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Abstract

In continuum mechanics within specific classes of problems one or two di-
mensional theories are often simpler to apply then the more complete three
dimensional one. This is for example the case of thin bodies, such as plates
or shells, which may be studied using appropriate two dimensional theories.

Within this approach, the reduction of the dimension is traded for a loss
of information relative to the motion in the transverse direction. For example
in the case of non-linear material behavior, classical plasticity plate theories
are usually not able to model the effects related to the spreading of plasticity
through the cross section.

In the present paper we discuss a generalized plasticity plate model, which
can be used to reproduce in a two dimensional setting some of the three
dimensional effects. We present the continuous and the discrete time model,
including both isotropic and kinematic hardening mechanisms; moreover, the
form of the tangent matrix consistent with the discrete model is addressed.

Finally, some examples (cantilever beam, clamped circular plate and
clamped square plate under monotonic and cyclic loading) are studied nu-
merically using a three dimensional classical plasticity theory, a classical plas-
ticity plate theory and the proposed plate theory. The generalized plasticity
plate model matches the three dimensional response with greater accuracy,
then the classical plasticity plate model.
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1 INTRODUCTION

In continuum mechanics the most appropriate way to fully study the response
of any body is clearly within a three dimensional theory. However, such
analyses may often be a non trivial task to perform (consider for examples the
effort needed to generate a finite element mesh and the computational cost for
the solutions), especially if non linear material constitutive equations and/or
complex loading patterns are considered. Accordingly, simpler theories can
be of interest; as an example, for a shell or a plate, the particular geometry
of the body may render appropriate the use of a two dimensional theory. In
this case the loss of some information relative to the motion of the body in
the transverse direction (such as cross section warping or thickness change)
! is traded for a reduction of the dimension of the problem, hence of the ease
and the speed at which analyses can be performed.

Similarly, under the assumption of inelastic material behavior, plate the-
ories are often unable to simulate all the effects due the real three dimension-
ality of the problem, such as those connected to the diffusion of the plasticity
through the cross section. In the present work, we introduce a new plasticity
model, which is able to model some of the three dimensional inelastic effects,
usually lost in a classical inelastic plate theory. We call the new model gen-
eralized plasticity, since it includes as a sub case the classical plasticity plate
model.

The paper is organized as follow. We start by presenting the basic frame-
work of our plasticity model, such as geometry, kinematics, kinetics and
constitutive assumptions. In Section 3, we briefly consider the variational
structure in which the elasto-plastic plate problem may be cast. In Section
4 we present the yield and the limit functions for the generalized plasticity
model. Hence, the corresponding discrete model is described, as well as the
finite element approximation and the related solution technique. To show the
performance of the proposed plate model, we present some numerical exam-
ples; in particular, a cantilever beam, a clamped circular plate and a clamped
square plate under monotonic and cyclic loading are analyzed using a three
dimensional classical plasticity model, a classical plasticity plate model and

1The most common plate theories such as Reissner-Mindlin and Kirchhoff are unable to
predict effects as the warping of the cross section or the change of the thickness. However,
for the case of linear elastic solids it is possible to find in literature more advanced plate
theories, which can take into account some of these effects [11, 21, 22].
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the generalized plasticity plate model. The latter shows a performance which
represents a better approximation of the real three dimensional response if
compared to the performance of the classical plasticity plate model.

2 BASIC FRAMEWORK

We present the basic framework for the paper, which is mainly based on
an infinitesimal kinematic thick plate theory and an associative flow rule for
the evolutionary plastic problem. Early developments of a thick plate theory,
which include both bending deformation and the primary effects of transverse
shear deformation, are commonly attributed to Reissner [23] and Mindlin [16]
and the theory presented here is a simplification of those originally proposed.

Geometry and load

With the term plate we refer to a flat slender body, occupying the domain:

t t
Q:{(xvyvz)ERB l z € I:—'_7+_

: 2] ,(x,y)eACRZ}

where the plane z = 0 coincides with the mid-surface of the undeformed plate
and the transverse dimension, or thickness t, is small compared to the other
two dimensions.

Furthermore, the loading is restricted to be applied only in the direction
normal to the mid-surface. :

Kinematics

Limiting the discussion to the realm of infinitesimal kinematics, we assume
the following displacement fields:

(21) v(z,y,2) = — z0,(z,y)
w(z,y,2z) = w(z,y)

where u, v and w are the displacements along the z, y and z axes, respec-
tively, and 0, and 6, are the rotations of the transverse line elements about
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the = and y axes. Accordingly, a straight line element, normal to the plate
mid-surface in the undeformed configuration, remains straight, but not nec-
essarily normal to the deformed mid-surface, allowing for transverse shear
deformations. As a direct consequence of equation 2.1, we may assume as a
(generalized) displacement the vector u with components:

The basic kinematic ingredients are the curvature and the shear strain, K
and T', defined as:

Kz 0y,x
K = Ryy ¢ = —0zy
Kzy Oyy — Oz

Yz 0, +w,
F = —_ Y Y
=100

which can be collected in a (generalized) strain E, defined as:
K
Sty
I'=[e® + Vu)]

oo [ 0 -1 ]
1 0
is an alternating matrix and that we may distinguish between in-plane bend-
ing strains (e, €,, Vzy) and transverse shear strains (¥z, 7y-). In the thin
plate theory the transverse shear strains are assumed to be zero, thus provid-
ing constraint equations which allow one to express 0, and 8, as derivatives

of the transverse displacement w. Conversely, in the thick plate theory we
allow for non-zero shear deformations.

Note that:

where:
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Stresses and stress resultants

As a consequence of the predominance of the behavior associated with the
in-plane two dimensions, we may assume the normal stress in the z direction
to be negligible compared to the other stresses; hence, we set:

o, =0

Although this position is inconsistent with a general three-dimensional theory
and is not present in the work by Reissner (where o, varies through the
thickness), we may also adopt it since it does not influence the development
of a viable finite element formulation.

Consistent with the strain behavior, we may distinguish between in-
plane stresses (o, 0y, Tzy) and transverse shears (7;,,7,.). Their integration
through the thickness defines the stress resultants per unit length:

7

M, = /E ozzdz , M, = /E oyzdz , My = Tey2dz

£ L -t
2 2 2

Qx - /5 T:vzdz 3 Qy = /_3 Tyzdz

-t L
2 2

For notational convenience, we collect the resultants in a (generalized) stress

where:

Constitutive relation

We now present our definition for an inelastic plate and how we may treat
it within an internal variable plasticity theory. For a complete discussion of
the internal variable plasticity theory within a three dimensional framework
see Lubliner [12]. A

An inelastic plate is one in which the strain E is determined by the stress
S and some additional internal or hidden variables. We assume that the
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inelastic behavior can be treated within the framework of a general plasticity
plate theory, as described in References [3, 4, 13]. Accordingly, there exists a
continuous yield function f, which separates the elastic region (for which f <
0 and no inelastic effects are present) from the plastic region (for which f > 0
and inelastic deformations occur); furthermore, there exists a continuous
limit function F, which delimits the domain of all admissible stress states (a
stress is admissible only if F < 0) 2. In our analysis, we do not require that
the limit function F' and the yield function f coincide.

Confining the discussion to a small deformation regime, at any time ¢ 3
the strain E may be additively decomposed into an elastic and a plastic part,
E° and E? respectively:

(2.2) E = E° + E?

which can be rewritten as:

K K* K?
= (T} { ) {F)
The elastic strain E€ is a function only of the stress:
(2.3) E°=D"'S

D¢ being the appropriate elastic stiffness matrix, which is independent of the
strain for a linear elastic response.

The internal variables are assumed to be the plastlc strain E?, the back
stress E and the accumulative plastic strain £P. The back stress & represents
the location of the center of the yield surface, which may shift as a result of
the kinematic hardening mechanism, while E? is an accumulative measure
of the plastic strain, used here to model an isotropic hardening mechanism.
Clearly, the presence of additional variables requires additional constitutive
equations.

Indicating time derivative with a superposed dot and limiting the discus-
sion only to the case of a flow rule associated with the yield function f (or

“The yield function f and the limit function F' are assumed to be defined in stress
space, but corresponding surfaces in the strain space can be easily constructed.

3To simplify the notation, the dependence of the variables on the time ¢ is not explicitly
stated.
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briefly an associative flow rule), as well as to a linear kinematic hardening
mechanism, the elasto-plastic problem can be formulated as follow:

(2.4) S = D°E°=D°[E - E?]
(2.5) Y = S—-Z
(2.6) fo= f(sE)
: .0 :

(2.7) E’ = 75%-_-71\1

1
(2.8) E = HE”HA=(E'°TAEP>2
(2.9) E = tHu,OE = tHATIN
(2.10) F = F(3,B,f7%)
(2.11) ¥ >0, FS0, A4F=0
where:

e Equation 2.4 is the linear elastic relation between the stress S and the
elastic strain E¢, which is also expressed in terms of total and plastic
strain using equation 2.2. In particular, the linear elastic relation can
be expanded as:

e =[5 e i =130

where for an isotropic homogeneous plate:

3 1 v 0
Db:‘i“é‘—i@z———y v 1 0
=210 0 11-0)
. 10
o = k) 7]

with F being the Young ’s modulus, v the Poisson ratio, G the shear
modulus. Finally, £ is a factor, introduced to correct the inconsistency
between the transverse shear strain, which is constant throughout the
thickness, and the shear stress, which is not constant; £ depends on the
plate properties and is often set equal to 5/6 for isotropic homogeneous
plates, value that we retain for both the elastic and the plastic response.
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e Equation 2.5 is the definition of the relative stress . Note that ac-
cordingly to the stress and the strain definition, we can define the back

stress as:
_ ) Eum
= =

such that the relative stress can be rewritten as:
Q-=q
e Equation 2.6 is the yield function. A dependence on the scalar ac-

cumulative measure of the plastic strain, E?, is included to model an
isotropic hardening mechanism.

L]

e Equation 2.7 is the constitutive equation (flow rule) for the plastic
strain, in the framework of associative plasticity. The 7 is a non neg-
ative scalar quantity, embodying the plastic rate characteristic of the
model and is called the consistency parameter, since it is computed re-
quiring the satisfaction of a specific plasticity model. According to the
existence of an elastic region, we have:

4=0 when f<0
4>0 when f2>0

e Equation 2.8 is the constitutive equation for the accumulative plastic
strain F?, where A is an appropriate scaling matrix, which accounts
for the different dimensions between the components in E?.

e Equation 2.9 is the linear constitutive equation for the kinematic hard-
ening mechanism, where Hy;, is a material parameter, with dimension
of stress, and II is an appropriate scaling matrix, which accounts for
the different dimensions between the components of & and E?.

e Equation 2.10 is the limit function, which may explicitly depend on the
yield function f and the consistency parameter 4. Observe again that
the functions F and f are not required to be the same, although they
may coincide for some specific model, such as classical plasticity.

e Equations 2.11 are the Kuhn-Tucker conditions, which reduce the plas-
tic problem to a constrained optimization problem.



A generalized elasto-plastic plate theory ~ F.Auricchio and R.L.Taylor 8

3 VARIATIONAL STRUCTURE

We can deduce the appropriate variational form for the inelastic plate from
the variational equation of the corresponding elastic problem.

As discussed in Reference [2], the elastic plate field equations can be
derived from the following functional II, based on the minimum potential
energy principle for the bending and on the Hu-Washizu principle for the
transverse shear energy:

(w,®,T,Q) = %/A [K” (©) D{K (©)] dA
+ —% /A [P7D:r] dA - /A [Q7 (T~ Vw — ¢©)] dA + oy

where II.,; describes the loads and the boundary effects. Taking the variation
of II with respect to Q, we get:

(3.1) /A [6Q7 (T = Vw — e®)] dA =0

which can be interpreted as a constraint. Within a finite element setting,
we may choose to approximate the I' and Q fields only in terms of degrees
of freedom local to each element (as for example in the case of piecewise
constant fields); accordingly, equation 3.1 can be solved in a integral (weak)
sense locally to each element *, rising an expression of the form:

(3.2) I =I'(w,©)

Using this version of the constraint equation, the functional II can be reduced
to the following one:

I, (w, ©) = -;- [ [K7 (@) DiK ()] aa + % / [iﬁ);ﬂ dA + o,
Taking the variation of Il;, we finally obtain:
61T, = /A [K™DIK] dA + [ [51“1);1‘*] dA + 811,
A

or:

811, = /A [K™M] dA + /A [5f‘TQ} dA + 11,

4For a more detailed discussion of this issue, see again Reference [2].
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The appropriate variational equation for the corresponding elasto-plastic
plate problem can be deduced from this last relation, where we recall that
now: '

M = D;(K -K?)
Q = D;([-r17)

In the following we assume to be understood that the I' field is computed
throughout relation 3.2; hence, to simplify the notation we omit to indicate
the hat over I

4 CONTINUOUS-TIME MODEL

In Section 2 we presented the equations governing our elasto-plastic plate.
The only missing ingredients are the yield and the limit functions, which are
presented and discussed now.

Yield function
The yield function f is:
(4.1) f=1%la-R
with:
s = [2TAZ]
R = 1 (O'y + HisoEp)

where o, and H;,, are material parameters with dimension of stress; in par-
ticular oy is the material uniaxial initial yielding, while H;,, is used to model
an isotropic hardening mechanism. The matrix A is introduced to account
for the different dimensions between the components in 3 and is defined as:
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with:
1 2 -1 0
P=-]-1 2 0
0 0 6
I, being the n x n identity matrix. Note that:
?_Ji _ AY N
0% [|Z|la

and N is not a unit vector. Assuming no kinematic hardening and expanding
equation 4.1, we get:

3 [16 :

4.2 == |=

~1 (Uy + HisoEp)

(M2 + M2~ MM, +3M.,) +3 (Q2 + Qi)}

It is interesting to observe that if the plate theory is obtained from a three
dimensional theory, by integrating the field equations through the thickness,
then equation 4.2 can be obtained from the three dimensional von Mises yield
function through some manipulations and simplifying assumptions. For this
approach we may refer to several papers available in the literature, such as
Reference [9, 24, 25]. However, if the simpler and sound direct approach to
the plate problem is adopted, as discussed in Naghdi [17] and in Green and
Naghdi [5, 6], then equation 4.2 can be interpreted as a function of the basic
stress quantities and therefore perfectly valid.

From equation 4.2 setting f = 0 and dividing by o,t, we obtain a yield
condition similar to the one adopted in other works [8, 19, 20, 28]. However
we require that the (initial) yielding of the plate occurs at the initial yielding
of the cross section of the body, while in the classical plasticity theories
the yielding of the plate occurs when the cross section of the body if fully
plastic. Moreover, note that the particular form proposed here for f has the
advantage of having a normal vector N = 0f/0% with the same dimensions
as the plastic strain E?; accordingly, from equation 2.7, we may conclude
that the consistency parameter 4 is non-dimensional. This result is desirable
for a correct definition of the accumulative plastic strain £?. In our analysis
we use:

A=A
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such that: p

E =4
which seems an appropriate result, not obtainable unless 4 is non-dimensional.
We also choose:

M=A""!
such that: .
E = tHu,#AT'N
again giving a dimensional correct relation. Moreover, note that f has di-

mension of force/length, while the material parameters oy, H;s, and Hiin
have all dimension of stress.

Limit function

As limit function for the generalized plasticity plate model, we extend the
one presented in References [3, 4, 14]:

d .
F=h(f)7 IZla] =7
where h is a non-linear function of the yield function f, defined as:

f
tp-f+H

with 8 and § being two positive constants and H = t(H;s + Hiin). The

parameter 3 is a scalar measure of the distance between the asymptotic and

the current radius of the yield function R and it can be interpreted as a

mechanism to model the behavior of the plate from the initial yielding of the

section to the fully plastic condition. The parameter § measures the speed

of the model in approaching the asymptotic behavior (see figures 1 and 2).
Other features of the generalized plasticity model are:

A(f) = 3

e after initial yielding, it shows a smooth transition before reaching an
asymptotic value for the stress. The asymptote is horizontal for zero
hardening, is not horizontal for non-zero hardening.

e the elasto-plastic stress-strain curve is continuous with its first deriva-
tive at the transition point between the elastic and the plastic behavior.
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e if unloaded from the plastic range, upon reloading, it renews plasticity
before the attainment of the stress where unloading began.

This last feature is unique to the generalized plasticity model and the way
in which the model renews plasticity may be easily modified to take into ac-
count the behavior of the real materials. For example, if repeated unloading-
loading occurs, without plastic deformation in the reverse direction, for each
new loading action an increased value of § can be progressively used. De-
pending on the material simulated, special updating formulas may be used.
Note that no modification to a linearization algorithm should be made since
the parameter § is kept constant during each loading action. Consequently,
stress-strain curves of the type represented in figure 3 can be produced; for
more discussion relative to this point, see Reference [3].

From an algorithmic point of view, the generalized plasticity model does
not present any extra complication compared to a classical plasticity plate
model.

5 DISCRETE-TIME MODEL

We now present a discrete time analysis for the elasto-plastic plate problem,
paying particular attention to an implementation of the model within a return
map algorithm. The form of the elasto-plastic tangent matrix consistent with
the discrete model is also addressed.

5.1 Discrete equations and integration algorithm

From a computational standpoint we treat the non-linear behavior of a plate
as a strain driven problem, since in a finite element implementation the stress
history is computed from the strain history by an integration technique,
~ such as a return mapping algorithm. Accordingly, we introduce a discrete
counterpart of the equations and review the integration algorithm.

Let [0,7] C R be the time interval of interest and consider two time
values within it, say ¢, and t,41 > t,, such that ¢, is the first value of
interest after ¢,. To minimize the appearance of subscripts (to make the
equations more readable), we introduce the convention:

Cn = C(tn) 3 C - C(tn-l—l)
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where C is any generic quantity. Accordingly, in the discrete time setting
the subscript n indicates a quantity evaluated at time £,, while no subscript
indicates a quantity evaluated at time ¢,4;.

We assume that the solution is known at time ¢, and given by the state:

{S.,E.,EP EP E,

We wish to compute the solution at time t,1, given the total strain E. Using
a backward Euler integration formula for the plastic strain, the accumulative
plastic strain and the back stress rate equations, we obtain:

EF = Ef +AN
EP = E°4 )
= = En—{-tHkin)\A_lN

where:
tn41

A= t Fdt
is the discrete consistency parameter. The consistency parameters is an
unknown quantity and is computed by means of an integration algorithm,
such as a return mapping procedure. Initially suggested by Maenchen and
Sack [15] and Wilkins [31], the return mapping algorithm provides an efficient
and robust integration scheme, based on a discrete enforcement of the model.
It belongs to the family of elastic-predictor plastic-corrector algorithms and,
hence, is a two part algorithm. In the first part, a purely elastic trial state is
computed; in the second, if the trial state violates the constitutive equations,
a correction is computed using the trial state as initial condition and applied
such that the final state is fully consistent with the discrete model. The
algorithm has been widely studied [3, 18, 27, 29] as has its stability [10, 26].
Recalling that the incremental elasto-plastic initial value problem formulated
as a constrained convex minimization problem is equivalent to the classical
mazimum plastic dissipation postulate, the return mapping algorithm can
be shown to be equivalent to a closest point projection of the trial state
onto the limit surface F' = 0. Additional discussion of the algorithm and its
theoretical implication can be found in Reference [27].
We now discuss the two steps of the algorithm in more detail.
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o Trial state: we assume that in the interval [t,,%,4+1] no plastic defor-
mation occurs (i.e. E? = EF). Accordingly, as trial values we have:

AR =0

EPTR = E?

EPTR = EP

ETR = E

s™® = D*[E-E"TR] =D°[E-EI
ETR — STR—ETR=STR—En

If the elastic trial state is admissible, i.e. it does not violate the limit
equation F', then it represents the new solution at ?,4; and the sec-
ond part of the algorithm is skipped. If the elastic trial state is not
admissible, a correction has to be performed.

e Plastic correction: enforcing the full satisfaction of the material model,
the consistency parameter A and the plastic strain E? ( or equivalently
N) may be computed, as shown for a specific model in the next section.
The other quantities can be updated in terms of the trial state, A, E”
and N as follow:

Er = EPTR4)

E = ETR L tHu I ATIN
S = D°[E-E”]

¥ = S-Z2

5.2 Discrete-time material model

For the specific elasto-plastic model discussed in the paper, the closest point
projection of the trial state onto the limit surface F' = 0 reduces to a radial
return projection only if a spectral decomposition algorithm is performed, as
discussed for examples in References [8, 28]. However, we believe that the
spectral analysis is not an essential ingredient, even from a computational
point of view; in fact the computational cost can already be drastically re-
duced, due to the the sparseness of the matrices involved in the problem.
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Hence we solve the closest point projection without performing the eigen-

analysis.
For fixed E, solution state at time ¢, and trial state at time ¢,41, the
problem is a function of E? and A and can be cast in the form:

R = EE4+)MN-E’=0
r = —F(E’,A)=0
We solve the system iteratively by a Newton’s scheme, as discussed in Refer-

ences [19, 20]; linearizing the problem and using a superscript ¢ for the i-th
step of the iteration process, we get:

G ) " R oRW "

R" _J R" P \ AEP" | _ [ O

{ F(i+1) }—{ NG }+ gr i) a(z(i) { ANE) }_{ 0 }
OEP 0\

which can be solved for AEP” and AX():

AR | [L+X9BD° —-N 17 [ RO
A [T -me -0 ()

where:
1
B = —— [A—-NN7T
= | |
1
C = YAD®
%] 4
and:

Ty = A+ |24 — 110l
I, = Th+f

D = §(itf-f)+H

Q = D+tH; Ty

Finally, the variables can be updated with the formulas:

RG+D B R® AEPY
Pt (T 0 (T ANG
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5.3 Discrete elasto-plastic tangent matrix

We address the form of the elasto-plastic tangent matrix, consistent with
the discrete model. The use of a consistent tangent matrix preserves the
quadratic convergence of a Newton method, which we adopt in the last sec-
tion for the incremental solution of a finite element scheme. Linearization of
the discrete equations gives:

dE?
dE?

et
=

ds

dAN+ A dN

dA

tHpind \A™'N + tHy;n A A71dN
D¢dE — D°dA N — AD° dN

The scalar quantity dA must be computed enforcing the satisfaction of the
linearized limit function. We note that:

and that:

d)|Z]4
df

where:

Hence, from the condition:

we get:

dN

- 4551

1
- =0 [A _NNT] ds

= Bd%

NTKJE — NTKNd)
NTNJE — (NTKN + tHiso> d\

K = [D + B -

dFF =0

d\ = U NTK dE
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where U is a scalar factor, given by:

T

U =
TlNTKN + TQtHiso + D

We can finally reduce the problem to the following two vector equations:

Is AKB d$ | _ [ K-UKNN'K | o
—tHun B [A+tHu)B] || dE [ 7 | tHuNN'K

which requires the inversion of the matrix on the left hand side for its solution,
returning a symmetric tangent at the end. In particular, for the case of
no kinematic hardening, the consistent tangent matrix may be computed
without performing any inversion:

s = [K _ UNNT] dE
where:
N = KN

Note that the form of the consistent tangent matrix strongly recall the one
obtainable from a three dimensional theory, as discussed in Reference [3].

6 FINITE ELEMENT APPROXIMATION

We now present a simple triangular finite element, developed within the thick
plate theory discussed in Section 2.

6.1 A triangular thick plate finite element

Expressing the shape functions in terms of area coordinates, L;, as described
in Reference [32], the triangular region occupied by each element may be
expressed as:
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where 0 < L; <1, Ly + Ly + Lz = 1, x = {z,y}T and where %; = {&;,3:}7
are the nodal coordinates ®

The element has three external (global) displacement degrees-of-freedom
at each vertex ¢: the transverse displacement w; and the two components
of the rotation along the z-y coordinate axes, 6, and é,y, respectively. In
addition, to meet the mixed patch test requirements and to improve the
interpolation, two internal rotational degrees-of-freedom, AB and AO,:, as-
sociated with a cubic bubble function are added, for a total of eleven dis-
placement degrees-of-freedom (see figure 4). Accordingly, the interpolation
for the rotational fields is:

3
© =) L;O;+27L1L,L:A0

i=1

éi - { HAia: }
0y
. Ab
AO = A
{ o |
The transverse displacement interpolation is taken as a simple linear func-

tion, enhanced by quadratic terms expressed in terms of the normal compo-
nents of the nodal rotations for each side of the element:

w.-ZLw,———ZLL ( in — 1,n)lk

where éjn and ém are the components of the rotations of nodes 7 and ¢ in the
direction normal to the i-j side. In this last equation the indices i, 7,k are
a cyclic permutation which may be written compactly as: 7 = mod(z,3) + 1
and k = mod(j,3) + 1 ® , while It is the length of the side between the nodes
¢ and j and opposite to the node k.

The shear strain and the shear stress are:

rer{ )

SThe indices 4, and k always range in {1,2, 3}.
®The mod(3,j) is a standard programming remainder function equal to i-(i/j)* where
integer arithmetic is used to compute ¢/5 .

where:
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where the superposed bar indicates that both fields are constant over each
element.

The same element has been tested using a 7-point formula and a 1-point
formula for the case of linear elastic material and the results are presented in
Reference [1]. In the present work we adopt a three point formula, described
in Reference [7]; the location of the integration points is shown in figure 4.
It is interesting to observe that:

e in the solution of linear elastic problem the element obtained using
the 3-point formula performs slightly better than the one presented in
Reference [1].

e due to the symmetric location of the quadrature points and the con-
stant weights [7], the numerical implementation of the element can be
optimized to obtain an efficient element; as an example note that, the
constraint equation 3.1 may be computed in closed form, except for the
contribution of the bubble function.

We finally recall that due to the mixed approach presented in Section 3 and
also discussed in References [2] and [3], the reduced quadrature is associated
only with the specification of the strain displacement relation and with the
constraint equation 3.1, thus not precluding the use of the element with
non-linear constitutive models. This is in contrast with the use of reduced
quadrature in finite elements based on a displacements approach.

For the results reported in the next section, the finite element load is
consistent with the transverse displacement interpolation.

6.2 Global solution and tangent consistent matrix

Assembling the quantities relative to each element (henceforth called local)
yields the following (global) non-linear system of equations:

Tel

(6.1) A (£ (e, 40) - S = 0

e=1

(6.2) h(u,A®,)=0 e=12,...nun
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where: A denotes the standard assembly operator, u. and A®. are the
external and the internal degrees of freedom relative to the e element, ng,, 1s
the total number of elements, fi"* and fi"* are the force vectors, associated
with the internal stresses and the external loads respectively. The first set of
equations represents the equilibrium of the external degrees of freedom, while
the second set of equations represent the equilibrium of the internal degrees
of freedom relative to each element. Within each time step the solution of
this non-linear system is accomplished by an iterative Newton procedure,
based for each iteration 7 on the following steps:

e recovering of the internal degrees of freedom with an iterative technique
such to satisfy equation 6.2 within each element

e solution of the global linearized problem associated with equation 6.1.

Note that the recovering of the internal degrees of freedom is performed
by a local iterative technique; in fact for each element e, equation 6.2 involves
only quantities relative to the e element, hence it can be solved at the element
level.

7 NUMERICAL EXAMPLES

To test the generalized plasticity plate theory we now present some numerical
examples, organized as follow:

e Cantilever beam: limit load

Cantilever beam: cyclic load

Clamped circular plate: limit load

o Clamped circular plate: cyclic load

Clamped square plate: limit load
e Clamped square plate: cyclic load

For each problem, we present the results from both three and two di-
mensional analyses. The three dimensional analysis is performed using a
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classical plasticity constitutive model (see for example Reference [29]), and a
mized finite element [30]. The two dimensional analyses are performed using
a classical plasticity model [19, 20] and the generalized plasticity model, here
proposed; moreover they are obtained running the plate element discussed
in the previous section. Both finite elements are implemented into the Finite

Element Analysis Program (FEAP) [32, 33].

7.1 Cantilever beam: limit load

We analyze a cantilever beam (figure 5) under simple flexure in the y-z plane;
the load is applied controlling the curvatures at both ends. The geometrical
parameter of the problem are:

L=1, b=2, t=2

with initial yielding stress:
oy = 60

Due to the symmetry and asymmetry of the problem, only one fourth of
the body is discretized for the three dimensional analysis and in figure 6 the
adopted mesh is presented in a deformed configuration. In figure 7 we plot
the bending moment versus the curvature ratio, defined as k., /Ky, Ky being
the curvature at initial yielding. As expected the moment per unit length at
initial yielding is given by My = 40, while the ultimate moment My is given
by:

3

My =§My = 60

This result is due to the progressive diffusion of the plastic flow in the cross
section of the beam: hence it is clearly a consequence of the three dimension-
ality of the problem and related to the motion in the transverse direction.
The cantilever beam is then studied using a two dimensional theory and
the adopted mesh is presented in figure 8; using a classical plasticity plate
model the usual piecewise linear moment curvature relation is obtained,
which is far from the result of the three dimensional analysis (see the piece-
wise dot-dash curve in figure 10). A better simulation of the real behavior of
the cantilever beam can be obtained using the generalized plasticity model,
for which we choose f = My — My = 20. First we test the model for differ-
ent values of § (figure 9), which shows the reliability and the capacity of the
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model. In figure 10 we present the moment-curvature relation for the gener-
alized plasticity model with § = 12 (continuous line) versus the one obtained
from the three-dimensional analysis (dotted line); you can note the good
agreement between the two. Moreover, for comparison the curve relative to
classical plasticity is also reported (dot-dash line).

7.2 Cantilever beam: cyclic load

We now consider a cantilever beam under cyclic loading conditions. The
geometric and the material properties, as well as the finite element meshes,
are the same of those adopted for the case of monotonic loading. In figure
11 we present the moment-curvature ratio curve for the two dimensional
analyses versus the three dimensional analysis.

7.3 Clamped circular plate: limit load

We analyze a clamped circular plate under a uniform distributed load in the
transverse direction. The radius of the plate is r = 10, while the thickness
is t = 2; for all the models, we use the parameters determined in the first
analysis (cantilever beam: limit load).

Again, due to the symmetry and asymmetry of the problem, only the top
half of a circular sector with angle equal to 5° is discretized for the three
dimensional analysis and in figure 12 the adopted mesh is presented in a
deformed configuration. The two dimensional mesh is shown in figure 13. In
figure 14 we plot the transverse distributed load ¢ versus the displacement at
the center of the plate for the three-dimensional plasticity model, the classical
and generalized two dimensional plasticity models. Again you can note that
the generalized plasticity plate model matches the three dimensional response
with greater accuracy, then the classical plasticity plate model.

7.4 Clamped circular plate: cyclic load

We now consider the same clamped circular plate under cyclic loading con-
ditions. The geometric and the material properties, as well as the finite
element meshes, are the same of those adopted for the case of monotonic
loading. In figure 15 we plot the transverse distributed load ¢ versus the
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displacement at the center of the plate for the three-dimensional plasticity
model, the classical and generalized two dimensional plasticity models.

7.5 Clamped square plate: limit load

We analyze a clamped square plate under a uniform distributed load in the
transverse direction. The span of the plate is L = 20, while the thickness
is t = 2; for all the models, we use the parameters determined in the first
analysis (cantilever beam: limit load).

Due to the symmetry and asymmetry of the problem, again only the top
half of a quarter of the plate is discretized for the three dimensional analysis
and in figure 16 the adopted mesh is presented in a deformed configuration.
The two dimensional mesh is shown in figure 17. In figure 18 we plot the
transverse distributed load ¢ versus the displacement at the center of the
plate for the three-dimensional plasticity model, the classical and generalized
two dimensional plasticity models. You can note a greater accuracy of the
generalized plasticity plate model, compared to classical plasticity plate one.

7.6 Clamped square plate: cyclic load

We now consider the same clamped square plate under cyclic loading con-
ditions. The geometric and the material properties, as well as the finite
element meshes, are the same of those adopted for the case of monotonic
loading. In figure 15 we plot the transverse distributed load ¢ versus the
displacement at the center of the plate for the three-dimensional plasticity
model, the classical and generalized two dimensional plasticity models.

CLOSURE

In the present paper we present and discuss the continuous and the discrete
time version of a new generalized plasticity plate model, which is able to
reproduce some of the three dimensional effects of a non-linear thin body
(spreading of inelastic effect in the cross section) within a two dimensional
theory. This new plasticity model admits the existence of an (initial) yield
function and a limit (final) function, which are not required to coincide.
Hence, we choose the (initial) yield function for the plate to reproduce a
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uniaxial initial yielding moment of the three dimensional body, while the
limit (final) limit function is chosen to reproduce the final plastic moment,
in which the cross section is fully plastic.

The numerical examples show that the generalized plasticity model pre-
dicts results which agree with those obtained from a three dimensional clas-
sical elasto-plastic solution; moreover, they are closer than those obtainable
from a classical plasticity plate model. We note that the computational costs
and implementation of the two dimensional models are comparable; hence,
we may conclude that the proposed generalized plasticity model represents
a significant improvement over existing classical plasticity theories.
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Figure 1: Generalized plasticity model with no hardening. Stress S versus
strain E.

The model reaches an horizontal asymptote and, if unloaded from the plas-
tic range and reloaded before the occurrence of reverse plasticity, it renews
plasticity before the attainment of the stress at which the unloading began.




A generalized elasto-plastic plate theory

F.Auricchio and R.L.Taylor 29

S _-
-
-
P 'y
/”
~ B
-
-
—
—
[ TP,
- 4
—
-
—-—
-
y’O
Ys
-
-
- B
A
—-—
-
//

Figure 2: Generalized plasticity model under cyclic loading condition. Stress

S versus strain E.

Zero isotropic hardening, non-zero kinematic hardening.
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Figure 3: Generalized plasticity model with no hardening and update for the
6 parameter. Stress S versus strain E.
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Figure 4: Degrees of freedom for the triangular thick plate finite element and
location of the quadrature points.
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Figure 5: Cantilever beam: three dimensional problem and reduction to two
dimension.
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Figure 6: Cantilever beam: three dimensional mesh in a deformed configu-
ration. o
The contour lines for the y displacements are also shown.
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Figure 7: Cantilever beam: limit load. Three dimensional analysis. Bending
moment versus curvature ratio.
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Figure 8: Cantilever beam: two dimensional mesh in the undeformed config-

uration.
The contour lines for the vertical displacements are also shown.
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F‘igure 9: Generalized plasticity model. Moment versus curvature ratio for
different values of the parameter 8: § € {1,10,100}
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Figure 10: Cantilever beam: limit load. Two dimensional analysis versus
three dimensional analysis.

Moment-curvature relation for generalized plasticity plate model (continuous
line), classical plasticity plate model (dot-dash line) and three-dimensional
classical plasticity model (dotted line).
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Figure 11: Cantilever beam: cyclic load. Two dimensional analysis versus
three dimensional analysis.

Moment-curvature relation for generalized plasticity plate model (continuous
line), classical plasticity plate model (dot-dash line) and three-dimensional
classical plasticity model (dotted line).
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Figure 12: Clamped circular plate: three dimensional mesh in a deformed
configuration.

‘The contour lines for the radial stress are also shown.
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Figure 13: Clamped circular plate: two dimensional mesh in the undeformed
configuration.
The contour lines for the vertical displacement are also shown.
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Figure 14: Clamped circular plate: limit load. Two dimensional analysis
versus three dimensional analysis.

Transverse load versus displacement at the center for generalized plasticity
plate model (continuous line), classical plasticity plate model (dot-dash line)
and three-dimensional classical plasticity model (dotted line).
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Figure 15: Clamped circular plate: cyclic load. Two dimensional analysis
versus three dimensional analysis.

Transverse load versus displacement at the center for generalized plasticity
plate model (continuous line), classical plasticity plate model (dot-dash line)
and three-dimensional classical plasticity model (dotted line).
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FEAP

Figure 16: Clamped square plate: three dimensional mesh in a deformed
configuration.
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Figure 17: Clamped square plate: two dimensional mesh in the undeformed

configuration.
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Figure 18: Clamped square plate: limit load. Two dimensional versus three
dimensional analysis.

Transverse load versus displacement at the center for generalized plasticity
plate model (continuous line), classical plasticity plate model (dot-dash line)
and three-dimensional classical plasticity model (dotted line).
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Figure 19: Clamped square plate: cyclic loading. Two dimensional versus
three dimensional analysis.

Transverse load versus displacement at the center for generalized plasticity
plate model (continuous line), classical plasticity plate model (dot-dash line)
and three-dimensional classical plasticity model (dotted line).
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