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SUMMARY

Zika virus (ZIKV) is an emerging, mosquito-borne flavivirus responsible for recent epidemics 

across the Americas, and it is closely related to dengue virus (DENV). Here, we study samples 

from 46 DENV-naive and 43 DENV-immune patients with RT-PCR-confirmed ZIKV infection at 

early-acute, late-acute, and convalescent time points from our pediatric cohort study in Nicaragua. 

We analyze the samples via RNA sequencing (RNA-seq), CyTOF, and multiplex cytokine/

chemokine Luminex to generate a comprehensive, innate immune profile during ZIKV infection. 

Immunophenotyping and analysis of cytokines/chemokines reveal that CD14+ monocytes play a 

key role during ZIKV infection. Further, we identify CD169 (Siglec-1) on CD14+ monocytes as a 

potential biomarker of acute ZIKV infection. Strikingly distinct transcriptomic and 

immunophenotypic signatures are observed at all three time points. Interestingly, pre-existing 

dengue immunity has minimal impact on the innate immune response to Zika. Finally, this 

comprehensive immune profiling and network analysis of ZIKV infection in children serves as a 

valuable resource.

Graphical Abstract

In Brief

At three time points after Zika virus infection, Michlmayr et al. perform comprehensive 

immunoprofiling of pediatric cohort samples via RNA-seq, CyTOF, and Luminex cytokine/

chemokine array, resulting in distinct temporal patterns of gene expression, cell profiles, and 

cytokines/chemokines. They show CD14+ monocytes play a central role, identify CD169 as a 
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potential biomarker of acute ZIKV infection along with upregulation of CXCL10, and find no 

impact of prior dengue virus infection on the innate immune response to Zika.

INTRODUCTION

Zika virus (ZIKV) is a mosquito-borne virus that belongs to the Flaviviridae family and is 

closely related to other flaviviruses, such as dengue virus (DENV) and West Nile virus 

(WNV) (Barba-Spaeth et al., 2016). Because of the massive epidemic of Zika in the 

Americas in 2015–2016, which was associated with microcephaly and other neurological 

disorders in infants born of infected mothers, the World Health Organization (WHO) 

declared Zika a public health emergency of international concern (World Health 

Organization (WHO)). Profound gapsstill remain in our understanding of Zika immune 

responses and pathogenesis. In particular, one main concern has been whether prior 

exposure to DENV affects Zika outcome in areas in which these viruses co-circulate. Several 

recent human studies have shown that prior DENV infection results in a similar or stronger 

adaptive ZIKV immune response (Andrade et al., 2019; Grifoni et al., 2017) or protection 

against infection and/or symptomatic disease (Gordon et al., 2019; Rodriguez-Barraquer et 

al., 2019). However, the role of prior DENV exposure on the human innate immune 

responses to ZIKV remains unclear.

ZIKV can infect monocytes, macrophages, and dendritic cells (DCs) (Bowen et al., 2017; 

Michlmayr et al., 2017; Quicke et al., 2016). Monocytes play critical roles in the 

pathogenesis of many flaviviruses (Bardina et al., 2015; Lim et al., 2011; Schmid and Harris, 

2014) and can be grouped into CD14hiCD16 “inflammatory,” CD14+CD16+ “intermediate,” 

and CD14lowCD16hi “nonclassical” monocytes (Ziegler-Heitbrock et al., 2010). Murine 

studies of DENV have shown that inflammatory monocytes are key targets of infection that 

are quickly recruited to the site of infection and express the inflammatory chemokine 

receptor CCR2 (Schmid and Harris, 2014). The chemokines CCL2 and CCL7, which bind to 

CCR2, are involved in monocytosis and monocyte recruitment into the brain during WNV 

encephalitis (Bardina et al., 2015). During ZIKV infection, CD14+ and CD14+CD16+ 

monocytes are targets of infection and play an important role in priming natural killer (NK) 

cells and DCs (Lum et al., 2018a; Michlmayr et al., 2017).

A key element of the innate immune response to flavivirus infection is type I interferon 

(IFN), which invokes a potent antiviral state in cells, resulting in upregulation of a plethora 

of IFN-stimulated genes (ISGs) that block viral infection (MacMicking, 2012). In vitro 
experiments revealed five ISGs, including RSAD2 (Viperin), OAS, PKR (RIG-1), IFITM2 

and IFITM3, to be highly upregulated during flavivirus infections (Jiang et al., 2010). 

CD169, also called Sialoadhesin or Siglec-1, is another ISG that is important for cross-

priming of CD8+ T cells during viral infection through interaction of macrophages with 

CD8α+ DCs (van Dinther et al., 2018). However, the extent of IFN induction and the key 

ISGs during the acute phase of ZIKV infection in humans are unresolved questions.

Examples of systems immunology approaches applied to infectious diseases remain 

relatively sparse. Most such studies of immune responses to ZIKV have concentrated on 

RNA sequencing (RNA-seq) and multiplex immunoassay datasets derived from primary cell 
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culture, animal models, or small patient cohorts (Kam et al., 2017; Lum et al., 2018b; Tiwari 

et al., 2017; Yi et al., 2017). Here, we describe a systems immunology approach to profiling 

innate immune responses during acute ZIKV infection in 89 pediatric patients from a long-

standing cohort study in Nicaragua. Importantly, we were able to stratify our patients into 

DENV-naive and DENV-immune cohorts, because of their well-characterized DENV-

infection histories. We first used three high-dimensional technologies (RNA-seq, CyTOF, 

and Luminex cytokine/chemokine multiplex bead array) to detect globally significant 

changes in gene transcripts, cell populations, and serum cytokine/chemokine concentrations 

over three time points after infection (early acute, late acute, and convalescent). Because we 

observed no differences in innate immune profile due to prior DENV infection, we 

combined the DENV-naive and DENV-immune patient populations and built an integrative, 

multiscale network model based on all the datasets that revealed correlations among gene 

modules, cell communities, cytokines, and clinical variables, as well as key players during 

the immune response to Zika in these well-characterized pediatric patients.

RESULTS

Prior DENV Infection Does Not Modulate the Innate Immune Response to ZIKV

Because of the genetic similarity of ZIKV and DENV, we hypothesized that prior DENV 

exposure might affect the innate immune response to ZIKV. Therefore, we determined the 

immune signature of early-acute (1–3 days after onset of symptoms), late-acute (days 4–6), 

and convalescent (days 14–21) samples from DENV-naive (n = 46) and DENV-immune 

patients (n = 43) by RNA-seq, Luminex, and CyTOF (Figure 1). Unsupervised clustering of 

all samples revealed clusters based on time point, rather than on previous DENV exposure 

(Figures 2A and S1E). The sub-clusters identified within each time point could not separate 

DENV-naive and DENV-exposed groups better than random guesses because the Wilcoxon 

test on the ordering of the samples induced by unsupervised clustering was not different 

between DENV-naive and DENV-exposed patients and was not different by number of 

previous DENV infections (p > 0.05 for all three datasets). Thus, clustering of data within 

each time point is not associated with DENV serostatus or number of prior DENV 

infections.

Other analytical approaches also confirmed the lack of differences between the DENV-

exposed and DENV-naive patients. Principal variation component analysis (PVCA) showed 

that the variance or changes in time explained by previous DENV exposure were <1% of the 

total variance (Figure 2B). Time profiles were similar between DENV-naive and DENV-

immune patients, as shown by non-significant time by exposure interactions (false discovery 

rate [FDR] > 0.05, moderated F test) for all three datasets (Figures 2C, 2D, S1A, and S1B). 

When comparing temporal changes in RNA expression profiles, cell populations, and 

cytokine levels, we observed that these changes were highly correlated among groups 

(Pearson’s correlation coefficient, r > 0.84 for genes, r > 0.65 for transcripts, r > 0.8 for 

CyTOF and Luminex) (Figures S1A, S1B, S2A, and S2B) and overlapped (FDR < 0.05, fold 

change [FCH] > 2) between DENV-naive and DENV-immune groups (Figures S1C–S1F, 

S2C, S2D, and S3). However, we noted a trend that gene expression changes from early-
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acute to late-acute time points were greater in the DENV-naive group, albeit not significantly 

different.

Next, we determined whether prior exposure to DENV had an effect on complete blood cell 

count (CBC) and clinical signs during acute ZIKV infection. Our results showed no major 

differences for CBC results and clinical signs and symptoms between DENV-naive and 

DENV-immune groups (Figure 2E; Table 1). Therefore, moving forward, we studied the 

dynamics of ZIKV infection in the cohort of 89 patients based only on the time point 

contrast.

ZIKV Infection Results in an Inflammatory and Monocyte-Associated Innate Immune 
Response

To profile the secretion of chemokines, cytokines and growth factors during acute 

symptomatic ZIKV infection, we measured the serum concentration of 40 analytes by 

Luminex in every patient at each time point. After adjustment for plate-specific effects, we 

identified 32 proteins with significant changes over time (FDR < 0.05 and FCH > 1.5) with 

temporal dynamics grouped into four main clusters (Figures 3A and 3B; Table S1). As 

mentioned, no significant differences were observed between DENV-naive and DENV-

immune patients, except for IFN-γ (Figure S4). Although the unadjusted p value of the 

mean cytokine concentration revealed differences between DENV-naive and DENV-immune 

patients, the result was not significant after adjustment for multiple hypotheses across 

cytokines (FDR > 0.05) (Table S1).

In the combined dataset (n = 89), FGF2, granulocyte-colony-stimulating factor (G-CSF), 

IL17A, and VEGF (red box) were significantly increased at the late-acute time point and 

lower at early-acute and convalescent time points (Figure 3). CCL5 (RANTES), CXCL1 

(GRO), EGF, and PDGF-AA-BB (blue box) were significantly decreased at the late-acute 

time point compared with higher levels at early-acute and convalescent time points. Other 

cytokines, such as granulocyte-macro-phage-colony-stimulating factor (GM-CSF), 

interferon alpha (IFN-a), tumor necrosis factor alpha (TNF-α), Flt-3L, IFN-γ, CCL2 

(MCP-1), CXCL10 (IP-10), interleukin-8 (IL-8), IL-10, and IL-1a were higher during both 

acute time points and were significantly decreased by convalescence (green box). For 

example, mean levels of CXCL10 and IFN-γ were 9.1- and 6.4-fold higher, respectively, at 

the early-acute compared with the convalescent phase of ZIKV infection (Table S1; Figure 

3). The last group of cytokines, CCL3 (MIP-1α), IL-12p40, CCL11 (Eotaxin), CCL4 

(MIP1β), IL-6, IL-4, IL-7, transforming growth factor alpha (TGF-α), IL-15, IL-1RA, 

platelet-derived growth factor-AA (PDGF-AA), sCD40L, CCL22 (MDC), and IL-9, steadily 

decreased from early-acute until convalescent time points (yellow box). In contrast, most 

interleukins, GM-CSF, TGF-α, interferons, and cell-stimulating factors exhibited low levels 

in the serum of all patients, regardless of time point. Further, we identified two clusters of 

cytokines that showed a similar pattern of up- and downregulation when comparing fold-

changes between late-acute to early-acute and convalescent to late-acute phases using 

Pearson’s correlation: cluster 1 consisting of VEGF, IL-17A, and IL-8, and cluster 2 

including sCD40L and PDGF-AA (Figure S5A). Both clusters exhibited the same degree of 

correlation and relatedness, suggesting that there is a relationship in their secretion during 
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ZIKV infection. Lastly, most of the key inflammatory cytokines we identified during ZIKV 

infection were monocyte-associated markers.

CD14+ Monocytes Are Differentially Expanded during Acute and Convalescent Time Points 
of ZIKV Infection

To identify and quantify phenotypic changes within the leukocyte population at the late-

acute phase and during convalescence, we performed CyTOF staining for 37 immune cell 

markers (Table S2A). Using a previously described computational analysis (Michlmayr et 

al., 2018), we defined 25 communities of canonical leukocyte populations across all 

samples. We also identified up to 10 different subcommunities, for a total of 51 

subcommunities that reflect a detailed resolution of variation in surface-marker expression 

within defined cell populations at each time point (Tables S2B, S3A, and S3B).

We identified 20 subcommunities with significant changes post-ZIKV infection (Figure 4A). 

Of these, 10 were significantly more abundant in the acute phase, whereas 10 were more so 

in the convalescent phase. In particular, specific CD14+ monocyte subsets changed across 

time. Specifically, subcommunities 7 and 2 of CD14+ monocytes (FDR = 7.16 × 10−40 and 

FDR = 1.46 × 10−22, respectively) were the most significantly overrepresented monocyte 

subcommunities during convalescence and were absent or low during the acute phase 

(Figure 4B). Other cell communities elevated at convalescence were one CD14+CD16+ and 

one CD16+ monocyte subcommunity, basophils, CD141+ DCs, Axl+ DCs, a subset of pDCs, 

and certain groups of B cells. In contrast, subcommunities 1, 4, 6, and 10 of CD14+ 

monocytes (FDR = 1.82 × 10−36, FDR = 2.06 × 10−15, FDR = 6.18 × 10−23, and FDR = 3.91 

× 10−5, respectively) were the most significantly overrepresented monocyte populations 

during the late-acute phase and were low or absent during convalescence (Figure 4B). Thus, 

acute symptomatic ZIKV infection was strongly associated with an abundance of specific 

monocyte subcommunities at certain time points, reflecting distinct monocytic patterns that 

could be useful for defining biomarkers of disease progression for Zika. Other 

subcommunities that were more abundant at the late-acute time point at FDR < 0.05 were a 

subset of pDCs, subsets of CD4+ and CD8+ T cells, plasmablasts, and a subset of CD16+ 

NK cells.

Next, we performed a subset analysis of B and T cells across time. Among B cells, we found 

that plasmablasts and transitional B cells were significantly more frequent during the late-

acute phase of infection, whereas naive and memory B cells were more frequent during 

convalescence (Figure 4C, left panel). In fact, plasmablasts were almost entirely absent in 

the convalescent-phase samples, whereas all other B cell subcommunities showed similar 

levels of mean cell frequency across time points. The frequency of CD4+ and CD8+ effector 

memory T cell subcommunities was greater during the convalescent time point (Figure 4C, 

right panel). Overall, the mean cell frequency of T cells was greater during convalescence 

(FDR < 0.001).

For CD14+CD16+ monocytes, we identified subcommunities 1 and 2, which were 

significantly changed between late-acute and convalescent ZIKV infection (Figure 4B and 

4D). Specifically, CD14+CD16+ monocyte subcommunity 1 was present at a greater 

frequency at convalescence (FDR p = 8.6 × 10 12). Among CD14+ monocytes, we identified 
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six different monocyte subcommunities that exhibited a specific pattern of cell-surface 

expression (Figure 4E; Table S4). Furthermore, we noticed a marked shift within the 

monocyte population from acute to convalescent time points within all patient samples 

(Figure 4F; Table S3). In particular, CD169 (Siglec-1) was highly expressed on the surface 

of acute-phase-associated subcommunities (Figures 4E and 4F) and could serve as an 

immune marker. Representative visualization of t-Distributed Stochastic Neighbor 

Embedding (viSNE) plots of one patient are depicted in Figure 4F, which show the 

differential expansion of monocytes across time point and their expression of CD169. 

Several other markers also exhibited a higher expression profile on acute-phase CD14+ 

monocytes, including activation markers CD40, CD86, and HLA-DR and homing/adhesion 

molecules, such as CCR5, CD209, CD11c, and CD11b (Figure 4E). Differential expression 

of the genes for these surface markers across all time points was confirmed by RNA-seq. 

Given the strong associations of these distinct subcommunities with time points after ZIKV 

infection, these data suggest that unappreciated heterogeneity within CD14+ monocyte 

phenotypes may enable different roles for subcommunities of these monocytes during ZIKV 

infection. Within the CD16+ monocytes, we detected a significant expansion of CD16+ 

monocyte 1 subcommunity in convalescent samples and expansion of CD16+ monocyte 

subcommunity 2 during the acute phase of ZIKV infection (Figure 4B).

To determine whether cytokine levels are associated with changes in cell communities 

identified by CyTOF, we correlated changes in Luminex protein concentrations with changes 

in subcommunity frequencies using Spearman’s correlation and hierarchical clustering of 

the samples (Figure S5B). No significant correlations were observed between the late-acute 

and the convalescent time point between Luminex and CyTOF data.

Transcriptomic Signatures of ZIKV Infection Exhibit Temporal Patterns

To measure global transcriptional changes during the three sampled phases of ZIKV 

infection, we employed RNA-seq and transcript-level quantification, followed by differential 

expression analysis (Table S5). A strong transcriptional signature changing across the three 

time points was obtained, with 6,350 differentially expressed transcripts (DETs) at FDR < 

0.01 and FCH > 2 (Figures 5A–5F and S6A–S6C). Among these top DETs, hierarchical 

clustering differentiated transcripts into transcripts that were elevated during the late-acute 

time point (top cluster), transcripts that decreased expression over time (middle cluster), or 

transcripts that were elevated during the early-acute and convalescent time points (bottom 

cluster) (Figure 5A). Seeking to quantify the relative number of DETs that fit into distinct 

temporal patterns, we performed unsupervised hierarchical clustering of all 6,350 DETs and 

discovered four main temporal dynamic patterns of ZIKV infection (Figures 5B–5F). We 

then analyzed the biological categories and pathways they represent (Figure S6D; Table S6).

Within the first group of transcripts—which monotonically change over time—we identified 

840 and 2,033 transcripts that either increased or decreased, respectively, from the early-

acute to convalescent time point (Figure 5B). DETs that decreased over time belonged to the 

group of ISGs, such as OAS1, 2 and 3; OASL; DDX58 (RIG-I); IFIH1 (MDA-5); and IFIT5; 

pattern recognition receptors, including TLR4 and TLR7; apoptosis pathway genes, such as 

caspases (CASP1 and CASP3); and viral entry receptors (Axls) or inhibitory receptors, 
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including CD300A, which is highly expressed on myeloid cells. The time profile of these 

transcripts suggests that they can be used to differentiate the phase of ZIKV infection. As 

such, we used random forest, a broadly used machine learning algorithm (Breiman, 2001), 

on patient-adjusted gene expression data to predict the infection phase. When genes were 

ranked by their ability to predict infection phase (quantified by the Gini coefficient), the top 

25 genes we found included ISGs, such as USP18, IFI27, HERC6, OAS1, IFIT, and STAT2 

(Figure S6E). The Gini coefficient allowed us to rank genes based on their ability to predict 

the time point of infection with high accuracy. A significant drop in the mean Gini 

coefficient value was observed after the top 25 genes. These 25 transcripts represent a 

potential biomarker signature in the RNA-seq data to predict ZIKV infection phase, with an 

area under the curve (AUC) = 0.94 and an accuracy of 0.99 in testing and 0.86 in cross-

validation.

The second pattern encompasses gene transcripts that either increased (481 DETs) or 

decreased (1,277) in expression between the early- and late-acute time points without further 

changes thereafter (Figure 5C). The DETs decreasing over time included STAT1; CD169 

(Siglec-1); Siglec 7, 10, and 14; CXCL10; and transcripts that belong to the scavenger 

receptor family MARCO, typically expressed on monocytes. A third pattern included 

transcripts that did not change their expression from early- to late-acute phase but increased 

(193 DETs) or decreased (380) their expression levels between the late-acute and 

convalescent time points, including DDX17 and the translation factor EIF4A1 (Figure 5D). 

Finally, 2,133 and 1,797 DETs reached highest or lowest levels of expression, respectively, 

in the late-acute phase compared with other time points (Figure 5E). Heatmaps depicting 

DETs for these patterns are shown in Figure 5F. The top five significant pathways identified 

using the Gene Ontology (GO) Consortium and Wikipathway (WP) databases included 

genes such as IFITM1, 2 and 3; IFIT5; OASL; OAS1; OAS3; MX-1; and RSAD2, which are 

ISGs and have a pivotal role in innate immunity (Table S6). Again, there were no significant 

differences between samples from DENV-naive versus DENV-immune patients.

In eukaryotes, alternative splicing and differential isoform usage expands the transcriptome 

complexity and functional diversity in response to infection. Analysis of alternatively spliced 

(AS) genes showed a signature of 4,693 AS genes (FDR < 0.05 and FCH > 2) changing 

across time. CCL2 is a key chemokine associated with CD14+ monocytes; therefore, we 

investigated the differential isoform expression level of CCL2 transcripts (Figures 5G–5J). 

Four different CCL2 isoforms (CCL2–201 to −204) exhibited a temporal expression profile 

(Figure 5G). The isoform CCL2–201 was most abundant at the early-acute phase, whereas 

alternative isoforms had a much lower expression level at that time point (Figures 5G–5J). In 

contrast, isoform CCL2–203 was most abundantly expressed during convalescence.

A Multiscale Interaction Network Reveals a Roadmap of the Innate Immune Response to 
ZIKV Infection

To discover relationships between Luminex, CyTOF, and RNA-seq datasets during ZIKV 

infection, we integrated all data into a multiscale network analysis. We first performed co-

expression clustering using weighted gene co-expression network analysis (WGCNA) of all 

46 DENV-naive and 43 DENV-immune patient samples across all time points. Coexpression 
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modules for the DENV-naive samples were strongly preserved in the DENV-immune 

samples, with a Zsummary > 10 for all modules (Langfelder et al., 2011). To increase the 

statistical power with a larger sample pool, we combined the DENV-naive and DENV-

immune patients into a single WGCNA analysis. The WGCNA analysis of all pooled 

samples produced 10 coexpression network modules (coEMs) (Figure 6A), named after 

arbitrary colors. The association of the coEM profiles (defined through the eigenvectors of 

each module) with clinical variables showed a strong and significant association (FDR < 

0.05) only between all coEMs and age (first column) and time point (second column) 

(Figure 6B).

We then examined more closely the temporal dynamics of each coEM (Figure 6C). 

Transcripts in the light green module remained relatively unchanged across the three time 

points, but different temporal trends across time emerged for the other nine coEMs (tan, 

blue, cyan, green, black, light cyan, light yellow, midnight blue, and purple). The green 

coEM is of particular interest because it contains all transcripts with elevated expression at 

the early-acute time point and significant downregulation thereafter (Figure 6C). Genes in 

this module include OASL, STAT1, and STAT2, all of which have a protective role in the 

innate immune response (Table S7), as well as Toll-like receptor (TLR) genes and genes 

involved in TNF signaling, including TNFSF 10 and 13, as activity hubs. Of note, the tan 

coEM is enriched in ribosomal proteins. The light cyan and light yellow coEMs follow 

patterns for genes peaking in the late-acute phase (Figure 5E), with light cyan mostly 

containing genes involved in cell cycle, mitosis, and replication (Table S7) and light yellow 

containing basal transcription factors. In line with these two modules, genes in the cyan 

module were also involved in tissue repair, meiosis, and mitosis but were significantly 

greater only at the convalescent time point. The blue module contains genes that belong 

mostly to the zinc-finger antiviral protein family, which are important for RNA degradation 

and translation inhibition and are significantly greater at late-acute and convalescence 

compared with early-acute phase. The purple module contains DETs, such as YBX3 and 

SPTA1, that have been described as binding to flaviviruses. Along with the purple module, 

the midnight blue and black gene modules were also lower at the late-acute time point and 

returned to levels similar to the early-acute time point by convalescence. Among all 

temporal trends and within each time point, none of the coEMs had significantly different 

overall profiles between DENV-naive and DENV-immune patients (ANOVA FDR > 0.08).

Integrating cell subcommunity frequencies, cytokine profiles, and clinical outcomes with the 

network co-expression modules produced a global multiscale network (Figure 6D). This 

global network visualizes all interactions in this study, except CyTOF-CyTOF and Luminex-

Luminex, in a compact force-directed layout. As seen previously (Figure S5B), CyTOF and 

Luminex measurements are positively correlated within each assay, thus the associated 

interactions were excluded from the network visual. However, in the top center of the 

network layout, aspects of the innate immune signature most strongly associated with time 

are drawn out of these clusters and toward the late-acute and early-acute nodes (gray 

diamonds with blue lines). These variables may be considered the most globally contrasting 

features of the ZIKV immune signature across time points. The secretion of inflammatory 

cytokines, including CCL2 (MCP-2), TGF-α, sCD40L, IL-1RA, IL-4, IL15, PDGF.AA, 

Eotaxin, and IFN-γ, were strongly correlated with the early-acute time point and the green 
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gene module, which contains mainly ISGs (Figure 6D; Table S7). During the late-acute time 

point, 3 CD14+ monocyte populations identified during acute ZIKV infection by CyTOF 

(CD14+ monocytes 4, 6, and 10) were highly correlated with CXCL10 (IP-10) and CCL2 

(MCP-2) and the light cyan, light yellow, and tan gene modules. This again verifies a central 

role of the monocyte-heavy signature during the acute phase of infection. In contrast, CD14+ 

monocytes 2 and 7 were highly correlated with the convalescent time point and were 

negatively correlated with the inflammatory chemokines CCL2 and CXCL10 and the green 

gene module (Figure 6D). Of note, CXCL10 (IP-10) and CCL2 (MCP1), as well as 

RANTES and IL-10, are the central nodes connecting cell population and gene expression 

variables. In the global multiscale network model, the interactions between DENV exposure 

and the measured immune signature variables are not strong enough to emerge as edges, and 

therefore, DENV immunity remains isolated at the top center of the layout, only connected 

to the rest of the network via the “Age” variable, thus confirming our finding that previous 

DENV exposure has a minimal role during acute, symptomatic ZIKV infection.

DISCUSSION

In this study, we comprehensively analyzed the innate immune profile of symptomatic ZIKV 

infection in children using Luminex, CyTOF, and RNA-seq on samples from patients who 

were either DENV-naive or DENV-immune, identified through our long-term cohort study in 

Nicaragua. Although other Zika studies have attempted to identify biomarkers based on a 

single methodology, this study provides a high-resolution view of the immune response to 

Zika in pediatric patients at three time points after infection that provides distinct molecular 

and cellular signatures. Based on analysis of all three datasets at each time point, we 

identified key players during acute ZIKV infection, including CD14+ monocytes, CD169, 

CCL2, CXCL10, and several ISGs. These results represent a highly comprehensive immune 

characterization of acute ZIKV infection in humans.

Because of the antigenic similarity between ZIKV and DENV, it has been hypothesized that 

prior immunity to DENV could affect subsequent Zika outcome, but it remains unclear how 

and to what extent. One study from our cohort in Nicaragua showed that prior DENV 

infection is protective against symptomatic ZIKV infection (Gordon et al., 2019), whereas 

another study in Brazil concluded that prior DENV infection reduced both ZIKV infection 

and disease risk (Rodriguez-Barraquer et al., 2019). Regarding the adaptive immune 

response, previous DENV immunity resulted in a more-rapid T cell response of greater 

magnitude after ZIKV infection (Grifoni et al., 2017) but only minimally influenced the 

breadth and magnitude of the post-ZIKV B cell and serum-neutralizing antibody response 

against ZIKV (Andrade et al., 2019; Collins et al., 2017). To determine the effect of prior 

DENV immunity on the innate immune response to acute ZIKV infection, we stratified our 

data into DENV-naive and DENV-immune Zika patients. Our results showed no differences 

between these groups based on the innate immune profile, suggesting that prior DENV 

infection has a minimal role in innate immunity to ZIKV infection.

Cytokines and chemokines are key players during viral infection and can be either 

detrimental or protective. Four studies in adults during the acute phase of ZIKV infection 

show strong upregulation of monocyte-associated chemokines (Foo et al., 2018; Kam et al., 
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2017; Lum et al., 2018b; Naveca et al., 2018), consistent with our findings, which also 

revealed a monocyte-associated cytokine profile. This is not surprising because monocytes 

are the primary targets of ZIKV infection in human blood (Michlmayr et al., 2017). Acute 

ZIKV infection resulted in high levels of chemokines, whereas interleukins were secreted at 

low levels. This suggests that the leukocyte recruitment axis is most affected during ZIKV 

infection, likely resulting in altered migration of immune cells into tissues for viral 

clearance. The secretion of cytokines followed four temporal patterns from early-to late-

acute phase and to convalescence. Another study of early-acute ZIKV infection showed a 

similar cytokine/chemokine profile that was associated with viremia during Zika (Naveca et 

al., 2018).

We identified CCL2 and CXCL10 as key cytokines during acute, symptomatic ZIKV 

infection, both abundantly secreted by inflammatory CD14+ monocytes. High levels of 

CCL2 correspond with expansion of CD14+ and CD14+CD16+ monocytes. The CCL2-

CCR2 axis is pivotal for monocyte recruitment to the brain and viral clearance during other 

flavivirus infections (Lim et al., 2011). Similar to our results, recent studies showed that 

CCL2 levels are high during the acute phase of ZIKV infection (Naveca et al., 2018). 

However, increased CCL2 levels have also been linked with severe DENV infection, 

including neurological complications and apoptosis of neuronal cells (de-Oliveira-Pinto et 

al., 2012; King et al., 2002). CCL2 was particularly high in ZIKV-infected pregnant women 

who delivered babies with congenital birth defects, and CCL2 was identified as a potential 

prognostic biomarker for neurological complications in infants (Kam et al., 2017). Different 

isoforms of CCL2 are secreted to varying degrees by different cells and have higher or lower 

affinity to the cognate chemokine receptor CCR2 (Carpenter et al., 2014; Leeman and 

Gilmore, 2008). Here, we identified four CCL2 isoforms, of which CCL2–201 was 

abundantly expressed and associated with early acute ZIKV infection. The functional 

implications of each CCL2 isoform in disease outcome are not yet well understood.

CXCL10 is an IFN-stimulated chemokine identified as a potential biomarker in several 

flaviviral studies (Kam et al., 2017; Naveca et al., 2018). CXCL10 binds to the chemokine 

receptor CXCR3 (Michlmayr and McKimmie, 2014) and was one of the top DETs in the 

acute phase of Zika in this study. Furthermore, CXCL10 was highly secreted during acute 

ZIKV infection and was correlated with acute-phase CD14+ monocytes (Foo et al., 2017; 

Michlmayr and McKimmie, 2014). High CXCL10 levels during the acute phase of ZIKV 

infection correlate with viremia and clinical symptoms of Zika, including neuronal damage 

in the developing baby (Kam et al., 2017; Naveca et al., 2018). High CXCL10 levels have 

been associated with severe manifestations of DENV and yellow fever virus infection 

(Chaudhary et al., 2017; Singh et al., 2017). Our results also demonstrate strong 

upregulation and secretion of CXCL10 during the acute phase of symptomatic ZIKV 

infection, as shown by Luminex and RNA-seq. However, we were unable to evaluate the role 

of CXCL10 or CCL2 in relation to disease severity because our study population 

experienced mild disease overall.

We found that certain CD14+ and CD14+CD16+ monocyte subsets are highly expanded 

during the acute phase of infection, in accordance with previous findings (Lum et al., 2018a; 

Michlmayr et al., 2017). We also show that in acute-phase, but not in convalescent-phase, 
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CD14+ monocytes, CD169 is one of the top DETs and is also highly expressed on the 

surface of CD14+ monocytes. Thus, CD169 could potentially be a biomarker of acute ZIKV 

infection. CD169 is an interesting protein because it is critical for bridging the innate and 

adaptive immune responses. CD169 is an ISG, and levels of expression correlate with HIV 

viral load (Kim et al., 2015a). Additionally, murine studies with vaccinia virus have shown 

that CD169 has a pivotal role in priming adaptive immunity via cross-presentation of 

antigens to DCs, which, in turn, activate T cells (van Dinther et al., 2018). However, more 

studies are necessary to understand the functional role of CD169 on monocytes during acute 

ZIKV infection.

Most RNA-seq studies of ZIKV to date have been performed in vitro in murine and human 

cells. These studies show that ZIKV, and the closely related DENV, lead to temporal gene 

expression differences that underscore the highly dynamic nature of infection (Carlin et al., 

2018; Popper et al., 2012). Here, we show striking differences in transcriptomic patterns by 

time point, including days 1–3 versus days 4–6 versus days 14–21, and we identify 25 

transcripts that can serve to determine the stage of disease progression. At present, this 

cannot be defined clearly or accurately in clinical practice.

Many genes upregulated during the early-acute phase were involved in interferon pathways, 

pattern-recognition factors, and ISG expression, consistent with other RNA-seq studies of 

ZIKV-infected cells in vitro (Carlin et al., 2018; Lum et al., 2018a; Sun et al., 2017; Tiwari 

et al., 2017; Yi et al., 2017). Moreover, 2′−5′-oligoadenylate synthetase (OAS) and 2′−5′-
oligoadenylate synthase-like protein (OASL) genes, among the top DEGs upregulated in 

RNA-seq, have been shown to reduce DENV and WNV replication, and polymorphisms in 

these genes in humans are associated with WNV encephalitis and dengue hemorrhagic fever/

dengue shock syndrome (Lim et al., 2009; Lin et al., 2009). STAT-2, which was also 

elevated in our study, is involved in the IFN pathway and is specifically targeted by the 

ZIKV NS5 protein, which antagonizes IFN signaling and restricts the innate immune 

response (Chaudhary et al., 2017), analogous to DENV NS5 (Ashour et al., 2009; Grant et 

al., 2016). Interferon-induced transmembrane (IFITM), another well-characterized group of 

ISGs upregulated during ZIKV infection, restricts WNV infection and pathogenesis and 

prevents ZIKV replication and ZIKV-induced cell death (Gorman et al., 2016). IFIT1, 3, and 

5 have an important role during many flavivirus infections and were in the top DETs in all 

our patients (Bowen et al., 2017; Hsu et al., 2013; Zhang et al., 2016). In particular, they 

have a beneficial role in DENV infection, preventing apoptosis and reducing DENV titers 

(Hsu et al., 2013). For ZIKV, high levels of gene expression of IFIT1 and 3 are important for 

controlling viral replication in vitro (Bowen et al., 2017). In summary, the ISGs that we 

identified have critical roles during many flavivirus infections, including ZIKV infection.

Top gene pathways enriched at the early-acute time point were associated with regulation of 

viral genome replication, type II IFN signaling pathways, apoptosis, IFN cellular response, 

regulation of IFN, and TLR signaling pathways. We created a multiscale network model that 

integrates changes in cell communities, cytokines, and gene transcript expression into a 

comprehensive map of innate immunity to ZIKV infection, leveraging modularity, rather 

than traditional interference testing. This network is valuable for the discovery of biomarkers 

Michlmayr et al. Page 12

Cell Rep. Author manuscript; available in PMC 2020 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for acute symptomatic ZIKV infection and improves our understanding of key players in the 

innate immune response in humans.

The strength of our study is that we comprehensively characterized ZIKV infection in 

humans in many children (n = 89) at two acute and one convalescent time point after onset 

of illness. One limitation of our study is that we were not able to stratify by severity of 

ZIKV infection; however, Zika is characterized by mild illness in children (Burger-Calderon 

et al., 2020), and our study population experienced insufficient severe symptoms to allow 

stratification by severity. Additionally, we could not stratify the DENV-exposed patients by 

serotype to determine whether DENV serotype affects clustering of RNA-seq, Luminex, and 

CyTOF data because this would have required many more patient samples. However, DENV 

serotype is unlikely to have a critical role because the comparison of DENV-naive and 

DENV-immune Zika patients did not reveal differences in the innate immune response. 

Furthermore, although we were not able to include markers of viral infection in our CyTOF 

panel to identify infected cell types during ZIKV infection and how infected cells change 

during acute illness, we have previously characterized ZIKV infection of peripheral blood 

mononuclear cells (PBMCs) in Nicaraguan patients (Michlmayr et al., 2017).

In conclusion, we anticipate that the comprehensive immune and molecular profiling of 89 

pediatric Zika cases at three time points that we report here will be an important resource for 

interpreting future experiments of Zika biology in cultured cells and other systems by 

providing the context of immune profiling in human patients with acute symptomatic ZIKV 

infection. Our study answered a long-standing question in the field and definitively showed 

that prior DENV exposure does not modulate the innate immune response to ZIKV 

infection. Our immune profiling revealed an innate response largely centered on changes in 

CD14+ monocyte subpopulations and monocyte-related cytokines and genes. In particular, 

CD14+ monocytes during the acute but not convalescent phase all expressed CD169. 

Furthermore, we identified CCL2 and CXCL10 as key cytokines secreted during the early- 

and late-acute phase. Our RNA-seq analysis demonstrated significant upregulation of ISGs 

and other IFN pathway genes and revealed a clear temporal pattern of gene expression 

during ZIKV infection differentiating early-acute from late-acute from convalescent phases. 

Overall, these findings provide a unique global perspective on the biomolecular and 

immunological landscape of ZIKV infection and spark new hypotheses for future studies to 

further discern the mechanisms of ZIKV pathogenesis and immunity in humans.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead contact, Eva Harris, PhD 

(eharris@berkeley.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The accession number for the RNA-seq, CyTOF and 

Luminex data sets reported in this paper is Immport: SDY1476. The raw RNA-seq data is 
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additionally deposited in “GeoOmnibus:GSE12982”. The code generated in this study is 

available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

As part of the Pediatric Dengue Cohort Study (PDCS) in Managua, Nicaragua, blood and 

urine samples collected from a total of 46 DENV-naive and 43 previously DENV-infected 

(DENV-immune) children presenting to the study health center in July and August 2016 

were included in this study. Information about sex, gender, and age for all study participants 

is shown in Table 1.

Samples were collected at three time points: early acute (day 1–3 post-symptom onset 

[p.s.o]), late acute (day 4–6 p.s.o) and convalescent (day 14–21 p.s.o) (Figure 1). We used 

PAXgene and plasma samples for RNA-seq and Luminex, respectively, for all three time 

points and PBMCs for CyTOF at the late-acute and convalescent time points, when they 

were available (Figure 1). Suspected Zika cases presented with rash, fever, or one or more of 

the following: conjunctivitis, arthralgia, myalgia, and/or peri-articular edema, regardless of 

fever. ZIKV infection was confirmed by real-time RT-PCR in acute-phase serum and/or 

urine samples performed at the National Virology Laboratory of the Ministry of Health in 

Managua using either of two triplex assays that simultaneously detect ZIKV, CHIKV and 

DENV infections: the ZCD assay (Waggoner et al., 2016a; 2016b) or the CDC Trioplex 

assay (Centers for Disease Control and Prevention (CDC), 2017), followed in some cases by 

Zika virus isolation. In addition, seroconversion by ZIKV IgM capture ELISA in paired 

acute and convalescent sera was evaluated (Balmaseda et al., 2018). Confirmed ZIKV-

positive cases were classified as DENV-naive if they entered the cohort study with no 

detectable anti-DENV antibodies, as measured by DENV inhibition ELISA (IE) assay 

(Balmaseda et al., 2006; Katzelnick et al., 2017), and had no documented DENV infections 

(symptomatic or inapparent) during their time in the cohort. Confirmed ZIKV-positive cases 

were classified as DENV-immune if they entered the cohort study with no detectable anti-

DENV antibodies and had ≥ 1 documented DENV infections during their time in the cohort 

or if they entered the cohort with detectable anti-DENV antibodies.

PBMCs were isolated from whole blood as described previously (Zompi et al., 2012). 

Sampling times closely adhered to the targeted late-acute (standard deviation [SD] = 0.5 

days) and convalescent (SD = 0.6 days) timepoints. Clinical information was collected 

during medical consults and was digitized by double-data entry with quality control checks 

performed daily and weekly. This study was conducted as a collaboration between the 

Nicaraguan Ministry of Health and the University of California, Berkeley, and was reviewed 

and approved by the Institutional Review Boards (IRBs) of the University of California, 

Berkeley, and the Nicaraguan Ministry of Health. Parents or legal guardians of all subjects 

provided written informed consent, and subjects 6 years of age and older provided verbal 

assent as approved by the IRBs.

METHODS DETAILS

PBMC isolation—For PBMC preparation, blood samples were collected in Vacutainer 

tubes (Becton-Dickenson) with EDTA anticoagulant reagent. Upon receipt in the Nicaraguan 
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National Virology Laboratory, 4–5 mL of blood was transferred into a Leucosep tube 

(Greiner Bio-One) containing 3 mL of Ficoll Histopaque (Sigma) and centrifuged at 500 g 

for 20 min at room temperature. The PBMC fraction was collected and transferred to a 15 

mL conical tube containing 9 mL of PBS with 2% fetal bovine serum (FBS; Denville 

Scientific) and 1% penicillin/streptomycin (Sigma). Cells were washed three times in this 

solution by centrifugation at 500 g for 10 min and resuspended in 10 mL of complete 

medium. Before the third wash, an aliquot was used to obtain a cell count using a 

hematology analyzer (Sismex XS-1000i). After the third wash, cells were resuspended at a 

concentration of 107 cells per ml in freezing medium consisting of 90% FBS and 10% 

dimethyl sulfoxide, and aliquoted. Cryovials containing the cell suspension were placed in 

isopropanol containers (Mr. Frosty, Nalgene) at −80°C overnight and transferred to liquid 

nitrogen for storage.

CyTOF sample processing and acquisition—CyTOF uses metal-labeled reagents and 

inductively coupled plasma mass spectrometry to overcome the limits of fluorescence 

spectral overlap in flow cytometry, allowing measurement of up to 41 analytes at single-cell 

resolution. Cryopreserved PBMC samples from the late-acute and convalescent phases of 

infection were thawed and stained with Rhodium (Rh)103 nucleic acid intercalator 

(Fluidigm) as a viability marker. The viability of cells as determined by Rh103 staining and 

the count of cells per sample are displayed in Table S8. PBMC samples that showed viable 

cell frequency of < 30%, or those for which fewer than 50,000 events were recovered were 

excluded from downstream analyses. Paired PBMC samples from each time point were first 

barcoded using a CD45 antibody-based barcoding approach (Mei et al., 2016), and each 

early and late-acute and convalescent paired sample was pooled as a single patient sample 

for subsequent processing to minimize technical variability and potential batch effects. The 

pooled patient samples were then stained with a previously tested 37-marker CyTOF 

antibody panel for 30 min on ice. The samples were then fixed, permeabilized barcoded 

using commercial palladium (Pd) barcoding kits (Fluidigm) and pooled as sets of 20 

samples. These pooled samples were then incubated with Iridium (Ir) nucleic acid 

intercalator (Fluidigm) in freshly diluted 2% formaldehyde. The samples were then stored at 

4C in PBS containing 0.1% BSA until acquisition. Immediately prior to CyTOF acquisition, 

the samples were washed with deionized water (diH20), counted and resuspended in diH20 

containing a 1/20 dilution of Equation 4 Element beads (Fluidigm). Following routine auto-

tuning, the samples were acquired on a CyTOF2 mass cytometer (Fluidigm) equipped with a 

SuperSampler fluidics system (Victorian Airships) at an event rate of < 400 Hz. Each 

composite barcoded sample required approximately 20 h of acquisition time.

CyTOF data analysis—Following data acquisition, the FCS files were normalized using 

the bead-based normalization algorithm in the CyTOF control software. Cell events 

associated with specific patients were first debarcoded based on Pd barcodes using the 

Fluidigm software, and uploaded to Cytobank for initial data processing. Normalization 

beads were excluded based on Cerium (Ce)140 signal, and cell events were identified based 

on Ir191/193 DNA signal. A conservative doublet exclusion gate was applied based on DNA 

and event length, and Rh103+ dead cells were also excluded. The cell events associated with 

the late-acute and convalescent samples were then manually de-barcoded based on CD45–
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194Pt and CD45–198Pt expression, respectively, and were split and exported as separate 

samples for subsequent analyses using a semi-supervised computational analysis pipeline. 

Potential intra-individual batch effects and PVCA were carried out as previously described 

(Michlmayr et al., 2018). Traditional hierarchical gating was applied to a subset of 20 

samples to identify 8 major immune compartments: T cells, B cells, NK cells, NKT cells, 

monocytes, mDCs, pDCs, and basophils. These manually gated data were used to train a 

logistic regression classifier (Nod label), which was then applied to identify these 

populations in all the samples. We tested the logistic regression model performance over the 

cell subsets, both by manually examining the prediction and determining the F1 score. In 

general, our logistic regression model showed acceptable performance for all cell subsets as 

measured by both precision/recall and F1 score, with larger subsets showing better 

performance due to the increased availability of training data. Next, we applied Phenograph 

(Levine et al., 2015) as an unbiased approach to define the phenotypic heterogeneity within 

each of these compartments (HybridLouvain). The cell clusters identified in each single 

sample were then meta-clustered across all samples to identify phenotypically similar 

communities that were reproducibly present across multiple samples (MetaHybridLouvain) 

(Michlmayr et al., 2018). These meta-clusters were then manually annotated based on 

overall marker expression profiles and their association with known immune cell subsets, 

allowing for the presence of additional phenotypically distinct sub-clusters within these 

known subsets. These annotations were mapped back to the individual samples, and the 

relative frequency and median marker expression patterns of these consistently annotated 

clusters were then exported for further statistical analyses. Meta-clusters that were 

characterized by protein expression patterns that did not correspond to any known cell 

subsets, including those that appeared to be cell-cell doublets, were annotated as 

“undefined” and not included in subsequent statistical or multiscale network analyses.

Multiplex ELISA—Cytokines and chemokines were measured using a multiplex ELISA-

based assay (Luminex). Each sample was run in duplicate in a 96-well micro titer plate using 

25 μL serum from each patient from early- and late-acute and convalescent time points using 

the multiplex cytokine panels (Multiplex High Sensitivity Human Cytokine Panel, Millipore 

Corp.). Forty analytes (cytokines and chemokines) were measured using a Luminex-200 

system and the XMap Platform (Luminex Corporation). Acquired mean fluorescence data 

were analyzed and calculated by the xPONENT software. The lower and upper detection 

limits for these assays are 3.0pg/mL and 15,000 pg/mL, respectively. Quality control of each 

sample was performed, and a bead count of < 50 was not used for analysis. The 

experimental design for the Luminex assay was carried out using PlateDesigner 

(platedesigner.net) with samples from the same patient being randomly allocated to a plate 

and well, guaranteeing that if technical confounders exist they can properly be adjusted for 

in the analysis steps (Suprun and Suaréz Fariñas, 2019).

Preparation of RNA sequencing libraries—Total RNA was extracted from PAXgene 

RNA blood solution with the PAXgene Blood RNA Kit (QIAGEN) by following 

manufacturers’ instructions including DNase digestion and an additional clean-up using 

RNeasy MinElute kit (QIAGEN). Purified RNA samples were quantified by Qubit 3.0 

fluorometer with RNA High Sensitivity Assay kit (Thermo-Fisher). We confirmed the 
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quality of the RNA with the RNA High Sensitivity ScreenTape using the TapeStation 2200 

(Agilent Technologies). Sample libraries were then prepared from the libraries of the 267 

samples (from three time points of 89 paired patient samples). First, ribosomal RNA (rRNA) 

and globin mRNA were removed from 200 ng total RNA, and the remaining RNA was 

fragmented and primed for cDNA synthesis using TruSeq Total Stranded RNA HT kit with 

Ribo-Zero Globin on a Microlab STAR automated liquid handling system (Hamilton). The 

libraries were barcoded with TruSeq HT indices to allow for multiplexing, and ligation-

mediated PCR was performed to enrich barcoded libraries for 15 cycles, then purified with 

the Agencourt AMPure XP beads system (Beckman Coulter). The libraries were assessed 

for quality with the high-sensitivity DNA chip in a TapeStation 2200 (Agilent) and 

quantified with KAPA Library Quantification Kits for Illumina platforms (Kapa 

Biosystems). The libraries were diluted to 2nM and combined equimolarly in pools of 12. 

These pools were then clustered using a cBot (Illumina) with a HiSeq 3000/4000 paired-end 

cluster kit on a patterned flow cell, one pool per lane. The flow cell was sequenced on a 

HiSeq4000 using a HiSeq 3000/4000 SBS kit (300 cycles, Illumina). Two technical 

replicates were sequenced per biological sample, for a total of 2 sequencing runs.

Pre-processing of RNA-seq data—Sequencer-generated base call (BCL) files were 

converted to FASTQ files, and the multiplexed samples were separated using bcl2fastq, 

which was then assessed for sequencing quality using FastQC (version 0.11.4, http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). The fastq files were quality filtered 

by using FASTAX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) with the invocation fastq 

quality filter -q 30 -p 50 -v -Q 33, and only the sequencing reads that met all quality control 

requirements were aligned to the latest human reference genome (GRCh38) using HISAT2 

(version 2.0.4) (Kim et al., 2015b). SAMtools (version 0.1.19) was used to sort and convert 

the SAM files to BAM (Li et al., 2009). Aligned sequences were assembled into potential 

transcripts, and gene expression in units of FPKM was quantified using StringTie (version 

1.2.2) (Pertea et al., 2015). To generate the count matrices for genes and transcripts of reads 

mapped to particular genomic features (genes and transcripts), Python script prepDE.py was 

used to extract the read count information directly from the files generated by StringTie.

Gene set enrichment analyses—The acute-convalescent and viral titer DET signatures 

were analyzed for enrichment of Gene Ontology (GO) biological process (The Gene 

Ontology Consortium, 2015), Panther (2016), and Reactome (2016) terms using the Enrichr 

platform (Chen et al., 2013; Fabregat et al., 2016; Mi et al., 2013). DETs were selected 

based on varying FDR and FCH thresholds to create sets of transcripts and mapped to 

unique gene symbols, which all produced qualitatively similar results for the top enriched 

terms; representative results for those DETs are presented in this study. Enrichr improves on 

the typical method of ranking term significance with one-sided Fisher’s exact tests by 

multiplying their log-scaled p values by a Z-score of the deviation from the expected rank 

for each term, which decreases the bias of the Fisher’s exact method toward terms with few 

gene assignments (Chen et al., 2013). Enrichment of WGCNA coEMs for terms from GO 

biological process (2015), Reactome (2016), and WikiPathways (2016) was similarly 

calculated using Enrichr without ranking or cutoffs (Kutmon et al., 2016). Enrichment of 
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DET signatures within each coEM was calculated using one-sided Fisher’s exact tests and a 

Benjamini-Hochberg adjustment.

Differential expression analyses—For differential expression analysis at the transcript 

level we use R packages (version 3.4.3). Transcripts where pseudo-alignment counts in units 

of counts per million (CPM) were <1 in >10 samples were removed, and the remaining 

58,650 transcripts were analyzed. Transcripts per million (TPM) values for transcript 

quantification and overlapping read counts for gene level quantification were normalized 

using the voom transformation, which models the variance based on abundance and 

heterogeneity of the samples and typically achieves better control over FDR than other 

RNA-seq methods (Law et al., 2014). Additionally, it converts the data to a linear, normally 

distributed scale allowing the use of classical linear models, including addition of covariates 

and extensions to models for longitudinal data. Expression profiles were modeled using 

mixed-effects models in the limma framework to account for the paired structure of the data. 

Limma uses an empirical Bayes moderation of the standard errors toward the prior transcript 

variances, which was fitted using an intensity-dependent trend. All models included age and 

gender as covariates. The following calculation was used for the mixed model to evaluate 

DEGs: (l Y~Age+Gender+Time). For the model evaluating changes by DENV exposure (see 

first result section), An interaction of exposure-by-time was also included in the model, but 

DENV exposure was not included in the model of Figure 5 since it did not show an effect. 

Of note, supplementary tables include the results of both models. p values from the 

moderated (paired) t test were adjusted for multiple hypotheses using the Benjamini-

Hochberg (FDR-controlling) procedure. Pathway-based visualization of differentially 

expressed genes was performed with the pathview R package and KEGG annotations (Luo 

and Brouwer, 2013; Ogata et al., 1999). For alternative splicing (AS) analysis in ZIKV 

infection, the diffSplice function in limma was applied to the dataset using both F-test and 

Simes-correction (Hu et al., 2013).

Construction of gene co-expression networks and co-expression modules—
Gene co-expression networks were constructed from the gene-level expression data for all 

samples using the WGCNA (version 1.51) and coexpp (version 0.1.0, https://bitbucket.org/

multiscale/coexpp) R packages (Zhang and Horvath, 2005). WGCNA leverages natural 

variance in expression between sampled individuals and time points to build a network 

structure from the Pearson correlations for all gene-gene pairs (Zhang and Horvath, 2005). 

WGCNA converts the gene-gene correlation matrix into an adjacency matrix using a power 

function that optimizes for scale-free topology, and adjacencies are then transformed into a 

topological overlap matrix (TOM) that represents normalized counts of neighbors that are 

shared between the nodes on either side of each edge. Genes were grouped using average-

linkage hierarchical clustering of the TOM, followed by a dynamic cut-tree algorithm that 

divides the dendrogram branches into gene coexpression network modules (coEMs) 

(Langfelder and Horvath, 2008). coexpp is a specialized implementation of WGCNA that 

optimizes memory and multicore usage. Gene expression data were preprocessed for 

WGCNA by applying a log2 transformation to the FPKM quantification and removing the 

lowest-variance quartile of genes. Relationships among coEMs and the other data were 

evaluated using eigengenes (the first principal component of each coEM), calculating the 
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Pearson correlations for all possible pairings of the coEM eigengenes, clinical variables, and 

cell subpopulations (Langfelder and Horvath, 2007). Network layout was performed using 

the ForceAtlas2 algorithm in Gephi (version 0.9.1) followed by visualization in Cytoscape 

(version 3.4.0) (Bastian and Heymann, 2009; Smoot et al., 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis—R (R-project.org) version 3.5.0 and available packages were used 

for all analyses. Luminex data were analyzed as log2 of the protein concentration obtained 

from the standard curve interpolation. IL-13 was eliminated because the value was under 

LOD for >90% of the samples. CyTOF population frequencies were log10 transformed prior 

to analysis. Batch effect for Luminex and CyTOF were visually ascertained using Principal 

component analysis (PCA) and the percentage (%) of variance explained by the batch was 

estimated by Principal variation Component analysis (PVCA). Luminex and CyTOF data 

were adjusted for each batch using a linear model with factors sex, gender, time and DENV 

pre-exposure status before ZIKV infection. Changes in laboratory markers, cell population 

frequency, marker intensity within each cell subpopulation and protein expression were 

modeled using linear mixed-effect models. The models considered fixed effects gender, age, 

and time, and when modeling by prior DENV exposure, also time by DENV exposure 

interaction, a random intercept for each patient. Hypotheses of interest were tested from the 

fitted model using contrasts and adjustment for multiple hypotheses across markers within 

each technology were carried out using the Benjamini-Hochberg procedure, which controls 

the FDR.

Visualization of small correlation matrices was performed with the corrplot R package. 

Quantitative measures of external cluster validity were calculated susing the clusterCrit R 

package (version 1.2.7). Dendogram analysis was conducted using the Dendextend R 

package. Statistical significance, error bars, heatmap scale bars, confidence intervals, and the 

exact value of n for each dataset are described in each Figure Legend and the experimental 

approach is explained in the Methods Details section.

Statistical analyses of all datasets—For all 89 patient samples quantitative measures 

of external cluster validity were calculated using the clusterCrit R package (version 1.2.7). 

Elastic net regularized regression, which fits a logistic regression model with L1 and L2 

penalties (the elastic net penalty), was performed with the glmnet R package (version 2.0–5) 

(Friedman et al., 2010). Elastic net hyper-parameters α and λ were both selected empirically 

per model by a grid search that maximized AUC under five-fold nested cross validation. 100 

bootstrap resampling runs were used to estimate the 95% confidence interval for the AUC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• CD14+ monocytes play a central role during ZIKV infection and express 

CD169

• CD169 is a biomarker of acute ZIKV infection and correlates with CXCL10 

levels

• ZIKV infection leads to distinct temporal patterns of gene and protein 

expression

• Pre-existing dengue immunity has minimal impact on the innate immune 

response to Zika
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Figure 1. Study Design
PBMC, PAXgene, and plasma samples were collected from 46 DENV-naive and 43 DENV-

immune ZIKV-infected patients at three time points after symptom onset. CyTOF, RNA-seq, 

and cytokine/chemokine multiplex ELISA (Luminex) were performed on samples as 

indicated.
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Figure 2. Comparison of Immune Signatures in DENV-Naive and DENV-Immune ZIKV Patients 
Demonstrates a Minimal Role for Prior DENV Exposure
(A) Dendrogram showing unsupervised clustering of samples based on patient-normalized 

data for Luminex, CyTOF, and RNA-seq. Pearson’s correlation was used as a distance 

metric with Ward as the agglomeration procedure.

(B) PVCA was performed for the unadjusted datasets indicating the percentage of variance 

explained by each factor.

(C and D) Heatmaps of log10-scaled cytokine levels (C) and PBMC subcommunity 

frequencies (D) for all samples. Markers were grouped using unsupervised hierarchical 

clustering, based on the distance of the time profiles between markers. Each row represents 

the standardized mean [(x m)/SD] profile for each marker, and as such, color scale ranges 

from 1.5 to 1.5 SD of the overall protein expression with red (blue) indicating 
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overexpression (under-expression) of each group versus the rest. Mean expression of 

cytokines and mean cell frequency at the late-acute time point is shown to the left of each 

heatmap depicted in either green (Luminex) or purple (CyTOF) scales. Hierarchical 

clustering was applied.

(E) Selected blood variables from the acute to the convalescent time points are shown and 

expressed as least-square mean (lsmean) with a 95% confidence interval (CI). Asterisks 

above the CI bars represent significant changes from early-acute to convalescent phase, with 

*p < 0.05, **p < 0.01, ***p < 0.001. p values at the bottom left of each plot indicate 

differences between DENV-naive and DENV-immune groups.

See also Figures S1, S2, and S3.
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Figure 3. Plasma Cytokine and Chemokine Levels during Early Acute, Late Acute, and 
Convalescent ZIKV Infections Are Differentially Expressed and Reveal a Central Role for 
Monocytes
(A) Heatmap representation of the average protein expression of significant changes (FDR < 

0.05) of cytokine levels (pg/mL) over time. The color of the heatmap in each row is based on 

Z score values calculated by centering and scaling the data by standard deviation using the 

formula (X m)/SD), where X is individual values, and m is the mean of the row.

(B) Estimated lsmean and 95% CI are shown for selected cytokines. Asterisks above the CI 

bars represent significance of the changes from late-acute or convalescent to early-acute 

phase (n = 89). The adjusted p value is shown as *FDR < 0.05, **FDR < 0.01, ***FDR < 

0.001.

See also Figures S4 and S5 and Table S1.
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Figure 4. Acute Symptomatic ZIKV Infection Results in Changes in Immunophenotypic 
Signatures
(A) Heatmap representation of the average log10-scaled cell frequency profiles in ZIKV-

infected patients for cell subcommunities (FDR < 0.05, FCH > 1.5). Values were 

standardized for each cell population. The color key to the left of the heatmap indicates the 

average abundance of that subcommunity at the late-acute phase.

(B) Changes in cell subcommunities from acute to convalescent time points (FDR < 0.05, 

FCH > 1.5).

(C) Mean cell frequency for B and T cell subsets at the late-acute (yellow) and convalescent 

(gray) phase, with asterisks representing significance among time points. Error bars are 95% 

CI; *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.
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(D) Differences in marker expression estimated as the median intensity across CD14+CD16+ 

populations (subcommunity 2 vs subcommunity 1) with a mean arcsinh (intensity) greater 

than −1.

(E) Mean marker expression for subcommunities of CD14+ monocytes that are significantly 

changed during ZIKV infection (FDR < 0.05, FCH > 1.3).

(F) Representative viSNE plots of a DENV-naive patient (patient ID 4515). The top-left 

panel depicts acute (orange) and convalescent (blue) PBMCs. The top-right, bottom-right, 

and left panels depict intensity of expression of CD14, CD11b, and CD169, respectively, in 

the same patient. Intensity of expression is expressed as color ranging from red (high 

expression) to blue (no expression).

See also Tables S2, S3, S4, and S8.
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Figure 5. ZIKV Infection Leads to Distinct Temporal Patterns of Top Gene Transcripts, DETs, 
and CCL2 Isoforms
(A) Top protein-coding transcripts with significant changes over time (FCH > 10, FDR < 

0.001) filtered to the 100 transcripts with the largest overall changes seen among all time 

points.

(B–E) Unsupervised clustering of all DETs (FCH > 2, FDR < 0.01) identify four main 

clusters with different temporal profiles: transcripts that change monotonically over time 

(B), transcripts that change at late-acute and convalescent time points (C), transcripts that 

change only at the convalescent time point (D), and transcripts that change only at the late-

acute time point (E). (B–E) For each row, the box plot on the left shows the expression 

patterns for the top cluster per time point (EA, LA, and Conv) and the right box plot 

corresponds to the bottom cluster of the heatmaps in (F). Boxplots of transcript expression 

Michlmayr et al. Page 32

Cell Rep. Author manuscript; available in PMC 2020 June 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(adjusted by mean expression per gene) represent the average time profile for each cluster. 

Lower and upper hinges of the boxplot correspond to the first and third quartiles; whiskers 

extend to the most distant values no further than 1.5× the interquartile range from the hinge.

(F) Transcripts are grouped based on increase/decrease in expression over time. Heatmaps of 

all DETs corresponding to the DETs shown in (B)–(E).

(G) Four isoforms of CCL2 transcripts and fraction of expression level of each isoform per 

time point are shown as example of DETs. Box hinges and whiskers are calculated as in (B-

E)

(H) The total expression level of CCL2 isoforms in log2 (fragments per kilobase of transcript 

per million [FPKM]).

(I) Isoform usage across each individual, grouped by the three time points

(J) Change in isoform usage across three time points. (H and J) Shown are the mean plus 

SEM for each data point.

See also Figure S6 and Tables S5 and S6.
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Figure 6. Multiscale Network Analysis Highlights the Temporal Dynamics during the Innate 
Immune Response to ZIKV Infection and Identifies Key Markers at the Protein and RNA Level
(A) Topological overlap matrix (TOM) plot of coexpression networks created from gene 

expression profiling of all samples across all time points. At the top, a dendrogram of the 

hierarchical clustering of the matrix that undergoes a dynamic tree-cut operation to form 

gene co-expression network modules (coEMs) is shown by the colored bars on the edges of 

the TOM plot (color assignment is arbitrary).

(B) Association between modules and important covariates by module. FDR-adjusted p 

values are displayed in parentheses. Colors represent the effect size of significant 

associations and are shown in the legend on the right (FDR < 0.05).

(C) Estimated lsmean and 95% CI are shown at each time point for each selected gene 

module. Asterisks above and below the CI bars represent significant changes from late-acute 
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or convalescent to early-acute time points. Asterisks above the lines connecting the time 

points represent significant changes between the late-acute and convalescent time points. 

*FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.

(D) Multiscale network of all cell subcommunities, cytokines, and coEM eigengenes are 

depicted with a force-directed layout. Light green, cell subcommunities; dark gray oval, 

coEM eigengenes; gray diamond, clinical variables; peach, cytokines; red and blue lines 

(edges) are positive or negative correlations, respectively. Lines are filtered to FDR < 0.01, 

and the thickness of the line corresponds to the square of the correlations.

See also Table S7.
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Table 1.

Baseline and Clinical Characteristics of All Study Participants

Baseline Characteristics DENV Naive DENV Immune p Value
a

 Sex, male (%) 22 (47.8) 19 (46.3) 1

 Age (mean [SD]) 8.9 (3.1) 10.2 (3.3) 0.052

 Fever at early-acute 5 (10.9) 1 (2.4) 0.26

time point (%)

 Serum (S)/Urine (U) (%)
b 0.012

 S+/U− 22 (47.8) 23 (56.1)

 S+/U+ 22 (47.8) 6 (14.6)

 S+/Unknown U status 0 (0.0) 7 (17.1)

 S−/U+ 2 (4.3) 5 (12.2)

Symptoms

 Headache (%) 18 (39.1) 13 (31.7) 0.619

 Retro-orbital pain (%) 7 (15.2) 4 (9.8) 0.659

 Erythema (%) 22 (47.8) 10 (24.4) 0.041

 Cervical lymphadenopathy (%) 5 (10.9) 5 (12.2) 1

 Reduced urine (%) 3 (6.5) 3 (7.3) 1

 Urinary nitrate (%) 7 (15.2) 6 (14.6) 1

 Bilirubin (%) 7 (15.2) 6 (14.6) 1

 Arthralgia (%) 13 (28.3) 11 (26.8) 1

 Proximal arthralgia (%) 5 (10.9) 4 (9.8) 1

 Distal arthralgia (%) 7 (15.2) 5 (12.2) 0.923

 Generalized rash (%) 23 (50.0) 17 (41.5) 0.561

 Macular rash (%) 6 (13.0) 7 (17.1) 0.822

 Papular rash (%) 3 (6.5) 5 (12.2) 0.587

 Hemoconcentration (%) 15 (32.6) 14 (34.1) 1

Sample size (subjects; samples)

 Luminex 46; 138 43; 127

 CyTOF 46; 92 42; 83

 RNA-seq 46; 138 43; 123

a
p values from chi-square test of independence.

b
Detection of ZIKV RNA by RT-PCR in serum and/or urine.

Cell Rep. Author manuscript; available in PMC 2020 June 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Michlmayr et al. Page 37

K
E

Y
 R

E
SO

U
R

C
E

S 
TA

B
L

E

R
E

A
G

E
N

T
 o

r 
R

E
SO

U
R

C
E

SO
U

R
C

E
ID

E
N

T
IF

IE
R

A
nt

ib
od

ie
s

A
nt

ib
od

ie
s 

us
ed

 f
or

 C
yT

O
F 

ar
e 

su
m

m
ar

iz
ed

 in
 T

ab
le

 S
2

A
nt

i-
hu

m
an

 C
C

R
5 

(c
lo

ne
 N

P-
6G

4)
Fl

ui
di

gm
C

at
# 

31
56

01
5A

; R
R

ID
:A

B
_2

66
18

14

A
nt

i-
hu

m
an

 S
IG

L
E

C
1(

cl
on

e 
7–

23
9)

B
io

le
ge

nd
C

at
# 

34
60

02
; R

R
ID

:A
B

_2
18

90
31

A
nt

i-
hu

m
an

 C
X

C
R

3 
(c

lo
ne

G
02

5H
7)

B
io

le
ge

nd
C

at
# 

35
37

02
; R

R
ID

:A
B

_3
53

70
2

A
nt

i-
hu

m
an

 C
D

45
R

A
 (

cl
on

e 
H

I1
30

)
B

io
le

ge
nd

C
at

# 
30

40
02

; R
R

ID
:A

B
_2

66
18

11

A
nt

i-
hu

m
an

 E
ot

ax
in

M
ill

ip
or

e 
C

or
p

C
at

# 
H

ST
C

M
A

G
-2

8S
K

A
nt

i-
hu

m
an

 F
lt.

3L
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

5
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 M
C

P1
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 C
D

19
 (

cl
on

e 
H

IB
19

)
B

io
le

ge
nd

C
at

# 
30

22
02

; R
R

ID
:A

B
_2

66
18

17

A
nt

i-
hu

m
an

B
D

C
A

1 
(c

lo
ne

 L
16

1)
B

io
le

ge
nd

C
at

# 
33

15
02

; R
R

ID
:A

B
_2

66
18

20

A
nt

i-
hu

m
an

PD
1(

cl
on

e 
E

H
12

.2
H

7)
B

io
le

ge
nd

C
at

# 
32

99
02

; R
R

ID
:A

B
_9

40
48

8

A
nt

i-
hu

m
an

 C
D

24
 (

cl
on

e 
M

L
5)

B
io

le
ge

nd
C

at
# 

31
11

02
; R

R
ID

:A
B

_3
14

85
1

A
nt

i-
hu

m
an

 C
C

R
4 

(c
lo

ne
 2

05
41

0)
R

&
D

 S
ys

te
m

s
C

at
# 

M
A

B
15

67
; R

R
ID

:A
B

_2
07

43
95

A
nt

i-
hu

m
an

 G
C

SF
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 M
C

P3
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

1A
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 T
N

Fa
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 V
E

G
F

M
ill

ip
or

e 
C

or
p

C
at

# 
H

ST
C

M
A

G
-2

8S
K

A
nt

i-
hu

m
an

 C
D

11
c 

(c
lo

ne
 B

u1
5)

B
io

le
ge

nd
C

at
# 

30
16

16
; R

R
ID

:A
B

_4
39

73
6

A
nt

i-
hu

m
an

 C
D

45
R

A
 (

cl
on

e 
H

I1
00

)
B

io
le

ge
nd

C
at

# 
30

41
02

; R
R

ID
:A

B
_3

14
40

6

A
nt

i-
hu

m
an

 C
D

12
7 

(c
lo

ne
 A

01
9D

5)
B

io
le

ge
nd

C
at

# 
35

13
02

; R
R

ID
:A

B
_1

07
18

51
3

A
nt

i-
hu

m
an

 C
E

A
C

A
M

8 
(c

lo
ne

 G
10

F5
)

B
io

le
ge

nd
C

at
# 

30
51

02
; R

R
ID

:A
B

_2
66

18
23

A
nt

i-
hu

m
an

 I
FN

g
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

12
p7

0
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

1R
A

M
ill

ip
or

e 
C

or
p

C
at

# 
H

ST
C

M
A

G
-2

8S
K

A
nt

i-
hu

m
an

 I
L

9
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

4
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

Cell Rep. Author manuscript; available in PMC 2020 June 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Michlmayr et al. Page 38

R
E

A
G

E
N

T
 o

r 
R

E
SO

U
R

C
E

SO
U

R
C

E
ID

E
N

T
IF

IE
R

A
nt

i-
hu

m
an

 I
P1

0
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 C
D

56
 (

cl
on

e 
B

15
9)

B
D

 B
io

sc
ie

nc
es

C
at

# 
55

55
13

; R
R

ID
:A

B
_2

66
18

29

A
nt

i-
hu

m
an

 C
D

16
1(

cl
on

e 
H

P-
3G

10
)

B
io

le
ge

nd
C

at
# 

33
99

02
; R

R
ID

:A
B

_2
66

18
37

A
nt

i-
hu

m
an

 E
G

F
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 T
G

Fa
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 G
R

O
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 M
D

C
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

13
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

6
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 M
IP

1a
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 M
IP

1b
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 T
N

Fb
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 C
D

4 
(c

lo
ne

 R
PA

-T
4)

B
io

le
ge

nd
C

at
# 

30
05

02
; R

R
ID

:A
B

_3
14

07
0

A
nt

i-
hu

m
an

 C
D

8 
(c

lo
ne

 R
PA

-T
8)

B
io

le
ge

nd
C

at
# 

30
10

02
; R

R
ID

:A
B

_2
66

18
18

A
nt

i-
hu

m
an

 C
X

C
R

5 
(c

lo
ne

 J
25

2D
4)

B
io

le
ge

nd
C

at
# 

35
69

02
; R

R
ID

:A
B

_2
56

18
11

A
nt

i-
hu

m
an

 C
D

38
 (

cl
on

e 
H

B
-7

)
B

io
le

ge
nd

C
at

# 
35

66
02

; R
R

ID
:A

B
_2

66
18

36

A
nt

i-
hu

m
an

 I
FN

a
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 s
C

D
40

L
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 R
A

N
T

E
S

M
ill

ip
or

e 
C

or
p

C
at

# 
H

ST
C

M
A

G
-2

8S
K

A
nt

i-
hu

m
an

 C
D

27
 (

cl
on

e 
O

32
3)

B
io

le
ge

nd
C

at
# 

30
28

02
; R

R
ID

:A
B

_2
66

18
25

A
nt

i-
hu

m
an

 C
C

R
6 

(c
lo

ne
 G

03
4E

3)
B

io
le

ge
nd

C
at

# 
35

34
02

; R
R

ID
:A

B
_1

09
18

62
5

A
nt

i-
hu

m
an

 F
ra

ct
al

ki
ne

M
ill

ip
or

e 
C

or
p

C
at

# 
H

ST
C

M
A

G
-2

8S
K

A
nt

i-
hu

m
an

 I
L

10
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

12
p4

0
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 P
D

G
F 

A
A

 B
B

M
ill

ip
or

e 
C

or
p

C
at

# 
H

ST
C

M
A

G
-2

8S
K

A
nt

i-
hu

m
an

 I
L

17
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

8
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 T
H

B
D

 (
cl

on
e 

M
80

)
B

io
le

ge
nd

C
at

# 
34

41
02

; R
R

ID
:A

B
_2

20
18

08

A
nt

i-
hu

m
an

 I
L

2R
A

 (
cl

on
e 

M
-A

25
1)

B
io

le
ge

nd
C

at
# 

35
61

02
; R

R
ID

:A
B

_2
66

18
33

A
nt

i-
hu

m
an

 C
D

3 
(c

lo
ne

 U
C

H
T

1)
B

io
le

ge
nd

C
at

# 
30

04
02

; R
R

ID
:A

B
_2

66
18

35
-

A
nt

i-
hu

m
an

 C
X

C
R

3 
(c

lo
ne

 2
A

9–
1)

B
io

le
ge

nd
C

at
# 

34
16

02
; R

R
ID

:A
B

_1
59

54
22

Cell Rep. Author manuscript; available in PMC 2020 June 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Michlmayr et al. Page 39

R
E

A
G

E
N

T
 o

r 
R

E
SO

U
R

C
E

SO
U

R
C

E
ID

E
N

T
IF

IE
R

A
nt

i-
hu

m
an

 A
X

L
 (

cl
on

e 
10

87
24

)
R

&
D

 S
ys

te
m

s
C

at
# 

M
A

B
15

4;
 R

R
ID

:A
B

_2
06

25
58

A
nt

i-
hu

m
an

 G
M

C
SF

M
ill

ip
or

e 
C

or
p

C
at

# 
H

ST
C

M
A

G
-2

8S
K

A
nt

i-
hu

m
an

 P
D

G
F 

A
A

M
ill

ip
or

e 
C

or
p

C
at

# 
H

ST
C

M
A

G
-2

8S
K

A
nt

i-
hu

m
an

 C
D

57
 (

cl
on

e 
H

C
D

57
)

B
io

le
ge

nd
C

at
# 

32
23

02
; R

R
ID

:A
B

_2
66

18
15

A
nt

i-
hu

m
an

 C
D

20
 (

cl
on

e 
2H

7)
Fl

ui
di

gm
C

at
# 

31
47

00
1B

A
nt

i-
hu

m
an

 C
D

12
3 

(c
lo

ne
 6

H
6)

B
io

le
ge

nd
C

at
# 

30
60

02
; R

R
ID

:A
B

_2
66

18
22

A
nt

i-
hu

m
an

 F
G

F2
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

15
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

1b
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

2
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

A
nt

i-
hu

m
an

 I
L

7
M

ill
ip

or
e 

C
or

p
C

at
# 

H
ST

C
M

A
G

-2
8S

K

B
io

lo
gi

ca
l S

am
pl

es

PA
X

ge
ne

 s
am

pl
es

 f
ro

m
 h

um
an

s
D

en
gu

e 
pe

di
at

ri
c 

co
ho

rt
 s

tu
dy

 in
 N

ic
ar

ag
ua

A
cc

es
si

on
 n

um
be

r:
 S

D
Y

14
76

 h
ttp

s:
//w

w
w

.im
m

po
rt

.o
rg

/h
om

e

Se
ru

m
 s

am
pl

es
 f

ro
m

 h
um

an
s

D
en

gu
e 

pe
di

at
ri

c 
co

ho
rt

 s
tu

dy
 in

 N
ic

ar
ag

ua
A

cc
es

si
on

 n
um

be
r:

 S
D

Y
14

76
 h

ttp
s:

//w
w

w
.im

m
po

rt
.o

rg
/h

om
e

PB
M

C
s 

sa
m

pl
es

 f
ro

m
 h

um
an

s
D

en
gu

e 
pe

di
at

ri
c 

co
ho

rt
 s

tu
dy

 in
 N

ic
ar

ag
ua

A
cc

es
si

on
 n

um
be

r:
 S

D
Y

14
76

 h
ttp

s:
//w

w
w

.im
m

po
rt

.o
rg

/h
om

e

C
he

m
ic

al
s,

 P
ep

tid
es

, a
nd

 R
ec

om
bi

na
nt

 P
ro

te
in

s

H
is

to
pa

qu
e-

10
77

Si
gm

a
C

at
# 

10
77

1

Fe
ta

l b
ov

in
e 

se
ru

m
 P

re
m

iu
m

 U
S 

so
ur

ce
T

ho
m

as
 s

ci
en

tif
ic

C
at

# 
10

05
83

7

Ph
os

ph
at

e 
bu

ff
er

ed
 s

al
in

e 
(P

B
S)

 G
IB

C
O

Si
gm

a
C

at
# 

P5
11

9

10
,0

00
 U

 P
en

ic
ill

in
-S

tr
ep

to
m

yc
in

Si
gm

a
C

at
# 

P4
33

3

D
im

et
hy

l s
ul

fo
xi

de
Si

gm
a

C
at

# 
C

61
64

C
el

l-
ID

 In
te

rc
al

at
or

-R
h—

50
0 

μM
Fl

ui
di

gm
C

at
# 

20
11

03
A

E
D

TA
Si

gm
a

C
at

# 
E

67
58

C
el

l-
ID

 In
te

rc
al

at
or

-I
r—

12
5 

μM
Fl

ui
di

gm
C

at
# 

20
11

92
A

E
Q

 F
ou

r 
E

le
m

en
t C

al
ib

ra
tio

n 
B

ea
ds

—
 1

00
 m

L
Fl

ui
di

gm
C

at
# 

20
10

78

Fo
rm

al
de

hy
de

 s
ol

ut
io

n
Si

gm
a-

A
ld

ri
ch

C
at

# 
25

25
49

M
ol

ec
ul

ar
 g

ra
de

 w
at

er
T

he
rm

o 
Fi

sh
er

C
at

# 
A

m
99

35

R
PM

I-
16

40
Si

gm
a

C
at

# 
R

73
88

B
en

zo
na

se
 N

uc
le

as
e

M
ill

ip
or

e
C

at
# 

E
10

14

C
ri

tic
al

 C
om

m
er

ci
al

 A
ss

ay
s

M
IL

L
IP

L
E

X
 M

A
P 

H
um

an
 H

ig
h 

Se
ns

iti
vi

ty
 C

yt
ok

in
e 

Pa
ne

l
M

ill
ip

or
e 

C
or

p
H

ST
C

M
A

G
-2

8S
K

Cell Rep. Author manuscript; available in PMC 2020 June 23.

https://www.immport.org/home
https://www.immport.org/home
https://www.immport.org/home


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Michlmayr et al. Page 40

R
E

A
G

E
N

T
 o

r 
R

E
SO

U
R

C
E

SO
U

R
C

E
ID

E
N

T
IF

IE
R

T
ru

eS
eq

 R
N

A
 C

D
 I

nd
ex

 P
la

te
 (

96
 I

nd
ex

es
, 9

6 
sa

m
pl

es
)

Il
lu

m
in

a
C

at
# 

20
01

97
92

T
ru

Se
q 

To
ta

l S
tr

an
de

d 
R

N
A

 H
T

 k
it 

(w
/R

ib
o-

Z
er

o 
G

lo
bi

n)
Il

lu
m

in
a

C
at

# 
20

02
06

12

Pa
xg

en
e 

B
lo

od
 R

N
A

 K
it

Q
IA

G
E

N
C

at
# 

76
21

64

R
N

ea
sy

 M
in

E
lu

te
 C

le
an

up
 k

it
Q

IA
G

E
N

C
at

# 
74

20
4

Q
ub

it 
R

N
A

 H
ig

h 
Se

ns
iti

vi
ty

 A
ss

ay
 k

it
T

he
rm

o 
Fi

sh
er

C
at

# 
Q

32
85

2

R
N

A
 S

cr
ee

nT
ap

es
A

gi
le

nt
C

at
# 

50
67

-5
57

6

D
10

00
 S

cr
ee

nT
ap

es
A

gi
le

nt
C

at
# 

50
67

-5
58

2

Su
pe

rs
cr

ip
t I

I
In

vi
tr

og
en

C
at

# 
18

-0
64

-0
22

K
A

PA
 L

ib
ra

ry
 Q

ua
nt

if
ic

at
io

n 
K

it 
Il

lu
m

in
a

K
ap

a 
B

io
sy

st
em

s
C

at
# 

79
96

02
98

00
1

H
iS

eq
 3

00
0/

40
00

 p
ai

re
d-

en
d 

cl
us

te
r 

ki
t

Il
lu

m
in

a
C

at
# 

PE
41

0-
10

01

H
iS

eq
 3

00
0/

40
00

 S
B

S 
ki

t
Il

lu
m

in
a

C
at

# 
FC

41
0-

10
03

A
ge

nc
ou

rt
 A

M
Pu

re
 X

P 
be

ad
s 

sy
st

em
B

ec
km

an
 C

ou
lte

r
C

at
# 

A
63

88
1

C
el

l-
ID

 2
0-

Pl
ex

 P
d 

B
ar

co
di

ng
 K

it
Fl

ui
di

gm
C

at
# 

20
10

60

M
A

X
PA

R
 X

8 
M

ul
tim

et
al

 la
be

lin
g 

ki
t

Fu
id

ig
m

C
at

# 
20

13
00

D
ep

os
ite

d 
D

at
a

R
N

A
-s

eq
 tr

an
sc

ri
pt

 a
nd

 g
en

e 
da

ta
T

hi
s 

st
ud

y
ht

tp
s:

//w
w

w
.n

cb
i.n

lm
.n

ih
.g

ov
/g

eo
 A

cc
es

si
on

 n
um

be
r:

 G
E

O
: 

G
SE

12
98

2 
an

d 
ht

tp
s:

//w
w

w
.im

m
po

rt
.o

rg
/h

om
e 

“I
m

m
po

rt
: 

SD
Y

14
76

”

L
um

in
ex

 d
at

a
T

hi
s 

st
ud

y
ht

tp
s:

//w
w

w
.im

m
po

rt
.o

rg
/h

om
e 

“I
m

m
po

rt
: S

D
Y

14
76

”

C
yT

O
F 

da
ta

T
hi

s 
st

ud
y

ht
tp

s:
//w

w
w

.im
m

po
rt

.o
rg

/h
om

e 
“I

m
m

po
rt

 : 
SD

Y
14

76
” 

ht
tp

s:
//f

lo
w

re
po

si
to

ry
.o

rg
/: 

FR
-F

C
M

-Z
2H

Q

So
ft

w
ar

e 
an

d 
A

lg
or

ith
m

s

C
yT

O
F 

an
al

ys
is

C
yt

ob
an

k
ht

tp
s:

//w
w

w
.c

yt
ob

an
k.

or
g/

X
M

ap
 P

la
tf

or
m

L
um

in
ex

 C
or

po
ra

tio
n

ht
tp

s:
//w

w
w

.lu
m

in
ex

co
rp

.c
om

/x
m

ap
-t

ec
hn

ol
og

y

Pl
at

eD
es

ig
ne

r
Su

pr
un

 a
nd

 S
ua

ré
z 

Fa
ri

ña
s,

 2
01

9
pl

at
ed

es
ig

ne
r.n

et

xP
O

N
E

N
T

 M
ul

tip
le

x 
an

al
ys

is
 s

of
tw

ar
e

L
um

in
ex

 c
or

po
ra

tio
n

ht
tp

s:
//w

w
w

.lu
m

in
ex

co
rp

.c
om

/x
po

ne
nt

/

R
N

A
 -

pr
ep

ro
ce

ss
in

g 
re

ad
s 

FA
ST

Q
C

FA
ST

Q
C

ht
tp

://
w

w
w

.b
io

in
fo

rm
at

ic
s.

ba
br

ah
am

.a
c.

uk
/p

ro
je

ct
s/

fa
st

qc
/

R
N

A
-p

re
pr

oc
es

si
ng

 to
ol

 F
A

ST
A

X
 T

oo
lk

it
K

im
 e

t a
l.,

 2
01

5a
(h

ttp
://

ha
nn

on
la

b.
cs

hl
.e

du
/f

as
tx

_t
oo

lk
it/

 v
er

si
on

 0
.1

1.
4

H
IS

A
T

 2
K

im
 e

t a
l.,

 2
01

5b
ht

tp
://

da
eh

w
an

ki
m

la
b.

gi
th

ub
.io

/h
is

at
2/

 (
ve

rs
io

n 
2.

0.
4)

SA
M

to
ol

s
L

i e
t a

l.,
 2

00
9

ht
tp

://
sa

m
to

ol
s.

so
ur

ce
fo

rg
e.

ne
t/ 

(v
er

si
on

 0
.1

.1
9)

St
ri

ng
T

ie
Pe

rt
ea

 e
t a

l.,
 2

01
5

ht
tp

s:
//c

cb
.jh

u.
ed

u/
so

ft
w

ar
e/

st
ri

ng
tie

/ (
ve

rs
io

n 
1.

2.
2)

Py
th

on
pr

ep
D

E
.p

y
ht

tp
s:

//w
w

w
.p

yt
ho

n.
or

g/

Cell Rep. Author manuscript; available in PMC 2020 June 23.

https://www.ncbi.nlm.nih.gov/geo
https://www.immport.org/home
https://www.immport.org/home
https://www.immport.org/home
https://flowrepository.org/
https://www.cytobank.org/
https://www.luminexcorp.com/xmap-technology
http://platedesigner.net
https://www.luminexcorp.com/xponent/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://daehwankimlab.github.io/hisat2/
http://samtools.sourceforge.net/
https://ccb.jhu.edu/software/stringtie/
https://www.python.org/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Michlmayr et al. Page 41

R
E

A
G

E
N

T
 o

r 
R

E
SO

U
R

C
E

SO
U

R
C

E
ID

E
N

T
IF

IE
R

E
nr

ic
hR

 p
la

tf
or

m
C

he
n 

et
 a

l.,
 2

01
3;

 F
ab

re
ga

t e
t a

l.,
 2

01
6;

 M
i 

et
 a

l.,
 2

01
3)

ht
tp

s:
//a

m
p.

ph
ar

m
.m

ss
m

.e
du

/E
nr

ic
hr

/

G
en

e 
O

nt
ol

og
y 

(G
O

) 
bi

ol
og

ic
al

 p
ro

ce
ss

T
he

 G
en

e 
O

nt
ol

og
y 

C
on

so
rt

iu
m

, 2
01

9;
 

A
sh

bu
rn

er
 e

t a
l.,

 2
00

0
ht

tp
://

ge
ne

on
to

lo
gy

.o
rg

/

Pa
nt

he
r

Pa
nt

he
r, 

20
16

ht
tp

://
w

w
w

.p
an

th
er

db
.o

rg
/

R
ea

ct
om

e
R

ea
ct

om
e,

 2
01

6
ht

tp
s:

//r
ea

ct
om

e.
or

g/

W
ik

iP
at

hw
ay

s
W

ik
iP

at
hw

ay
s,

 2
01

6
ht

tp
s:

//w
w

w
.w

ik
ip

at
hw

ay
s.

or
g/

in
de

x.
ph

p/
W

ik
iP

at
hw

ay
s

R
 s

tu
di

o
R

 p
ro

je
ct

ht
tp

s:
//w

w
w

.r
-p

ro
je

ct
.o

rg
/ (

ve
rs

io
n 

3.
5.

0)

vo
om

L
aw

 e
t a

l.,
 2

01
4

ht
tp

s:
//r

dr
r.i

o/
bi

oc
/li

m
m

a/
m

an
/v

oo
m

.h
tm

l

K
E

G
G

L
uo

 a
nd

 B
ro

uw
er

, 2
01

3;
 O

ga
ta

 e
t a

l.,
 1

99
9

ht
tp

s:
//w

w
w

.g
en

om
e.

jp
/k

eg
g/

an
no

ta
tio

n/

lim
m

a
Sm

yt
h 

et
 a

l.,
 2

00
5

ht
tp

s:
//b

io
co

nd
uc

to
r.o

rg
/p

ac
ka

ge
s/

re
le

as
e/

bi
oc

/h
tm

l/
lim

m
a.

ht
m

l

W
G

C
N

A
Z

ha
ng

 a
nd

 H
or

va
th

, 2
00

5
ht

tp
s:

//c
ra

n.
r-

pr
oj

ec
t.o

rg
/w

eb
/p

ac
ka

ge
s/

W
G

C
N

A
/in

de
x.

ht
m

l 
(v

er
si

on
 1

.5
1)

co
ex

pp
Z

ha
ng

 a
nd

 H
or

va
th

, 2
00

5
(v

er
si

on
 0

.1
.0

, h
ttp

s:
//b

itb
uc

ke
t.o

rg
/m

ul
tis

ca
le

/c
oe

xp
p)

Fo
rc

eA
tla

s2
 a

lg
or

ith
m

B
as

tia
n 

an
d 

H
ey

m
an

n,
 2

00
9,

 I
nt

. A
ss

oc
. 

A
dv

. A
rt

if
. I

nt
el

l. 
C

on
f.

 W
eb

lo
gs

 S
oc

. 
M

ed
ia

, c
on

fe
re

nc
e

ht
tp

s:
//g

ith
ub

.c
om

/g
ep

hi
/g

ep
hi

/w
ik

i/F
or

ce
-A

tla
s-

2 
G

ep
hi

 
(v

er
si

on
 0

.9
.1

)

C
yt

os
ca

pe
B

as
tia

n 
an

d 
H

ey
m

an
n,

 2
00

9,
 I

nt
. A

ss
oc

. 
A

dv
. A

rt
if

. I
nt

el
l. 

C
on

f.
 W

eb
lo

gs
 S

oc
. 

M
ed

ia
, c

on
fe

re
nc

e;
 S

m
oo

t e
t a

l.,
 2

01
1

ht
tp

s:
//c

yt
os

ca
pe

.o
rg

/ (
ve

rs
io

n 
3.

4.
0)

co
rr

pl
ot

R
-p

ro
je

ct
ht

tp
s:

//c
ra

n.
r-

pr
oj

ec
t.o

rg
/w

eb
/p

ac
ka

ge
s/

co
rr

pl
ot

/v
ig

ne
tte

s/
co

rr
pl

ot
-i

nt
ro

.h
tm

l

cl
us

te
rC

ri
t R

R
-p

ro
je

ct
ht

tp
s:

//c
ra

n.
r-

pr
oj

ec
t.o

rg
/w

eb
/p

ac
ka

ge
s/

cl
us

te
rC

ri
t/i

nd
ex

.h
tm

l 
(v

er
si

on
 1

.2
.7

).

D
en

de
xt

en
d 

R
 p

ac
ka

ge
R

-p
ro

je
ct

ht
tp

s:
//c

ra
n.

r-
pr

oj
ec

t.o
rg

/w
eb

/p
ac

ka
ge

s/
de

nd
ex

te
nd

/
in

de
x.

ht
m

l

gl
m

ne
t R

 p
ac

ka
ge

Fr
ie

dm
an

 e
t a

l.,
 2

01
0

ht
tp

s:
//c

ra
n.

r-
pr

oj
ec

t.o
rg

/w
eb

/p
ac

ka
ge

s/
gl

m
ne

t/i
nd

ex
.h

tm
l 

(v
er

si
on

 2
.0

-5
)

Cell Rep. Author manuscript; available in PMC 2020 June 23.

https://amp.pharm.mssm.edu/Enrichr/
http://geneontology.org/
http://www.pantherdb.org/
https://reactome.org/
https://www.wikipathways.org/index.php/WikiPathways
https://www.r-project.org/
https://rdrr.io/bioc/limma/man/voom.html
https://www.genome.jp/kegg/annotation/
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://bitbucket.org/multiscale/coexpp
https://github.com/gephi/gephi/wiki/Force-Atlas-2
https://cytoscape.org/
https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/clusterCrit/index.html
https://cran.r-project.org/web/packages/dendextend/index.html
https://cran.r-project.org/web/packages/dendextend/index.html
https://cran.r-project.org/web/packages/glmnet/index.html

	SUMMARY
	Graphical Abstract
	In Brief
	INTRODUCTION
	RESULTS
	Prior DENV Infection Does Not Modulate the Innate Immune Response to ZIKV
	ZIKV Infection Results in an Inflammatory and Monocyte-Associated Innate Immune Response
	CD14+ Monocytes Are Differentially Expanded during Acute and Convalescent Time Points of ZIKV Infection
	Transcriptomic Signatures of ZIKV Infection Exhibit Temporal Patterns
	A Multiscale Interaction Network Reveals a Roadmap of the Innate Immune Response to ZIKV Infection

	DISCUSSION
	STAR★METHODS
	RESOURCE AVAILABILITY
	Lead Contact
	Materials Availability
	Data and Code Availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	METHODS DETAILS
	PBMC isolation
	CyTOF sample processing and acquisition
	CyTOF data analysis
	Multiplex ELISA
	Preparation of RNA sequencing libraries
	Pre-processing of RNA-seq data
	Gene set enrichment analyses
	Differential expression analyses
	Construction of gene co-expression networks and co-expression modules

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Statistical Analysis
	Statistical analyses of all datasets


	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	KEY RESOURCES TABLEREAGENT or RESOURCESOURCEIDENTIFIERAntibodiesAntibodies used for CyTOF are summarized in Table S2Anti-human CCR5 (clone NP-6G4)FluidigmCat# 3156015A; RRID:AB_2661814Anti-human SIGLEC1(clone 7–239)BiolegendCat# 346002; RRID:AB_2189031Anti-human CXCR3 (cloneG025H7)BiolegendCat# 353702; RRID:AB_353702Anti-human CD45RA (clone HI130)BiolegendCat# 304002; RRID:AB_2661811Anti-human EotaxinMillipore CorpCat# HSTCMAG-28SKAnti-human Flt.3LMillipore CorpCat# HSTCMAG-28SKAnti-human IL5Millipore CorpCat# HSTCMAG-28SKAnti-human MCP1Millipore CorpCat# HSTCMAG-28SKAnti-human CD19 (clone HIB19)BiolegendCat# 302202; RRID:AB_2661817Anti-humanBDCA1 (clone L161)BiolegendCat# 331502; RRID:AB_2661820Anti-humanPD1(clone EH12.2H7)BiolegendCat# 329902; RRID:AB_940488Anti-human CD24 (clone ML5)BiolegendCat# 311102; RRID:AB_314851Anti-human CCR4 (clone 205410)R&D SystemsCat# MAB1567; RRID:AB_2074395Anti-human GCSFMillipore CorpCat# HSTCMAG-28SKAnti-human MCP3Millipore CorpCat# HSTCMAG-28SKAnti-human IL1AMillipore CorpCat# HSTCMAG-28SKAnti-human TNFaMillipore CorpCat# HSTCMAG-28SKAnti-human VEGFMillipore CorpCat# HSTCMAG-28SKAnti-human CD11c (clone Bu15)BiolegendCat# 301616; RRID:AB_439736Anti-human CD45RA (clone HI100)BiolegendCat# 304102; RRID:AB_314406Anti-human CD127 (clone A019D5)BiolegendCat# 351302; RRID:AB_10718513Anti-human CEACAM8 (clone G10F5)BiolegendCat# 305102; RRID:AB_2661823Anti-human IFNgMillipore CorpCat# HSTCMAG-28SKAnti-human IL12p70Millipore CorpCat# HSTCMAG-28SKAnti-human IL1RAMillipore CorpCat# HSTCMAG-28SKAnti-human IL9Millipore CorpCat# HSTCMAG-28SKAnti-human IL4Millipore CorpCat# HSTCMAG-28SKAnti-human IP10Millipore CorpCat# HSTCMAG-28SKAnti-human CD56 (clone B159)BD BiosciencesCat# 555513; RRID:AB_2661829Anti-human CD161(clone HP-3G10)BiolegendCat# 339902; RRID:AB_2661837Anti-human EGFMillipore CorpCat# HSTCMAG-28SKAnti-human TGFaMillipore CorpCat# HSTCMAG-28SKAnti-human GROMillipore CorpCat# HSTCMAG-28SKAnti-human MDCMillipore CorpCat# HSTCMAG-28SKAnti-human IL13Millipore CorpCat# HSTCMAG-28SKAnti-human IL6Millipore CorpCat# HSTCMAG-28SKAnti-human MIP1aMillipore CorpCat# HSTCMAG-28SKAnti-human MIP1bMillipore CorpCat# HSTCMAG-28SKAnti-human TNFbMillipore CorpCat# HSTCMAG-28SKAnti-human CD4 (clone RPA-T4)BiolegendCat# 300502; RRID:AB_314070Anti-human CD8 (clone RPA-T8)BiolegendCat# 301002; RRID:AB_2661818Anti-human CXCR5 (clone J252D4)BiolegendCat# 356902; RRID:AB_2561811Anti-human CD38 (clone HB-7)BiolegendCat# 356602; RRID:AB_2661836Anti-human IFNaMillipore CorpCat# HSTCMAG-28SKAnti-human sCD40LMillipore CorpCat# HSTCMAG-28SKAnti-human RANTESMillipore CorpCat# HSTCMAG-28SKAnti-human CD27 (clone O323)BiolegendCat# 302802; RRID:AB_2661825Anti-human CCR6 (clone G034E3)BiolegendCat# 353402; RRID:AB_10918625Anti-human FractalkineMillipore CorpCat# HSTCMAG-28SKAnti-human IL10Millipore CorpCat# HSTCMAG-28SKAnti-human IL12p40Millipore CorpCat# HSTCMAG-28SKAnti-human PDGF AA BBMillipore CorpCat# HSTCMAG-28SKAnti-human IL17Millipore CorpCat# HSTCMAG-28SKAnti-human IL8Millipore CorpCat# HSTCMAG-28SKAnti-human THBD (clone M80)BiolegendCat# 344102; RRID:AB_2201808Anti-human IL2RA (clone M-A251)BiolegendCat# 356102; RRID:AB_2661833Anti-human CD3 (clone UCHT1)BiolegendCat# 300402; RRID:AB_2661835-Anti-human CXCR3 (clone 2A9–1)BiolegendCat# 341602; RRID:AB_1595422Anti-human AXL (clone 108724)R&D SystemsCat# MAB154; RRID:AB_2062558Anti-human GMCSFMillipore CorpCat# HSTCMAG-28SKAnti-human PDGF AAMillipore CorpCat# HSTCMAG-28SKAnti-human CD57 (clone HCD57)BiolegendCat# 322302; RRID:AB_2661815Anti-human CD20 (clone 2H7)FluidigmCat# 3147001BAnti-human CD123 (clone 6H6)BiolegendCat# 306002; RRID:AB_2661822Anti-human FGF2Millipore CorpCat# HSTCMAG-28SKAnti-human IL15Millipore CorpCat# HSTCMAG-28SKAnti-human IL1bMillipore CorpCat# HSTCMAG-28SKAnti-human IL2Millipore CorpCat# HSTCMAG-28SKAnti-human IL7Millipore CorpCat# HSTCMAG-28SKBiological SamplesPAXgene samples from humansDengue pediatric cohort study in NicaraguaAccession number: SDY1476 https://www.immport.org/homeSerum samples from humansDengue pediatric cohort study in NicaraguaAccession number: SDY1476 https://www.immport.org/homePBMCs samples from humansDengue pediatric cohort study in NicaraguaAccession number: SDY1476 https://www.immport.org/homeChemicals, Peptides, and Recombinant ProteinsHistopaque-1077SigmaCat# 10771Fetal bovine serum Premium US sourceThomas scientificCat# 1005837Phosphate buffered saline (PBS) GIBCOSigmaCat# P511910,000 U Penicillin-StreptomycinSigmaCat# P4333Dimethyl sulfoxideSigmaCat# C6164Cell-ID Intercalator-Rh—500 μMFluidigmCat# 201103AEDTASigmaCat# E6758Cell-ID Intercalator-Ir—125 μMFluidigmCat# 201192AEQ Four Element Calibration Beads— 100 mLFluidigmCat# 201078Formaldehyde solutionSigma-AldrichCat# 252549Molecular grade waterThermo FisherCat# Am9935RPMI-1640SigmaCat# R7388Benzonase NucleaseMilliporeCat# E1014Critical Commercial AssaysMILLIPLEX MAP Human High Sensitivity Cytokine PanelMillipore CorpHSTCMAG-28SKTrueSeq RNA CD Index Plate (96 Indexes, 96 samples)IlluminaCat# 20019792TruSeq Total Stranded RNA HT kit (w/Ribo-Zero Globin)IlluminaCat# 20020612Paxgene Blood RNA KitQIAGENCat# 762164RNeasy MinElute Cleanup kitQIAGENCat# 74204Qubit RNA High Sensitivity Assay kitThermo FisherCat# Q32852RNA ScreenTapesAgilentCat# 5067-5576D1000 ScreenTapesAgilentCat# 5067-5582Superscript IIInvitrogenCat# 18-064-022KAPA Library Quantification Kit IlluminaKapa BiosystemsCat# 79960298001HiSeq 3000/4000 paired-end cluster kitIlluminaCat# PE410-1001HiSeq 3000/4000 SBS kitIlluminaCat# FC410-1003Agencourt AMPure XP beads systemBeckman CoulterCat# A63881Cell-ID 20-Plex Pd Barcoding KitFluidigmCat# 201060MAXPAR X8 Multimetal labeling kitFuidigmCat# 201300Deposited DataRNA-seq transcript and gene dataThis studyhttps://www.ncbi.nlm.nih.gov/geo Accession number: GEO: GSE12982 and https://www.immport.org/home “Immport: SDY1476”Luminex dataThis studyhttps://www.immport.org/home “Immport: SDY1476”CyTOF dataThis studyhttps://www.immport.org/home “Immport : SDY1476” https://flowrepository.org/: FR-FCM-Z2HQSoftware and AlgorithmsCyTOF analysisCytobankhttps://www.cytobank.org/XMap PlatformLuminex Corporationhttps://www.luminexcorp.com/xmap-technologyPlateDesignerSuprun and Suaréz Fariñas, 2019platedesigner.netxPONENT Multiplex analysis softwareLuminex corporationhttps://www.luminexcorp.com/xponent/RNA -preprocessing reads FASTQCFASTQChttp://www.bioinformatics.babraham.ac.uk/projects/fastqc/RNA-preprocessing tool FASTAX ToolkitKim et al., 2015a(http://hannonlab.cshl.edu/fastx_toolkit/ version 0.11.4HISAT 2Kim et al., 2015bhttp://daehwankimlab.github.io/hisat2/ (version 2.0.4)SAMtoolsLi et al., 2009http://samtools.sourceforge.net/ (version 0.1.19)StringTiePertea et al., 2015https://ccb.jhu.edu/software/stringtie/ (version 1.2.2)PythonprepDE.pyhttps://www.python.org/EnrichR platformChen et al., 2013; Fabregat et al., 2016; Mi et al., 2013)https://amp.pharm.mssm.edu/Enrichr/Gene Ontology (GO) biological processThe Gene Ontology Consortium, 2019; Ashburner et al., 2000http://geneontology.org/PantherPanther, 2016http://www.pantherdb.org/ReactomeReactome, 2016https://reactome.org/WikiPathwaysWikiPathways, 2016https://www.wikipathways.org/index.php/WikiPathwaysR studioR projecthttps://www.r-project.org/ (version 3.5.0)voomLaw et al., 2014https://rdrr.io/bioc/limma/man/voom.htmlKEGGLuo and Brouwer, 2013; Ogata et al., 1999https://www.genome.jp/kegg/annotation/limmaSmyth et al., 2005https://bioconductor.org/packages/release/bioc/html/limma.htmlWGCNAZhang and Horvath, 2005https://cran.r-project.org/web/packages/WGCNA/index.html (version 1.51)coexppZhang and Horvath, 2005(version 0.1.0, https://bitbucket.org/multiscale/coexpp)ForceAtlas2 algorithmBastian and Heymann, 2009, Int. Assoc. Adv. Artif. Intell. Conf. Weblogs Soc. Media, conferencehttps://github.com/gephi/gephi/wiki/Force-Atlas-2 Gephi (version 0.9.1)CytoscapeBastian and Heymann, 2009, Int. Assoc. Adv. Artif. Intell. Conf. Weblogs Soc. Media, conference; Smoot et al., 2011https://cytoscape.org/ (version 3.4.0)corrplotR-projecthttps://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.htmlclusterCrit RR-projecthttps://cran.r-project.org/web/packages/clusterCrit/index.html (version 1.2.7).Dendextend R packageR-projecthttps://cran.r-project.org/web/packages/dendextend/index.htmlglmnet R packageFriedman et al., 2010https://cran.r-project.org/web/packages/glmnet/index.html (version 2.0-5)



