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Rapidly rotating Rayleigh-Bénard convection is studied by combining results from direct numerical
simulations (DNS), laboratory experiments, and asymptotic modeling. The asymptotic theory is shown to
provide a good description of the bulk dynamics at low, but finite Rossby number. However, large
deviations from the asymptotically predicted heat transfer scaling are found, with laboratory experiments
and DNS consistently yielding much larger Nusselt numbers than expected. These deviations are traced
down to dynamically active Ekman boundary layers, which are shown to play an integral part in controlling
heat transfer even for Ekman numbers as small as 10−7. By adding an analytical parametrization of the
Ekman transport to simulations using stress-free boundary conditions, we demonstrate that the heat transfer
jumps from values broadly compatible with the asymptotic theory to states of strongly increased heat
transfer, in good quantitative agreement with no-slip DNS and compatible with the experimental data.
Finally, similarly to nonrotating convection, we find no single scaling behavior, but instead that multiple
well-defined dynamical regimes exist in rapidly rotating convection systems.

DOI: 10.1103/PhysRevLett.113.254501 PACS numbers: 47.20.Bp, 47.27.-i, 47.32.Ef, 47.55.pb

Rapidly rotating thermal convection is ubiquitous in
nature. It occurs in the ocean, in the liquid metal cores of
terrestrial planets, in gas giants, and in rapidly rotating
stars. All these systems are highly turbulent, but at the same
time Coriolis forces chiefly control their dynamics. It is this
dominating role of Coriolis forces which gives convection
in many large-scale natural systems its distinctive character.
Different from nonrotating convection, where large

regions of the parameter space have been explored exten-
sively over the last decades [1], both experiments and direct
numerical simulations (DNS) face serious difficulties in
entering the turbulent, but rotationally constrained regime.
While experiments easily reach high levels of turbulence,
they struggle to ensure that Coriolis forces remain dom-
inant in the force balance [2–4]. Numerical simulations
suffer from the enormous range of spatial and temporal
scales that need to be resolved. As a consequence, the
available data are scarce, and the scaling laws that are
needed for quantifying the effects of convection in large-
scale natural systems remain poorly constrained.
The canonical framework to study rotating convection is

the rotating Rayleigh-Bénard system. A plane fluid layer of
depth H, destabilized by a constant temperature difference
ΔT between the boundaries, rotates about a vertical axis
with angular velocity Ω. Within the Boussinesq approxi-
mation, three nondimensional parameters control the sys-
tem behavior. The Rayleigh number Ra ¼ gαΔTH3=κν,
where g denotes gravitational acceleration, α the thermal

expansion coefficient, ν the kinematic viscosity, and κ the
thermal diffusivity, measures the forcing strength. The
Ekman number E ¼ ν=2ΩH2 is defined as the ratio of
the rotational time scale to the viscous diffusion time scale.
Finally, the Prandtl number Pr ¼ ν=κ signifies the effi-
ciency of viscous relative to thermal diffusion. A combi-
nation of these parameters, the convective Rossby number
Roc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
E, is often used as a proxy for the

importance of rotation relative to the thermal forcing.
Rapidly rotating convection is characterized by Roc ≪ 1,

with the asymptotic limit Roc → 0 representing an impor-
tant limiting case. Previous theoretical work [5,6] has
shown that the governing equations can be simplified
substantially in this limit. The resulting reduced set of
equations, essentially a nonhydrostatic quasigeostrophic
model, is expected to hold for Ra ≤ OðE−5=3Þ and Pr ≥
OðE1=4Þ [7]. The Ekman layer is assumed to become
passive at small E [8,9], and its OðE1=2Þ vertical transport
is assumed to be negligible for the dynamics in this regime
[6,10,11]. Numerical simulations using the reduced equa-
tions have revealed a rich dynamical behavior [6,7,11],
characterized by the existence of several distinct flow
regimes, each associated with different heat transfer
properties.
Previous experiments [12–15] and DNS [15,16] barely

reach into the rapidly rotating regime, and their relation to
the asymptotic model is thus unclear. Here, we attempt to
establish such a relation by pushing direct numerical
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simulations and laboratory experiments further into the
rapidly rotating regime, where a comparison to asymptotic
models becomes meaningful. A central result of our study
is that the behavior in the bulk is well described by the
asymptotic model, while, contrary to common expect-
ations, the viscous boundary layer dynamics largely con-
trols the heat transfer scaling whenever the fluid layer is
confined between no-slip boundaries. In fact, even for the
lowest Ekman numbers that can be reached in laboratory
experiments and DNS today, viscous boundary layers are
shown to massively boost the heat transfer in the low
Rossby number regime, leading to a considerable increase
of the exponent α in power laws of the form Nu ¼ fðPr; EÞ
Raα, where the Nusselt number Nu is defined as the total
heat flow normalized by the purely conductive value.
To illustrate this, Fig. 1 shows the Nusselt numbers

found in DNS and in experiments at E ≈ 10−7. In order to
compare our results with the asymptotic predictions, we usefRa ¼ RaE4=3 as a measure for the supercriticality of the
system [6]. The DNS employ both no-slip and stress-free
boundary conditions, and are carried out in a horizontally
periodic box with an aspect ratio Γ ¼ 10l⊥H−1, where l⊥ is
the critical wavelength of the marginally unstable mode for
the stress-free case. Resolutions up to 576 × 576 × 513
grid points are used to fully resolve the flow down to the
dissipation scale. Care has also been taken to resolve the
thin Ekman layers, characterized by an OðE1=2HÞ thick-
ness, with a minimum of ten grid points. Experiments made

using water with Pr≈7 as the working fluid are carried out
in axially aligned cylindrical containers with diameters of
18.73 cm and heights of 40, 80, and 160 cm. A detailed
description of the numerical and experimental techniques
are, respectively, given in [17] and [2,4].
For stress-free boundary conditions and moderate fRa,

Fig. 1 reveals an excellent agreement between DNS and the
asymptotic results, which becomes poorer for fRa > 50. The
results are broadly compatible with α ¼ 3=2 at high fRa, as
expected for diffusion independent turbulent heat transfer
[11]; see also [18]. The interior temperature gradient found
in the DNS follows the asymptotic results closely over the
entire range of fRa considered in this study. In contrast,
DNS and the asymptotic results diverge strongly for no-slip
boundary conditions. From onset on, the DNS reveals a
much steeper heat transfer scaling, broadly compatible with
the α ∼ 3 scaling proposed in [2], which flattens out as soon
as the interior temperature gradient reaches its minimum.
At this point, the different scaling behavior has resulted in a
Nusselt number that exceeds the corresponding values
obtained for stress-free boundaries by more than 800%
for Pr ¼ 7. Data from laboratory experiments, denoted by
stars in Fig. 1, are in line with these numerical findings.
The excellent agreement found between DNS with

stress-free boundaries and the asymptotic results suggests
that the bulk dynamics is well captured by the asymptotic
model. This conjecture is supported by the fact that the
reduced model also provides a qualitatively correct picture
of the dominant flow regimes in the bulk of the convective
layer for no-slip DNS. For small fRa, a cellular regime is
found [Fig. 2(a)], which gives way to a regime charac-
terized by so-called convective Taylor columns (CTCs)
[19] as fRa is increased [Fig. 2(b)]. The up- and downwel-
lings form intense columnar structures, which are less
densely packed than in the cellular regime. Their intense
vortex cores are shielded by weaker sheets of opposite
vorticity and temperature anomaly, preventing them from
being destroyed by vortex-vortex interactions. The interior
temperature gradient decreases with fRa through the cellular
and CTC regime. Its downward trend is finally broken
when the CTCs begin to lose their shields, which exposes
the vortex cores. Violent vortical interactions then destroy
the vertically coherent columns and lead to the formation
of plume-like structures [Fig. 2(c)], which is accompanied
by an increasing interior temperature gradient. For
Pr ¼ 1, the system directly evolves from the cellular regime
to this plume state, without forming CTCs. A further
increase of fRa then leads to a complete breakdown of
vertical coherence for Pr ¼ 1 [Fig. 2(d)], the interior
temperature gradient saturates and the flow enters a regime
called geostrophic turbulence (GT). Similar regimes are
also observed in the stress-free case, with the regime
boundaries agreeing well with the asymptotic model even
quantitatively.
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FIG. 1 (color online). Nusselt number and interior temperature
gradient at the midplane as a function of fRa. The filled symbols
show DNS results at E ¼ 10−7, while the open symbols are
asymptotic predictions [7]. The stars show laboratory values
obtained in a cylindrical rotating water tank with 5.79 ≤ Pr ≤ 6.2
and 10−7 ≤ E ≤ 1.1 × 10−7.
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An interesting feature of the GT regime is the formation
of large-scale barotropic vortices driven by an upscale
transport of kinetic energy [7,20]. The effect is most clearly
observed in the stress-free case (Fig 3). The formation of
large scale vortices in rotating convection has recently been
observed in simulations at larger E [21,22], where the
large-scale energy accumulates predominantly in cyclonic
structures. Such symmetry breaking is predicted to be
absent in the asymptotic small Rossby number case [20].
Indeed, our DNS reveals the generation of both, strong
cyclonic and anticyclonic vortices, which shows that
symmetry slowly tends to be restored with decreasing
Rossby number. The formation of large scale coherent
vortices is inhibited in DNS that employ no-slip bounda-
ries, similar to the results of [23].
Our results thus suggest that at E ¼ 10−7, the bulk

dynamics shows clear signs of asymptotic behavior, while
viscous boundary layers strongly increase the heat transfer
efficiency, leading to a different scaling behavior than
predicted asymptotically. The mechanical boundary con-
ditions thus exert a controlling influence on the heat
transfer scaling, a result that is unexpected for the low
Ekman number considered here. Studies of the linear
problem [8] suggest that the onset of convection becomes
largely independent of the mechanical boundary conditions
for E ≤ 10−6. While nonlinear contributions from Ekman
pumping are known to increase the heat transport at

moderate Ekman numbers [24], it is generally expected
that this effect becomes small in the low E regime, as both
the Ekman layer thickness and the associated secondary
flow should decrease with OðE1=2Þ, such that the Ekman
layer finally becomes passive [6,10,11]. It is remarkable
that even at E ¼ 10−7, where the Ekman layer covers only
about 0.1% of the layer depth, an increase by almost an
order of magnitude in the heat transfer is observed.
The effects of no-slip boundaries can be modeled using

boundary conditions that parametrize fluid pumping into
and out of the linear Ekman layers [25]. Pumping is added
to otherwise stress-free boundary conditions by enforcing

∂ux
∂z ¼ ∂uy

∂z ¼ 0; uz ¼ �
�
E
2

�
1=2

ωzH at z ¼ 0; H

ð1Þ

in DNS, where ωz denotes vertical vorticity. The plus sign
applies to the lower and the minus sign to the upper
boundary, respectively. Note that this choice isolates the
Ekman pumping effects, while neglecting the viscous
dissipation in the boundary layer that plays a central
role in theories of nonrotating convection [26]. Figure 4
shows the results obtained. Both the heat transfer and the
interior temperature gradients found in the DNS are well
captured by the pumping parametrization [Figs. 4(a), 4(b)].
Panels 4(c) and 4(d) show profiles of the rms horizontal and
vertical velocity and of conductive and advective heat
transfer for the special case Pr ¼ 7, fRa ¼ 20. The profiles
line up well within the bulk, and reveal a substantial

(a) (b)

(c) (d)

FIG. 3 (color online). Formation of large-scale, barotropic
vortices of both signs of vorticity in the GT regime for stress-
free boundaries at E ¼ 10−7, fRa ¼ 90, Pr ¼ 1. Shown is (a)
vertical vorticity, (b) horizontal kinetic energy, (c) temperature
anomaly at z ¼ 0.99, and (d) vertically averaged vertical vor-
ticity. Units are κ=H2, κ2=H2, ΔT, and κ=H2, respectively.

(a) (b)

(c) (d)

FIG. 2 (color online). Thermal anomaly θ ¼ T − T̄ in DNS at
E ¼ 10−7 with no-slip boundary conditions. (a) Cellular regime,fRa ¼ 10, Pr ¼ 1, (b) convective Taylor columns, fRa ¼ 25,
Pr ¼ 7, (c) plumes, fRa ¼ 70, Pr ¼ 7, and (d) geostrophic turbu-
lence, fRa ¼ 90, Pr ¼ 1. For better visibility, the domain has been
stretched horizontally by a factor of 4.5. θ is scaled with ΔT in
all cases.
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advective heat transport all the way to the edge of the
Ekman layer. The steepest NuðfRaÞ scaling is observed in
the CTC regime with Pr ¼ 7, where the Ekman flow at both
boundaries acts to efficiently increase the heat transport
through these vertically coherent structures. For Pr ¼ 1,
where plumes develop directly from the cellular regime asfRa is increased, Ekman pumping has a much smaller effect
on the heat transfer.
For clarity, the presentation so far has focused exclu-

sively on cases with E ¼ 10−7. Figure 5 illustrates the
system behavior over the range 10−5 ≤ E ≤ 2.5 × 10−8

found in no-slip DNS and laboratory experiments.
Instead of using fRa ¼ RaE3=4, here we normalize Ra by
the critical value for the onset of convection Rac as
determined from Chandrasekhar’s “first approximation”
[27,28], because the asymptotic scaling law Rac ¼
8.6956E−4=3 becomes inaccurate at larger E.
Surprisingly, in the presence of no-slip boundaries, no

obvious convergence towards the asymptotic predictions is
observed with decreasing Ekman number. For Pr ¼ 7, the
steep scaling regime extends to higher ~R at lower E, such
that the maximum deviations from the asymptotic theory in
fact increase with decreasing E. This trend is observed in
both DNS and experiments and likely occurs because
vertically coherent structures remain prevalent over a larger
supercriticality range at lower E. For Pr ¼ 1, the effect is

less pronounced, which is in accord with the fact that plume
structures develop at much smaller ~R and mix into the
interior before reaching the opposite boundary, thus dimin-
ishing the effects of pumping. A close inspection of the
numerical data shown in Fig. 5 suggests that there might be
a weak trend towards the asymptotic modeling results for
small ~R≲ 2 at both Pr ¼ 1 and Pr ¼ 7, but data extending
to much lower E, at present a significant challenge in the
DNS and laboratory setting, are necessary to substantiate
this effect.
The panels on the right of Fig. 5 show the relative

strength of the Ekman flow in the simulations, measured by
a quantity S that we define as the rms vertical velocity at
z ¼ 3=4π

ffiffiffiffiffiffi
2E

p
(i.e., close to the edge of the Ekman layer)

normalized by its value at midlayer. The Ekman flow
reaches amplitudes roughly between ten and forty percent
of the vertical velocity in the bulk, and thus clearly is not
negligible. The quantity S increases with ~R and decreases
with E, for moderate ~R roughly proportional to E1=6, as
shown in the lower right panel of Fig. 5, where the data
cluster in two groups depending on Pr. The E1=6 scaling is
expected from (1) if we employ the usual estimates ½L� ¼
OðE1=3HÞ and ½u� ¼ OðE−1=3ν=HÞ for the typical hori-
zontal length scale and flow velocities [7].
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FIG. 4 (color online). Results obtained with parametrized
Ekman pumping. Filled symbols denote no-slip cases, while
open symbols show results obtained by applying the pumping
boundary conditions (1) to the full equations. Vertical profiles for
E ¼ 10−7, Pr ¼ 7, fRa ¼ 20 are shown in (c), with a boundary
layer blowup in (d) for no-slip (solid) and Ekman pumping
(dashed) boundary conditions. (u⊥: horizontal velocity, w:
vertical velocity, T: temperature, given in units of κ=H and
ΔT, respectively).
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FIG. 5 (color online). Ekman number dependence of Nu and
pumping efficiency. Colored symbols represent no-slip DNS
results (full symbols: Pr ¼ 1, open symbols: Pr ¼ 7), gray
symbols show the asymptotic results. The panel in the lower
left also contains experimental data (+: 2.56 × 10−8 ≤ E ≤
2.77 × 10−8, *: 0.93 × 10−7 ≤ E ≤ 1.15 × 10−7, ×: 0.8 × 10−5 ≤
E ≤ 1.5 × 10−5, with 5 ≤ Pr ≤ 11 in all cases.). The right panels
show the rms vertical velocity close to the edge of the Ekman
layer, measured at zE ¼ 3=4π
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2E

p
, normalized by the rms

vertical velocity at midlayer, a ratio we call S here. Note that
at z ¼ zE, classical Ekman layer theory predicts the pumping
velocity to be identical to its far-field value, such that values at
this location provide a good measure of Ekman pumping.
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Our results show that in the studied parameter range, the
Nu(Ra) scaling is not converging towards the asymptotic
modeling results even though the Ekman flow substantially
decreases with decreasing E. This finding, and the enor-
mous magnitude by which pumping increases the heat
transfer need to be explained by future theory. A positive
feedback between thermal boundary layer instabilities and
the secondary Ekman flow supporting them may be
considered in this context. It clearly remains to be seen
if pumping ultimately loses its significance in the very low,
but finite Rossby number regime, as presently presumed by
theory. Currently, neither experiments nor simulations
support this claim. A promising avenue towards gaining
a better understanding is the inclusion of parametrized
Ekman pumping into the asymptotic theory, as this
approach works in our full simulations. Equally important
are experiments and DNS reaching still lower E values.
Even if pumping effects should finally become negligible,
Fig. 5 suggests that values several orders of magnitude
smaller than E ¼ 10−8 are needed in order to observe this.
Another finding of this study is that, similar to the

situation in nonrotating convection, heat transport in the
low Rossby number regime cannot be characterized by a
single, universal scaling exponent α. Instead, different
dynamical regimes exist, all exhibiting their own heat
transfer characteristics, as also suggested by asymptotic
theory [7,11]. The steep α ∼ 3 scaling, for example, breaks
down well within the low Rossby number regime
(Roc ≈ 0.01 for Pr ¼ 7, E ¼ 10−7) when CTCs evolve
into plumes. Beyond this transition, a much slower growth
of Nu with ~R is observed. Unfortunately, laboratory experi-
ments have yet to reach small enough ~R at low E to
investigate this regime change [2–4]. The experimental data
presented here are no exception (cf. Fig. 5).
The usual motivation for studying rotating convection is

its ubiquitous occurrence in geo- and astrophysical sys-
tems. Our findings suggest that Ekman pumping, which is
typically regarded as negligible in this context [29,30], may
play a more prominent role than previously thought.
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