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Multiplex meta-analysis of RNA expression to identify
genes with variants associated with
immune dysfunction

Alexander A Morgan,1 Vasilios J Pyrgos,2 Kari C Nadeau,3 Peter R Williamson,2

Atul Janardhan Butte1

ABSTRACT
Objective We demonstrate a genome-wide method for
the integration of many studies of gene expression of
phenotypically similar disease processes, a method of
multiplex meta-analysis. We use immune dysfunction as
an example disease process.
Design We use a heterogeneous collection of datasets
across human and mice samples from a range of tissues
and different forms of immunodeficiency. We developed
a method integrating Tibshirani’s modified t-test (SAM) is
used to interrogate differential expression within a study
and Fisher’s method for omnibus meta-analysis to identify
differentially expressed genes across studies. The ability
of this overall gene expression profile to prioritize disease
associated genes is evaluated by comparing against the
results of a recent genome wide association study for
common variable immunodeficiency (CVID).
Results Our approach is able to prioritize genes
associated with immunodeficiency in general (area under
the ROC curve ¼ 0.713) and CVID in particular (area
under the ROC curve ¼ 0.643).
Conclusions This approach may be used to investigate
a larger range of failures of the immune system. Our
method may be extended to other disease processes,
using RNA levels to prioritize genes likely to contain
disease associated DNA variants.

INTRODUCTION
One of the major goals of translational bioinfor-
matics is to equip clinical medicine with the ability
to use information about a patient’s genome for
diagnosis and decision-making. Several commercial
companies provide disease risk information
according to individual genotype,1 and other
approaches have been developed and used to
analyze and interpret high-depth patient sequence
data to guide treatment2 3; these are all instances of
personalized medicine approaches that integrate
genomics. Genotyping using arrays is a well-estab-
lished commercial service, and the technology exists
to provide high-depth sequencing and coverage at
a cost comparable to many commonly used diag-
nostic tests4; basic techniques exist for using these
data in a medically relevant fashion.5 6 However,
genomic medicine relies on knowledge of the
genetic basis of disease, and although methods such
as genome-wide association studies using geno-
typing arrays have become the gold standard for
discovering and exploring genetic variations, they
have had a relatively poor success rate in explaining
the chief genetic contributions to the heritability of

many major, common diseases; this is known as the
‘missing heritability ’ problem.7e9 We need addi-
tional tools to accelerate the process of uncovering
the causal variations giving rise to pathology.10

Unfortunately, targeted candidate gene association
studies have had a notoriously poor rate of
replication in contrast to the much less biased
genome-wide approaches.11 12 An approach that
can prioritize targeted portions of the genome
implicated in disease association in an unbiased,
genome-wide manner, based on data-driven, func-
tional properties would provide a powerful tool for
future medical genomics. In this paper, we describe
such a method and demonstrate its ability to
prioritize the genes with variants implicated in
a specific form of immunodeficiency, ‘common
variable immunodeficiency ’ (CVID), characterized
by patient inability to produce sufficient antibodies.
Many common, multifactorial diseases include an

infectious, autoimmune or inflammatory compo-
nent; the mammalian immune response is a very
finely tuned, highly complex system with hundreds
of signaling molecules, dozens of different cell types,
and the involvement of multiple tissue types and
organs.13 It features all the motifs and elements of
the most complex biological circuits and control
systems, with many interacting feedback and feed-
forward elements.14 Dysfunction can arise from
variation in many different components of this
complex, highly inter-connected system, and the
phenotypic changes in the immune system to the
range of genomic variations possible is only begin-
ning to be understood. However, characterization of
the variations that lead to serious immune failure
can help in the treatment of affected patients and
also, hopefully, provide insight into the range of
human immune response as influenced by genetics.
Although large knowledge bases on immune

function have been constructed,15 we also have
access to genome-wide functional data in the form
of gene expression information. Large repositories
like the NIH NCBI Gene Expression Omnibus16

provide access to tens of thousands of different
highly parallelized gene expression measurements.
We and others have previously described methods
that look across multiple studies which each provide
many gene expression measurements (ie, multiplex)
in what we call ‘multiplex meta-analysis’17e20 to
obtain an overall picture of gene expression across
studies. Taking advantage of the central dogma that
DNA codes for RNA, which codes for protein,
studying RNA at the gene expression level in specific
phenotypes has provided potential insight into
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functional processes in the phenotype and suggests genes (DNA)
that may contain variants associated with that disease.21 22 In
this study, we extend this idea and describe a method for inte-
grating gene expression data across multiple gene expression
studies for clinically/phenotypically similar presentations of
a range of immune deficiencies across species and tissue types to
create an integrated multiplex (parallelized) meta-profile of gene
expression. This meta-expression profile allows powerful priori-
tization of the genes involved in general immune deficiency but
also shows predictive power over a recent genome-wide associa-
tion study of CVID (figure 1). We suggest that this method could
be used to investigate the genetic and molecular pathology of
other forms of immune dysfunction.

METHODS
We collected data from the NIH NCBI Gene Expression
Omnibus for 16 different studies of immunodeficiency (table 1).
Importantly, these gene expression measurements are from
many different forms of immune dysfunction and span multiple
species and different tissue types. The gene expression samples
in each study were hand annotated and further divided into 37
different experimental comparison subgroups (such as different
mouse backgrounds used in the same study). Gene expression
levels were compared between immune deficient samples and
controls (normal immune function samples) in each subgroup
using the modified t test proposed by Tusher et al37 and incor-
porated into the significance analysis of microarrays.38 The
annotations of all samples are available upon request.

We calculate the mean log fold change38 of each oligonucleotide
in each array (m) in each experimental class (k, either i for
immunodeficiency or c for control) and each subgroup (g), with
nk,g indicating the total number of arrays of class k in subgroup g.

xek;g ¼
+
nk;g

m¼1
log

�
xm;k;g

�

nk;g
(1)

These mean log fold changes are then used in the modified t
test (equation 2) introduced by Tusher et al37 and explained in

detail in Witten and Tibshirani,38 using the standard deviation
(sg) and a value so,g (scaling factor) selected to minimize the
coefficient of variation of Tg across all oligonucleotides.

Tg ¼ xei;g � xec;g

sg þ so;g
(2)

The modified t statistic Tg is then bootstrapped to calculate
a p value (pg) for each gene. The oligonucleotides on the array are
mapped to genes using AILUN39 and across species using
HomoloGene groups.40 Using a method proposed by Fisher41

and based on the fact that p values selected at random should be
uniformly distributed, we can look for deviations by the c2 test
(equation 3), with pg the p value for that gene in the subgroup g
and ng the number of subgroups measuring that gene.

c2
2ng ¼ �2 +

ng

g¼1
log

�
pg
�

(3)

Importantly, this method will freely mix different directions
of variation across studies, up or down, using only the signifi-
cance of the test. The final meta p values may then be used to
rank the significance of expression differences between immune
deficient and normal controls across studies. We predict that
genes that are significantly differentially expressed across studies
identified through our method are more likely to be involved in
immunodeficiency; the lower the p value, the greater the priority
given.
To establish a baseline and identify genes involved with the

immune system in general, we also took lists of genes annotated
for involvement in acquired immunity, innate immunity, and
inflammation taken from the Molecular Signatures Database.42

The genes with an annotation in each respective category were
taken as predictions for having variants associated with disease
risk, and those genes lacking annotations were taken to be
predictions for those genes not being closely coupled to variants
associated with increased disease risk. For example, one strategy
to prioritize CVID related genes would be to first investigate all
those genes annotated for being involved in the biological
process of ‘acquired immunity ’, using the presence of that
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Figure 1 Receiver Operating Characteristic (ROC) curves evaluating the prioritization of disease associated genes.
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annotation on a gene as the predictor for involvement with
CVID.

To evaluate our ability to prioritize genes with variants
associated with immunodeficiency, we compiled a manually
expertly curated list of 131 genes known to have variations
associated with immunodeficiency in general. However, as that
list might be biased toward genes discovered through differential
expression, we also used the results of a recent genome-wide
association study of 363 patients with CVID and 3031 healthy
controls. We took the results of this study and identified 31
genes linked to variations associated with CVID,43 prominent
among them the genes of the major histocompatibility complex
(MHC).

We evaluated the ability to prioritize the genes with variants
implicated in immunodeficiency using the receiver operating
characteristic (ROC) curve. The area under the ROC curve
summarizes the power of a prediction method into a single
numerical value, in this case predicting the association of genes
likely to contain disease-associated variants. An area of 0.5, or
a curve along the diagonal indicates no predictive power. A larger
area under the curve (AUC) implies better discrimination ability.
We obtain a p value by comparing the observed AUC against
1000 randomizations.

RESULTS
In figure 1, we show the ability of our multiplex meta-analysis
derived gene expression profile for immunodeficiency to identify
and prioritize genes with disease-associated variants. In panel A
of figure 1, we see that our approach provides an AUC of 0.713,
much better than a random sampling of the genome (diagonal)

or selecting and prioritizing genes annotated for immune system
involvement (other solid lines).
In figure 1B, we can see very strong prioritization of genes

identified through an unbiased, genome-wide investigation of
the genetic causes of CVID. Even though CVID represents
a collection of different, related syndromes of dysfunction in
antibody production, our gene expression analysis drawn from
an even more heterogeneous collection of diseases provides
predictive power with an AUC of 0.643.
The top 20 genes from our gene expression meta-analysis for

immunodeficiency are shown in table 2. Our approach suggests
that these genes should be further investigated in relation to
their role in immune dysfunction. Although many of these genes
have been poorly characterized for function, some are already
known to have an important role in immunity, suggesting that
although looking just at genes annotated for immunity does not
really help selection, some key immune genes have nonetheless
been found using microarray meta-analysis, such as PECAM1
which codes for CD31 (a protein involved in leukocyte migra-
tion) and STAT1 which is a very important immune regulator
involved in response to signaling by interferons.

CONCLUSION
Our hypothesis in this study was that by integrating RNA
repeatedly implicated in gene expression microarray experiments
related to immunology, we could identify genes (DNA) recog-
nized to contain variants or mutations well known to be asso-
ciated with immune dysfunction. To test this, we compared sets
of genes found through meta-analysis with genes selected using
prior knowledge of immunology pathways, comparing against

Table 1 Publicly-available gene expression experimental data used in multiplex meta-analysis

GSE: GEO series
accession number Control samples

Immune deficient
samples Title Reference

GSE10817 2 2 Mll5 is required for hematopoietic stem cell
fitness and homeostasis

23

GSE11005 34 20 Immune responses to pneumocystis infection
are robust in immunocompetent mice but
absent in CD40 ligand deficient mice

24

GSE12464 13 6 Transcriptional signatures of Itk-deficiency using
CD3+ T cells

25

GSE12465 4 5 Transcriptional signatures of Itk-deficiency using
CD3+, CD4+, and CD8+ T cells

25

GSE15324 4 4 Control of CD8+ T cell proliferation by the
transcription factor ELF4

26

GSE15750 8 8 Enhancing CD8 T cell memory by modulating fatty
acid metabolism

27

GSE2585 4 4 Promiscuous gene expression in the mouse thymus 28

GSE3414 18 18 Immune response to Nippostrongylus brasiliensis in
the mouse lung

29

GSE3676 2 2 Expression profile of the testis from Tslc1�/� mice. 30

GSE5654 3 3 Essential role of Jun family transcription factors in
PU.1-induced leukemic stem cells

31

GSE85 3 3 Wild type and Aire �/� murine medullary thymic
epithelial cells

32

GSE8507 35 35 Neutrophil and PBMC gene expression data from
Job’s syndrome

33

GSE8564 10 10 Analysis of Aire effects on individual mice of
different genetic backgrounds

34

GSE8726 4 3 Expression data from Sod2�/� and Sod2+/+
mouse erythroblasts

Unpublished from FM
Martin et al at The
Scripps Research Institute

GSE935 8 12 NIH/NIAID chronic granulomatous disease neutrophils 35

GSE9499 30 15 DNA methyltransferase 3B (DNMT3B) mutations in ICF
syndrome: gene expression analysis

36

GEO, NCBI Gene Expression Omnibus.
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a manually curated gold standard list of genes known to have
variants associated with immunodeficiency.

The important result here is that prior annotations of
immune function actually provide no particular insight, as the
resulting curves diverge very little from the diagonal (w0.5 in
both panels of figure 1). Our study of genes by their annotation
for involvement in immune processes is analogous to previously
commonly used candidate gene approaches; genes which were
believed to be involved in a pathway or process involved in the
phenotype of interest (such as the disease) were examined for
genetic variation enriched in affected individuals relative to
healthy controls. Although such knowledge-driven approaches
have suggested many genes and variants that might influence
disease risk, the variants found by such approaches have typi-
cally failed to be replicated in larger or subsequent studies.12 44

Our findings lead to a similar result. The previous knowledge-
based approach provides little value in prioritization.

There are many potential biases in the identification of genes
with disease-associated variation, and it has been suggested that
the best ways to address this are to interrogate the genome as
widely as possible and to combine studies whenever possible to
demonstrate reproducibility and consistency of effect.45e48 In
statistics, previous beliefs that lead to bias may be cast in a more
formal way, for example as a Bayesian prior, which is a type of
statistical bias. Other types of biases may be the result of sample
collection having a particular structure that skews the results,
such as patients and controls in a clinical trial selected in a non-
random way. Overall, bias is not meant here as a pejorative term,
merely descriptive. Selecting genes using previous knowledge
would represent a form of bias. We suggest that our meta-anal-
ysis approach is relatively unbiased compared to using annota-
tions of individual genes, in that it relies on the single assumption
that the datasets synthesized relate to the phenotype under
study, and is not biased on particular genes or pathways having
been previously studied to a greater extent than others.

In our results, investigating this type of immune disease using
biased, prior knowledge of the molecular genetics of immune
function provides little advantage over a random selection of
genes. A study looking for genetic association only in the genes
annotated for immune function, would apparently not do much
better than random. However, our data-driven approach offers
a much better way to prioritize genes for genetic investigation.
The meta-analysis derived expression profiles preferentially
select genes with disease-associated variants without making
any assumptions of function other than differential expression
in a related disease.

The vastness of the human genome provides a huge challenge
as we seek to investigate the genetic underpinnings of disease;
however, we want to interrogate not only a huge range of

variants at different loci but also systems with potentially many
interacting components. Tackling such a task will require inte-
gration over many different experimental modalities. We have
demonstrated a method for using raw functional data in the
form of multiplexed gene expression to propose genes associated
with disease. Importantly, our results shown in figure 1 suggest
that this unbiased, data-driven approach is superior to using
highly biased, functional annotations.
Although our method may be of particular use in further

investigations of immunodeficiency and CVID in particular, it
does not need to be confined to immunology. Our approach may
work in other disease domains. Immune dysfunction is just
one example of many disease phenotypes that derive from
the interaction of many genes, proteins, and environmental
factors. Future extensions may include information on seq-
uence conservation10 or direct interactions between genes and
proteins.49
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