental problem for

comparing gene expression patterns between species. Any measured

expression differences for a given gene could be due to multiple non-

mutually exclusive factors including changes in embryo geometry,

changes in the activity, timing or location of expression for upstream

regulators or altered regulatory logic, such as no longer responding

to a particular regulator. Attributing gene expression differences to

these different sources is a fundamental hurdle to employing a

comparative approach; overcoming it would allow new types of

systematic analyses to address how changes to gene regulation can

contribute to new organismal phenotypes.
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What strategy can we use to disentangle the potential sources of

expression differences? One possibility is to look specifically for

regulatory differences in a way that controls for differences in

embryo morphology. In the developing embryo, each nucleus

must make a decision about whether to express a gene, and to

what level. This decision is based on integrating local information

about the concentration of upstream regulators, usually DNA

binding proteins termed transcription factors (TFs). This regula-

tory function, termed the input function [4] or gene regulatory

function (GRF) [5], relates the concentration of regulators (inputs)

to the concentration of their targets (the outputs). If an input

function is conserved, we expect to find cells in multiple species

with similar concentrations of inputs and outputs, even if they

occur in different positions in the respective embryos. We can

therefore attempt to identify conserved input functions by

identifying cells with similar multi-gene expression profiles. This

strategy also provides an embryo-scale view on the output of the

gene regulatory network, namely sets of cells distinguished by their

transcriptional profile and therefore primed to differentiate into

different cell types. Analyzing the set of expression profiles for all

cells in the embryo thus reveals how the patterning system

allocates cells to different cell types during development.

Comparing cellular gene expression profiles between species

requires high-resolution data: specifically, expression measure-

ments for an entire gene regulatory network at cellular resolution

in multiple species. Imaging technology now makes it possible to

collect quantitative spatiotemporal expression data at cellular

resolution for several genes at once. Previously, we developed

high-resolution microscopy and image analysis methods to

measure gene expression quantitatively in blastoderm embryos

of Drosophila melanogaster (D. melanogaster), in roughly 10 minute time

intervals during the hour prior to gastrulation [6,7]. These data

are integrated into a gene expression atlas that presents the

average expression of many genes in a unified cellular resolution

morphological framework. In contrast, most previous comparative

gene expression studies in Drosophila have either sacrificed spatial

information to obtain quantitative data on many genes using

genomic technologies such as arrays or RNA-seq, or used imaging

to obtain qualitative spatially resolved data on few genes (for

examples in early development of Drosophila see [8–14]).

Here, we apply our high-resolution imaging methods to

measure gene expression patterns for 13 genes from the

segmentation network in blastoderm embryos of two closely

related species of Drosophila, Drosophila yakuba (D. yakuba) and

Drosophila pseudoobscura (D. pseudoobscura), and compare our data to a

similar pre-existing dataset for D. melanogaster. The segmentation

network (Figure 1) comprises a small number of well-characterized

TFs that interact to generate increasingly complex patterns of gene

expression during a short window of early development. The

output of the network prefigures the position of the larval segments

and associated morphological structures [15]. The TFs and

topology of the segmentation network are assumed to be conserved

throughout Drosophila, but vary in higher Diptera and other

insects including wasps, beetles, mosquitos and bees [13,16–23].

We therefore anticipated that the network output in three closely

related Drosophila species would be at least qualitatively similar,

but we could not predict a priori what type of quantitative

differences we would find. We report our findings on quantitative

differences in embryo morphology and expression patterns

between D. melanogaster, D. yakuba and D. pseudoobscura, our method

for comparing cellular gene expression profiles while accounting

for changing embryo morphology, and our comparative analysis of

cell types at the blastoderm stage of development.

Results

Measuring gene expression in Drosophila blastoderm
embryos

We used high-resolution microscopy and RNA in situ hybrid-

ization to image the expression of 13 genes in 616 embryos of D.

yakuba and 933 embryos of D. pseudoobscura (Table S1). This set of

13 genes consists of major determinants of anterior/posterior

patterning including the maternal genes bicoid (bcd) and caudal

(cad); the gap genes giant (gt), Krüppel (Kr), knirps (kni) and

hunchback (hb); the terminal genes forkead (fkh), huckebein (hkb)

and tailless (tll); three primary pair-rule genes, even-skipped (eve),

fushi-tarazu (ftz), and odd-skipped (odd); and one secondary pair-

rule gene, paired (prd) [24]. Staining for cad in D. pseudoobscura was

consistently low-level and uniform, and is therefore not included in

Figure 1. Schematic of the regulatory relationships between 13
AP patterning network genes. In this paper, we examine the
expression patterns of a subset of anterior/posterior (AP) patterning
genes; general information on the regulatory relationships between the
genes in our dataset is shown. Not all regulatory relationships have
been precisely defined; therefore, the network is shown as a hierarchy
between classes of genes (maternal, gap, terminal and pair-rule) with
known interactions within classes. For example, the gap genes are
known to cross-repress one another [58], and the primary pair-rule
genes are thought to regulate the secondary pair-rule genes [24,59].
doi:10.1371/journal.pgen.1002346.g001

Author Summary

For a gene to function properly, it must be active in the
right place, at the right time, and in the right amount.
Changes in any of these features can lead to observable
differences between individuals and species and in some
cases can lead to disease. We do not currently understand
how the position, timing, and amount of gene expression
is encoded in DNA sequence. One approach to this
problem is to compare how gene expression differs
between species and to try to relate changes in DNA
sequence to changes in gene expression. Here, we take the
first step by comparing gene expression patterns at high
spatial and temporal resolution between embryos of three
species of fruit flies. We develop methods for comparing
gene expression in individual cells, which allow us to
control for variation in the size, shape, and number of
nuclei between embryos. We find measurable quantitative
differences in the patterns for all individual genes that we
have examined. However, by considering all genes in our
dataset at once, we show that many genes are changing
together, leading to largely equivalent types of cells in
these three species.

Comparing Segmentation Output between Drosophila
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the dataset. While antibodies are available for some of the

components of the network, they vary widely in quality and work

with different efficiencies in different species. Where protein levels

have been measured in D. melanogaster, they correlate well with

RNA levels except in notable cases, such as hunchback, where

translational control is known to play a role [6].

Each embryo was stained for the gene of interest, a DNA dye

and a second gene serving as a fiduciary marker. Embryos were

manually staged into 6 time intervals spanning the hour prior to

gastrulation by assessing the extent of cell membrane invagination

under phase contrast illumination. Embryos were then imaged

using 2-photon microscopy, and the resulting image stacks were

segmented to generate individual pointcloud files, which record

the 3D location and gene expression values associated with each

nucleus [6]. Pointcloud files for individual embryos were registered

together to produce gene expression atlases for D. yakuba and D.

pseudoobscura. In these atlases, average expression for all of the

genes in our dataset are present in a species-specific dynamic

morphological framework based on cellular density patterns.

Expression levels within an atlas are normalized per gene with

expression levels scaled so that the time point with the highest

expression value takes on a value of 1. For a detailed description of

atlas building methods, see [7].

Average patterns for each gene for the six time intervals in our

dataset are shown in Figure 2 alongside the corresponding genes in

the reference D. melanogaster dataset [7]. We assessed the quality of

the data by two measures, the range of intensities measured for a

given gene, which reflects the ratio of signal to noise (Figure S1),

and the average standard deviation in expression after registration

(Table S2). The atlases for D. yakuba and D. pseudoobscura are of

similar quality to the previously assembled D. melanogaster dataset.

Species differ in blastoderm embryo morphology
Though qualitatively similar, our data revealed several

quantitative morphological differences between D. melanogaster, D.

yakuba and D. pseudoobscura embryos including differences in

blastoderm shape, size and the number of nuclei (Figure 3). These

differences required us to build species-specific atlases to account

for the different embryo morphologies, rather than register all data

into a single morphological framework. Comparison of the eggs of

the three species revealed that they vary both in their anterior/

posterior shapes (compare D. yakuba to D. melanogaster and D.

pseudoobscura, Figure 3a), and their circumferences (compare D.

yakuba and D. melanogaster to D. pseudoobscura, Figure 3a). Ordering

the embryos in terms of average egg length or surface area, D.

pseudoobscura embryos are the smallest, followed by embryos of D.

melanogaster and D. yakuba (Figure 3b, Table 1). Notably, the

number of nuclei scales linearly with surface area within each

species with the same relationship (slope) (Figure 3b). However,

Figure 2. Average gene expression patterns for 13 AP
patterning genes in D. melanogaster, D. yakuba, and D.
pseudoobscura are qualitatively similar. Fluorescent in situ
hybridization, 2-photon microscopy and image analysis were used to
measure the expression of 13 AP patterning genes at cellular resolution
in D. melanogaster (see [7]), D. yakuba and D. pseudoobscura over 6 time
points during the hour prior to gastrulation. Because the embryo is
bilaterally symmetric, one half of a cylindrical projection (an ‘‘unrolled’’
embryo, dorsal side up and anterior to the left) is shown for each time
point. High expression is red; low expression is black. Bcd is not
expressed during the last three time points in D. yakuba and D.
pseudoobscura and therefore not shown. Staining for cad was
consistently low level and uniform in D. pseudoobscura and therefore
not included in the dataset.
doi:10.1371/journal.pgen.1002346.g002

Comparing Segmentation Output between Drosophila
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Figure 3. Blastoderm embryos of the three Drosophila species vary in size, shape, and number of nuclei. (A) Silhouettes of species-
specific embryo models are shown in both lateral view (anterior left, dorsal up,) and cross section (dorsal up), D. melanogaster (blue), D. yakuba
(orange), D. pseudoobscura (green). (B) For each embryo in our datasets, the surface area was calculated and compared to the number of nuclei.
Though both of these values vary within and between species, the relationship between them is linear. (C) Density patterns for early, middle and late
stage blastoderm embryos are displayed as heat maps (red is high density, blue is low density), with corresponding contours on 2D cylindrical
projections of the embryos. Anterior is to the left, posterior to the right. D = dorsal, L = left, V = ventral, R = right. In pairwise comparisons (Figure S2)
the densities are statistically distinct across all three species with D. melanogaster and D. pseudoobscura containing the largest areas of similar nuclear
density.
doi:10.1371/journal.pgen.1002346.g003

Comparing Segmentation Output between Drosophila
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this doesn’t completely explain changes in nuclear number

between species, as even some embryos with the same surface

area have different numbers of nuclei (note in particular

differences between D. pseudoobscura and D. melanogaster embryos).

Nuclear density patterns prefigure movements during gastrula-

tion [25,26]. We found that the spatial patterns of local nuclear

density are similar between the three species (Figure S2), though

the average density of nuclei on the surface of D. yakuba embryos is

lower than that for the other two species (Figure 3c). The overall

similarities between the species’ nuclear density patterns, including

lower density around the cephalic furrow and along the ventral

midline, indicate that nuclear density patterns likely reflect

conserved developmental processes.

During cellularization, nuclei move from the poles towards the

center and this can contribute to shifts in gene expression patterns.

We call this ‘‘cell flow’’ to distinguish it from ‘‘expression flow’’

[26]. The overall direction and magnitude of cell flow movements

are similar between these 3 species (Figure S3). A species-specific

model of cell flow based on changing density patterns is used to

find corresponding cells across time points during atlas construc-

tion. As a result, comparison of cellular gene expression profiles

over time between the expression atlases removes the effect of

differences in cell flow [7,27].

Expression distance can be used to compare cellular
gene expression profiles

To systematically analyze expression differences in this

transcriptional network, we developed a method to compare gene

expression profiles on a cell-by-cell basis. Each cell’s gene

expression profile can be represented as a vector whose entries

are defined by the average expression level for a given gene at a

given time point. We used the squared Euclidean distance between

such vectors to score the difference between any two cells; we call

this the expression distance score. We used the squared distance (rather

than the Euclidian distance) because it is additive across genes and

time points which makes interpretation of the contributions of

each gene to the overall expression distance simple to interpret.

The expression distance score can be calculated based on any

subset of genes in the dataset including single genes, groups of

specific interacting genes, or the entire dataset simultaneously.

These analyses are possible because our dataset contains

expression levels measured for multiple genes in the same cellular

resolution framework.

Comparing gene expression in this way has several advantages

over standard methods where gene expression patterns are

compared individually in terms of morphological features of the

embryo such as relative egg length. First, this method doesn’t rely

on choosing an arbitrary threshold for deciding whether a cell is

‘‘expressing’’ or not. Choosing thresholds is particularly problem-

atic for genes with graded expression patterns such as the gap

genes. Second, the expression distance score makes use of the

whole expression level time course while factoring out the effects of

morphological movements (i.e. cell flow). Additionally, the

expression distance score can be used as a natural criterion for

selecting cells amongst a set. For example, to find cells with similar

expression profiles near to a given query cell, one could first define

a set of nearby cells to search, then calculate the expression

distance score for the query cell compared to each cell in the set.

The best match will have the lowest expression distance score

(Figure 4). We use the expression distance score to compare the

expression profiles of cells that are spatially nearby both within

and between species to determine how expression patterns differ in

terms of their output, relative location in the embryo, and the

relative number of expressing cells.

Assessing statistical significance of the expression distance score

directly is difficult since it is based on multivariate quantities whose

correlations we have not measured; this would require co-staining

every pair of genes in our dataset. We provide two methods to

gauge significance. First, we constructed two atlases of D. mel

expression from disjoint sets of embryos. Each of these atlases was

Table 1. Egg length and nuclear number varies in blastoderm embryos of D. melanogaster, D. yakuba, and D. pseudoobscura.

Species Embryos Ave. No. Nuclei Std Dev Ave. egg length (mm) Std Dev

D. melanogaster 2772 5974.1 339.12 393.8 30.75

D. yakuba 618 6127.8 348.13 451.8 22.74

D. pseudoobscura 932 5086.7 327.39 394.6 18.84

The number of embryos in each atlas is shown, along with the average number of nuclei and average egg length, with associated standard deviations (D. melanogaster
data from [7]).
doi:10.1371/journal.pgen.1002346.t001

Figure 4. The expression distance metric can be used to search
for corresponding cells. A schematic of the algorithm to identify
corresponding cells is shown. For a given query cell, the 30 nearest cells
in 3D space in the target embryo are identified. The expression distance
between the query cell and each of these target cells is calculated. The
best corresponding cell is the target with the lowest expression
distance score. This is often not the target cell nearest to the query cell
in 3D space.
doi:10.1371/journal.pgen.1002346.g004

Comparing Segmentation Output between Drosophila
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assembled from approximately the same number of individual

embryos per gene as the D. yakuba and D. pseudoobscura atlases.

Expression distances between cells in these two atlases provide a

baseline for what should be insignificant expression distance scores

with respect to measurement error and intra-strain variability.

Second, we analyzed differences in expression level for each gene

and time point independently using a two-sample t-test (see

Materials and Methods). For a pair of cells in two different atlases,

we can determine whether a gene’s expression is significantly

different relative to the variance across measurements of that gene

and time point. We can then declare a pair of corresponding cells

to be different if they have significantly different expression levels

of one or more genes at one or more time points, applying a

suitable correction for multiple hypothesis testing. We tallied the

number of entries in the expression profile that are statistically

different, and call this the t-test score. It is more conservative than

the expression distance since it doesn’t detect the sum of many

small differences across multiple genes or time points. However, it

does provide a simple model of statistical significance, validating

that the average expression differences we observed are significant

relative to error in our measurements.

Expression of individual genes differs in dynamics and
relative position

Subtle differences in the dynamics of expression patterns are

detectable from inspecting the averaged, normalized expression

patterns of all genes in the dataset (Figure 2). The peak of

expression varies between species for multiple genes (note Kr, fkh,

hkb and ftz). For some patterns with multiple domains, such as

eve, the relative level of the different stripes varies between species.

Finally, some patterns also vary differently over the dorsal/ventral

axis (note the longest anterior stripe of gt in later time points).

To systematically analyze variation in each gene’s expression

pattern, we calculated the expression distance score for each cell in

D. melanogaster compared to its spatially nearest cell in D. yakuba or

D. pseudoobscura, for each gene in our dataset, one at a time.

Because embryos are of different sizes, we scaled each embryo to

the same relative egg length and aligned atlases by their centers of

mass before determining spatial relationships between cells. To

determine if there are positional shifts in expression patterns, we

then performed a local search amongst the 30 spatially nearest

cells for the cell with the best match to the D. melanogaster

expression profile. This corresponds to movement by 3–4 cells in

any direction. We did do not require a one-to-one match; instead

we allowed multiple query cells to match the same cell in the target

species. This flexibility was necessary because of the differing

numbers of cells between the species; forcing a one-to-one match

would give misleadingly large expression differences for cells that

have clear counterparts in the target embryo, but too few of them.

To visualize the results of the search, we assigned the query cell the

score of its best match. The breadth of our dataset prevents us

from presenting all of these results in the main text of this paper.

For this analysis, and the others described below on single gene

expression profiles, we show representative data from even-

skipped in Figure 5 and the remaining data is presented in Figure

S4. This data can also be viewed using our interactive visualization

tool, MulteeSum (see Materials and Methods).

A local search improved the expression distance score for most

D. melanogaster cells as compared to a direct spatial mapping,

indicating that eve expression patterns have shifted in space

(Figure 5). This also holds for the t-test score (Figure S5). More

generally, this is true of all other genes in our dataset, where the

mean expression distance score decreases 2 to 5-fold using local

search, indicating widespread shifts in relative position (Figure S4,

Table S3). To visualize the direction of positional shifts in

expression, we determined the distance and direction to the

average position of each cell’s top 10 hits (Figure 5, Figure S4).

Expression of eve is shifted anteriorly for some stripes in D. yakuba,

while it is shifted posteriorly for all stripes in D. pseudoobscura. This

is consistent with more conventional representations such as

plotting stripe boundaries for specific time points, which also show

significant differences in the relative position of eve stripe

boundaries (Figure S6). The direction of movement is roughly

similar across most genes, with the exception of the terminal genes,

where the movement is towards the poles; there is a partial

anterior shift for many D. yakuba genes and a pronounced posterior

shift for nearly all D. pseudoobscura genes (Figure S4).

Not all cells have a perfect match in the other species, as

indicated by higher expression distance scores even after a local

search. For eve, cells in the middle of some stripes differ in their

dynamics and relative level (Figure 5, cells labeled b). Differences

of this sort are apparent at all tiers of the network (Figure S4). This

analysis is an underestimate of expression differences because we

do not force one to one matching; there are thus some cells in D.

yakuba and D. pseudoobscura that are not matched. We analyzed the

number of matched cells in D. yakuba and D. pseudoobscura (Figure

S7 and MulteeSum, see Materials and Methods), and found that

most (.85%) D. yakuba and D. pseudoobscura cells appeared in the

top 10 matches to at least one D. melanogaster cell. Furthermore,

unmatched cells were distributed spatially almost exclusively in

areas where eve is not expressed, indicating that there are not large

populations of unmatched cells in D. yakuba and D. pseudoobscura

that are significantly different than their matched neighbors.

Most cellular gene expression profiles are broadly but
not precisely conserved

From the analysis of individual genes, we learned that the

relative position of many genes has shifted and that there are some

differences in relative levels and dynamics. To assess whether these

differences are due to positional shifts in the expression of multiple

genes or changes in input functions, we compared gene expression

profiles for multiple genes in our dataset simultaneously. Consider

the case where the expression pattern of one gene has shifted in

space. If this change in expression (the output) is due to a change

in the position of an upstream regulator, we would expect the cell’s

gene expression profile to remain the same. If it is due to a change

in the gene’s input function (i.e. it is responding to an upstream

input differently), we would expect a difference in the concentra-

tion of inputs relative to outputs; in other words, a change to the

cell’s gene expression profile.

For cases where the regulatory relationships between inputs and

output are well defined, the relation between expression patterns

and the input function can be modeled and tested directly. We

have undertaken this type of analysis for expression of the

hunchback posterior stripe in a parallel study (Z. Wunderlich et

al., submitted). However, the segmentation network is highly

interconnected [28] and not all regulatory relationships have been

identified. We therefore calculated the expression difference score

for all genes in our dataset simultaneously to assess the extent of

regulatory differences across the segmentation network in an

unbiased, exploratory manner. Cells with differences in cellular

gene expression profiles reveal potential regulatory differences.

However, these differences are not attributable to any particular

input function without further analysis.

Figure 6 shows the expression distance metric calculated using

all genes in our dataset except for bcd and cad (see Materials and

Methods). As we did for matching cells based on single gene

expression profiles, we searched locally amongst the nearest 30

Comparing Segmentation Output between Drosophila
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Figure 5. Even-skipped expression varies in relative position and intensity. The expression distance score for each cell is plotted on a 2D
representation of the embryo and the underlying gene expression profiles are illustrated in insets where gene expression is represented as a line
trace over time. (1st row) For each D. melanogaster query cell, the expression distance score of the nearest target cell in D. yakuba (left) and D.
pseudoobscura (right) is shown. (2nd row) The expression distance score for the best matched cell within the nearest 30 cells for both D. yakuba and
D. pseudoobscura is shown. High expression distance scores, indicating poor matches, are darker. All cells scoring above 0.7 are colored the darkest
blue; when the maximum value exceeds 0.7, the maximum value amongst all cells is reported at the top of the color map. Representative
D. melanogaster cells are labeled, and their expression profiles are shown in the insets compared to their matches in D. yakuba or D. pseudoobscura

Comparing Segmentation Output between Drosophila

PLoS Genetics | www.plosgenetics.org 7 October 2011 | Volume 7 | Issue 10 | e1002346



cells for the best match to the query cell, and did not require a

one-to-one match. We confirmed that our matching protocol is

not missing large numbers of cells in D. yakuba and D. pseudoobscura

(.99.5% matched), and that unmatched cells are intermingled

with matched cells (Figure S8 and MulteeSum, see Materials and

Methods). We again found that a local search significantly

decreases the expression distance score relative to direct spatial

mapping for many cells, with the mean decreasing by 2-fold

(Figure 6, Table S3). This reflects the shifted relative position of

expression for many genes in both species. Visualizing the

direction of each pair-wise match reveals areas where correspond-

ing cells are shifted along the anterior/posterior or dorsal/ventral

axis; frequently they are shifted along both axes, and the patterns

are consistent with those observed for individual genes. These

positional shifts are particularly uncoordinated in the ends of the

embryos, where corresponding cells are found both closer and

further away from the ventral midline. This may be in part

because the atlases are assembled by registration using pair-rule

genes whose expression is confined to the trunk, and hence our

expression data is less accurate at the poles [7]. In the trunk

region, there is a pronounced anterior shift of D. yakuba cells

relative to D. melanogaster in the anterior, and a pronounced

posterior shift of D. pseudoobscura cells relative to D. melanogaster

throughout the eve expressing region. The genes that are

expressed in the trunk are highly interconnected; most regulate

one another and would therefore be expected to move together.

From the variety of positional shifts observed, we conclude that

these expression differences are not likely to result from simple

changes in the maternally driven morphogens bicoid or caudal, in

which case we would expect coordinated positional shifts along a

single axis. Instead, our data is consistent with many small-scale

changes throughout the network.

After searching locally, the majority of D. melanogaster cells do not

differ from their corresponding cells in D. yakuba in more than five

of their expression profiles’ entries, or in D. pseudoobscura by more

than seven (Figure S9). This indicates that most expression

differences we observe for individual genes are attributable to

coordinated positional changes in the network as a whole. For

some D. melanogaster cells, the best match still exhibits some

expression differences according to the expression distance metric

(Figure 6). The expression distance metric could be high in these

cases due to large differences in expression for a single gene, or

small differences in many genes. By examining the underlying

gene expression profiles for the cells with the highest expression

distance metric, we find the latter to be true; the differences that

remain after local matching are due to quantitative changes in

dynamics and relative levels of expression for multiple genes,

rather than the presence or absence of a particular gene product

(Figure 6 and MulteeSum, see Materials and Methods). Because

the expression distance score is additive, we can assess which genes

contribute to the overall score by calculating the expression

distance score for each individual gene as well as relevant subsets

(Figure S10). We find that differences are widespread; they are not

confined to a single gene or tier of the network. The t-test score

reveals good concordance between those cells that have large

expression distance and those that differ significantly in many

individual expression measurements (Figure S9).

In both analyses, D. yakuba is more similar to D. melanogaster in

terms of gene expression profiles. This is plausible as D. melanogaster

and D. yakuba are more closely related than D. melanogaster and D.

pseudoobscura [29]. Some of the small expression differences we

identify using the expression distance metric undoubtedly

represent experimental noise, but some may represent bona fide

regulatory differences between these species. Notably, our

expression distance metric identifies cells with differing expression

of odd and prd between D. melanogaster and D. yakuba, and both odd

and prd exhibit differential binding of hb in D. yakuba, as measured

by Chip-Seq [30]. Together with our data, this indicates

potentially altered input functions for these genes. Verifying

candidate regulatory differences will require assigning them to

specific input functions, and functional studies to determine the

mechanistic basis of the regulatory change.

Equivalent cell types occur in different relative
proportions between species

At this stage of development, cells are still morphologically

similar and yet are committed to their future fates as components

of larval structures [15]. Their fate is highly correlated with their

spatial position in the embryo and is determined by the set of genes

that they express. Therefore, we consider gene expression profile

to be equivalent to cell type at this stage. Even if all cell types had

precisely equivalent gene expression profiles, they could give rise

to morphological differences between embryos if they occur in

different relative locations, or in different proportions between

embryos. In the previous section, we established that equivalent

cell types occur in different relative locations in these three species.

Because the embryos also have different numbers of nuclei, a

natural question is whether they allocate cell types proportionally.

One possible solution to analyzing cell types would be to cluster

the cells based on expression profile and count the number of cells

within each cluster. However, expression is changing in a graded

way at almost every point in the embryo making it difficult to

decide how many clusters there should be. Instead of using an

arbitrary clustering of cells, we determined how many adjacent

cells are similar to a given query cell by counting how many

adjacent cells are within a given expression distance score. This

connected set of ‘‘expression neighbors’’ is therefore a group

whose expression profile is quantitatively similar to the chosen cell.

For any fixed threshold imposed on the expression distance score,

the size of this neighborhood captures how quickly expression

levels change in the vicinity of a cell. We visualize how this

neighborhood size varies over the surface of the embryo (see

Figure 7, left). Large neighborhoods correspond to regions of

roughly constant cell type. Thus, the number of expression

(D. melanogaster cell in red, D. yakuba or D. pseudoobscura cell in blues - dark blue for nearest cell, light blue for best cell after local search). For each
representative D. melanogaster cell, we list the label in the figure (a or b), the cell ID number, the target embryo to which it was matched (D. yakuba
or D. pseudoobscura) and the expression distance score to the nearest target cell and the best matched target cell: a. 4314, D. yakuba, 0.719, 0.141;
b. 5232, D. yakuba, 0.633, 0.557; a. 4314, D. pseudoobscura, 0.611, 0.066; b. 5232, D. pseudoobscura, 0.966, 0.524. (3rd row) For each D. melanogaster
query cell, the distance and direction to the average position of the top 10 best corresponding target cells is shown. The correspondence is shown
with a line that starts at the position of the query cell, and ends at the average position of the target cells. The end of the line is indicated with a black
dot. Because the 2D projection distorts actual distance in 3D, the lines are color-coded to indicate actual distance traversed in 3D. Dark blue is a large
distance, yellow is a small distance. (4th row) The distribution of expression distance scores using only the nearest cell (grey) and best-matched cell
within the nearest 30 (blue) are shown; we plot the root of the expression distance score to separate values near zero. The distribution of expression
distance scores narrows and the mean and median decrease after a local search (Table S3). To establish the significance of the calculated differences,
we assembled two atlases from the D. melanogaster dataset, and compared these two atlases to each other (dotted lines).
doi:10.1371/journal.pgen.1002346.g005
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neighbors per cell provides a means to compare allocations of cells

between different species on a cell-by-cell basis. If variations in

expression between different species reflected a simple uniform

scaling, then the neighborhood size for every nucleus would also

be proportionally smaller or larger by the same scale factor. On

the other hand, if the patterning network of one species allocates a

relatively larger population of cells to a given type in some region

of the embryo, then the local neighborhood for each of the cells in

that region will grow larger.

We calculated the relative expansion or shrinkage of each cell

neighborhood between corresponding best-matched cells in D.

melanogaster, D. yakuba and D. pseudoobscura. The most important

observation from this analysis is that the relative proportion of cells

in these expression neighborhoods varies both up and down by as

much as 5 fold (Figure 7). These three species allocate cell types

quite differently; there are discrete areas of relative expansion and

contraction. For example, there are relatively more D. melanogaster

cells than their equivalents in D. yakuba and D. pseudoobscura in the

posterior trunk, (roughly corresponding to the position of the last 3

stripes of even-skipped expression), but fewer immediately

posterior, on the border of terminal gene expression. We conclude

that small changes to the behavior of the patterning network,

achieved either through quantitative regulatory changes, or by

initiating patterning in a new morphological context, or both, can

result in different proportions of cells allocated to conserved cell

types. These could serve as the initial basis for downstream

morphological changes.

Discussion

Here, we have compared the mRNA expression of 13

developmental regulatory genes in blastoderm embryos of D.

melanogaster, D. yakuba, and D. pseudoobscura using species-specific

atlases where average relative expression levels for all genes in the

data set are present in the same cellular resolution morphological

framework. These atlases provide a comprehensive quantitative

view of a developmental gene regulatory network operating in

closely related species and show that all genes examined show

clear quantitative differences in expression pattern between these

species. By searching locally for cells with similar gene expression

profiles, we filtered out expression differences due to changing

morphology and those due to positional changes in upstream

regulators. This analysis demonstrated that cells of similar types

are conserved between these species, though they differ in terms of

their relative position and proportion. The analysis also revealed a

minority of cells potentially using different input functions.

Applications for comparison of cellular resolution data
Identifying the genetic differences that cause variation in gene

expression is a major goal not only for evolutionary developmental

biologists, but also for those interested in human disease. An

increasing number of disease associated variants have been

mapped to regulatory regions of the genome [31]; to contextualize

their effects we must learn which sequence variants are likely to

alter gene expression and which will not. The approach we

describe identifies candidate regulatory differences from cellular

resolution data on a network of interacting genes. To obtain data

for all of the relevant genes over time, we built averaged atlases of

gene-expression using high-resolution imaging and registration

techniques. This type of data is likely to become increasingly

common as these technologies continue to improve. For example,

live in-toto imaging techniques such as SPIM have been successfully

applied to blastoderm embryos and are likely to provide a view of

the behavior of the network at much higher temporal resolution

[32,33]. As sequencing methods become more sensitive, they may

also be able to generate spatially resolved data by either separating

cells for biochemical analysis or using imaging-based methods to

sequence transcripts in situ [34]. We therefore anticipate that

increasing numbers of studies will involve comparing spatially

resolved cellular resolution gene expression profiles between

different samples from different species, different populations, or

from the same individual under different conditions. The

expression distance metric is a useful tool to focus attention on

subsets of interacting components that are likely to show different

behavior between species. Such methods may be applied to less

well-characterized gene regulatory networks, where unbiased

methods for reconstructing gene regulatory networks and mapping

expression differences onto a network from a combination of

genomic and functional data will be required.

Comparing multi-gene expression profiles reveals
candidates for regulatory change

A grand challenge in the post-genomic era is how to move from

broadly identified expression differences to precise identification of

mechanistic differences in the underlying gene regulatory

Figure 6. The majority of cellular gene expression profiles are conserved. The expression distance score for each cell is plotted on a 2D
representation of the embryo and the underlying gene expression profiles are illustrated in graphs below, where gene expression is represented as a
line trace over time for each gene in the dataset. (1st row) For each D. melanogaster query cell, the expression distance score of the nearest target cell
in D. yakuba (left) and D. pseudoobscura (right) is shown. (2nd row) The expression distance score for the best matched cell within the nearest 30 for
both D. yakuba and D. pseudoobscura is shown. The same representative cells from the top panel are indicated. High expression distance scores,
indicating poor matches, are darker. All cells scoring above 2.5 are colored the darkest blue; when the maximum value exceeds 2.5, the maximum
value amongst all cells is reported at the top of the color map. Representative D. melanogaster cells are labeled, and their expression profiles are
shown in detail at the bottom. For each representative cell, we list the label in the figure (a, b, or c), the target embryo to which it was matched (D.
yakuba or D. pseudoobscura) and the expression distance score to the nearest target cell and the best matched target cell: a, D. yakuba, 3935, 3.374,
1.018; b, D. yakuba, 4583, 0.881, 0.683; c, D. yakuba, 5644, 0.416, 0.355 (the nearest cell appears in the top 10 matches for this cell); a, D.
pseudoobscura, 3630, 0.884, 0.712; b, D. pseudoobscura, 4583, 5.264, 0.811; c, D. pseudoobscura, 5644, 0.595, 0.529 (the nearest cell is the best match
for this cell). (3rd row) For each D. melanogaster query cell, the distance and direction to the average position of the top 10 best corresponding target
cells is shown. The correspondence is shown with a line that starts at the position of the query cell, and ends at the average position of the target
cells. The end of the line is indicated with a black dot. Because the 2D projection distorts actual distance in 3D, the lines are color-coded to indicate
actual distance traversed in 3D. Dark blue is a large distance, yellow is a small distance. (4th row) The distribution of expression distance scores using
only the nearest cell (grey) and best-matched cell within the nearest 30 (blue) are shown; we plot the root of the expression distance score to
separate values near zero. The distribution of expression distance scores narrows and the mode decreases after a local search (Table S3). To establish
the significance of the calculated differences, we assembled two atlases from the D. melanogaster dataset, and compared these two atlases to each
other (dotted lines). (5th row) The expression profiles of the representative cells labeled in the top and middle panels are represented as a series of
chart maps [57,60] where each gene is a single box with a line trace indicating expression over time. All gene expression data is normalized to a
maximum of 1.0 over the time course. The expression profile of the D. melanogaster query cell is shown in red, the cell in the target embryo
(D. yakuba or D. pseudoobscura) is shown in blue (dark blue for the nearest cell, and light blue for the best cell after a local search).
doi:10.1371/journal.pgen.1002346.g006
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Figure 7. The proportion of cell types varies between D. melanogaster, D. yakuba, and D. pseudoobscura. (Left) To compare the allocation
of cell-types across species, we calculated the expression distance score to every other cell in each species’ atlas (left). The number of adjacent cells
below a given expression distance score is a measure of the size of a neighborhood of similar cells; we call these cells ‘‘expression neighbors.’’ Cells
with many expression neighbors are blue. Cells with fewer are yellow. These sets of expression neighbors per cell provide a means to compare the
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networks. Regulatory divergence across multiple scales, from the

topology of the network to fine-scale changes in input functions,

has been observed in comparative studies of the Ascoycota fungi

[35] and animals [36]. In principle, the quantitative differences in

gene expression we observe could result from many non-mutually

exclusive components of the gene regulatory network, including

changes in trans-acting TFs (either in their DNA binding affinity

or in their interaction with other components), cis-regulatory

modules (CRMs), chromatin structure, promoter architecture, or

transcript stability. Even at the short evolutionary distances studied

here, genetic changes are observed in multiple tiers of this

developmental network. DNA binding domains of TFs are highly

conserved, with only single amino acid changes in some lineages,

but the remainder of the protein diverges more rapidly [29]. cis-

regulatory sequences that interpret the concentrations of these

TFs differ substantially in terms of the number, affinity and

arrangement of TF binding sites [37]. Notably, a recent

comparative study of the dorsal/ventral patterning network in

blastoderm embryos of Drosophila showed that changes in the

arrangement of TF binding sites in CRMs leads to quantitative

gene expression differences between species by altering input

functions [38]. Other relevant features such as chromatin

structure, promoter architecture and miRNAs have recently been

systematically functionally characterized in D. melanogaster [39–41],

laying the foundation for future comparative studies.

Attributing expression differences to these features will require

a model of the system to generate experimentally verifiable

hypotheses. There are an increasing number of models that take

advantage of spatially resolved expression data and knowledge of

TF binding sites to predict CRM output [42–45]. However, these

models do not predict expression accurately enough to capture the

quantitative differences we observe between species. Our high-

resolution expression data are well suited to the development of

new types of models for ascertaining the source of expression

differences, a clear line of future experimentation.

Expression output in the segmentation network is robust
to genetic and morphological change

Despite the quantitative differences in cellular gene expression

patterns that we measure, the segmentation network produces

remarkably similar cell type output in the face of substantial

genetic and morphological perturbation. This implies that

formation of these cell types is under strong selective constraint.

D. melanogaster embryos can tolerate variation in the proportion of

cell types, though there is an upper limit on how much the

patterning system can be compressed [46]. The differences we

observe may reflect neutral drift within these limits. For example,

there may be restrictions on nearly neutral processes of binding

site turnover, where small sequence changes cause quantitative

variation in output, and subsequently require fine-tuning of

expression to stay within acceptable limits [47]. This sort of

process would result in fine-scale expression changes as the

acceptable limits are explored. Because many expression patterns

are qualitatively conserved between closely related species, the

prevalent model in the field is that CRMs operating in these

species are functionally equivalent, as has been shown for some

test cases [12]. However, a recent study found patterns of variation

in Drosophila blastoderm CRMs that are inconsistent with a

nearly neutral process [48]. As Kreitman and colleagues point out

in that paper, ‘‘the assumption of CRM functional stasis, which is

the main argument for the neutral (i.e., compensatory) view is not

well supported experimentally.’’ Though not attributable to

differences in CRMs without further study, we do provide

evidence of quantitative differences in expression for many genes

in the segmentation network between closely related Drosophila

species.

Alternatively, the proportion of cell types may be selected upon

directly, as they could contribute to organismal phenotypes by

propagating through later stages of development to create fine-

scale differences between these species. This would represent

selection on a quantitative intermediate developmental trait, likely

mediated by the type of small scale differences in expression for

multiple genes we observe in our dataset. This scenario would

differ from selection on macroscopic terminal organismal

phenotypes such as changes in pigmentation, bristle number and

skeletal structures, where small numbers of loci or even single loci,

of large effect have been identified [49–52].

Finally, it is possible that the differences in gene expression are a

consequence of selection on egg size and morphology. Egg size is

known to be a selectable trait and to vary significantly across

populations [53–55]. The expression differences we see would

then reflect how the segmentation network has been fine-tuned to

operate in different morphological contexts while maintaining the

proper allocation of cell types. This idea was also recently put forth

by Kreitman and colleagues to account for evidence of positive

selection on Drosophila blastoderm CRMs, as mentioned above

[48]. They term this the ‘‘moving target’’ hypothesis, and posit

that input functions must constantly adapt to changing conditions

within the embryo. We favor this hypothesis as well. It remains a

future challenge to identify both the target of selection for this

network, and the design principles that confer its robustness to

genetic and morphological perturbation.

Materials and Methods

Embryo collection and fixation
Embryos were collected, fixed and prehybridized according to

standard protocols, which are available at http://depace.med.

harvard.edu/links.html, and described in [6,26]. Briefly, D. yakuba

and D. pseudoobscura cages were maintained at 23uC. D. yakuba

embryos were collected for 3 hours, and aged for 2 hours prior to

fixation. D. pseudoobscura embryos were collected for 3 hours, and

aged for 3 hours prior to fixation. Embryos were dechorionated in

50% bleach for 3 minutes, washed, and fixed in a 1:4 solution of

10% formaldehyde (Polysciences #04018) to heptane for 20

minutes with vigorous shaking. The vitelline membranes were

removed by shaking with MeOH and washed 3X with 100%

MeOH. Fixed embryos were stored at 220uC in 100% ethanol.

Embryos were pooled for prehybrization, rehydrated in PBT + Tx

(PBS pH 7.2, 0.05% Tween20 and 0.2% Triton X-100), post-fixed

for 20 minutes in 5% formaldehyde in PBT+Tx, washed in

hybridization buffer (50% formamide, 5X SSC pH 5.2, 0.2%

Triton X-100, 40 mg/ml heparin, and 250 mg/ml salmon sperm

DNA) and incubated at 55uC for 1 to 5 hours in hybridization

buffer. Prehybridized embryos were stored in hybridization buffer

at 220uC.

relative allocation of cell types in the different embryos. For each D. melanogaster cell, the number of D. melanogaster expression neighbors is
compared to the number of expression neighbors for its best corresponding cell in D. yakuba and D. pseudoobscura (right). Values displayed are the
log ratio of the neighborhood sizes for corresponding cells in the two species being compared. D. melanogaster cells with relatively more expression
neighbors are blue. D. melanogaster cells with relatively fewer are red.
doi:10.1371/journal.pgen.1002346.g007
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Probe synthesis and in situ hybridization
There were two modifications to the staining protocol developed

for D. melanogaster [6]. First, species-specific RNA probes were made

using cDNA or genomic DNA as a template, whereas cDNA probes

were used exclusively for the D. melanogaster data. Probes ranged in

size from 531 bp to 2771 bp, and either encompassed the majority

of the coding sequence or overlapped large exons (Table S4).

Variation in probe length did not significantly affect our

measurements (Figure S11). Second, two different haptens are

required for our imaging pipeline, one for the registration gene and

one for the gene of interest. While dinitrophenol (DNP) - labeled

probes gave consistently clean results in all species, digoxygenin

(DIG) - labeled probes yielded variable levels of background.

Another commonly used hapten, biotin, was even worse. Because

DIG stains were strong enough to reliably distinguish stripes, we

chose to use it for the registration channel, but not include the data

in the final gene expression atlases.

Probe templates were cloned by PCR amplification using either

genomic DNA or cDNA libraries as a template, ligated into

pGEM-Teasy, and sequence verified. Cloning primers are listed in

Table S4. Probe templates were generated by PCR with M13

forward and reverse primers. Anti-sense digoxygenin (DIG) or

dinitrophenol (DNP) probes were synthesized using in vitro

transcription from DNA templates using either SP6 or T7

polymerase, depending on the orientation of the clone. Probes

were not carbonate-treated as this did not improve stain quality.

All probes were diluted to 200 ng/ml.

For in situ hybridizations, approximately 100 ml of embryos

were incubated for up to 48 hours at 55–57uC in 300 ml of

hybridization buffer with 2–10 ml each of a DIG and DNP probe.

Embryos were then washed extensively with hybridization buffer

at 55–57uC, and probes were detected sequentially using

horseradish-peroxidase (HRP) conjugated antibodies (anti-DIG

POD, Roche 11207733910 at 1:250 or 1:500; anti-DNP Perkin

Elmer NEL747 A001KT at 1:100) and either coumarin or Cy3

tyramide amplification (Perkin-Elmer NEL703 001KT, SAT

704B). To disable the HRP in the first signal detection reaction,

embryos were washed in hybridization buffer at 55uC and

incubated in 5% formaldehyde in PBT+Tx for 20 minutes. All

remaining RNA was removed by incubation with 0.18 mg/ml

RNAse A in 500 ml PBT+Tx overnight at 37uC. Nuclei were

detected by staining with Sytox Green (Molecular Probes #S7020,

1:5000 in 500 ml overnight at 4uC). Embryos were dehydrated in

an ethanol series and mounted in xylene-based DePex (Electron

Microscopy Service #13514) on a slide with 2 bridging coverslips

to prevent flattening of the embryos. Detailed protocols are

available at http://depace.med.harvard.edu/links.html.

Image acquisition, analysis, and registration
Three-dimensional image stacks of individual embryos were

acquired semi-automatically on a Zeiss LSM 710 using a plan-

apochromat 20X 0.8NA objective. Embryos were located, staged

using phase contrast optics, and the imaging parameters such as the

height of the image stack and gain settings for each fluorophore

were recorded. A custom built macro then acquired all marked

embryos [7]. All three fluorophores (Sytox Green, coumarin and

Cy3) were excited simultaneously at 750 nm, using a Coherent

Chameleon 2-photon laser at 4–7% power. The emission was

spectrally split into 3 channels: 462–502 nm (coumarin), 514–

543 nm (sytox), 599–676 nm (Cy3). Images were 102461024, and

slices were taken every 1 mm. Resulting image stacks were processed

by previously described algorithms to unmix channels [56], and

segment individual nuclei [6], resulting in individual pointcloud files

for each embryo. These were housed in a custom-built database.

Gene expression atlases were assembled using the registration

algorithms previously described in [7]. For each species, a

morphological model was constructed that contained an average

number of nuclei. The 3D positions of the nuclei in the model were

chosen to match the average egg-length, shape and density pattern

measured for each of the 6 temporal cohorts. Motions of nuclei

between time points in the model were constrained to be as small and

smooth as possible while still recapitulating the observed changes in

density and shape (see [27] for details). Pointcloud data extracted for

each embryo in a given cohort were aligned to the morphological

template by a rigid-body transformation and isotropic scaling. For

each time point, a registration template was constructed by finding

average boundary locations of a registration marker gene (eve or ftz)

with respect to the egg-length of the morphological model. Fine

registration of individual embryo pointclouds was then carried out by

non-rigid warping of the embryo to align marker gene boundaries

with the template. Finally, expression values were computed for each

nucleus and time point in the model by averaging measurements

across those nuclei in individual pointclouds that were closest after

spatial registration. Prior to averaging, gains and offsets were

estimated for expression measurements within each embryo

pointcloud in order to minimize the expression variance across the

cohort and to match smoothed estimates of the total change in

expression level between temporal cohorts (see [7] for details).

Calculation of surface area and density
Surface area was computed as the sum of areas of the triangles

defined by the neighbor relation information in the Pointclouds

[6]. Local density was computed by defining a disk of 15 mm

radius on the surface around each nucleus, and dividing the

number of nuclei in this disk by its area [6]. These density maps

were then averaged over a cohort of embryos by resampling the

cylindrical projections onto a regular grid.

Calculation of expression distance score
Cell-to-cell comparisons within and between species were made

by looking at the squared distance between vectors of average

expression measurements for the cell at all 6 time points and 11

genes. For a pair of nuclei i and j we computed the distance:

di,j~
X
g,t

e
g,t
i {e

g,t
j

� �2

where ei
gt is the expression of the gth gene recorded in the atlas for

the ith cell at time point t. We used squared distance since it is

additive across genes and time-points which makes the contribu-

tion of individual genes more interpretable. Prior to computing the

distance, expression levels for each gene in the atlas were scaled so

that the maximum expression at each time point was 1.0. In order

to determine relevant cells to compare between species, only cells

that were nearby were considered. Corresponding locations were

estimated by scaling each atlas to unit egg length and nearby

nuclei were specified as those nuclei in the target embryo that were

within the 30 nearest to the cell to be matched.

Since there are often several cells that are good matches, the

displacement direction to the best matching nearby cell is noisy. In

order to visualize displacement, we used a weighted average of the

locations of the top 10 matching cells (smallest expression

distance). The 3D locations of these 10 matching cells were

averaged using weights inversely proportional to the expression

distance (i.e. 1/dij). These 3D displacement vectors were then

visualized on a cylindrical projection.
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We chose not to include bcd and cad in calculation of the

expression distance score for the entire dataset. We excluded bcd

because its expression increases over the first two time points in the

D. melanogaster dataset; this is likely an experimental artifact and

leads to artificially high expression distance scores in the anterior.

We excluded cad because data was not available for D.

pseudoobscura and we wished to compare results between the D.

melanogaster/D. yakuba and D. melanogaster/D. pseudoobscura analyses.

Calculating statistical significance for expression
differences

As an alternative to expression distance scores, we also considered

a hypothesis-testing framework in which two cells are declared to

have different expression profiles if the expression of some gene at

some time point is significantly different relative to variance in our

measurements. This comparison was carried out independently for

each cell, gene and time-point using a two-sample t-test with

unequal sample sizes and variances. In all tests we used the

Bonferroni correction to assure a family-wise error rate of less than

0.01. Visualizations and histograms in Figures S5 and S9 show the

number of expression profile measurements for which a given cell

was significantly different under this significance threshold.

Calculating relative proportions of cell types
We defined an expression neighborhood Ni for a given nucleus i

in the following way. Choose a threshold t and find all nuclei in

the atlas for which dij,t. Of these nuclei with similar spatio-

temporal expression profiles, let Ni be the largest connected

component on the embryo surface that contains cell i. For areas

where the expression pattern varies rapidly in space, this

neighborhood of similar cells is small. In areas where the pattern

changes slowly, the neighborhood is large.

To determine how these neighborhoods might expand or

contract between different species, we consider the neighborhood

size around corresponding nuclei. Let j be the nucleus in the target

atlas whose expression profile best matches i in the source atlas.

We compare the relative sizes of the two neighborhoods in order

to gauge the degree of expansion or contraction measured by the

log ratio of neighborhood sizes:

Rij~log
Nij j
Nj

�� ��
 !

The log ratio is symmetric about zero with positive values

indicating an expansion and negative values indicating a

contraction.

One concern is that the choice of neighbor threshold may affect

this analysis since there is not a meaningful way to scale the

measured fluorescence levels between atlases of different species.

To resolve this, we choose the threshold for each target atlas

adaptively. Given a fixed threshold for the query atlas, we

searched over thresholds for the target atlas in order to find a

threshold in which the average expansion ratio R across all cells

matched the log-ratio of the number of nuclei in the two atlases.

Choosing the threshold in this way entails that ratios are visualized

relative to a null hypothesis of uniform scaling between species.

Visualization of expression distance scores and underlying
cellular gene expression profiles using MulteeSum

Figures similar to Figure 5, Figure 6, Figure S4, Figure S7, and

Figure S8 can easily be generated using MulteeSum, a custom

software tool for visualizing comparative analysis of cellular gene

expression profiles [57]. Our datasets are complex and best viewed

interactively. We therefore have made MulteeSum and the

analyses presented here available for download at http://depace.

med.harvard.edu/downloads/MulteeSum.zip. We have released

MulteeSum open source, and it was developed using the

Processing programming language (http://www.processing.org),

an open-source language for visualization. Executables for running

on Mac OSX, Windows and Linux and instructions (see

README.txt) are included in the download. A full description

of the usage and features of MulteeSum can be found at http://

www.multeesum.org.

Supporting Information

Figure S1 D. melanogaster, D. yakuba, and D. pseudoobscura atlases

are of similar quality. The frequencies of relative intensities for

each gene in each atlas are compared (D. melanogaster in blue, D.

yakuba in orange and D. pseudoobscura in green). For stains with

obvious non-specific background, the peak of the distribution

becomes quite broad.

(TIF)

Figure S2 The density patterns of D. melanogaster, D. yakuba, and

D. pseudoobscura embryos are statistically distinct. Point-wise nuclei

density estimates for each cohort were compared between species

using a paired t-test. Plots show the log p-values for this

comparison. With the exception of the white areas, the differences

in densities are statically significant (p$0.05). The density of nuclei

in D. melanogaster and D. yakuba are different from one another with

high statistical significance, likewise for the density patterns of D.

yakuba and D. pseudoobscura, with the exception of a small anterior

dorsal region in the early time point, representing only 1% of

nuclei. The greatest similarity in density levels are corresponding

areas of D. melanogaster and D. pseudoobscura constituting roughly 15,

11 and 33 percent of the nuclei during the early, middle and late

time points respectively. Anterior to the left, D dorsal, L lateral, V

ventral.

(TIF)

Figure S3 Cell flow models in D. melanogaster, D. yakuba and D.

pseudoobscura atlases are similar. Panels show the estimated

movements of nuclei based on the average shape and density of

imaged embryos in each temporal cohort using the method

described in [24]. Lines show the direction of motion. Since the

cylindrical projection distorts distances near the poles, the color of

each line indicates the distance in 3D as a proportion of egg

length. Despite differences in density patterns (see Figure S2), the

estimated cell flow is quite similar across all three species. As noted

in the main paper, this flow is incorporated into the atlas and

hence automatically factored out of our comparative expression

analysis.

(TIF)

Figure S4 Individual gene expression patterns vary in relative

position and intensity. (1st row) For each D. melanogaster query cell,

the expression distance score of the nearest target cell in D. yakuba

(left) and D. pseudoobscura (right) is shown. (2nd row) The expression

distance score for the best-matched cell within the nearest 30 for

both D. yakuba and D. pseudoobscura is shown. High expression

distance scores, indicating poor matches, are darker. All cells

scoring above 0.7 are colored the darkest blue; the maximum

value amongst all cells is reported at the top of the color map. (3rd

row) For each D. melanogaster query cell, the distance and direction

to the average position of the top 10 best corresponding target cells

is shown. The correspondence is shown with a line that starts at
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the position of the query cell, and ends at the average position of

the target cells. The end of the line is indicated with a black dot.

Because the 2D projection distorts actual distance in 3D, the lines

are color-coded to indicate actual distance traversed in 3D. Blue is

a large distance, yellow is a small distance. (4th row) The

distribution of expression distance scores using only the nearest cell

(grey) and best-matched cell within the nearest 30 (blue) are

shown. The distribution of scores narrows and the mode decreases

after a local search. To establish the significance of the calculated

differences, we assembled two atlases from the D. melanogaster

dataset, and compared these two atlases to each other (dotted

lines). We show data from fkh, ftz, gt, hb, hkb, kni, Kr, odd, prd

and tll, which together with eve (described in Figure 5) form the set

of 11 genes used for analyzing the whole gene expression profile.

(PDF)

Figure S5 Even after local searching, some cells have statistically

different even-skipped gene expression profiles. As an alternative to

the expression distance score (Figure 5), we evaluate the similarity of

matched cells using independent pair-wise comparisons for eve

expression at each time point. Top panels show the number of time

points for which the measured expression level of eve in the

corresponding cell was significantly different. (1st row) For each D.

melanogaster query cell, the number of significant expression

differences with the nearest target cell in D. yakuba (left) and D.

pseudoobscura (right) is shown. (2nd row) The number of significant

expression differences score for the best matched cell within the

nearest 30 for both D. yakuba and D. pseudoobscura is shown. Numbers

above each panel indicate the number of cells which were

significantly different at one or more time points at a family-wise

error rate (FWER) of 0.01. Histograms at bottom show the number

of cells whose expression profile differed significantly at a given

number of entries (total number of entries = no. of genes x no. of

time points in expression profile). Histograms also show a control

that compared different D. mel atlases constructed from two disjoint

sets of embryos. Expression levels in the paired control atlases are

statistically identical at this confidence level for nearly all nuclei.

(TIF)

Figure S6 The boundaries of even-skipped expression are in

different relative positions between D. melanogaster, D. yakuba, and

D. pseudoobscura. Individual pointclouds were divided into 16

dorsal-ventral strips, and the position of the boundaries of eve

expression in each strip was measured as in [6]. The average

position and 95% confidence intervals at each of the 16 positions

are plotted for embryos early in cellularization (4–25%) and later

in cellularization (51–100%).

(TIF)

Figure S7 When comparing even-skipped expression, un-

matched cells in D. yakuba and D. pseudoobscura are rare. Because

we do not require a one-to-one match, there are potentially cells in

the target embryos without any matches. We tallied matches for all

target cells by awarding 1 count if the cell appeared in the top 10

hits for a given query cell. The expression distance score is

sensitive to even small differences in expression profiles; tallying

the top 10 distinguishes between target cells that are unmatchable

due to more extreme expression differences from those that just

aren’t quite perfect. The number of matches for each cell in the

target embryos is shown. The color map was binned into 6

populations according to the distribution of matches for each

target embryo. Unmatched cells (dark brown) are almost

exclusively found outside the area of even-skipped expression.

The few unmatched cells within the area of even-skipped

expression are intermingled with more highly matched cells, and

are only subtly different from their neighbors (expression profiles

can be viewed in MulteeSum (see Materials and Methods) by

clicking on these cells).

(TIF)

Figure S8 When comparing the whole gene expression profile

(hb, gt, Kr, kni, fkh, hkb, tll, eve, ftz, odd, and prd), unmatched

cells in D. yakuba and D. pseudoobscura are rare and similar to their

matched neighbors. If there were cells that had substantially

different expression profiles, such as complete lack of expression of

a certain gene, they may be avoided by our matching protocol. To

assess this possibility, we tallied matches for all target cells by

awarding 1 count if the cell appeared in the top 10 hits for a given

query cell. The number of matches for each cell in the target

embryos is shown. The color map was binned into 6 populations

according to the distribution of matches for each target embryo. A

few unmatched cells (dark brown) are found at the poles and are

intermingled with more highly matched cells; these cells are only

subtly different from their neighbors (expression profiles can be

viewed in MulteeSum (see Materials and Methods) by clicking on

these cells).

(TIF)

Figure S9 Even after local searching, some cells have statistically

different gene expression profiles. As an alternative to the

expression distance score (Figure 6), we evaluate the similarity of

matched cells using independent pair-wise comparisons for all 11

gene expression levels at each time point. Top panels show the

number of expression profile entries for which the measured

expression level of in the corresponding cell was significantly

different. (1st row) For each D. melanogaster query cell, the number

of significant expression differences with the nearest target cell in

D. yakuba (left) and D. pseudoobscura (right) is shown. (2nd row) The

number of significant expression differences score for the best

matched cell (smallest expression distance) within the nearest 30

for both D. yakuba and D. pseudoobscura is shown. Numbers above

each panel indicate the number of cells that were significantly

different at one or more profile entries at a family-wise error rate

(FWER) of 0.01. Histograms at bottom show the number cells

whose expression profile differed significantly at a given number of

entries (genes/time points). Histograms also show a control that

compared different D. mel atlases constructed from two disjoint sets

of embryos. Expression levels in the paired control atlases are

statistically identical at this confidence level for nearly all nuclei.

Even after local searching, some cells have statistically different

gene expression profiles. As an alternative to the expression

distance score (Figure 6), we evaluate the similarity of matched

cells using independent pair-wise comparisons for all 11 gene

expression levels at each time point. Top panels show the number

of expression profile entries for which the measured expression

level of in the corresponding cell was significantly different. (1st

row) For each D. melanogaster query cell, the number of significant

expression differences with the nearest target cell in D. yakuba (left)

and D. pseudoobscura (right) is shown. (2nd row) The number of

significant expression differences score for the best matched cell

(smallest expression distance) within the nearest 30 for both D.

yakuba and D. pseudoobscura is shown. Numbers above each panel

indicate the number of cells that were significantly different at one

or more profile entries at a family-wise error rate (FWER) of 0.01.

Histograms at bottom show the number cells whose expression

profile differed significantly at a given number of entries (genes/

time points). Histograms also show a control that compared

different D. mel atlases constructed from two disjoint sets of

embryos. Expression levels in the paired control atlases are

statistically identical at this confidence level for nearly all nuclei.

(TIF)
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Figure S10 Expression differences are widespread throughout

the network. Corresponding cells were identified by searching

amongst the nearest 30 cells and scoring the whole gene

expression profile (hb, gt, Kr, kni, fkh, hkb, tll, eve, ftz, odd,

prd). The contributions to the expression distance score for the

best-matched cell were calculated for various tiers of the network

(the gap and terminal genes, the pair-rule genes as a group and

the individual pair-rule genes). High expression distance scores,

indicating poor matches, are darker. All cells scoring above 1.0

are colored the darkest blue; when the maximum value exceeds

1.0, the maximum value amongst all cells is reported at the top of

the color map.

(TIF)

Figure S11 Probe length does not significantly effect position

measurements. ftz expression was measured using either a 988 bp

exonic (dark green) or a 1350 bp cDNA (light green) in situ probe.

Individual pointclouds were divided into 16 dorsal/ventral strips,

and the position of the boundaries of ftz expression in each strip

was measured. The average position and 95% confidence intervals

at each of the 16 positions are plotted for embryos later in

cellularization (51–100%).

(TIF)

Table S1 Number of embryos per cohort in D. yakuba and D.

pseudoobscura datasets. The number of embryos per gene varies

across the dataset with a minimum of 4 embryos per gene per

time point. Data was not collected for time points when the gene

is not expressed (i.e. Bcd at later time points). We collected

additional data on the registration genes eve and ftz in both

species.

(DOC)

Table S2 Standard deviation of gene expression is reduced after

registration to similar levels in D. melanogaster, D. yakuba, and D.

pseudoobscura atlases. The average standard deviation after

registration is shown for all genes in the D. yakuba and D.

pseudoobscura atlases, as well as the corresponding data from the

D. melanogaster atlas for comparison [7].

(DOC)

Table S3 Mean and median expression distance score before

and after local search. A local search significantly decreases the

expression distance score relative to direct spatial mapping. The

mean and median of the expression distance score using direct

spatial mapping (nearest cell) and local search (local search) is

shown for pair-wise comparisons between D. melanogaster and D.

yakuba and D. melanogaster and D. pseudoobscura, for both individual

genes and all genes in our dataset.

(DOC)

Table S4 Probe constructs used for D. yakuba and D. pseudoobscura

in situ hybridizations. The gene, species, template type (cDNA or

genomic DNA (gDNA), length, and primers are shown for each in

situ probe used in this study.

(DOC)
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