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Abstract

There is long-standing scientific interest in understanding purposeful movement by animals and 

humans. Traditionally, collecting data on individual moving entities was difficult and time-

consuming, limiting scientific progress. The growth of location-aware and other geospatial 

technologies for capturing, managing and analyzing moving objects data are shattering these 

limitations, leading to revolutions in animal movement ecology and human mobility science. 

Despite parallel transitions towards massive individual-level data collected automatically via 

sensors, there is little scientific cross-fertilization across the animal and human divide. There are 

potential synergies from converging these separate domains towards an integrated science of 

movement. This paper discusses the data-driven revolutions in the animal movement ecology and 

human mobility science, their contrasting worldviews and, as examples of complementarity, 

transdisciplinary questions that span both fields. We also identify research challenges that should 

be met to develop an integrated science of movement trajectories.

Introduction

Among the traits shared by animals and humans is intentional movement through space to 

perform activities. These purposeful movements are fundamental to the dynamics of 

ecosystems, cities and environments. Consequently, there is a long-standing scientific 

concern with analyzing and interpreting intentional movement in both basic and applied 

research. Ecologists and biologists study animal movement patterns to understand behaviors 

such as habitat selection, migration, territoriality, foraging and mating, and also to 

understand responses to environmental changes. Human mobility researchers, spanning 

disciplines such as geography, anthropology, transportation, urban planning and public 

health, are concerned with how humans move through natural and built environments to 

conduct required and desired activities such as working, shopping, recreation and 
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socializing, how to plan transportation and cities to facilitate mobility and accessibility, and 

the impacts of mobility on the environment, health, social capital and well-being.

For years, animal movement and human mobility researchers struggled with scarce data on 

movement behavior, relying on painstaking data collection (e.g., observational studies, 

mark-recapture, travel diaries) and/or aggregate data (e.g., seasonal distribution maps, 

origin-destination flows, intercept counting). This is changing due to stunning advances in 

location-aware technologies (LATs) for moving objects data (MOD) collection, such as 

global positioning system (GPS) data recorders, mobile phones, radiofrequency 

identification (RFID) chips, geotags, radiolocation devices, and georeferenced social media 

(Kays et al., 2015; Batty, 2012; Giannotti et al., 2011; González et al., 2008). These 

technologies facilitate the collection of massive individual-level mobility databases on 

animal and human movement patterns. For example, Figure 1 shows 546,502 GPS points for 

55 individual turkey vultures (Cathartes aura). Individual tracks cover observation periods of 

1 month to 11 years, ~2 years per bird on average, during Nov 2003–Dec 2016. The image 

includes individuals from both South and North American populations conducting seasonal 

migrations to and from Venezuela and the Northern Amazon Region (data can be accessed 

through Bildstein et al. 2016; more details about the dataset in Dodge et al. 2014). Figure 2 

shows 2,678,893 GPS points for 536 humans (Homo sapiens) over individual one-week time 

periods in 2013, around Salt Lake City, Utah, USA (data provided by the authors). 

Complementing the growth of individual movement data is the increasing availability of 

contextual data about the movement environment via embedded and remote sensors, crowd-

sourced observational networks and global reanalysis data (Heipke 2010; Stefanidis and 

Nittel 2004; Trenberth, Koike and Onogi 2008). A third converging and complementary 

trend is the rise of geosimulation techniques that can model large systems such as cities, 

ecosystems and societies at the level of the individual entities that comprise these systems 

(Benenson and Torrens, 2004).

Collecting and analyzing individual-level animal and human movement data has challenges. 

LATs have technical issues such as limited battery life, blocked signals and a need to operate 

continuously in sometimes harsh conditions, sometimes leading to data gaps. Data derived 

from georeferenced social media and location-based services (LBS) are unlikely to be 

representative of the larger population or the general behaviors of individuals (Miller and 

Goodchild 2015). Collecting animal movement data can involve trapping with potential risks 

to the individual. Both human and animals face locational privacy concerns. Movement data, 

combined with land use and other data, can reveal intimate details of human lives 

(Gkoulalas-Divanis and Bettini 2018). Animal location data create risks to species that have 

economic value to humans (Cooke et al. 2017). Data sharing can be blocked by these privacy 

concerns, but also the monetary and strategic value of these data (Lazer et al 2009). Despite 

these persistent challenges, it is not an exaggeration to declare that a data-driven scientific 

revolution is occurring animal and human movement behaviors and their relationships to 

other ecological and human dynamics.

The emergence of interdisciplinary scientific communities focusing on moving objects data 
analytics reflects the data-driven revolution in movement and mobility research (Demšar et 

al., 2015). However, while connections and collaborations are growing among researchers in 
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the respective domains of animal movement and human mobility, linkages across the 

animal-human divide are not growing as strongly. This is understandable given the different 

nature of the moving entities in the two domains, and the different scientific and policy 

questions surrounding their movement at the individual and aggregate levels. However, we 

believe there is potential for a fundamental science of movement that spans this intentional 

behavior in both domains. There are potential commonalities in methods used by researchers 

in both domains for describing movement, and collecting, managing, analyzing, and 

visualizing moving objects data (see for example, Figure 1 and Figure 2, visualized using 

similar approaches). There are lessons to be learned by exchanging worldviews, theories and 

methods across the animal and human divide. The synergy that will be gained by converging 

animal and human movement science may advance research in both fields, and perhaps 

support a more holistic approach to understanding movement and other spatial dynamics that 

will erase the artificial boundary between animal and human worlds.

This paper discusses the background, opportunities and challenges underlying a convergent 

science of movement trajectory data. Although we do not intend to draw sharp boundaries 

around this field, we focus on entities such as animals and humans that move with intent 

across geographic space to perform activities. Movement by unintentional entities propelled 

by purely physical processes such as hurricanes or pollen is relevant; however, this is a 

subset of broader and more difficult problem of understanding entities that move with an 

internal drive to conduct activities. Similarly, although movement and kinetics in situations 

such as sports and dance are intentional, these are special activities that take us beyond the 

focus of movement as a part of daily life and as a means to arrive at geographic locations to 

perform activities.

Background

This section discusses the technological advances that are creating a revolution in animal 

movement ecology and human mobility science. It also describes the interdisciplinary 

research communities that have evolved separately within each domain. To illustrate the 

potential synergy from converging animal and human movement research, this section 

concludes by illustrating several transdisciplinary research questions that span both domains.

Advances in mobile objects data collection and management

A mobile entity is an individually identifiable thing in the real world that can change its 

geometry and/or location frequently with respect to time. In animal movement ecology and 

in human mobility science, changes in the location of mobile entities are often more 

important than changes in their geometry, therefore a mobile entity is often conceptualized 

as a point, although polygons can also be used if the entity has crucial space-occupying 

properties (e.g., cars on a highway). A mobile object is the representation of this entity using 

mathematical or computational means. A trajectory is a mathematical representation of the 

path of mobile object and is quantified as a time-ordered sequence of locations. Mobile 
objects databases are computerized record-keeping systems that allow integrated storage, 

updating and querying of mobile objects (Miller, 2008).
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Location-aware technologies (LATs) are technologies that can frequently report their 

location in geographic space. LATs are generally associated with mobile entities: they 

include the global positioning system (GPS), radiolocation, telemetry, and dead-reckoning 

techniques coupled with computers and tablets on the desks and laps of humans, sensors 

transported by vehicles or attached to animals. New generation of multimodal sensors (e.g. 

smart watches, fitness trackers, GPS collars) equipped with accelerometers and gyroscopes 

provide auxiliary activity data of moving objects (Long et al., 2018). Geosensor networks 

are wirelessly communicating, sensor-enabled, small computing devices distributed in 

geography and connected as a network to enable in-situ monitoring of dynamic properties 

such as location change and movement (Duckham, 2012). Remote sensing devices include 

passive and active sensors carried on aircraft and satellites for environmental monitoring 

over local (urban/ecosystem patch), regional, and global scales using both passive (reflected 

light) and active (laser) methods (Pettorelli, Safi and Turner 2014). These sensors provide 

contextual information about the environment of mobile entities. Helping to manage all 

these data are geographic information systems (GIS), and mobile objects database systems 

(Miller, 2008): all have seen remarkable growth in their capabilities to handle MOD and data 

describing dynamic geographic phenomena. We can fuse these locational and environmental 

data with behavioral and physiological data from animal ‘biologgers’ (Rutz and Hays, 2009; 

Kays et al., 2015) and human ‘lifeloggers’ (Swan, 2012). The result is an explosion of data 

on moving entities that is outpacing the development of appropriate analytical methods.

Another source of MOD is simulation methods such as agent-based models (ABMs). ABMs 

can be used to generate trajectories of moving objects over space with respect to time by 

integrating known aggregate information (such as origin-destination flow totals, population 

counts, or coarse movement data) with assumed or empirically-derived goals and intentions 

for individual entities, and parameters for individual movement steps and interactions 

between objects. Simulated trajectory data is important for cases where tracking is limited or 

may be impossible (e.g. small or endangered species, large population flows, remote areas, 

and for data with gaps and signal loss). Application domains include crowd behavior 

(Torrens, 2014), travel demand (Zhong et al., 2015), habitat analysis (McLane et al., 2011), 

animal migration (Bennett and Tang, 2006, Bohrer et al., 2014) and foraging and other 

movement behaviors (Vincenot et al., 2015; Ahearn et al., 2017). These simulation methods 

can scale to large urban populations and beyond; an example is the TRANSIMS activity and 

travel simulation system that can model individual movements for the entire population of a 

large city such as Sydney, Australia (Huynh et al., 2015).

Emergence of interdisciplinary research communities

Human mobility—Scientific study of human mobility emerged in the 1950s with the 

application of computers and mathematical modeling to analyze traffic patterns in support of 

urban planning. Most of the early techniques involved undifferentiated flows among 

aggregated spatial zones using techniques such as regression analysis, spatial interaction 

modeling and network flow equilibrium. In the mid-twentieth century, time geography 

emerged as a conceptual framework and notation system for representing individual 

activities in space and time within human geography – well in advance of the existence of 

mobility data (Ellegård and Svedin 2012; Hägerstrand 1970). A behavioral turn in the 1970s 
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used consumer choice models based on microeconomic theory and activity-based analysis 

based on time-use studies; these approaches require survey and diary data that was 

burdensome, expensive and time-consuming to collect (Lay 2005). The rise of LATs is 

revolutionizing the scientific study of human mobility by facilitating the acquisition and 

analysis of detailed movement data.

Two interrelated fields have emerged at the interface of Geographic Information Science 

(GIScience) and transportation science. Computational movement analysis (CMA) focuses 

on the development and application of techniques for collecting, managing, and analyzing 

MOD to better understand moving entities and related spatial dynamics (Gudmundssen et 

al., 2012). Mobility science also focuses on computational techniques for MOD, but with a 

stronger focus on transportation and cities. Mobility science leverages MOD to move 

beyond the aggregate and static transportation and urban models of the 20th century to 

individual-level models that recognize social differences in accessibility and the potential for 

human systems to exhibit emergent behavior. Applications include human activity and travel 

demand (Alexander et al., 2015; Toole et al., 2015), urban dynamics (Batty, 2012), potential 

exposures to environmental hazards (Su et al., 2015), formation and maintenance of social 

networks (Wang and Song, 2015) and other phenomena associated with humans’ use of 

time, space and technologies associated with movement.

Animal movement—A rapidly growing subfield of ecology, animal movement ecology 
focuses on understanding the “causes, mechanisms, and spatiotemporal patterns of 

(organismal) movement and their role in various ecological and evolutionary processes” 

(Nathan et al. 2008: 19052). Ecology is fundamentally spatial, and movement connects these 

processes operating across heterogeneous landscapes and from the scale of an individual to 

population (Cagnacci et. al. 2010).

Traditional animal-movement studies dating back to the 1950s were focused on better 

understanding where animals go and how they use resources in order to improve 

management strategies. This was typically done by estimating an animal’s ‘home range’, 

defined by Burt (1943: 351) as “that area traversed by the individual in its normal activities 

of food gathering, mating, and caring for young”. The home range methods are continuously 

evolving and have been superseded by statistical modelling of space use, geostatistics, and 

spatially explicit mechanistic models (e.g., Kie et al. 2010, Börger et al. 2008). Nonetheless, 

the home range concept and methods used to estimate one are still controversial 75 years 

later, and this disconnect between a better conceptual understanding of what a home range is 

and the rapid technological advancements in data and algorithms used to measure it provides 

a good example of putting the “technological cart before the conceptual horse” (Powell and 

Mitchell 2012: 948).

More contemporary animal movement studies quantify movement patterns (see Turchin, 

1998) to make inferences about likely behaviors. The movement ecology paradigm views 

animal movement phenomena as interactions between internal (e.g. intention, readiness to 

move, motivation) and external factors (e.g. environment, other individuals), movement and 

navigation capacities (e.g. speed, modality), generating the observed movement path 

(Nathan et al 2008). Movement parameters describing these interactions can be compared to 

Miller et al. Page 5

Int J Geogr Inf Sci. Author manuscript; available in PMC 2020 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



determine whether statistically different characteristics are suggestive of different behaviors 

or processes (e.g., foraging, navigation, environmental preferences). Movement models such 

as random walks are used as null models to compare real movement parameters (e.g. step 

length, turn angle, net displacement) for animals as diverse as bottlenose dolphins (Bailey & 

Thompson, 2006), caribou (Bergman et al., 2000), geckos (Gruber and Henle, 2004), 

caterpillars (Wallin, 1991), cows (Laube & Purves, 2011), tigers (Ahearn et al., 2017), and 

butterflies (Root and Kareiva, 1984). Any discrepancies between the null and real movement 

parameters can help infer the interactions between an organism and its environment that 

influence the movement process (Miller, 2012; Schick et al., 2008).

Trans-disciplinary questions

While there has been limited collaboration between animal movement ecologists and human 

mobility researchers, there is evidence of parallel play: researchers in these disparate fields 

addressing similar research questions in their respective domains. To illustrate the potential 

synergy from converging animal movement and human mobility research, this section 

discusses four research questions that have received attention in both fields. These are: i) 

measuring and interpreting interactions among mobile entities; ii) analyzing movement in 

geographic context; iii) integrating mobility and sensor data; and, iv) visualizing movement. 

These questions are not exhaustive; rather, they are illustrative of the difficult but common 

questions facing both domains.

Measuring and interpreting interactions among mobile entities—The most basic 

unit for studying interactions is a pair of locations for two individuals (a dyad), but more 

complex units such as networks can be used as well. While interactions can be considered an 

extension of movement, the social and psychological explanations and implications of 

interactions are not as easily discerned or generalized as first order movement properties. 

For example, what kind of interactions exist among the multiple vultures following similar 

migration track from North to South America (Figure 1) or among commuters moving 

toward downtown Salt Lake City (Figure 2)? Do interactions facilitate a more efficient 

movement: with vulture – help find thermals that other bird detected; for humans – help 

avoid traffic congestion using crowd-sourced traffic information? Do moving individuals 

prefer to swarm to the same movement paths or prefer larger space between individuals? Is 

the timing of the movement (time in the morning for Figure 2, or a particular day in Spring 

in Figure 1 that an individual starts its movement trajectory) affected by the timing and 

density of the movements of other individuals?

Movement ecology defines interactions as “actions directed towards, or affecting, the 

behavior of another animal” (Whitehead, 2009:765). However, measuring interactions 

between animals is not straightforward, and depending on the objective of the study, what is 

considered an “interaction” can range from physical contact to sharing common resources, 

to proximity, or simply being aware of each other. In human mobility science, interactions 

among moving humans are crucial for understanding a diverse range of phenomena beyond 

transportation and traffic; these include the dynamic nature of spatial segregation (Palmer et 

al., 2013), spatial interaction through social media networks (Sui and Goodchild, 2011; Liu 

et al., 2014), and the spread of infectious disease (Bian et al., 2012; Jacquez et al., 2005).
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Measuring interactions among moving entities is difficult in both animal and human 

domains. A common approach is demarcating locations in space and time where interactions 

could potentially occur. It is straightforward to calculate intersections among individual 

activity spaces from MOD, indicating where and when social interaction and joint activity 

participation could have occurred (Farber et al., 2013; Fieberg and Kochenny 2005; Miller 

2005; Neutens et al., 2008, 2013). Interactions can also be inferred by measuring the 

frequency at which multiple individuals are spatially and temporally proximal to each other 

(i.e. co-location of moving points); these are often termed encounter rates, contact rates (in 

context of disease spread) and associations in animal movement ecology (Cooper et al., 

2008; Ramos-Fernández et al., 2009; Haddadi et al., 2011; Strandburg-Peshkin et al., 2015, 

Crofoot et al 2008). This quantification is dependent upon subjective decisions with respect 

to appropriate spatial and temporal thresholds as well as technical limitations of available 

resolutions and is especially challenging when fine-resolution tracking data are not available 

due to the uncertainty of observed trajectories.

Recent contributions to study movement interactions have focused primarily on 

technological advancements related to measuring interactions. One of the most basic 

methods to measure interaction empirically involves counting paired observations that 

occurred within a pre-defined spatial and temporal threshold, and comparing this to a null 

expectation. A recent technological advancement employs proximity loggers that are 

attached to animals to automate this process. A fix is recorded when a similarly outfitted 

animal comes within the specified spatial and temporal distances, however, proximity 

loggers are limited to relatively short distances and do not automatically include location 

information (see Drewe et al., 2010; Cross et al., 2012 for overview). Bluetooth sensors 

embedded in mobile phones have potential for inferring human proximity and interaction 

(Do and Gatica-Perez, 2011; 2013; Matic et al., 2012), although WiFi-based methods have 

better scalability (Sapiezynsk et al. 2017). However, while these new technologies enable 

collection of more and higher quality data, there has not been concurrent methodological 

advancements for improving the ability to characterize, detect, visualize, analyze and 

understand interactions. Many interaction metrics were developed when MOD had coarser 

spatial and temporal resolution; the assumptions underlying these metrics are inadequate for 

the new types of multidimensional MOD now available. In addition, few studies have tested 

a range of interaction metrics using the same data; when they have been compared, the 

results are inconsistent (Long et al., 2014; Miller, 2012; 2015). Conclusions about 

interactions among moving entities are problematic without a better understanding of what 

interaction metrics are measuring and how they should be interpreted.

Analyzing movement in geographic context—Traditionally, animal movement 

ecologists place a greater emphasis on geographic context such as habitats and land cover, 

but these data are typically coarse-scale and static (see Figure 1). Human mobility 

researchers tend to represent geography using abstract space (focusing on trajectory 

geometry) or networks (focusing on network routes and flows (see Figure 2), with the latter 

traditionally involving more detailed representation of transportation infrastructure than the 

movement within the infrastructure. These differences result from the respective intellectual 
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histories of the two fields. This is changing as high-resolution, detailed geographic data are 

increasingly available for natural and built environments (Dodge et al., 2016)

Seidel et al. (2018) review recent contributions to path and space-use metrics, including 

those that incorporate environmental context explicitly (e.g., step selection function). 

Movement models that include environmental context are effective in determining the 

drivers of movement behavior and the parameters that describe it, and in shaping path 

choices (Dodge et al., 2014; Ahearn et al., 2017, Bartlam-Brooks et al 2013, Bohrer et al 

2014). For example using a subset of the vultures in Figure 1, Bohrer et al (2012) showed 

that the vultures prefer to move in locations where thermal uplift is strong. And, with the 

same dataset, Dodge et al (2014) showed that the extent of movement within the nesting 

home range (northern edges of the migration tracks) is affected by vegetation greenness and 

seasonal temperature. In human mobility studies, geographic context has traditionally 

received less attention than behavioral states or social, and/or demographic factors, although 

this is changing with newly available data (see, e.g., Brum-Bastos, Long and Demšar 2018; 

Horanont et al. 2013; Siła-Nowicka et al. 2016). Despite this increasing interest in 

understanding the geographic context of movement, there has been surprisingly little cross-

over between animal movement ecology and human mobility science.

The wealth of MOD provided by LATs comes with a significant cost, namely, the lack of 

path semantics or the motivations and activities associated with the mobility behavior. 

Consequently, most methods for analyzing MOD focus on the morphology of an entity’s 

trajectory in space with respect to time. For example, a major focus of attention in MOD 

analytics is path similarity or the degree of correspondence between two space-time paths. 

These methods include shape-based similarity measures (such as Euclidean and Hausdorff 

distances) that focus only on the geometry and sequence-based methods, such as sequence 

alignment (Kwan, Xiao, and Ding 2014; Shoval and Issacson 2007), Fréchet distances and 

edit-distance functions (Yuan and Raubal, 2014) that exploit sequence and time in the 

trajectory. Other methods for analyzing collections of space-time paths include path 
clustering methods and spatial field methods (Long and Nelson, 2013). Time-geographic 

approaches have also been used to compare activity spaces of different groups of people and 

study social context in human mobility (Kwan and Lee, 2004; Kwan et al. 2019; Tribby et 

al. 2017). Geographic context is frequently ignored, but this can help researchers infer 

among different behaviors that are consistent with the same mobility behavior, such as 

whether apparently coordinated movement is coincidental or indicative of a shared activity. 

For example, most vultures take very similar paths through eastern Central America (Figure 

1), but that is probably an outcome of the narrow geography of the region, as vultures cannot 

fly effectively over water. Similarly, many of the identical paths taken by humans in Salt 

Lake City (Figure 2) are driven by the structure of the road network and not by social 

interactions.

Merging movement data with geographic context is often referred to as track annotation, 

(Mandel et al 2011) a term that originates in web-browsing, where environmental variables 

are used to add attributes to the path. Tools that can handle such merging of movement and 

geographical context are emerging. Recently, Google announced the development of Earth 

Engine (https://earthengine.google.org/#intro), “a planetary-scale platform for environmental 
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data and analysis”, which could become a common platform for contextual movement 

analysis. Other, domain-specific tools have also recently become available, for example the 

Environmental-Data Track Annotation (Env-DATA) system in the on-line animal-movement 

database “movebank” (www.movebank.org), dedicated to geographic annotation of animal 

movement data (Dodge et al., 2013, and see a recent example for application of the system: 

Halworth & Marra, 2015).

While trajectory annotation techniques are valuable, there is a paucity of analytical methods 

that can exploit annotated tracks. A vital research frontier involves developing mobility 

analytical techniques and movement models that go beyond the movement pattern devoid of 

geographic context to multi-dimensional models that includes what other things were in the 

place where the movement occurred. Such context-aware models will enable research on 

investigating the influence of a changing environment on the behavior of moving individuals 

(Dodge, 2016).

Integrating mobility and sensor data—LATs can be bundled with other low cost 

sensors that can concurrently measure physiological states, such as the individual’s activity 

level, heart rate, stress, body temperature, and environmental states, such as ambient 

temperature, humidity, light, noise and proximity to other individuals with devices. Some 

devices, such as smartphones and critter-cams, also have cameras and activity logs. These 

data can be fused with mobility data to better understand the physiological and 

environmental context of movement.

In movement ecology, researchers combine accelerometer and tracking data to infer the 

behavioral modes of animals, such as foraging, feeding, aggression and active versus passive 

flight, and to calculate energy expenditures by animals (Nathan et al. 2012; Shamoun-

Baranes et al. 2012; Shepard et al. 2008). In human mobility analysis, fused GPS and 

accelerometer data can help to infer the transportation modes used by individuals (e.g., walk, 

bike, drive, bus, light rail) and estimate energy expenditures from active transportation, such 

as walking and biking (Brown et al. 2016; Brown et al. 2015; Duncan et al. 2016; Lee and 

Kwan 2018; Miller et al. 2015). Body temperature data can help explain diurnal activity 

patterns in animals, such as sharks (Papastamatiou et al. 2015), and physiological indicators 

of stress can help identify ‘landscapes of fear’ experienced by animals from interactions 

with predators or proximity to humans (Støen et al. 2015). The diverse set of sensors and 

activity loggers available in smartphones can capture behavioral features describing 

movement and physical activity, face-to-face and mediated social interactions, and daily 

activities such as vacuuming and taking out the trash, health-related symptoms, such as 

coughing and sleeping patterns (Harari et al. 2016; Harari et al. 2017).

While fused location and sensor data are promising, there are challenges that cross-cut 

animal and human research. Major research challenges include determining the 

psychometric and behavioral validity and reliability of sensor data, inferring more complex 

behaviors (e.g., grooming among animals; business meetings among humans) and 

understanding the relationships between sensed behaviors and consequential life outcomes 

such as survival, health and social status (Harari et al. 2016). Another challenge is that some 

sensors, especially those bundled with smartphones, are consumer-grade rather than 
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carefully calibrated scientific instruments, leading to potential data quality issues (Ganti, Ye 

and Lei 2011). Finally, the integration of mobility data with seemingly innocuous sensor 

data can lead to ethical challenges since biometric, environmental and other contextual data 

can reveal personal information beyond only location and time (Christin et al. 2011). 

Although privacy concerns may seem more apparent for humans than animals, as noted 

above these data can expose animals to adverse interactions with humans. Also, attaching 

the devices is invasive and stressful to animals, and their presence may affect the behavior 

being monitored and perhaps the survival of the animal (Cooke et al. 2017; Wilson et al. 

2015).

Visualizing movement—Visualization can support all stages of movement trajectory data 

management and analysis, including data exploration, data cleaning and preprocessing, 

querying, analysis and communication of results. Visualization is especially important in a 

transdisciplinary science of movement as it provides a common visual language to facilitate 

data exploration, uncover hidden patterns in data, disseminate knowledge, and even 

formulate hypothesis through visual exploration of movement patterns (Dodge, 2016). 

Common visualization approaches for representing trajectory data include point and line 

density maps (Willems et al., 2009), aggregated maps (Andrienko and Andrienko, 2008), 

flow maps (Wood, Slingsby, and Dykes, 2011; Guo and Zhu, 2014), and 3D space-time 

representations (Demšar et al, 2014; Kveladze, Kraak and Van Elzakker 2015).

Movement data is inherently complex due to the intricacies and multidimensionality of 

movement in time and space, the heterogeneity and diversity of moving objects, events, 

processes and contexts associated with movement, and the wide variety of spatial, temporal 

and spatio-temporal properties and relations inherent in these data. Consequently, 

transforming movement trajectory data into a small set of effective visual channels is 

challenging. Visual analytics of movement refer to technologies, processes and knowledge 

that allow humans and computers to cooperate in analysis, problem-solving and decision-

making with complex movement trajectory data (Andrienko et al. 2013). There are a large 

number of movement data visual analytical techniques emerging; these can be 

conceptualized and organized in different ways. For example, Andrienko et al. (2013) 

arrange their discussion into techniques that focus on the moving objects and their context, 

spatial events associated with movement, the places visited by the objects, and the times 

when movement occurred. In contrast, Andrienko and Andrienko (2013) categorize 

techniques based on whether they examine movement trajectories as a whole, look within 

the trajectories for variations in movement properties, summarize multiple trajectories, or 

visualize trajectories within context. Chen, Guo and Wang (2015) organize their discussion 

based the movement data properties being visualized, namely, spatial, temporal, spatio-

temporal, and whether these properties are combined with other object attributes.

Techniques for visual analytics of movement data can crossover between the human and 

animal domains since tasks, such as pattern discovery, clustering, summarization and 

generalization, are required in both. Major differences between techniques in the domains 

concern the types of decisions supported and the role of context in the visualization process. 

Visual analytics for human mobility data go beyond exploration and analysis to also support 

modeling forecasting, planning and situational awareness for operational management of 

Miller et al. Page 10

Int J Geogr Inf Sci. Author manuscript; available in PMC 2020 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transportation, cities and other socio-technical systems (Andrienko et al. 2017; Chen, Guo 

and Wang 2015). Visualizing movement within its geographic context is important in both 

human and animal domains, although human movement is typically more constrained by 

infrastructure than animal movement, meaning that the infrastructure itself can serve as a 

basis for visualization (Andrienko et al. 2017; Xavier and Dodge 2014). A challenge facing 

researchers in both human and animal domains is balancing the need for sophisticated and 

powerful techniques for analyzing complex movement trajectory data with user-friendliness 

for domain scientists and decision-makers (Pack 2010; Slingsby and van Loon 2016).

Towards an integrated science of movement: Research challenges

The wealth of movement data generated by LATs, managed by MODs and leveraged with 

ancillary georeferenced data is not only revolutionizing animal movement ecology and 

human mobility science but also creating potential synergies between these communities. As 

noted above, both communities are undergoing a similar transition from a data-poor to a 

data-rich research environment. At the same time, this also involves a transition from thick 

data (i.e., highly attributed via painstaking but rich observational or survey methods) to thin 

data (i.e., sparingly attributed, often containing only the entity type and its movement trace). 

This convergence on similar opportunities and challenges creates the possibility for cross-

fertilization and integration of concepts and methods.

New insights derived from the unprecedented analysis of large collections of human 

trajectories have revealed mobility features that have parallels in animal movement. The 

central paradigm of animal movement ecology - how resource variability across landscapes 

interact with internal drivers and movement and navigation capacities to affect the 

performance of individuals and population-level demography – is equally applicable to the 

study of humans (Meekan et al. 2017). For example, the density of places of employment is 

likely an important factor in the daily movement from the outskirts to the center of Salt Lake 

City (Figure 2), or seasonal changes in prey density that drive large-distance migrations 

(Figure 1). At the same time, data-driven approaches that have “fast-tracked” human 

mobility science, such as the identification of emergent movement properties, activity space 

analysis, analysis of networks of movement and behavior, and the development and 

application of machine learning, advanced visualization and other exploratory techniques, 

can inform animal movement ecology (Thums et al. 2018).

This section explores the possibility of a transdisciplinary science of movement that 

encompasses both humans and animals. We identify several cross-cutting research 

challenges that should be resolved to advance scientific understanding in both domains and 

the integration of these fields into a unified research community.

Different approaches to the same problem

Animal movement ecologists tend to follow a bottom-up approach known as step selection 
functions (SSFs): they analyze the animal’s selection of step length and direction at the 

microscale, inferring the animal’s activities from the movement Thurfjell, Ciuti and Boyce 

2014). Conversely, human mobility researchers tend to follow a top-down approach that 

starts with the activities that a human needs or wants to conduct, and models the mobility 
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needed to fulfill the activity schedule (Miller 2014). The source of this schism is likely the 

different approaches used to understand movement in the two domains. With animal 

movement, a bottom-up, inductive approach evolved because it is difficult to know why an 

animal took a particular step. Consequently, SSFs associate movement with habitat and 

environmental factors. With people, a top-down, deductive approach evolved since 

investigators could ask why movement occurred. However, this is not as feasible with big 

data. We believe there is value in both approaches; a key research frontier is integrating these 

approaches into a common conceptual framework.

The challenge of big but thin data

Both animal movement and human mobility researchers are facing the same challenge 

regarding data. In both domains, data was historically scarce but richly attributed. New 

location-aware technologies are generating data that is plentiful but thinly attributed. In both 

domains, these new data sources favor phenomenological (observed pattern summary and 

reproduction) descriptions over mechanistic (process models rooted in first principles) 

descriptions. How do we derive explanatory models from data that favors correlation over 

causality?

The role of quasi and natural experiments

In both animal and human domains, location-aware technologies, sensors and other 

technologies increasingly allow ongoing, persistent observation of movement patterns. 

Persistent observation allows the possibilities of natural and quasi experimental designs in 

anticipation (prospective) or response (retrospective) to real-world changes or events. These 

approaches can reconcile some of the issues with big but thin data since experimental 

designs allow stronger causality claims.

Focus: Individual or collective?

For both human and animal movement, there are questions surrounding the research focus. 

Do we care more about characterizing individual movement to a high degree, or collective 

patterns? To what extent are movement patterns of individuals representative of collective 

patterns and vice versa? Theoretically, both fields are concerned with individuals as a basic 

unit. However, from a pragmatic perspective, understanding collective movement patterns is 

often easier since it is simpler to separate general trends and tendencies from idiosyncratic 

or episodic behaviors. Furthermore, collective movement has bigger impacts on broader 

systems, such as ecosystems, populations, and cities.

Different scales of movement

Animal-movement ecologists and human-mobility analysts focus on different scales of both 

collective and individual movement and tend to use different point of view for the analysis. 

Animal movement ecologists tend to focus on collective behaviors, such as flocking and 

schooling using a Lagrangian point of view, focusing on the movement of the dynamic 

collective object (e.g., Couzin et al 2002), while human mobility analysts tend to treat 

collective movement at broader scales, such as traffic patterns and origin-destination flows, 

and represent these using an Eulerian, fixed-frame point of view that focus on locations of 
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interest, where collective movement may occur. In movement ecology, movement is 

typically modeled through step-selection functions or random walks with an emphasis on 

local movement choices of individuals and the characteristic of proximate space. In human 

mobility, movement is often modeled as global patterns and origin-destination flow. New 

multi-scale approaches emerging from the intersection of these models may benefit both 

areas to study movement across scales. Can we make movement analytics techniques that 

work across scales? Can we combine Eulerian and Lagrangian frameworks? To what extent 

goal-oriented movement can be inferred from local movement patterns?

Prediction of movement

Prediction is a common research interest in both movement ecology and human mobility 

domains. Movement prediction is essential to inform the mechanisms that underpin 

movement (Dodge 2016; Birkin et al., 2018). In mobility it is important to predict patterns of 

movement flows at aggregate levels such as migration flows between countries and traffic 

flows in urban areas. Here the emphasis is less on individual trajectories and rather on 

aggregate movement patterns. Similarly, animal ecologists are also interested in the 

prediction of aggregate movement patterns (e.g. predictions of home ranges, migration 

corridors, and migration times). However, in some ecological applications the fine-detail 

predictive models at individual levels are also important to generate insight into behavioral 

differences and responses of individuals to their changing environment. Nevertheless, the 

general question is how to predict trajectories or collective movement patterns in space and 

time across spatial and temporal scales.

Validation and calibration of methods

Access to tracking data provide a new opportunity to calibrate and parametrize models using 

knowledge constructed from actual observations, for example how does scale affect 

calculation of movement parameters (Laube and Purves 2011)? Future research should 

leverage data to advance methodologies in movement science through a combination of 

theory-driven models and data-driven analytics.

Do we need a grand theory of movement?

An encompassing theory is an obvious goal of a scientific field. However, it is unclear 

whether a grand theory of movement is currently possible. Some animal ecologists contend 

there are too many species for a grand theory; some human mobility researchers contend 

there are too many types of travel for an overall theory. A crucial question is the possibility 

and utility of a grand theory of movement and whether this is necessary for a new 

interdisciplinary science of movement.

Relationships to grand scientific challenges

To establish the importance of the new interdisciplinary science, we must articulate the 

contributions to movement science to grand societal challenges such as environmental 

change, sustainability, resilience and social equity.
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Conclusion

Due to its fundamental role in the dynamics of life at scales from the individual to 

ecosystems, there is long-standing scientific interest in animal and human movement 

behavior and patterns. In the past, collecting, managing and analysis data on moving objects 

was onerous, leading to small (but thick) individual-level datasets or aggregate measures. 

Concepts and methods in the animal movement and human mobility domains developed 

independently due to the nature of the entities being studied, leading to distinct emphases in 

both fields. Location-aware and geospatial technologies have shattered these limitations, 

leading to parallel revolutions in the animal movement ecology and human mobility science, 

including the development of interdisciplinary research communities. While scientific 

frontiers are advancing in both domains, there has been minimal cross-fertilization across 

the animal and human divide. In a classic example of parallel-play, both fields are 

converging on the use of big but thin data derived from low-cost sensors but maintain 

distinct worldviews. We argue there are potential synergies to be gained from a 

transdisciplinary science of intentional movement with respect to geographic space. 

Breaking down the conceptual walls between animal movement ecology and human 

mobility science requires deliberate effort: history matters, even in science. This paper is a 

step in the direction of an integrated science of movement trajectories.
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Figure 1. 
546,502 GPS points for 55 individual turkey vultures (Cathartes aura) from 2003 to 2016.

(Source: Bildstein et al. 2016)
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Figure 2. 
2,678,893 GPS points for 536 humans (Homo sapiens) over individual one-week time 

periods in 2013.

(Source: authors)
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