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ABSTRACT 
 
Sudden releases of a toxic agent indoors can cause immediate and long-term harm to 
occupants.  In order to protect building occupants from such threats, it is necessary to have a 
robust air monitoring system that can detect, locate, and characterize accidental or deliberate 
toxic gas releases.  However, developing such a system is complicated by several 
requirements, in particular the need to operate in real-time. This task is further complicated 
when monitoring sensors are prone to false positive and false negative readings.  We report on 
work towards developing an indoor monitoring system that is robust even in the presence of 
poor quality sensor data.  The algorithm, named BASSET, combines deterministic modeling 
and Bayesian statistics to join prior knowledge of the contaminant transport in the building 
with real-time sensor information.  We evaluate BASSET across several data sets, which vary 
in sensor characteristics such as accuracy, response time, and trigger level.  Our results 
suggest that optimal designs are not always intuitive.  For example, a network comprised of 
slower but more accurate sensors may locate the contaminant source more quickly than a 
network with faster but less accurate sensors. 
 
 
INTRODUCTION 
 
Contaminant releases in or near a building can lead to significant human exposures unless 
prompt response is taken.  However, selecting the best response depends in part on knowing 
the source locations, the amounts released, and the dispersion characteristics of the pollutant.  
We present an approach that estimates this information in real time.  The approach, called 
BASSET, uses Bayesian statistics to interpret sensor measurements.  The algorithm 
determines best estimates and uncertainties for the release conditions, including the operating 
state of the building.  Because the method is fast, it can continuously update the estimates as 
measurements stream in from sensors. 
 
We developed this Bayesian approach because traditional data interpretation and parameter 
estimation algorithms, such as optimization, Gibbs sampling, and Kalman filtering, often rely 
on assumptions that are not met in buildings, or depend on inverse modeling, which must 
repeatedly run computationally-intensive fate and transport models to incorporate new data 
being collected immediately after an event has occurred.  Furthermore, these techniques are 
difficult to apply in the face of data errors, including the presence many false positive and 
false negatives readings, or when data are sparse (spatially and/or temporally). 
 
The overall objective of this research was therefore to develop algorithms and software for 
indoor sensor data fusion.  Specific goals included (1) real-time source characterization, (2) 
real-time hazard assessment, and (3) pre-event optimal sensor placement.  In this paper, we 



elucidate the Bayesian algorithm for interpreting sensor data in real time, and demonstrate the 
approach with two examples.  In the first example, we characterize a pollutant release in a 
hypothetical five-room building, comparing concurrent and sequential sampling of the sensor 
data.  In the second example, we characterize a tracer gas release in a three-story building 
using trigger-type sensors, i.e., sensors that only report a “yes” or a “no” depending on a pre-
set trigger level. 
 
METHODS  
 
We developed a Bayesian approach for comparing predictions from models to sensor data.  
To do so, we recognized a feature of Bayesian updating not previously reported in the 
literature: the ability to decouple modeling from data analysis.  This feature allows us to 
perform real-time interpretation as data stream in during a pollutant release event (Figure 1). 
 
 

 
Figure 1: Illustration of Bayesian updating procedure. 

 
Our variation of Bayesian updating, which is referred to in the literature as “Bayes Monte 
Carlo Updating,” comprises two stages.  In the Library Generation stage, the practitioner 
develops a fate and transport model of the building, characterizes uncertainties in the model 
inputs, and simulates many hypothetical airflow and pollutant transport scenarios.  These 
time-consuming tasks are completed before a pollutant release occurs.  In the Data 
Interpretation stage, the algorithm evaluates the relative agreement between each model 
simulation and the incoming sensor data, using traditional Bayesian updating procedures.  
This second stage may be conducted as data stream in from the sensors, in real time. 
 
We provide a brief introduction to the procedure here; we refer the reader to [1-3] for a more 
detailed discussion of the theory and application of this work. 
 
Stage 1: Pre-event computations 
 
Before a release event, the practitioner develops a model of the building's indoor airflow and 
pollutant transport.  Best estimates for model inputs are generated from, for example, previous 
building characterization exercises, tracer gas flow experiments and modeling, published 



literature, and professional judgment.  Any uncertain model parameter (e.g., effective leakage 
areas) or variable input (e.g., outdoor temperature and door positions) is assigned a 
probabilistic distribution of possible values.  Release characteristics (e.g., the location, 
duration, and amount of pollutant released in an incident) also are assigned uncertainty 
distributions. 
 
The practitioner next generates a library of model simulations, by repeatedly sampling the 
distributions of the model inputs, and predicting the airflow and pollutant transport for each 
resulting model.  The final library may comprise many thousands of such simulations, or 
realizations.  Each realization represents a single possible combination of building 
configuration, weather condition, and pollutant release scenario, and comprises time-
sequences of predicted pollutant concentrations at multiple locations in the building. 
 
Because this library will be used to assess sensor data during an actual event, it is important to 
(i) characterize the uncertainty and variability in the model inputs properly; and (ii) draw 
sufficient samples from the distributions.  Artificially narrow uncertainty distributions may 
not cover an actual release.  Similarly, insufficient sampling may miss a combination inherent 
in the original distributions.  One method for ensuring sufficient sampling is to increase the 
sample size until summary statistics (e.g., means, variances, coefficients of variation) of the 
model predictions no longer change. 
 
Stage 2: During-event data interpretation 
 
During an actual release, the algorithm compares data streaming in from sensors to each 
realization in the library of model simulations.  Each realization in the library is compared 
against the data to assess, quantitatively, the likelihood that the realization describes the event 
in progress.  A realization agreeing well with the data is assigned a high likelihood.  This in 
turn suggests that the model inputs used to generate that realization have high probability of 
describing the event in progress.  By evaluating the relative fits for each realization to all 
available data, the Bayesian method estimates the model inputs and outputs, including 
uncertainties.  Mathematically, we employ an empirical version of Bayesian updating to 
calculate the statistics.  We refer the reader to [1] for detailed explanation of the calculations, 
but will discuss the important features, and potential pitfalls, of applying the technique here. 
 
First, care must taken in designing a proper likelihood function.  The function should define 
the error structure of the data, i.e., the difference between the data and the model predictions 
resulting from measurement error, from spatial and temporal averaging or correlations, and 
from imperfect model representation.  For unbiased measurements with a (log-) normally 
distributed error structure, the function is Gaussian.  Other types of sensor data, such as data 
from trigger sensors, will require an alternate likelihood function [1, 3]. 
 
With the likelihoods calculated, the algorithm applies Bayes’ Rule to calculate posterior 
probabilities for the library (one for each realization).  These posterior probabilities apply to 
all random variables in the library, and so can be used to revise/update uncertainties in all 
model parameters, variable inputs, release conditions (location, amount, strength), and so on.  
Furthermore, the posterior probabilities also apply to model projections, which allow us to 
predict, and revise, the future migration of the plume at the event unfolds. 
 
This second stage of the approach is mathematically simple and can be executed very quickly-
- typically much quicker than the rate at which new data arrive from sensors. 



 
ILLUSTRATIVE EXAMPLES 
 
We illustrate the approach with two demonstrations.  In the first, we locate and characterize a 
hypothetical pollutant release in a five-room building [1].  We also compare concurrent and 
sequential sampling, and examine how noise in the sensor data degrades a sensor network’s 
performance.  In the second, we focus on the performance of a network consisting of trigger- 
or alarm-type sensors, rather than continuous-output devices [2, 3].  While both 
demonstrations are taken from recently published journal publications, our purpose here is to 
introduce these concepts as they may relate to building-ventilation research. 
 
Demonstration one: Study of a five-room building 
 
The study building is a single story structure comprising three rooms, a common area (CA), 
and a bathroom (Figure 2).  The building does not have a ventilation system, and the status of 
one of the CA windows and the door between the CA and Room 3 is “unknown” to the data 
fusion algorithm (e.g., owing to failed position sensors at these locations).  We used a 
multizone model to predict whole-building airflows and pollutant transport, treating each of 
the five rooms as a distinct well-mixed zone. 
 

 
Figure 1: Plan of the five-room building.  The arrows represent windows or doors; question 

marks indicate unknown open or closed status. 
 
We also generated synthetic data, with errors, to represent measurements that might stream in 
from air monitoring sensors placed in the building.  The synthetic data were based on an 
airflow and pollutant transport simulation that represents a single possible pollutant release 
event; this simulation was excluded from the Bayes Monte Carlo library of 5000 simulations.  
From this excluded simulation, we generated high-, medium-, and low-quality synthetic data, 
using progressively larger magnitudes of errors.  We also evaluated two data collection plans.  
The first, concurrent sampling, provides synthetic sensor data to the BASSET algorithm from 
all five zones simultaneously, at five-minute intervals.  The second, sequential sampling, 
provides measurements from one zone at a time, at five-minute intervals.  Sequential 
sampling might represent a situation where a single (expensive) sensor is multiplexed to 
several sampling tubes. 
 
As part of the pre-event calculation, we generated 5000 airflow and pollutant simulations, 
each of them equally likely, using Latin Hypercube sampling. 



 
Figure 2 shows the estimation of the source location for the three qualities of data. With 
concurrent sampling of medium- or high-quality data, BASSET correctly identified the source 
location at t=5 min., when five measurements were obtained.  With low-quality data, the 
identification of the source location was slower, requiring more measurements, and thus more 
time, to overcome the error in the data.  Again, the medium- and high-quality data permit 
dramatic uncertainty reductions at t=5 min., in all cases converging to the correct answers.  
Sequential sampling collects data five times slower than concurrent sampling.  In 
consequence, the medium- and high-quality data did not locate the source until all of the 
rooms were sampled once (t=25 min.), though reasonably good estimates were generated as 
early on as t=10 min.  The low-quality data, however, did not locate the source even after 30 
min. 
 

 
 

Figure 2: Locating the source using high-, medium-, and low-quality measurements (upper, 
middle, and lower plots, respectively).  The gray bars represent the probability of release in 

the Common Area as data are interpreted by BASSET.  The data are for a simulated release in 
this area. 

 
 
Though it is tempting to interpret Figure 2 purely in terms of the success or failure of the 
interpretation approach, it is important to emphasize that the results merely illustrate the types 
of data interpretation and “what-if” analyses that may be conducted using Bayesian updating.  
For example, cases where the algorithm cannot identify the release scenario with high 
probability may be interpreted as due to insufficient information in the measurements. 
 
 



Demonstration two: Study of a three-floor building 
 
We now analyze a real building, consisting of three floors, which we characterized using 
tracer gas experiments [4].  We consider the following problem.  A contaminant is released 
somewhere in a building, or near its indoor air intakes (i.e., in or near the HVAC return).  A 
network of trigger or alarm-type sensors operates to identify the release.  We seek to 
understand how sensor characteristics such as threshold level and response time affect the 
ability of the BASSET algorithm to quickly detect and characterize the contaminant release. 
 
The study building consists of 660 m3 of interior volume and approximately 280 m2 of floor 
area on three levels.  A mechanical air-handling unit (AHU) supplies air to the first and 
second floors. The AHU is a 100% recirculating unit (i.e., there is no deliberate outside air 
intake), and it returns air from the first floor. 
 

 
Figure 3: First floor plan view.  The intake for the recirculating fan unit is in the stairwell.  

Outlets are in Rooms 1.2a, 1.2b, and two rooms on the second floor. 
 
 

 
 

Fig. 4 Probability of source being in location indicated, as estimated with the BASSET 
algorithm using threshold data with response time of 20 s, threshold level of 2.3%, and 

without added error.  The actual release location is Room 1.2a.  Time is referenced to the 
instantaneous release event. 

 
 
We generated a library of 5000 multizone model realizations by sampling from statistical 
distributions for a set of key input parameters.  Variables included release location, source 
strength, and duration. 



 
We generated synthetic threshold sensor data by interpreting the tracer data from the 
experiments [4] as if they were concentrations to which surface acoustic wave (SAW) sensors 
were exposed.  Three sensor attributes were varied: threshold level, response time, and error. 
 
In this implementation of Bayes’ rule, the likelihood function is based on the assigned 
probability that we used to generate the false positives and negatives.  In practice, the 
designer of the sensor system should have reliable information on the sensor’s actual rate of 
false positives and false negatives. 
 
For brevity, this paper only shows the ability of the sensor system to estimate the release 
location.  Interested readers are referred to [2, 3] for more results and discussion. 
 
Figure 4 depicts the time required to identify the release location (Room 1.2a).  At time zero, 
every zone is assumed to be equally likely as the release location.  As trigger data arrive, 
BASSET adjusts these probabilities, locating the release location with greater than 90% 
confidence within one minute.  While the information content in threshold sensor data is 
significantly less than that in direct concentration measurements, the sensor system can 
successfully reconstruct the source, at least in some circumstances.  For example, if rapid 
response hinges on locating a source very quickly, this example suggests that threshold 
sensors may be acceptable for real-time monitoring.  
 
DISCUSSION AND CONCLUDING REMARKS 
 
Real-time environmental monitoring systems have the potential to help protect high-value 
building occupants in the event of a toxic pollutant release.  Here, we have demonstrated — 
albeit for a limited set of circumstances — that a network of continuous or single-level 
threshold sensors can be used to determine the location and magnitude of the release within a 
Bayes Monte Carlo framework.  More importantly, the Bayesian approach naturally produces 
a systems-level view of the sensor network, which may lead to better tradeoffs studies 
between sensor characteristics, such as response time and error, than might be possible when 
considering sensors individually.  The approach also allows us to compare such network 
options as deploying numerous low-accuracy and/or slow sensors versus fewer but higher 
accuracy and/or faster sensors. 
 
However, with more complex buildings, system characterization will be more challenging, 
and also more expensive.  Further work is needed to test the feasibility of the BASSET 
algorithm in such buildings.  Research also is needed on hybrid methods, which could 
augment the sensor system with prior knowledge and continuous tuning of the airflow model. 
 
Such advances would not only be beneficial for designing indoor monitoring systems, but 
may potentially be extended to the real-time optimization of building energy use, to error 
diagnostics in building mechanical systems, and to the detection, and characterization, of 
outdoor pollutants entering a building.  Such approaches also hold the promise of improving 
building performance with respect to thermal comfort and indoor air quality. 
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