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Ionic liquid multistate resistive switching
characteristics in two terminal soft and flexible
discrete channels for neuromorphic computing
Muhammad Umair Khan 1,2,3, Jungmin Kim1, Mahesh Y. Chougale1, Chaudhry Muhammad Furqan4,5,
Qazi Muhammad Saqib1, Rayyan Ali Shaukat1, Nobuhiko P. Kobayashi6, Baker Mohammad2,3, Jinho Bae 1✉ and
Hoi-Sing Kwok4,5

Abstract
By exploiting ion transport phenomena in a soft and flexible discrete channel, liquid material conductance can be
controlled by using an electrical input signal, which results in analog neuromorphic behavior. This paper proposes an
ionic liquid (IL) multistate resistive switching device capable of mimicking synapse analog behavior by using IL BMIM
FeCL4 and H2O into the two ends of a discrete polydimethylsiloxane (PDMS) channel. The spike rate-dependent
plasticity (SRDP) and spike-timing-dependent plasticity (STDP) behavior are highly stable by modulating the input
signal. Furthermore, the discrete channel device presents highly durable performance under mechanical bending and
stretching. Using the obtained parameters from the proposed ionic liquid-based synaptic device, convolutional neural
network simulation runs to an image recognition task, reaching an accuracy of 84%. The bending test of a device
opens a new gateway for the future of soft and flexible brain-inspired neuromorphic computing systems for various
shaped artificial intelligence applications.

Introduction
Synapses are the most elegant memory network, in

which each neuron is polarized with ions (Ca+ or K+),
which communicates and results in a release of neuro-
transmitters1,2, as shown in Fig. 1a. Similarly, to realize
neuromorphic devices, researchers are trying to develop
next-generation computing technology by using the
nonvolatile conductance property of memristive materi-
als3 to emulate synapses4,5, as shown in Fig. 1a, which
include metal oxides6–9, 2D materials10, organic materi-
als11–14, inorganic materials15, hybrid materials16,17, and
ionic liquids (IL)18–20. Hence, liquid materials are
receiving more attention due to their high flexibility, high

ion conductivity, and easy device fabrication21. Ionic
liquids and hydrogels are widely used for the fabrication
of electronic devices22–24. Hydrogels are biocompatible,
soft, and have high ion mobility, and their properties can
be further improved by adding polyelectrolytes25–27. Ionic
liquids can be used to fabricate ionic transistors and
nonlinear ionic resistors, which can help to control the
current–voltage characterizations28,29. In such devices,
ionic mobility can be represented by the movements of
cations and anions30. Many researchers are focusing on
introducing soft and flexible resistive memory devices
using aqueous electrolytes (ionic liquids, hydrogels) as an
active material and soft and conductive materials as
electrodes30,31. Such devices are easy to fabricate with
simple fabrication technology, low cost, high flexibility,
and good ion mobility with stable performance32,33.
Liquid materials are beneficial for understanding the
device mechanism due to free ion movement (cation and
anions), which results in electrode metallization at the
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anode and cathode30,32. To understand the conduction
mechanism using ionic liquids, researchers have explored
resistive memory devices using different device structures,
materials, and aqueous electrodes, such as Ag/AgNO3/
Probe_Tip_(inert electrode)31, Ag/H2O/Au30, and Au/
Trypsin/FTO33. Liquid devices can further be used for the
biological nervous system to adopt a parallel structure for
an energy-efficient computing system18.
Signal transmission in biological neurons is defined

between presynaptic and postsynaptic neurons34, as
shown in Fig. 1a. Similarly, multistate resistive switching
neuromorphic devices can be used to mimic synaptic
function by using the discrete channel, in which the IL
will play an important role in the movement of cations
and anions18,21,32, as shown in Fig. 1a. Specifically, the
ability to emulate SRDP and STDP of the soft and flexible
discrete channel IL needs to be addressed to perform the
electronic synapses5,18. However, several critical aspects of
liquid-based soft and flexible artificial synapses with
memorable conductance tuning under bending and
stretching states are required to successfully produce a
functioning hardware neural network, which has rarely
been reported in discrete channel systems. Many new
ionic liquid materials must be introduced to fabricate
neuromorphic resistive memory devices to perform elec-
tronic synapses. This proposed work introduces a new
ionic liquid (IL) BMIM FeCl4 and H2O into a discrete
channel system and thus realizes multistate resistive

switching behavior. We then emulate the analog weight
change behavior SRDP and STDP of a synapse with our
discrete channel memristor and evaluate its performance
in a convolutional neural network pattern recognition
task based on a system-level simulation. The device pre-
sents a highly stable multistate resistive switching beha-
vior in a bending and stretching state. We are confident
that soft and flexible devices are excellent candidates for
neuromorphic computing in the field of artificial intelli-
gence and brain shape-mimicking robotics, as shown in
Fig. 1a.

Results and discussion
Physical and electrical characterization
The fabricated cylindrical channel is shown in Fig. 1b,

and the cross-sectional S.E.M. image at a magnification
level of 500 µm is shown in Fig. 1c. The channel filled with
ionic liquid (BMIM FeCl4 and H2O) and electrodes are
connected on both ends, as shown in Fig. 1d, and the
distance between both electrodes is ~0.5 mm, as shown in
Fig. 1e. The chemical characterization was performed by
using Raman spectroscopy, FTIR, and XPS. In Raman
spectroscopy, vibrational analysis of materials is analyzed
at the atomic scale. Every free-standing crystal holds its
natural vibration frequency on the lattice and foundation
of the material. The Raman spectrum of BMIM FeCl4
shows a strong peak at 330.2 cm−1, corresponding to the
symmetric Fe–Cl stretching vibration of [FeCl4]

−, as
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shown in Fig. 2a35. We performed FT-IR to investigate the
functional groups of BMIM FeCl4, as shown in Fig. 2b36.
The hydroxyl group is observed at 3590 cm−1 in the FTIR
spectra. The –C–H stretching vibrations of the imidazo-
lium cation are observed in the peak range of
3105–3200 cm−1. In addition, 3000–2800 cm−1 peaks
showing the stretching behavior of –C–H, –CH2, and
–CH3 of the alkyl groups attached to the nitrogen atom in
the imidazolium ring of the BMIM FeCl4 ionic liquid. The
vibrational peaks of the imidazole ring are observed at
1650–1500 cm−1 and 1450 cm−1. The metal chloride is
observed in the transmission bands around 3200–3100,
3000–2800, 1650–1500, 1450, and 1200–1100 cm−1. The
XPS BMIM FeCl4 was measured for the identification of
elements and their chemical bonding37,38. The C-1s peak
was adjusted at 285.00 eV for the calibration of absolute
binding energy and represents the deconvoluted spectra
of BMIM FeCl4, with core levels of Fe-2p, N-1s, Cl-2p,
and C-1s from the surface of the sample, as shown in
Fig. 2c. The dominant peaks at 284.72 eV and Lorentzian
fitted peak at 286.21 eV in the high-resolution spectra of
C1s are attributed to the bonding of C–C and C–N,
respectively, as shown in Fig. 2c. Analysis of the N-1s
core-level line signifies that the Lorentzian fitted peak at
401.23 eV relates to graphitic nitrogen, and other peaks at
401.83 eV show N–C bonding, as shown in Fig. 2d. The
high-resolution Cl-2p XPS spectrum demonstrated
doublets at 201.8 eV and 200.3 eV associated with the 2p1/2

and 2p3/2 levels due to spin–orbital coupling, which is a
typical indication of the organic C–Cl covalent bond
structure. A further subpeak at 198.43 eV demonstrates

the coupling of the 2p3/2 Cl orbitals, as shown in Fig. 2e.
The Fe-2p core-level line has an FWHM of 4.12 eV, and its
high-resolution spectra reveal two subpeaks. The domi-
nant peak at 711.3 eV confirms the bonding of Fe-cat, and
other peaks at 709.86 eV correspond to the transition of
Fe-2p3/2 spin orbitals, as shown in Fig. 2f.

Conduction mechanism
The human brain is composed of interconnected neu-

rons, where the presynaptic neuron passes information to
the postsynaptic neuron and results in the transmission of
neurotransmitters that control synaptic plasticity18,39,40.
Similarly, the multistate resistive switching characteristics
in a two-terminal discrete PDMS cylindrical channel can
also mimic biological synaptic plasticity by gradual var-
iation in the resistance state by a repeated pulse sequence
to modulate the conduction between the interface of the
IL BMIM FeCl4 and H2O. The composition of the mixture
used in the discrete channel in a volume ratio of 1:1 was
BMIM FeCl4:H2O. The ion selectivity (BMIM+, FeCl4−,
H+, OH−) provides the basic mechanism for discrete
channel devices, in which the surface charges on the
channel walls will repel ions with the same charges and
attract oppositely charged ions18. The electroosmotic flow
equation, as shown in Fig. 3a, where the counterions
attracted to the wall surface charges in H2O play the
predominant role in the transport rather than the ions in
the bulk region of IL BMIM FeCl4. The electric body force
fe
!

creates an imbalance between co-ion densities and
counterions (n+−n−), which causes a net charge in the
presence of the applied electric field ~E on an interface
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between the IL BMIM FeCl4 and H2O, as shown in Fig. 3a.
The electroosmotic flow will cause conductance tuning in
our discrete channel device to perform neuromorphic
computing. The conductance decrease can be observed
during electrical body force due to electrode metallization
on the cathode and anode, which results in oxidation and
reduction. Cu ion movement plays an important role
during electroosmotic flow, resulting in ion concentration
polarization and electrode metallization. The anode

electrode biased with a positive voltage releases Cu++ ions
in the ionic liquid, and OH− ions move toward the anode
and form CuOH2. In addition, the cathode was biased
with a negative voltage, where Cu++ ions in the aqueous
electrolyte were reduced to Cu. In this process, ion flow
increases in the beginning and saturates beyond the cri-
tical voltage point. Due to diffusion of the concentration
gradient flux, ionic flow decreases, creating a high resis-
tance state (metallization process). After changing the
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voltage polarity, Cu++ ions will move in the opposite
direction, and the conduction filament will break. This
process will repeat during each voltage sweep and results
in a conductance decrease due to electrode metallization.

Electrical characterization
The measured multistate resistive switching shown in

Fig. 3b, c shows that conductance tuning can be observed
with each voltage sweep. Hydration reactions hardly occur
between the interface of PDMS and IL BMIM FeCl4; for
this reason, the surface charges of IL BMIM FeCl4 on the
channel wall are negligible, and ionic movement is
directed in the presence of electrical body force, as shown
in Fig. 3a. Hence, we infer that a positive voltage will
result in an electrical body force that exists only within
the liquid medium and points from the H2O side of the
device to the IL BMIM FeCl4 side, as illustrated in Fig. 3a.
This force pushes the H2O against the IL BMIM FeCl4, as
shown in Fig. 3a, and conductance is tuned under con-
tinuous voltage sweeps due to the smaller resistivity of the
H2O compared to IL18, as shown in Fig. 3b, c. The above
discussion indicates that the discrete channel is equivalent
to an interfacial memristor18, in which under negative and
positive voltage region current decreases with voltage
sweeps and conductance of the device decreases Fig. 3b, c.
Thus, the electrical characteristics of the soft and flexible
discrete channel device can be related to synapses in
which the conductance decrease can be related to ion
metallization18. The measured current under a ten trian-
gular voltage sweep with a period of 1.2 seconds and
conducting current decreases with time, as shown in
Fig. 3d, e.

Spike rate-dependent plasticity
The spike rate-dependent plasticity (SRDP) of the

multistate resistive switching device in the discrete
channel was examined by varying the pulse width, pulse
amplitude, and frequencies39,41. The synaptic weight can
be modulated by the successive stimuli of externally
applied pulses of different widths of 400 μs, 600 μs, 800 μs,
and 1ms by keeping a constant pulse amplitude of 1.5 V,
as shown in Fig. 3f. The pulse width of 400 μs shows no
obvious decrease in the current (93–87 μA). The increase
in pulse width up to 1ms results in a significant change in
current from 93 to 19 μA compared to pulse widths of
400, 600, and 800 μs. Different voltage amplitudes of 1.5,
1.2, 0.9, 0.7, and 0.3 V with a pulse width of 1 ms, the
current decreases from 94 to 12 µA, as illustrated in
Fig. 3g, which corresponds to a lower electrical body force
between the interface of IL BMIM FeCl4 and H2O at a
lower voltage compared to a higher voltage. The fre-
quency test is performed using a continuous pulse train
on the optimized pulse width of 1 ms and amplitude of
1.5 V, as shown in Fig. 3h. The frequency range of 1.1 Hz

shows a very small current variation under a continuous
pulse train. On the other hand, by increasing the fre-
quency range up to 7.8 Hz, the current decreasing rate is
larger (93 to 18 μA) compared to the previous conditions
with lower frequencies (1.1, 2.4, and 4.6 Hz), as shown in
Fig. 3h. The performance of neuromorphic resistive
memory devices is discussed in Supplementary Table S1.

Memory retention
This experiment demonstrates the process of memory

retention of the multistate resistive switching device.
Initially, by applying the input pulses to set the device in
high resistance state (HRS). as shown in Fig. 3i. Then,
every 500 s, the conductivity was measured by applying
1.5 V with a pulse width of 1 ms. The current increases or
recovers by applying the pulses after every 500 s. The
neuromorphic device recovers to its initial state of low
resistance state (LRS) after 2000 s. The device recovers its
state from HRS to LRS, and this phenomenon can be
related to the forgetting of human memory42. Short-term
memory (STM) is an important feature of the human
brain, which provides information loss at a particular
time43. Similarly, it is an important feature to mimic
forgetting behavior for electronic synapse devices44, as
shown in Fig. 3i. The switching transaction by applying
input pulses to change the device state from LRS to HRS
is similar to the short-term depression (STD)45,46.

Bending and stretching
The more sophisticated pulse scheme was implemented

to mimic the SRDP, in which the current was obtained by
applying 30 consecutive pulses with an amplitude of
±1.5 V and pulse width of 1 ms with a duty cycle of 50%,
as shown in Fig. 4a. The gradual variation in the current
with pulses is similar to a variable synaptic weight in bio
synapses. In the IL BMIM, FeCl4 and H2O discrete
channel synaptic devices behave like brain neuronal
activation, in which a similar phenomenon also exists
after inverting the polarity of voltage, as shown in Fig. 4a.
The scaling possibility of the device depends on the
PDMS and ionic liquid (EMIM FeCl4), which helps to
form the device in any shape by controlling the length,
width, thickness, and flexibility. This work provides a
demonstration of the adoption of flexible discrete channel
resistive memory architectures for neuromorphic com-
puting. This experiment is based on the demonstration of
the device’s flexibility to intergrade the discrete channel
device in brain shape-mimicking robotics21. The bending
and stretchability nature of the device was due to the IL
BMIM FeCl4 and PDMS substrate. In the bending state,
the device can be bent from flat down to a 1-m bending
curvature, and in the stretching state, the device can be
stretched up to a 10% strain limit (further stretching will
affect the device performance and stability). The device
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shows stable analog resistive switching behavior and can
be used for neuromorphic computing in soft robotics in
bending and stretching states, as shown in Fig. 4b, c. The
detailed demonstration of the proposed device flexibility
can be found in supplementary Movie S1.

Convolutional neural network simulation
The proposed device was operated with neuromorphic

functionality, and the working data were obtained. To
evaluate the proposed device, the simulation parameters
for a convolutional neural network (CNN) can be easily
obtained from these data47. Using these parameters for
CNN simulation, CIFAR-10 recognition data were used,
in which the input consists of 32 × 32 × 3. The first and
second convolutional layers consist of 128 convolutional
kernels of size 3 × 3 and subsampling data with size 2 × 2
after using two convolutional layers. The third and fourth

convolutional layers consist of 256 convolutional kernels
of size 3 × 3. Again, we subsample data with size 2 × 2
after using two convolutional layers. The fifth and sixth
convolutional layers consist of 512 convolutional kernels
of size 3 × 3. The feature map was connected to 2 fully
connected layers for classification. The output layer is
composed of 10 neurons for classification. In summary, 6
convolutional layers are used to extract features, and the
last 2 fully connected layers are used to classify features47,
as shown in Fig. 4d. The maximum conductance and
minimum conductance of the device are 1.1400e−05 and
1.6385e−08, respectively, with an off/on ratio of ~5.4474,
and nonlinearity for positive and negative pulse data is
2.23 and 2.81, respectively. As shown in Fig. 4e, the
accuracy of the neural network is 84% and converges to
83% in epoch 20. A CNN is designed as shown in Fig. 4d,
using 6 convolutional layers and 2 fully connected layers.
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The input image is CIFAR-10 data that have 10 classes47.
For using CNN, our pursuit device array method is a
parallel-read-out analog eNVM-based pseudo-crossbar,
and details are discussed in Supplementary Figs. S1 and
S2. The batch size is 200, and the epoch is 100. Based on
these data, we trained kernels and synapses in all layers to
minimize the error between the real output and predicted
output47. For comparison of a real case, we also simulated
the ideal device using a linear function. As shown in
Fig. 4e, the ideal device presents a maximum accuracy of
~84.23% and converges to 84% in epoch 20. The hardware
implementation of the CNN is given in Supplementary
Figs. S1 and S2. The device shows stable cycle-to-cycle
endurance repeatability, which is one of the most
important parameters for on-chip training, as shown in
Fig. 4f.

Spike time-dependent plasticity
The spike time-dependent plasticity (STDP) rule helps

to illustrate the practicability of the neuromorphic device
for biological synapses48. We designed the pulse train,
which consists of different amplitudes (+1.2, −1.2, −1,
−0.8, −0.6, −0.3, and −0.1), to perform antisymmetric
Hebbian as given in Fig. 4g, and a pulse scheme (−1.2, 1.2,
1, 0.8, 0.6, 0.3, and 0.1) was used to perform antisym-
metric anti-Hebbian as given in Fig. 4h, where the pulse
width is 600 µs and pulse off internal is 1 ms. The pre- and
postsynaptic pulses combined to form a resulting signal
more than the threshold voltage, which results in device
conductance weakening or strengthening with the
respective relative time interval Δt, where the device
conductance (ΔW) modulation is a function of the time
interval (Δt) between pre- and postsynaptic spiking.
During Δt > 0, prespike proceeds postspike, which results
in potentiation, and conversely, for Δt < 0, synaptic weight
decreases (depression) due to postspike proceeds pre-
spike49,50. The asymmetric Hebbian rule and the anti-
symmetric anti-Hebbian rule were performed using a
flexible discrete channel resistive memory device, showing
conductance change as a function of time interval Δt
between the pre- and postspiking pulse51. The STDP
behavior of discrete channel resistive memory devices
using different time intervals shows similar behavior as
biological synapses51.

Conclusion
In summary, we have addressed the key challenges in

the use of soft and flexible multistate resistive switching in
discrete channel device as a synapse by introducing a
viscous IL BMIM FeCl4 and H2O for mimicking various
shapes for the artificial intelligent neuromorphic system.
The working mechanism was based on the ion 11 con-
centration polarization within the channel, which can be
modulated through the electrical input signal. In this way,

memorable conductance could be tuned by changing
pulse width, frequency, and pulse amplitude. The SRDP
and STDP behavior shows high stability to perform
electronic synapses. The analog weight change behavior
demonstrated a stable endurance performance with our
discrete channel memristor. In the flexibility test, highly
stable performance was archived under mechanical
deformation. The proposed discrete channel synapse
operating performance was evaluated using CIFAR-10
image recognition for system-level CNN simulation with
an accuracy of 84%. We are sure that the paper gives
insight for highly stable neuromorphic resistive memory
device for wearable electronic systems.

Materials and methods
Device fabrication
FeCl3 and BMIM Cl were purchased from Sigma-

Aldrich. Two grams of BMIM Cl was dried under vacuum
in a round bottom flask placed in an oil bath at 120 °C.
FeCl3 (1.86 g) was dried at 120 °C, and added to a flask
containing BMIM Cl. The solution was placed again in an
oil bath containing BMIM Cl and FeCl3 with a molar ratio
of 1:1 and stirred under vacuum for 24 h. PDMS was
purchased from Dow Corning. The curing agent and
PDMS were mixed in 1:10, and the mold was prepared by
placing a thin wire with a thickness of 1.5 mm and cured
at 80 °C for 4 h, as shown in Fig. 1b. The length and width
of the PDMS mold are 15 and 5mm, respectively, as
shown in Fig. 1b. A PDMS channel with a hole size of
1.5 mm was used to hold the IL, as shown in Fig. 1c. In the
final step, IL BMIM FeCl4 and H2O were filled in a PDMS
mold using a syringe with a volume ratio of 1:1 and two
electrodes as anode and cathode used as contacts, and the
liquid stopper was used on both sides to prevent the
leakage of IL, as shown in Fig. 1d. The distance between
both electrodes was kept at 0.5 mm to perform device
characterization, as shown in Fig. 1e.

Device characterization
The neuromorphic device was analyzed with the KEY-

SIGHT B2902A source measuring unit. The XPS spec-
trum was measured by a PHI 5600 (Physical Electronics)
with an Al X-ray monochromator, which uses photo-
electrons excited by X-ray emission for surface char-
acterization up to a depth of 2–5 nm. FTIR was performed
using a Bruker I.F.S. The Raman spectrum was measured
by a HORIBA LabRAM HR confocal spectrometer
equipped with an 800-nm-long monochromator. The He-
Cd laser was shined on the surface of the sample with an
excitation wavelength of 325 nm.
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