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Abstract

Model-Based Control for Complex Robotics Tasks

by

Tony Zheng

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

In many industries, such as manufacturing and logistics, where the setting can be highly
structured or simplified, robotic manipulators have been shown to improve safety, efficiency,
and productivity through the automation of dangerous and repetitive tasks. As we continue
to explore the use of robots in more dynamic scenarios with advanced tools or uncertain
environments, reliance only on precise position control is no longer viable. Complex inter-
actions require the robot to either plan in advance or adapt reactively to achieve success.
Model-based approaches allow robots to be controlled in a constrained manner while pre-
dicting how they affect the world around them without requiring large datasets which may
be difficult to obtain due to time or safety reasons.

This dissertation presents methods of modeling, planning and control for robotic manip-
ulators to perform complex tasks while using limited data to improve performance. We
examine three different applications which have their own unique set of challenges including
hybrid dynamics, noisy measurements, human-robot interactions with partial knowledge on
obstacles, and utilizing tools that rapidly degrade with usage. Our approaches are tested in
simulation and validated in hardware experiments.
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Chapter 1

Introduction

1.1 Background

Robotic manipulators have significantly impacted society through the automation of repeti-
tive and dangerous tasks in many industries such as manufacturing, agriculture, and logistics
[1, 2, 3, 4]. Especially in sectors where there may be labor shortages [5, 6, 7], robotics can
provide a safe and effective alternative. Expanding the capabilities of robots means increas-
ing the complexity of their interactions with the surrounding environment which will require
improvements in perception, manipulation, and planning.

As computing resources and robotic hardware continue to advance, much research has
been focused on smarter planning algorithms and controllers. Model-based approaches have
shown great success in their deployment on systems for tasks such as autonomous racing [8]
or robotic locomotion and manipulation [9, 10]. Depending the type of task, there are a wide
range of challenges arising from contact dynamics, safety concerns, hardware limitations, and
more.

Take for example, the scenario of a robotic arm used for food preparation in an industrial
kitchen [11]. If the goal is to automate the process of flipping burger patties on top of a
griddle and then place them onto a bun when ready, the robot must first identify where
the patty is relative to itself. This may require some sort of visual perception from sensors
such as cameras or LIDAR. Even after the robot knows where the food is, it must plan
how to move the spatula under the patty and flip without breaking anything. One solution
may be to preprogram the movements of the end-effector such that it always goes to the
same locations on the griddle and executes a fixed flipping maneuver that is designed through
manual experiments similar to how manipulators are used for automotive manufacturing [12].
However, this means that the patty type, size, and placement should be close to what they
were during the design process and any deviations may cause errors when handling. Closed-
loop control could alleviate these errors but this is much more challenging control problem.
When the robot is planning how to flip the burger, it must consider the hybrid dynamics of
free movement in the air and the change arising due to contact with the griddle. The robot
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must also be aware of surrounding obstacles to avoid external collisions. Depending on the
size and weight, the robot may need to vary the forces applied to flip the patty.

One approach may be to use a purely data-driven method such as deep learning where
a large number of experiments are conducted in order to obtain a dataset for training the
patty flipping policy. However, a drawback is that it may be time-consuming or pose safety
risks to obtain enough data through real trials. It could be trained in simulation first and
then deployed in real hardware [13] but for tasks that require finer precision, there may
end up being too large of a sim-to-real gap. Additionally, the lack of constraints can cause
unsafe behavior when there are obstacles nearby. This is where model-based approaches
can leverage their advantages. By utilizing expert knowledge to craft dynamics models, the
robot can make predictions on how its behavior affects the environment. In the formulation
of optimization problems, the user can specify a cost to minimize such as keeping the robot
arm lower while conserving energy and also provide constraints such as avoiding the table.
In this dissertation, we present model-based approaches for robot manipulators to perform
various complex robotics tasks.

1.2 Outline and Contributions

This dissertation is organized as follows.
In Chapter 2, we present a model-based mixed open-loop and closed-loop control strategy

for a robotic arm to play the cup-and-ball game. This is a challenging task since the robot
must get the ball into the cup while dealing with the hybrid dynamics of the ball attached
to the cup by a string and using noisy camera observations to estimate the ball position.
First, we use a cart with inverted pendulum model to plan an open-loop trajectory which
can launch the ball into the air above the cup. Then, we switch to an online closed-loop
controller to catch the ball while iteratively collecting data to estimate the support of the
camera noise and improve the controller performance.

In Chapter 3, we investigate the task of a robot transporting an object with a human to
a desired location. The robot and human each have partial information of the environment
and obstacles around but must collaborate on their shared goal. Safety is critical as the
robot should not harm the human or itself during this task. We propose a Model Predictive
Control (MPC) based strategy with a trust variable which allows the human and robot to
dynamically switch between leader and follower roles. The robot will infer the location of
obstacles known only to the human via force feedback and adjust its actions.

In Chapter 4, we propose a data-driven optimization approach for a robot to deposit
material using a degradable tool. Since the tool wears away as it is used, the tip surface
shape changes and this may lead to model mismatch. We present a model for the tip which
accounts for degradation and uses visual feedback to iteratively update parameters. The new
tip shape can be leveraged to achieve a desired deposition profile even with additional usage,
thus prolonging the tool’s lifespan and saving material costs. Chapter 5 explores the case
where the tip wears away until the minimum deposition width for a fixed tilt angle exceeds
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the desired width. We formulate a new model for the tool tip and present an algorithm
which solves an optimization problem to determine how the robot should tilt the tool in
order to decrease the deposition width again. We show an improvement of over 80% in
width-tracking through experimental trials using a UR5e robot.

1.3 List of Publications

The results presented in this dissertation have appeared in a number of publications by the
author. In particular:

• Chapter 2 is based on:

– T. Zheng*, M Bujarbaruah*, A. Shetty, M. Sehr, and F. Borrelli, “Learning to
Play Cup-and-Ball with Noisy Camera Observations”. In: IEEE International
Conference on Automation Science and Engineering (CASE). Aug. 2020, pp.
372–377.

• Chapter 3 is based on:

– T. Zheng*, M. Bujarbaruah*, Y. R. Stürz, and F. Borrelli. “Safe Human-Robot
Collaborative Transportation via Trust-Driven Role Adaptation”. In: 2023 Amer-
ican Control Conference (ACC). 2023, pp. 22–27.

• Chapter 4 is based on:

– T. Zheng, M. Bujarbaruah, and F. Borrelli. “Data-Driven Optimization for De-
position with Degradable Tools”. In: 22nd IFAC World Congress. Vol. 56. 2.
2023, pp. 4375–4380.
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Chapter 2

Learning to Play Cup-and-Ball

In this chapter, we present a learning model based control strategy for the cup-and-ball
game, where a Universal Robots UR5e manipulator arm learns to catch a ball in one of the
cups on a Kendama. Our control problem is divided into two sub-tasks, namely (i) swinging
the ball up in a constrained motion, and (ii) catching the free-falling ball. The swing-up
trajectory is computed offline, and applied in open-loop to the arm. Subsequently, a convex
optimization problem is solved online during the ball’s free-fall to control the manipulator
and catch the ball. The controller utilizes noisy position feedback of the ball from an Intel
RealSense D435 depth camera. We propose a novel iterative framework, where data is used
to learn the support of the camera noise distribution iteratively in order to update the
control policy. The probability of a catch with a fixed policy is computed empirically with
a user specified number of roll-outs. Our design guarantees that probability of the catch
increases in the limit, as the learned support nears the true support of the camera noise
distribution. High-fidelity Mujoco simulations and preliminary experimental results support
our theoretical analysis.

The results presented in this chapter have also appeared in:

• T. Zheng*, M Bujarbaruah*, A. Shetty, M. Sehr, and F. Borrelli, “Learning to Play
Cup-and-Ball with Noisy Camera Observations”. In: IEEE International Conference
on Automation Science and Engineering (CASE). Aug. 2020, pp. 372–377.

2.1 Introduction

Kendama is the Japanese version of the classic cup-and-ball game, which consists of a handle,
a pair of cups, and a ball, which are all connected by a string. Playing the cup-and-ball game
is a task commonly considered in robotics research [14, 15, 16, 17, 18, 19, 20, 21], where
approaches ranging from classical PD control to reinforcement learning have been utilized to
solve the task. The model-based approaches among the above typically decompose the task
into two sub-tasks, namely (i) performing a swing-up of the ball when the string is taut, and
(ii) catching the ball during its free-fall. The models of the joint system considered for both
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sub-tasks are different, thus resulting in hybrid control design for the robotic manipulator.
The key drawbacks in such existing approaches are namely the need for expert demonstra-
tions, and the lack of guarantees of operating constraint satisfaction and obtaining catches
under modeling uncertainty and sensing errors.

In this chapter, we propose a fully physics driven model-based hybrid approach for con-
trol design. The controller guarantees a constrained motion, while accounting for our best
estimates of uncertainty in the system model and sensing errors. We use a mixed open-loop
and closed-loop control design, motivated by works such as [22, 23, 24]. First, the swing-up
phase is designed offline and then an open-loop policy is applied to the robotic manipu-
lator. We use a cart with inverted pendulum model of the cup-and-ball joint system for
swing-up policy design. For this phase, as we solve a constrained finite horizon non-convex
optimization problem, we only consider a nominal disturbance-free model of the system. The
swing-up trajectory is thus designed to ensure that the predicted difference in positions of
the ball and the cup vanishes at a future time once the nominal terminal swing-up state is
reached and the cup is held fixed.

After a swing-up, we switch to online closed-loop control synthesis once the ball starts
its free-fall. We consider presence of only a camera that takes noisy measurements of the
ball’s position at every time step. We design the feedback controller in the manipulator’s
end-effector [25] space. This results in a Linear Time Invariant (LTI) model for the evolution
of the difference between the cup and the ball’s positions, thus allowing us to solve convex
optimization problems online for control synthesis. In order to guarantee a catch by mini-
mizing the position difference, it is also crucial to ensure that during the free-fall of the ball,
the control actions to the manipulator do not yield a configuration where the string is taut,
despite uncertainty in the model and noise in camera position measurements. Uncertainty
in the LTI model primarily arises from low level controller mismatches in the manipula-
tor hardware, and an upper bound of this uncertainty is assumed known. Bounds on the
measurement noise induced by the camera are assumed unknown. This chapter presents
a method to increase the probability of a catch, as the estimate of the support of camera
measurement noise distribution is updated. Our contributions are summarized as:

• Offline, before the feedback control of the manipulator, we design a swing-up trajectory
for the nominal cup-and-ball system that plans the motion of the ball to a state from
which a catch control is initiated.

• Using the notion of Confidence Support from [26] which is guaranteed to contain the
true support of the camera measurement noise with a specified probability, we use
online robust feedback control for enforcing bounds on the probability of failed catches.

• With high-fidelity Mujoco simulations and preliminary physical experiments we demon-
strate that the manipulator gets better at catching the ball as the support of the camera
measurement noise is learned and as the Confidence Support and closed-loop policy
are updated.
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2.2 Related Work

In this section we review existing works in literature that solve the cup-and-ball problem.
The literature can broadly be divided into two parts based on open-loop or closed-loop
approach to controller design.

Offline Trajectory Planning

Miyamoto et al. [16] used successful expert demonstrations to extract way-points and design
a trajectory for the end-effector. This trajectory is executed in open-loop and upon observing
the performance, the way-points are accordingly updated offline to obtain a new trajectory.
Sakeguchi and Miyazki [17] developed a method for parameterizing an elliptic trajectory for
a two degree of freedom arm to play the Kendama game. The elliptic trajectory has spatial
properties which dictate the catch position and temporal properties that influence how much
dynamic energy is transferred to the ball. Once a task is executed, the parameters of the
elliptic trajectory are updated based on the deviation of the ball’s predicted and actual posi-
tions. Furthermore, Vollmer and Hemion [27] designed motion primitives for the manipulator
from expert demonstrations which are then executed in open-loop. The performance of an
executed trajectory is rated a-posteriori by an expert, and then the primitive is updated.

The major drawback in the aforementioned approaches is that they do not use any
feedback of the position of the ball and the manipulator during task execution. Thus,
presence of any uncertainty in the considered models is ignored.

Online Trajectory Planning

Nemec et al. [28] proposed an approach based on a combination of reinforcement learning and
imitation learning. The swing-up trajectory is obtained using their State–Action–Reward–
State–Action (SARSA) reinforcement learning algorithm with a goal of swinging the ball to
a desired angle and angular velocity. The catch is then obtained with a closed-loop policy
which is a function of the ball’s measured position. This policy imitates an expert. Namiki
and Itoi [18] designed only the catching controller assuming a free-falling ball. Given the
position and velocity of the ball, the desired path of the manipulator position is planned
at every time step using polynomial splines. Schwab et al. [19] presented a reinforcement
learning method using purely vision (raw images, pixels, and features) information of the
ball. Kober and Peters [15] also presented a reinforcement learning method which uses the
ball’s position information from a Vicon [29] system. Their algorithm is warm-started with
expert demonstrations.

The key drawbacks in such approaches are (i) the need for expert demonstrations, and
(ii) no guarantees of operating constraint satisfaction and obtaining catches under modeling
uncertainty and sensing errors.

The novelties that our approach brings over the works in Section 2.2 and Section 2.2 are
primarily:
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• We propose a fully physics driven model-based hybrid approach for control design. The
controller guarantees a constrained motion, while accounting for our best estimates of
uncertainty in the system model and noise in the camera measurements.

• Our framework allows for failures of the catching task as we repeat. Using data, we
update our estimate of the camera noise iteratively. The feedback control policy is
thus updated, in order to improve the probability of catches during experiments.

2.3 Generating A Swing-up Trajectory

The swing-up phase begins with the arm in the home position such that the ball is hanging
down at an angle of 0 radians from the vertical plumb line, as seen in Fig. 2.1.

Figure 2.1: Manipulator with Kendama along with coordinate frame.

System Modeling

We model the system such that the cup is a planar cart with point-mass mc and the ball
acts as a rigid pendulum (mass mb and radius r) attached to the cup. Assuming planar xz-
motion of the ball, we derive the Lagrange equations of motion [25] with three generalized
coordinates q(t) = (xcup(t), zcup(t), ϕ(t)), which denote the x position of the cup, z position
of the cup, and swing angle of the ball with respect to the plumb line of the cup respectively
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at any time t ≥ 0. We reduce the equations to the general nominal form

M(q(t))q̈(t) + C(q(t), ˙q(t)) ˙q(t) +G(q(t)) = F (t), ∀t ≥ 0, (2.1)

where M(q(t)) is the inertia matrix, C(q(t), q̇(t)) is the Coriolis matrix, G(q(t)) is the
gravity matrix, and F (t) is the external input force at time t. Here q̇(t) denotes the velocity
of the cup and the angular velocity of the ball, and q̈(t) denotes the acceleration of the cup
and the angular acceleration of the ball at any time t ≥ 0. System (2.1) in state-space form
is

˙̄x(t) = f(x̄(t), F (t)), (2.2)

where nominal state x̄(t) = [q⊤(t), q̇⊤(t)]⊤ ∈ R6 for all time t ≥ 0.

Optimization Problem

We discretize system (2.2) with one step Euler discretization and a sampling time of Ts =
100Hz. The discrete time system can then be written as

x̄i+1 = x̄i + Tsf(x̄i, Fi) = fd(x̄i, Fi), ∀i ∈ {0, 1, . . . },
where ai denotes the sampled time version of continuous variable a(t). To generate a force
input sequence for the swing-up, we solve a constrained optimal control problem over a finite
planning horizon of length N , given by:

min
F0,...,FN−1

N−1∑
i=0

x̄⊤i Qsx̄i + F⊤
i RsFi

s.t., x̄i+1 = fd(x̄i, Fi),
x̄i ∈ X , Fi ∈ F ,
x̄0 = xinit,
x̄N = xf , i = 0, 1, . . . , (N − 1),

(2.3)

where weight matrices Qs, Rs ≻ 0, and constraint set X is chosen such that the ball remains
within the reach of the UR5e manipulator. Initial state xinit is known in the configuration as
shown in Fig. 2.1. Due to the nonlinear dynamics fd(·, ·), the optimization problem (2.3) is
non-convex. Moreover, typically a long horizon length N is required. Hence, we solve (2.3)
offline and apply the computed input sequence F⋆ = [F ⋆

0 , F
⋆
1 , . . . , F

⋆
N−1] in open-loop to the

manipulator.

Terminal Conditions of the Swing-Up

Predicted Behaviour

The nominal terminal state xf in (2.3) is selected such that the ball is swinging to ϕ = 2.44
rad with an angular velocity of ϕ̇ = 4.18 rad/s. At these values, the string is calculated to
lose tension and the ball begins free-fall. The chosen value of xf ensures that the predicted
difference in positions of the ball and the cup (both modeled as point masses) vanishes at a
future time, if the cup were held fixed and the ball’s motion is predicted under free-fall.
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Actual Behaviour

When considering the nominal system (2.1), we have ignored the presence of uncertainties.
Such uncertainties may arise due to our simplifying assumptions such as: (i) the string is
mass-less so the swing angle is only affected by the ball and cup masses, (ii) there are no
frictional and aerodynamic drag forces to hinder the conservation of kinetic and potential
energy of the system, (iii) the cup mass is decoupled from the mass of the manipulator,
and (iv) there is no mismatch of control commands from the low level controller of the
manipulator and F . Due to such uncertainties, realized states xi for i ∈ {0, 1, . . . , N} do not
exactly match their nominal counterparts.

A set of 100 measured roll-out trajectories of the ball after the swing-up are shown in
Fig. 2.2 for a fixed open-loop input sequence F⋆. We see from Fig. 2.2 that after N time
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Ball Trajectory

End-effector Trajectory in Swing-Up

Figure 2.2: Start of catch phase (i.e., i = N) for 100 trajectories. Red line indicates the
trajectory of the cup/end-effector during swing-up. Blue dots indicate ball positions during
swing-up and pink dots indicate a position after catch phase is started. Closed-loop control
begins when the relative position is in Etr.

steps of swing-up, the ball and the cup arrive at positions where their relative position is in
a set Etr. A key assumption of well posedness will be imposed on this set in Section 2.4 in
order for our subsequent feedback control policy to deliver a catch in experiments.
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2.4 Designing Feedback Policy In Catch Phase

For the catch phase we start the time index t = 0 where the swing up ends, i.e., i = N . There
are two main challenges during the design of the feedback controller, namely (i) position
measurements of the ball from a noisy camera, and (ii) presence of mismatch between desired
control actions and corresponding low level controller commands.

Assumption 2.1 We assume that the UR5e end-effector gives an accurate estimate of its
own position. The assumption is based on precision ranges provided in [30].

Problem Formulation

During free-fall of the ball we design our feedback controller for the manipulator position
only in end-effector space, with desired velocity of the end-effector as our control input. The
joint ball and end-effector system in one trial can be modeled as a single integrator as:

et+1 = Aet +But + wt(et, ut), (2.4a)

yt = et + vt, (2.4b)

with error states and inputs (i.e., relative position and velocity)

et =

[
xcupt − xballt

zcupt − zballt

]
, ut =

[
vcupx,t − vballx,t

vcupz,t − vballz,t

]
,

where wt(et, ut) ∈ Wm ⊂ R2, is a bounded uncertainty which arises due to the discrepancy
between (i) the predicted and the actual velocity of the ball at any given time step1, and
(ii) the commanded and the realized velocities of the end-effector, primarily due to the low
level controller delays and limitations. System dynamics matrices A = I2 and B = dt · I2
are known, where Id denotes the identity matrix of size d, and sampling time dt = 0.01
second. We assume an outer approximation W to the set Wm, i.e., Wm ⊆ W is known,
and is a polytope. We consider noisy measurements of states due to the noise in camera

position measurements, corrupted by vt
i.i.d.∼ P , with Supp(P) = V, where Supp(·) denotes

the support of a distribution. We assume V is not exactly known.
Using the set Etr (see Fig. 2.2), a set E containing the origin where the string is not taut

and (2.4) is valid can then be chosen. We choose:

γ(i) = ∥vert(i)(Etr)∥∞, i ∈ {1, 2},
E = {x : −γ ≤ x ≤ γ}, γ = [γ(1), γ(2)]⊤, (2.5)

where vert(i)(A) denotes ith row of all the vertices of the polytope A, and ∥ · ∥ denotes the
vector norm. This ensures

e0 ∈ Etr =⇒ e0 ∈ E . (2.6)

1we use the camera position information for ball’s velocity estimation
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As (2.6) holds true, we impose state and input constraints for all time steps t ≥ 0 as
given by:

et ∈ E , ut ∈ U , (2.7)

where set U is a polytope. We formulate the following finite horizon robust optimal control
problem for feedback control design:

min
u0,u1(·),...

T−1∑
t=0

ℓ (ēt, ut (ēt)) +Q(ēT )

s.t., et+1 = Aet +But(et) + wt(et, ut),
ēt+1 = Aēt +But(ēt),
yt = et + vt,

et ∈ E , ut(et) ∈ U ,
∀wt(et, ut) ∈W, ∀vt ∈ V,
e0 ∈ E , t = 0, 1, . . . , (T − 1),

(2.8)

where et, ut and wt(et, ut) denote the realized system state, control input and model uncer-
tainty at time step t respectively, and (ēt, ut(ēt)) denote the nominal state and corresponding
nominal input. Notice that (2.8) minimizes the nominal cost over a task duration of length
T decided by the user, having considered the safety restrictions during an experiment. The
cost comprises of the positive definite stage cost ℓ(·, ·), and the terminal cost Q(·). We point
out that, as system (2.4) is uncertain, the optimal control problem (2.8) consists of finding
[u0, u1(·), u2(·), . . .], where ut : R2 ∋ xt 7→ ut = ut(et) ∈ R2 are state feedback policies.

The main challenge in solving problem (2.8) is that it is difficult to obtain the camera
measurement noise distribution support V. Resorting to worst-case a-priori set estimates
of V as in [31, 32] might result in loss of feasibility of (2.8). To avoid this, we use a data-
driven estimate of V denoted by V̂(n), where n is the number of samples of noise vt used to
construct the set. Details of how we generate V̂(n) and deal with noisy output feedback can
be found in [33]. We then solve the following tractable finite horizon constrained optimal
control problem at any time step t ≥ 0 as an approximation to (2.8):

V ⋆
t→T (Ē(n), Ū(n),Rcon(n), êt) :=

min
ēt,ūt,...,ūT−1

T−1∑
k=t

ℓ(ēk, ūk) +Q(ēT )

s.t., ēk+1 = Aēk +Būk,

uk = ūk +K(êk − ēk),
ēk ∈ Ē(n), ūk ∈ Ū(n),
êt − ēt ∈ Rcon(n),

ēT = 0,

∀k ∈ {t, t+ 1, . . . , (T − 1)},

(2.9)
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where êt is the observed state at time step t, {ēk, ūk} denote the nominal state and corre-
sponding input respectively predicted at time step k ≥ t, K is a state feedback policy gain
matrix, and Rcon(n) is our best estimate of the minimal Robust Positive Invariant set Rcon

for the control error.

Obtaining Catches

Constructing V̂(n) to ensure the probability of violating the state constraints remains under
a specific threshold is still not a sufficient condition to obtain a catch in an experiment with
specified probability β, as our model (2.4) does not account for additional factors such as
object dimensions, presence of contact forces, etc.

To that regard, we introduce the notion of a successful catch, which is defined as the
ball successfully ending up inside the cup at the end of a roll-out. Thus, a successful catch
accounts for the dimensions of the ball and the cup, and the presence of contact forces.

Assumption 2.2 (Existence of a Successful Catch) We assume that given an initial
state e0 ∈ Etr, an input policy obtained by solving (2.9) can yield a successful catch, if true
measurement noise support V were known exactly.

Remark 2.1 From [26] we know that as long as confidence intervals for parameters (µ, σ)
in noise distribution converge, V̂(n)→ V as n→∞. So, if sample size n is increased itera-
tively approaching n→∞, obtaining a successful catch guaranteed owing to Assumption 2.2.
However if a precise positioning system like Vicon is used to collect the noise samples, due
to limited access to such environments, collecting more samples and increasing n could be
expensive. We therefore stick to our method of constructing V̂(n) for a fixed n, and we at-
tempt successful catches with multiple roll-outs by solving (2.9). For improving the empirical
probability of successful catches in these roll-outs, one may then increase n and thus update
the control policy. We demonstrate this in Section 2.5.

2.5 Experimental Results

We present our preliminary experimental findings in this section. For our experiments, the
original Kendama handle was modified to be attached to a 3D printed mount on the UR5e
end-effector, as shown in Fig. 2.1. The cup used to catch the ball is unmodified which makes
this task much more challenging as the ball can easily bounce out. A single Intel RealSense
D435 depth camera running at 60 FPS was used to estimate the position and velocity of
the ball as shown in 2.3. For these experiments, a red color filter was applied to find the
ball within the camera image. The depth camera provides 3D coordinates of the ball which
was calibrated with a sequence of movements of the end-effector while the ball was sitting in
the cup. This was used to determine the ball’s position in the UR5e’s base frame. Between
experiments, a resetting maneuver was executed in order to untangle the string and ensure
that the ball was at rest in the air.



CHAPTER 2. LEARNING TO PLAY CUP-AND-BALL 13

Figure 2.3: Video feed from the depth camera during the catch phase of the experiment.

Control Design in the Catch Phase

Once the swing-up controller is designed as per Section 2.3 and an open-loop swing-up
control sequence is applied to the manipulator, we design the feedback controller by finding
approximate solutions to the following problem:

min
u0,u1(·),...

T−1∑
t=0

500 ∥ēt∥22 + 0.4 ∥ut(ēt)∥22

s.t.,
et+1 = Aet +But(et),
ēt+1 = Aēt +But(ēt),
yt = et + vt,

et ∈ E ,
[
−8m/s
−8m/s

]
≤ ut(et) ≤

[
8m/s
8m/s

]
,

∀vt ∈ V,
t = 0, 1, . . . , (T − 1),

(2.10)

where set Etr = [−0.316m, 0.349m]× [−0.2095m, 0.2457m], shown in Fig. 2.2. Note that for
this specific scenario the presence of model uncertainty can be ignored. Set V is unknown,
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and we consider that the optimization problem is well posed. System matrices A,B are from
Section 2.4. We find solutions to (2.10) for T = 50 steps, i.e., 0.5 seconds.

Learning to Catch

We conduct 50 roll-outs of the catching task by solving (2.9), having formed V̂(n), with
n = 100 and then iteratively increasing to n = 2000. Sets V̂(n) are formed using [26].
Fig. 2.4 shows the percentage of roll-outs conducted for each iteration (i.e., for each value of
n), that resulted in the ball successfully striking the center of the cup.
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Figure 2.4: Percentage of times the ball hitting the cup center among all roll-outs vs sample
size n.

The percentage increases from 41.46% to 61.62%. Furthermore, another crucial quantity
at the time of impact is the commanded relative velocity in z-direction, a lower value of
which indicates an increased likelihood of the ball not bouncing out. The average value and
the standard deviation of of (u⋆Tim−1)

∗m̃
z for m̃ ∈ {1, 2, . . . , 50} is shown in Fig. 2.5, where

(·)∗m̃ denotes the m̃th roll-out and Tim ≤ T denotes the time of impact. As seen in Fig. 2.5,
the mean of the relative velocity at impact lowers from 0.38 m/s to −0.06 m/s. This together
with Fig. 2.4 indicates a possibility of increasing successful catch counts as n is increased.
Something we observed from unsuccessful trials is that the ball often bounced out due to the
configuration of the cup itself being a shallow groove which only cradles the bottom of the
ball. Contact dynamics were not modeled in our control formulation and is a likely source
of error.
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Figure 2.5: One standard deviation interval around the mean (circle) of z-relative velocity
at impact, i.e., [u⋆Tim−1]z vs sample size n.

Increasing Successful Catches

In order to prove that the trend shown in Fig. 2.4 and Fig. 2.5 results in an increasing number
of successful catches, we resort to exhaustive Mujoco [34, 35] simulations. The task duration
in this case is T = 25 steps. The trend in the percentage of successful catches with 1000
roll-outs corresponding to each n, varying from n = 50 to n = 2000, is shown in Fig. 2.6.
For n = 50, 46.9% of the roll-outs result in a successful catch. The number increases to
68.3% for n = 2000. This verifies that the preliminary experimental results from Fig. 2.4
and Fig. 2.5 would very likely result in a similar trend as in Fig. 2.6. Thus we prove that
our proposed approach enables successful learning of the kendama ball catching task.

2.6 Conclusions

We proposed a model based control strategy for the classic cup-and-ball game. The controller
utilized noisy position measurements of the ball from a camera, and the support of this noise
distribution was iteratively learned from data. Thus, the closed-loop control policy iteratively
updates. We proved that the probability of a catch increases in the limit, as the learned
support nears the true support of the camera noise distribution. Preliminary experimental
results and high-fidelity simulations support our analysis.
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Chapter 3

Human-Robot Collaborative
Transportation

We study a human-robot collaborative transportation task in presence of obstacles. The task
for each agent is to carry a rigid object to a common target position, while safely avoiding
obstacles and satisfying the compliance and actuation constraints of the other agent. Human
and robot do not share the local view of the environment. The human either assists the
robot when they deem the robot actions safe based on their perception of the environment,
or actively leads the task.

Using estimated human inputs, the robot plans a trajectory for the transported object by
solving a constrained finite time optimal control problem. Sensors on the robot measure the
inputs applied by the human. The robot then appropriately applies a weighted combination
of the human’s applied and its own planned inputs, where the weights are chosen based on the
robot’s trust value on its estimates of the human’s inputs. This allows for a dynamic leader-
follower role adaptation of the robot throughout the task. Furthermore, under a low value
of trust, if the robot approaches any obstacle potentially unknown to the human, it triggers
a safe stopping policy, maintaining safety of the system and signaling a required change in
the human’s intent. The robot also uses the sensor feedback to infer obstacles known only
by the human and updates its planner to better align with the human’s movements. With
experimental results, we demonstrate that our proposed approach increases the success rate
of collision-free trials while decreasing the effort required by the human to intervene.

The results presented in this chapter have also appeared in:

• T. Zheng*, M. Bujarbaruah*, Y. R. Stürz, and F. Borrelli. “Safe Human-Robot Col-
laborative Transportation via Trust-Driven Role Adaptation”. In: 2023 American
Control Conference (ACC). 2023, pp. 22–27.
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3.1 Introduction

Human robot collaborative tasks have been a focus of major research work in robotics [36, 37].
For such tasks, roles of the agents are important, especially so in collaborative transportation.
This is due to the fact that the transported object poses a compliance constraint that must
be satisfied. The robot acts as a follower or helper to the human in [38, 39, 40]. In these
works, the human knows the full environment and is the lead planner in the task. The robot
follows the human by minimizing its felt forces and torques, and has no planning algorithms
of its own. However, such fixed role assignment can be debilitating in situations when both
agents have partial environment information, or if the human wants to lower their efforts in
the task. In [41], they study how intelligent and safe human collaborators perceive a robot
to be when the robot assumes a leader, follower, or non-collaborative role in a shared control
ball-tilt maze game. Shared and/or switching roles can be used to produce better teamwork
especially in situations where one agent may have a more advantageous position or greater
access to local information. A shared role or blended policy often utilizes an input-scaling
parameter that is based on a heuristic such as the robot’s confidence in its prediction of the
human partner’s goals [42] or it could simply be time-varying [43]. Dynamic role switching
using force sensor data in collaborative manipulation tasks between humans and robots have
been studied in [44, 45, 46]. In such switching role assignments, it is essential for the robot
to make predictions of the human’s intent from the human’s observed behavior and then
adapt its policy accordingly during the task. Models for human intention can be estimated
in a variety of ways including learning from motion data [47, 48] or force interactions [49,
50]. These models inherently contain some information about the human’s reactions towards
obstacles in the environment. Obstacle avoidance in human-robot collaborative tasks where
the obstacle positions were estimated from depth camera images was studied in [51, 52].
However, to the best of our knowledge, inferring the positions of unknown obstacles in
the environment from haptic feedback data and then explicitly incorporating the obstacle
avoidance constraints in the collaborative robot’s planning problem have not been addressed.

In this chapter, we propose a Model Predictive Control (MPC) based strategy for a
human-robot joint transportation task, as shown in Fig. 4.1. The environment has obsta-
cles partially known to each agent. The human’s policy is allowed to be a combination of
compliance and leadership, based on the human’s intent during the task. The robot only
estimates the compliant human behavior, and operates on a policy based on a computed
trust value and also its proximity to obstacles. This allows for a dynamic leader-follower
role of the robot throughout the task, depending on the learned value of trust from applied
human inputs. The trust is low if the actual human inputs differ highly from the robot’s es-
timates, and vice versa. The robot also infers the locations of obstacles only known prior by
the human through force feedback to update its planner throughout the task. Our proposed
framework can be summarized as:

• We design a two mode policy for the robot. The first mode is the nominal operation
mode, where the robot solves an MPC problem for its control synthesis. The cost
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Figure 3.1: The considered experiment setup.

function in the MPC optimization problem adapts based on the corrective inputs of
the human to the robot’s inputs and inferred obstacles zones that the human may be
avoiding. This enables the robot to plan trajectories that adapt with the human’s
behavior.

• The control applied by the robot in the first mode is a function of the trust value, similar
to [42] and [45]. That is, after solving the MPC problem, the robot appropriately
applies a weighted combination of the human’s and its own planned actions, where the
weights are adapted based on the deviation between robot’s estimated and the actual
human inputs.

• The second mode of the robot’s policy is a safe stopping backup, which is triggered
when the robot nears obstacles under a low value of trust on its estimated human’s
inputs. This safety mode enables the robot to decelerate the object, avoid collisions,
and signal a required change in intent to the human via haptic feedback.
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We highlight that the robot obtains a follower’s role for low trust value, including safe
stopping backup. On the other hand, it asserts a leader’s role for high trust value, relying
more on its MPC planned inputs. These leader-follower roles switch dynamically throughout
the task as a function of the trust value. In Section 3.4, with experiments on a UR5e robot,
we demonstrate the efficacy of our proposed approach. We present an experiment where
with pre-assigned fixed roles the agents collide with obstacles, whereas a combination of
trust-driven and safe stop policies completes the task safely.

3.2 Problem Formulation

In this section, we formulate the collaborative obstacle avoidance problem. We restrict
ourselves to the case of two agents. The case of collaborative transportation with multiple
agents is left as a subject of future research.

Environment Modeling

Let the environment be contained within a set X . In this work, we assume that the obstacles
in the environment are static, although the proposed framework can be extended to dynamic
obstacles. At any time step t, let the set of obstacle constraints known to the human and the
robot (detected at t and stored until t) be denoted by Ch,t and Cr,t, respectively. We denote:

Cr,t ∪ Ch,t = Ot, ∀t ≤ T,

where T ≫ 0 is the task duration limit and Ot is the set of obstacle constraints to be avoided
at t during the task. The approach proposed in this chapter focuses on the challenging
situation where no agent has the full information of all the detected obstacles in Ot, i.e.,
Ch,t ⊂ Ot and Cr,t ⊂ Ot.

System Modeling

We model both the human and the robot transporting a three dimensional rigid object. Let
(I⃗I , J⃗I , K⃗I) and (I⃗B, J⃗B, K⃗B) be the orthogonal unit bases vectors defining the inertial and
the transported object fixed coordinate frames, respectively. Let (X, Y, Z) be the position
of the center of mass of the transported object in the inertial frame, v⃗ be the velocity of the
center of mass relative to the inertial frame, expressed in the body-frame as

v⃗ = vxI⃗B + vyJ⃗B + vzK⃗B. (3.1)

Furthermore, let the Euler angles E =
[
ψ θ ϕ

]⊤
be the roll, pitch, yaw angles describing

the orientation of the body w.r.t. the inertial frame, and ω⃗B/I be the angular velocity of the
body-fixed frame w.r.t. the inertial frame, expressed in the body-fixed frame as

w⃗B/I = wxI⃗B + ωyJ⃗B + ωzK⃗B. (3.2)
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We denote Ė = W−1
[
ωx ωy ωz

]⊤
, with matrix

W−1 =
1

cos θ

 0 sinϕ cosϕ
0 cosϕ cos θ − sinϕ cos θ

cos θ sinϕ sin θ cosϕ sin θ

 .
Let (Fx, Fy, Fz) be the force components along the inertial axes applied at the body’s center
of mass, (τx, τy, τz) are the torques about the body fixed axes, and J be the moment of inertia
of the body expressed in the body frame, given by J = diag(Jx, Jy, Jz). Then the rigid body
dynamics of the object transported are written as follows [53]:[

Ẋ Ẏ Ż
]⊤

= QB/I
[
vx vy vz

]⊤
,[

ψ̇ θ̇ ϕ̇
]⊤

= W−1
[
ωx ωy ωz

]⊤
,[

v̇x v̇y v̇z
]⊤

=
1

M

[
Fx Fy Fz

]⊤ − Ω
[
vx vy vz

]⊤
,[

ω̇x ω̇y ω̇z
]⊤

= J−1
[
τx τy τz

]⊤
− J−1ΩJ

[
ωx ωy ωz

]⊤
,

(3.3)

with M being the mass of the body and the angular velocity and rotation matrices given by

Ω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 , and
QB/I =

cθcϕ cϕsθsϕ− cϕsψ sϕsψ + cϕcψsθ
cθsψ cϕcψ + sθsϕsψ cϕsθsψ − cψsϕ
sθ cθsϕ cθcϕ

 ,
respectively, where sin and cos have been abbreviated. The corresponding state-space equa-
tion for the transported object is compactly written as:

Ṡ(t) = fc(S(t), u(t)), (3.4)

with states and inputs at time t given by:

S(t) = [X(t), Y (t), Z(t), ψ(t), θ(t), ϕ(t), vx(t), vy(t), vz(t),

ωx(t), ωy(t), ωz(t)]
⊤,

u(t) = [Fx(t), Fy(t), Fz(t), τx(t), τy(t), τz(t)]
⊤.

We use the forward Euler method to discretize (3.4) with the sampling time of Ts of the
robot to obtain its discrete time version:

St+Ts = f(St, ut). (3.5)

Given any input ut to the center of mass of the object, we decouple it into the corresponding
human inputs uht and robot inputs urt , such that ut = uht + urt . We consider constraints on
the inputs of the robot and the human given by uht ∈ Uh and urt ∈ U r for all t ≥ 0. The set
Uh can be learned from human demonstrations’ data.
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3.3 Robot’s Policy Design

We detail the steps involved in control synthesis by the robot in this section. The robot
computes the net (i.e., from both the human and the robot) optimal forces and torques to
be applied to the center of mass of the transported body by solving a constrained finite time
optimal control problem in a receding horizon fashion. The robot’s portion of those net
optimal inputs are affected by its proximity to obstacles potentially unknown to the human
and an estimate of the human’s assisting input. We elaborate these steps next.

MPC Planner and Human’s Inputs Estimation

The constrained finite time optimal control problem that the robot solves at time step t with
a horizon of N ≪ T is given by:

min
Ut

N∑
k=1

[(St+kTs|t − Star)
⊤Qs(St+kTs|t − Star) + · · ·

+ u⊤t+(k−1)Ts|tQiut+(k−1)Ts|t] + IO(St, uht−Ts)

s.t., St+kTs|t = f(St+(k−1)Ts|t, ut+(k−1)Ts|t),

B(St+kTs|t) ∈ X \ Cr,t,
ut+(k−1)Ts|t ∈ U r ⊕ Uh,
∀k ∈ {1, 2, . . . , N},
St|t = St,

(3.6)

where B(·) is a set of positions defining the transported object, Ut = {ut|t, . . . , ut+(N−1)Ts|t},
Star is the target state, Qs, Qi ≽ 0 are the weight matrices, and inferred obstacle zone penalty
IO(St, uht−Ts) is defined in [54, Section III-D]. Once an optimal input u⋆t is computed, the
robot utilizes the following assumption to estimate the human’s inputs.

Assumption 3.1 The human’s compliant inputs at time step t are computed as

ûht = pu⋆t , (3.7)

where fraction p ∈ (0, 1) remains constant throughout the task.

The fraction p can be roughly estimated from collected trial data where the human limits
to playing a complying role in the task1. Thus, the robot’s estimate of the human policy
inherently considers that the human is trying to minimize their felt forces and torque in the
task to assist the robot, while reacting to the surrounding obstacles in Cr,t in a way which

1If the human actively leads the task, potentially forcing/opposing robot’s actions, human inputs may
be drastically different from its approximate (3.7).
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is consistent with the MPC planned trajectory by the robot. Utilizing Assumption 3.1, the
robot computes its actions at t as:

u⋆,rt = u⋆t − ûht . (3.8)

Trust Value αt via Difference in Estimated and Actual Human
Behavior

Since the robot does not perfectly know the human’s intentions and the configuration of
obstacles in the vicinity of the human, it does not apply its computed MPC input u⋆,rt to
system (3.4) directly. Instead, it checks the deviation of its estimated human inputs from
the actual closed-loop inputs applied by the human. The latter can be measured using force
and torque sensors on the robot. As the applied human inputs at the current time step are
not available for this computation, the robot approximates2 this deviation by:

∆uht ≈ ûht − uht−Ts .

The trust value αt is then computed as:

αt = 1−min{1, ∥∆u
h
t ∥

δthr
}, (3.9)

where δthr is a chosen threshold deviation. The robot uses this trust value to apply a weighted
combination of its computed MPC inputs u⋆,rt , and inputs proportional to uht−Ts as detailed
later in equation (3.10). This trust-driven combination of inputs is motivated by the policy-
blending approach for a shared control teleoperation task [42]. In our case, the human is
directly transporting an object with the robot so we utilize the force feedback to predict the
alignment of goals. Haptic feedback to signal intent of the robot to the human has been used
in [55]. The robot additionally deploys a safe stopping policy, in case the computed trust
value is below a chosen threshold, and it nears obstacles potentially unknown to the human.
These two modes of the robot’s policy are detailed in the next section.

Trust-Driven and Safe Stop Modes of the Robot Policy

At time step t, we denote the inertial position coordinates of the robot’s seen point on the
object closest to any obstacle in Cr,t as Rt. After finding a solution to (3.6) and computing
u⋆,rt using (3.8), the robot utilizes (3.9) and applies its closed-loop input computed as follows:

urt =

{
projUr(αtu

⋆,r
t +K1(1− αt)uht−Ts), if (SS) not true,

projUr(−K2
Ṙt

Ts
), otherwise,

(3.10)

2For sample period Ts ≪ 1, this can constitute a reasonable approximation.
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to system (3.5) in closed-loop with chosen gains K1, K2 > 0, where projA(x) denotes the
Euclidean projection of x onto set A, and the robot’s safe stop policy triggering condition
(SS) is given by:

(SS) : αt<
1

2
, min
o∈Cr,t

∥Rt − o∥ ≤ dthr, Ṙt · (o−Rt) > vthr, (3.11)

with distance and velocity thresholds dthr > 0 and vthr > 0. That is, when point Rt ap-
proaches any obstacle o at a high velocity under a low trust αt <

1
2
, the robot actively tries

to decelerate the the object and bring it to a halt. From policy (3.10), we make the following
observations:

1. A large trust value (e.g., αt closer to 1), corresponds to the case when the robot’s
estimates of the human’s inputs align with the actual human’s inputs. This means
that the robot trusts the human to act with a follower role to assist it. The robot then
utilizes more of its computed inputs u⋆,rt from the MPC problem (3.6) and takes the
leader’s role in the task.

2. A small trust value (e.g., αt close to 0) corresponds to the case when the robot’s
predictions of the human’s inputs do not align with the actual human’s inputs. This
means that the human is taking on the leader’s role, either reacting to obstacles nearby
or actively leading the task. The robot does not trust the computed inputs u⋆,rt from the
MPC problem (3.6) and takes the follower’s role (unless the safe stop policy condition
is triggered).

Policy (3.10) is motivated by [46], and qualitatively has the properties of joint impedance and
admittance. We see that satisfying condition 1 increases the efficacy of the robot’s solution
to (3.6), i.e., u⋆,rt . To that end, we add the inferred obstacle zone penalty IO(St, uht−Ts)
to (3.6), adapting the cost to be optimized by inferring information on potential obstacles
at the human’s vicinity.

Increasing Trust αt via Inferred Obstacle Zone Penalty IO(St, u
h
t−Ts

)

At time step t, we denote the inertial position coordinates of the human by Ht. We also
denote the first three force components of the human input uht by uhf,t. Motivated by the

obstacle learning work of [56], we add the extra term IO(St, uht−Ts) to the cost in (3.6) at
every time step. This term is to be chosen when αt <

1
2
, and the human applies forces along

directions which are more than a user specified threshold νthr radians apart from its expected
ones. We then choose the term IO(St, uht−Ts) as follows:

IO(St, uht−Ts) =

{∑n
i=1

1
∥(St−Ht+K3uhf,t−Ts

+oi)∥
, if (IO),

0, otherwise,
(3.12)
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with n choices of the random parameter 0 < oi ≪ 1 (introduces noise in the direction vector),
control gain K3 > 0, and condition (IO) being

(IO) : αt <
1

2
, | arccos(

ûhf,t · uhf,t−Ts
∥ûhf,t∥∥uhf,t−Ts∥

)| > νthr.

Intuitively, we assume that if the human unexpectedly pushes against the robot, they are
attempting to avoid some obstacle unknown to the robot. The robot uses these force mea-
surements and generates n virtual obstacle points that are placed relative to the human’s
location at a distance scaled by the negative force vector, plus some noise. These virtual
obstacle points are the robot’s estimates of potential obstacles in the human’s vicinity, due
to which the human’s input uht−Ts is significantly different from the estimate ûht . Introducing
the penalty IO(St, uht−Ts) can improve the MPC planner (3.6) by causing it to adjust the
path to avoid those obstacle points. This would likely increase the value of αt as the robot
begins to align itself with the human’s movement to avoid that inferred obstacle and enables
the robot to be a more effective partner.

3.4 Experimental Results

In this section, we present experimental validation results with our proposed approach. The
experiments are conducted with a UR5e robot. The human and the robot start the joint
transportation task with the center of mass of the transported rigid box at the start state
S0, as shown in Fig. 4.1. Goal state Star contains the target location, which is known to
both agents. Since there is not an exact shared baseline for this problem formulation of a
human-robot collaborative transportation task with partial obstacle information, we avoid
directly comparing against controllers from other related work. We use the following set of
parameters shown in Table 3.1 for the considered experimental scenario.

Table 3.1: Parameters used in control design.

Parameter Value
T, Ts 100s, 0.05s
N 20
p 0.5

dthr, vthr, νthr 0.15m, 0.05m/s, π
6
rad

K1, K2, K3 1, 10, 0.005
Qs diag(20,20,20,1,1,1)
Qi diag(10,10,10,100,100,100)
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Trust-Driven Policy vs Pure MPC Policy

For this section, two obstacles are placed between the agents and the target, as shown in
the rendered experiment space in Fig. 3.2b. We show the benefits of using the trust-driven
policy mode, where the robot utilizes the trust value αt to apply a weighted combination
of its MPC inputs and the human’s inputs to the system. The baseline for comparison is a
pure MPC policy, with the robot solving MPC problem (3.6) and applying its optimal input
(3.8), being agnostic to the responses of the human. These are computed at a frequency of
approximately 2Hz. In the considered scenario in Fig. 3.2, the purple box obstacle located
between Y ∈ [−0.13m, 0.16m] is known only by the human. Both agents are aware of the
dotted wall obstacle at Y = −0.18 m. In Fig. 3.2a, the robot is operating with the pure MPC
baseline policy, agnostic to the human’s actions. As a consequence, the planned trajectory
by the robot results in the human colliding with this obstacle, as seen in Fig. 3.2a. Resisting
force values by the human in Fig. 3.2d indicate the human’s opposition to the robot’s actions.
On the other hand, with our proposed trust-driven policy mode, the robot is cognizant of
the human’s intentions. The evolution of αt as the human navigates in the proximity of the
box obstacle is shown in Fig. 3.2c. When the transport object nears the obstacle (around 10
sec), the robot completely distrusts its estimate of the human policy with a computed αt ≈ 0
and applies the measured human input in (3.10). Collision is averted as a consequence, as
seen in Fig. 3.2b. Lower force magnitudes in Fig. 3.2d further indicate that the human’s
resistance to robot’s actions during this collision avoidance is lowered, as the robot lowers
the contribution of its MPC inputs in (3.10) with a low value of αt.

The Safe Stop Mode in Action

To highlight the safety benefits of adding the safe stop policy mode in (3.10), we consider the
scenario shown in Fig. 3.3. For this scenario, only one simulated obstacle wall at Y = −0.18
m is in the experiment space which the human does not see. The human decides to drive
the transport object towards the goal via the shortest path without being aware that it is
leading towards the wall. Without activating the safe stop policy backup, the robot’s inputs
continue to comply with the inputs from the human, as shown in the force plots in Fig. 3.3c.
As a result, the transported object collides with the obstacle wall, as seen in Fig. 3.3a. On
the other hand, in Fig. 3.3b we see that utilizing the safe stop policy mode manages to
prevent this collision and maintain safety in the transportation task. This safety retaining
effect of the safe stop mode can be explained from Fig. 3.3d, where next to the obstacle
wall when condition (SS) is triggered (around 10 sec), we no longer see the robot’s applied
forces complying with the human’s forces. Instead, the robot applies a decelerating safe stop
input, which results in the collision avoidance. There is some oscillation of the robot’s input
which shows it using the safe-stop policy when they are approaching a known obstacle and
reverting to the human’s input (due to low trust) when it appears safe again. Ultimately,
the task is completed successfully.
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(a) Pure MPC policy (α = 1) resulting in collision
with obstacle only known by the human.

(b) Trust-Driven Policy (adaptive α) resulting in
a collision-free trajectory.

(c) α vs Time. The trust-driven policy adapts the
value of αt for all t ≥ 0 based on the human’s
responses in the task.

(d) Measurement of human force applied in Z di-
rection vs Time. Using the trust-driven policy
enables the human to lower resisting forces, while
avoiding collision.

Figure 3.2: Comparison of experimental results of robot with pure MPC policy vs. trust-
driven policy.

Randomized Analysis

In order to generalize the validity of the above results beyond the considered example, we
carried out the transportation task and analyzed the closed loop behaviors of the proposed
controller with 100 configurations of randomized start, goal and obstacle positions. The
shared transport object remained the same throughout all tasks. In some cases, the obstacles
are purely simulated for faster testing purposes. The detailed results are shown in Table 3.2
where we use three metrics to compare the 100 trials. A Collision-Free Success is a trial
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(a) No safe stop policy. The robot collides with
the obstacle.

(b) With safe stop policy. Collision is avoided.

(c) Without the safe stop policy, the robot pro-
vides assisting force that matches the unexpected
human inputs even if it leads towards a known
obstacle (marked from 8.8s to 11.9s). The human
behavior causes a collision with the obstacle wall
and the robot helps them do so.

(d) With the safe stop policy, the robot applies
decelerating safe stop input to cancel out the hu-
man inputs when it detects that a collision with an
obstacle is imminent (marked from 8.5s to 11.2s).
This prevents the human from leading the trans-
port object into the obstacle wall

Figure 3.3: Effect of the safe stop policy mode in avoiding collisions.

where the transport object is brought to the target state without hitting obstacles. Peak
Human Force is the largest magnitude of force applied by the human throughout a given
trial. The Duration of Intervening Forces is the length of time in which the human has
applied more than 30N in a given trial. Table 3.2 shows that the proposed approach results
in a 37% increase in the number of Collision-Free Successes. Moreover, the average value of
the Peak Human Force lowers by 14.9% with the proposed approach, indicating decreased
opposition of the human during the task. The results show that the average Duration of
Intervening Forces shortens by 61.8% with our approach. The robot cedes some of the
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Table 3.2: The percentage and the average are computed numerically from 100 trials of the
transportation task.

Feature MPC Only
Trust-Driven
w/ Safe Stop

Collision-Free Successes (%) 51 88
Avg. Peak Human Force (N) 63.276 53.835

Avg. Duration of Intervening Forces (s) 5.934 2.265

control authority to the human as the trust value decreases. This occurs when the human
does something unexpected to the robot. On the other hand, with the pure MPC approach,
the robot attempts to follow its optimal trajectory even in the case where a collision with
an object known only by the human is imminent. Thus, the human needs to continuously
apply the intervening force for longer periods of time when no trust value is used.

3.5 Conclusion

We proposed a framework for a human-robot collaborative transportation task in presence
of obstacles in the environment. The robot plans a trajectory for the transported object
by solving a constrained finite time optimal control problem and appropriately applies a
weighted combination of the human’s applied and its own planned inputs. The weights are
chosen based on the robot’s trust value on its estimates of the human’s inputs. This allows
for a dynamic leader-follower role adaptation of the robot throughout the task. The robot
will also infer obstacles known only to the human when the trust is low so the planner
doesn’t continue to generate the same conflicting trajectory. With experimental results, we
demonstrated the efficacy of the method.
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Chapter 4

Deposition with Degradable Tools:
Width Tracking

We present a data-driven optimization approach for robotic controlled deposition with a
degradable tool. Existing methods make the assumption that the tool tip is not changing
or is replaced frequently. Errors can accumulate over time as the tool wears away and this
leads to poor performance in the case where the tool degradation is unaccounted for during
deposition. In the proposed approach, we utilize visual and force feedback to update the
unknown model parameters of our tool-tip. Subsequently, we solve a constrained finite time
optimal control problem for tracking a reference deposition profile, where our robot plans
with the learned tool degradation dynamics. We focus on a robotic drawing problem as
an illustrative example. Using real-world experiments, we show that the error in target vs
actual deposition decreases when learned degradation models are used in the control design.

The results presented in this chapter have also appeared in:

• T. Zheng, M. Bujarbaruah, and F. Borrelli. “Data-Driven Optimization for Deposition
with Degradable Tools”. In: 22nd IFAC World Congress. Vol. 56. 2. 2023, pp.
4375–4380.

4.1 Introduction

Robotic manipulation in contact-rich tasks have seen great advancements in recent years
[57]. There has been a push towards robots that can help in daily household chores such
as folding clothes [58], wiping surfaces [59], or various kitchen tasks [60]. While these tasks
are certainly challenging, there are still unaddressed problems in the field where the contact
tool itself changes over time. Examples include cutting blades that decrease in sharpness
through repeated use, sandpaper which wears away, or chalk for marking surfaces.

For this work, we consider the deposition with degradable tools in the application of
robotic drawing. Artwork and videos generated by AI in recent works [61, 62, 63, 64, 65]
have been able to produce complex creations that could easily be mistaken as drawn by
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professional artists. Text-to-image generation has been able to produce some incredible
results that allow the user to create highly specific combinations of subjects performing
actions in locations, even in the artwork style that they desire [62, 64, 65]. Research in
predictive language models like GPT-3 [66] linked with large image databases [67] have been
a huge part of these advancements. However, one major hurdle has been translating these
artworks into the real world. There are many complex physical interactions involved in
various mediums of artwork such as oil painting, pencil sketching, water-colors, etc. Work
has been done the decomposition of images into individual strokes to reproduce the image
[68, 69]. The final drawn images can be highly accurate but they lack insight in actually
making a robot hold a paintbrush or pencil to produce those strokes. Current state-of-the-
art approaches for robotic drawing are predominately hand-tuned open loop sequences with
custom end-effectors that make it easier to have a constant force output and frequent reset
sequences to allow for consistency[70, 71]. A more accurate replication of human drawing
would take the deformation of a tool-tip into account and change the policy accordingly. To
the best of our knowledge, there has not been works that use visual feedback to update the
model of a tip’s degradation to produce more accurate strokes.

In this chapter, we formulate the deposition task as a model-based constrained finite
time optimal control problem, where we model the deposition and the degradation of the
tool tip. The parameters of these models are not known a-priori, and we learn these using
collected data. We focus on the specific example of a robot sketching using a pencil. The
unknown degradation and deposition models of the pencil are parameterized as a function
of the applied force and the distance drawn. We present detailed experiments with a UR5-e
robot where we show that accounting for the degradation of the tip and planning strokes
accordingly improves the sketching quality measured in terms of the difference in stroke
width error.

4.2 Related Work

Simulated stroke generation

Reinforcement learning approaches have been shown to work in generating realistic strokes.
[72] formulates brush strokes as an Markov decision process and solves it using policy gradient
methods. [68] takes target images and decomposes them into stroke sequences with deep
reinforcement learning. [73] introduced a CNN-based auto-encoder to generate multi-class
sketches. [69] uses the gradient of grayscale values to determine pencil stroke sequences used
to recreate images. While these works produce strokes that appear similar to real ones,
they are not tested on real robots where the actual deposition will likely differ from their
expected.
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Figure 4.1: The considered experimental setup.

Real-world stroke generation

[74] formulate calligraphy writing as a trajectory optimization problem and developed a
novel dynamic brush model. They produce open-loop trajectories for that a robot can follow
but do not close the loop. [75] use linear regression to relate brush pressure with actual
deposition width and generates trajectories to fill a desired calligraphy image. [76] trains a
generative model on expert artist motion data in order to extract artistic style into robotic
painting. They did not include closed-loop control and studied whether a playback of the
artist motions with a robotic arm could produce brushstrokes similar to humans. [71] trains
RNNs combined with LSTMs on images and produces commands for the robot that aim
to draw strokes in continuous fluid motions. [77] uses CNNs and GANs to extract sketch
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outlines from images and replicates the contours with a brush-pen. These actual robot
demonstrations are done with open-loop sequences as well.

[78] explores pencil drawing and uses genetic algorithms to produce line segment se-
quences that can reproduce detailed drawings. Their robot uses a passive flexible tool to
hold their custom graphite writing implement and compensates for drawing pressure changes
over the surface. The tool-tip is designed in such a way that the graphite can be reset and
calibrated frequently. [79] uses impedance control to draw on arbitrary surfaces using a pen.
[80] corresponds force values with grayscale values of an image to shade using a pencil. These
methods do not consider degradation of the tool-tip over time.

4.3 Problem Formulation

In this section, we describe the models used for our optimization based deposition problem.

Reference Stroke

When drawing a picture, there are a limitless number of ways to decompose a desired image
into individual strokes. We start with the assumption that each reference stroke is already
given using stroke generation methods such as [69, 68]. The output of these generators are
the parametric curve equations, width along the stroke, and color values. We convert these
image coordinates so that the reference states, sref(ζ(t)), to be used in the cost function for
our optimization problem are:

sref(ζ(t)) =

 xref(ζ(t))yref(ζ(t))
Wref(ζ(t))

 , (4.1)

where t is the time step, ζ(t) is a parameter used to define the curve sref , {xref(ζ(t)), yref(ζ(t))}
are the x and y positions (m) respectively and Wref(ζ(t)) is the deposition width (m). Vi-
sually represented in Fig. 4.2, p(ζ(t)) is the tangent vector to the stroke reference path
{xref(ζ(t)), yref(ζ(t))} sampled at any time step. Then, the deposition width Wref(ζ(t)) is
defined as the thickness of the stroke cross section at that point measured in a direction
perpendicular to p(ζ(t)). Henceforth, we will replace (ζ(t)) with (t) for the simplicity of
notations.

End Effector Modeling

We start the modelling of the discretized system beginning with the robot arm. We treat
the end-effector of the robot arm as a single integrator:

x̄(t+ 1) = Ax̄(t) +Bu(t), (4.2)
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Figure 4.2: Stroke Analysis

with A = I4, B = dt · I4 where In denotes the identity matrix of size n, and sampling time
dt = 0.008s. The states and inputs are

x̄(t) =


x(t)
y(t)
z(t)
ψ(t)

 , u(t) =

vx(t)
vy(t)
vz(t)
ωψ(t)

 , s(t) =
 x(t)y(t)
W (t)

 , (4.3)

where {x(t), y(t), z(t)} are end effector positions. The angle ψ(t) is the angle between the
pencil’s ellipsoidal cross section’s minor axis projected on the xy plane, and the tangent to
the stroke at time t. The inputs are their respective velocities. During control, we impose
state and input constraints for the end-effector at all time steps t ≥ 0 as given by:

x(t) ∈ X , u(t) ∈ U , (4.4)

for all t = 0, 1, . . . , N , where N > 0 is the task horizon, and the sets {X ,U} are polytopes.
As the tool is pushed deeper along the z-axis into the surface, a greater force is applied

which we model in the following section.
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Force Map Modeling

The force applied by the tool to the work surface can be modeled as a general nonlinear
function

F (t) = fF (z(t)− zref(t), η(t)), (4.5)

where zref is the work surface height, z(t) − zref(t) ≤ 0 ensures that the tool is penetrating
into the surface (for a downward direction), and η(t) is a parameter that describes other
contact conditions such as soft or dissipative contact. To obtain this relationship, we control
the robot such that the tool tip makes contact with the work surface and then applies various
penetration depths while taking force measurements. Because the actual function fF (·, ·) is
unknown for our tool, we fit a simplified linear model of the form shown below, ignoring the
dependence on η(t):

F (t) = θ(z(t)− zref(t)) + θ0, (4.6)

where parameters θ, θ0 are unknown and to be learned from collected data.
For drawing tools such as pencils, the contact force has a large effect on the rate at which

the tip degrades. Our main contribution is that we utilize tip degradation of a rotated tip
into the trajectory planning which we model in the next section.

Tool Tip Modeling

First, we model the pencil tip as a cone which will come into contact with a planar surface
as shown in Fig. 4.3. This results in the general equation for the ellipse:

Figure 4.3: Intersection of a cone and hyperplane.
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(m2 − a2)2(x+ ad
a2−m2 )

2

m2d2
+

(m2 − a2)y2

d2
= 1, (4.7)

where m is the slope of the cone, a is the slope of the hyperplane, and d is the vertical offset
of the hyperplane from the cone’s tip.

Assumption 4.1 The slope (a) remains the same throughout the task duration to ensure
that the shape of the surface stays an ellipse. This also relies on an upper bound for d such
that it does not make the hyperplane intersect past the top of the cone.

Under Assumption 4.1, the intersection formed is an ellipse under the condition that the
angle of the plane is shallower than the slope of the pencil’s edge, i.e., |a| < |m|. We thus
have:

α(t) =
2m
√
1 + a2d(t)

m2 − a2
, β(t) =

2d(t)√
m2 − a2

, (4.8)

where {α(t), β(t)} are the major and minor axes of the elliptical cross section at t, respec-
tively. We define the angle γ such that a = tan(γ) which physically describes the angle in
which the pencil tip is oriented against the surface. Note that when γ = 0, the pencil is
pointed downward into a horizontal surface which is the perpendicular direction and α = β.

Degradation Modeling

The degradation of the tip is modeled as function of the current state of the tip, force applied
to the surface with the tip, and distance travelled while in contact. The evolution dynamics
of the pencil tip can be described using d from (4.7):

d(t+ 1) = d(t) +KdF (t)

[
x(t+ 1)
y(t+ 1)

]
−
[
x(t)
y(t)

]
2

(4.9)

where Kd is a scaling parameter. As the pencil is being used and wearing away, the hyper-
plane is pushed further into the cone.

Deposition Modeling

Using the geometry of the ellipse, we model this deposition width as:

W (t) = max(α(t) cos(ψ(t)), β(t) sin(ψ(t))), (4.10)

thus the deposition width is the maximum between the major and minor axes projections
measured perpendicular to the stroke at t.
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4.4 Data-Driven Control Synthesis

In this section, we formulate our data-driven optimization approach for deposition with
a degradable tool. Since the parameters from (4.6) in the degradation (4.9) models are
unknown, we estimate them using data from repeated strokes, before attempting to track
the reference stroke with the pencil. This is done during a training phase.

Learning Parameters during the Training Phase

We can rewrite (4.6) as:

F (t) = z⊤(t)Θ, (4.11)

where z(t) = [z(t) − zref(t), 1]⊤ and Θ = [θ, θ0]
⊤. In this case, the estimated parameters Θ̂

can be obtained using ordinary least squares as:

Θ̂ = (Z⊤Z)−1Z⊤F, (4.12)

where

Z =


z(0)− zref(0)
z(1)− zref(1)

...
z(Toff)− zref(Toff)

 , F =


F (0)
F (1)
...

F (Toff)

 ,
where Toff ≫ 0 is the offline time used to collect data and fit the models. We then use Θ̂
in our optimal stroke design. Note that after learning the parameters offline, we assume the
pencil is sharpened to it’s initial state again, so that the given reference stroke can now be
tracked using our best parameter estimates Θ̂.

Optimal Stroke Tracking Synthesis

Let θ̂ and θ̂0 be our estimates of unknown parameters θ and θ0, respectively, obtained offline.
The optimal control problem solved at t = 0 is given by:

min
Ut

N∑
t=0

(s(t)− sref(t))⊤Q(s(t)− sref(t))

s.t., x̄(t+ 1) = Ax̄(t) +Bu(t),

F (t) = θ̂(z(t)− zref(t)) + θ̂0,

d(t+ 1) = d(t) +KdF (t)

[
x(t+ 1)
y(t+ 1)

]
−
[
x(t)
y(t)

]
2

W (t) = max(α(t) sin(ψ(t)), β(t) cos(ψ(t))),

α(t) = 2m
√
1+a2d(t)

m2−a2 , β(t) = 2d(t)√
m2−a2 ,

x̄(t) ∈ X , u(t) ∈ U , t = 0, 1, . . . , (N − 1),
s(0) = s0, x̄(0) = x̄0,

(4.13)
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where s(t) = [x(t), y(t),W (t)]⊤, Q ≻ 0, and s0, x̄0 are known and fixed. After computing
the optimal trajectory, we apply the whole batch solution, Ut = [u(0), u(1), ..., u(N − 1)], as
an open loop rollout without re-solving (4.13) during the stroke. We then use an image of
the drawn stroke to estimate the actual widthWa(ζ(t)) := Wa(t) along the generated stroke.
The computation of this actual width is detailed in Section 4.5. The actual and the reference
stroke widths are then compared to compute an error metric as:

V =
N∑
t=0

|Wa(t)−Wref(t)|. (4.14)

Note that the reference width Wref(t) is computed along the reference position trajectory for
all t. Thus, the error metric in (4.14) is only concerned with quantifying the z-direction force
tracking error and not x, y tracking. The x, y position tracking error is regluated by tuning
matrix Q and the low level control parameters of the robot. We do not apply learning for
such control loop.

4.5 Experimental Results

In this section we present detailed experimental results with our proposed theory. We first
show the efficacy of the offline model fitting strategy presented in Section 4.4, but then also
highlight the iterative lowering of error metric (4.14) if the model parameters in (4.6) are
learned after iterative stroke attempts via (4.13). Such iterative learning attempts also offer
an intuitive bound for Toff .

Hardware Setup

We perform the real-world experiments using a UR5e 6-DOF manipulator with a custom
end-effector that is holding the drawing utensil. The tool is rigidly mounted, as shown in
Fig. 4.1, which imposes a hard constraint on the maximum allowable force applied by the
robot arm when drawing. We use a Logitech Brio 4K Webcam to capture images of the
drawings.

Image Processing and Computing Wa(t)

In order to evaluate the closed-loop error metric of a stroke as defined in (4.14), we use
images of the performed stroke and compare them to a desired one. In this case, we start
with a desired (i.e., reference) stroke generated from a parametric curve (4.1). The first
sequence is performed with a nominal open loop maneuver that is pre-selected. After the
robot performs the stroke, the robot takes an image with the camera. The color image
is converted to grayscale and then a threshold filter is applied based on the darkness of
the actual stroke and the canvas. Finally, a contour filter is used to detect the stroke
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outline. Starting at the known beginning of the stroke and following along the parametric
curve, we compute the width at each sampled point by finding the closest points which are
perpendicular to the tangent line. This lets us compute the error metric (4.14).

Offline Force Calibration and Model Fitting

To learn the parameters in model (4.6), we took measurements using the force sensor on
the UR5e as the robot moved the tool downwards into the work surface. We ran sinusoidal
sweeps of various penetration depths and used linear regression to determine the applied
force as a function of penetration depth. Fig. 4.4 shows the line of best fit plotted on top

Figure 4.4: Force vs penetration plot.

of the force measurements vs penetration depths. Due to the work surface not being flat,
we recorded the contact points along the x and y directions shown in Fig. 4.5. The height
of the contact points are used as offsets to zref to maintain a consistent penetration depth
along a stroke after contact is initially made during a trial.

Thus, parameters of (4.6) can be learned offline as shown in Fig. 4.5. However, in the
next two sections, in order to demonstrate an iterative improvement of the stroke starting
from the same initial condition, instead of offline fitting as shown in Section 4.4 and Fig. 4.5,
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we learn the model parameters in (4.6) after every iterative attempt of the stroke obtained
through a solution of (4.13). Note, each stroke is independent, and not drawn over the
previous.

Figure 4.5: Surface plot of contact points on the drawing table.
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Deposition without Degradation

To test our approach, we first consider the case where the deposition width is a function
of the tip state and force applied but the tip does not degrade so Kd = 0 in (4.9). We
equipped the robot with a marker perform reference strokes as shown in Fig. 4.6. We see

(a) Stroke 1 (b) Stroke 2 (c) Stroke 5

Figure 4.6: Strokes performed with a marker.

from Fig. 4.6 that the strokes get wider towards the target width as the iterations proceed.
This is also reflected in the computed error metric in Fig. 4.7. Initially, the deposition model
is unknown and starts out with a nominal value of 2N applied force required per millimeter
of width. After each iteration is completed, the recorded actual width values along the stroke
and forces applied are used to update the deposition model. Consequently, the error metric
decreases by roughly 43% after 2 strokes and 66% after 5 strokes, as shown in Fig. 4.7.
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Figure 4.7: Evolution of the error metric as more strokes are performed and data is collected.

Deposition with Degradation

We set the baseline for comparison as a pencil that is mounted perpendicular to the work
surface, similar to [78, 80], where γ = 0◦ and initial tip width, α(0) = β(0), as 0.1mm.
The robot performs a stroke where the desired width is 1.0mm as it moves right and 0.7mm
as it moves down as seen in Fig. 4.8. We repeat these trials using an angled pencil where
γ = 50◦,m = 5.45, d0 = 0.1mm. Fig. 4.10 shows our approach using an angled pencil
outperforms the baseline throughout the iterations with error metric lowered by about 3.6%
all the way to 65.5%.

A main reason for this is the ability to vary the deposition width by controlling the ψ
of the pencil while it is tilted as seen in Fig. 4.11. Using the longer major axis diameter of
the elliptical profile of the pencil tip, the angled pencil can get closer to the desired widths
even when a low amount of wear has occured.A pencil with γ = 0◦ can only have a single
width since the surface of the tip that makes contact with the paper is a circle. This can
be a problem as seen in iteration 10 where the tip becomes larger than desired and there is
no way to correct it as shown in Fig. 4.12. Our approach can possibly decrease the number
of strokes necessary to draw a picture that requires shading since it can leverage the longer
diameter while still doing precise strokes with the shorter minor axis diameter.
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(a) Iteration = 1 (b) Iteration = 2

(c) Iteration = 5 (d) Iteration = 10

Figure 4.8: Post-processed images of pencil strokes with γ = 0◦

4.6 Conclusion

We presented a data-driven optimization approach for robot controlled deposition with a
degradable tool, specifically the robotic drawing problem. We utilized visual and force
feedback to update the unknown model parameters of our tool-tip using least squares. We
solved a constrained finite time optimal control problem for tracking the reference deposition
profile, where our robot planned with the learned tool degradation dynamics. With real
experiments on a UR5e robot, we showed that the error in target vs actual deposition
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(a) Iteration = 1 (b) Iteration = 2

(c) Iteration = 5 (d) Iteration = 10

Figure 4.9: Post-processed images of pencil strokes with γ = 50◦

decreased by up to 65% due to the incorporation of learned degradation models in our trials.
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Figure 4.10: Comparison of the error metric with standard (γ = 0◦) vs our approach (γ =
50◦) .
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(a) Perpendicular pencil γ = 0◦ (b) Angled pencil γ = 50◦

Figure 4.11: Close up of iteration 2 – Rotation of angled pencil allows for wider strokes.

(a) Perpendicular pencil γ = 0◦ (b) Angled pencil γ = 50◦

Figure 4.12: Close up of iteration 10 – Rotation of angled pencil allows for narrow strokes.
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Chapter 5

Deposition with Degradable Tools:
Edge Planning

5.1 Introduction

In Chapter 4, we proposed a novel tip model for a degradable tool. We solved an optimization
problem using this model to track a desired deposition profile while iteratively learning model
parameters for the tip. By being able to rotate the tool and leveraging the different widths of
the elliptical surface, the robot was able to perform better than the current standard where
the tool was always held perpendicular. One problem identified in further iterations was
that eventually the tip wore away enough that the line widths would end up exceeding the
desired width regardless of the orientation. In this chapter, we will present a new algorithm
which allows the robot to decrease the tip width again and return to sharper line strokes.

5.2 Problem Formulation

In this section, we discuss modifications to the tip model introduced in 4.3.

Tip Wear

From (4.8), we can see that the major and minor axes lengths are linearly scaling with the
degradation depth, d. When the tool is used at a fixed pitch angle, γ, it will continue to
wear away which means that d is monotonically increasing. This is illustrated in Fig. 5.1.
For some desired deposition widths, it means that even the minor axis length will grow too
large and no amount of rotation ψ will produce a deposition profile that matches the desired
width. One solution would be to resharpen the tool again but that would be inefficient and
waste material. We propose a solution which allows the same tip to decrease the deposition
width again, thus prolonging the tool’s lifespan.
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(a) d = 0.001m

(b) d = 0.004m

(c) Front view

Figure 5.1: Rendering the tool tip surface at different levels of d.
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Adjusted Tip Model

We will now consider the tip in the 2D case where the two edges are represented by the line
segments, s0 and s1, shown in Fig 5.2. The states used to describe each of these segments
are:

si =


ai
di
xl,i
xr,i

 , (5.1)

where the ai is the slope, di is the z-intercept, and {xl,i, xr,i} are the x-coordinates of the
boundaries for each line segment. Our goal is to find another segment with a desired length,
ldes, which intersects the starting tip lines. This will model the surface of the tool tip which
comes into contact with the workpiece and leaves a deposition profile when moving in the
y-direction.

Figure 5.2: 2D rendering of the tool tip.

At any given time, we will store the line parameters in an array:
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S(t) =
[
s0, s1, ..., sm

]
(5.2)

where m− 2 is the the total number of successive cuts into the tip.

5.3 Edge Planning

In this section, we will formulate an optimization problem to find the new line segment
described in 5.2 and use it in an edge planning algorithm.

Optimization Problem Formulation

There are several constraints which must be considered when picking a new surface line. The
slope of the new line is limited by the slopes of the tip edges or it can be further restricted
depending on the shape of the robot’s end effector to prevent collisions with the surface. The
line segment must also never exceed a certain z-value, dmax, which represents the limit of the
exposed tip surface (e.g. lead of a sharpened pencil). Using these constraints, we construct
the following optimization problem:

min
a,dm,xm,zm

d+ (a− aref )2

s.t., zm,i = axm,i + d
zm,i ≤ dmax
xl,i ≤ xm,i ≤ xr,i
0.0001 ≤ d ≤ dmax
|a| ≤ m(1− d

dmax
)

a0 ≤ a ≤ a1
(xm,j − xm,k)2 + (zm,j − zm,2k)2 = l2des
∀i ∈ {j, k}

(5.3)

where {j, k} are any two lines selected from S(t), and aref is a reference slope which may
be chosen such that the new line is further away from previous cuts. After solving (5.3), we
obtain the parameters for a new line segment which matches the desired deposition width.

Edge Planning Algorithm

We start with the initial tip composed of two line segments. The parameters of the next edge
with a desired deposition width is obtained by solving (5.3). The robot performs the strokes
using the optimal tilt angle until the desired width is exceeded. The parameters, corrected
by visual estimation, are then added to the collection S(t). Each line is a successive cut into
the tip at varying angles and as this number increases, we solve (5.3) on a pair-wise basis.
For each pair of lines in S(t), we compute the best new edge and compile the candidates into
a list C(t). The best candidate which is furthest from the previous line segments is chosen.
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To reduce the number of operations, we first prune the pairs of lines which are too close or
too far from each other to have any connecting segments of the desired width. As new lines
are cut deeper into the tip, they will also eventually remove older lines entirely which we
take out of S(t).

Algorithm 1 Edge Planning Algorithm

Parameters: ldes, dmax
Input: S(t)
Output: sm
1: for each iteration t do
2: C(t) = [ ]
3: for each pair {sj, sk} ∈ S(t), j ̸= k do
4: if valid pair then
5: sjk = ajk, djk, xl,jk, xr,jk ← solve from (5.3)
6: append sjk to C(t)
7: end if
8: end for
9: select best sm from C(t)
10: append sm to S(t)
11: prune S(t)
12: end for

5.4 Experimental Results

To evaluate our approach in a similar manner to the previous Chapter 4 and use the same
setup shown in 4.1. Robot will perform strokes with ldes = 1mm as shown in Fig. 5.3. We
use Algorithm 1 to find the parameters for the next edge. A rendering of the tip and new
line sm is shown in Fig. 5.4. Using am, the robot will adjust its tilt angle γ to perform
a stroke. After each stroke, we can use the same vision-based approach to estimate the
deposition width. Once that desired width has been exceeded, we update S(t) with am and
the actual dm, xl,m, xr,m calculated from the actual width. This is when the next iteration
begins. Figures 5.5-5.8 show the 2D renderings for iterations 2 through 100. As the iterations
progress and the tip wears away more, we see that the previously stored lines also get pruned
away which improves the efficiency of our algorithm.
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Figure 5.3: Overhead view of Ur5e robot performing line strokes.

Figure 5.4: 2D Rendering of the tip with new edge line.
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(a) Iteration = 2

(b) Iteration = 3

Figure 5.5: Successive cuts at Iterations 2 and 3
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(a) Iteration = 5

(b) Iteration = 10

Figure 5.6: Successive cuts at Iterations 5 and 10
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(a) Iteration = 20

(b) Iteration = 25

Figure 5.7: Successive cuts at Iterations 20 and 25
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(a) Iteration = 50

(b) Iteration = 100

Figure 5.8: Successive cuts at Iterations 50 and 100
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Fig. 5.9 shows the view from the camera mounted on the robot after performing 250
strokes. We see that deposition width increases and decreases between successive strokes
even though the tool tip has not been resharpened. In contrast, Fig. 5.10 shows the results
when there isn’t edge planning. The deposition width is only increasing.

Figure 5.9: Camera view from the robot performing line strokes with edge planning.

Figure 5.10: Camera view from the robot performing line strokes without edge planning.

These trends are confirmed by the width analysis shown in Fig. 5.11 which is obtained
from width estimates using the camera mounted on the robot. In trials A and B, where
the pencil was held at a fixed angle perpendicular to the surface, the width increases with
each stroke. The values ranged from 1.25mm to 2.3mm. Some variation is due to noise from
the camera estimation. In trials C and D, the edge planning algorithm allowed the robot to
decrease the deposition width, hovering near the desired width of 1mm and never exceeding
2mm. Some model mismatch arising from the width estimation when updating S(t) may
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have caused the new cut into the tip to be on a surface that was already wider. The error
analysis computing from finding the difference between the actual and desired deposition
widths is shown in Fig. 5.12. The average error in trial A was 1.41mm, trial B was 1.24mm,
trial C was 0.200mm, and trial D was 0.188mm. Our approach was able to allow the robot
to perform finer strokes without needing resharpen the tip, showing an improvement of over
80% in width-tracking.

Figure 5.11: Width analysis from robot performing pencil strokes. Trials A and B represent
trials without edge planning. Trials C and D represent trials with edge planning.

Pressure Control

Another important factor when using a tool is the pressure applied during the interaction.
Constant force can lead to poor results when the tip surface gets larger since the pressure
actually decreases. When using a pencil, this means that the deposition will be lighter with
usage instead of a consistent dark profile. We test this by using the robot to perform 800
strokes with the pencil held perpendicular. We see from Fig 5.15 that after stroke number
500, the brightness starts diverge. By maintaining constant pressure, the robot is able to
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Figure 5.12: Error analysis from robot performing pencil strokes. Trials A and B represent
trials without edge planning. Trials C and D represent trials with edge planning.

stabilize around a grayscale value of 180 whereas deposition from the constant force trials
continued to get brighter. This highlights the importance of tracking the shape of the tip
surface.

5.5 Conclusion

We presented an model-based approach for controlling the edge width for a degradable tool.
We solve an optimization problem to find the best tilt angle to achieve a desired width. This
was utilized in our edge planning algorithm which allowed the robot to perform finer strokes
without needing to resharpen the tool tip. In hardware experiments conducted on a UR5e
robot, we showed that our approach decreased the error by over 80%.
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Figure 5.13: Pencil strokes performed with constant force.

Figure 5.14: Pencil strokes performed with constant pressure.
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Figure 5.15: Brightness analysis from robot performing pencil strokes with constant force or
constant pressure.
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Chapter 6

Conclusion and Future Directions

As robotic hardware continues to improve and become more affordable, we will certainly
see their integration into society further increase beyond commercial applications. Robots
will be equipped with more advanced tools and interact with the world in a more complex
manner. In this dissertation, we explored model-based approaches to tackle challenging
scenarios for robotic manipulators. While the methods in this dissertation where tested on
hardware experiments and showed promising results, there are always improvements that
could be made due to underlying assumptions and simplifications. The following are some
areas that could be explored:

• In Chapter 2, a mixed open-loop and closed-loop control strategy was used. As is
the nature of executing open-loop sequences, it resulted in variation during the swing-
up phase and sometimes the ball ended up in positions which could not be caught.
Closing the loop on the swing-up could result in more consistent results. Furthermore,
a fully hybrid control strategy that plans the entire swing and catch trajectory in
one shot could produce more dynamic maneuvers. Another interesting application for
learning-based controllers would be to switch the string material or ball weight between
experiments and trying to adapt based on the deviation between expected and actual
ball movement. Lastly, a straightforward extension would be to increase the dimension
of the model outside of the planar case.

• In Chapter 3, we assumed the human’s planned actions mirrored the robot’s computed
optimal actions and the robot would compensate when the human deviated from the
expected movement. A better model for the human behavior could improve the per-
formance of the robot and result in more fluid role interactions. Investigating the task
in an environment with dynamic obstacles could bring robotics a step closer towards
collaborative transportation in industrial settings.

• In Chapter 4, we developed a degradation model for a conical pencil tip and compared
the performance using line strokes. It would interesting to use that model as an input
for an image-to-stroke decomposition algorithm so that varied line width could be
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utilized for shading or outline regions. Similar to changing the string or ball parameters
for the cup-and-ball game, different pencil types with varying hardness and shapes
could be utilized for a learning-based deposition controller.

• In Chapter 5, the tip model was in 2D and treated the surface as a single line instead of
the ellipse in Chapter 4. As more cuts are added into the tip, the surface in reality may
even be parabolic or rectangular if limited to rotations about the y-axis. An extension
to this work could explore the different shapes that arise from planar cuts into the
conical shape and optimize over 3D rotations.
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