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ABSTRACT OF THE DISSERTATION 

 

Precision Functional Mapping in Child Development and Tourette Syndrome 

 

 

by 

 

Matthew Feigelis 

 

Doctor of Philosophy in Cognitive Science 

 

University of California San Diego, 2024 

 

 

Professor Deanna Greene, Chair 
 

 

Our understanding of human neurodevelopment relies on group/population averages, but 

we know that individual differences in brain function are related to many life outcomes and the 

development of neuropsychiatric disorders. Precision functional mapping (PFM) is the precise 

and reliable characterization of functional brain organization at the individual level, made 

possible through the collection of large amounts of resting-state fMRI data from each individual. 



xii 

PFM shifts the focus from studying the group to studying the individual, characterizing 

individual differences in functional organization that have previously been blurred by heavy 

reliance on group-average techniques. In this thesis, I use a PFM approach to characterize 

individual brain function in children, adults, and people with Tourette syndrome. First, I 

introduce the method of functional connectivity to study brain organization in individuals with 

Tourette syndrome (Chapter 1). Second, I present a study characterizing individual-specific brain 

organization in childhood, finding a core organization shared by all children, with inter-

individual variability occurring in the bilateral frontal cortex and the temporo-occipito-parietal 

junction (Chapter 2). Compared with PFM data from adults, children had less inter-individual 

variability in functional organization within their age group, suggesting a refinement in 

functional organization with age. Third, I present a study characterizing tic symptoms in Tourette 

syndrome at the individual participant level (Chapter 3). By simultaneously collecting densely 

sampled resting-state fMRI data and naturally occurring tics in the scanner, activation maps 

corresponding to motor tics were referenced to each individual's functional brain networks. 

During the time period prior to the tic, which is associated with urge/discomfort building up to a 

tic, brain activation localized within the boundaries of each individual's cingulo-opercular and 

somato-cognitive action networks. Other regions and network involvement during tic symptoms 

differed across individuals, possibly related to different types of tics. By studying individuals, I 

identify previously blurred individual differences in brain function in development and in a 

neuropsychiatric disorder, which may ultimately increase the clinical utility of neuroimaging 

methods.  
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Chapter 1 Functional connectivity in the Gilles de la Tourette syndrome 

 

1.1 Abstract 

Functional connectivity is an analytic approach that examines the functional relationships 

between brain regions using neuroimaging data. It provides a window into the systems level of 

the brain and allows for the interrogation of information exchange between distributed areas. 

Functional connectivity has been increasingly applied in Tourette syndrome (TS) research in 

order to investigate functional connections between specific brain regions and networks. In the 

following chapter, we review the literature and highlight the utility of functional connectivity as 

a method to understand the pathophysiology associated with TS. Through comparisons to control 

groups, alongside correlations between symptoms and clinical, behavioral, and cognitive 

measures, growing evidence suggests that TS is associated with widespread alterations in 

functional connectivity across numerous brain regions and networks. The limitations of current 

studies and promising future directions are discussed. 

 

1.2 Introduction 

Methodological advancements surrounding the study of brain function has propelled 

forward research on the neurobiological mechanisms underlying Tourette syndrome (TS). In 

particular, the method of functional connectivity has begun to offer insights into the neural 

underpinnings of tic disorders. This chapter will focus on the method of functional connectivity 

with respect to TS research. We will first introduce functional connectivity and how it is used, 

then survey recent applications of functional connectivity in TS research, and then conclude with 

a discussion of the limitations of the existing studies and promising future directions. 
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1.3 Functional connectivity 

Functional connectivity is an analytic approach that examines the functional relationships 

between brain regions. The method has been increasingly applied to non-invasive brain imaging 

techniques, such as functional magnetic resonance imaging (fMRI) and electroencephalography 

(EEG), which allow for an accessible way to investigate the function of the brain in humans in 

vivo. Implemented in this way, functional connectivity provides a window into the systems level 

of the brain. Functional activity within regions of the brain can be organized into systems (or 

“networks,” the term most commonly used in literature), providing an avenue to interrogate 

information exchange between distributed areas. The complex interactions among regions and 

networks reflect motor, sensory, cognitive, and affective processes. Moreover, disruptions in 

these interactions can relate to disordered processes seen in various clinical populations.  

Functional connectivity is defined as the statistical dependence of the time series of 

activity between different parts of the brain (Friston, 2011; Sporns, 2013). Regions that show 

high statistical dependence with each other are said to be functionally connected. In practice, 

Pearson’s correlation is often used as the measure of statistical dependence, but other methods 

may be used as well, such as coherence or mutual information (see Mohanty et al., 2020). Thus, 

the correlation value (or coherence value, etc.) between the time series signal measured from 

different brain regions is referred to as the functional connectivity between those regions. With 

fMRI, correlations are calculated between the blood oxygenation level-dependent (BOLD) signal 

measured over time across voxels or specified regions of the brain. With EEG, correlations are 

calculated between the electrical signal measured over time across electrodes placed on the scalp. 

Although there is often correspondence between functional connectivity and physical anatomical 
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connections, there is clear, strong functional connectivity between regions that do not have 

monosynaptic anatomical connections (Honey et al., 2009; Tyszka et al., 2011; Sporns, 2013). 

In this chapter, most of the studies reviewed used “resting state” fMRI to investigate 

functional connectivity in TS. That is, fMRI data are acquired while participants are in a “resting 

state” in which they are instructed to lay in the MRI scanner in the absence of an explicit task to 

perform. This approach contrasts the more traditional task fMRI design, in which participants 

perform an experimental task during fMRI data acquisition. In fact, the low frequency, 

spontaneous fluctuations in fMRI activity that are measured with resting state functional 

connectivity were traditionally thought to reflect noise that was filtered from the data. Rather, it 

was discovered that these low frequency, spontaneous fluctuations show structured correlational 

relationships among regions corresponding to brain systems that have been previously well 

characterized (Biswal et al., 1995; Greicius et al., 2003; Dosenbach et al., 2008). This discovery 

has led to the popularity of resting state fMRI as a way to map and interrogate the functional 

network organization of the human brain, and investigate its relationship to cognition and 

disease.  

Functional networks measured during resting state were first identified using seed-based 

methods. When selecting a seed region in the brain (i.e., a region of interest, typically defined as 

a single voxel or collection of voxels), correlations are calculated between that seed region’s 

BOLD activity and the activity of all other regions of the brain. One of the earliest studies of 

resting state functional connectivity placed a seed in the left primary motor cortex and revealed 

structured correlations in the homotopic motor cortex, supplementary motor area, and motor 

nuclei of the cerebellum, thalamus, and striatum, hence comprising the large-scale motor system 

(Biswal et al., 1995). This study further demonstrated exceptional overlap between this 
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collection of correlated brain regions and regions activated during a finger tapping task using 

traditional task fMRI. Other early seed-based studies revealed strong resting state correlations 

among distributed sets of brain regions resembling collections of regions co-activated during 

cognitive tasks, revealing “control” networks, as well as regions that show task-related decreases 

in activity, revealing the default mode network (Greicius et al., 2003; Dosenbach et al., 2007; 

Seeley et al., 2007; Dosenbach et al., 2008). Tools from graph theory and network science, 

including clustering methods, were then used to identify functional networks at a whole-brain 

level (e.g., Power et al., 2011). These methods consider all pairwise correlations between 

numerous brain regions, and identify multiple large-scale functional networks at once, expanding 

on the earlier seed-based studies. Descriptions of whole brain functional organization comprising 

approximately 7-25 functional networks derived from resting state functional connectivity are 

consistent across varying methods and research teams (Power et al., 2011; Yeo et al., 2011; 

Gordon et al., 2016). The functional networks identified using these new methods replicated 

those that were found in earlier seed-based investigations and have elucidated our understanding 

of how these networks are organized and interact.  

The nature of functional connectivity (as well as structural connectivity) data, with 

measurable relationships between elements, lends itself to the use of graph theory and network-

based analyses. These methods represent the brain as a graph, a mathematical object formally 

defined as a set of nodes and edges, providing a rigorous framework for measuring the 

relationships between brain regions (see Rubinov & Sporns, 2010 for review). In the functional 

context, the nodes of the graph are often functionally homogenous regions of the brain, and the 

edges are the pairwise correlational relationships between the nodes (Wig et al., 2011). The 

aggregation of nodes (e.g., regions) and edges (e.g., correlations) form a network (the brain). 
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Using this framework, there are various network analyses or graph metrics that can be computed 

to formally describe properties of the network. For example, module (or community, 

subnetwork, cluster) detection involves identifying modules within a network, in which modules 

are densely interconnected sets of nodes (Sporns & Betzel, 2016). With respect to functional 

connectivity, modules are sets of brain regions that are strongly correlated with each other, but 

weakly correlated with regions in other modules. As mentioned above, brain networks have a 

modular structure, consisting of approximately 7-25 functional networks with specialized 

functions (Power et al., 2011; Yeo et al., 2011; Gordon et al. 2016). Additional metrics from 

graph theory offer the ability to characterize other aspects of integration, segregation, and 

influence of individual nodes or modules of the network (Sporns, 2013). For example, a node’s 

“degree” is the number of functional connections to that node from other nodes in the network, 

and the shortest “path length” between two nodes is the minimum number of steps needed to 

traverse between them (Rubinov & Sporns, 2010). The average of the shortest path lengths 

between all pairs of nodes in a network can be related to the ability of a network to rapidly 

integrate specialized information between distributed nodes (Rubinov & Sporns, 2010). 

However, some graph metrics, such as those based on path length, must be interpreted with 

caution in networks constructed from weighted functional correlations due to ambiguity in the 

interpretations (Rubinov & Sporns et al., 2010; Wig et al., 2011; Power et al. 2013). 

Several properties of resting state functional networks make them well suited for 

investigations of human cognition, development, and disease. First, they have been found to be 

largely consistent between individuals, showing a strong group average structure of core 

anatomical regions that consistently correspond to the same functional network across different 

individuals (Gordon et al., 2017). Interestingly, regions of individual variation surround these 
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core regions, with certain networks showing larger cross-subject variability than others 

(Dworetsky et al., 2021). As stated above, the group averaged network structure has been shown 

to be reproducible, with numerous research groups and varying methods converging on similar 

brain-wide network spatial topography (Power et al., 2011, Yeo et al., 2011; Gordon et al., 

2016). Second, functional connectivity and the derived functional networks have been shown to 

reflect largely stable, trait-like attributes of individual people, such as those associated with 

disease, rather than state-like attributes, such as variations associated with thought patterns over 

time (Gratton et al., 2018). Individual variability in network organization has also been shown to 

be stable within participants across scanning sessions and days (Seitzman et al., 2019). Patterns 

of variations that are reliably measured from individuals may be used to identify subgroups of 

participants sharing similar neural features. Subgroup membership could then be investigated, 

linking common variations in functional network organization to differences in behavior, 

demographics, or disease. For example, symptom heterogeneity in particular disorders may be a 

function of the specific variation in the individual or subgroup. Third, resting state fMRI data can 

be collected from participants of many levels of cognitive ability, as long as they can lay in the 

scanner and hold still. The absence of complex experimental tasks also reduces the likelihood of 

confounds related to task performance (Church et al., 2010).  

Differences in functional connectivity within networks known to support sensory, motor, 

and cognitive functions have been shown to underlie phenotypic variation in factors such as 

cognitive performance, demographics, and disease states. For example, functional connectivity 

has been shown to reflect individual differences in performance on a sustained attention task 

(Rosenberg et al., 2016), measures of IQ (Santarnecchi et al., 2014) and fluid intelligence 

(Hearne et al., 2016), and to act as a ‘fingerprint’ for individual identification (Finn et al., 2015). 
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Furthermore, functional connectivity has been shown to be predictive of demographic traits, 

including sex (Weis et al., 2020) and age (Dosenbach et al., 2010; Nielsen et al., 2019). The 

ability to use resting state functional connectivity to predict an individual’s age suggests it may 

be a useful clinical marker for atypical development, where predictions of low or high age 

relative to true age may suggest immature or overmature brain circuitry. The success and 

predictive power of functional connectivity in relation to behavior and demographic traits further 

suggests functional networks may be used to measure differences between clinical populations 

and control populations. Studies directly comparing clinical patients to control subjects have 

begun revealing widespread differences in functional connectivity in numerous disorders, 

including autism, ADHD, and schizophrenia (Fan et al., 2011; Uddin et al., 2013; Fair et al., 

2013; Chen et al., 2016; Sheffield & Barch, 2016).  

Considering the complex array of symptoms associated with TS, involving motor, 

sensory, and cognitive processes, in addition to the high rates of comorbid symptoms and 

diagnoses – most commonly attention-deficit/hyperactivity disorder (ADHD) and obsessive-

compulsive disorder (OCD) (Freeman et al., 2000; Cavanna et al., 2009) – it is unlikely TS 

involves isolated dysfunction within a single brain structure, region, or network. Thus, functional 

connectivity offers a way to examine the large-scale brain systems underlying cognitive and 

sensorimotor functions and how they interact, which may be disrupted in TS patients. 

 

1.4 Applications of functional connectivity to TS 

Given its usefulness for interrogating interacting functional networks in the brain, 

functional connectivity has gained traction as a method to better understand the pathophysiology 

of TS. Most of the studies we discuss here used resting state fMRI and computed temporal 
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correlations between brain regions to assess functional connectivity, though we note when other 

imaging methods (e.g., task fMRI connectivity, EEG) or analytic approaches (e.g., regional 

homogeneity) were applied.  

Research investigating functional connectivity in TS has taken two broad approaches. 

The first approach is testing for differences in functional connectivity metrics between a group of 

patients with TS and a group of control subjects. Using such group comparisons, researchers 

have identified brain regional connections and networks with altered functional connectivity in 

TS. The second approach is testing for relationships between functional connectivity estimates 

and continuous clinical, behavioral, or cognitive measures. Using this correlational approach, 

researchers have identified brain regional connections and networks that relate to symptom 

severity, tic suppression ability, and impulsivity. This section will thus focus on applications of 

functional connectivity to study the pathophysiology of TS, surveying first the literature on 

group differences in TS patients compared to controls, and then the associations between 

functional connectivity and clinical, behavioral, and cognitive measures, whilst considering 

similarities and differences in the methods and findings.  

 

1.4.1 Differences in functional connectivity between TS patients and controls  

Subcortical structures are common targets of investigation in TS research, given their 

known roles in motor control. One leading theory of TS pathophysiology posits disruption in 

cortico-striato-thalamo-cortical (CSTC) circuitry, in which there is aberrant activity in particular 

sets of striatal neurons, leading to the productions of tics (Mink, 2001; Mink, 2003). Thus, 

several studies have examined functional connectivity in the basal ganglia and thalamus, key 

nodes in this circuitry. The most consistent finding has been stronger functional connectivity 
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within subcortical regions and between subcortical and cortical regions in patients with TS 

compared to controls. Specifically, patients with TS showed stronger functional connectivity 

compared to controls within striatal and thalamic nodes (Zito et al., 2021; Tikoo et al., 2020). 

Consistent with these findings, differences in graph theory metrics (e.g., global efficiency, 

degree) between patients with TS and controls suggest increased functional integration in 

subcortical regions in TS (Tinaz et al., 2015; Ramkiran et al., 2019). When investigating cortico-

subcortical circuitry, stronger functional connectivity has been reported in cortico-striatal and 

cortico-thalamic connections (Ramkiran et al., 2019) as well as within a priori defined cortico-

subcortical networks (Worbe et al., 2012). Thus, there is consistency in the literature 

demonstrating stronger functional connectivity involving the subcortex in TS compared to 

controls, which may reflect aberrant activity within CSTC circuitry. Of course, future work is 

needed to clarify how altered connectivity within and between subcortical regions relates directly 

to the theory of CSTC dysfunction.  

The cerebellum is also involved in motor control (as well as cognitive processes) and has 

known anatomical connections to and from the cortex and thalamus. A few studies have found 

altered cortico-cerebellar connectivity in TS patients, specifically decreased functional 

connectivity between the cerebellum and frontal regions, as well as between the cerebellum and 

the thalamus and sensorimotor cortex (Ramkiran et al., 2019; Tikoo et al., 2021). Consistently, 

decreased regional homogeneity (ReHo), a measure of neural synchronization that looks at a 

region’s connectivity with its nearest neighbors, has been reported in the cerebellum of TS 

patients (Liu et al. 2017). While research on the cerebellum in TS has been relatively sparse, 

cerebellar volume has been shown to be associated with tic severity in both children and adults 

(Tobe et al., 2010), and has been theorized to play a role in the production of motor tics 
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(Caligiore et al., 2017). Therefore, the reports of altered cerebellar functional connectivity in TS 

lend support to this hypothesis. 

Beyond the subcortex and cerebellum, numerous studies have examined functional 

connectivity within and between well characterized cortical functional networks. The default 

mode network, which comprises the medial prefrontal cortex, posterior cingulate, precuneus, and 

lateral parietal cortex, has received a lot of attention in the functional connectivity literature 

(Raichle, 2015). It has been referred to as the “task-negative network” due to consistent 

deactivations observed during task performance, and has been shown to be involved in 

mentalizing, social reasoning, and autobiographical memory (Schacter et al., 2007; Andrews-

Hanna et al., 2010; Uddin et al., 2019). Studies of TS have found increased functional 

connectivity within the default mode network as well as between the default mode network and 

the frontoparietal network compared to controls (Fan et al., 2018; Tikoo et al., 2020). 

Conversely, graph theory metrics demonstrated decreased path length, local efficiency, and 

clustering coefficient within the default mode network in TS (Ramkiran et al. 2019; Openneer et 

al., 2020). Lower local efficiency and clustering coefficient metrics suggest reduced and less 

efficient short-range connectivity of the default mode network in TS patients. One hypothesis is 

that the default mode network is involved in tic suppression through the monitoring of 

premonitory urge sensations, given its role in internally focused tasks (Morand-Beaulieu et al., 

2021). Whether increased or decreased functional connectivity within the default mode network 

in TS would support this hypothesis is not yet clear.  

It has also been proposed that the impaired inhibition of movements and vocalizations 

that results in tics may generalize to brain networks underlying cognitive and inhibitory control 

more broadly. There are multiple “control” networks in the brain that have been well described, 
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including the frontoparietal and cingulo-opercular networks. The frontoparietal network has key 

nodes in dorsal and lateral frontal cortex and the inferior parietal lobe, and is involved in 

adaptive cognitive control during top down, goal-directed tasks; the cingulo-opercular network 

has key nodes in the dorsal anterior cingulate, supplementary motor area, anterior insula, and 

parietal operculum, and is involved in maintenance of task sets (Dosenbach et al., 2007; 

Dosenbach et al. 2008). When comparing TS patients to controls, there is evidence for altered 

functional connectivity within these control networks. Specifically, adults and children with TS 

showed reduced functional connectivity within the frontoparietal network (Fan et al., 2018; 

Tikoo et al., 2020). Adults with TS also showed altered graph theory metrics in regions that are 

part of the cingulo-opercular network, including reduced node degree in the left mid-cingulate 

cortex, reduced path length in the insula, reduced betweenness centrality in the right mid-insula, 

and increased betweenness centrality in the right dorsal anterior insula (Tinaz et al. 2015; 

Ramkiran et al. 2019). Previously, studies showing that control networks followed “younger” 

functional connectivity patterns suggested that these networks are immature in TS (Church et al., 

2009; Worbe et al. 2012). However, it is likely that such results were largely affected by motion 

artifact (see Limitations and Future Directions). Thus, there are several possible interpretations 

for the differences observed in control networks in TS. These differences may relate to faulty 

inhibitory control mechanisms which are causally responsible for the production of tics. 

Alternatively or in addition, these differences may reflect compensatory mechanisms that come 

online in order to control, or attempt to control, tics.  

The studies discussed thus far used univariate statistical approaches to compare patients 

with TS to controls. Yet, functional connectivity data can be quite complex, including thousands 

of region-to-region connections. Multivariate statistical approaches, on the other hand, can take 
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advantage of high dimensional data and identify patterns amongst many variables (features). 

Multivariate machine learning classification and prediction methods have been used to 

discriminate individuals based on whole-brain functional connectivity data, in which each 

functional connection is a single feature. Details about these methods can be found elsewhere 

(Nielsen et al., 2020b), but briefly, a classifier is trained on multivariate data to discriminate two 

groups (e.g., patients vs. controls). Then, the classifier is tested using new samples (e.g., new or 

left-out participants) that were not used for training. This testing phase of classification can then 

generate an accuracy rate, measuring how often the classifier categorizes the new sample 

accurately (e.g., is this new participant a patient or a control?). This classification approach can 

be extended to continuous variables as well (e.g., age, tic severity) to predict the value of that 

continuous variable for the test samples. Using these classification and prediction methods, 

functional connectivity has been leveraged for successful prediction of age across development 

(Nielsen et al., 2019) and classification of patient groups vs. controls, including ADHD (Fair et 

al., 2013), schizophrenia (Fan et al., 2011), and autism (Uddin et al., 2013). Several groups have 

shown successful classification of patients with TS vs. controls using multivariate machine 

learning, with accuracy rates ranging 65-89% (Greene et al., 2016; Wen et al., 2018; Nielsen et 

al., 2020; Zito et al., 2021). The power of these multivariate methods was highlighted when 

support vector machine learning algorithms classified children as TS or control with 70% 

accuracy based on ~30,000 functional connections across the whole brain, while univariate group 

comparisons of those ~30,000 functional connections did not yield any significant differences 

between groups after multiple comparisons correction (Greene et al., 2016). Additionally, these 

methods have demonstrated differences between children and adults in the functional 

connectivity patterns that best distinguished TS vs. controls (Nielsen et al., 2020). Namely, 
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diagnostic classifiers trained on one age group (children or adults) did not generalize to the other 

age group, lending support for the idea that there are differences in brain connectivity between 

childhood and adulthood TS.  

One challenge with multivariate machine learning approaches is uncovering the 

neurobiological mechanisms that contribute to successful classification or prediction. The 

algorithms that have been used in TS research, namely support vector machine classification, 

generate a weight value for each feature (i.e., functional connection), which can be interpreted as 

a measure of importance of that feature for diagnostic classification. The most heavily weighted 

functional connections in the TS diagnostic classification models span many different brain 

regions and networks (Greene et al., 2016; Wen et al., 2018; Zito et al., 2021), consistent with 

the univariate group comparisons showing differences across the subcortex, cerebellum, and 

multiple cortical networks. However, it is important to note that the interpretability of functional 

connectivity feature weights has been questioned, and hence, may not provide reliable insight 

into neurobiological mechanism (Tian & Zalesky, 2021; Nielsen et al., 2020b).  

 

1.4.2 Associations between functional connectivity and clinical, behavioral, and cognitive 

measures in TS 

In order to assess tic symptom severity in patients with TS, the Yale Global Tic Severity 

Scale (YGTSS) is commonly administered. The YGTSS is a clinical rating scale measuring the 

number, frequency, intensity, and complexity of motor and phonic tics during the past week 

through a semi-structured clinical interview (Leckman et al., 1989). While multiple studies found 

significant negative correlations between functional connectivity and YGTSS scores, the regions 
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and networks showing these relationships were not systematic, which may be due to differing 

methodology and small sample sizes.  

The significant negative associations between YGTSS scores and functional connectivity 

have been found in the cerebellum and in regions belonging to the default mode network and 

several control networks. Specifically, functional connections within the frontoparietal network 

and the cerebellum, and between the cerebellum and prefrontal cortex were weaker in patients 

with more severe symptoms (Tikoo et al., 2020; Tikoo et al., 2021). In addition, interhemispheric 

functional connectivity in the anterior cingulate cortex, which is part of the cingulo-opercular 

network, was weaker with increasing symptom severity (Liao et al., 2017). Using graph theory 

metrics, reduced local efficiency and clustering coefficient in the default mode and frontoparietal 

networks was also associated with increased symptom severity (Openneer et al., 2020). There is 

one report of a positive relationship between striato-cortical connectivity and YGTSS scores. In 

particular, connectivity between the putamen and sensorimotor cortex and between the caudate 

and superior occipital gyrus increased with worsening symptom severity (Bhikram et al., 2020). 

All of these studies, however, were limited by small sample sizes, which reduces the reliability 

and replicability of brain-behavior relationships (Marek et al., 2022), thus warranting caution. 

Indeed, multivariate methods may be more powerful at detecting these relationships. Yet, studies 

using multivariate methods, such as support vector regression, have not demonstrated successful 

prediction of YGTSS based on whole-brain functional connectivity data (Greene et al., 2016; 

Zito et al., 2021).  

As patients with TS typically have the ability to voluntarily suppress tics for a short 

period of time, there have been some investigations of the association between functional 

connectivity and tic suppression ability. Tic suppression paradigms implemented during fMRI 
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data acquisition compare a free ticcing state, in which subjects are instructed that they can tic 

freely when needed, to a tic suppression state, in which subjects are instructed to inhibit their 

tics. Increased functional connectivity has been reported within the inferior frontal gyrus during 

tic suppression compared to free ticcing, and was further associated with tic suppression ability 

inside and outside the scanner (Ganos et al., 2014). Using EEG, tic suppression was shown to be 

associated with large scale increases of functional connectivity across numerous cortical areas, 

including frontal and sensorimotor regions, in the alpha frequency band (Serrien et al., 2005; 

Morand-Beaulieu et al., 2021). The regions falling within the default mode and frontoparietal 

networks in these studies further support a key role for these networks in TS pathophysiology.  

TS has often been characterized as a disorder of inhibitory control, leading to the inability 

to suppress movements/vocalization in response to a premonitory urge, but also generalizing to 

executive functions. Investigations of executive functions in TS patients have been quite mixed, 

but a meta-analysis found evidence for inhibitory control deficits with small effect sizes 

(Morand-Beaulieu et al., 2017). A pair of recent studies investigated functional connectivity 

correlates of different domains of impulsivity in TS patients. Behaviorally, inhibitory deficits in 

an emotional stop signal task were found only in medicated patients, and inhibitory deficits in a 

four-choice serial reaction time task were found only in unmedicated patients (Atkinson et al., 

2020; Atkinson et al., 2021). In both studies, associations with functional connectivity in 

numerous cortical and subcortical regions were reported in the subgroup demonstrating the 

behavioral deficits. Worse performance on the emotional stop signal task, meaning greater 

impulsivity, was associated with increased functional connectivity between the inferior frontal 

gyrus and bilateral superior temporal gyri, along with reduced functional connectivity between 

the cerebellum and the subthalamic nucleus. Greater impulsivity in the four-choice serial 
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reaction time task was associated with increased functional connectivity between the right 

orbitofrontal gyrus and bilateral caudate nucleus, along with reduced functional connectivity 

between the cerebellum and cortical regions. Differences in functional connectivity amongst the 

medicated and unmedicated TS subgroups, compared to control subjects, suggest a contribution 

of medications to behavior via functional connections.  

 

1.5 Limitations and future directions 

Investigations into TS pathophysiology using functional connectivity methods have 

largely examined heterogeneous cohorts, varying by factors such as medication usage, comorbid 

conditions, symptom severity, age, and sex. These factors can have their own independent effects 

on functional connectivity, and hence, make it difficult to disentangle effects due to TS 

pathophysiology and those due to other variables. For example, conditions highly comorbid with 

TS, such as ADHD and OCD, are each independently associated with widespread alterations in 

functional connectivity when compared to control groups (Stern et al., 2012; Fair et al., 2013; 

Posner et al., 2014; Mostert et al., 2016; Vaghi et al., 2017). Stimulants often used to treat 

ADHD, and prescribed to TS patients with comorbid ADHD, such as methylphenidate, have 

been also shown to systematically impact functional connectivity (Rubia et al., 2009; Sripada et 

al., 2013). Antipsychotic medications, which are commonly prescribed to TS patients to treat 

tics, such as aripiprazole and risperidone, have been shown to induce widespread changes in 

cortico-subcortical connectivity during the treatment of psychosis (Sarpal et al., 2015). 

Moreover, functional connectivity has also been shown to change with age over development 

(Dosenbach et al., 2010; Meier et al., 2012; Fair et al., 2013; Satterthwaite et al., 2013; Nielsen et 
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al., 2019). Thus, the heterogeneity in the samples present in functional connectivity studies of TS 

can complicate interpretation of results.  

While excluding for or limiting these variables could reduce confounding effects, the 

high rates of comorbidities and medication use in TS complicates the issue. For one, recruiting 

“TS-only” or “drug-naïve” populations is difficult, given a more limited participant pool. 

Furthermore, and potentially even more importantly, targeting recruitment to a more restrictive 

sample reduces the generalizability of the study to the majority of patients, particularly those 

who most often seek clinical care and treatment (Gilbert & Buncher, 2005; Greene et al., 2016b). 

In our own research, we argue for inclusive sampling in order to capture more representative 

samples, and recommend accounting for these variables in the analyses. For example, subgroup 

analyses can test for differences that may be attributable to other factors. Such an approach has 

demonstrated that multivariate machine learning classification results were not driven by 

comorbidities, medication status, or sex (Nielsen et al., 2020), and has revealed differences in 

functional connectivity between medicated and unmedicated TS patients (Zito et al., 2021).  

Many, if not all investigations of functional connectivity in TS thus far were limited by 

small sample sizes resulting in low statistical power, which is a common problem across the 

literature (Button et al., 2013). Subgroup analyses, such as those to account for heterogeneity in 

comorbid conditions or medication status suggested above, may be difficult to conduct with 

small sample sizes. Moving forward, large n studies, through working consortia such as the 

Adolescent Brain Cognitive Development (ABCD) study (supported by NIH; Casey et al., 2018), 

or the aggregation of data across labs, is a necessary next step for the field. There are large 

consortia for genetics data in TS, including the Psychiatric Genomics Consortium - Tourette 

Syndrome Working Group (Mufford et al. 2019, Yu et al., 2019) and the ENIGMA Consortium 
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(Bearden & Thompson, 2017), which has a Tourette syndrome working group that is currently 

gathering neuroimaging data in TS. There has been one consortium focused on neuroimaging 

data in TS supported by the Tourette Association of America, leading to larger samples for 

structural MRI analyses (Greene et al., 2017). Extending these consortia to functional data will 

help the field move forward to improve our understanding of the functional brain differences 

associated with TS. 

One major hurdle in MRI, and in functional connectivity studies in particular, is head 

motion in the scanner. It turns out that even after standard motion correction procedures for 

fMRI, functional connectivity results can be systematically biased by motion artifact (Power et 

al., 2012; Power et al., 2014; Satterthwaite et al., 2012; Van Djik et al., 2012). Specifically, sub-

millimeter head movements can lead to artificial increases in functional connectivity between 

brain regions that are spatially proximal and decreases in functional connectivity between brain 

regions that spatially distal. This apparent increased short-range and decreased long-range 

functional connectivity can be particularly problematic in group comparison studies. Children 

and patient groups tend to move more in the MRI scanner compared to adults and control 

populations (Dosenbach et al., 2017), leading to a systematic difference in head motion when 

comparing groups. These differences can generate the appearance of increased short-range 

functional connectivity in children compared to adults or in patients compared to controls, for 

example. Thus, this issue is particularly pertinent to consider when investigating a 

neurodevelopmental disorder such as TS. Recent progress in data processing strategies has 

shown that removing fMRI volumes that exceed strict motion estimate thresholds, in addition to 

regressing out the global brain signal, minimizes distance dependent motion artifact (Ciric et al., 

2017). Thus, these processing strategies have been proposed as optimal for studies investigating 
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group or individual differences (Satterthwaite et al., 2019). The majority of TS functional 

connectivity studies surveyed above, however, did not implement these methods, potentially 

confounding the effects of true biological differences with differences in in-scanner head motion. 

Looking to the future, the widespread implementation, and advancement of processing strategies 

should disentangle these effects, minimizing the effects of motion on functional connectivity 

results. 

An exciting avenue for future research consists of studies that densely sample resting 

state fMRI data in individual patients. In contrast to standard large n studies with low amounts of 

data per subject that rely on group averaging, a dense sampling (or “precision fMRI”) approach 

collects large amounts of data from each individual, resulting in reliable estimates of functional 

connectivity on the individual level (Laumann et al., 2015). Recent work using densely sampled 

individual subjects has revealed stable and reliable individual differences in functional network 

organization across the cerebral cortex, subcortex, and cerebellum in healthy young adult 

subjects (Gordon et al., 2017; Gratton et al., 2018; Marek et al., 2018; Greene et al., 2020; 

Sylvester et al., 2020; Zheng et al., 2021). At least 45 total minutes of low-motion data was 

needed to obtain these reliable estimates of functional connectivity in the cerebral cortex 

(Gordon et al., 2017), with more data being needed for other structures, such as the cerebellum 

(requiring at least 90 minutes; Marek et al., 2018) and the basal ganglia and thalamus (requiring 

at least 100 minutes; Greene et al., 2020). There is promise, however, that with advancements in 

multi-echo fMRI sequences, reliable estimates could be obtained with less data per individual 

(Lynch et al., 2020). The individual differences that can be measured with precision fMRI, but 

are often blurred through group averaging, have the potential to increase the clinical and 

translational utility of functional connectivity, such as through subgroup identification and 
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individualized treatment strategies. For example, individual variation in functional network 

organization may be used to identify candidate target regions for treatment of TS with 

transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), or neurofeedback 

(Martinez-Ramirez et al., 2018; Sukhodolsky et al., 2020). As the same anatomical location may 

correspond to different functional networks between individuals, the underlying cognitive and 

sensorimotor functions of that location may dictate the response to treatment on the individual 

level. Since TS patients vary clinically in the type of tics, diagnosed comorbidities, experience of 

sensory of cognitive deficits, and response to treatment, relating this symptom level 

heterogeneity to reliable estimates of functional connectivity on the individual level may be the 

path towards application of neuroimaging to clinical utility.  

Another important direction for future studies is consideration of the developmental 

trajectory of TS. Symptom severity and the types of symptoms themselves change over 

development within individual patients. A typical trajectory of tic symptoms is often described, 

with the average age of tic onset at 6-7 years old, followed by worsening until severity peaks in 

late childhood/early adolescence, and then improvement into adolescence and early adulthood 

(Leckman et al., 1998; Leckman et al., 2006). Further, there is individual variation in this 

trajectory, with individual differences in worsening or improvement of symptoms with age. 

Thus, it will be important to investigate the developmental changes that occur and that vary 

across individuals with TS in the context of typical developmental changes in functional 

connectivity. Longitudinal designs will be particularly important for uncovering these 

developmental changes. While cross sectional designs are and will continue to be useful, it is 

difficult to disambiguate effects that are causes or consequences of the disorder. Thus, the field 
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would benefit from studies that longitudinally track the developmental course of the disorder 

along with associated changes in brain functional connectivity.  

The method of functional connectivity has begun to, and will continue to, contribute to a 

more thorough, mechanistic account of TS. In addition, functional connectivity has the potential 

to offer true clinical and translational utility through the advancement of diagnosis and 

personalized treatment strategies. The future is bright, as TS researchers work toward using 

larger sample sizes, accounting for heterogeneity, controlling for confounds, improving data 

quality and increasing quantity, and implementing longitudinal designs to further our 

understanding of the functional brain network organization of TS.  
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Chapter 2 Precision functional mapping reveals less inter-individual variability in the child 

vs. adult brain  

 

2.1 Abstract 

Characterizing functional brain organization during childhood is important for 

understanding individual differences in cognitive development and the occurrence of 

neurodevelopmental disorders. Previous studies using group-average approaches obscure 

individual differences in brain organization, thereby limiting our understanding of brain 

development. Precision functional mapping (PFM) is an approach that shifts the focus from 

group-averaged to individual brain function by obtaining large amounts of fMRI data from each 

individual. In this study, we demonstrate the feasibility of collecting high-quality PFM resting 

state fMRI data in children to examine individual-specific features of brain organization during 

childhood. We successfully obtained an average of ~3 hours of resting state fMRI data from 12 

participants aged 8-12 years old. We show that high reliability of functional connectivity 

estimates are achieved with 45-50 minutes of high quality, low-motion data. Children shared a 

core functional network topography, with the greatest inter-individual variability at network 

edges and in association regions across the bilateral frontal cortex and the temporo–occipito–

parietal junction. This core functional topography was also shared with adults. Compared with 

adults, children had less inter-individual variability in functional organization between 

individuals in their age group, suggesting that functional brain organization undergoes a 

refinement process with age to achieve greater individual variability in adulthood. This child 

PFM dataset is being released as a public resource to support future research on brain 

development and developmental disorders. 
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2.2 Introduction 

During childhood and adolescence, brain systems, along with cognitive and motor 

abilities, undergo rapid and significant changes (Blakemore, 2012; Giedd et al., 1999; Houston et 

al., 2014; Mills et al., 2016; Stiles & Jernigan, 2010; Tervo-Clemmens et al., 2023). This critical 

period of development has been linked to individuals’ academic success (Best et al., 2011), 

liability to neuropsychiatric illness (Paus et al., 2008), and general outcomes of well-being 

(Robson et al., 2020). The normative developmental trajectory of cognition and motor function 

has been associated with the selective integration and segregation of various brain regions and 

large-scale functional brain systems (Grayson & Fair, 2017; Keller et al., 2023; Luna et al., 2015; 

Luo et al., 2024). Thus, the considerable variability in cognitive function among children 

(Siegler, 2007; Tervo-Clemmens et al., 2023) may be underpinned by individual differences in 

functional brain organization (Cui et al., 2020). A deeper understanding of these individual 

differences may lead to better explanations of variable academic and social success and guide 

intervention therapies for at-risk children. 

Standard group-level neuroimaging studies (i.e., averaging data across a group of 

individuals) have characterized large-scale functional brain network organization in children 

(Muetzel et al., 2016; Thomason et al., 2011), providing central tendencies from which to 

examine changes over development, deviations in psychopathology, and relationships to 

phenotypic measures. In particular, testing relationships between brain and phenotypic measures, 

such as cognitive or clinical features, has been a leading approach to study individual 

differences. Large sample datasets, such as the ABCD study (Casey et al., 2018), provides 

adequate power to test brain-behavior relationships across thousands of children (Marek et al., 

2022). However, central tendencies inherently blur individual variability in network 
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organization, which has been previously highlighted in adults (Gordon, Laumann, Gilmore, et 

al., 2017). These individual differences in functional network topography across the brain are not 

always associated with a clinical diagnosis but pertain to individual variation centered about a 

stable and common group level adult organization (Gratton et al., 2018; Seitzman et al., 2019).  

Recent fMRI research has seen impressive leaps in the characterization of individual-

specific large-scale functional brain networks using high signal-to-noise ratio precision 

functional mapping data (PFM) in adults (Gordon, Laumann, Gilmore, et al., 2017; Greene et al., 

2020; Laumann et al., 2015; Marek et al., 2018; Sylvester et al., 2020; Zheng et al., 2021). PFM 

is the precise and reliable characterization of brain function in an individual person, commonly 

achieved by the collection of hours of non-invasive fMRI data per person over multiple visits. 

PFM data provide highly accurate measurements of functional connectivity at the individual 

level, and has shown that individual adults have broadly similar brain network organization, but 

with distinct, reliable, individually unique features (Gordon, Laumann, Gilmore, et al., 2017). 

Further, an individual’s functional connectivity that varies from the group average (termed 

“network variants”) are not found to coincide with anatomical differences and are highly stable 

across time (Seitzman et al., 2019) and across rest and task states (Kraus et al., 2021) within an 

individual. These findings in the PFM adult literature suggest that individual variance of 

functional network organization represents stable characteristics of an individual, and therefore 

may provide valuable insights to individual differences in cognition and behavior.  

From a child development standpoint, less is understood about the range of individual 

variation that may be observed during the normative trajectory towards adulthood. At younger 

ages, the large-scale organization of functional brain networks generally resembles the 

organization observed in the central tendencies of adult functional networks, even in neonates 
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(Sylvester et al., 2023). This observation of general network structure very early in life often 

(even implicitly) results in the assumption that during development, childhood functional 

network organization is moving toward the “adult-like” brain. However, it is difficult to test the 

nature of this developmental trajectory towards adulthood with attention to individual variation, 

given the inherent challenges large-scale data collection and the reduction of individual 

specificity observed in group data that primarily collects less data due to time and financial 

constraints. PFM analyses comparing childhood samples to adults can provide valuable insight to 

the refinement and specialization of functional brain networks as we mature, which in turn will 

deepen our understanding of how functional network refinement may support executive function 

and cognitive control ability in the developing brain. Understanding the degree of expected inter-

individual variation is especially important in work aiming to use resting state functional 

connectivity (RSFC) analyses to characterize deviations of functional network organization in 

neurodevelopmental disorders.  

The current work leverages a unique PFM dataset comprising 12 densely-sampled 

children to quantify and characterize inter-individual variability of resting state functional brain 

organization during childhood. We characterize the extent to which the topography and 

connectivity of functional networks varies across individuals and compare these metrics to an 

established adult PFM dataset (Gordon, Laumann, Gilmore, et al., 2017). We contrast inter-

individual variation observed across age-groups and discuss how differences in individuals’ 

functional network organization may offer insights to the interaction between individualized 

brain maturation and the development of cognitive, sensory, and motor functions. 
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2.3 Methods 

2.3.1 Participant demographics 

Thirteen children were recruited to participate in this study; one withdrew due to 

claustrophobia. Hence, the Child Precision Functional Mapping (cPFM) dataset reported here 

comprises 12 children, ages 8-12 years old (6 female, 6 male). Three children met diagnostic 

criteria for neurodevelopmental disorders, and a benign brain cyst was discovered as an 

incidental finding in one child. Detailed demographic and diagnostic information is reported in 

Table 2.1. Children were recruited from the Washington University community and from 

databases of previous participants who were willing to be contacted again for future studies. 

Parents or legal guardians provided informed consent, and all child participants provided assent. 

The Washington University School of Medicine Human Studies Committee and Institutional 

Review Board approved this study.  

The Midnight Scan Club (MSC) dataset of ten healthy young adults was used as an adult 

comparison PFM dataset. Demographic information is detailed in Gordon et al. (2017). 

 

2.3.2 Neuroimaging acquisition 

All cPFM participants were scanned at Washington University School of Medicine on a 

Siemens Prisma 3T MRI scanner with a 64-channel head coil. Foam padding was applied around 

the head for participant comfort and to mitigate head motion during scans. Verbal feedback was 

given between scans to ensure participant comfort and to provide feedback on participant 

motion. Real-time motion analytic software – FIRMM (Dosenbach et al., 2017) - was used to 

track participant motion during scans.  
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Participant data were collected over 3 to 12 visits (M=7.5). At least one T1-weighted 

structural MPRAGE sequence (TR=2500ms, TE=2.9ms, FOV=256x256, voxel 

resolution=1x1x1mm) and one T2-weighted structural image with turbo spin echo sequence 

(TR=3200ms, TE=564ms, FOV=256x256, voxel resolution=1x1x1mm) were collected across 

visits and used for preprocessing. Up to three 10-minute echo-planar sequence functional resting 

state scans (TR=1100ms, TE=33ms, flip angle=84°, MB factor=4, 54 axial slices, voxel 

resolution=2.6x2.6x2.6mm) were collected per visit. During resting state scans, participants were 

instructed to view a white fixation cross on a black background, stay awake, and lie as still as 

possible. 

The adult Midnight Scan Club (Gordon, Laumann, Gilmore, et al., 2017) dataset was 

downloaded from www.openneuro.org (doi:10.18112/openneuro.ds000224.v1.0.4) in 

unprocessed NIfTI (Neuroimaging Informatics Technology Initiative) format. fMRI data 

specifics can be obtained from previously published material (Laumann et al., 2016). The adult 

data used to test for scanner and MRI sequence influences (SIC01-03) can be downloaded from 

www.openneuro.org (doi:10.18112/openneuro.ds002766.v3.0.2). Preprocessed fMRI data used 

for the analyses included in this study were obtained from authors of the original study and full 

fMRI preprocessing specifics (which closely matched those listed below) can be found in the 

original published work (Newbold et al., 2020). 

 

2.3.3 Resting state preprocessing 

All MRI data were preprocessed in-house, using a public release of the DCAN-Labs 

abcd-hcp-pipeline (Sturgeon et al., 2021). Additional FMRIB Software Library (Smith et al., 

2004), Freesurfer (Dale et al., 1999), and Connectome Workbench (Marcus et al., 2011) 
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commands and custom MATLAB(The MathWorks Inc., 2020) scripts were also used for 

preprocessing and data analysis. The DCAN-Labs abcd-hcp-pipeline follows the primary steps of 

the Human connectome minimal preprocessing pipeline (Glasser et al., 2013), followed by 

additional resting state focused preprocessing steps, informed by best practices in the field 

(Caballero-Gaudes & Reynolds, 2017; Dipasquale et al., 2017; Hallquist et al., 2013; Lindquist 

et al., 2019; Power et al., 2012; Power et al., 2014). 

The resting state focused preprocessing steps included: (1) de-meaning and de-trending 

of data; (2) general linear model “denoising” of signal related to white matter, cerebral spinal 

fluid, whole brain (global) signal, and six directions of motion plus their derivatives; (3) 

temporal band-pass filtering (0.008Hz < f < 0.09Hz); (4) respiratory motion filtering(Fair et al., 

2020) (5) and motion censoring which excluded frames exceeding a framewise displacement 

(FD) of 0.2mm. Additionally, retained frames were required to be in clusters of at least 5 

contiguous, below FD threshold frames. Registration steps and denoising are each done in a 

single pass to mitigate the reintroduction of noise (Lindquist et al., 2019).  

All resting state data were then mapped to an MNI-transformed midthickness 32k fs_LR 

surface mesh (Van Essen et al., 2012) and spatial smoothing was applied via geodesic Gaussian 

smoothing (6mm FWHM, 2.55 sigma) to create the final CIFTI dense timeseries file used for 

analyses. 

 

2.3.4 Reliability curves 

Within-subject RSFC reliability curves were calculated to visualize the reliability of scan 

data across multiple visits and identify the quantity of RSFC data needed for within-participant 

reliability to gain little value from additional data collection. Reliability curves were calculated 
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for all cPFM participants with greater than 1 hour and 30 minutes of data using the following 

method. For each individual, resting state timeseries were extracted using 333 previously defined 

cortical parcels (Gordon et al., 2016). First, we created a baseline or “true” RSFC correlation 

matrix using 1 hour of data, pseudo-randomly sampled across all scan visits of that individual. 

This ensured that data from all scan visits were represented in each correlation matrix. A “test” 

correlation matrix was then created from pseudo-randomly sampling the remaining RSFC data, 

again, distributed across all scan visits, in 5-minute increments and the “true” and “test” matrices 

were correlated. The data used to create the “test” correlation matrices was increased until all 

remaining data was used. This process was completed 1K times and averaged per-participant. 

 

2.3.5 Reliability curves 

Individual-specific functional network organizations were identified using the Infomap 

community detection method (Rosvall & Bergstrom, 2008), similar to the methodologies 

presented in previous studies (Power et al., 2011; Gordon, Laumann, Gilmore, et al., 2017). In 

short, we computed pairwise Pearson r correlations among the BOLD time series across all 

cortical vertices, generating a correlation matrix of dimensions 59,412 x 59,412. Subsequently, 

this matrix was thresholded across a range of densities spanning from 0.1% to 5%. For each 

threshold, community assignments were found using the Infomap algorithm. To attribute 

putative network identities to each community at each threshold, we utilized a template matching 

procedure. The Jaccard index was used to calculate the spatial overlap of each community was a 

set of independent networks (Supplementary Figure 2.1) derived from a cohort of 7,316 (3,649 

F) children in the Adolescent Brain Cognitive Development (ABCD) (Casey et al., 2018) study 

(See Supplementary Table 2.1 for full ABCD 7,316 group demographics). An assignment was 
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given to the best matching network if the Jaccard index was at least 0.1 (less than 0.1 overlap 

was not given an assignment to prevent poorly fitting matches). To consolidate assignments 

across sparsity thresholds, a consensus network assignment was derived for by retaining the 

network identity of a vertex at the sparsest threshold where it was successfully assigned to a 

known group network. 

 

2.3.6 Probabilistic maps 

We conducted a probabilistic/density map analysis identical to the approach taken by 

Dworetsky et al (Dworetsky et al., 2021). For each cortical vertex, we tallied the incidences of 

each network assignment across both age groups. cPFM11 and cPFM13 were removed from this 

analysis due excessive motion and a brain lesion, respectively. Following this step, every 

network map underwent normalization by dividing it by the total number of individuals within 

the corresponding age group. As a result, we generated a distinctive probabilistic map for each 

network, offering insights into the likelihood of a specific network assignment occurring at any 

given vertex within the designated age group. The combined network map encompasses the 

frequencies linked to the most common network assignment for every vertex. 

 

2.3.7 Cortical Variants 

Cortical resting state functional connectivity variants (regions that show strong 

dissimilarity to the group average functional connectivity) were identified using methods 

previously applied to adult datasets (Kraus et al., 2021; Seitzman et al., 2019). First, each 

individual’s connectivity matrix was compared to an age-appropriate RSFC group average. For 

the cPFM participants, the comparison group average connectivity matrix was created from 185 
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(83 F) children recruited through the Adolescent Brain Cognitive Development (ABCD) (Casey 

et al., 2018) collection, ages 9-10.8 years old (M=10.2yrs) and did not include any sibling or 

twin pairs (See Supplementary Table 2.1 for RSFC comparison group demographics). All 

participants included in this group average were required to have at least 5 minutes of resting 

state data post motion censoring at 0.2mm FD (M=13m 55s). Additionally, all retained frames 

were required to be within groups of at least 5 contiguous, below FD threshold frames. To best 

mitigate methodological differences, the ABCD participants selected for the group average were 

scanned at Washington University School of Medicine, and data were preprocessed with the 

same DCAN-Labs abcd-hcp-pipeline (Sturgeon et al., 2021) and smoothed with a matching 

smoothing kernel of 6mm FWHM.  

For the adult comparison (MSC) participants, the WashU 120 (Gordon, Laumann, 

Adeyemo, et al., 2017) group average was used, matching methods in the previous adult work 

using MSC data. fMRI preprocessing, motion censoring, and spatial smoothing were the same as 

described above. 

Functional connectivity variants for each participant were identified by correlating the 

functional connectivity of each surface vertex of a given individual with the functional 

connectivity of the matching vertex in the group average data. This procedure resulted in an 

individual-to-group average spatial correlation map for all 59,412 cortical surface vertices. 

Cortical regions with the lowest 10% of correlations that also consisted of at least 30 contiguous 

surface vertices were then binarized and labeled as a functional network variant. The binarized 

variant maps for all participants were then used for all subsequent variant analyses. 

Spatial overlap of participant variant maps was quantified using the Dice similarity 

coefficient (Dice, 1945). The Dice similarity coefficient is a spatial overlap index, ranging from 
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0 which indicates no spatial overlap of two binary sets, to 1 indicating complete overlap of two 

binary sets. Binary variant maps for all participants created in the previous step were used to 

calculate inter-individual variant map dice coefficients across both age groups to quantify the 

age-related similarity of functional connectivity variants of children and adults. 

 

2.3.8 Functional network similarity 

 We calculated pairwise correlations between whole-cortex resting state functional 

network organization at the vertex level, for each pair of participants in each age cohort. An 

RSFC matrix was constructed for each participant utilizing 59,412 cortical surface vertices. 

Subsequently, we determined the correlation between the upper triangular components of the 

RSFC matrix for each participant and those of all other participants. This analysis aimed to 

discern whether participants' average within-group similarity of RSFC differed between the child 

and adult cohorts.  

To investigate which brain regions display higher similarity in children compared to 

adults, we created an average spatial correlation map for each age group. The functional 

connectivity of each cortical vertex of each participant was correlated with the connectivity at 

that vertex with every other individual in the age group This procedure resulted in an individual-

to-individual spatial correlation map for all 59,412 cortical vertices for each pair of individuals in 

each age group. These maps were then averaged in each group to create within age-group 

similarity maps. This enabled us to identify cortical regions of the brain with large similarity 

within their respective age groups and how within-group similarity changed within the child and 

adult cohorts. To further investigate the latter, a difference map was created by taking child 

within-group similarity minus adult within-group similarity maps. An identical approach was 
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taken to create the between age-group similarity map, except individual-to-individual spatial 

correlation maps were created now from each child to each adult pair, and then the average of 

these maps was used to create the between-group similarity map.  

The vertices were further categorized into 10 canonical functional networks: visual, 

auditory, somatomotor face, somatomotor face, somatomotor foot, default mode, cingulo-

opercular, frontoparietal, salience, dorsal attention, and ventral attention based off individual-

specific functional networks labels. 

 

2.4 Results 

2.4.1 Collection of precision functional mapping data is feasible in a child sample 

The collection of PFM data in a pediatric sample can be challenging (Greene et al., 2018) 

due to children being less tolerant of longer or repeated scan visits and exhibiting greater head 

motion than adults (Dosenbach et al., 2017). Here, we demonstrate feasibility in obtaining high-

quality (i.e., low motion) PFM data from 12 children and make available the Child Precision 

Functional Mapping (cPFM) dataset. These children ranged in age from 8.2 - 11.9 years 

(M=9.9yrs) and included six males and six females (gender identity was not collected), and three 

with a reported neurodevelopmental disorder diagnosis. One additional child was recruited and 

screened but withdrew from the study prior to scanning due to claustrophobia. Each participant 

completed 3 - 12 fMRI visits, each visit including collection of 2 structural MRI scans and up to 

three 10-min resting state fMRI scans. Strict motion censoring was applied as part of the pre-

processing steps to mitigate artifactual effects of motion (Engelhardt et al., 2017; Meissner et al., 

2020; Power et al., 2015; Satterthwaite et al., 2012), and each participant retained 1 - 5.5 hours 

(M=3hrs) of resting state fMRI data (64 - 95% of total data retained per participant, M = 77%, 
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Figure 2.1A). Thus, the cPFM dataset demonstrates feasibility of obtaining a minimum of 1 hour 

of low-motion, usable resting state fMRI data across at least 3 scan sessions in children. Table 

2.1 reports additional scan and demographic information. 

 

2.4.2 RSFC is highly reliable with PFM data 

To quantify the amount of data required for reliable estimation of cortical functional 

connectivity, we conducted an iterative split-data reliability analysis (Gordon, Laumann, 

Gilmore, et al., 2017; Laumann et al., 2015). We extracted resting state timeseries from each of 

333 previously defined parcels (Gordon et al., 2016) (pseudo-randomly sampled in increasing 

lengths) from the set of all preprocessed resting state data of a given participant. Parcel-wise 

RSFC matrices were then created, and reliability curves were generated using all parcel-wise 

RSFC matrices for each child participant. Figure 2.1B shows that reliability curves reached a 

correlation of .9 for the majority of participants when using 45-50 minutes of “test” data, 

measured against 1 hour of “true” data. cPFM reliability curves appear to be approaching 

asymptotic values, showing minimal but non-negligible increases in reliability with amounts of 

data greater than 90 minutes. 
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Table 2.1: cPFM participant demographic information 

Participant Demographic Information 

Child Precision Functional Mapping Dataset 

ID Sessions 

Total 

Time 

Collected 

Time 

≤  

0.2 FD 

Age at 

First Scan 
Sex IQ Race Ethnicity Diagnosis 

cPFM05 12 5:59:42 5:40:14 9.2 M 122 White NH None 

cPFM07 6 2:49:52 1:49:42 10.62 M 97 White NH None 

cPFM08 12 5:59:42 3:51:12 9.88 M 118 White NH None 

cPFM10 4 1:59:54 1:31:12 10.12 M 122 
White, 

Black 
NH None 

cPFM11 3 1:29:56 1:01:36 9.17 M 114 
White, 

Black 
NH None 

cPFM12 8 3:55:15 3:02:07 9.8 F 134 White NH 
Graves 

Disease 

cPFM13 10 4:59:45 4:24:19 9.66 F 126 
White, 

Asian 
NH Brain cyst 

cPFM14 5 2:41:38 1:52:37 8.24 M 110 White NH TS, ADHD 

cPFM15 8 3:39:49 2:37:51 11.9 F 102 White NH TS 

cPFM17 6 2:29:53 2:07:12 10.13 F 137 White NH None 

cPFM18 9 3:51:23 3:05:43 10.58 F 114 White NH TS 

cPFM19 7 3:48:06 3:09:18 9.44 F 109 White NH None 

NH = Non-Hispanic, TS = Tourette syndrome 
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Figure 2.1 cPFM dataset summary and reliability. (A) Time resting state data retained and 

removed (motion scrubbed at .2FD) for each individual. (B) Reliability curves of RSFC data for 

each participant are compared in the cPFM dataset. (C) Reliability curves comparing the cPFM 

dataset to the MSC dataset 

. 

2.4.3 Individualized functional networks show broad similarities and individual features 

across children 

Functional network topography for each child was identified using an information theory 

based community detection procedure as in prior studies (Gordon, Laumann, Gilmore, et al., 

2017; Power et al., 2011). Networks were determined using a consensus approach across varying 

RSFC density thresholds, and then assigned a functional identity by applying a template 

matching process which finds the highest degree of spatial overlap between the community and a 



48 

predefined set of template functional networks (Supplementary Figure 2.1). Each participant 

exhibited individual-specific network organizations comprising 12 canonical functional 

networks: visual (VIS), somatomotor hand (SM Hand), somatomotor face (SM Face), 

somatomotor foot (SM Foot), auditory (AUD), default mode (DMN), cingulo-opercular (recently 

termed the action-mode network (Dosenbach et al., 2024) and referred to as CON/AMN 

hereafter), frontoparietal (FPN), dorsal attention (DAN), ventral attention (VAN, also referred to 

as the Language network), salience (SAL), and contextual association networks (CAN) (Figure 

2.2; medial view found in Supplementary Figure 2.2). Qualitatively, all children shared broadly 

similar features of their functional network organization, with consistencies in the general 

topography of each network (between subject NMI = .44). At the same time, individual 

differences are apparent, with variability across individuals in specific features of each network. 

The reliability of each cortical network map was evaluated through a split-half procedure which 

found an average within-subject reliability to be .66 NMI. 

To evaluate the consistency of functional network assignments among children, we 

generated density maps for each network which count the occurrences of that network at every 

cortical vertex across participants. As depicted in Figure 2.3, large consistency was evident for 

each network with the largest consistency occurring in somatomotor and medial vision regions. 

Echoing results from adult data (Dworetsky et al., 2021; Gordon, Laumann, Gilmore, et al., 

2017), we identified canonical attributes in all children, such as DMN features in bilateral 

angular gyri, FPN in the lateral prefrontal cortex, and a distinct dorsal-ventral delineation 

between somatomotor foot, hand, and face regions. Further, core regions of each network had the 

largest consistency among the group, with regions on the edge of each network displaying the 

largest variability. 
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Figure 2.2: Childhood cortical functional networks (A) cPFM group average network 

organization. (B) Split half NMI of within subject and between subject analyses of cPFM 

participants. (C) Individual cPFM participant cortical network organization (left hemisphere, 

lateral surface). 
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Figure 2.3: cPFM network density maps (A) cPFM combined networks where 80% of 

individuals have the same network assignment. (B) Density maps for individual networks with a 

threshold of 80% (8/10 cPFM participants) applied. 

 

2.4.4 RSFC variant analysis identifies cortical regions of individual variability 

To investigate individual variability in RSFC, cortical variants - regions of the brain with 

connectivity that is significantly different from a group average - were identified for each child. 

Following similar methods previously applied to adult PFM data (Seitzman et al., 2019), 

individual RSFC was calculated for all cortical vertices of each child and was then compared to a 

group average of 185 children’s data selected from the ABCD study dataset (Supplementary 

Table 2.1). All children exhibited RSFC cortical variants, though variant count and locations 

differed across children (Figure 2.4) Across the cPFM group, RSFC variants were located 

primarily across the bi-lateral frontal cortex, the temporo–occipito–parietal junction, and along 

the cingulate gyrus (Figure 2.4A). Specifically, cortical variant peaks were most common across 
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the group in the left inferior precentral, inferior frontal, middle temporal, and posterior and 

middle cingulate, as well as the right middle and inferior frontal, middle temporal, and to a lesser 

extent, anterior cingulate brain regions. Additionally, split-half similarity analyses of functional 

variants were conducted within- and between-individuals. Individuals showed high similarity in 

their split-half data (quantified by the Dice coefficient; average split-half Dice = 0.74) with 

significantly lower similarity of split-half data to all other individuals. 
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Figure 2.4: Cortical variants in childhood. (A) cPFM group variant density map. (B) cPFM group 

variant density map thresholded and overlaid with outlines of functional networks that 

overlapped most with variant locations (FPN in yellow, VAN in teal). (C) Split-half Dice 

coefficient within (red circles) and between (black circles) cPFM participants. (D) Bar plots 

depicting the variants overlap with each of the canonical RSFC functional networks 

 

2.4.5 Inter-individual variability is lower in children compared to adults 

Having established an understanding of the typical variability in individual-specific 

functional network organization among precision-mapped children, we next quantified 

differences between these children and a set of precision-mapped adults. Inter-individual 

functional network similarity was analyzed at the whole-cortex and regional levels. To assess 
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developmental differences, the child precision data (cPFM) was compared to adult precision data 

(MSC). 

We computed the correlation of whole-cortex vertex-wise RSFC data between all pairs of 

participants in both age groups. As expected from the broad similarity and regions of consensus 

in functional network maps (Figure 2.3), inter-individual similarity was fairly high across the 

child (mean z(r) = 0.61; sd = 0.05) and adult groups (mean z(r) = 0.52; sd = 0.03) (Figure 2.5). 

Similarity within the child group was significantly higher than similarity in the adult group (p < 

0.001, Figure 2.5B), suggesting inter-individual variability in network organization increases 

with age. To control for total scan time, as the MSC individuals have more data per person than 

the cPFM individuals, we conducted a control analysis sampling an identical amount of scan 

time and frame count from each participant and found similar results (Supplementary Figure 

2.3). To control for the potential influence of MRI scanner and sequence differences, we ran the 

same analysis including three adult participants from an independent study (Newbold et al., 

2020) that used the same scanner and sequences as the cPFM participants (Figure 2.5C). Despite 

having more scan time than the cPFM group on average, the children still had higher inter-

individual similarity than these adults. 
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Figure 2.5: Functional network similarity across the child and adult PFM participants. (A-B) 

cPFM and MSC participant to participant similarity matrices comparing whole-cortex brain 

connectivity within each age group. (C) Within-group similarity values for each age cohort. (D) 

Participant level within-group similarity values, including SIC01, SIC02, SIC03 with equal 

scanning parameters to the cPFM group. 

 

To investigate which cortical regions displayed increased similarity, we computed 

within-group similarity maps at the vertex level for each age group. In both cohorts, within-

group similarity was largest in primary somatomotor and medial visual regions, the insula, 

precuneus, and posterior cingulate cortex (Figure 2.6A, B). By calculating the difference of these 

maps (child - adult), we found that the child cohort had larger within-group similarity values than 

the adult cohort across the somatomotor, superior parietal, temporal, and medial prefrontal cortex 

(Figure 2.6C). We further grouped vertex values by individual-specific functional network 
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identity at each vertex and found that childhood within-group similarity values were significantly 

larger in every functional network (Figure 2.6D) (FDR p<0.05). 

 

 
 

Figure 2.6: Within age-group similarity maps for children and adults. (A-B) Vertex-wise within-

group similarity map for child and adult groups. (C) A difference map was created by taking 

child - adult maps. (D) Within-group similarity broken down by individual-specific network 

identity labels. 

 

2.4.6 Age invariance is largest inside processing networks 

Next, we calculated similarity values across all child to adult pairs. Age-invariance, or 

large between-group similarity, was substantial across the entire cortex (mean z(r) = .48; sd = 

.13), suggesting a pronounced population effect—an overarching functional organization that is 
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shared among both children and adults (Figure 2.7C). Like the regions with large within-group 

similarity, we found larger between-group similarity in primary somatomotor and visual regions, 

the insula, precuneus, and posterior cingulate cortex (Figure 2.7A). The individual-specific 

between-group similarity map for a representative child is shown in Figure 27B to highlight age-

invariance in SMN, VIS, CON, AUD, and DMN regions. 

 

 
Figure 2.7: Between age-group similarity. (A) Between age-group similarity map created from 

averaging across all child-to-adult comparisons. (B) Individual-specific between group similarity 

map for a representative participant cPFM05. (C) Between-group similarity values for each 

child. (D) Between-group similarity broken down by individual-specific network identity. 
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2.5 Discussion 

In the current study, we demonstrate the feasibility of collecting high-quality precision 

functional mapping resting state fMRI data in a pediatric sample. Although pediatric populations 

are generally considered more challenging than adults for fMRI data collection due to concerns 

of in-scanner motion and lower tolerance for repeated scanning (Dosenbach et al., 2017), we 

successfully collected an average of 3 hours of low-motion resting state fMRI data per child 

from 12 children across 3 to 12 scanning sessions each (Table 2.1). Despite an expected higher 

level of in-scanner motion for this age group, we retained approximately 75% of each 

participant’s data after stringent motion correction (Figure 2.1A) and achieved reliable estimates 

of functional connectivity of a quantity and quality comparable to previous adult PFM datasets 

(Gordon, Laumann, Gilmore, et al., 2017). Additionally, this child PFM dataset of 12 children, 

aged 8 to 12 years old at their initial scan visit, will be made available as a public resource to 

continue to aid future work aiming to characterize brain development. 

Precision functional mapping analyses conducted on the cPFM dataset revealed 

individually-specific features of functional brain network organization in childhood that were 

obscured in previous studies using common group-average approaches. While group-average 

analyses are important and necessary for identifying accurate brain-behavior associations (Marek 

et al., 2022), individual features of functional networks are necessarily obscured by group-

average methods and the ability to measure inter-individual variation is reduced. Qualitatively, 

our cPFM dataset displayed functional network organization for each child that consisted of 12 

canonical networks (Fig 2.2), each with common regions of consensus among the cores of these 

networks (Fig 2.3). Regions of inter-individual variability were, however, evident primarily 

along the edges of each network and in the association cortex (Fig 2.4A). Furthermore, specific 
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functional networks displayed larger variability than others, with the largest number of network 

variants in the frontoparietal network (FPN) and ventral-attention network (VAN) (Fig 2.4B, D). 

These same methods, when applied to a set of precision mapped adults (Gordon, 

Laumann, Gilmore, et al., 2017), reveal comparable features of network consensus (Dworetsky 

et al., 2021) and variants (Seitzman et al., 2019). In fact, directly comparing the cPFM children 

to precision mapped adults (MSC) here, we find a large population, age-invariant, network 

organization is already in place with whole-cortex functional similarity between children and 

adults pairs being on average, z(r)=0.48 (Fig 2.7C). This supports previous work showing a 

stable group effect of functional brain networks (Gratton et al., 2018) and also supports the idea 

that an age-invariant organization is already in place in childhood and may even be present 

earlier as in neonates (Sylvester et al., 2023). 

A major finding from this work is that inter-individual variability of functional network 

organization is larger in adults than in children (Fig 2.5C). This goes against the common 

assumption that the developmental trajectory of functional network organization begins in 

childhood with functional organization more variable and concludes in a stable ‘adult-like’ state. 

This assumption is perhaps justified as childhood is characterized by rapid and significant 

changes in cognitive development where children in the same 8- to 12-year-old range may have 

very different cognitive abilities (Tervo-clemmens et al., 2023). It is possible that inter-

individual variability exists among 8- to 12-year-olds due to differences in developmental stages 

but that the effect is not the primary contributor to inter-individual variability. Instead, perhaps 

due to the accumulation of unique experiences, cognitive strategies, behaviors, or environmental 

factors, functional networks become more variable with age.  
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Evidence suggests that the core functional network organization is already in-place in 

neonates (Sylvester et al., 2023), supporting the idea of a large genetic component that is 

expressed in utero that establishes an individual’s baseline network organization. Unique 

coactivations of brain regions and Hebbian-like processes may then selectively strengthen or 

weaken functional connectivity (Lewis et al, 2009) potentially causing inter-individual 

variability to increase during the lifetime. The refinement we see here occurs across every 

functional network (Figure 2.6D) suggesting maturation is a global process impacting the whole 

brain rather than being limited to a specific network or region. Indeed, age is associated with 

brain network integration and segregation across various sensory and control systems (Tooley et 

al., 2022), with RSFC - age relationships seemingly distributed randomly across the whole brain 

(Nielsen et al., 2018). Along with associations to age, RSFC-behavior relationships are 

significant across several functional networks (Marek et al., 2019; Cui et al., 2020; Tooley et al., 

2022). It is thus suggested that neurodevelopmental changes are not limited to any specific 

attention or control system, but rather occur throughout the entire brain. 

While the greater variability observed in the adult data may result from unique 

environmental, cognitive, or behavioral factors, other factors can potentially also influence this 

change in network organization. For example, age-related changes in vasculature (Bennett et al., 

2024; Graff et al., 2021), myelination (Vandewouw et al., 2021), and cortical thinning (Petersen 

et al., 2022) may contribute to the observed increase in variance. Future longitudinal studies 

collecting these measures across multiple age ranges can help fill this gap and provide a more 

complete understanding of the factors leading to increased inter-individual variation in brain 

networks as we age. It is also possible that methodological or group factors may have some 

influence on the reported results. Although we made best efforts to check and control for 
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confounds between the child and adult datasets, inherent differences between the fMRI 

acquisition settings, reported and unreported individual behavioral diagnoses, and other common 

differences that arise from using multiple fMRI datasets for cross-sectional studies on 

development are some limitations of the current study. Differences in fMRI acquisition settings 

were addressed with the inclusion of the SIC adult comparison data (Figure 2.5), which matched 

the acquisition settings of the cPFM dataset and followed the results trend observed in the MSC 

adult data, suggesting that acquisition settings were perhaps an element, but not driving our main 

results. Further, 3 of the 12 children in the cPFM dataset had a neurobehavioral disorder 

diagnosis (Table 2.1) that were not matched in the adult data. Future PFM collections directly 

focusing on the influence of neurobehavioral disorders can help us to better understand how and 

to what extent these disorders may have influenced our main results. Lastly, the MSC and SIC 

adult datasets had longer post-processing and motion censored fMRI data times, in general, than 

the cPFM dataset. We addressed this by adjusting longer scan times to the cPFM average time in 

certain analyses. While the limitations of the current work should be addressed in the future, we 

suspect that the potential confounds of neurodevelopmental disorders or total scan time 

differences do not affect our results. Since the child group had more variable diagnostic 

phenotypes and less reliable data (less total scan time), we would reasonably expect both 

confounds to cause child functional brain networks to be more variable, rather than less variable, 

as we observe here. 

Together, this study provides evidence of the feasibility of dense sampling and a PFM 

approach in a pediatric sample, a characterization of the inter-individual variability of functional 

brain networks during childhood (and compared to adult PFM data), and evidence for a 

trajectory of brain network refinement that begins more similar in childhood and becomes more 
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individually unique as we age. The results presented here and the release of this cPFM dataset 

for future work provide a foundation for understanding how brain networks are refined as we age 

and may inform how inter-individual differences in brain networks are involved in 

developmental disorders. 

 

Acknowledgment 

Chapter 2, in part, is currently being prepared for submission for publication of the 

material. Feigelis M, Demeter DV, Ali SA, Baim AR, Koithan E, Zreik S, Greene DJ. The 

dissertation author was the joint primary researcher and author of this material.  

 

2.6 References 

Bennett, H.C., Zhang, Q., Wu, Y., Manjila, S.B., Chon, U., Shin, D., Vanselow, D.J., Pi, H.-J., 

Drew, P.J., Kim, Y., 2024. Aging drives cerebrovascular network remodeling and functional 

changes in the mouse brain. Nat Commun 15, 6398. https://doi.org/10.1038/s41467-024-50559-8 

 

Best, J.R., Miller, P.H., Naglieri, J.A., 2011. Relations between executive function and academic 

achievement from ages 5 to 17 in a large, representative national sample. Learning and 

Individual Differences 21, 327–336. https://doi.org/10.1016/j.lindif.2011.01.007 

 

Blakemore, S.-J., 2012. Imaging brain development: The adolescent brain. NeuroImage 61, 397–

406. https://doi.org/10.1016/j.neuroimage.2011.11.080 

 

Caballero-Gaudes, C., Reynolds, R.C., 2017. Methods for cleaning the BOLD fMRI signal. 

NeuroImage 154, 128–149. https://doi.org/10.1016/j.neuroimage.2016.12.018 

 

Casey, B.J., Cannonier, T., Conley, M.I., Cohen, A.O., Barch, D.M., Heitzeg, M.M., Soules, 

M.E., Teslovich, T., Dellarco, D.V., Garavan, H., Orr, C.A., Wager, T.D., Banich, M.T., Speer, 

N.K., Sutherland, M.T., Riedel, M.C., Dick, A.S., Bjork, J.M., Thomas, K.M., Chaarani, B., 

Mejia, M.H., Hagler, D.J., Daniela Cornejo, M., Sicat, C.S., Harms, M.P., Dosenbach, N.U.F., 

Rosenberg, M., Earl, E., Bartsch, H., Watts, R., Polimeni, J.R., Kuperman, J.M., Fair, D.A., 

Dale, A.M., 2018. The Adolescent Brain Cognitive Development (ABCD) study: Imaging 

acquisition across 21 sites. Developmental Cognitive Neuroscience 32, 43–

54. https://doi.org/10.1016/j.dcn.2018.03.001 

 

https://doi.org/10.1038/s41467-024-50559-8
https://doi.org/10.1016/j.lindif.2011.01.007
https://doi.org/10.1016/j.neuroimage.2011.11.080
https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/10.1016/j.dcn.2018.03.001


62 

Cui, Z., Li, H., Xia, C.H., Larsen, B., Adebimpe, A., Baum, G.L., Cieslak, M., Gur, R.E., Gur, 

R.C., Moore, T.M., Oathes, D.J., Alexander-Bloch, A.F., Raznahan, A., Roalf, D.R., Shinohara, 

R.T., Wolf, D.H., Davatzikos, C., Bassett, D.S., Fair, D.A., Fan, Y., Satterthwaite, T.D., 2020. 

Individual Variation in Functional Topography of Association Networks in Youth. Neuron 106, 

340-353.e8. https://doi.org/10.1016/j.neuron.2020.01.029 

 

D. Sturgeon, Earl, E., Perrone, A., Kathy, 2021. DCAN-Labs/abcd-hcp-pipeline: Minor update to 

DCAN BOLD Processing and MRE version. https://doi.org/10.5281/ZENODO.4571051 

 

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical Surface-Based Analysis. NeuroImage 9, 

179–194. https://doi.org/10.1006/nimg.1998.0395 

 

Dice, L.R., 1945. Measures of the Amount of Ecologic Association Between Species. Ecology 

26, 297–302. https://doi.org/10.2307/1932409 

 

Dipasquale, O., Sethi, A., Laganà, M.M., Baglio, F., Baselli, G., Kundu, P., Harrison, N.A., 

Cercignani, M., 2017. Comparing resting state fMRI de-noising approaches using multi- and 

single-echo acquisitions. PLoS ONE 12, 

e0173289. https://doi.org/10.1371/journal.pone.0173289 

 

Dosenbach, N.U.F., Koller, J.M., Earl, E.A., Miranda-Dominguez, O., Klein, R.L., Van, A.N., 

Snyder, A.Z., Nagel, B.J., Nigg, J.T., Nguyen, A.L., Wesevich, V., Greene, D.J., Fair, D.A., 

2017. Real-time motion analytics during brain MRI improve data quality and reduce costs. 

NeuroImage 161, 80–93. https://doi.org/10.1016/j.neuroimage.2017.08.025 

 

Dosenbach, N.U.F., Raichle, M., Gordon, E.M., 2024. The brain’s cingulo-opercular action-

mode network. https://doi.org/10.31234/osf.io/2vt79 

 

Dworetsky, A., Seitzman, B.A., Adeyemo, B., Neta, M., Coalson, R.S., Petersen, S.E., Gratton, 

C., 2021. Probabilistic mapping of human functional brain networks identifies regions of high 

group consensus. NeuroImage 237, 118164. https://doi.org/10.1016/j.neuroimage.2021.118164 

 

Engelhardt, L.E., Roe, M.A., Juranek, J., DeMaster, D., Harden, K.P., Tucker-Drob, E.M., 

Church, J.A., 2017. Children’s head motion during fMRI tasks is heritable and stable over time. 

Developmental Cognitive Neuroscience 25, 58–68. https://doi.org/10.1016/j.dcn.2017.01.011 

 

Fair, D.A., Miranda-Dominguez, O., Snyder, A.Z., Perrone, A., Earl, E.A., Van, A.N., Koller, 

J.M., Feczko, E., Tisdall, M.D., Van Der Kouwe, A., Klein, R.L., Mirro, A.E., Hampton, J.M., 

Adeyemo, B., Laumann, T.O., Gratton, C., Greene, D.J., Schlaggar, B.L., Hagler, D.J., Watts, R., 

Garavan, H., Barch, D.M., Nigg, J.T., Petersen, S.E., Dale, A.M., Feldstein-Ewing, S.W., Nagel, 

B.J., Dosenbach, N.U.F., 2020. Correction of respiratory artifacts in MRI head motion estimates. 

NeuroImage 208, 116400. https://doi.org/10.1016/j.neuroimage.2019.116400 

 

Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., Paus, T., 

Evans, A.C., Rapoport, J.L., 1999. Brain development during childhood and adolescence: a 

longitudinal MRI study. Nat Neurosci 2, 861–863. https://doi.org/10.1038/13158 

https://doi.org/10.1016/j.neuron.2020.01.029
https://doi.org/10.5281/ZENODO.4571051
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.2307/1932409
https://doi.org/10.1371/journal.pone.0173289
https://doi.org/10.1016/j.neuroimage.2017.08.025
https://doi.org/10.31234/osf.io/2vt79
https://doi.org/10.1016/j.neuroimage.2021.118164
https://doi.org/10.1016/j.dcn.2017.01.011
https://doi.org/10.1016/j.neuroimage.2019.116400
https://doi.org/10.1038/13158


63 

 

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, 

J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., 2013. The minimal 

preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–

124. https://doi.org/10.1016/j.neuroimage.2013.04.127 

 

Gordon, E.M., Laumann, T.O., Adeyemo, B., Gilmore, A.W., Nelson, S.M., Dosenbach, N.U.F., 

Petersen, S.E., 2017a. Individual-specific features of brain systems identified with resting state 

functional correlations. NeuroImage 146, 918–

939. https://doi.org/10.1016/j.neuroimage.2016.08.032 

 

Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E., 2016. 

Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. 

Cereb. Cortex 26, 288–303. https://doi.org/10.1093/cercor/bhu239 

 

Gordon, E.M., Laumann, T.O., Gilmore, A.W., Newbold, D.J., Greene, D.J., Berg, J.J., Ortega, 

M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J.M., Coalson, R.S., Nguyen, A.L., 

McDermott, K.B., Shimony, J.S., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., Nelson, S.M., 

Dosenbach, N.U.F., 2017b. Precision Functional Mapping of Individual Human Brains. Neuron 

95, 791-807.e7. https://doi.org/10.1016/j.neuron.2017.07.011 

 

Graff, B.J., Payne, S.J., El-Bouri, W.K., 2021. The Ageing Brain: Investigating the Role of Age 

in Changes to the Human Cerebral Microvasculature With an in silico Model. Front. Aging 

Neurosci. 13, 632521. https://doi.org/10.3389/fnagi.2021.632521 

 

Gratton, C., Laumann, T.O., Nielsen, A.N., Greene, D.J., Gordon, E.M., Gilmore, A.W., Nelson, 

S.M., Coalson, R.S., Snyder, A.Z., Schlaggar, B.L., Dosenbach, N.U.F., Petersen, S.E., 2018. 

Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not 

Cognitive or Daily Variation. Neuron 98, 439-

452.e5. https://doi.org/10.1016/j.neuron.2018.03.035 

 

Grayson, D.S., Fair, D.A., 2017. Development of large-scale functional networks from birth to 

adulthood: A guide to the neuroimaging literature. NeuroImage 160, 15–

31. https://doi.org/10.1016/j.neuroimage.2017.01.079 

 

Greene, D.J., Koller, J.M., Hampton, J.M., Wesevich, V., Van, A.N., Nguyen, A.L., Hoyt, C.R., 

McIntyre, L., Earl, E.A., Klein, R.L., Shimony, J.S., Petersen, S.E., Schlaggar, B.L., Fair, D.A., 

Dosenbach, N.U.F., 2018. Behavioral interventions for reducing head motion during MRI scans 

in children. NeuroImage 171, 234–245. https://doi.org/10.1016/j.neuroimage.2018.01.023 

 

Greene, D.J., Marek, S., Gordon, E.M., Siegel, J.S., Gratton, C., Laumann, T.O., Gilmore, A.W., 

Berg, J.J., Nguyen, A.L., Dierker, D., Van, A.N., Ortega, M., Newbold, D.J., Hampton, J.M., 

Nielsen, A.N., McDermott, K.B., Roland, J.L., Norris, S.A., Nelson, S.M., Snyder, A.Z., 

Schlaggar, B.L., Petersen, S.E., Dosenbach, N.U.F., 2020. Integrative and Network-Specific 

Connectivity of the Basal Ganglia and Thalamus Defined in Individuals. Neuron 105, 742-

758.e6. https://doi.org/10.1016/j.neuron.2019.11.012 

https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2016.08.032
https://doi.org/10.1093/cercor/bhu239
https://doi.org/10.1016/j.neuron.2017.07.011
https://doi.org/10.3389/fnagi.2021.632521
https://doi.org/10.1016/j.neuron.2018.03.035
https://doi.org/10.1016/j.neuroimage.2017.01.079
https://doi.org/10.1016/j.neuroimage.2018.01.023
https://doi.org/10.1016/j.neuron.2019.11.012


64 

 

Hallquist, M.N., Hwang, K., Luna, B., 2013. The nuisance of nuisance regression: Spectral 

misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise 

and obscures functional connectivity. NeuroImage 82, 208–

225. https://doi.org/10.1016/j.neuroimage.2013.05.116 

 

Houston, S.M., Herting, M.M., Sowell, E.R., 2013. The Neurobiology of Childhood Structural 

Brain Development: Conception Through Adulthood, in: Andersen, S.L., Pine, D.S. (Eds.), The 

Neurobiology of Childhood, Current Topics in Behavioral Neurosciences. Springer Berlin 

Heidelberg, Berlin, Heidelberg, pp. 3–17. https://doi.org/10.1007/978-3-662-45758-0_265 

 

Keller, A.S., Pines, A.R., Shanmugan, S., Sydnor, V.J., Cui, Z., Bertolero, M.A., Barzilay, R., 

Alexander-Bloch, A.F., Byington, N., Chen, A., Conan, G.M., Davatzikos, C., Feczko, E., 

Hendrickson, T.J., Houghton, A., Larsen, B., Li, H., Miranda-Dominguez, O., Roalf, D.R., 

Perrone, A., Shetty, A., Shinohara, R.T., Fan, Y., Fair, D.A., Satterthwaite, T.D., 2023. 

Personalized functional brain network topography is associated with individual differences in 

youth cognition. Nat Commun 14, 8411. https://doi.org/10.1038/s41467-023-44087-0 

 

Kraus, B.T., Perez, D., Ladwig, Z., Seitzman, B.A., Dworetsky, A., Petersen, S.E., Gratton, C., 

2021. Network variants are similar between task and rest states. NeuroImage 229, 

117743. https://doi.org/10.1016/j.neuroimage.2021.117743 

 

Laumann, T.O., Gordon, E.M., Adeyemo, B., Snyder, A.Z., Joo, S.J., Chen, M.-Y., Gilmore, 

A.W., McDermott, K.B., Nelson, S.M., Dosenbach, N.U.F., Schlaggar, B.L., Mumford, J.A., 

Poldrack, R.A., Petersen, S.E., 2015. Functional System and Areal Organization of a Highly 

Sampled Individual Human Brain. Neuron 87, 657–

670. https://doi.org/10.1016/j.neuron.2015.06.037 

 

Laumann, T.O., Snyder, A.Z., Mitra, A., Gordon, E.M., Gratton, C., Adeyemo, B., Gilmore, 

A.W., Nelson, S.M., Berg, J.J., Greene, D.J., McCarthy, J.E., Tagliazucchi, E., Laufs, H., 

Schlaggar, B.L., Dosenbach, N.U.F., Petersen, S.E., 2016. On the Stability of BOLD fMRI 

Correlations. Cereb. Cortex cercor;bhw265v1. https://doi.org/10.1093/cercor/bhw265 

 

Lewis, C.M., Baldassarre, A., Committeri, G., Romani, G.L., Corbetta, M., 2009. Learning 

sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci. U.S.A. 106, 

17558–17563. https://doi.org/10.1073/pnas.0902455106 

 

Lindquist, M.A., Geuter, S., Wager, T.D., Caffo, B.S., 2019. Modular preprocessing pipelines 

can reintroduce artifacts into fMRI data. Human Brain Mapping 40, 2358–

2376. https://doi.org/10.1002/hbm.24528 

 

Luna, B., Marek, S., Larsen, B., Tervo-Clemmens, B., Chahal, R., 2015. An Integrative Model of 

the Maturation of Cognitive Control. Annu. Rev. Neurosci. 38, 151–

170. https://doi.org/10.1146/annurev-neuro-071714-034054 

 

https://doi.org/10.1016/j.neuroimage.2013.05.116
https://doi.org/10.1007/978-3-662-45758-0_265
https://doi.org/10.1038/s41467-023-44087-0
https://doi.org/10.1016/j.neuroimage.2021.117743
https://doi.org/10.1016/j.neuron.2015.06.037
https://doi.org/10.1093/cercor/bhw265
https://doi.org/10.1073/pnas.0902455106
https://doi.org/10.1002/hbm.24528
https://doi.org/10.1146/annurev-neuro-071714-034054


65 

Luo, A.C., Sydnor, V.J., Pines, A., Larsen, B., Alexander-Bloch, A.F., Cieslak, M., Covitz, S., 

Chen, A.A., Esper, N.B., Feczko, E., Franco, A.R., Gur, R.E., Gur, R.C., Houghton, A., Hu, F., 

Keller, A.S., Kiar, G., Mehta, K., Salum, G.A., Tapera, T., Xu, T., Zhao, C., Salo, T., Fair, D.A., 

Shinohara, R.T., Milham, M.P., Satterthwaite, T.D., 2024. Functional connectivity development 

along the sensorimotor-association axis enhances the cortical hierarchy. Nat Commun 15, 

3511. https://doi.org/10.1038/s41467-024-47748-w 

 

Marcus, D.S., Harwell, J., Olsen, T., Hodge, M., Glasser, M.F., Prior, F., Jenkinson, M., 

Laumann, T., Curtiss, S.W., Van Essen, D.C., 2011. Informatics and Data Mining Tools and 

Strategies for the Human Connectome Project. Front. Neuroinform. 

5. https://doi.org/10.3389/fninf.2011.00004 

 

Marek, S., Siegel, J.S., Gordon, E.M., Raut, R.V., Gratton, C., Newbold, D.J., Ortega, M., 

Laumann, T.O., Adeyemo, B., Miller, D.B., Zheng, A., Lopez, K.C., Berg, J.J., Coalson, R.S., 

Nguyen, A.L., Dierker, D., Van, A.N., Hoyt, C.R., McDermott, K.B., Norris, S.A., Shimony, 

J.S., Snyder, A.Z., Nelson, S.M., Barch, D.M., Schlaggar, B.L., Raichle, M.E., Petersen, S.E., 

Greene, D.J., Dosenbach, N.U.F., 2018. Spatial and Temporal Organization of the Individual 

Human Cerebellum. Neuron 100, 977-993.e7. https://doi.org/10.1016/j.neuron.2018.10.010 

 

Marek, S., Tervo-Clemmens, B., Calabro, F.J., Montez, D.F., Kay, B.P., Hatoum, A.S., 

Donohue, M.R., Foran, W., Miller, R.L., Hendrickson, T.J., Malone, S.M., Kandala, S., Feczko, 

E., Miranda-Dominguez, O., Graham, A.M., Earl, E.A., Perrone, A.J., Cordova, M., Doyle, O., 

Moore, L.A., Conan, G.M., Uriarte, J., Snider, K., Lynch, B.J., Wilgenbusch, J.C., Pengo, T., 

Tam, A., Chen, J., Newbold, D.J., Zheng, A., Seider, N.A., Van, A.N., Metoki, A., Chauvin, 

R.J., Laumann, T.O., Greene, D.J., Petersen, S.E., Garavan, H., Thompson, W.K., Nichols, T.E., 

Yeo, B.T.T., Barch, D.M., Luna, B., Fair, D.A., Dosenbach, N.U.F., 2022. Reproducible brain-

wide association studies require thousands of individuals. Nature 603, 654–

660. https://doi.org/10.1038/s41586-022-04492-9 

 

Marek, S., Tervo-Clemmens, B., Nielsen, A.N., Wheelock, M.D., Miller, R.L., Laumann, T.O., 

Earl, E., Foran, W.W., Cordova, M., Doyle, O., Perrone, A., Miranda-Dominguez, O., Feczko, 

E., Sturgeon, D., Graham, A., Hermosillo, R., Snider, K., Galassi, A., Nagel, B.J., Ewing, 

S.W.F., Eggebrecht, A.T., Garavan, H., Dale, A.M., Greene, D.J., Barch, D.M., Fair, D.A., Luna, 

B., Dosenbach, N.U.F., 2019. Identifying reproducible individual differences in childhood 

functional brain networks: An ABCD study. Dev Cogn Neurosci 40, 

100706. https://doi.org/10.1016/j.dcn.2019.100706 

 

Meissner, T.W., Walbrin, J., Nordt, M., Koldewyn, K., Weigelt, S., 2020. Head motion during 

fMRI tasks is reduced in children and adults if participants take breaks. Developmental 

Cognitive Neuroscience 44, 100803. https://doi.org/10.1016/j.dcn.2020.100803 

 

Mills, K.L., Goddings, A.-L., Herting, M.M., Meuwese, R., Blakemore, S.-J., Crone, E.A., Dahl, 

R.E., Güroğlu, B., Raznahan, A., Sowell, E.R., Tamnes, C.K., 2016. Structural brain 

development between childhood and adulthood: Convergence across four longitudinal samples. 

NeuroImage 141, 273–281. https://doi.org/10.1016/j.neuroimage.2016.07.044 

 

https://doi.org/10.1038/s41467-024-47748-w
https://doi.org/10.3389/fninf.2011.00004
https://doi.org/10.1016/j.neuron.2018.10.010
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1016/j.dcn.2019.100706
https://doi.org/10.1016/j.dcn.2020.100803
https://doi.org/10.1016/j.neuroimage.2016.07.044


66 

Muetzel, R.L., Blanken, L.M.E., Thijssen, S., Van Der Lugt, A., Jaddoe, V.W.V., Verhulst, F.C., 

Tiemeier, H., White, T., 2016. Resting‐state networks in 6‐to‐10 year old children. Human Brain 

Mapping 37, 4286–4300. https://doi.org/10.1002/hbm.23309 

 

Newbold, D.J., Laumann, T.O., Hoyt, C.R., Hampton, J.M., Montez, D.F., Raut, R.V., Ortega, 

M., Mitra, A., Nielsen, A.N., Miller, D.B., Adeyemo, B., Nguyen, A.L., Scheidter, K.M., 

Tanenbaum, A.B., Van, A.N., Marek, S., Schlaggar, B.L., Carter, A.R., Greene, D.J., Gordon, 

E.M., Raichle, M.E., Petersen, S.E., Snyder, A.Z., Dosenbach, N.U.F., 2020. Plasticity and 

Spontaneous Activity Pulses in Disused Human Brain Circuits. Neuron 107, 580-

589.e6. https://doi.org/10.1016/j.neuron.2020.05.007 

 

Nielsen, A.N., Greene, D.J., Gratton, C., Dosenbach, N.U.F., Petersen, S.E., Schlaggar, B.L., 

2019. Evaluating the Prediction of Brain Maturity From Functional Connectivity After Motion 

Artifact Denoising. Cereb Cortex 29, 2455–2469. https://doi.org/10.1093/cercor/bhy117 

 

Paus, T., Keshavan, M., Giedd, J.N., 2008. Why do many psychiatric disorders emerge during 

adolescence? Nat Rev Neurosci 9, 947–957. https://doi.org/10.1038/nrn2513 

 

Petersen, M., Nägele, F.L., Mayer, C., Schell, M., Rimmele, D.L., Petersen, E., Kühn, S., 

Gallinat, J., Hanning, U., Fiehler, J., Twerenbold, R., Gerloff, C., Thomalla, G., Cheng, B., 2022. 

Brain network architecture constrains age-related cortical thinning. NeuroImage 264, 

119721. https://doi.org/10.1016/j.neuroimage.2022.119721 

 

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but 

systematic correlations in functional connectivity MRI networks arise from subject motion. 

NeuroImage 59, 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018 

 

Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C., 

Laumann, T.O., Miezin, F.M., Schlaggar, B.L., Petersen, S.E., 2011. Functional Network 

Organization of the Human Brain. Neuron 72, 665–

678. https://doi.org/10.1016/j.neuron.2011.09.006 

 

Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2014. 

Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 

84, 320–341. https://doi.org/10.1016/j.neuroimage.2013.08.048 

 

Power, J.D., Schlaggar, B.L., Petersen, S.E., 2015. Recent progress and outstanding issues in 

motion correction in resting state fMRI. NeuroImage 105, 536–

551. https://doi.org/10.1016/j.neuroimage.2014.10.044 

 

Robson, D.A., Allen, M.S., Howard, S.J., 2020. Self-regulation in childhood as a predictor of 

future outcomes: A meta-analytic review. Psychological Bulletin 146, 324–

354. https://doi.org/10.1037/bul0000227 

 

https://doi.org/10.1002/hbm.23309
https://doi.org/10.1016/j.neuron.2020.05.007
https://doi.org/10.1093/cercor/bhy117
https://doi.org/10.1038/nrn2513
https://doi.org/10.1016/j.neuroimage.2022.119721
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2014.10.044
https://doi.org/10.1037/bul0000227


67 

Rosvall, M., Bergstrom, C.T., 2008. Maps of random walks on complex networks reveal 

community structure. Proc. Natl. Acad. Sci. U.S.A. 105, 1118–

1123. https://doi.org/10.1073/pnas.0706851105 

 

Satterthwaite, T.D., Wolf, D.H., Loughead, J., Ruparel, K., Elliott, M.A., Hakonarson, H., Gur, 

R.C., Gur, R.E., 2012. Impact of in-scanner head motion on multiple measures of functional 

connectivity: Relevance for studies of neurodevelopment in youth. NeuroImage 60, 623–

632. https://doi.org/10.1016/j.neuroimage.2011.12.063 

 

Seitzman, B.A., Gratton, C., Laumann, T.O., Gordon, E.M., Adeyemo, B., Dworetsky, A., 

Kraus, B.T., Gilmore, A.W., Berg, J.J., Ortega, M., Nguyen, A., Greene, D.J., McDermott, K.B., 

Nelson, S.M., Lessov-Schlaggar, C.N., Schlaggar, B.L., Dosenbach, N.U.F., Petersen, S.E., 

2019. Trait-like variants in human functional brain networks. Proc. Natl. Acad. Sci. U.S.A. 116, 

22851–22861. https://doi.org/10.1073/pnas.1902932116 

 

Siegler, R.S., 2007. Cognitive variability. Developmental Science 10, 104–

109. https://doi.org/10.1111/j.1467-7687.2007.00571.x 

 

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, 

H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, 

J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 2004. Advances in functional and 

structural MR image analysis and implementation as FSL. NeuroImage 23, S208–

S219. https://doi.org/10.1016/j.neuroimage.2004.07.051 

 

Stiles, J., Jernigan, T.L., 2010. The Basics of Brain Development. Neuropsychol Rev 20, 327–

348. https://doi.org/10.1007/s11065-010-9148-4 

 

Sylvester, C.M., Kaplan, S., Myers, M.J., Gordon, E.M., Schwarzlose, R.F., Alexopoulos, D., 

Nielsen, A.N., Kenley, J.K., Meyer, D., Yu, Q., Graham, A.M., Fair, D.A., Warner, B.B., Barch, 

D.M., Rogers, C.E., Luby, J.L., Petersen, S.E., Smyser, C.D., 2023. Network-specific selectivity 

of functional connections in the neonatal brain. Cerebral Cortex 33, 2200–

2214. https://doi.org/10.1093/cercor/bhac202 

 

Sylvester, C.M., Yu, Q., Srivastava, A.B., Marek, S., Zheng, A., Alexopoulos, D., Smyser, C.D., 

Shimony, J.S., Ortega, M., Dierker, D.L., Patel, G.H., Nelson, S.M., Gilmore, A.W., McDermott, 

K.B., Berg, J.J., Drysdale, A.T., Perino, M.T., Snyder, A.Z., Raut, R.V., Laumann, T.O., 

Gordon, E.M., Barch, D.M., Rogers, C.E., Greene, D.J., Raichle, M.E., Dosenbach, N.U.F., 

2020. Individual-specific functional connectivity of the amygdala: A substrate for precision 

psychiatry. Proc. Natl. Acad. Sci. U.S.A. 117, 3808–

3818. https://doi.org/10.1073/pnas.1910842117 

 

Tervo-Clemmens, B., Calabro, F.J., Parr, A.C., Fedor, J., Foran, W., Luna, B., 2023. A canonical 

trajectory of executive function maturation from adolescence to adulthood. Nat Commun 14, 

6922. https://doi.org/10.1038/s41467-023-42540-8 

 

https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1016/j.neuroimage.2011.12.063
https://doi.org/10.1073/pnas.1902932116
https://doi.org/10.1111/j.1467-7687.2007.00571.x
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1007/s11065-010-9148-4
https://doi.org/10.1093/cercor/bhac202
https://doi.org/10.1073/pnas.1910842117
https://doi.org/10.1038/s41467-023-42540-8


68 

Thomason, M.E., Dennis, E.L., Joshi, A.A., Joshi, S.H., Dinov, I.D., Chang, C., Henry, M.L., 

Johnson, R.F., Thompson, P.M., Toga, A.W., Glover, G.H., Van Horn, J.D., Gotlib, I.H., 2011. 

Resting-state fMRI can reliably map neural networks in children. NeuroImage 55, 165–

175. https://doi.org/10.1016/j.neuroimage.2010.11.080 

 

Tooley, U.A., Park, A.T., Leonard, J.A., Boroshok, A.L., McDermott, C.L., Tisdall, M.D., 

Bassett, D.S., Mackey, A.P., 2022. The Age of Reason: Functional Brain Network Development 

during Childhood. J Neurosci 42, 8237–8251. https://doi.org/10.1523/JNEUROSCI.0511-

22.2022 

 

Van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J., Coalson, T., 2012. Parcellations and 

Hemispheric Asymmetries of Human Cerebral Cortex Analyzed on Surface-Based Atlases. 

Cerebral Cortex 22, 2241–2262. https://doi.org/10.1093/cercor/bhr291 

 

Vandewouw, M.M., Hunt, B.A.E., Ziolkowski, J., Taylor, M.J., 2021. The developing relations 

between networks of cortical myelin and neurophysiological connectivity. NeuroImage 237, 

118142. https://doi.org/10.1016/j.neuroimage.2021.118142 

 

Zheng, A., Montez, D.F., Marek, S., Gilmore, A.W., Newbold, D.J., Laumann, T.O., Kay, B.P., 

Seider, N.A., Van, A.N., Hampton, J.M., Alexopoulos, D., Schlaggar, B.L., Sylvester, C.M., 

Greene, D.J., Shimony, J.S., Nelson, S.M., Wig, G.S., Gratton, C., McDermott, K.B., Raichle, 

M.E., Gordon, E.M., Dosenbach, N.U.F., 2021. Parallel hippocampal-parietal circuits for self- 

and goal-oriented processing. Proc. Natl. Acad. Sci. U.S.A. 118, 

e2101743118. https://doi.org/10.1073/pnas.2101743118 

 

 

 

 

 

  

https://doi.org/10.1016/j.neuroimage.2010.11.080
https://doi.org/10.1523/JNEUROSCI.0511-22.2022
https://doi.org/10.1523/JNEUROSCI.0511-22.2022
https://doi.org/10.1093/cercor/bhr291
https://doi.org/10.1016/j.neuroimage.2021.118142
https://doi.org/10.1073/pnas.2101743118


69 

Appendix 

 

Supplementary Figure 2.1: ABCD 7,316 RSFC network template. 
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Supplementary Figure 2.2: cPFM cortical functional networks, medial view. 

 

 

 



71 

 

Supplementary Figure 2.3: cPFM functional network similarity controlling across age groups 

parcel-wise (A), then controlling for identical time (B) and frames (C). 
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Supplementary Table 2.1: RSFC comparison group demographics 

Group RSFC Comparison Data Demographics 

ABCD 185 group 

Participants 102 Male (55%), 83 Female (45%) 

Age Range (years) 9-10.9 years 

Age (Mean) 10.2 years 

Mean Scan Data 13 min 55 sec 

Handedness 139 R (75%), 16 L (4%), 38 Ambi (21%) 

Race and Ethnicity 

White 74 (40%) 

Black 84 (45%) 

Hispanic 5 (3%) 

Asian 0 

Other 22 (12%) 

Not Reported 0 

  

ABCD 7,316 group 

Participants 3,667 Male (50.1%), 3,649 Female (49.9%) 

Age Range (years) 9-10.9 years 

Age (Mean) 9.9 years 

Mean Scan Data 15 min 13 sec 

Handedness 5,891 R (81%), 501 L (7%), 917 Ambi (12%), 7 Unknown (<1%) 

Race and Ethnicity 

White 4,137 (57%) 

Black 918 (13%) 

Hispanic 1,349 (18%) 

Asian 145 (2%) 

Other 759 (10%) 

Not Reported 8 (<1%) 
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Chapter 3 Precision functional mapping of motor tics in individual children with Tourette 

syndrome 

 

3.1 Abstract 

In this study, we investigate the functional neuroanatomy of motor tics, one of the 

defining symptoms of Tourette syndrome. Using densely sampled resting-state functional 

magnetic resonance imaging (fMRI) data from three pediatric individuals with Tourette 

syndrome, during which they experienced naturally occurring motor tics, we used a precision 

functional mapping (PFM) approach to delineate each individual’s large-scale functional brain 

networks and localize tic-related brain activity. Specifically, we investigate each individual's tic-

related fMRI activations in the context of their individual-specific functional networks. We 

identify urge-related activity two seconds prior to tics that falls within the boundaries of each 

individual's cingulo-opercular action-mode network (CON/AMN) and somato-cognitive action 

network (SCAN). Activation within the somatomotor face network was associated with the urge 

in participants with a variety of facial tics, while the visual network and frontal/parietal eye fields 

were associated with eye movement tics. Regions of the CON/AMN displayed individual 

variability in their relationship to the urge across participants, particularly in the posterior 

cingulate and anterior insula. These findings highlight shared and individual-specific 

mechanisms underlying urge and tic symptoms in individuals with Tourette syndrome. 

Furthermore, they support the roles of action planning and control networks in Tourette 

syndrome and demonstrate PFM as a plausible method to localize individual-specific 

dysfunction. 
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3.2 Introduction 

Tourette syndrome (TS) is a neurodevelopmental disorder that involves unwanted 

movements and vocalizations called tics. Common examples of tics include forceful blinking, 

head jerking, sniffing, and throat clearing (American Psychiatric Association, 2013). Chronic tics 

affect approximately 1–3% of the population, making them a significant public health concern 

(Cubo, 2012; Knight et al., 2012). In many individuals with Tourette syndrome, tics are preceded 

by an uncomfortable sensory or cognitive experience known as the premonitory urge (Leckman, 

Walker, and Cohen, 1993; Steinberg et al., 2010). This urge is described as a feeling of rising 

tension or pressure that is often, but not always, relieved after performing or releasing the tic. 

Although the sensation of the urge is involuntary, tics can be considered semi-voluntary actions 

because individuals may have the ability to suppress or replace them with a competing response. 

The time preceding a tic, presumed to reflect the premonitory urge, has been associated 

with increased brain activity in the supplementary motor area (SMA), anterior cingulate cortex 

(ACC), parietal operculum, and insula (Bohlhalter et al., 2006; Neuner et al., 2014). In the 

context of large-scale functional brain networks, the SMA, ACC, operculum, and insula are 

highly functionally connected and comprise components of the cingulo-opercular action-mode 

network (CON/AMN, hereafter referred to as AMN) which is primarily involved in goal-directed 

action and processing arousal, error, pain, and discomfort (Dosenbach et al., 2007; Dosenbach et 

al., 2024). Electrical stimulation of the SMA, an important node of the AMN, has been shown to 

produce discomfort and an urge to move (Fried et al., 1991), similar in nature to the premonitory 

urge. Furthermore, both neurofeedback therapy and transcranial magnetic stimulation therapy 

targeting the SMA have successfully reduced tic severity in individuals with Tourette’s 

(Sukhodolsky et al., 2020; Kahl et al., 2021). The SMA (and large-scale AMN) is functionally 
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connected to the newly characterized somato-cognitive action network (SCAN), which 

comprises three inter-effector regions that alternate with effector-specific areas within the 

primary motor cortex and are involved in whole-body action planning (Gordon et al., 2023). 

Connectivity to both the AMN and SCAN may be highly predictive of thalamic deep brain 

stimulation success in individuals with severe cases of Tourette’s (Baldermann et al., 2024).  

Still, the underlying cause of Tourette’s remains unclear, with inconsistencies across 

neuroimaging studies regarding both structural and functional differences (see Greene et al., 

2022). These inconsistencies may arise from standard methods that average data across groups to 

obtain group-level estimates of urge or tic activation maps, structural brain volumes, or resting-

state connectivity. Such approaches typically require large sample sizes to achieve adequate 

power for detecting reliable group differences. However, underpowered studies are common due 

to the challenges associated with recruiting and scanning a large number of individuals with a 

neurodevelopmental disorder. Further complicating the issue is the known variability in both 

symptoms and functional brain organization across people. First, because symptoms vary across 

individuals (e.g., anatomical location of the tic, urge or tic severity), averaging across people will 

blur effects corresponding to any specific type of symptom (although a symptom-invariant effect 

may still be found).  

Second, recent work has identified large individual differences in functional brain 

organization across people (Gordon, Laumann, Gilmore, et al., 2017); thus, even symptom-

invariant effects could be difficult to accurately portray through group average approaches. For 

example, if tic symptoms activate slightly different anatomical regions across people–but all 

within the same functional network–averaging over people might blur the correspondence to the 

functional network, resulting in an averaged activation map that does not accurately represent 
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any single person. Variability in both clinical symptoms and functional brain organization has 

thus significantly challenged the basic and clinical utility of standard group-average 

neuroimaging techniques. 

Precision functional mapping (PFM), which involves collecting large amounts of 

functional MRI data from each individual, has been used to precisely and reliably characterize 

functional brain organization at the individual level (Laumann et al., 2015; Gordon, Laumann, 

Gilmore, et al., 2017; Gratton et al., 2018; Marek et al., 2018; Greene et al., 2020; Sylvester et 

al., 2020). This approach has identified individual differences across the cortex and subcortex 

that were previously blurred by group-average analyses and can be useful, potentially necessary, 

for clinically relevant neurological and psychiatric biomarkers (Gratton et al., 2020; Kraus et al., 

2023). Though PFM is a very recent approach for studying individual brain function, there is 

evidence of success in identifying state and trait markers for depression (Lynch et al., 2024). 

Tourette syndrome is unique among neuropsychiatric disorders in that we can directly observe 

the defining symptoms (tics) as they occur in the MRI scanner (through MRI-compatible video 

cameras). Precision fMRI may then be useful both to reliably characterize individual-specific 

functional organization in Tourette syndrome and to densely sample tic symptoms in the scanner 

in order to generate accurate activation maps at the individual level. 

In this study, we investigate motor tics in individuals with Tourette syndrome using a 

precision fMRI approach designed to collect large amounts of data from each individual 

participant. A mixed resting-state and naturalistic event-based design was used to simultaneously 

record extensive resting-state data and naturally occurring tic events in the scanner. Brain 

activity linked to tic symptoms was modeled at the individual level and then referenced to each 
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individual's resting-state functional network space. Activation maps and functional networks 

were contrasted across individuals and related to tic symptoms. 

 

3.3 Methods 

3.3.1 Participants 

Data were collected from three participants with Tourette syndrome (Table 3.1) who 

were recruited to participate in a larger PFM study on Tourette syndrome. All participants 

entered the study with a formal Tourette syndrome diagnosis. Psychiatric diagnoses and 

symptoms were further evaluated using the Kiddie Schedule for Affective Disorders and 

Schizophrenia (Kaufman et al., 1997) and the Yale Global Tic Severity Scale (YGTSS; Leckman 

et al., 1989). PT105 was additionally found to have attention-deficit/hyperactivity disorder and 

an anxiety disorder by a trained rater. The participants displayed a variety of facial tics impacting 

the eyes, nose, and mouth, with one participant (PT108) demonstrating almost exclusively tics 

related to eye movements. The participants were recruited from the San Diego community. The 

study was approved by the UC San Diego Institutional Review Board. 

 

3.3.2 Neuroimaging acquisition 

Participants were scanned at the University of California, San Diego on a Siemens Prisma 

3T MRI scanner with a 64-channel head coil. Participant data were collected over 8 to 12 

sessions. At least one T1-weighted structural MPRAGE sequence (TR=2500ms, TE=2.9ms, 

FOV=256x256, voxel resolution=1x1x1mm) and one T2-weighted structural image with turbo 

spin echo sequence (TR=3200ms, TE=564ms, FOV=256x256, voxel resolution=1x1x1mm) were 

collected in each visit and used for preprocessing. Up to five 6 minute multi-echo resting-state 
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fMRI runs, collected as a five-echo blood oxygen level dependent (BOLD) contrast sensitive 

gradient echo-planar sequence (TR=1761ms, multiband 6 acceleration, TE1: 14.20 ms, TE2: 

38.93 ms, TE3: 63.66 ms, TE4: 88.39 ms, and TE5: 113.12 ms, flip angle=68°, resolution=2.0 

mm isotropic), were collected per visit. During resting-state scans, participants were instructed to 

view a white fixation cross on a black background, stay awake, and tic freely in a natural state. 

 

3.3.3 Behavioral data 

An MR-compatible camera (MRC Systems) and microphone (Optoacoustics FOMRI 

III+) were attached to the head coil and positioned to capture the face. Audio and visual 

recordings were time-locked to the fMRI data. Video data was coded by M.F. for motor tics 

involving the eyebrows, eyes, nose, cheeks, mouth, and jaw to the nearest second. 

 

3.3.4 Resting-state preprocessing 

MRI data were preprocessed in-house using multi-echo processing toolkits Nordic 

(Moeller et al., 2020) and Tedana (DuPre et al., 2021) for multi-echo denoising and analysis, the 

DCAN-Labs abcd-hcp-pipeline (Sturgeon et al., 2021), as well as FMRIB Software Library, 

Freesurfer, Connectome Workbench commands, and custom MATLAB scripts. The DCAN-Labs 

abcd-hcp-pipeline follows the primary steps of the Human connectome minimal preprocessing 

pipeline (Glasser et al., 2013) and is then followed by additional resting-state focused 

preprocessing steps informed by best practices in the field (Power et al., 2012; Power et al., 

2014; Hallquist, Hwang, and Luna, 2013). The resting-state steps included: (1) de-meaning and 

de-trending of data; (2) general linear model “denoising” of signal related to white matter, 

cerebral spinal fluid, whole brain (global) signal, and six directions of motion plus their 
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derivatives; (3) temporal band-pass filtering (0.008Hz < f < 0.09Hz); (4) respiratory motion 

filtering (Fair et al., 2020) (5) and motion censoring which excluded frames exceeding a 

framewise displacement (FD) of 0.2mm for PT102 and PT108, and 0.3mm for PT105. Visual 

inspection of FD traces were used to determine the floor for each individual. Additionally, 

retained frames were required to be in clusters of at least 5 contiguous below FD threshold 

frames. Registration steps and denoising are each done in a single pass to mitigate the 

reintroduction of noise (Lindquist et al., 2019). All resting-state data were then mapped to an 

MNI-transformed midthickness 32k fs_LR surface mesh (Van Essen et al., 2011). 

 

3.3.5 Vertex-wise individual-specific network identification 

Individual-specific functional network organizations were identified using the Infomap 

community detection method (Rosvall and Bergstrom, 2008), in similar fashion to the 

methodology presented by Gordon and colleagues (Gordon, Laumann, Gilmore, et al., 2017). 

First, we computed pairwise Pearson r correlations among the BOLD time series across all 

cortical vertices, generating a correlation matrix of dimensions 59,412 x 59,412. This matrix 

underwent thresholding across a range of densities spanning from 0.1% to 5%. For each 

threshold, community assignments were produced using the Infomap algorithm. Putative 

functional identities were given to each community through a template matching procedure. This 

involved comparing the subject's communities through Jaccard index (spatial overlap) with 

independent template networks (Gordon, Laumann, Adeyemo, et al., 2017). Briefly, for every 

threshold, each community was compared to each group network and then assignments were 

given to the best match, if the Jaccard index was at least 0.1 (lower overlap disregarded to 

prevent assignments to poorly fitting matches). To consolidate assignments across sparsity 
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thresholds, a consensus network assignment was derived by taking the network identity of a 

vertex at the sparsest threshold where it was successfully assigned. 

 

3.3.6 Task fMRI 

 Analysis of tic events occurring naturally in the scanner was done using an event-based 

design in each participant separately. As some runs contained very few numbers of tic events (8 

runs had 0 tic events, 20 runs had less than 2 tic events), runs were concatenated together before 

being analyzed. FSL (Jenkinson et al., 2012) FEAT first level analysis was used with default 

settings (5mm FWHM spatial smoothing, MCFLIRT motion correction, highpass filtering, 

gamma convolution with temporal filtering applied). Due to multicollinearity of regressors, we 

ran separate FSL models for the following conditions: urge event (2 seconds prior to a tic 

occurring, lasting 2 seconds), tic onset (lasting 1 second), and tic recovery (2 second after tic 

onset starts, lasting 2 seconds). Z-score activation maps were projected onto an individual's 

midthickness surface for visualization purposes. 

 

3.3.7 Task-rest overlap 

Binary masks were created from activation maps by thresholding at Z-statistics greater 

than 1.96. Binary masks were then overlaid on top of each individuals’ resting-state network 

space. For each resting-state network, the amount of overlapping vertices between the activation 

mask and the resting-state was summed and then divided by the total size of the network. 
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3.4 Results 

3.4.1 Data collection 

Three children with TS (PT102, PT105, and PT108) underwent 8, 10, and 6 fMRI 

scanning sessions, respectively, spanning multiple weeks. During the resting-state fMRI scans, 

the participants were instructed to tic as needed while trying to remain as still as possible when 

not ticcing. In-scanner video positioned to capture the participants' faces was subsequently coded 

for facial motor tics. Two sessions were discarded for PT102 because one session had no tic 

events, and during another, the in-scanner microphone occluded the participant’s nose from the 

view of the camera, a common tic location for her. Three sessions were discarded for PT105 due 

to excessive motion causing artifacts in the fMRI signal. Across the sessions used in this study, 

PT102 experienced 61 facial tics across the 6 fMRI sessions, PT105 experienced 117 tics across 

the 7 fMRI sessions, and PT108 experienced 70 tics across 6 fMRI sessions. Both PT102 and 

PT105 experienced a wide variety of simple facial tics across eyes, nose, and mouth areas, while 

PT108’s tics were nearly all eye saccades and eye-rolling movements (Table 1). For resting-state 

analyses, data were preprocessed (see Methods) and underwent motion correction, resulting in 

126 minutes of low-motion (<0.2 FD) resting-state scan time for PT102, 93 minutes of low-

motion (<0.3 FD) resting-state scan time for PT105, and 104 minutes of low-motion (<0.2 FD) 

resting-state scan time for PT108. 
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Table 3.1: Participant demographic, clinical, and MRI information 

Subject Age Sex Dx Types of tics Mean 

YGTSS 

total tic 

score 

# fMRI 

sessions 

used  

Tic 

count 

during 

scan 

Usable 

scan 

time 

PT102 15 F TS Nasal flare, 

Mouth twitch, 

Rapid 

blinking, Nose 

scrunch, 

Jaw open and 

close, Head 

jerk 

9 6 61 2h06m 

PT105 10 F TS, 

ADHD, 

Anxiety 

Nasal flare, 

Mouth twitch, 

Rapid 

blinking, Nose 

scrunch, Eye 

jerk 

23 7 117 1h33m 

PT108 13 M TS Eye jerk, Eye 

roll, Face 

scrunch, 

Eyebrow raise 

18 6 70 1h44m 

Note: Dx = Diagnosis; TS = Tourette syndrome; ADHD = Attention-deficit/hyperactivity 

disorder; YGTSS = Yale Global Tic Severity Scale 

 

3.4.2 Pre-tic urge activity 

Analysis of tic events occurring naturally in the scanner was performed using an event-

based design for each participant separately. Urge events were defined as the 2-second time 

window preceding tic onset as in previous studies (Bohlhalter et al., 2006; Neuner et al., 2014). 

Thresholded z-score maps for participants PT102, PT105, and PT108 are shown in Figure 3.1 

(see Supplementary Figure 3.1 for unthresholded activation maps for each participant). All 

participants had urge-related activations in the anterior cingulate cortex, supplementary motor 

area, medial visual cortex, and M1/S1 regions resembling the somato-cognitive action network. 
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Participants with large amounts of mouth, nose, and eye blink tics (PT102, PT105) also 

displayed significant urge activations in M1/S1 face regions (Figure 3.1A, B). The participant 

with eye movement tics (saccades, rolls) displayed stronger activations in the medial visual 

cortex, as well as activations in the frontal and parietal eye fields (Figure 3.1C). 

 

 

Figure 3.1: Urge activation maps. (A-C) Thresholded z-score maps of urge events two seconds 

prior to a tic for PT102, PT105, and PT108. Different thresholds were used to accommodate 

differences in observed effect sizes across the participants (PT102: z ≥ 6; PT105: z ≥ 2.4; PT108: 

z ≥ 2.4). Unthresholded activation maps can be found in Supplementary Figure 3.1. 

 

3.4.3 Individual-specific networks 

Resting-state data were used to define individual-specific networks in each participant 

using the Infomap community detection algorithm. Each participant displayed a network 
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organization consisting of 12 canonical functional networks, including the default mode (DMN), 

somatomotor hand (SM-hand), somatomotor face (SM-face), somatomotor foot (SM-foot), 

action-mode (AMN), somato-cognitive action (SCAN), auditory (AUD), visual (VIS), salience 

(SAL), ventral attention (VAN / Language), dorsal attention (DAN), and frontoparietal networks 

(FPN) (Figure 3.2A, B, C). While individuals shared broad features of functional organization, 

each had unique network topography in regions commonly implicated in Tourette syndrome. For 

example, the shape and size of the AMN varied across individuals, particularly in the anterior 

cingulate and the supplementary motor area. 

 

 

Figure 3.2: PT102, PT105, PT108 individual-specific functional networks. (A) PT102, (B) 

PT105, (C) PT108. 
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3.4.4 Urge activations overlap action related resting-state networks 

Each individual's urge activation map was referenced to their individual-specific resting-

state functional network organization. All participants showed a large overlap between 

significant urge activations and planning/control regions, including large parts of the AMN and 

SCAN (Figure 3.3). For participants with face tics, urge activations overlapped the SM-face 

network (Figure 3.3A, B), while for the participant with eye movement tics, overlap was greatest 

with the visual network (Figure 3.3C). There was variability in the amount of urge activation-

network overlap across participants; for example, PT102’s AMN nearly matched her cortical 

urge activations, while for PT105 and PT108, urge-AMN overlap was mostly confined to the 

ACC and SMA regions. To quantify overlap, we calculated the percentage of each network 

occupied by a significant urge activation for each participant (Figure 3.3H, I, J). 

 

3.4.4 Cortical activity remains at onset, attenuates at offset 

Additional models were run to identify significant activations during tic onset and offset 

windows (Figure 3.4; onset = 1 second window during tic action; offset = 2 second window 

succeeding the completion of tic onset). Cortical regions that were active during the urge were 

still active during tic onset in all participants. During the offset window, cortical activity 

attenuated relative to both urge and onset time periods in all participants. PT108 activation 

progression was a monotonically decreasing process, while PT102’s activations increased during 

onset then decreased at offset. PT105 urge-onset maps were qualitatively similar, before 

experiencing an attenuation at offset. 
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Figure 3.3: Network overlap with urge activation maps. Activation maps were referenced to each 

individual's functional network space for PT102 (A, D, H), PT105 (B, E, I), and PT108 (C, F, J). 

Lateral/medial views for each participant (A, B, C). Dorsal views for each participant to 

highlight superior SCAN nodes (D, E, F). PT108 threshold was dropped from z>2.4 to z>1.96 

for the dorsal view. Bar plot depicting the percent of each functional network occupied by a 

significant urge activation (z > 1.96) (H, I, J). Action-mode network (purple), somatomotor face 

network (orange), somato-cognitive action network (burgundy), visual network (blue). 
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Figure 3.4: Urge, onset, offset, progression. Activation maps illustrating tic progression through 

the urge, onset, and offset windows for participants PT102 (A), PT105 (B), and PT108 (C). 

Unthresholded activation maps for all events are provided in Supplement Figure 3.1. 
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3.5 Discussion 

In this study, we used precision functional mapping to investigate the neural correlates of 

motor tics in individuals with Tourette syndrome. By collecting large amounts of resting-state 

fMRI data and recording naturally occurring tic events during scan sessions, we were able to 

model tic symptoms at the individual level and reference them to each participant's individual-

specific functional network organization. 

Across all participants, the time preceding a tic was associated with significant 

activations of the supplementary motor area, anterior cingulate cortex, and parts of the insula. 

This time window is thought to reflect the premonitory urge. Thus, these results support previous 

research (Bohlhalter et al., 2006; Neuner et al., 2014) implicating these regions in the generation 

of the urge sensation. We further found that these regions fall within each individual’s large-

scale AMN. The AMN is named for its role in goal-directed action and has been implicated in 

processing arousal, pain, discomfort, and error detection (Dosenbach et al., 2007; Dosenbach et 

al., 2024). Experimental stimulation of the SMA, a key node of the AMN, causes a sense of 

discomfort and the urge to perform a complex movement (Fried et al., 1991) similar in nature to 

the premonitory urge and supporting the idea that the SMA activity may code for discomfort and 

urge sensations in Tourette syndrome. Going further, the SMA may be a plausible candidate for 

a transdiagnostic marker, coding for discomfort in the premonitory urge and in common 

comorbidities of Tourette syndrome including obsessive compulsive disorder (during obsessions) 

and attention-deficit/hyperactivity disorder.  

Here, we also provide preliminary evidence for the involvement of the somato-cognitive 

action network (SCAN; Gordon et al., 2023) in the generation of the premonitory urge. The 

SCAN is a newly identified network consisting of inter-effector regions that interrupt the M1 
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foot, hand, and face representations, with strong functional connectivity to the AMN, and is 

thought to be involved in the transformation of action planning to axial body movements. Its 

activation alongside the AMN during the premonitory urge further implicates control and action 

planning networks in Tourette syndrome pathophysiology. In fact, AMN and SCAN connectivity 

with subcortical deep brain stimulation (DBS) targets may be highly predictive of thalamic DBS 

success (Baldermann et al., 2024). 

While parts of all individuals' AMN were associated with the urge, there was individual 

variability in the strength and location of this association across participants. PT102 had strong 

activations across the entirety of her AMN, while PT105 and PT108 were more confined to the 

SMA and the operculum/insula. This heterogeneity of neural correlates may be a result of the 

heterogeneity of symptoms experienced by participants in the scanner or during their lifespan. 

PT102 and PT105 had a variety of tics impacting the eyebrows, eyes, nose, and mouth, while 

PT108 largely only had tics involving eye movements (saccades, eye rolls). PT102’s face tics 

included large jaw movements. If larger actions correspond to larger urge-related activations, 

that might explain the more significant urge-related activations in PT102 compared to PT105 and 

PT108 who experienced smaller tic movements such as eye blinking and eye movements 

(although see Brandt et al., 2023 finding complex and simple tics do not differ in self-reported 

urge intensity). The variable urge activation patterns may also be due to age-related abilities in 

social cognition or self-referential processing. As the frequency of tics is affected by many 

environmental and social factors (Conelea and Woods, 2008), social and self-referential 

processes might increase urge activity in older individuals, such as PT102 (15 years old), who 

may learn strategies which cause a build-up of urge tension in an effort to avoid ticcing in public 
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social situations. It has also been suggested that a patient's individual ability to perceive 

interoceptive signals may correspond to urge severity (Ganos, 2016). 

We further found that the anatomical location of the tic symptoms experienced by 

individuals impacted the corresponding tic activation map. The participants with variable facial 

tics (PT102, PT105) had significant activations in the SM-face area, while the participant with 

tics involving eye movements (PT108) had significant activations in the medial visual cortex and 

frontal/parietal eye fields. Animal studies support this idea of individual tic correlates by 

showing that stimulating different parts of the striatum leads to movement of different 

anatomical locations (Alexander and DeLong, 1985; Bronfeld et al., 2013). Characterizing 

individual-specific correlates, whether for similar or different tic locations, may have 

translational importance. For example, treatment strategies may depend on the location of the tic 

(eye vs. mouth) and the precise anatomical or functional localization of the urge in the 

individual. The precise characterization of individual activation patterns during the premonitory 

urge may offer a method of localization for brain stimulation therapies. 

Lastly, by separately modeling urge, tic onset, and tic offset, we found that activation 

patterns during tic events returned to near baseline levels during offset, but not during onset. 

During onset, most regions active during the urge were still active, with regions such as M1/S1 

being even more active in two of the participants. Two seconds after completing the tic, during 

the offset window, most regions were back near baseline for PT108 and were largely attenuated 

for PT102 and PT105 (Figure 3.4). This result conforms to self-reports of discomfort relief in 

Tourette’s patients after tic completion (Leckman, Walker, and Cohen, 1993; Reese et al., 2014; 

Brandt et al., 2016). Tic release may not immediately offer a reward signal, but rather be 

associated with a slower relief signal after tic completion reflecting a “just-right” feeling. 
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While studying individuals offers the ability to map individual symptoms to individual 

functional organizations, work with larger sample sizes will be needed to better understand the 

results that are generalizable across individuals and those that are more individually specific. 

Future work should include additional subjects with variable tic symptoms, urge severity, and 

ages in order to test potential theories that could lead to the differential urge activation patterns 

we observe here. Furthermore, future work is needed to better track the temporal progression of 

the urge, from onset to offset signals. Here, we utilized fMRI data with a repetition time (TR) of 

1.7 seconds, which, along with the multicollinearity of the timing events, made it difficult to 

precisely track signal propagation. As we localize cortical regions involved in tics here with 

fMRI, it is plausible that these regions could then be studied with magnetoencephalography, a 

functional neuroimaging method whose high temporal resolution may be used in conjunction 

with fMRI. 

Here, we present preliminary results of highly sampled individuals with Tourette 

syndrome to demonstrate the feasibility and importance of individual-level analyses in studying 

the disorder. Our results suggest that individual differences in tic symptoms are associated with 

both shared and unique functional activation patterns across individuals. Specifically, we 

observed that regions of large-scale control networks—including the supplementary motor area, 

anterior cingulate cortex, and inter-effector SCAN nodes—were active in all participants during 

the premonitory urge. In contrast, other regions displayed more variable activation and may be 

related to tic type/location, and potentially participant characteristics such as age and symptom 

severity. An important next step will be to study larger samples of individuals with Tourette 

syndrome using PFM in order to identify reliable and generalizable differences associated with 

the disorder. 
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Appendix 

 

Supplementary Figure 3.1: Unthresholded activation maps for urge, onset, and offset windows. 

(A) PT102, (B) PT105, (C) PT108. 
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