
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Using Dynamic Molecular Noise to Infer Gene-Regulatory Networks

Permalink
https://escholarship.org/uc/item/1nq1x2mp

Author
Lipinski-Kruszka, Joanna

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1nq1x2mp
https://escholarship.org
http://www.cdlib.org/


Using Dyaarafe Maiesidar Noise to infer Gene-Regiikfery NctwcsRs 

by 

Joanna Lipiaski-Kpvsaka 

DISSERTATION 

SabrntCYd In pmM ssilsSmka; of fas s^qajreawais. fcf sse degree of 

DCXFTOBl OF PFHLOSQPHY 

Bloiogkal siid Medk-ai fesfemssfes 

inda; 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2014 

by 

Joanna Lipinski-Kruszka 

  



iii 
 

 

 

 

 

 

To Konrad and Sabina: 

there is no achievement or award that would make me as proud as you do.  



iv 
 

Acknowledgements 

 

 

None of this work would have been possible without the support and guidance of my advisor 

Hana El-Samad. I am grateful for her skepticism, diligence and for never letting me stop an 

investigation until I understand the problem down to its fundamental principles.  Without her 

fervor for scientific rigor this project would have taken on a very different form.  

I want to thank my committee, Joe DeRisi and Leor Wineberger, for their insights and support.  

Special thanks to Patsy Babbitt for her devotion to students and for being a mentor who 

remembers that there is more to it than just giving scientific advice. 

I appreciate the many science chats, guidance and help I received from my lab-mates, especially 

Jacob Stewart-Ornstein and Michael Chevalier.  

I want to thank those who helped me get through the toughest part of grad school: becoming a 

parent. I will forever be indebted to Imke Listerman and Danica Fujimori for their support, 

advice, encouragement, and, most importantly, their friendship.  

My time at UCSF would not have been much fun if it wasn't for my classmates. Thank you all, 

especially Genevieve Erwin, Dan Lu and Chris Fuller, for making my time here so memorable. 

Finally and most of all, I want to thank the person without whose encouragement and support I 

would not even attempt to go to grad school: my husband Ken. Thank you for always being there 

for me and for always believing in me. 

  



v 
 

 

Abstract 

 

 

Cellular decision making is accomplished by complex networks, the structure of which have 

traditionally been inferred from mean gene expression data. In addition to mean data, detailed 

quantitative measures of distributions across a population can be obtained using techniques, such 

as flow cytometry, which measure protein expression in single cells. These distributions, which 

reflect a population's variability or noise, constitute a potentially rich source of information for 

network reconstruction. A significant portion of molecular noise in a biological process is 

propagated from the upstream regulators. This propagated component is often referred to as 

extrinsic noise. When exploited systematically, extrinsic noise provides us with additional 

information about causal network connections. Here, we devise a procedure in which equations 

for dynamic noise propagation in a network under non-steady state conditions are exploited to 

distinguish between alternate regulatory relationships in a network. We validate our method 

using data obtained from stochastic simulations as well as from data derived from synthetic 

circuits implemented in yeast. 
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Chapter 1: Introduction 

 

Obtaining a predictive understanding of information propagation and decision-making in 

cellular pathways is one of the paramount goals of systems biology. In order to understand how 

these tasks are executed, one must carefully map and study structures of the underlying gene-

regulatory networks.  

Development of high-throughput techniques, such as microarray, propelled ‘reverse-

engineering’ of gene regulatory pathways from expression data. Introduction of and 

improvement to these techniques made new types of data and information available, which, in 

turn, necessitated the development of new methods and tools for their interpretation and 

utilization. For example, some of the earliest microarray experiments provided a single time-

point snapshot of genome-wide expression. These data were often interpreted using clustering 

techniques, which allowed for identification of co-expression networks but did not provide any 

direct evidence of gene-gene interactions (Eisen, 1998). As the microarray technique matured 

time-series and multi-condition data sets became available. Statistical methods, such as Bayesian 

networks, and information theory approaches were applied to these larger data sets to identify 

statistical relationships within genes in a network (Bansal, 2007; Xiang 2007; Imoto, 2003). 

These data and approaches, however, were unable to identify causal relationships and often 

resulted in non-unique solutions where many different topologies could represent the same data 

pool (figure 1a) (Bansal, 2007). Development of techniques, such as flow cytometry and single-

molecule fluorescent in situ hybridization (smFISH), allows us to measure gene expression in 

singles cells and provide us with expression distributions across populations (figure 1b). Recent 
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improvements to these techniques made time-series experiments possible and allow us to 

measure how these distributions change over time and under changing conditions. However, 

methods of interpretation of these data are still in their advent.   

 

 

 

 

 

 

Figure 1: Mean alone might be insufficient to distinguish between alternate network topologies. 

(a) Example of mean expression of two genes, A and B, and two alternate network topologies 

that might have produced these data. Population variability (inset), often termed “noise” and 

quantified by the coefficient of variation (CV), is information rich and can provide additional 

information. (b) Sources of noise can broadly be divided into two components: intrinsic, which is 

due to the stochastic nature of biochemical reactions, and extrinsic, which is propagated from 

upstream regulators.   
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Variability, or “noise” in protein expression, is a ubiquitous feature of biological systems. 

This variability stems from the stochastic nature of biochemical processes, such as gene 

expression and signaling (Elowitz, 2002; Paulsson, 2004; Thattai, 2001). As a result, even 

genetically identical cells vary in their levels of mRNAs and proteins. While such noise can be 

disruptive, it also can play an important role in processes such as cell differentiation, state 

switching, and evolution (Losick, 2008; Eldar, 2010) to name a few. Recently, Cagatay et al. 

showed that changes in stochastic fluctuation levels alter a circuit's functional control in Bacillus 

subtilis and that network topologies generating similar mean dynamics can have different noise 

"signatures" (Eldar, 2009). Pedraza, et al. show that, at least for some proteins, network 

interaction are the key determinants of noise features. Because expression variability is highly 

dependent on the upstream fluctuation (Paulsson, 2004; Simpson, 2003) noise propagation 

should be indicative of connectivity between nodes of a network (Pedraza, 2005; Austin, 2006; 

Cox, 2008; Dunlop, 2008) (figure 1b).  

We now have substantial understanding of the nature and sources (Elowitz, 2002; 

Paulsson, 2004; McAdams, 1997), propagation (Pedraza, 2005), and information content of gene 

expression noise at steady-state. Furthermore, noise at steady-state has been shown to provide 

information on regulatory pathway membership (Stewart-Ornstein, 2012; Suel, 2006) and 

elucidate regulatory mechanisms (Zenklusen, 2008). However, a static snapshot is often 

insufficient to reveal causal relationships between components of a pathway (Dunlop, 2008; 

Munsky, 2012), suggesting that dynamic evolution of the population's distribution might be 

necessary to discriminate among alternate regulatory relationships.  

This idea was recently explored in a study by Neuert et al who used an approach called 

the Finite State Projection (Munsky, 2006) to compute stochastic distributions for  models of 
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various complexity of the hyperosmolarity pathway in yeast (Neuert, 2013). They then used 

these models to identify the one that was most predictive of the experimentally measured noise 

dynamics of mRNA expression. This method was capable of identifying causalities and  

predictive models of transcriptional dynamics in this system. However, reliance of this approach 

on extensive parameter identification limits its scalability. 

In this work, we present a new approach for the identification of regulatory connections 

in a network using dynamic noise. Our approach is based on the premise that if a regulatory link 

between two nodes in a network is present and active, then variability in the upstream node 

should propagate downstream (Dunlop, 2008; Pedraza, 2005; Rosenfeld, 2005). This propagation 

results in a time-dependent and link-specific relationship between noise profiles of the two 

nodes. To exploit this feature, we present a mathematical formalism describing noise propagation 

under non-steady state conditions. By comparing model predictions and experimental 

measurements of noise, we can provide evidence for or against a putative regulatory interaction. 

Conveniently, our method requires estimation of only two kinetic parameters, both of which can 

uniquely be determined from single cell gene expression data. We first illustrate how this 

methodology can extract regulatory connectivity in a circuit using in silico data. Then, we 

demonstrate the usefulness of this approach using in vivo data collected from synthetic networks 

expressed in budding yeast. 
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Chapter 2: Mathematical derivations 

 

2. 1  Using the Chemical Master Equation to derive moment equations 

The formulation that we assume in our model consists of a homogeneous system in which 

each cell is treated as a well-mixed bag of N molecular species (Gillespie, 1977; McQuarri, 

1967). The state of the system is represented by a N-length integer vector      denoting the 

number of molecules of each species at time  . The   possible reactions that can occur among 

these species, are represented by state transitions in a Markov chain. Transitions occur in discrete 

steps at random time intervals and depend only on the previous state of the system 

("memoryless" process). The probability that a reaction   will happen in the next time interval, 

        as    , is                . Occurrence of reaction   changes state      according 

to the stoichiometric vector   , which defines how the reaction changes number of each reactant 

specie. The probability of the system being in state    at time    can be represented by the joined 

probability function        . The chemical master equation (CME) gives us how this probability 

evolves over time: 

 
       

  
        

 

   

                           (1) 

We can express propensities       in the form of a first-order Taylor series around the 

expected value     

              
      

   
       

 

 

                    (2) 
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If we assume that the higher order terms in the Taylor Series expansion are negligible, the time 

dependent mean equation for the ith specie is given by (Engblom, 2006): 

 
   

  
    

 

 

   

      (3) 

Finally, for any two species,   and  , we obtain a first-order approximation of the derivative of 

their covariance     (Engblom, 2006): 
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Table 1. Ranges from which specific parameter values were randomly selected for all simulated 

data.  

Parameter Range 

αa (0, 250000] 

αb (0, 10
13

] 

γa, γb (0, 15] 

K (0, 10
6
] 

n (0, 5] 
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Figure 2: Inclusion of higher moments in the dynamic noise equation does not substantially 

improve accuracy of predictions. Error incurred by not including higher moments is quantified as 

percent of total noise and plotted for each topology and parameter set tested. The values reported 

are averaged over the entire trajectory of the downstream protein. 

 

 

 

 

 

These equations provide a predictive model that links the topology of a network to the dynamic 

evolution of its mean behavior across a population, and the time-dependent evolution of the 

second moment of its output distribution. Our strategy below is to check the solution generated 

by the second moment equation, expected for a given network connectivity, against data to test 

whether this topology is likely. In this way, we augment the information from the mean with that 

from variability to discriminate between different possible connectivities in a network. 
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2.2. Dynamic noise equations 

We consider two simple transcriptional systems in which protein A, constitutively 

expressed at rate:   
    , either activates:   

  
   

 

    
, or inhibits:   

  
  

    
, expression of 

gene B. Here   and   represent the mean copy number of proteins A and B, respectively. The 

proteins A and B are degraded at first order, linear rates,   
     , and   

     . In our 

model, each reaction produces or degrades a single molecule at a time. 

Based on previously published work by Engblom (Engblom, 2006 and equation 4) we 

derived the following covariance equations: 

    
  

   
   

 

  
      

    
  (5) 

    
  

  
   

 

  
    

   
 

  
    

   
 

  
    (6) 

    
  

  
   

 

  
     

   
 

  
      

    
  (7) 

In our derivations of covariance, we assume that linearized model is a sufficient approximation 

of the system and, hence, that contributions of higher moments are minor and can be ignored. To 

verify, we investigated how the addition of the second term (        
    

  
 

   
           

    
 ) 

impacted noise predictions. We compared how well equations with and without the second 

moment term predicted dynamic noise obtained from SSA simulations. We quantified 

contributions of higher moments as the difference of the two predictions normalized by the total 

noise of B. To obtain a single measure for each network we averaged over the entire time 

trajectory. We found that for the 70 randomly chosen sets of parameters (Table 1) inclusion of 

the second moment changed the prediction by less 2% and in most cases by less than 0.5% of 
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total noise of B (Figure 2). We, therefore, conclude that the linearized model is indeed a 

reasonable approximation of the system. 

We next define noise of A or B as the squared coefficient of variation,    
  

   
 

  
 and 

   
  

   
 

  
, respectively and derive dynamic equations: 

 
    

 

  
 

 

  
 
   
  

       
 
  
 

 
 
  
 

  
 
  
 

  
 (8) 

 
    

 

  
 

 

  
 
   
  

    
  
 

 
    

     
    

   
  
 

  
 
  
 

  
 (9) 

Here,    
  is the susceptibility of B to A as defined at steady state:    

  
    

    
 

      
   

   

    
 

(Savageau, 1971; Paulsson, 2004).  For the activation system, the susceptibility is:    
  

  

    
, 

and for the inhibitory link:     
   

   

    
. 

We also derive an equation for the shared noise,    
  

   
 

  
, which is given by: 

 
    

 

  
 

 

  
 
   
  

      
  

  
 

 
 
  
 

 
     

    
 
  
 

 
 (10) 

We decompose our noise equations of A and B into intrinsic and extrinsic components. 

Noise of A,    
 , has an intrinsic component only originating from stochastic expression and 

degradation of the protein. Because the expression of B is regulated by A, its noise      
 ) has 

both intrinsic and extrinsic components which sum up to the total noise:    
        

        
  

(Paulson, 2004; Elowitz, 2002). The dynamic evolutions of       
  and       

 can be extracted 

from Equation (9). Evidently, the intrinsic noise of B does not depend on shared noise,    
  

(Elowitz, 2002). Terms containing    
  reflect noise propagated from A to B and, therefore, are 

ascribed to the extrinsic noise. The resulting dynamic intrinsic and extrinsic noise equations are: 
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 (11) 

 
       

 

  
   

  
 

 
       

     
    

   (12) 

The derived dynamic noise equations converge at steady-state to known expressions 

(Paulsson, 2004) (figure 3). Furthermore, we validate these equations in the dynamic regime 

using data obtained from stochastic simulations (SSA) (Gillespie, 1977) of the regulatory circuits 

using several different, randomly chose parameter sets (Table 1) for both activation and 

inhibition motifs (Figure 4). 
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Figure 3:  Noise computed using dynamic equations matches SSA and converges near steady 

state to established stationary equations.  (a) Example of protein expression of simple two-node 

systems in which A activates B; population mean (dark lines), trajectories of individual cells (n = 

1000) obtained from SSA (thin, light lines). (b) (c) Measured (light, wide lines) and noise 

predicted using dynamic equations (solid lines) and approximations using steady-state 

expressions (dashed lines). Solutions converge as the system approaches steady state; (b) total 

noise, (c) noise decomposed into intrinsic and extrinsic components.  
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Figure 4: The dynamic noise equations accurately predict trajectories of noise. Prediction 

accuracy was computed using 60 SSA simulations of activation and inhibition networks using 

different, randomly chosen parameter sets.  (a) Change in mean expression of A and B for each 

of the 60 tested networks. (b) (c) Prediction error was quantified as mean square error and 

averaged  over all time-point (251 or 501 time-points). (b) total noise of A and B  and of their 

shared noise; (c) error for the decomposed noise of B.  
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Chapter 3: Strategy for using dynamic noise equations to predict causal 

relationships in a circuit 

 

3.1  Strategy overview 

Because noise propagation depends on the regulatory relationship between two genes, the 

extrinsic noise equation (Equation 12) offers an opportunity to test for the existence of causal 

connections in a circuit.  

If expression of A and B are measured simultaneously in single cells as a function of 

time, we can determine how their means (  and  ), downstream extrinsic noise (      
 ) and 

shared noise (    
 ) evolve over time. By using these measured values in the extrinsic noise 

equation for either the activation or inhibitory model (Equation 12), we can calculate for every 

time point the rate at which extrinsic noise should be changing, 
    

 
   

  
, and subsequently 

compute the entire time-course trajectory of the extrinsic noise    
 

   
. If for a given tested 

model, this predicted trajectory coincides with experimentally measured trajectory, then this is an 

indication that this model represents the causal relationship present in the network. Clearly, we 

can repeat this procedure to test for interactions for all permutations of the circuit. 

 

3.2  Estimation of necessary parameters 

To implement the strategy outlined above, we must first approximate the Michaelis-

Menten parameter K and the hill coefficient n. For our model system, at steady-state the mean of 



14 
 

B can be computed as:    
   

 

    
    

 and    
  

    
    

 for activation and inhibition, 

respectively. We represent these expressions as a function of    
 . Specifically for activation: 

 

   
   

 

        
 

  
  

   
  

    
 

   
  

   
   

      
 

   
  

    
         

      
 

   
  

    
       

      
 

  

      
   

  

      
 

 

(13) 

We represent all constant on the left-hand side as   
   

  
, and obtain the final linear 

relationship between susceptibility and the mean: 

        
  

Inhibition: 

 

   
  

        
 

   
  

   
 

    
 

    

  
   

  

    
 

    

  
    

          

      
 

    

  
    

       

      
 

   

      
   

   

      
 

(14) 

 

Again, we represent all constants on the left hand side as   
    

  
: 
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These equations relating the mean and susceptibility have two unknown constants, n and  , 

which can uniquely be identified from distribution information collected at two different steady-

states. 

 We use this linear relationship between the mean of B and susceptibility:         
  

to find the necessary parameters. Since both, the mean and susceptibility, can be accurately 

obtained from distributions, we can uniquely identify n from measurements taken at two, or 

more, discrete steady-states. Inspection of Equation 12 reveals that at steady-state extrinsic noise 

is given by:       
     

    
  (activation    

  
  

    
; inhibition:    

  
    

    
). Since n,       

 , 

   
   and   are experimentally measured, we can also uniquely determine K 

    
        

 

    
        

        
       

        
  

      
  .  

Using the obtained values of n and K, trajectory of    
 

   
 for a given assumed topology 

can be determined from the noise equations (Equation 12). Calculated and measured values of 

   
 

   
 can then be compared, for example by looking at the linear correlation between these two 

quantities. It is worth noting that due to the structure of the equations, measured and estimated 

   
 

   
 will differ by a constant scaling factor corresponding to the synthesis rate of the upstream 

node (either    or   ) whose exact value has no bearing on the quality of the correlation between 

these two quantities (Figure 6b). 

 

3.3.  Measuring extrinsic noise: in-silico data 

Because intrinsic and extrinsic noise sum up to the total noise:    
        

        
  (Paulson, 

2004; Elowitz, 2002), we can estimate the extrinsic component,       
 , from measurements of 
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the total and intrinsic noise. We measure the total expression noise of a protein, B, as the squared 

coefficient of variation,    
  

   
 

  
, where   denotes the mean and    

  variance of the population. 

For our model system in which intrinsic noise stems  just from the random birth and death events  

of individual proteins, we defined intrinsic noise as:       
  

 

 
 (Paulson, 2004 & 2005). Using 

this definition  
 

 
  we derive its time derivative and show that it results in the same expression as 

the dynamic equation for intrinsic noise: 

 

 

 

 

 

 

 

Figure 5: In silico intrinsic noise for our models is well represented by the dynamic noise 

equation, as well as, the inverse of the mean (1/b) even at non-steady state. (A) Example of an 

intrinsic noise trajectory of protein B calculated by an in silico noise decomposition of SSA 

results (blue), the dynamic noise equation (green) or the relationship 1/b(t) (red) for a circuit in 

which AB. Inset: mean behavior B. (B) Comparison of intrinsic noise to its measured value 

computed using all three methods for 40 different parameter sets.  
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(15) 

 

This shows that intrinsic noise can be measured as the inverse of the mean,       
  

 

 
, also at 

non-steady state. To verify, we used dynamic stochastic simulations (Gillespie, 1977) of three 

node circuits in which one node regulated two identical downstream nodes, A and B. We 

obtained time-varying measurements of A and B's distributions and covariance which allowed us 

to compute their total and shared noise. For either node, measured intrinsic noise was defined as 

the uncorrelated (not shared) portion of its total noise (Elowitz, 2002). We compared the 

measured intrinsic noise to predictions obtained using the steady-state definition,       
  

 

 
, as 

well as our dynamic equation (as described in main paper). For the tested parameter sets, these 

predictions were equivalent and matched well the trajectories of the experimentally measured 

intrinsic noise, verifying that in our model intrinsic noise scales with protein copy number and is 

well represented by       
  

 

 
 even under non-steady state conditions (Figure 5).  

 

3.4  Estimation of intrinsic noise: in-vivo data 

In the case of the in vivo data, intrinsic noise encompasses two key components: noise that, as in 

our model, comes from the stochastic creation and degradation of individual proteins and noise 

that stems from mRNA copy-number fluctuations. The contribution of mRNA fluctuations to the 
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protein noise have been shown to scale as the inverse of the protein copy number:        

  
  

 
 

where    is the average number of proteins made per transcript (Bar-Evan, 2006). We assume, 

   is similar for all of genes in our networks (Bar-Evan, 2006; Stewart-Ornstein, 2012). We 

represent intrinsic noise as the sum of protein and mRNA contribution:       
  

 

 
 

  

 
, and 

simplify it:       
  

 

 
. However, we did not have a direct measure of protein copy number but 

rather fluorophore intensity,  , which is thought to be proportional to the number of transcripts in 

a cell (Elowitz, 2002). Therefore, to compute intrinsic noise we used       
  

  

 
, where    is a 

fluorophore-specific scalability factor. We estimated    for each fluorophor, GFP and RFP, from 

experimental steady state data collected for a circuit in which the two reporters were driven by 

two copies of the pGAL1 promoter. Using these data we were able to estimate the scaling 

constants from: 
   

  
    

       
 , where    

  is the total noise of either GFP or RFP computed 

from measurements of their respective intensities,    and   , and      
  is the fluorphores' shared 

noise. Estimation of the fluorophore scaling constants was done at the same time as collection of 

all the other data to ensure identical calibration of the flow cytometer.  
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Chapter 4: Network prediction utilizing noise 

 

 

 

Figure 6: Reconstruction of an in silico network in which gene A activates gene B.  (SSA 

data, population size 1000). (a) Dynamic mean expression of  proteins of a two node network in 

which protein A activates protein B. (b)(c) Predicted noise (gray lines) fits the measured 

extrinsic noise (solid color lines) only when the correct regulatory relationship (activation) and 

directionality (A upstream of B) is assumed. Fit is evaluated as a linear correlation which allows 

for an arbitrary choice of the scaling factor αb. In panel (b) dynamic noise was predicted using 

fitted (gray solid line) and arbitrary (dashed line) values for αb. Regardless of the choice of the 

parameter, correlation is preserved.   
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4.1  Test using in-silico data 

We first tested our method in silico using data obtained from stochastic simulations of activation 

and inhibition motifs. Specifically, we randomly sampled the parameters of the activation or 

inhibition motifs (Table 1) and generated time-dependent distributions. We used these 

distributions to extract extrinsic and shared noise values as a function of time, to which we then 

applied the procedure detailed above. For the correct regulatory relationship and directionality, 

we were mostly able (~75%)  to accurately predict how extrinsic noise fluctuates over time in the 

downstream gene. Importantly, noise trajectories predicted for the incorrect regulatory 

relationship (for example, activation instead of inhibition) or reversed topology (B upstream of A 

instead of A upstream of B) failed to match the in-silico data (Figure 7). Figure (6) shows an 

example of a reconstruction of one of the many networks that we tested. The networks for which 

we were unable to deduce the correct regulatory relationships (Figure 8) corresponded to regimes 

where extrinsic noise either was insignificant or did not propagate between the two nodes (Figure 

9).  



21 
 

 

 

Figure 7: Evaluation of the method in silico using data obtained from SSA. Reconstruction 

of regulatory motifs, A activates B, A inhibits B, and co-regulation of A and B, obtained for 93 

different, randomly chosen parameter sets. Each motif was tested for all regulatory permutations 

between A and B (rows). The results are reported as histograms of the correlation between 

measured and estimated noise for that particular topology. A low or negative correlation value 

for the correct topology indicates error in reconstruction. 
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Figure 8: Dissection of cases that could not be reconstructed with noise information. (A) In 

this case, B and its noise were insensitive to changes in concentration of the upstream protein A 

(left panel) and hence noise did not propagate (right panel). (B)  In this case, the approximations 

inherent in the model were inadequate for both mean and noise. (C) In this case shutdown 

synthesis of B by A made its noise dominated by its degradation alone, and no noise from A was 

propagated. Insets in (A), (B) and (C): propagated noise and intrinsic noise in B expressed as a 

fraction of total noise. 
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Figure 9: The dynamic propagation of noise depends on parameter values. Each plot is the 

propagated (green) and shared (blue) noise of a downstream node of an inhibitory network 

versus time. Each trace shows noise trajectory for different parameter value for (a) Michaelis-

Menten parameter K, which is a key determinant of susceptibility, (b) degradation rate of the 

downstream protein, γb, which is a key determinant of time averaging (c)  hill coefficient n, (d) 

synthesis rate of the downstream protein, αb, and (e) upstream rate of activation, αa. Red arrow 

indicates ascending parameter values.  

 

 

 

 

 

4.2  In vivo test using synthetic circuits 

We next subjected our method to an in vivo test. For this purpose, we designed and built 

synthetic networks implementing transcriptional activation and inhibition motifs in the yeast, S. 

cerevisiae. To build the activation circuit, we placed the transcription factor MSN2 tagged with 

YFP under the galactose responsive promoter, pGAL1 in a Δmsn2/4 strain, allowing the fusion 
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protein to provide the sole Msn2 activity in the cell. In the same strain we integrated an RFP 

protein under the control of the Msn2 responsive Hsp12 promoter. In the inhibitory circuit, the 

pGAL1 promoter was used to drive expression of the TetR protein tagged with RFP. To monitor 

the activity of TetR we integrated GFP under the control of a TetR repressible Adh1 promoter 

(Adh1
tet

). As a control, we implemented a third network in which reporter proteins, GFP and 

RFP driven by pGAL1 promoter were integrated at separate loci.  This final stain has no direct 

interactions between the two reporters but they are indirectly linked through co-regulated by the 

transcription factor Gal4 (Figure 10) (Appendix A).  

All three strains were grown in non-inducing rafinose containing media and then the 

induced by addition of galactose. We subsequently measured single cell abundance of the 

florescent proteins in ~5000 cells every 20 minutes for 12-hours by flow cytometry. These data 

were processed and the mean and standard deviation of the per-cell florescence signal and the 

correlation between the RFP and GFP signals computed for each time point.  Using these data 

along with the analytical extrinsic noise equation (Equation 12) we then tested for regulatory 

relationships.  

First, we tested whether the information contained in the mean alone could uniquely 

identify the underlying networks. To do so, we used simple ODE models of different regulatory 

mechanisms (causal, i.e., activation or inhibition, or non-causal, i.e., having no relationship 

between A and B) to mimic the behavior of the data. We found, however, that the data could be 

fit equally well by both causal and non-causal models (Figure 10), indicating that mean 

information alone cannot discriminate between the possible alternate topologies. 
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Figure 10: Using in vivo data collected for synthetic circuits, mean alone was insufficient 

for distinguishing between the possible regulatory relationships. (A) Activation circuit. Plot 

of means for the topology AB, BA and A and B are co-regulated versus time. (B) Inhibition 

circuit. Plot of means for the topology A--|B, B--|A and A and B are co-regulated versus time. 

(C) Co-regulation circuit. Plot of means for the topology AB, BA and A and B are co-

regulated versus time.    

 

 

 

 

 

We next moved to testing whether the measured distributions could be exploited to 

provide such discrimination using our noise propagation methodology. Using Equation 12, we 

indeed determined that the extrinsic noise trajectory predicted using the topology that correctly 
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reflects the true causal relationship (Msn2 activates Hsp12) matches the experimental results 

(correlation of .97693 between predicted and measured extrinsic noise along the trajectory of the 

system). At the same time, noise trajectories predicted by assuming the incorrect, reverse 

topology (Hsp12 activates Msn2) cannot recapitulate the data (correlation of -.14733). 

Furthermore, predictions made assuming the wrong regulatory mechanism (inhibition instead of 

activation) do not match experimental results regardless of circuit permutation (Figure 10c, d 

top). 

Our methodology was equally efficient at pinpointing the right regulatory relationship for 

the inhibitory synthetic circuit. There again, we could discriminate between the correct topology, 

TetR-RFP inhibits GFP, and other possible network permutations (correlation of 0.86930). 

Notably, the predicted trajectory for the reversed inhibitory relationship, GFP inhibits TetR-RFP, 

shows clear mismatch with the data (correlation 2.8103e-16) (Figure 11 c,d center). Similarly, 

predictions using the activation model fail to match experimental results regardless of network 

permutation. 

For the control network in which GFP and RFP were co-regulated, predicted extrinsic 

noise does not match the experimental data regardless of the assumed regulatory mechanism or 

network permutation, correctly suggesting that these genes have no causal interactions (Figure 

11 c,d bottom). However, we cannot rule out the existence of a regulatory relationship between 

the two genes since the relationship might not manifest itself in the data due to poor noise 

propagation or inactivity of the regulatory link under the tested conditions.  
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Figure 11: Reconstruction of three distinct in-vivo synthetic networks using noise 

information. (A) Schematics of the three networks in which A activates B (top), A inhibits B 

(center), and A and B are co-regulated by the same transcription factor (bottom). (B) Mean 

expression profiles of proteins in each of the three networks measured over a course of 12 hours. 

(C) Noise trajectories predicted using dynamic equations for topologies in which B is assumed to 

either activate or inhibit A. (D) Noise trajectories predicted using dynamic equations for 

topologies in which A is assumed to either activate or inhibit B. In the circuit in which A and B 

are co-regulated, we were not able to predict noise correctly for either circuit permutation, 

suggesting that A and B have no direct regulatory relationship (bottom).  
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Chapter 5:  Complex regulatory systems 

 

Thus far we have focus on simple, two node circuits. In the next two section we focus on 

more complex systems.  

 

Figure 12: Reconstruction of a multi-node in silico network. The methods was able to identify all 

three regulatory connections present in the network (circled).  
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5.1  Multi-node networks 

In order to verify that our methods can be applied to larger regulatory networks we used 

SSA data of four node networks. Nodes were connected by either activation or inhibition link 

such that node A was regulating B and B was regulating two nodes, C and D. Figure 12, shows 

an example of such network and its reconstruction. All possible regulatory permutations between 

the nodes of the network were tested but only those that matched the true relationships were able 

to match the measured noise.  

 

5.2  Multi-input systems 

Because gene expression is often governed by multiple transcription factor we 

investigates noise propagation in a multi-input systems. In our model expression of gene B was 

regulated by two proteins A and C. In order to simplify the analysis we used a slightly simplified 

model of activation which we describe as a first order, linear process:   
     . The mean 

expression for this system is:  

   

  
        

(16) 

   

  
        

(17) 

 

 

  

  
                

(18) 

 

where the term      describes activation of B by A and      activation by C. Using this 

simplified model we derive equation of dynamic noise propagation: 
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Finally we separate terms of Equation (21) to obtain expressions for intrinsic and propagated 

components in nodes B:  
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Inspection of Equation (23) reveals that the propagated noise of B is a sum of contributions of 

the upstream nodes, A and C. This can be verified by setting either one of the contributions to 

zero, for example, if we let      then: 

       
 

  
         

  
   
 

 
        

    
 
   
 

 
     

   
 

 
       

     
    

   (24) 

which gives us the same expression as the dynamic single-input extrinsic noise expression, 

Equation (12).  

We then tested whether we can reconstruct a system in which a node has two regulatory 

inputs. We found that if we take only one regulatory link of B into consideration we are unable 

to infer the correct topology. However, if the noise predictions of the two upstream influences 

are added up the resulting prediction matches the measured noise of B very closely (correlation 

0.98139) (Figure 13). 
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Figure 13: Reconstruction of a two-input in silico network. (A) Schematic of the network in 

which expression of B is regulated by A and C. (B) Test for regulatory relationship of B 

considering only a single regulatory link with either (left) A or (right) C.  (C) Prediction using a 

two-input model. The resulting noise prediction is a sum of individual contributions of A and C.  
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Chapter 6:  Discussion and closing remarks 

 

Technologies that provide expression measurements in single cells are ubiquitous, but the 

measured population variability data are seldom meaningfully exploited. This variability can be 

information-rich, and when analyzed rigorously can be particularly useful for informing the 

structure of gene regulatory networks.  

Some early studies explored this idea by attempting to directly score the linear correlation 

between the noise trajectories of a pair of genes. Such correlations can potentially pinpoint active 

connections particularly when taking time dynamics into consideration (Dunlop, 2008). 

However, the relationship between noise in different components of a circuit is governed by 

potentially complex relationships as depicted by Equations 6 and therefore, might be poorly 

quantified by linear pairwise noise correlation (Figure 5). This is because the fidelity with which 

noise propagates depends on factors such as the susceptibility of a gene to the upstream 

fluctuations, the amount of the upstream noise, and rates at which the protein is able to respond 

to upstream change. All of these factors change over time, most rapidly in the dynamic range 

where proteins concentrations change the most, conditions under which most experiments are 

usually conducted.  

By contrast, our approach takes into account the noise dynamics, allowing us to integrate 

how fluctuations in gene expression are amplified, dissipate and propagate for a postulated 

network topology. When compared to experimentally measured variability, this information 

allows us to provide evidence for or against this topology. Our computational investigations and 

experimental data both support the notion that noise propagation alone can be sufficient to 
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discriminate between alternate topologies when causal relationships exist between different 

network components. 

In this work, we only presented results pertaining to genes that are regulated by a single 

input. However, genes are often regulated by more than one upstream component. In the case 

where multi-input regulation is competitive - only one regulatory link is active at a time - our 

method can be directly applied to test which of these regulatory links is active under changing 

conditions (condition dependent rewiring). For cases where multiple inputs simultaneously 

regulate expression, the necessary equations can be derived. This method is particularly easily 

scalable when the two inputs are additive because in this case, noise is also additive and we can 

sum up the contributions of both inputs in equation 9 to predict the dynamic trajectory of the 

propagated noise. 

As a proof of concept, we demonstrated reconstruction of networks with two nodes. 

However, because our method relies on solving differential equations, it has low computational 

cost. Therefore, we envision that it can be extended to multi-node systems, for example by 

carrying out combinatorial, pair-wise connectivity tests for many genes simultaneously. 

Furthermore, because our approach provides a rigorous, mathematically supported method to 

exploit noise information, it can be incorporated into existing mean-based network inference 

methods to facilitate reconstruction of complex, multi-gene regulatory structures.  

In summary, as the development of increasingly sophisticated single cell measurement 

techniques (Soon, 2013; Munsky, 2012) accelerates, there is increasing need for approaches that 

utilize population distribution information. Our approach provides a solid first step in that 

direction.  
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Figure 14: A linear correlation between the noise profiles of two nodes in a network is not a 

reliable predictor of their connectivity. Noise of A and B in a simple model: 
  

  
 

   

   
     

shows a nonlinear relationship. Inset: mean expression of A and B as a function of time.  
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Appendix A 

 

Plasmids and Strain Construction 

Galactose responsive constructs were constructed by amplification of the Gal1 promoter 

from the yeast genome by PCR followed by restriction enzyme cloning into a single integration 

Trp1 or His3 marked vector upstream of Venus (YFP) or mKate2 (RFP).  Msn2 was amplified 

from the genome and cloned in front of a Gal1 promoter with a Venus C-terminal tag in a Trp1 

marked vector.  TetR was amplified and cloned in front of a Gal1 promoter with a mCherry C-

terminal tag in a His3 marked vector.  The Hsp12 promoter consisting of 700bp directly 

upstream of the HSP12 start codon was amplified from the genome and inserted upstream of 

mKate2 (RFP) in an Ura3 marked vector.  The Adh1(tet) promoter has been described previously 

(Murphy et al., 2007), the 700bp upstream of the ATG was amplified and cloned in front of GFP 

in a His3 marked vector.  

W303A yeast were transformed serially with combinations of the above constructs using 

standard LioAc protocols, transformants were selected on appropriate drop-out media and single 

colonies for downstream use. 

 

Growth and fluorescence measurements by flow cytometry  

Yeast strains were grown to saturation overnight at 30C in 3ml of synthetic complete 

media with 2% rafinose (SCraf) as a carbon source.  Cells were diluted 1:100 SCraf into deep 96 

well plates (Corning) and grown for 6-8hrs at 30C on orbital shakers (Elim) to an OD of ~0.1.  

To induce expression of Gal1 regulated constructs galactose (Sigma, 20% stock) was added to 
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the media to a final concentration of 1%.  Samples were taken from the primary culture every 20 

minutes and an equal volume of fresh media added. 

Cytometry measurements were made on a Becton Dickinson  LSRII flow cytometer, 

along with an autosampler device (HTS) to collect data over a sampling time of 4-10 seconds, 

typically corresponding to 2000-10000 cells. GFP and YFP were excited at 488nm, and 

fluorescence was collected through a HQ530/30  bandpass filters (Chroma),  mCherry and 

mKate2 were excited at 561 nm and fluorescence collected through  610/20  bandpass filter 

(Chroma) . 

 

Flow cytometry data analysis 

Data analysis was done using custom MATLAB software. In order to minimize error due 

to uneven sample flow through the cytometer we removed the first second and last 0.25 seconds 

of data. To control for cell aggregates, as well as cell size and shape, we excluded the bottom and 

top 5% of the forward (FSC) and side (SSC) scatter (Newman, 2006). 

 

Network inference pseudocode 

Inputs: 

data - time-series population measurements for i nodes of the network 

Procedure: 

measuredNoise = getMeasuredNoise(data); 

for each node in network 
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 childData = data(i);   

 for each possible parent(j) 

  parentData = data(j); 

  //  compute expected noise for the hypothetical parent-child relationship  

  predictedNoise = predictNoise(childData, parentData); 

                       // evaluate prediction using  correlation 

  score(predictedNoise, measuredNoise(i));    

 end  

end 

//------------------------------------------------------------------------------------------------------------- 

 

getMeasuredNoise(data) 

 for each node(i) 

  noiseTotal = var/mean^2; 

  noiseInt = ε/mean;   // ε estimated as described in sections 3.3 and 3.4 

  noiseExt = noiseTotal - noiseInt; 

 end 



38 
 

 return noiseExt; 

end 

 

//------------------------------------------------------------------------------------------------------------- 

 

predictNoise(childData, parentData) 

 sharedNoise = cov(parentData,childData)/(meanChild * meanParent); 

 childInfo.meanFunc = fit(mean(childData)); 

 childInfo.noiseFunc = fit(noise(childData)); 

 parentInfo.meanFunc = fit( mean(parentData )); 

 parentInfo.sharedNoiseFunc = fit (sharedNoise) 

 // find the necessary parameters K and n as described in section 3.2 

    parentInfo. params = findParams(childNoise, sharedNoise) 

 noise = noiseODE(t, x0, childInfo, parentInfo); 

   return noise; 

end 
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%--------------------------------------- 

% model:  

%        dB/dt = alphaB/(A + K) - gammaB * B; 

%--------------------------------------- 

function dxdt = noiseODE(t, x, child, parents) 

  a = feval(parents(1).meanFunc, t-1);   // measured mean value of A 

   b = feval(child(1).meanFunc, t-1);      // measured mean value of B 

   sharedNoise = feval(parents(1).sharedNoiseFunc, t-1);   // measured shared noise 

   extNoiseB = feval(child(1).noiseFunc, t-1);     // measured extrinsic noise 

   [alphaB, K, n]= parents(1).params; 

   dxdt(1) = -2 * Rb
+
/b * (extNoiseB + Hba * sharedNoise ); 

 return dxdt 

end 
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