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ORIGINAL ARTICLE
Decreased Calcium-Sensing Receptor
Expression Controls Calcium Signaling and
Cell-To-Cell Adhesion Defects in Aged Skin

Anna Celli1, Chia-Ling Tu2,3, Elise Lee1, Daniel D. Bikle4 and Theodora M. Mauro1
The calcium-sensing receptor (CaSR) drives essential calcium ion (Ca2þ) and E-cadherin‒mediated processes in
the epidermis, including differentiation, cell-to-cell adhesion, and epidermal barrier homeostasis in cells and
in young adult mice. We now report that decreased CaSR expression leads to impaired Ca2þ signal propagation
in aged mouse (aged >22 months) epidermis and human (aged >79 years, donor age) keratinocytes. Baseline
cytosolic Ca2þ concentrations were higher, and capacitive Ca2þ entry was lower in aged than in young kera-
tinocytes. As in Casr-knockout mice (EpidCaSRe/e), decreased CaSR expression led to decreased E-cadherin and
phospholipase C-g expression and to a compensatory upregulation of STIM1. Pretreatment with the CaSR
agonist N-(3-[2-chlorophenyl]propyl)-(R)-alpha-methyl-3-methoxybenzylamine normalized Ca2þ propagation
and E-cadherin organization after experimental wounding. These results suggest that age-related defects in
CaSR expression dysregulate normal keratinocyte and epidermal Ca2þ signaling, leading to impaired E-cadherin
expression, organization, and function. These findings show an innovative mechanism whereby Ca2þ- and E-
cadherin‒dependent functions are impaired in aging epidermis and suggest a new therapeutic approach by
restoring CaSR function.

Journal of Investigative Dermatology (2021) -, -e-; doi:10.1016/j.jid.2021.03.025
INTRODUCTION
In this study, we report that the loss of calcium-sensing re-
ceptor (CaSR) leads to impaired calcium ion (Ca2þ) and E-
cadherin signaling in aged human epidermal keratinocytes
(AHEKs) and epidermis. Ca2þ is essential for normal kerati-
nocyte (KC) proliferation, differentiation, and migration and
wound repair (Cordeiro and Jacinto, 2013). Raised extracel-
lular Ca2þ, epidermal barrier perturbation, and mechanical
or laser stimulation all act through intracellular Ca2þ release
and through subsequent store-operated or voltage-sensitive
Ca2þ entry (Numaga-Tomita and Putney, 2013; Tu et al.,
2005) that propagates Ca2þ signaling to neighboring KCs
both laterally and vertically (Kumamoto et al., 2017;
Tsutsumi et al., 2013). Epidermal Ca2þ signaling is driven by
a marked Ca2þ gradient (Forslind et al., 1999; Menon and
1Department of Dermatology, SFVAHCS Medical Center and University of
California San Francisco, San Francisco, California, USA; 2Endocrine Unit,
San Francisco VA Medical Center (SFVAMC), San Francisco, California,
USA; 3Department of Medicine, University of California-San Francisco
(UCSF), San Francisco, California, USA; and 4Departments of Medicine and
Dermatology, UCSF Staff Physician, SF Department of Health Affairs
Medical Center, San Francisco, California, USA

Correspondence: Theodora M. Mauro, Department of Dermatology,
SFVAHCS Medical Center and University of California San Francisco, 4150
Clement Street, MS 190 Dermatology, San Francisco, California 94121, USA.
E-mail: thea.mauro@ucsf.edu

Abbreviations: AHEK, aged human epidermal keratinocyte; Ca2þ, calcium
ion; CaSR, calcium-sensing receptor; ER, endoplasmic reticulum; HK, human
keratinocyte; KC, keratinocyte; NHEK, neonatal human epidermal keratino-
cyte; NPS R-568, N-(3-[2-chlorophenyl]propyl)-(R)-alpha-methyl-3-
methoxybenzylamine; PLC, phospholipase C; TG, thapsigargin

Received 27 July 2020; revised 18 February 2021; accepted 1 March 2021;
accepted manuscript published online XXX; corrected proof published online
XXX

Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatolog
Elias, 1991), with Ca2þ concentrations approximately four-
fold higher in the uppermost viable KCs than in the basal
cells (Elias et al., 1998; Mauro et al., 1998). Much of this
Ca2þ gradient and the resulting Ca2þ signaling depend on
Ca2þ sequestered within the endoplasmic reticulum (ER) by
SERCA (Celli et al., 2016). Although raising extracellular
Ca2þ levels increases KC differentiation, it also decreases
lipid secretion and barrier repair in terminally differentiated
stratum granulosum KCs (Lee and Lee, 2018). Thus, an
approach that enhances KC sensitivity to Ca2þ could opti-
mize differentiation, migration, and barrier homeostasis,
especially in an aging epidermis.

The G-protein‒associated CaSR senses Ca2þ concentra-
tions in the micromolar to the millimolar range, making it
particularly useful in sensing changes in extracellular or
organelle Ca2þ concentrations. In KCs, CaSR signaling acti-
vates phospholipase C (PLC)-b by Gq and leads to inositol
triphosphate‒mediated acute release of calcium from intra-
cellular calcium stores. CaSR expression is essential for
epidermal differentiation and barrier function (Komuves et
at., 2002, Tu et al., 2012), controlling both KCs’ ability to
take up Ca2þ and store it in the ER (Tu et al., 2007). CaSR
mediates the formation and stabilization of the E-cadherin
signaling complex, leading to E-cadherin‒mediated adherens
junction and cell-to-cell adhesion (Tu et al., 2008, Tunggal et
al., 2005). Mice with conditional knockout of the Casr in the
epidermis (EpidCasr�/�) display a loss of the epidermal Ca2þ

gradient, impaired KC differentiation, and defective perme-
ability barrier (Tu et al., 2012). Conversely, experimental
CaSR overexpression accelerates epidermal differentiation
and permeability barrier formation (Turksen and Troy, 2003).
Combined vitamin D receptor and CaSR deletion delay
wound re-epithelization (Oda et al., 2017), and deleting
y. www.jidonline.org 1
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CaSR from young adult mice epidermis decreases E-cadherin
expression and impairs Ca2þ signal propagation (Tu et al.,
2019). Aged human epidermis and human keratinocyte
(HK) show similar defects in Ca2þ signaling, expression, and
re-epithelialization as those seen in mice in which CaSR was
experimentally ablated. These studies suggest that CaSR may
be a relevant target for improving Ca2þ- and E-cadherin‒
mediated processes in an aged epidermis.

RESULTS
Epidermal Ca2D signaling after laser stimulation is blunted in
aged mouse epidermis and aged HK monolayers

Previous studies showed that aged HKs respond sluggishly to
mechanical stimulation (Denda et al., 2017). To assess lateral
calcium signaling in aged versus that in young epidermis, we
used a multiphoton excitation microscopy‒based laser stim-
ulation assay previously developed for EpidCasr�/� studies (Tu
et al., 2019). This experimental approach selectively perturbs
a selected area of 20 � 20 mm2 (corresponding roughly to
one or two cells) in the stratum basale of the epidermis of
mice expressing the fluorescent Ca2þ reporter GCaMP3 un-
der the keratin 14 promoter. After laser stimulation, we
monitored Ca2þ propagation by tracking epidermal fluores-
cence using time-lapse imaging (Tu et al., 2019) (Figure 1a).
Ca2þ propagation spread to a significantly smaller area in the
aged (>22 months) than in the young (6e8 weeks) mice
(Figure 1b and d and Supplementary Figure S1). The KC
cytosolic Ca2þ response after perturbation also was lower in
the aged than in the young mice (Figure 1c and e and
Supplementary Figure S1).

We next examined Ca2þ signaling in response to laser
stimulation in the aged (>79 years) HKs (AHEKs) versus that
in neonatal KC human (neonatal human epidermal KCs
[NHEKs]) monolayers using the cell-permeant, calcium-sen-
sitive fluorescent probe Calcium Green 1-AM (Thermo Fisher
Scientific, Waltham, MA). In three separate experiments
conducted on cells from three separate pairs of donors, we
found that aged HKs monolayers responded with blunted
calcium propagation (Figure 1f and g) and a lower average
increase in the aged single cells’ cytosolic calcium concen-
tration (Figure 1h).

Ca2D signaling in the aged versus that in the young KCs

We next compared the response to the extracellular Ca2þ and
the intracellular Ca2þ stores and the capacitive cytosolic Ca2þ

response in neonatal KCs with those in KCs obtained from aged
(>79 years) humans (Figure 2a and b, respectively). Fura2-
loaded KCs were exposed to 1.2 mM extracellular calcium.
Traces representative of six (AHEK) to seven (NHEK) experi-
ments on cells from three separate donors are shown in
Figure 2a top panel (NHEK) and bottompanel (AHEK).Whereas
NHEKs responded to raised extracellular calcium with a robust
and rapid increase in cytosolic Ca2þ concentration, most
AHEKs had a much more limited and slower response during
the experiment time frame. Overall, AHEKs cytosolic Ca2þ

response to increased extracellular calcium was significantly
less pronounced than the response in NHEKs (Figure 2b).

Next, we compared intracellular Ca2þ stores and cytosolic
Ca2þ capacitive influx in NHEKs (Figure 2c and d) with those
in AHEKs (Figure 2e and f) in KCs monolayers cultured in low
(0.07 mM) and high (1.2 mM) calcium-containing medium
Journal of Investigative Dermatology (2021), Volume -
for 24 hours (Figure 2cef). KCs were first placed in 0 mM
extracellular Ca2þ. After a brief period of equilibration, 1 mM
thapsigargin (TG), a concentration that releases both the ER
and Golgi Ca2þ stores, was added to the medium to assess
intracellular Ca2þ stores. Extracellular Ca2þ then was raised
to a final concentration of 1.2 mM to quantify capacitive
Ca2þ entry (Figure 2 and Table 1).

First, we found that baseline cytosolic Ca2þ concentration
was markedly elevated and heterogeneous in the aged KCs.
Responses of aged KCs to both TG and calcium switch were
notably more variable than those in young KCs. Whereas
82% of all NHEK cells cultured in low calcium and 93% of
NHEK cells cultured in high calcium responded to both TG
and calcium switch, only 44% and 53% of AHEK cells
cultured in low and high calcium, respectively, responded to
TG or raised extracellular Ca2þ concentration.

CaSR and E-cadherin protein expression is downregulated in
aged human epidermis

In nonexcitable cells such as KCs, Ca2þ influx is often regu-
lated by store-operated Ca2þ entry (Numaga-Tomita and
Putney, 2013; Tu et al., 2005; Vandenberghe et al., 2013),
which requires PLC-mediated release of Ca2þ from intracel-
lular stores such as the ER or Golgi and refill through STIM1
migration to the plasma membrane (Numaga-Tomita and
Putney, 2013). These processes lead to adherens junction
and desmosome reorganization, mediated by E-cadherin.

To define the changes in the CaSR-dependent signaling
pathway, we first compared CaSR, E-cadherin, and STIM1
protein expression in total epidermal lysate from aged mice
with those from young mice (Figure 3a). We found that both
CaSR and E-cadherin protein expression was consistently
decreased, whereas STIM1 levels were elevated in the aged
mice. A similar pattern of E-cadherin downregulation was
seen in young mice in which CaSR was experimentally ab-
lated (Tu et al., 2019).

We then compared the expression levels of CaSR, E-cad-
herin, STIM1, PLCg1, and PLCb1 in NHEKs with the
expression levels of those in AHEKs from three to four
separate donors per group. We found that CaSR and E-cad-
herin levels were consistently downregulated in AHEKs from
four separate donors (Figure 3b and Supplementary
Figure S2a) compared with those in NHEKs from four sepa-
rate donors. PLCg1 and PLCb1 levels were also consistently
decreased, whereas STIM1 levels were increased in AHEKs
compared with the levels in NHEKs. Exposure to high cal-
cium appeared to reduce the difference in STIM1 level
between NHEKs and AHEKs, but it did not normalize the
expression levels of the other proteins. We observed a
similar pattern in the EpidCasr�/� mouse, where PLCg1 levels
were downregulated and STIM1 levels upregulated
(Supplementary Figure S2b) compared with the pattern in
wild-type mice. PLCb1 was upregulated in EpidCasr�/� mice.

Aged KCs display defective E-cadherin staining, slower
migration, and impaired cell-to-cell adhesion

Previous studies (Tu et al., 2019) showed that decreased or
absent epithelial CaSR levels lead to delayed re-
epithelialization both in mice and in scratch assays using
HKs through defective E-cadherin reorganization or CaSR-
mediated cytosolic concentration increases. Passage 2 KCs
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Figure 1. Calcium response to laser perturbation in aged compared with that in young EpidGCaMP mice and human keratinocytes monolayers. (a) Calcium

response to laser perturbation to a 20 � 20 mm2 SB region (red box) of young and old EpidGCaMP mouse epidermis. Arrows indicate dermal collagen (blue). (b)

Time traces of response area and (c) Cytosolic Ca2þ concentration increase in young (red) and aged (blue) mice. (d) Distribution of maximum response area and

(e) maximum cytosolic Ca2þ concentration increase over baseline for young and aged mice. Data were normalized to young mice mean value. n ¼ 18 (aged

mice) and 19 (young mice) traces from two biopsies per mouse and from three separate mouse pairs. (f) Time traces of calcium response area after laser

perturbation in NHEK (black) compared with that in AHEK (red). (g) Distribution of maximum calcium response area (n ¼ 15 traces from three separate

experiments) and (h) single-cell maximum cytosolic Ca2þ concentration increase (n ¼ 1,370e1,552 from three experiments). NHEK is indicated in red, and

AHEK is indicated in blue. f/f0 represents baseline fluorescence. Asterisks indicate P < 0.05 by a two-tailed t-test. AHEK, aged human epidermal keratinocyte;

NHEK, neonatal human epidermal keratinocyte; s, second; t, time; SB, stratum basale.
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from aged or neonatal donors were plated in low calcium on
plastic dishes for time-lapse imaging or multichambered glass
slides for immunofluorescence microscopy until 80%
confluent. Extracellular calcium levels were then raised to
1.2 mM to promote cell-to-cell adhesion and E-cadherin
expression. After 24 hours in high calcium, the epithelial
sheets were perturbed with a scratch assay and imaged at
100-minute intervals for 12e24 hours (Figure 4a). Time-lapse
images revealed that epithelial sheets from aged KCs were
slower on average than those from NHEKs at closing the
defect (Figure 4b) owing to an initial delay at 100 minutes
(asterisk, Figure 4b). Moreover, whereas NHEKs migrated as a
sheet, aged cells appeared not to migrate in unison, but
instead lost cell-to-cell adhesion and developed gaps as the
www.jidonline.org 3
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Figure 2. Calcium signaling is

impaired in aged human

keratinocytes. (a) Response to high

extracellular calcium of FURA2-
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Representative traces of six to seven
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Representative traces of cytosolic
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at baseline and in response to 1 mM
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NHEK and (d) AHEK in 0.07 mM
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cultured in 1.2 mM [Ca2þ] for 24
hours. Data are reported as the ratio R
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Results are summarized in Table 1.

[Ca2þ], intracellular calcium
concentration; AHEK, aged human

epidermal keratinocyte; AU, arbitrary

unit; Ca2þ, calcium ion; NHEK,

neonatal human epidermal

keratinocyte; s, second; TG,

thapsigargin.
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sheets migrated (Figure 4a). E-cadherin immunofluorescence
staining was performed 6 hours after the scratch assay and
revealed decreased and irregular E-cadherin plasma mem-
brane staining in aged (Figure 4d) compared with that in
young (Figure 4c) KC monolayers. Gaps in KC cell-to-cell
adhesion were colocated with absent E-cadherin staining.

The CaSR agonist N-(3-[2-chlorophenyl]propyl)-(R)-alpha-
methyl-3-methoxybenzylamine rescues Ca2D wave
propagation, intracellular calcium concentration, response
to increased extracellular calcium, and E-cadherin
translocation in AHEKs

N-(3-[2-chlorophenyl]propyl)-(R)-alpha-methyl-3-methoxyben-
zylamine (NPS R-568) selectively (Nemeth et al., 1998; Tang
Journal of Investigative Dermatology (2021), Volume -
et al., 2018) binds to the transmembrane domain of the CaSR
and increases its stability (Huang et al., 2011), thereby
increasing its Ca2þ sensitivity and enhancing the effects of
extracellular Ca2þon CaSR (Fox et al., 1999). To test whether
enhancing the CaSR response would also normalize Ca2þ

wave propagation and signaling and E-cadherin trans-
location to the plasma membrane, we pretreated aged KCs
with 0.5 or 1 mM NPS R-568 for 24 hours. Vehicle-treated
aged KCs and neonatal foreskin KCs were used as controls.

We first found that similar to the epidermal response to
laser stimulation, vehicle-treated aged KCs displayed mark-
edly diminished propagation of calcium response to me-
chanical ablation (Figure 5aec). However, pretreatment with



Table 1. Response to Thapsigargin and High Calcium in NHEKs and AHEKs

Measured Quantities

Low Calcium High Calcium

NHEK AHEK NHEK AHEK

Baseline 0.644 � 0.005 1.06 � 0.051 0.704 � 0.006 0.97 � 0.051

P1 0.33 � 0.01 0.22 � 0.041 0.232 � 0.007 0.25 � 0.02

P2 0.45 � 0.02 0.26 � 0.021 0.44 � 0.01 0.34 � 0.021

Percentage of cells responding to 1mM thapsigargin 83 � 8 44 � 81 92 � 3 53 � 121

Abbreviations: [Ca2þ], intracellular calcium concentration; AHEK, aged human epidermal keratinocyte; NHEK, neonatal human epidermal keratinocyte; P,
peak.

Capacitive calcium entry traces (Figure 2) were analyzed to determine the baseline intracellular calcium levels (baseline), peak calcium release from stores
after exposure to 1 mM thapsigargin (P1), and peak capacitive calcium entry after medium supplementation with 1.2 mM [Ca2þ] (P2). Data are reported as
the ratio R of the fluorescence intensity at 340 nm excitation (fbound) over the fluorescence intensity at 390 nm excitation (ffree). The percentage of AHEKs
responding to thapsigargin is reported in the last row of the table.
1Statistically significant difference between the NHEK and AHEK values determined by two-tailed t-test with P < 0.05. n ¼ 102e380 single cell traces from
three to seven experiments per group from three aged and three neonatal donors.

A Celli et al.
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NPS R-568 restored the Ca2þ wave propagation in a
dose-dependent fashion (Figure 5aec). Pretreatment with
NPS R-568 for 24 hours also restored the AHEKs cytosolic
calcium response to increased extracellular calcium in a
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activity through a pharmacological activator such as NPS
R-568 can rescue the abnormal Ca2þ signaling and E-
cadherin organization seen in aged KCs.

DISCUSSION
These results show that normal Ca2þ signaling and Ca2þ-
signaling protein expression are impaired in aged epidermis
and KCs. Similar to Casr-knockout cells and epidermis (Tu
et al., 2019), Ca2þ propagation after perturbation in murine
epidermis and cell monolayers from aged donors was
significantly reduced compared with that from young con-
trols. Moreover, CaSR expression was consistently down-
regulated in aged KCs. CaSR acts to release Ca2þ from the ER
and Golgi through PLC-generated inositol triphosphate,
which then binds to the inositol trisphosphate receptor on the
ER (Tu et al., 2008). Knockdown of CaSR in human cells
causes a reduction in both Gq-mediated activation of PLCb
and E-cadherin‒mediated activation of PLCg (Tu et al.,
2005), which are in turn necessary for the acute and sus-
tained KCs response to elevated extracellular calcium levels.
Both PLCb and PLCg expression levels were consistently
reduced in KCs from aged donors.

CaSR expression also stabilizes the E-cadherin complex,
which in turn regulates cell-to-cell adhesion and cell
Journal of Investigative Dermatology (2021), Volume -
migration and enables the sustained intracellular calcium
level increase needed for KC differentiation through the
recruitment of PLCg. Decreased E-cadherin expression levels
and translocation to the plasma membrane were associated
with decreased CaSR expression in aged HKs, consistent with
previous reports in mice (Tu et al., 2008) and human cells (Tu
et al., 2011). Our data also suggest that decreased E-cadherin
levels result in loss of cell-to-cell junction stability and
concerted epithelial sheet migration during a scratch assay.
More differentiated KCs tend to have a blunted Ca2þ

response, and if aged KCs are more differentiated than young
KCs, this might furnish an alternative mechanism to explain
our findings. However, past reports show that aged KCs and
skin are actually less differentiated both in mice
(Bourguignon et al., 2013) and in humans (Berge et al., 2008;
Diekmann et al., 2016; Dos Santos et al., 2015).

Taken together, these results show that decreased CaSR
expression and function contribute significantly to the
impaired Ca2þ signaling response seen in aging. Although
changes in each of the Ca2þ-signaling components could also
be expected to modify Ca2þ signaling, our finding that
treatment with the CaSR agonist NPS-R568 restored normal
Ca2þ signaling and E-cadherin distribution strongly suggests
that decreased CaSR expression in aging drives both impaired
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Ca2þ signaling and downstream changes in Ca2þ-signaling
proteins. Although decreases in CaSR protein expression
might be expected to impair NPS-R568 efficacy, this agent
has been shown to increase CaSR function on mutant CaSR
as well (Rus et al., 2008).

STIM1 expression also increased in both aged mouse
epidermis and aged HKs, likely as a compensatory response.
STIM1 expression was found to increase to a lesser extent in a
previous report (Takei et al., 2016), although this report
examined younger subjects (maximum age of 70 years)
compared with our older subjects (aged >79 years).

Several questions remain regarding CaSR-mediated Ca2þ

signaling in aged KCs. First, although raised cytosolic base-
line Ca2þ is consistent with STIM1 upregulation, it also could
be explained by impaired Ca2þ uptake or extrusion mecha-
nisms, including functional defects in organelle and plasma
membrane Ca2þ adenosine triphosphatase or defects in
plasma membrane sodium ion and/or Ca2þ antiporters. We
www.jidonline.org 7
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do not see consistent differences in the expression of these
proteins. However, more subtle differences in these proteins’
functions, along with elevated STIM levels, may become
apparent in subsequent investigations. Second, although
increased STIM1 levels would suggest increased store-
operated Ca2þ entry, similar to what was observed in Casr-
knockout cells (Tu et al., 2008), we observe a significant
defect in calcium entry after exposure to high (1.2 mM)
extracellular calcium in aged compared with that in young
cells in both proliferative and differentiative conditions.
Further investigation into the calcium entry mechanisms,
such as STIM1 translocation to the plasma membrane and
Orai1 interactions, will be needed to address this defect.
Moreover, KCs have also been shown to express molecules
involved in noncapacitive calcium entry such as voltage-
sensitive calcium channels (Denda et al., 2006; Lee et al.,
1994), transient receptor potential channels (Peier et al.,
2002), nonselective cation channels in undifferentiated KCs
(Fatherazi et al., 2004), which could also play a role in the
decreased response to raised extracellular calcium we
observe in aged KCs. Finally, it is not clear what mechanisms
underlie the increased variability seen in the aged KC
response to extracellular Ca2þ, TG, or mechanical stimula-
tion. Previous studies show that more substantial increases in
cytosolic Ca2þ are seen in less differentiated KCs, both in
response to extracellular Ca2þ (Kruszewski et al., 1991) and
in response to mechanical stimulation (Dubé et al., 2012). In
addition, basal cytosolic Ca2þ concentration is variable
within the same colonies, depending on cell size (Pillai et al.,
1993). Likewise, CaSR expression and function decrease as
gingival KCs terminally differentiate (Fatherazi et al., 2004).
Therefore, variations in aged KC response could be due to
exaggerated intrinsic aging processes, mutations in response
to environmental agents such as UV, or a combination of
intrinsic and extrinsic processes.

These results suggest that CaSR plays an essential role
in mediating Ca2þ signaling and E-cadherin‒mediated pro-
cesses in the epidermis. Moreover, decreased CaSR expres-
sion and function contribute to impaired KC signaling and
E-cadherin expression. These results also suggest that CaSR
may be a different target in improving E-cadherin‒mediated
processes in aged epidermis.

MATERIALS AND METHODS
Please see Supplementary Materials and Methods for more

information.

Laser perturbation assay

All animal procedures were approved by the Animal Studies Sub-

committee (Institutional Animal Care and Use Committee) of the San

Francisco Veterans Administration Medical Center (CA) and were

performed in accordance with their guidelines. Live epidermal ex-

plants from GCaMP3þ/þ-expressing young (aged 6e8 weeks) versus

old (aged 22 months) mice placed dermis side down on a 3% agar

gel were secured on the heated stage of an upright Zeiss LSM 780

confocal microscope (Carl Zeiss Microscopy, New York, NY)

coupled to a Ti:Saph laser (Chameleon Ultra II, Coherent, Santa

Clara, CA). Ca2þ signaling in the epidermis was stimulated by irra-

diating a spatially defined 20 � 20 mm2 region on the basal layer of

the epidermis with 800 nm (w140 mW). Irradiation parameters
Journal of Investigative Dermatology (2021), Volume -
(laser intensity, scanning speed, number of iterations) were kept

constant for all experiments and were optimized to consistently elicit

a cytosolic Ca2þ response without permanent cell damage. The

resulting GCaMP fluorescence was imaged with two-photon exci-

tation microscopy. The excitation wavelength was 900 nm (w15

mW). Two spectral windows of 550 per 50 nm and 445 per 25 nm

were used to visualize the GCaMP fluorescence in the epidermis and

the second harmonic generation signal, respectively. Dermal

collagen, identified with the second harmonic signal, was used as a

spatial reference. Time series were analyzed in Fiji (Schindelin et al.,

2012) and Matlab (MathWorks, Natick, MA). The change in GCaMP

fluorescence was expressed as the ratio of the change with respect to

the baseline fluorescence (f/f0), whereas the response area was

measured as the area with significantly increased cytosolic calcium

(f/f0 > 1.2), reported in mm2. A total of three mice per age group was

used for these experiments. Two separate skin biopsies (one per

flank) per mouse were used to collect 18e19 times resolved cyto-

solic calcium traces per experimental group.

Cytosolic calcium imaging in KC monolayers and cultured
KC sheets

Second to third passage KCs from newborns versus those from aged

subjects (NHEK and AHEK, respectively) were cultured as described

earlier to 70e90% confluence for single KC Ca2þ imaging and 100%

confluence for scratch assays and laser perturbation. KCs were loaded

with 10 mMCalciumGreen-1AM (Life Technologies, Carlsbad, CA) for

KC Ca2þ response to laser perturbation. Cells were placed on the

heated stage of an upright Zeiss 780 two-photon confocalmicroscope,

and calcium recordings before and after laser perturbation were ac-

quired as described earlier using a dipping �20 lens with numerical

aperture ¼ 1. For the response to calcium switch, scratch assays, and

capacitive calcium entry after store depletion, KCs were loaded with

7.5 mM Fura-2 AM (Sigma-Aldrich, St. Louis, MO). Dyes were loaded

for 45 minutes at 37 �C and washed three times with Hank’s Balanced

Salt Solution. Phenol red‒free Hank’s Balanced Salt Solution (Thermo

Fisher) containing the appropriate extracellular Ca2þ (0, 0.07, or 1.2

mM) was used during imaging. Fura2-loaded cells were secured on a

Zeiss Axio Imager 2 inverted fluorescence microscope and were

alternately illuminated with 340 nm and 390 nm wavelengths. The

fluorescence at emission wavelength 510 nmwas recorded. Scratches

were made to KC sheets with a 23-gauge needle. Changes in cytosolic

Ca2þ levels in cells neighboring the scratched areawere imagedbefore

and for 50e200 seconds after wounding. For response to high extra-

cellular calcium switch experiments, after a period of equilibration to

establish a baseline of 60e120 seconds, a high calcium medium was

added to the wells to a final concentration of 1.2 mM. Cells were

imaged every second for additional 5e15minutes Ca2þ. The response
is expressed in mm2 for area; R(arbitrary unit) ¼ f390nm/f340nm, where

f390nm and f340nm are the fluorescence intensities generated by exci-

tation at 390nm and 340nm, respectively, corresponding to calcium-

bound and -free FURA2, for single KC cytosolic Ca2þ responses; and

DR((arbitrary unit) ¼ RhiCa e Rbl, where RhiCa is the average R value

between 2 and 4 minutes after calcium switch, and Rbl is the average

baseline R before a switch to high calcium. For capacitive calcium

entry after store depletion, 1mM TG (Sigma-Aldrich) was added to the

culture well during ratiometric imaging. After the ratiometric signal

returned to baseline, cells were exposed to 1.2 mM calcium-

containing media. Cell migration was assessed using brightfield

time-lapse imaging. Cells were plated on 24-well plates and switched

to 1.2 mM extracellular Ca2þ for 24 hours before imaging on a Zeiss
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Cell Observer (Carl Zeiss Microscopy) with full environmental control

(37 �C and 5% carbon dioxide). A 10 ml pipette tip was used to scratch

the cultures.

NPS R 568 treatment

For calcium imaging experiments, KCs monolayers were switched to

0.07 mM or 1.2 mM calcium and 0 (1:1,000 dilution of DMSO), 0.5,

or 1 mM NPS R 568 (Sigma-Aldrich)‒containing medium 24 hours

before imaging. For E-cadherin immunofluorescence staining, cells

were exposed to 1.2 mM calcium and NPS R 568 (0, 0.5,1 mM)‒

containing media 15 minutes before fixation.
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