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ABSTRACT OF THE DISSERTATION 

The Neural Mechanisms of Perceptual Decision Making 

by 

Tiffany Cheing Ho 

Doctor of Philosophy in Psychology 

University of California, San Diego, 2012 

Professor John Serences, Chair 

Perceptual decision making (PDM) involves choosing one option among several 

on the basis of sensory evidence and is a highly adaptive mechanism for organisms to 

successfully interact with their environments. Such a choice requires integrating and 

interpreting sensory information for the purpose of guiding subsequent behavior (e.g., 

seeing a ball move rightward and veering accordingly to catch it). Typical single-unit 

recording studies examining PDM utilize simple sensorimotor tasks (e.g., a macaque 

views a noisy array of dots moving in one of two possible directions and deploys a 

saccade in the chosen – and presumably, perceived – direction) in order to parse various 

aspects of PDM. With the aid of mathematical models, these experiments have found that 

the activity of individual neurons involved in motor response generation comprises 

perceptual decisions, and that PDM can be formalized as an accumulation of sensory 

evidence towards a particular choice (as represented by an increase in neuronal firing 

rate) until some threshold is reached. Explaining the mechanisms of PDM at the level of 

neural populations and linking ensemble patterns of neural activity to perception, 
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however, still remains unclear. With a combination of visual psychophysics, 

neuroimaging, and modeling, I present a set of studies that examines the neural correlates 

subserving PDM in human cortex (Experiment 1), clarifies the relationship between 

sensory representations in visual cortex and perceptual performance (Experiment 2), and 

tests the behavioral predictions derived from single-cell recordings (Experiment 3). These 

findings both challenge and confirm some of the previous neurophysiological work: 

Experiment 1 provides evidence of a neural mechanism of PDM not based purely on 

oculomotor regions, Experiment 2 shows that the optimality of activation patterns in 

visual cortex predicts task performance, and Experiment 3 illustrates that attentional 

manipulations influence perception in a manner consistent with the enhancement and 

suppression of distinct neural populations predicted from single-unit recordings. 

Furthermore, these studies demonstrate the utility of model-based cognitive neuroscience 

in quantifying psychological processes of interest for each individual and relating 

between-subject differences with corresponding brain measurements. 
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INTRODUCTION 

The Neural Mechanisms of Perceptual Decision Making 

At any given point in time, the state of the external environment is unknown and 

must be inferred based on noisy sensory input. Behavior is critically dependent on the 

ability to quickly and accurately decide among these possible states – a process known 

as perceptual decision making (PDM; von Helmhotz, 1925, Tenenbaum & Griffiths, 

2001; Newsome et al., 1989; Salzman and Newsome, 1994; Gold and Shadlen, 2001; 

Shadlen and Newsome, 2001; Gold and Shadlen, 2007). For instance, deciding whether 

or not a predator is present in a shadowy corner will dictate an animal’s subsequent 

action and survival. Various factors must be taken into account before committing to a 

decision and executing the appropriate behavioral response, including the quality of 

evidence for a particular choice and the subjective costs and benefits for each potential 

outcome. The decision variable (DV) represents the aggregate of these multiple sources 

of information (e.g., prior history, current emotional state, amount and quality of 

available evidence, value of each choice, etc) and the decision rule determines how and 

when the DV is interpreted to arrive at a particular choice (Gold and Shadlen, 2007). In 

the following sections, we will review the conceptual framework and quantitative 

models used to study PDM, summarize the neurophysiological and neuroimaging efforts 

investigating the neural correlates of the DV (as well as likely decision rules), and 

discuss the importance of informing neurally inspired PDM models with behavioral 

data. 

Sequential sampling models of perceptual decision making 
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While the concept of the DV and the decision rule are abstractions, formal 

mathematical descriptions of these elements in the context of decision making have been 

proposed to better test and understand PDM. In particular, sequential sampling models 

have been used to explain response time (RT) and accuracy data on a variety of simple 

perceptual and cognitive tasks (for a review of these models, see Luce, 1986; Townsend 

and Ashby, 1983; Vickers, 1971; LaBerge, 1962; Laming, 1968; Vickers, 1979; Usher 

and McClelland, 2001; Ratcliff and Smith, 2004). The central assumption of these 

models is that information stored about a stimulus in our sensory systems is inherently 

noisy; thus, subjects must accumulate successive samples of this noisy stimulus 

representation until enough evidence towards a particular hypothesis regarding the 

stimulus is obtained. Under the assumption that distributions of evidence are normal, a 

model that accumulates samples of evidence in this manner is statistically equivalent to 

one that computes log-likelihood ratios (Laming, 1968). Mathematically, these models 

resemble sequential probability ratio tests (SPRT), which also based on likelihood and 

distributions of evidence that could only be estimated from thousands of observations of 

a stimulus (Smith and Ratcliff, 2004; Gold and Shadlen, 2001; 2002).  

Sequential sampling models can be classified according to whether evidence is 

accumulated discretely or continuously, sampled in fixed or varying-sized steps, or 

accrued as single or separate totals (see Figure 1 and Ratcliff and Smith, 2004; Bogacz 

et al., 2006; Otter et al., 2008 for a comparison of these models). In random walk 

models, relative evidence is accumulated as a single total over time (Ratcliff, 1978; 

Ratcliff and Rouder, 1998; Ratcliff et al., 1999; Busemeyer and Townsend, 1992; 1993; 

Smith, 1995; see Figure 1, left). Assuming a binary choice task, relative evidence is 
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defined as the evidence difference – a single scalar value which changes stochastically 

(the DV). Evidence for one choice is therefore simultaneously equivalent to evidence 

against the other choice. Once this measure of relative evidence exceeds – or falls below 

– criterion boundaries which correspond to each choice alternative, the boundary that is 

first reached determines the subject’s decision and RT (the decision rule). In contrast, 

race models assume that independent accumulators corresponding to each alternative 

(the DV) accumulate evidence in favor of their respective choice (Usher and 

McClelland, 2001; Brown and Heathcote, 2005; Brown and Heathcote 2008; see Figure 

1, right). The first accumulator to gather the criterion amount of evidence determines the 

choice and RT (the decision rule).  

While many models provide an account of either RT (Townsend and Ashby, 

1983; Sternberg, 1969) or accuracy (Green and Swets, 1966), sequential sampling 

models relate shapes of RT distributions with probabilities of correct and incorrect 

responses, thereby explaining how RT and accuracy jointly vary as a function of the 

experimental conditions of interest. Moreover, the parameters of these sequential 

sampling models quantify different aspects of the decision process, including the quality 

of sensory information (and/or the efficiency by which the system processes sensory 

information), response caution, and the amount of time spent on processes unrelated to 

decision formation. Differences in experimental conditions explained by differences in 

these parameters can thus lend insight into the latent psychological processes beyond 

those available from mean RT and mean accuracy rate.  
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For example, consider a simple race model, the Linear Ballistic Accumulator 

(LBA) model (Brown and Heathcote, 2008; see Figure 2 for a schematic and 

description). The LBA contains five parameters: the drift rate (which corresponds to the 

rate of sensory evidence accumulation), the standard deviation (which corresponds to 

how much drift rates can vary across trials), the starting point (where the decision 

process begins), the response threshold (how much evidence is needed before making a 

choice), and non-decision time (time unrelated to the decision process, such as response 

execution or information encoding). With this framework, we can immediately see that 

bias for a particular choice would reduce the distance between the starting point and the 

response threshold for the accumulator corresponding to that choice (either by raising 

the starting point, lowering the response threshold, or both) and would be behaviorally 

manifested by lower accuracy rates with faster and less variable RTs. Similarly, an 

experimental condition that affected only the non-decision time parameter would affect 

mean RT, but not RT variability or accuracy. Such subtle situations, while often missed 

using conventional analyses of accuracy and RT, are easily explained by sequential 

sampling methods. 

Neurophysiological approaches to studying perceptual decision making  

More recently, sequential sampling models have been applied to the firing rates 

of neurons involved with PDM, possibly offering a quantitative bridge between neural 

and behavioral data (Ditterich et al., 2003; Roitman and Shadlen, 2002; Ratcliff et al., 

2003; Hanes et al., 2006; Gold and Shadlen, 2001; Gold and Shadlen, 2002; Salzman et 

al., 2003; Hanes and Schall, 1996; Schall, 2001; Schall, 2003; Shadlen and Newsome, 
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2001; Churchland et al., 2008; for reviews, see Gold and Shadlen, 2007; Smith and 

Ratcliff, 2004; Churchland et al., 2012). One advantage of neurophysiological studies is 

the ability to explicitly measure spike trains from individual neurons. Prototypical PDM 

tasks in these single-unit studies involve simple, binary decisions that allow precise 

quantification between aspects of a sensory stimulus and an observed behavioral 

response. Here, the focus of this dissertation will be on visual tasks, many of which 

employ random dot patterns (RDPs, see Figure 3).  

RDPs consist of a circular array of moving dots, a proportion of which are 

moving altogether in a single direction (motion coherence). Task difficulty is controlled 

by varying the level of motion coherence. The RDP is placed in the receptive field (RF) 

of the recorded neuron while the animal decides between two possible directions of 

coherent motion. These motion directions are selected based on the preferred and anti-

preferred (i.e., null) directions of the recorded neuron (see Figure 3). The animal then 

indicates its decision with a saccade in the chosen direction (which will either match the 

neuron’s preferred or null directions). This aspect of the RDP discrimination task 

imposes a link between a perceptual decision and a particular course of action (an eye 

movement) and treats decision making as a problem of movement selection. As a result, 

the search for the neural correlates of the DV for this task has centered on brain areas not 

only related to motion processing (middle temporal area, MT), but also on the 

preparation and generation of saccades (lateral intraparietal area, LIP; frontal eye fields, 

FEF; superior colliculus, SC; dorsolateral prefrontal cortex, DLPFC). 
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Several single-unit studies have documented that the activity of MT neurons 

correlates with the strength of coherent motion in the RDP displayed within their RFs 

and the animal’s decision about the stimulus (Britten et al., 1992; 1993; Newsome et al., 

1989; Newsome et al., 1995) – even on trials with 0% coherent motion (Britten et al., 

1996). Lesion (Newsome and Paré, 1988; Rudolph and Pasternak, 1999) and 

microstimulation (Salzman et al., 1990; 1992; Salzman and Newsome, 1994; Ditterich et 

al., 2003) studies further established a causal link between MT activity and perceptual 

performance. In one key experiment, Ditterich et al. (2003) conducted a reaction-time 

variant of the RDP discrimination task, where monkeys could saccade as soon as 

arriving upon a choice (rather than viewing the stimulus for a fixed-duration and waiting 

for a cue before reporting their choice). The authors found that not only did their 

monkeys choose the preferred direction of the stimulated neuron more often and more 

quickly, but they also chose the null direction more slowly. This last point is especially 

significant as it informed a simple sequential sampling model of their neural data. In 

their proposed model, two processes integrate sensory signals over time in favor of the 

two direction options, respectively, and the choice and corresponding RT are determined 

by the first process to accumulate evidence to a threshold level (see Ditterich et al., 

2003, Figure 6). Under this model, microstimulation increases the rate of evidence 

accumulation for the preferred direction and therefore increases the likelihood of and 

reduces RTs for that choice while decreasing the likelihood of and increasing the RTs 

for the opposite choice. Thus, the DV is thought to be derived from a comparison of 

responses from direction selective sensory neurons in MT and that MT neurons with 

opposite directional preferences must contribute in an opponent fashion to both decision 



7 
 

types. After all, if downward decisions were based solely on information from 

downward-preferring neurons, Ditterich et al. (2003) would not have observed slower 

downward decisions during stimulation of upward-preferring MT neurons. Nonetheless, 

even with the explanatory power of this model, the issue of where the comparison and 

integration of sensory signals (i.e., the DV) was being computed still remained. 

Given that a choice is tantamount to an eye movement in a RDP discrimination 

task, neurophysiological efforts in determining the neural substrates of the DV have 

focused on oculomotor areas. In these studies, saccadic targets corresponding to possible 

direction choices were placed either inside the RF of the recorded neuron (Tin) or outside 

of it (Tout). Researchers discovered that activity from these neurons when monkeys 

performed a fixed-duration (Shadlen and Newsome, 1996; 2001) or reaction-time 

(Roitman and Shadlen, 2002) task was predictive of the animal’s response. Moreover, 

when Roitman and Shadlen (2002) aligned the recorded responses with the onset of the 

stimulus, they found that the average firing rates of Tin choices rose like a ramp (see 

Figure 4, left), while the average firing rates steadily declined on Tout choices (see Figure 

4, left). The dependence of LIP activity on choice was observed even on trials with 0% 

motion coherence (see blue lines on Figure 4, left). Aligning LIP responses to saccade 

initiation also revealed that the firing rates of these neurons on Tin choice trials were 

approximately the same ~70 ms prior to the eye movement, irrespective of the RDP’s 

motion coherence (see Figure 4, right). In addition, Huk and Shadlen (2005) presented 

RDP stimuli to monkeys while briefly perturbing the strength of the motion stimulus 

during the formation of perceptual decisions. The effects of these bursts of motion 

change on LIP neurons, choice behavior, and response times could be explained by a 
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model of near-perfect integration that stops when a criterion amount of sensory evidence 

is accumulated. These data were taken to suggest that LIP neurons integrate evidence 

over time from sensory signals (represented in areas such as MT, see shaded insert in 

Figure 4) to form a decision and that this decision process terminates when the neurons 

associated with the chosen target reach a critical firing rate.  

In 2006, Hanks and colleagues conducted a reaction-time variant of the RDP 

discrimination task while recording and microstimulating from LIP neurons. 

Microstimulation increased the proportion of Tin choices and induced faster RTs, but 

slowed RTs for Tout choices. Critically, microstimulation never directly evoked saccades 

nor did it change RTs in a simple saccade task, thereby establishing that LIP neurons 

possess a causal role in the formation of a decision.  

Similar results have also been found in other oculomotor and higher order 

regions, such as SC (Horwitz and Newsome, 1999; 2001; Horwitz et al., 2004; Ratcliff 

et al., 2003), DLPFC (Kim and Shadlen, 1999), and FEF (Hanes and Schall, 1996; 

Thompson et al., 1996; Gold and Shadlen, 2000; 2003; Bichot et al., 2000),  In one 

experiment, viewing of a RDP was interrupted at a random time during decision 

formation by turning off by the stimulus and applying a brief electrical current to the 

FEF (Gold and Shadlen 2000). The microstimulation evoked eye movements that 

deviated in the direction of the animal’s subsequent choice, implying that FEF signals 

reflected the accumulated motion information supporting the perceptual decision. The 

authors applied the same microstimulation technique to another experiment (2003), 

where monkeys performed a variety of visual tasks based on motion information, but 

had to respond with a saccade that was either in the same direction as the choice 
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direction, in the opposite direction, or towards an unpredictable location. They found 

that the formation of the direction decision was reflected in the activity of FEF neurons 

only when the monkey could anticipate the needed eye movement. These results further 

verified that – at least on tasks requiring a specific and well learned behavioral response 

– a perceptual decision is formed as a direct transformation from sensory information 

into motor commands. 

Several models mirroring random walk models have been proposed to explain 

findings from these single-unit studies and to quantify the DV and the decision rule 

(including one described previously by Ditteritch et al., 2003). Gold and Shadlen (2001; 

2002) conceived of the DV as the log likelihood ratio (logLR) of the two choice options 

(i.e., the sum of the logLRs associated with each piece of evidence). The decision rule 

required updating this DV with new pieces of evidence until reaching a particular bound 

– a process which can be formalized mathematically as a SPRT (Gold and Shadlen, 

2002; 2007). Another related model was proposed by Mazurek et al. (2003), which was 

able to explain both the neural and behavioral data from Britten et al. (1993); Shadlen 

and Newsome, (2001); and Roitman and Shadlen (2002). In this three-stage model, 

evidence (as represented by the response of ensembles of direction-sensitive MT 

neurons) is assumed to be accumulated by two pools of mutually inhibitory neural 

populations in LIP until one of the totals reaches the response criterion (see Figure 5). 

This model was able to predict LIP responses, mean RT for correct responses, and 

accuracy rates (although not the RT distributions and error RTs). Similarly, Ratcliff et 

al. (2003) showed that a diffusion model could account for the ramp-like activity in SC 

neurons, behavioral RTs, and accuracy in a dot separation task. Gold and Shadlen (2003) 
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also successfully related the magnitude of saccadic deviation observed during 

microstimulation of FEF with the likelihood of making the correct choice, as a function 

of motion strength and viewing time. Under this model, the decision is assumed to be 

the log of the expected difference between neural signals corresponding to each possible 

alternative (i.e., the DV). For correct choices, both the saccade deviations and the DV 

increased with longer viewing duration and stronger coherent motion. For incorrect 

choices, both values increased with longer viewing duration but decreased with stronger 

coherent motion.  

Together, these neurophysiological findings and their corresponding models 

support the idea that the neural mechanisms of PDM involve tracking sensory signals 

early visual areas (e.g., MT) and then temporally integrating this information by neurons 

involved with motor output (e.g., LIP, FEF, etc) until a threshold level of activity is 

reached and the appropriate behavioral response (e.g., a saccade) is deployed (Hanes and 

Schall, 1996; Kim and Shadlen, 1999; Gold and Shadlen, 2001; Schall, 2001; Shadlen 

and Newsome, 2001; Roitman and Shadlen, 2002; Ditterich et al., 2003; Huk and 

Shadlen, 2005; Gold and Shadlen, 2000; 2003; 2007; Horwitz et al., 2004; Hanks et al., 

2006). The robust relationship between neural activity and behavior suggests that 

decision making is carried out by the same neurons that ultimately initiate the 

appropriate motor response. However, these studies require macaques to practice 

making binary decisions about simple visual stimuli for weeks or even months at a time. 

Such a paradigm stands in stark contrast to the types of more deliberate and less 

experienced decisions we encounter in real life (e.g., selecting the right stocks to invest, 

choosing who to marry, etc). Moreover, these RDP discrimination tasks have been 
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designed to treat the decision process as a problem of movement selection, where a 

stereotyped course of action (e.g., a saccade) is almost always associated with a 

particular choice. Thus, the issue of where and how the brain forms perceptual decisions 

that are not used to select a particular movement still remains unknown. 

Neuroimaging approaches to studying perceptual decision making 

The paradigm used in the neurophysiology studies surveyed thus far makes it 

difficult to test whether or not a general mechanism of PDM exists. Another limiting 

factor of those experiments is the restricted number of recording sites, as well as the fact 

that the recorded neurons are often chosen circularly (i.e., a neuron exhibits the desired 

activity profile and is thus chosen for measurement in an experiment). Moreover, it 

cannot be assumed that the activity of individual neurons can be generalized perfectly to 

a whole population. Studies simultaneously measuring from populations of neurons 

typically use neuroimaging techniques such as EEG or BOLD fMRI. Here, we review 

the BOLD fMRI studies on the neural correlates of the DV. 

In order to identify neural correlates of the DV that read out object categorization 

evidence, Heekeren and colleagues (2004) measured BOLD activation from the ventral 

temporal cortex in human subjects while they performed a discrimination task between 

faces and houses masked by noise (two classes of stimuli which differentially activate 

the ventral temporal cortex). The researchers found that activity in the DLPFC was 

greatest when sensory evidence was strongest and moreover, activity in the DLPFC 

tended to covary with the magnitude of the difference in the measured BOLD signal 

from this region of ventral temporal cortex (which presumably is tracking sensory 

evidence for faces the way MT would for motion direction). As such, this was one of the 
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first studies that provided evidence for an amodal mechanism of PDM. Similarly, Pessoa 

and Padmala (2005) had human subjects detect fear among images of faces at near-

threshold. The authors calculated which brain regions correlated with choice on neutral 

trials (and thus, correlated with a decision that was made independently of the amount of 

sensory evidence available), similarly to the analyses performed on the activity of MT 

neurons (Britten et al., 1996). The brain regions which most reliably predicted choice 

responses were the posterior cingulate cortex (PPC), the medial prefrontal cortex 

(MPFC), right inferior frontal gyrus (IFG), and left insula. Both of these studies 

observed brain areas not directly involved with motor processing and thereby interpreted 

their findings as evidence for a domain general mechanism of PDM. However, subjects 

in these two studies did not vary how they made their responses, so it was unclear if 

these areas compute the DV in a manner that is independent of the response modality.  

To address this issue, Tosoni et al. (2008) had human subjects discriminate 

between noisy images of faces and places. A peripheral target was also presented along 

with the stimulus, towards which subjects had to either make a saccade (if they believed 

the presented image was a face) or point with their finger (if they believed the image 

was a place). As with the study by Heekeren et al. (2004), Tosoni and colleagues 

predicted that regions involved with accumulating sensory evidence would be more 

active on trials with more signal (i.e., less noise). The authors found that the activation 

of certain effector-specific regions (e.g., regions involved with hand reaching or making 

eye movements) was modulated by the amount of sensory evidence in the image. Unlike 

the aforementioned fMRI work, these results suggested that perceptual decisions rely on 
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an accumulator mechanism that integrates sensory evidence towards a particular motor 

response – a finding that corroborated much of the prior neurophysiological literature.  

These three experiments made predictions about the relationship of choice (and 

the BOLD responses associated with a region involved in computing the DV) and 

sensory evidence. Both Heekeren et al. (2004) and Tosoni et al. (2008) predicted areas 

integrating sensory information ought to have greater activation when more sensory 

evidence was available in an image, while Pessoa and Padmala did not even correlate 

sensory evidence with choice (having restricted their primary analyses to neutral trials). 

However, decision signals should also correlate with behavioral performance – namely, 

RTs. In 2007, Thielscher and Pessoa investigated this requirement by relating RTs to 

fMRI responses for a PDM task. Subjects viewed face stimuli that differed in emotional 

expression and would press a button whenever they perceived a fearful or disgusted 

face. The authors reasoned that a neural decision signal should not only predict the 

behavioral choice, but also the time it takes to arrive at that choice. As expected, the RT 

distributions for their experiment were shaped like an inverted U, being fastest for 

clearly fearful or disgusted faces, and slower for neutral faces or faces with intermediate 

levels of fear or disgust. In the context of a decision making model, it would make sense 

that the accumulation of sensory evidence takes longer when there is little sensory 

evidence available, and that a brain region representing the DV should not only follow 

the general pattern of RTs, but also track trial-to-trial fluctuations of RTs. The authors 

found that the BOLD signals of MFG, IFG and anterior cingulate not only predicted 

perceptual choice, but also followed an inverted U-shape and tracked trial-to-trial RT. 

Furthermore, they calculated the probability with which the amplitude of BOLD 
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activation in single neutral trials (which contain no valence) predicted the subjects’ 

support of a fearful or disgusting percept. A network of regions predicted decisions 

during neutral trials, including the superior temporal sulcus, MFG, IFG, anterior 

cingulate, the anterior insula. These results further established that amodal regions were 

involved in representing the DV. 

Thielscher and Pessoa, however, did not have their subjects vary response 

modality like Tosoni et al. (2008) did. Moreover, none of the previous studies utilized 

decision making models to support their results. Here, we present a BOLD fMRI study 

(Chapter 1) investigating whether or not mechanisms of PDM depend on the modality of 

the motor response. Subjects discerned coherent motion among two overlapping RDPs 

and alternated between two response modalities (saccades versus button presses). We 

then fit our accuracy and RT data with the linear ballistic accumulator model (LBA; see 

Figure 2). The use of a mathematical model allowed us to precisely predict the BOLD 

activation profile expected from cortical areas that accumulate sensory evidence. 

Consistent with the reasoning from Thielscher and Pessoa (2007), our analyses revealed 

that BOLD responses ought to be higher on trials with greater perceptual difficulty. Only 

one area demonstrated the activation profile predicted for a region involved in 

accumulating sensory evidence regardless of response modality – the right insula. Thus, 

while it is clear from neurophysiology that specialized areas do play an important role in 

fluidly translating sensory information into a motor response, our findings – as well as a 

handful of other neuroimaging studies conducted since (Kayser et al., 2010; Liu and 

Pleskac, 2011) – provide strong evidence that a distinct mechanism is computing a more 
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abstract representation of the DV that is possibly sending continuous input to effector-

specific sensorimotor areas (e.g., LIP/IPS, FEF, etc) during the decision making process.  

Linking neural patterns to perceptual performance  

In addition to failing to rule out a modality-independent mechanism of PDM, 

another shortcoming of single-unit recordings is that the results rely on the assumption 

that the activity of a single neuron can be generalized to a population of neurons. A 

sensory stimulus such as a RDP evokes responses in a large population of neurons. 

Individual neurons typically respond to only a small fraction of possible sensory inputs 

(i.e., they are tuned to a limited range of stimulus properties) and these responses are 

inherently noisy. Thus, the activity of the whole population must be “read out” in order 

to support perceptual decisions. But how does one determine how ensembles of neurons 

support whole percepts?   

While Gold and Shadlen (2001; 2002) outlined a model for how neurons could 

compute the DV for a binary choice, their model did not extend to population responses 

for a range of stimuli. Movshon and Jazayeri (2006) proposed a straightforward model 

of decoding sensory information (i.e., inferring the stimulus that elicited the observed 

pattern of neural activity) by computing the likelihood that the response of each neuron 

was elicited by a particular stimulus and then combining those likelihoods to determine 

the overall likelihood of that stimulus (and reiterating this calculation for all possible 

stimuli in order to map the entire likelihood function). This model provided excellent fits 

for several psychophysical experiments and determined the optimal strategies needed for 

a variety of tasks. For example, when performing a discrimination between very similar 

stimuli (e.g., 80° versus 82°), the firing rates of neurons tuned maximally to the feature 
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values of interest (on-target neurons) are highly similar and therefore, uninformative for 

distinguishing between them (Regan and Beverley, 1985; Hol and Treue, 2001; 

Navalpakkam and Itti, 2007). Rather, neurons tuned away from the target feature (off-

target neurons) possess more information for such a task since the differences in firing 

rates for the two stimuli will be much greater (Navalpakkam and Itti, 2007; Scolari and 

Serences, 2009; 2010). 

In Chapter 2, we capitalize on the differences between on- and off-target neurons 

to link population responses with perceptual performance. Subjects performed a difficult 

discrimination between oriented gratings, emphasizing either speed or accuracy while 

we measured BOLD responses. By using a forward encoding model that maps stimuli to 

population responses (Brower and Heeger, 2009; 2011), we computed how activation 

levels from the most informative neurons in visual cortex (the off-target neurons) 

predicted performance when accuracy was emphasized. A logistic regression further 

supported this link by revealing a trial-by-trial relationship between behavioral accuracy 

and BOLD activation levels in off-target populations. In addition, a variant of the LBA 

(Van Maanen et al., 2011) that provides trial-by-trial estimates of the latent cognitive 

processes involved in perceptual decision making revealed a correlation between 

activation levels in off-target neural populations and the rate of sensory evidence 

accumulation when subjects prioritized accuracy over speed. 

Another recent model derived from single-unit recordings is the feature-

similarity gain model of attention (Treue and Trujillo, 1999; Treue and Martinez-

Trujillo, 2004). These studies demonstrated that when animals attend to a particular 
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feature value, individual neurons which prefer that value will fire more rapidly, while 

attending to unpreferred feature values attenuates firing rates (Treue and Trujillo, 1999; 

Treue and Martinez-Trujillo, 2004; Maunsell and Treue, 2006). The feature-similarity 

gain model generalized these findings, maintaining that selective attention increases the 

gain of neuronal populations that are tuned to a relevant feature value, while suppressing 

the gain of neurons tuned to irrelevant or dissimilar feature values (McAdams and 

Maunsell, 1999a, Treue and Martinez-Trujillo, 1999, Martinez-Trujillo and Treue, 2004, 

Maunsell and Treue, 2006). Consistent with these neurophysiology data, psychophysical 

studies have also documented that feature-based attention selectively increases 

sensitivity to relevant visual features (Busse et al., 2008; Sàenz et al., 2003; Baldassi and 

Verghese, 2005; Felisberti and Zanker, 2005; Liu et al., 2007; Liu and Hou, 2011; Ling 

et al., 2009). However, the behavioral correlates of feature-based attentional suppression 

are less clear. One study (Ling et al., 2009) suggested that feature-based attention 

suppresses neurons tuned away from an attended feature, while another study reported 

only an enhancement of an attended feature value without concurrent suppression of 

dissimilar features (White and Carrasco, 2011). However, neither study systematically 

varied the relationship between the target stimulus and the focus of feature-based 

attention, so the consequence of attentional suppression on the efficiency of processing 

unattended features was not directly evaluated.  

Chapter 3 outlines two experiments testing the perceptual predictions of the 

feature-similarity gain model using a combination of psychophysics and mathematical 

modeling. In Experiment 1, subjects searched for an oddball motion target among four 

RDPs; the LBA model revealed increased rates of sensory evidence accumulation for 
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validly cued targets compared to neutral targets (facilitation). In addition, drift rates on 

invalidly cued trials varied as a function of the cue target offset, with highest drift rates 

observed for invalid targets that most closely matched the cue. However, while these 

patterns are suggestive, the drift rates on invalid trials were not significantly lower than 

drift rates on neutral trials. In Experiment 2, we increased competition between the 

target and distractors in an effort to place additional demands on suppressive attentional 

mechanisms and an analysis of drift rates revealed extremely robust evidence for both 

attention-related facilitation and suppression.  

Collectively, these behavioral and fMRI results both challenge and confirm the 

existing neurophysiological literature on perceptual decision making: Chapter 1 provides 

neural evidence for a general mechanism of PDM, Chapter 2 shows that the integration 

and readout of sensory information impacts perceptual performance, and Chapter 3 

illustrates that attentional manipulations influence perception in a manner consistent 

with the enhancement and suppression of distinct neural populations predicted from 

single-unit recordings.   
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Figure i.1. The different classes of sequential sampling models for two-choice 
decisions (Smith and Ratcliff, 2004). These models assume that decisions are made by 
integrating noisy sensory evidence over time until a criterion amount of information is 
reached and a choice is made. 
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Figure i.2. Schematic of a race model: the linear ballistic accumulator model (LBA; 
Brown and Heathcote, 2008). One accumulator corresponds to each possible response 
(“same” shown in black and “different” shown in gray). The drift rate is the rate at 
which sensory evidence is accumulated and is assumed to be determined by the stimulus 
properties; thus it can be inferred from this example that the stimulus is the “same.” 
Each drift rate for each accumulator varies trial by trial in a normal distribution with a 
particular standard deviation; the drift rate parameter that the LBA estimates is the mean 
of this distribution. The decision process begins at a starting point drawn randomly on a 
trial to trial basis from a uniform distribution. The response threshold is the criterion 
boundary that determines how much evidence is needed before a decision is made. The 
final response time is the time it takes for the first accumulator to reach the response 
threshold plus some constant (non-decision time).  
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Figure i.3. Prototypical task and stimuli used in neurophysiology studies of PDM. A 
random dot pattern (RDP) contains coherent motion in one of two possible directions 
and is placed in the receptive field of the recorded neuron. The two motion directions are 
selected based on the preferred and null (180° from the preferred) directions of the 
neuron. Choice targets are positioned relative to the receptive field. That is, if the animal 
decides the RDP contains coherent motion in the preferred direction, it will make a 
saccade accordingly (similarly with the null direction). Task difficulty is manipulated by 
adjusting the percentage of dots moving coherently. Figure adapted from Nadler and 
DeAngelis, 2005 (Figure 1). 
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Figure i.4. Neural mechanisms of a perceptual decision of motion direction. 
Response of LIP neurons during decision formation (Roitman and Shadlen, 2002). 
Average firing rate from LIP neurons is shown for three levels of difficulty. Responses 
are grouped by motion strength and direction of choice. Left: the responses are aligned 
to the onset of the RDP. Averages are shown during decision formation (curves are 
truncated at median RT or 100 ms before the initiation of the saccade). The shaded 
region shows average responses from direction selective neurons in area MT to motion 
in the preferred and null directions. After a delay, MT responses appear to asymptote. 
Right: the responses are aligned to the eye movement response. The LIP firing rates 
approximate the integral of a difference in firing rate between MT neurons with opposite 
direction preferences. Dashed lines indicate activity from trials where the monkey chose 
the direction where the saccadic target was inside the RF from the recorded neuron (Tin) 
while solid lines indicate activity from trials where the monkey chose the direction 
where the saccadic target was outside of the RF from the recorded neuron (Tout). 
Adopted from Gold and Shadlen, 2007 (Figure 5). 
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Figure i.5. Model of the decision making process. The model is divided into three 
stages: representation of sensory evidence, accumulation of sensory evidence into the 
DV, and comparison of the DV to threshold (the decision rule). In the first stage, the 
authors simulated the neurons to RDPs of varying motion. For illustrative purposes, all 
simulations assume coherent motion was either rightward or leftward. Each neuron in 
the two pools produces a sequence of spikes with an expected rate proportional to the 
strength of motion, based on values from Britten et al. (1992). The averaged spike rate 
from the two pools is the output of stage 1. In the second stage, two pools of LIP 
neurons were simulated: one corresponding to a rightward choice and the other, 
leftward. Unlike MT neurons, the expected firing rates of these neurons are time-
dependent, determined by the integral of the difference in the output of the right and left 
MT pools. The expected LIP firing rate is calculated by integrating the difference in 
spike rate signals from MT starting from when the coherence-dependent MT response 
begins. As with the first stage, the averaged spike rate from the two pools of LIP 
neurons is the output of stage 2. In stage 3, the LIP responses are compared to a criterion 
threshold. The two ensemble average spike rates comprising the LIP signals (output of 
stage 2) race against each other to provide the weight of evidence for their preferred 
choice direction. The first to reach the decision threshold determines the target choice 
and RT (see Mazurek et al., 2003). Adapted from Mazurek et al., 2003. 
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Figure i.6. Computing the likelihood for motion direction. A RDP stimulus (bottom 
row) produces firing rate responses across differently tuned neural populations in MT 
(second row). The smooth curves in the second row represent neuronal tuning curves for 
a particular motion direction, while the open circles indicate the population response on 
a given trial. The sensory signals from the population of the encoding neurons provide 
weights into which the signals are recoded (third row). The output layer (top row) 
consists of an ensemble of neurons where the weighted sensory signals converge. The 
neurons here represent the log likelihood for all possible directions – the likelihood 
function. In the top row, the average likelihood profile is shown, with the colored points 
representing the average likelihoods of four example directions. The peak of the average 
likelihood function – and thus, the expected maximum likelihood estimate of the 
stimulus direction – is shown in orange. Adapted from Movshon and Jazayeri, 2006 
(Figure 2). 
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CHAPTER 1: Domain General Mechanisms of Perceptual Decision Making in 

Human Cortex 

Ho, T.C., Brown, S.D., Serences, J.T. (2009). Journal of Neuroscience, 29(27), 8675-

8687. 

 

Abstract 

To successfully interact with objects in the environment, sensory evidence must be 

continuously acquired, interpreted, and used to guide appropriate motor responses. For 

example, when driving, a red light should motivate a motor command to depress the 

brake pedal. Single-unit recording studies have established that simple sensorimotor 

transformations are mediated by the same neurons that ultimately guide the behavioral 

response. However, it is also possible that these sensorimotor regions are the recipients of 

a modality independent decision signal that is computed elsewhere. Here, we used fMRI 

and human observers to show that the timecourse of activation in a subregion of the right 

insula is consistent with a role in accumulating sensory evidence independently from the 

required motor response modality (saccade vs. manual). Furthermore, a combination of 

computational modeling and simulations of the BOLD response suggests that this region 

is not simply recruited by general arousal or by the tonic maintenance of attention during 

the decision process. Our data thus raise the possibility that a modality independent 

representation of sensory evidence may guide activity in effector-specific cortical areas 

prior to the initiation of a behavioral response.  
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Domain General Mechanisms of Perceptual Decision Making in Human Cortex 

On a moment-to-moment basis, the brain must infer the most likely state of the 

world given a variable amount of sensory evidence, a process referred to as perceptual 

decision making (Newsome et al., 1989; Salzman and Newsome, 1994; Gold and 

Shadlen, 2001; Shadlen and Newsome, 2001). In a prototypical laboratory experiment, 

observers view a noisy field of moving dots drifting to the left or to the right (a random-

dot pattern, or RDP) and indicate the direction with a saccade in the appropriate direction. 

The firing rate of motion-selective neurons in the middle temporal area (MT) 

monotonically tracks the quality of the available sensory evidence, which is 

systematically manipulated by varying the percentage of dots moving in a common 

direction (termed motion coherence; Newsome et al., 1989; Salzman et al., 1992; Britten 

et al., 1996; Shadlen et al., 1996; Gold and Shadlen, 2001; Shadlen and Newsome, 2001; 

Ditterich et al., 2003; Mazurek et al., 2003; Gold and Shadlen, 2007). This sensory 

information is then thought to be temporally integrated by spatially selective oculomotor 

neurons in areas such as the lateral intraparietal area (LIP), frontal eye fields (FEF), 

dorsal lateral prefrontal cortex (DLPFC), and superior colliculus (SC) until a threshold 

level of activity is reached and an appropriate eyemovement response is triggered (Hanes 

and Schall, 1996; Kim and Shadlen, 1999; Gold and Shadlen, 2001; Schall, 2001; 

Shadlen and Newsome, 2001; Roitman and Shadlen, 2002; Ditterich et al., 2003; Huk 

and Shadlen, 2005; Gold and Shadlen, 2007; Churchland et al., 2008; Kiani et al., 2008). 

Microstimulating oculomotor neurons within some of these regions can also bias the 

response outcome, implying a causal role in perceptual decision making (Gold and 

Shadlen, 2000, 2003; Horowitz et al., 2004; Hanks et al., 2006).  
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The strong coupling between neural activity and behavior suggests that decision 

making is carried out by the same neurons that ultimately initiate the appropriate motor 

response (here termed the modality-dependent hypothesis). For example, oculomotor 

regions mediate simple decisions requiring saccadic responses, and somatosensory cortex 

(S1) mediates vibrotactile decisions (Romo and Salinas, 1999; Romo et al., 2002; Romo 

and Salinas, 2003; Tegenthoff et al., 2005; Preuschhof et al., 2006). Decisions about 

complex stimuli, such as images of faces or places, are also mediated by motor-specific 

cortical areas depending on the response-output modality that is required by the task 

(Tosoni et al., 2008). 

While these studies leave no doubt that specialized motor areas play an important 

role in translating sensory information into a behavioral response, it is also possible that a 

separate mechanism computes a more abstract supramodal representation of sensory 

evidence and sends a continuous input signal to motor-effector specific sensorimotor 

areas during the course of the decision process (termed the modality-independent 

hypothesis). Here, we show that a region of right insula exhibits an activation profile 

consistent with the accumulation of sensory evidence during decision making, 

independent of response modality (saccade vs. manual). This finding raises the possibility 

that a modality-independent mechanism guides activity in motor-specific regions prior to 

movement initiation. 

 

Methods 

Subjects 
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Twelve right-handed subjects (9 female) were recruited from the University of 

California, Irvine (UCI) community, and one right-handed subject (male) was recruited 

from the University of California, San Diego (UCSD) community. Data from one subject 

(female) were discarded because the manual and saccadic responses were not recorded 

correctly during the scanning session. All had normal or corrected-to-normal vision. Each 

subject gave written informed consent as per Institutional Review Board requirements at 

either UCI or UCSD and completed two 1 hour training sessions outside the scanner and 

one 1.5 hour session in the scanner. Compensation for participation was $10/hour for 

training and $20/hour for scanning. 

Stimuli and task 

Visual stimuli were generated using the Psychophysics Toolbox (Brainard, 1997; 

Pelli, 1997) for Matlab (version 7.1; The Math Works, Natick, MA), presented at a frame 

rate of 60 Hz, and projected onto a screen at the back of the scanner bore that subjects 

viewed through a mirror. Buttonpress responses were made on an fMRI-compatible 

response box using the fingers of the right hand.  

Subjects viewed a display consisting of two overlapping centrally presented RDPs 

– one comprised of 100 red dots and the other made up of 100 blue dots – against a light 

gray background (Figure 1). Each small dot subtended 0.1° visual angle, and the circular 

stimulus aperture subtended 4° of visual angle (radius) with a small circular cutout 

around fixation (1° radius). On every trial, the coherence level for each RDP was 

determined by the proportion of dots moving in one of four possible directions – either to 

the upper left, upper right, lower left, or lower right – while the direction of each 

remaining dot was selected from a uniform distribution (across 360°). Each RDP moved 
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in a different direction (pseudo-randomly determined) and contained a motion coherence 

level of either 40% or 80% so that the total motion signal in the display was equated on 

every trial (e.g., if the red RDP had 40% coherent motion, the blue RDP would contain 

80% and vice-versa). Additionally, there were four small black circles (subtending 1° and 

centered 11.3° from fixation) arrayed at each corner of the screen that served as saccade 

targets. 

At the start of each trial, a cue was presented for 750ms in the form of a colored 

fixation cross (either red or blue), indicating which of the two RDPs subjects should 

monitor. This colored fixation cross remained onscreen throughout the stimulus display. 

Subjects were asked to judge the direction of the coherent motion of the RDP to which 

they were cued. If the cued RDP contained 80% coherent motion, then the trial was 

termed easy, and if the cued RDP contained only 40% coherent motion, the trial was 

termed hard. The stimulus remained onscreen for 1500ms, after which only a white 

fixation cross was displayed for the remainder of the trial. Each trial lasted 5250ms and 

subjects were allowed to respond any time after stimulus onset and up until the 

termination of the trial. Each run in the scanner consisted of 32 task trials randomly 

interleaved with 10 null trials (which were the same duration as a normal trial but only 

required passively viewing the fixation cross: no RDPs were presented). The color of the 

cue and the cued motion direction were randomized and counterbalanced within each 

block and each run ended with 10s of passive fixation. 

Response modality was alternated on a run-by-run basis and subjects were 

informed beforehand whether they were to make their responses via saccades or manual 

button presses. When making saccadic responses, subjects were instructed to keep their 
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eyes on the fixation cross and then to make one clean eye movement to one of the four 

peripheral black circles before redirecting their gaze back to the central cross in 

preparation for the start of the next trial. When responding with button presses, subjects 

were instructed to keep their eyes on the fixation cross throughout the entire trial and to 

press one of four buttons spatially arrayed to correspond to the four possible target 

directions. 

Eye movement data acquisition and analysis 

At UCI, eye movements were monitored using an infrared video eye tracker 

(Applied Science Laboratory, long range optics system, Bedford, MA); at UCSD, an 

Avotech SV-7021 (Stuart, FL) infrared eye tracker was used. The position of the right 

eye was sampled at 60Hz and before each run, the eye tracker was recalibrated. 

Preprocessing and saccade extraction were performed using the ILAB toolbox for Matlab 

(http://www.brain.northwestern.edu/ilab/, Gitelman, 2002). The raw data were first 

binned into temporal epochs corresponding to each trial, then blinks (periods when the 

pupil disappeared), as well as 5 samples on either side of each blink, were marked and 

removed from the epoched data. The following parameters were used to identify 

saccades: an initial velocity threshold of 30° per second, a minimum saccade duration of 

35ms, and a minimum fixation duration of 100ms at the endpoint of the saccade. 

Response times on saccade trials were defined as the time between the onset of the 

stimulus and the first saccadic eye movement that deviated more than 3° from fixation in 

the direction of one of the four peripheral targets (data were scored by hand on a trial-by-

trial basis to ensure accuracy). 

fMRI data acquisition and analysis 
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For 11 of the subjects, MRI scanning was carried out on a Phillips Intera 3-Tesla 

scanner equipped with an 8-channel head coil at the John Tu and Thomas Yuen Center 

for Functional Onco Imaging, University of California, Irvine. Anatomical images were 

acquired using a MPRAGE T1-weighted sequence that yielded images with a 1x1x1mm 

resolution. Whole brain echo planar functional images (EPI) were acquired in 35 

transverse slices (TR = 2000 ms, TE = 30 ms, flip angle = 70°, image matrix = 64 x 64, 

field of view = 240 mm, slice thickness = 3 mm, 1mm gap, SENSE factor = 1.5). For the 

remaining subjects, scanning was carried out on a General Electric 3T scanner equipped 

with an 8-channel head coil at the W.M. Keck Center for Functional MRI, UCSD. 

Anatomical images were acquired using a MPRAGE T1-weighted sequence that yielded 

images with a 1x1x1mm resolution. Whole brain echo planar functional images (EPI) 

were acquired in 33 transverse slices (TR = 2000 ms, TE = 30 ms, flip angle = 90°, image 

matrix = 64 x 64, field of view = 240 mm, slice thickness = 3 mm, 1mm gap). 

Data analysis was performed using BrainVoyager QX (v 1.91; Brain Innovation, 

Maastricht, The Netherlands) and custom timeseries analysis routines written in Matlab. 

Data from the main experiment were collected in 8 or 10 runs per subject (i.e., either 4 or 

5 runs per response modality, respectively), with each run lasting 230s. EPI images were 

slice-time corrected, motion-corrected (both within and between scans), high pass filtered 

(3 cycles/run) to remove low frequency temporal components from the timeseries, and 

spatially smoothed with a 4mm FWHM kernel. The motion parameters were used to 

estimate and remove motion induced artifacts in the timeseries of each voxel using a 

general linear model (GLM). The timeseries from each voxel in each observer was then 

z-transformed on a run-by-run basis to ensure that the timeseries had a mean of zero. All 
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anatomical and EPI images were transformed into the atlas space of Talairach and 

Tournoux (1988) before group analyses were carried out. 

Linear ballistic accumulator (LBA) model 

Behavioral data were modeled using the LBA, a simplified version of the ballistic 

accumulator (Brown and Heathcote, 2005), which was in turn a simplified version of 

Usher and McClelland’s leaky competing accumulator (Usher and McClelland, 2001). 

The simplifications included in the LBA allow it to keep the essential predictive qualities 

of Usher and McClelland’s original model, but with much improved analytic tractability. 

The simplifying assumptions used in the LBA are similar to those in some other neurally-

inspired models of decision-making, most notably the LATER model of Reddi and 

Carpenter (2000) and the random ray model of Reeves et al. (2005). 

In the LBA, each of the four response alternatives (motion directions) is 

represented by an independent linear accumulator, illustrated in Figure 2. On each trial, 

each accumulator begins with a random activation level that is independently drawn from 

a uniform distribution on [0,A]. During decision making, activity in each accumulator 

increases linearly, and a response is triggered as soon as the first accumulator crosses a 

response threshold (b). The predicted response time is simply the time taken to reach the 

threshold, plus a constant offset time t0. The rate at which activation increases in each 

accumulator is termed the ‘drift rate’ for that accumulator. These drift rates are drawn 

from independent normal distributions for the four accumulators. To simplify matters, we 

always assumed that these normal distributions share a common standard deviation (s). 

The means of the normal distributions reflect the perceptual input: when the motion 

direction of the cued RDP closely matches the response assigned to a particular 
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accumulator, that accumulator will have a large drift mean rate, and vice versa. We 

estimated a parameter for the mean drift rate of the accumulator corresponding to the 

correct response (dc) and assumed that the other three accumulators had equal mean drift 

rates (1-dc)/3, keeping the total of all four drift rates fixed at 1. We also calculated a more 

detailed analysis with different mean drift rates for the accumulators corresponding to 

incorrect responses. That analysis showed obvious differences (e.g., the mean drift rate 

for the response opposite the correct response was about 10% smaller than the mean drift 

rates for responses that were orthogonal to the correct response) but all of the substantive 

results were unchanged. 

Brown and Heathcote (2008) showed that the LBA accommodates all the 

benchmark phenomena observed in choice RT paradigms. The LBA is also sufficiently 

simple in that there are closed form solutions for the densities of predicted RT 

distributions, making it easy to apply to data such as ours. These solutions were used to 

calculate likelihood values when fitting the model to data. We assessed the goodness-of-

fit between the observed RT distributions and those predicted by the LBA model using 

the quantile maximum product statistic (Heathcote et al., 2002; Heathcote and Brown, 

2004). The parameters of the model were adjusted to maximize the goodness-of-fit using 

the simplex algorithm (Nelder and Mead, 1965; Brown and Heathcote, 2008).  

Predicting blood oxygenation level dependent (BOLD) responses based on the rate of 

evidence accumulation 

Assuming a different rate of evidence accumulation on easy and hard trials, we 

generated predictions of the BOLD response profile within regions involved in 

accumulating sensory evidence during perceptual decision making. The model is 
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primarily motivated by the work of Shadlen and coworkers, who have shown that the 

firing rates of neurons in areas such as LIP monotonically increase until a response 

threshold is achieved and a response is executed. In our simulation, we assumed that the 

estimated drift rate on easy and hard trials is a proxy for neural activity (Figure 3a); we 

then convolved this ramping activity profile with a canonical model of the BOLD 

response (a difference of two gamma functions, time to peak 5s, undershoot ratio 6, time 

to undershoot peak 15s). Assuming that the firing rate of ‘accumulator’ neurons in areas 

like LIP falls off after a response is made (see e.g. Shadlen and Newsome, 2001; Roitman 

and Shadlen, 2002), the simulation predicts that lower drift rates will produce larger and 

temporally extended BOLD responses because the response is proportional to the 

integrated amount of neural activity during the decision process (Figures 3a,b). However, 

this same effect – larger and temporally extended BOLD responses on hard trials - might 

also be expected in a region involved in maintaining selective attention to relevant 

aspects of the stimulus display during decision making, or in a region that more generally 

participates in sustaining a task set or an aroused state. Thus, it is not possible to 

distinguish areas involved in accumulating sensory evidence based solely on an increased 

response associated with perceptual difficulty. Fortunately, the simulation also predicts 

that the BOLD response should rise more slowly on hard trials compared to easy trials, 

because hard trials are associated with a more gradual ramping of neural activity (see 

shaded region of Figure 3b). In contrast, regions that are involved in general attentional 

processes should be uniformly engaged for the duration of the decision process, resulting 

in a similar main effect of perceptual difficulty without the accompanying shift in 
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response latency. Two variants of such attentional accounts – along with the predicted 

BOLD response profiles – are shown for comparison in Figures 3c-f. 

Identifying supramodal mechanisms of information accumulation 

The main goal of the analysis was to use a two step inferential process to define 

regions that (1) exhibit a larger and temporally extended response on hard trials 

compared to easy trials, and (2) exhibit a temporally delayed BOLD response on hard 

compared to easy trials (see Figures 3a,b). These properties define regions that are likely 

performing evidence accumulation, rather than some other role in the decision process. 

To identify ROIs that respond more on hard compared to easy trials (step 1 in the 

analysis), the hemodynamic response function for each event type (easy saccade, hard 

saccade, easy manual, hard manual) was estimated using a general linear model (GLM) 

and a finite impulse response model that included separate regressors to estimate the 

BOLD response at the time of event onset and at each of the next 8 timepoints following 

that event (times 0s-16s poststimulus, see Dale & Buckner, 1997). Using this approach, 

the rows in the GLM design matrix correspond to the number of timepoints in a scanning 

session and the columns correspond to the relative temporal position of each model 

regressor with respect to the time of event onset. Each of the 9 timepoints was modeled 

with a ‘1’ in the appropriate row and column of the GLM design matrix, yielding scaled 

fit coefficients (beta weights) at each timepoint for each event type. 

Additional regressors-of-no-interest were included to model the mean response 

across the 9 timepoints following incorrect trials, collapsed across trial type. A three-way 

repeated measures ANOVA with response modality (saccade vs. manual), perceptual 

difficulty (easy vs. hard), and time (0s-16s poststimulus, in nine intervals) as factors was 
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then performed on the estimated beta weights; ROIs were defined based on the 

interaction between perceptual difficulty and time, collapsed across response modality. 

All statistical maps were thresholded at p<0.05, after correcting for multiple comparisons 

using the false discovery rate algorithm implemented in Brain Voyager. 

Having identified ROIs where the response is larger and temporally extended on 

hard compared to easy trials (step 1 of the analysis), we next tested for latency 

differences in the onset of the BOLD response in each ROI (step 2 in the analysis) by 

evaluating the interaction between perceptual difficulty and time across only the first two 

timepoints (0s-2s) of the event-related BOLD responses. A significant interaction across 

this temporal window indicates a differential slope during the rising phase of the 

responses, which is consistent with the accumulation of sensory evidence and 

inconsistent with the maintenance of sustained attention or general arousal. 

Because both analytical steps involved evaluating the interaction between 

perceptual difficulty and time (albeit across different temporal windows), we performed a 

“leave-one-out” cross validation procedure to ensure that the selection of voxels to 

include in an ROI during step 1 (larger and temporally extended response on hard 

compared to easy trials) did not bias the outcome of the statistical test in step 2 

(difference in onset latency). Using this procedure, ROIs that exhibited a significant 

interaction between perceptual difficulty and time (from 0s-16s poststimulus) were 

identified using data from 11/12 subjects, and then the data from the remaining subject 

was extracted from each ROI and used for statistical tests (Tables 3,4) and for generating 

timeseries plots (Figures 6,7,8,10). This procedure was repeated 12 times across all 

permutations of leaving one subject out, generating 12 sets of ROIs (see Table 2). In 
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addition to protecting against bias when evaluating differences in response latency, this 

procedure also ensured that the timecourses are not biased by the inclusion of noise that 

is favorable to our conclusions (see Kriegeskorte et al., 2009; Vul and Kanwisher, in 

press; Vul et al., in press). All analyses of the BOLD response used this leave-one-out 

procedure, with the exception of the results reported from hMT+; however, hMT+ was 

identified using independent localizers, so bias of this sort was not an issue (see below). 

hMT+ Functional Localizer 

To identify motion responsive voxels in the human MT region (hMT+), we 

presented alternating 10s trials of 100% coherent motion moving in one of four directions 

with 10s trials where the position of each dot was randomly replotted within the circular 

aperture on every video frame (resembling ‘snow’ on a television set). The size of the 

stimulus aperture was the same as the one used in the main experiment. The subject’s 

task was to press a button whenever the speed of the stimulus slowed briefly for 500ms; 

these target events occurred at three randomly determined intervals in each 10s trial. A 

GLM that contained a regressor corresponding to each stimulus type was used to identify 

hMT+ as the contiguous cluster of voxels lateral to the parietal-occipital sulcus that 

responded more during epochs of coherent motion than to the random-dot stimulus 

(single voxel threshold was set to p<0.05, corrected for multiple comparisons using the 

false discovery rate algorithm implemented in Brain Voyager). Bilateral regions of hMT+ 

were identified in 10/12 subjects; only left hMT+ was identified in one of the remaining 

subjects, and only right hMT+ was identified in the other. 

Results 
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Figure 1 shows a schematic of the four alternative forced choice (4AFC) 

behavioral task subjects performed while in the scanner. This task was relatively easy 

when subjects were cued to report the direction of the high-coherence dot field, and 

relatively hard when they were cued to report the direction of the low-coherence dot field 

(termed easy and hard trials, respectively). Importantly, high and low coherence dot 

fields were simultaneously present on every trial, so the sensory properties of the display 

were fixed with respect to the total amount of coherent motion. This feature of the design 

was introduced to avoid simultaneously manipulating sensory factors (i.e., the motion 

coherence level) and perceptual difficulty. The subject was free to make a response at any 

point during the trial to indicate the direction of the currently relevant dot field; a 

saccadic response was required on one-half of the runs, and a manual button-press 

response was required on the remaining runs. On saccadic-response runs, subjects were 

required to maintain central fixation until the response was executed; on manual-response 

runs, central fixation was maintained throughout the trial. 

By requiring subjects to use different output response modalities, we were able to 

search for supramodal signals related to decision making; the observation of this type of 

signal would support the existence of modality-independent decision variables (e.g., 

Heekeren et al., 2006). To identify such regions, we used the LBA model (see Methods) 

to make inferences from the behavioral data about how manipulations of perceptual 

difficulty should influence the BOLD signal originating from areas that play a role in 

accumulating sensory evidence during decision making. Importantly, these modeling 

efforts also dissociated cortical regions involved in perceptual decision making from 



39 
 

those more generally involved in attentional processes (i.e., general arousal, task 

demands, etc.). 

Behavioral Results 

Separate two-way repeated measures ANOVAs with response modality (saccade 

vs. manual) and perceptual difficulty (easy vs. hard) were used to assess the accuracy and 

response time (RT) data collected during the scanning session (see Table 1 for a summary 

of the group data). Subjects were slightly more accurate when making manual compared 

to saccadic responses (F(1,11)=6.2, p=0.03), and there was a robust main effect of 

perceptual difficulty on accuracy, indicating that deciphering the direction of a low-

coherence stimulus on a hard trial was more challenging than deciphering a high-

coherence stimulus on an easy trial (F(1,11)=69.4, p<0.001). Finally, there was no 

interaction between response modality and discrimination difficulty, indicating that 

manipulations of perceptual difficulty had a similar influence on both saccade- and 

manual-response accuracy (F(1,11)=0.13, p=0.73). 

RTs were shorter on saccade trials compared to manual trials, but this effect did 

not reach significance (F(1,11)=2.7, p=0.13). RTs were reliably shorter on easy trials 

compared to hard trials (F(1,11)=64.6, p<0.001), and there was no interaction between 

perceptual difficulty and response modality (F(1,11)=0.14, p=0.72). 

Linear ballistic accumulator model of behavioral data 

Before analyzing the BOLD fMRI data, we fit our behavioral data using the LBA 

model (Brown and Heathcote, 2008). The goal was to investigate how manipulations of 

perceptual difficulty and response modality affected RT distributions. For instance, RTs 

might be faster on easy compared to hard trials because (1) a change in the rate with 
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which sensory evidence from the display was accumulated (termed the drift rate in the 

model), or (2) a change in the amount of evidence required to make a decision (termed 

the response threshold), or (3) both. Analysis using a cognitive model allows us to tease 

apart these separate influences, and to estimate parameters associated with each. By 

establishing which parameters changed with experimental manipulations, we can then 

estimate the pattern of BOLD responses expected from a region that is involved in 

accumulating sensory evidence during the decision process.  

We report here fits to data averaged over participants, for simplicity of exposition. 

However, we repeated the same analyses separately for each individual participant, and 

obtained broadly similar results (see below). The data were split into 4 within-subject 

conditions, defined by two factors: response modality (saccade vs. manual) and stimulus 

coherence (easy vs. hard). For simplicity we collapsed across motion direction (upper 

left, upper right, lower right, lower left); however, we obtained qualitatively similar 

results if we included the four motion directions in the analysis to bring the total number 

of within-subject conditions to 16. 

For a single decision condition, the LBA model as described above has five free 

parameters: t0, A, b, s, and dc, but it is not reasonable that all five of these should be 

estimated separately for all 4 conditions (easy vs. hard, saccade vs. manual). Instead, we 

fit the LBA model to the data 28 times, using different designs for constraining the 

parameters. Each design reflects a particular set of psychological assumptions regarding 

the way our experimental manipulations influenced cognitive processing. For example, 

the simplest model used a single set of five parameter estimates for all conditions, 

reflecting the assumption that the data were completely unaffected by the experimental 



41 
 

manipulations. Other designs allowed drift rates (dc) to be different for easy vs. hard 

stimuli, or for manual vs. saccadic responses, and so on. We compared the adequacy of 

all possible designs using the Bayesian Information Criterion (BIC, Schwarz, 

1978). The best design, with BIC=18,784.26, used constant values of s=0.227/sec 

(standard deviation) and A=0.849 (start point parameter) across all conditions. However, 

the design used higher mean drift rates on easy versus hard trials (dc,easy=0.739 /sec, 

dc,hard=0. 517/sec, with equal drift rates across modalities), and smaller non-decision 

times for saccadic responses (t0,s=0.053 sec) compared to manual responses (t0,m=0.134 

sec), likely reflecting the modestly faster movement execution times for saccades. The 

model also assumed that the response threshold was slightly lower – that is, less cautious 

– for saccadic than manual responses (bsaccade=1.212, bmanual=1.278). Figure 4 illustrates 

the observed RT distributions (histograms) along with the predictions from the LBA 

model (solid lines). The top row shows distributions from high coherence conditions, the 

bottom row for low coherence conditions. The first two columns show data from trials 

with saccadic responses, the next two show data from trials with manual responses. The 

same y-axis scale was used for all histograms, so the heights of the distributions illustrate 

the relative probabilities of the responses – e.g. there are many more correct than 

incorrect responses for high coherence trials, so both the observed and predicted 

distributions are much taller for correct responses. The distributions predicted by the 

LBA are those corresponding to the best-BIC design described above. 

We obtained similar results when we repeated the above analyses separately for 

each individual subject, although results were more variable due to the smaller sample 

sizes involved. Most importantly, the best-BIC model from the group data analysis 
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performed well across the individual subjects. That model had the third best mean BIC 

score out of the 28 models we tested; the model with the best mean BIC score was 

identical except with the added constraint that even t0 should be constant across all 

conditions (not a surprising outcome given that the BIC tends to favor simpler models for 

smaller sample sizes). Patterns observed in the mean parameter estimates across 

individual participants also closely matched those obtained from the group data: 

s=0.182/sec, A=0.791, dc,easy=0.688 /sec, dc,hard=0.521/sec), t0,s=0.120 sec, t0,m=0.203 sec, 

bsaccade=0.993 and bmanual=1.078. 

Supramodal mechanisms of information accumulation 

To identify candidate regions that might be involved in perceptual decision 

making, we first performed a random effects analysis on data from 11/12 subjects to 

identify cortical areas exhibiting a two-way interaction between perceptual difficulty 

(easy vs. hard) and time (0s-16s in 2s intervals); this interaction was used to target areas 

that had a larger and temporally extended response on hard trials compared to easy trials 

(as in Figure 3b). The timeseries of the response on hard and easy trials was then 

computed from each ROI in the 12th subject; this leave-one subject out procedure was 

then repeated so that each subject was left out in turn (the permutation analysis was 

performed to avoid biasing a subsequent evaluation of response onset latency, see below 

and Methods). We collapsed across response modality because estimated drift rates did 

not vary between saccade and manual response conditions, and therefore our simulation 

predicted an identical BOLD response profile on hard compared to easy trials for both 

response modalities (see Figures 3a,b). This analysis identified regions in the right insula, 

bilateral intraparietal sulcus (IPS), bilateral frontal eye fields (FEF), a region of medial 
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frontal cortex (MFC), right inferior frontal gyrus (IFG, just anterior to the insula), right 

superior frontal gyrus (SFG), and left temporal parietal junction (TPJ, see Figure 5 and 

Tables 2-3). We also identified a ROI in left superior frontal sulcus (SFS) on 10/12 

permutations of leaving one subject out; however, the interaction between perceptual 

difficulty and time did not reach significance in this region when evaluated in the left-out 

subjects (see Table 3). In all of the regions identified, the interaction between perceptual 

difficulty and time was driven by a larger and temporally extended response on hard trials 

compared to easy trials, with the exception of the left SFS and the left TPJ (a description 

of these regions is presented in the Discussion and Figure 10). 

While a larger and temporally extended response on hard compared to easy trials 

is consistent with the accumulation of sensory evidence during perceptual decision 

making, similar effects of perceptual difficulty would also arise from areas involved in 

maintaining sustained attention or arousal during the decision process (Figures 3c-f). 

Therefore, we next used data from only the ‘left-out’ subjects to evaluate the latency of 

the BOLD response on easy and hard trials in each ROI; a delayed onset on hard trials is 

a distinguishing characteristic of a neural accumulator (see shaded region in Figure 3b). 

To test for latency differences, we performed a two-way repeated measures ANOVA 

with perceptual difficulty and time as factors, but this time we only included data from 

the first two timepoints of the BOLD response (0s-2s poststimulus). Note that the use of a 

leave-one-out procedure ensures that this second interaction test is independent from the 

criterion used to define each ROI. A subregion of the right insula was the only area where 

the onset of the BOLD response was delayed on hard trials for both response modalities 

(Table 4, Figure 6), making it a candidate for computing a supramodal decision variable 
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that might mediate activity in effector-specific regions of sensorimotor cortex. Moreover, 

three-way repeated measures ANOVA with perceptual difficulty, time (0s-2s), and ROI 

as factors revealed that the difference in the slope of the BOLD response on hard 

compared to easy trials was larger in right insula than in any of the other regions (all 

F’s(1,11)>5.0, all p’s <.05; excluding data from the left SFS and left TPJ). Finally, to 

further explore the relationship between perceptual difficulty and BOLD response latency 

in the right insula, we divided RTs into three bins (collapsed across easy and hard trials) 

and found that the slope of the BOLD response across the first two timepoints decreased 

systematically with increasing RT (two-way repeated measures ANOVA with RT-bin 

and time as factors, F(2,22)=5.11, p=0.015, see Supplemental Figure 1). 

In addition, the onset of the BOLD response was delayed on hard trials in bilateral 

regions of IPS on saccadic response trials (but not on manual response trials), as 

predicted by previous single-unit recording studies (Shadlen and Newsome, 2001; 

Roitman and Shadlen, 2002; differential effect of perceptual difficulty over the first two 

timepoints, F(1,11)=12.3, p=0.005, collapsed across right and left IPS; see Table 4 and 

Figure 7 for data from each hemisphere). However, no effect of perceptual difficulty on 

response latency was observed in the FEF on saccade response trials (Table 4, Figure 7). 

Modality-dependent accumulator region for manual responses 

Although the BOLD response in IPS was temporally delayed on hard saccade 

trials (See Table 4 and Figure 7), no corresponding modality dependent accumulator 

region was found on manual response trials. Therefore, based on previous reports (e.g. 

Meier et al., 2008), we used a two-way ANOVA and a leave-one-out procedure to 

identify a cluster of voxels in the superior aspect of the left central sulcus that responded 
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more robustly on manual response trials than on saccade response trials (interaction 

between response modality and time, F(8,88)=14.2, p<.001, mean Talairach coordinates: 

-35, -23, 54, ±1S.E.M. across permutations: 0.6, 0.8, 0.5; mean Volume: 5.2mL, ±1STD 

0.637mL, see Figure 8). This region showed a larger and temporally extended response 

on hard manual trials compared to easy manual trials (F(8,88)=2.9, p<.01, Figure 8). 

Moreover, the onset of the BOLD response was delayed on hard trials when manual 

responses were required, meeting the second requirement for a modality specific neural 

accumulator (differential effect of perceptual difficulty across the first two timepoints 

when only considering manual response trials, F(1,11)=8.0, p<0.025). No such effects 

were found on saccade response trials (interaction between perceptual difficulty and time 

across all timepoints: F(8,88)=1.0, n.s.; interaction between perceptual difficulty and time 

across only the first two timepoints: F(1,11)=1.1, n.s.). 

Activation profile in motion selective area hMT+ 

Single unit recording studies have demonstrated that neurons within stimulus-

specific regions in early visual cortex – such as area MT for motion – signal the amount 

of sensory evidence present in the visual field (Newsome et al., 1989; Salzman et al., 

1992; Britten et al., 1993; Britten et al., 1996; Ditterich et al., 2003). However, such 

regions do not integrate sensory evidence over time, suggesting that they primarily 

function to provide input to sensorimotor regions that are more directly involved in 

decision making (Roitman and Shadlen, 2002; Romo and Salinas, 2003; Huk and 

Shadlen, 2005; Hanks et al., 2006; Gold and Shadlen, 2007). If this account applies to 

hMT+ as well, then we predict a larger and temporally extended BOLD response on hard 

compared to easy trials because the sensory evidence on hard trials must be 
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represented for a longer period of time. However, no shift in the latency of activation 

onset is predicted because the underlying neural activity should be relatively constant for 

the duration of the stimulus presentation epoch (as opposed to ramping activity, as shown 

in Figure 3a). We tested this prediction by examining the BOLD activation profile within 

independently localized regions of hMT+ (see Methods). There was a significant 

interaction between perceptual difficulty and time (from 0s-16s), indicating a larger and 

temporally extended response on hard trials (F(8,88)=3.8, p<0.005, collapsed across right 

and left MT). However, there was no interaction between perceptual difficulty and time 

over the first two timepoints of the responses, suggesting that onset latency was similar 

on hard and easy trials (F(1,11)=0.2, n.s.). These results are consistent with the notion 

that hMT+ primarily plays a role in relaying information about sensory properties of the 

display to higher order accumulation centers (see Supplemental Figure 2 for a graphical 

depiction of the BOLD timecourses from left and right hMT+). 

Discussion 

Here we examined the neural mechanisms of perceptual decision making using a 

simple 4AFC task that controlled for sensory factors and a model that allowed us to 

predict the BOLD activation profile expected from cortical areas that accumulate sensory 

evidence (Figures 2-3). While the BOLD response in many regions increased with 

increasing perceptual difficulty, only a subset of these regions exhibited the latency offset 

predicted for a region involved in accumulating sensory evidence. Of these, only the right 

insula displayed this characteristic response profile for both tested response modalities. 

This finding raises the possibility that perceptual decisions are not solely computed by 

the same neural mechanisms that mediate the ultimate motor response. Instead, the 
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ramping-up of neural activity in sensorimotor regions such as the LIP may also reflect 

input from downstream regions that compute an abstract decision variable. Note that this 

account still allows for a causal influence of sensorimotor areas on decision making (e.g. 

Romo et al., 2002; Hanks et al., 2006). However, such regions may not be the actual site 

of the decision process, but instead might serve as ‘relay stations’ that translate abstract 

decision signals into an appropriate motor response (see Table 4, Figures 7,8). As would 

be the case with any correlational method, the evidence we provide here in support of this 

hypothesis is tentative; additional work using converging methodologies will be required 

to clarify the role of the modality-independent signals that we observed in the right 

insula. 

An alternative account of the temporally delayed onset of the BOLD response in 

the right insula holds that neural activity might briefly pulse (an impulse response) at a 

slightly later time on hard compared to easy trials, perhaps signaling the termination of 

the decision process. For example, de Lafuente and Romo (2005) demonstrated that 

neurons in the medial prefrontal cortex signal the production of a “yes” response in an 

all-or-none fashion, such that the amplitude of the response does not correlate with the 

difficulty of the perceptual decision (in the context of a detection task). However, our 

data are inconsistent with this type of all-or-none termination signal because if the two 

temporally shifted impulse responses were equal in amplitude (Figures 9a,b), then we 

should not see a larger and temporally extended BOLD response on hard compared to 

easy trials (which we observe, Table 3 and Figures 6-8). On the other hand, if the impulse 

response on hard trials is temporally delayed and larger (Figures 9c,d), then we would 

expect to see a BOLD response pattern that is similar to the ramping ‘accumulator’ model 
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shown in Figures 3a,b. This second hypothesis is not suggested by any data that we are 

aware of, but one ad-hoc account is that the amplitude of the impulse response is 

somehow tied to the height of the decision boundary. However, the LBA model we 

employed estimated that the decision boundary was the same on easy and hard trials, 

arguing against this hypothesis (i.e. only drift rate differed). In any case, the pattern of 

activity depicted in Figures 9c,d also implies an important functional role for the right 

insula as it indicates sensitivity to both the difficulty and the timing of a perceptual 

decision. 

In contrast to the predictions generated by our simulation (Figure 3), at least two 

previous studies asserted that the magnitude of the BOLD response should be higher on 

easy trials compared to hard trials because more sensory evidence is present on easy 

trials. Based on this criterion, Heekeren and coworkers highlighted a region of posterior 

left SFS/DLPFC as being important for perceptual decision making (Heekeren et al., 

2004; Heekeren et al., 2006). Although we identified a region of the left SFS in 10/12 

permutations of leaving-one-subject out that tended to respond more on easy than on hard 

trials, the effect was not significant (see Table 3 and Figure 10). In addition, we also 

identified a region of the left TPJ – similar to an inferior parietal lobe activation reported 

by Heekeren et al. (2006) – that responded more on easy trials compared to hard trials 

(Table 3 and Figure 10). Interestingly, both the left SFS and the left TPJ showed negative 

response profiles in our experiment (compared to the fixation baseline), with relatively 

smaller negative deflections on easy compared to hard trials (Figure 10). Thus, in our 

study at least, the left SFS and TPJ regions do not appear to follow an activation profile 
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that is consistent with the active accumulation of sensory evidence (i.e. the pattern shown 

in Figure 3b). 

A similar pattern of deactivations was also reported by Tosoni et al. (2008), and 

we (along with Tosoni et al.) speculate that these regions are functionally related to the 

‘default’ network that is actively suppressed during the performance of a demanding task; 

this suppression should be longer on hard trials because subjects spend more time trying 

to discriminate the direction of the target (Greicius et al., 2003; Shulman et al., 2003; 

Raichle and Snyder, 2007; Buckner et al.,2008; see also Tosoni et al. 2008 for further 

discussion of this point). Tosoni and coworkers also proposed that activation levels in 

putative accumulator areas should increase with increasing sensory evidence, contrary to 

our model simulations. In their study, the primary focus was on identifying regions of 

parietal and frontal cortex that mediate modality dependent responses (saccade and 

pointing movements) to arbitrary images (faces and houses); they found that modality 

sensitive subregions of parietal cortex responded more strongly on easy trials. At first 

glance, this observation appears at odds with the data we present here which shows larger 

responses on hard trials when the sensory evidence is weaker. However, because Tosoni 

et al. (2008) wanted to separate ‘sensory’ from ‘motor’ contributions to the BOLD signal, 

they had subjects delay their decision for 10.5 s following the presentation of the stimulus 

while awaiting a “go” signal. Since this delay interval is longer than required by the 

decision process, it is possible that subjects were storing a modality dependent 

representation of their planned response for much of the trial. Given that the computation 

of the response occurs more quickly when ample sensory evidence is present, the process 

of storing the prepared motor response for a longer period of time might have contributed 
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to increases in activation on easy trials. In contrast, our subjects were required to make 

speeded perceptual decisions, and thus had little time to engage in cognitive processes not 

directly related to perceptual decision making. Clearly more work needs to be done to 

resolve this issue, perhaps by combining Tosoni’s methods for precisely mapping manual 

and saccadic sensitive regions with a task that constrains the cognitive operations subjects 

engage in during the ‘decision making’ stage of the task. 

Even though we focus on the role of right insula in perceptual decision making, 

we cannot rule out the possibility that other regions are also involved in accumulating 

sensory evidence across multiple response modalities. Indeed, the interpretation of 

activation patterns in other areas is difficult: a larger response on hard compared to easy 

trials in the absence of a latency shift is equally consistent with a role in general 

attentional control or a lack of statistical sensitivity to detect a true difference in onset 

latencies. Therefore, we withhold speculation about other regions in anticipation of future 

studies that will selectively target candidate areas with converging methodologies to 

further delineate their role in perceptual decision making. Similar regions of insula have 

been previously implicated in different aspects of perceptual decision making. Trial-by-

trial fluctuations in the left insula predict decisions about near-threshold fearful and non-

fearful faces (Pessoa and Padmala, 2005, 2007), even when the sensory evidence is 

ambiguous and thus equated (Thielscher and Pessoa, 2007). Activation levels in bilateral 

regions of the anterior insula scale with the amount of differential sensory evidence 

during vibrotactile decision making (Pleger et al., 2006), increase at the moment of a 

perceptual decision in an image recognition task (Ploran et al., 2007), and correlate with a 

non-monotonic RT function during an auditory discrimination task, implying a role in the 
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decision process as opposed to sensory processing (Binder et al., 2004). Finally, 

activation levels in insular regions also scale with the amount of ‘uncertainty’ a subject 

experiences while discriminating a stimulus, suggesting a role in the process of 

comparing sensory evidence to a decision criterion (Grinband et al., 2006). 

In contrast, other investigators have suggested that insular regions participate in 

attentional control precisely because more activation is observed on hard compared to 

easy tasks (Heekeren et al., 2006; Philiastides et al., 2006; Philiastides and Sajda, 2007; 

Heekeren et al., 2008; Tosoni et al., 2008). However, our simulation (Figures 3a,b) 

predicts a qualitatively distinct activation profile in ‘decision making’ areas compared to 

‘attention’ areas, and the profile we observe in the right insula is more consistent with the 

former. We therefore argue that the present results support the hypothesis that the right 

insula is involved in coding an abstract decision variable capable of guiding the build-up 

of activity in effector-specific regions of sensorimotor cortex. 

Ultimately, the extent to which regions outside of sensorimotor cortex participate 

directly in computing perceptual decisions may turn out to depend on the amount of 

training and the complexity of the task. For example, most single-unit recording studies 

employ 2AFC paradigms that involve highly stereotyped stimulus-response pairings that 

are practiced many thousands  of times over many months (but see Churchland et al., 

2008 for a more complex 4AFC task). In these tasks, making a perceptual decision is 

tantamount to selecting a motor response, so it is perhaps not surprising that the empirical 

evidence is consistent with the hypothesis that perceptual decisions are directly computed 

by sensorimotor neurons. However, in many everyday situations, a combination of motor 

responses must be issued in response to a single stimulus. For example, when driving, a 
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red light should motivate both a saccade towards the car immediately in front of you as 

well as a signal to depress the brake pedal. If perceptual decisions are solely computed 

and executed by the same mechanisms that mediate the motor response(s), then multiple 

systems – one for each response modality – must accumulate sensory evidence, translate 

the evidence into a decision based on current behavioral goals, and then generate two 

distinct motor responses. An alternative account, and one that is consistent with the 

present results, holds that a single modality-independent representation of the decision 

variable is computed and that this representation can then be used to efficiently guide 

multiple motor responses. 

 

Chapter 1, in full, is a reprint of the material as it appears in Domain General 

Mechanisms of Perceptual Decision Making in Human Cortex in Journal of 

Neuroscience, 29 (27), 8675-8687. Ho, T.C., Brown, S.D., Serences, J.T. (2009). The 

dissertation author was the primary author of this paper. 
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Table 1.1 Behavioral accuracy and response times on correct trials during the fMRI 
experiment for each condition and for the main effect of perceptual difficulty (easy vs. 
hard) and the main effect of response modality (manual vs. saccade). Means ± S.E.M. 
 

Condition Accuracy Response Time (ms) 

Manual (Easy) 93+2 1184+93 

Manual (Hard) 66+5 1469+106 

Saccade (Easy) 89+3 1035+94 

Saccade (Hard) 61+5 1304+124 

Easy (Manual + Saccade) 91.0+2 1110+82 

Hard (Manual + Saccade) 64+5 1387+102 

Manual (Easy + Hard) 79+ 3 1327+98 

Saccade (Easy + Hard) 75+ 4 1170+109 

 

 

 

 

 

 

 

 

 

 

 



54 
 

 

Table 1.2. Anatomical location and volume of areas defined as showing an interaction 
between perceptual difficulty and time (based on a leave-one-subject-out analysis, see 
Methods). All coordinates from the atlas of Talairach and Tournoux (1988). The location 
of all regions was extremely consistent across permutations of leaving one subject out; 
the only exception was the left SFS activation (which was identified in only 10/12 
permutations and moved considerably from one permutation to the next).  
 

Region X, Y, Z Std. 
X,Y,Z 

Vol. 
(mL) 

Std. Vol N 

RH Insula 41,7,5 4,3,6 0.34 0.27 12 

RH IFG 31,17,9 1,1,1 0.67 0.29 12 

RH MFG 44,7,27 2,3,5 0.18 0.82 12 

RH SFG 30,44,22 1,1,1 1.04 0.48 12 

RH IPS 20,-70,34 3,3,5 3.22 1.4 12 

RH FEF 26,-4,51 2,3,3 0.75 0.69 12 

LH IPS -22,-74,27 2,2,3 4.13 1.89 12 

LH FEF -27,-2,55 1,1,1 1.59 0.77 12 

MFC 2,12,44 1,1,1 2.56 1.24 12 

LH-TPJ -43,-57,32 1,1,1 0.95 0.58 12 

LH-SFS -22,20,35 10,12,19 0.16 0.19 10 
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Table 1.3. All statistical tests computed by accumulating the data from each subject 
based on ROIs that were defined based on data from the remaining subjects (and then 
permuting this leave-one out procedure 12 times, see Methods). Of all the regions 
identified, only the left SFS did not show a significant effect across permutations of 
leaving one subject out. All numbers in table represent F-values with (8,88) degrees of 
freedom, with the exception of values for left SFS, where there are (8,72) degrees of 
freedom (because this region was identified in only 10/12 permutations). The three-way 
interaction between perceptual difficulty, response modality, and time did not reach 
significance in any region. *p<0.025, **p<0.01, ***p<0.001. 
 

Region Difficulty x Time, 
F(8,88) 

Diff x Modality x Time, 
F(8,88) 

RH Insula 3.64*** 0.98 

RH 
AntInsula 

5.00*** 1.54 

RH MFG 2.46* 0.97 

RH SFG 3.46** 0.39 

RH IPS 4.53*** 1.59 

RH FEF 2.66* 0.98 

LH IPS 4.25*** 1.80 

LH FEF 5.80*** 0.77 

MFC 6.85*** 0.87 

LH-TPJ 4.95*** 0.94 

LH-SFS 0.32 0.60 
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Table 1.4. All statistical tests computed by accumulating the data from each subject 
based on ROIs that were defined based on data from the remaining subjects (and then 
permuting this procedure 12 times). The first column contains F-values for the interaction 
between perceptual difficulty and time over the first two data points (0s-2s), collapsed 
across response modality; also reported is the interaction computed separately for each 
response modality, and the three-way interaction between perceptual difficulty, response 
modality, and time. All numbers represent F-values with (1,11) degrees of freedom, with 
the exception of the values for left SFS, where there are (1,9) degrees of freedom. 
*p<0.05, **p<0.025, ***p<0.01 
 

Region Diff x 
Time 

Diff x 
Time 

(saccades) 

Diff x 
Time 

(manual) 

Diff x Modality x 
Time 

RH Insula 10.7*** 5.30* 7.57** 0.28 

RH AntInsula 0.15 2.04 2.06 3.98 (p=.07) 

RH MFG 0.00 0.70 0.18 0.91 

RH SFG 0.09 0.40 0.03 0.53 

RH IPS 1.86 9.35** 0.24 4.15 (p=.06) 

RH FEF 0.00 0.01 0.00 0.01 

LH IPS 0.38 8.76** 0.11 3.46 (p=.09) 

LH FEF 0.00 0.50 0.81 1.64 

MFC 0.03 1.11 0.82 2.18 

LH-TPJ 2.19 0.29 2.65 0.38 

LH-SFS 1.47 0.30 0.64 .01 
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Figure 1.1 Behavioral paradigm. Subjects maintained fixation on the central fixation 
cross at the start of each trial; the color of the cross cued the subjects to decipher either 
the dots rendered in red or blue. On every trial, one dot field contained 40% coherent 
motion (hard stimulus) and the other contained 80% coherent motion (easy stimulus). On 
alternating runs, subjects indicated the direction of the relevant dot field with either a 
saccade to one of the four peripheral position markers or with a button press response. 
See Methods for additional details. 
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Figure 1.2. Schematic of the linear ballistic accumulator (LBA) model. The choice 
between the four responses is modeled as a race between four accumulators. Activation in 
each accumulator begins at a random point between zero and A and increases with time. 
The rate of increase is random from trial to trial, but is (on average) faster for the 
accumulator whose associated response matches the stimulus. A response is given by 
whichever accumulator first reaches the threshold b, and the predicted response time 
depends on the time taken to reach that threshold. 
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Figure 1.3. Simulated BOLD activation profile in a region involved in accumulating 
sensory evidence. Neurons in areas such as LIP are known to increase their firing rates to 
a bound during perceptual decision making tasks; the time taken to reach the bound is 
determined by the quality of the sensory evidence (e.g. the motion coherence in a RDP, 
see Shadlen and Newsome, 2001). (a) Two hypothetical cases of a fast (blue) and a slow 
(green) decision process in a sensory integration area like LIP. The blue trace might be 
expected on easy trials because sensory evidence is abundant, the green trace might be 
expected on hard trials because sensory evidence is sparse. (b) Predicted pattern of 
BOLD responses associated with each hypothetical case shown in panel (a), computed by 
convolving the simulated firing rate of the neuron depicted in (a) with a simulated BOLD 
response function (a ‘double-gamma’ function). Notice that a larger response is expected 
when the drift rate is slow because the BOLD response is proportional to the integrated 
amount of neural activity during the decision process. Moreover, the onset of the BOLD 
response is delayed when the drift rate is slow (shaded region), which is a distinguishing 
characteristic of a region involved in accumulating sensory evidence. Dashed red line 
represents the predicted response on hard trials minus the response on easy trials. (c) 
Hypothetical neural activity in a region that is involved in maintaining attention at a fixed 
level for the duration of the decision process. (d) BOLD response profiles expected on 
easy and hard trials given the neural profiles shown in (c). As in panel (b), a region 
involved in maintaining sustained attention should also exhibit a larger and temporally 
extended response, but without the corresponding offset in response latency. (e) Same as 
(c), but assumes a larger sustained response on hard compared to easy trials due to the 
increase in task difficulty. (f) BOLD response profiles expected on easy and hard trials 
given the neural profile in (e); again a larger and temporally extended response is 
predicted on hard trials, but without a shift in the latency of response onset. Note that the 
absolute scale of BOLD responses is not relevant for the present purposes; instead we 
focus on the qualitative pattern of the BOLD responses that should be associated with a 
region involved in accumulating sensory evidence. 
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Figure 1.4. Fit of LBA model to the response time (RT) data. The histograms show 
observed RT distributions for correct and incorrect decisions. The top and bottom rows 
show distributions of RTs associated with decisions based on high coherence (easy) and 
low coherence (hard) stimuli, respectively. The left half of the figure shows data from 
saccadic responses, the right half from manual responses. Solid lines indicate the RT 
distributions predicted by the LBA model (see text). 
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Figure 1.5. Regions exhibiting a larger and temporally extended response on hard 
compared to easy trials. These maps were generated by averaging the ROIs identified 
on each permutation of leaving-one-subject out while testing for an interaction between 
perceptual difficulty and time (0s-16s poststimulus), collapsed across response modality 
(see Methods, Tables 2,3 for statistical values associated with each region). These are 
candidate areas that may play a role in accumulating sensory evidence during decision 
making. All activations projected onto an average of the high-resolution anatomical scans 
from all subjects in our study (applies to Figure 8 as well). 
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Figure 1.6. Mean timecourses across subjects in each ROI, collapsed across response 
modality. All timecourses based on data from the left-out-subject after ROIs were 
identified in 11/12 subjects. Figures in the right column depict the mean difference 
between responses associated with hard and easy trials (left column), and error bars are 
±1S.E.M. across subjects. Note the relative delay in the onset of the BOLD response on 
hard trials in the right insula (Table 4); this delay is qualitatively similar to the pattern 
predicted in a region involved in accumulating sensory evidence during decision making 
(see Figure 3b), and inconsistent with the predicted response in a region involved in 
sustaining attention or arousal during task performance (Figures 3d,f). 
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Figure 1.7. Mean timecourses across subjects on saccadic-response trials. Timeseries 
computed as described in Figure 6; note the temporal delay in the IPS ROIs on hard 
saccadic-response trials (see Table 4). Error bars ±1S.E.M. across subjects. 
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Figure 1.8. Sub-region of the superior left central sulcus that shows an interaction 
between response modality (saccade vs. manual) and time (0s-16s poststimulus). The 
depicted region of superior left central sulcus is the mean ROI averaged across all 
permutations of leaving-one subject out that responded more on manual compared to 
saccade trials (all subjects responded with their right hand, and a similar region of the 
central sulcus has been previously shown to respond when the contralateral fingers are 
moved, see e.g. Meier et al., 2008). Timecoures are based on data from the left-out 
subject and were computed using only manual-response trials (error bars ±1S.E.M. across 
subjects). 
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Figure 1.9. Simulated BOLD activation profiles in a region that issues a delayed 
impulse response on hard compared to easy trials. (a) A temporally delayed impulse 
response (brief response) of neural activity is issued later on hard trials than on easy 
trials, perhaps signaling the end of the decision process. (b) Predicted pattern of BOLD 
responses associated with each hypothetical case shown in panel (a). Although the 
response on hard trials is temporally delayed, it is not larger or temporally extended 
compared to the response on easy trials. (c) Same as (a), but now the impulse response 
associated with a hard trial is both temporally delayed and larger. (d) Predicted pattern of 
BOLD responses associated with each hypothetical case shown in panel (c). The 
predicted BOLD responses are similar to those predicted by ramping neural activity in an 
accumulator area during decision making (Figures 3,a,b). 
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Figure 1.10. Regions of left SFS and left TPJ. Although the interaction between 
perceptual difficulty and time (0s-16s) was not significant in the left SFS (see Table 3), 
both of these areas show a ‘deactivation’ compared to the fixation baseline, and the 
deactivation is relatively attenuated on easy compared to hard trials. 
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Supplemental Figure 1.1. Mean timecourses across subjects in right insula, broken 
down into three bins based on reaction time (collapsed across easy and hard trials). 
The onset of the BOLD response is progressively delayed with increasing RT. Error bars 
±1S.E.M. across subjects. 
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Supplemental Figure 1.2. Mean timecourses across subjects in left and right hMT+. 
Error bars ±1S.E.M. across subjects. 
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CHAPTER 2: The Optimality of Sensory Processing During the Speed-Accuracy 

Tradeoff 

Ho T, Brown SD, Van Maanen L, Forstmann BU, Wagenmakers EJ, Serences JT 
(2012). Journal of Neuroscience, 32(23): 7992-8003. 
 

ABSTRACT 
 

When people make decisions quickly, accuracy suffers. Traditionally, speed-

accuracy tradeoffs (SAT) have been almost exclusively ascribed to changes in the 

amount of sensory evidence required to support a response (response caution) and the 

neural correlates associated with the later stages of decision making (e.g., motor 

response generation and execution). Here, we investigated whether performance 

decrements under speed pressure also reflect suboptimal information processing in early 

sensory areas such as primary visual cortex (V1). Human subjects performed an 

orientation discrimination task while emphasizing either response speed or accuracy. A 

model of choice behavior revealed that the rate of sensory evidence accumulation was 

selectively modulated when subjects emphasized accuracy, but not speed, suggesting 

that changes in sensory processing also influence the SAT. We then used functional 

MRI (fMRI) and a forward encoding model to derive orientation-selective tuning 

functions based on activation patterns in V1. When accuracy was emphasized, the extent 

to which orientation-selective tuning profiles exhibited a theoretically optimal gain 

pattern predicted both response accuracy and the rate of sensory evidence accumulation. 

However, these relationships were not observed when subjects emphasized speed. 

Collectively, our findings suggest that, in addition to lowered response thresholds, the  
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performance decrements observed during speeded decision making may result from a 

failure to optimally process sensory signals.  
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The Optimality of Sensory Processing During the Speed-Accuracy Tradeoff 

Fast decisions are typically more error prone, while precise decisions require more 

time, a phenomenon known as the speed-accuracy tradeoff (or SAT; Woodworth, 1899; 

Fitts, 1966; Wickelgren, 1977; Dickman and Meyer, 1988). Traditional models of the SAT 

hold that fast but premature responses occur when not enough sensory information has 

been accumulated to support an accurate judgment (i.e., response thresholds are too low; 

Bogacz et al., 2006; Ratcliff and McKoon, 2008). On this response threshold account, the 

SAT is mediated by neural mechanisms of late-stage decision processes that immediately 

precede the initiation of motor responses (Van Veen et al., 2008; Forstmann et al., 2008; 

Forstmann et al., 2010; Bogacz et al., 2010). A complementary – and largely untested – 

hypothesis is that speed pressure also influences the efficiency with which sensory 

evidence is accumulated during decision making (sensory-readout hypothesis). This is an 

important possibility given that the rate of sensory evidence accumulation necessarily 

limits the efficacy of downstream decision-making and motor control processes. 

To investigate the influence of the SAT on sensory processing, we designed a 

perceptual decision making task that required human observers to discriminate between 

two orientated grating stimuli (see Figure 1 and Materials and Methods) under either 

speed emphasis (SE) or accuracy emphasis (AE) conditions. Importantly, subjects had to 

discriminate a small rotational offset (5°) between the gratings. Previous psychophysical 

and neurophysiological studies have shown that the most informative neurons for 

supporting such fine discriminations are tuned away from the target feature (hereupon 

termed off-target neurons; see Figure 2; Hol and Treue, 2001; Butts and Goldman, 2006; 
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Jazayeri and Movshon, 2006; Navalpakkam and Itti, 2007; Scolari and Serences, 2009; 

Moore, 2008; Purushothaman and Bradley, 2005; Regan and Beverley, 1985; Schoups et 

al., 2001). This theoretical framework thereby provides a benchmark pattern of optimal 

sensory gain against which we can compare gain observed under different SAT 

conditions. 

We investigated how the SAT influenced information processing by fitting 

response time (RT) and accuracy data using two models of choice behavior: the Linear 

Ballistic Accumulator model (LBA; Brown and Heathcote, 2008; see Figure 3) and an 

extension of the LBA, the Single Trial Linear Ballistic Accumulator (STLBA; Van 

Maanen et al., 2011). These models revealed an impact of task instruction on the amount 

of information required to initiate a decision (response caution) and on the rate of sensory 

evidence accumulation (the drift rate); the later effect suggests that the SAT may affect 

sensory processing (see also Vandekerckhove et al., 2011 and Hubner et al., 2010). We 

then used a forward encoding model (Brouwer and Heeger, 2009; 2011; reviewed in 

Naselaris et al., 2011; Serences and Saproo, 2011) to examine how feature-selective 

BOLD response profiles in primary visual cortex (V1) are associated with behavioral 

performance and with the rate of sensory evidence accumulation under different SAT 

conditions. Our results suggest that theoretically optimal response patterns in V1 are 

associated with more efficient sensory evidence accumulation – but only when accuracy is 

emphasized over speed. 

Materials and Methods 
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Subjects 

16 subjects (11 females) were recruited from the University of California, San 

Diego (UCSD, La Jolla, CA) community. All had normal or corrected-to-normal vision. 

Each subject gave written informed consent per Institutional Review Board requirements 

at UCSD and completed a single 1 hour session in a climate and noise controlled subject 

room outside of the scanner and a single 1.5-2 hour session in the scanner. Compensation 

for participation was $10/hour for behavioral training and $20/hour for scanning. Subjects 

received an additional reward for task compliance according to a point system described 

below (mean additional compensation: $6.64). Data from two subjects were discarded due 

to improper slice stack selection during fMRI scanning that resulted in no data being 

collected from large portions of primary visual cortex, the main area of interest in this 

study. 

Stimuli and task 

Visual stimuli were generated using the Psychophysics Toolbox (Brainard, 1997; 

Pelli, 1997) implemented in Matlab (version 7.1; The Math Works, Natick, MA), 

presented at a frame rate of 60 Hz, and projected onto a screen at the entrance of the 

scanner bore that subjects viewed through a mirror. Button-press responses were made on 

an fMRI-compatible response box using the index and middle fingers of the right hand.  

Subjects were shown a centrally presented oriented grating (with a diameter of 

approximately 14°) at full contrast which flickered at 6 Hz (83.33 milliseconds on, 83.33 

milliseconds blank interval). On each trial, the orientation of the grating was 
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pseudorandomly selected with equal probability from one of nine possible orientations 

(0°, 20°, 40°, 60°, 80°, 100°, 120°, 140°, 160°) with a small amount of pseudo-random 

jitter added (between ± 0°-6°, selected from a uniform distribution). On half the trials, the 

same stimulus was presented at every ‘flicker’ (match trials), but for the remaining trials 

(mismatch trials), the orientation of the grating was offset by 5° on every other flicker, 

with the rotational offset of the deviant grating (i.e., clockwise or counterclockwise) fixed 

on a given trial and counterbalanced across trials (see Figure 1). The subject’s objective 

was to make a match/mismatch judgment by pressing one of two buttons held in the right 

hand. The order of match and mismatch trials was pseudorandomized and counterbalanced 

within each run. Subjects were allowed to make a response any time after the stimulus 

onset; the stimulus was present for 3 seconds, after which it was replaced with a white 

centrally presented fixation circle for 3.5 seconds. We omitted all trials in which a subject 

failed to give a response (less than 1%) or emitted a response faster than 200 milliseconds 

(less than 1.05%). Since the second grating did not appear until 166.67 milliseconds into 

the trial, we reasoned that responses quicker than 200 milliseconds should be regarded as 

definite blind guesses. In total, a single run consisted of 50 trials (36 experimental trials 

and 14 null trials consisting of just a fixation circle) and lasted 336 seconds including an 

11 second period of passive fixation at the end of each run. Across the 36 experimental 

trials, each of the 9 possible orientations was presented 4 times. Prior to each run, subjects 

were instructed by the experimenter to emphasize either response accuracy or speed. 

Subjects earned points based on their performance: +10 for correct responses on accuracy 

trials, -10 for incorrect responses on accuracy trials, +10 for correct responses on speed 

trials within the response deadline, +0 for incorrect responses on speed trials, -10 for any 
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responses exceeding the response deadline. At the end of the experiment, subjects were 

paid an additional $1 for every 100 points earned during their performance while being 

scanned (rounded to the nearest dollar). During training in the lab, subjects were given 

trial-by-trial feedback, but feedback was delayed until the end of each run during the 

scanning session. 

Response deadline on speeded trials 

All participants were trained prior to the scan session for a minimum of 180 trials. 

During training, subjects received point feedback on a trial-by-trial basis according to the 

reward scheme outlined above. Participants practiced the task without any speed pressure 

until they felt comfortable and performed at approximately 90% accuracy. Subjects were 

then asked to repeat the task by responding as quickly as they could without guessing. The 

median of their RT distribution on this block was then set as their response deadline for 

both the subsequent speeded training blocks and the speeded blocks during the fMRI 

session. 

Linear ballistic accumulation (LBA) model 

Behavioral data were modeled using the LBA, which is a simplified version of the 

ballistic accumulator model and the leaky competing accumulator model (see Brown and 

Heathcote, 2005; 2008; Usher and McClelland, 2001). Figure 3 illustrates the LBA model 

schematically. On each trial, two racing accumulators begin with a random activation 

level (the starting point) that is independently drawn from a uniform distribution on [0, A]. 

Activity in each accumulator increases linearly, and a response is triggered as soon as one 
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accumulator crosses the response threshold. The predicted response time is the time taken 

to reach the threshold, plus a constant offset time (non-decision time). The rate at which 

activation increases in each accumulator is termed the drift rate for that accumulator. 

These drift rates are drawn from independent normal distributions for each accumulator 

(with the standard deviation of these distributions being arbitrarily fixed at 1). The means 

of the normal distributions reflect the quality of the perceptual input. For example, a 

salient mismatch between the orientated gratings would lead to a large mean drift rate in 

the accumulator corresponding to a mismatch response (and vice versa). Hence, the LBA 

model estimates the mean of this drift rate distribution for each accumulator (“match” or 

“mismatch”). 

The distance from the starting point to the response threshold is a measure of 

response caution as this distance quantifies the average amount of evidence that needs to 

be accumulated before a response is initiated. Changes in response caution are usually 

assumed to originate from adjusting the response threshold; however, adjusting the 

response threshold is mathematically equivalent to adjusting the starting point, therefore 

we chose to fix the height of the uniform distribution (A) from which the starting points 

were drawn (although the starting points nevertheless vary trial to trial; see also Ratcliff 

1978; Ratcliff & Rouder, 1998; Forstmann et al., 2010; Van Maanen et al., 2011; Wolfe 

and Van Wert, 2010). As a result, we hereon use the response threshold to represent 

“response caution” since the maximum of the start point distribution is fixed across the SE 

and AE conditions. 

LBA model analyses 
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The parameters of the LBA model were estimated using the method of maximum 

likelihood. Likelihood was optimized using simplex searches (Nelder and Mead, 1965). 

Initial parameter values for searches were generated two ways: using heuristic calculations 

based on the data, and using start points determined from the end points of searches for 

simpler, nested models (full details of these methods and extensive discussion of 

alternative approaches are provided by Donkin et al., 2011a). We fit the “match” and 

“mismatch” trials simultaneously, fixing all parameters between these two trial types to be 

constant except for the drift rate (which is presumably determined by the stimulus). 

Different drift rates were estimated for the accumulator corresponding to a “mismatch” 

response on trials with a “mismatch” stimulus (i.e., “correct” drift rate) and on trials with a 

“match” stimulus (i.e., “incorrect” drift rate; see Table 2). Similarly, different drift rates 

were estimated for the accumulator corresponding to a “match” response on trials with a 

“match” stimulus (“correct” drift rate) and on trials with a “mismatch” stimulus 

(“incorrect” drift rate; see Table 2). Each different design for constraining model 

parameters across task conditions was fit separately to each individual subject's data. One 

subject, however, only made one incorrect response among the AE mismatch trials, 

thereby providing little constraint on the model estimate for that condition. The parameter 

estimates for that subject were therefore set to the group average for that condition. The 

overall grouped BIC value provided very strong support for the design that allowed three 

parameters to vary between SE and AE conditions (response threshold (b), drift rate (v), 

and non-decision time (t0)). To quantify that support, we approximated posterior model 

probabilities based on BIC assuming a fixed effect for subjects (see Burnham and 
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Anderson, 2002), which showed this design to be more than 1010 times more likely than 

the next best design (see Results section). 

Single-trial linear ballistic accumulator (STLBA) 

Response times and accuracy vary on each trial due to environmental changes 

and/or internal noise in a subject’s cognitive state. It is therefore important to not only 

map overall mean behavioral patterns with parameters that quantify relevant cognitive 

processes (as can be done with the standard LBA), but also to link estimates of these 

parameters and BOLD responses on a trial-by-trial basis. 

In the standard LBA model (as in other decision making models, see Ratcliff, 

1985; Ratcliff and Rouder, 1998), drift rates are normally distributed across trials, with 

different distributions for each respective accumulator. This assumption of normally 

distributed drift rates implies that drift rates which are close to the mean of the distribution 

are more likely than values from the tails of the distribution. In addition, the uniform 

distribution [0, A] restricts the range of starting points for each accumulator. These 

considerations yield the following maximum-likelihood estimates (MLE) for a single-trial 

drift rate (di) and a single-trial starting point (ai) given a trial with response time (ti): 
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where b, v, A, and t0 are the parameters estimated using the standard LBA that correspond 

to the response threshold (b), the drift rate (v), the height of the distribution of starting 

points (A), and the non-decision time (t0), respectively. Note that the assumed 

independence between estimated parameters that is found in the standard LBA model is no 

longer preserved with the STLBA. Nevertheless, parameter recovery studies show that the 

STLBA can explain much of the variance in the true parameter values (see the text 

surrounding Figure 3 in Van Maanen et al., 2011). 

As in the main LBA analysis, we computed single-trial estimates of drift rate based 

on a model where response threshold (b), drift rate (v), and the non-decision time (t0) were 

free to vary between SE and AE trials, whereas the height of the uniform distribution of 

starting points (A) was fixed (see Table 2 for exact values). Constraining the model in 

other reasonable ways (e.g., fixing the non-decision time parameter) yielded qualitatively 

similar results. Note also that the single-trial estimates for the starting point here are 

mathematically equivalent to single-trial estimates of the response threshold since what is 

actually being calculated is the relative distance between the two. 

fMRI Data Acquisition and Analysis 

All scanning was carried out on a General Electric MR750 3T scanner equipped 

with an 8-channel head coil at the W.M. Keck Center for Functional MRI on the main 

campus at UCSD. Anatomical images were acquired using a FSPGR T1-weighted 

sequence that yielded images with a 1x1x1mm resolution. Whole brain echo planar 

functional images (EPI) were acquired in (for 8 of the subjects) or 26 (for the remaining 
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subjects) oblique slices (TR = 1500 ms, TE = 30 ms, flip angle = 90°, image matrix = 64 x 

64, field of view = 192 mm, slice thickness = 3 mm, 0mm gap). 

Data analysis was performed using BrainVoyager QX (v 1.91; Brain Innovation, 

Maastricht, The Netherlands) and custom timeseries analysis routines written in Matlab 

(version 7.11.0.584; The Math Works, Natick, Massachusetts). Data from the main 

experiment were collected in 8 or 10 runs per subject (i.e., either 4 or 5 runs per response 

instruction type, respectively). EPI images were slice-time corrected, motion-corrected 

(both within and between scans) and high pass filtered (3 cycles/run) to remove low 

frequency temporal components from the timeseries. The timeseries from each voxel in 

each observer was then z-transformed on a run-by-run basis to normalize the mean 

response intensity across time to zero. This normalization was done to correct for 

differences in mean signal intensity across voxels (e.g., differences related to a voxel’s 

composition or by its distance from the coil elements). We then estimated the magnitude 

of the BOLD response on each trial by shifting the timeseries from each voxel by four 1.5 

second TRs (6 seconds) to account for the temporal lag in the hemodynamic response 

function, and then extracting data from the two consecutive 1.5 second TRs that 

correspond to the duration of each 3 second trial (see Kamitani and Tong, 2005; Serences 

and Boynton, 2007a,b; Serences et al., 2009). The two data points extracted from these 

two consecutive TRs were then averaged together to compute a single estimate of the 

response in each V1 voxel on each trial. These trial-by-trial estimates of the BOLD 

response amplitude were subsequently used as inputs to the forward encoding model (see 

Estimating feature-selective BOLD response profiles using a forward encoding model). 
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Functional localizer scans 

Each subject participated in two runs of an independent functional localizer scan to 

identify voxels within primary visual cortex that were responsive to the spatial position 

occupied by the oriented grating stimulus employed in the primary experiment. The 

localizer stimulus was comprised of a full-contrast counter-phase modulated (8Hz) 

checkerboard that exactly matched the size of the oriented grating stimulus used in the 

main task. On each trial, the checkerboard stimulus was presented continuously for 10s, 

and the contrast of the checkerboard was reduced by 30% for a single video frame at 6 

pseudo-randomly selected time-points. Subjects were instructed to make a button-press 

response with their right index finger every time they detected a contrast decrement. Each 

10s trial was then followed by 10s of passive fixation. Visually responsive regions of 

primary visual cortex were identified using a general linear model (GLM) with a single 

regressor that was constructed by convolving a boxcar model of the stimulus sequence 

with a standard model of the hemodynamic response function (a difference-of-two gamma 

function model implemented in Brain Voyager, time to peak of positive response: 5s, time 

to peak of negative response: 15s, ratio of positive and negative responses: 6, positive and 

negative response dispersion: 1). Voxels were retained for analysis in the main 

experimental task if they passed a false discovery rate corrected single-voxel threshold of 

p<0.05. 

Retinotopic mapping 
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A meridian mapping procedure consisting of a checkerboard wedge flickering at 8 

Hz and subtending 60° of polar angle was used to identify V1 (Engel et al., 1994; Sereno 

et al., 1995). Subjects were instructed to fixate on the center of the screen and to passively 

view the peripheral stimulus. The data collected during these scans was then projected 

onto a computationally inflated representation of each subject’ss gray/white matter 

boundary. V1 in each hemisphere was then manually defined according to the 

representations of the upper and lower vertical meridian following standard practices 

(Wandell et al., 2007). 

Estimating feature-selective BOLD response profiles using a forward encoding model 

The goal of encoding models is to adopt an a priori assumption about the important 

features that can be distinguished using hemodynamic signals within an ROI, and then to 

use this set of features (or basis functions) to predict observed patterns of BOLD 

responses (Brouwer and Heeger, 2009, 2011; Dumoulin and Wandell, 2008; Gourtzelidis, 

et al., 2005; Kay and Gallant, 2009; Kay et a., 2008; Mitchell, et al., 2008; Naselaris, et 

al., 2009; Thirion, et al., 2006; reviewed in Naselaris, et al., 2011; Saproo and Serences, 

2011). Here, we assumed that the BOLD response in a given V1 voxel represents the 

pooled activity across a large population of orientation selective neurons, and that the 

distribution of neural tuning preference is biased within a given voxel due to large-scale 

feature maps (Freeman et al., 2011) or to random anisotropies in the distribution of 

orientation-selective columns within each voxel (Kamitani and Tong, 2005; Swisher et al., 

2010). Thus, the BOLD response measured from many of the voxels in V1 exhibit a 
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robust orientation preference (Haynes and Rees, 2005; Kamitani and Tong, 2005; 

Serences et al., 2009; Brouwer and Heeger, 2011; Freeman et al., 2011). 

To estimate orientation-selective response profiles based on activation patterns in 

V1, we first separated the data from the 8-10 scanning runs obtained for each subject into 

train and test sets using a “leave two-out” cross-validation scheme (i.e., all but one SE and 

one AE run were used as a training set, and the held-out SE and AE runs were used as a 

test set). By holding one AE and one SE run out for use as a test set, we ensured that the 

training set had an equal number of trials of each type. For each run in the training set, we 

then computed the mean response evoked by each of the 9 orientations, separately for each 

voxel. The mean responses were then sorted based on stimulus orientation and run (i.e. 

mean response to orientation 1 was first, then orientation 2, …, orientation 9). Thus, each 

training set had 54 observations for subjects who underwent 8 runs in the scanner (6 runs 

in training set x 9 orientations), and 72 observations for subjects that underwent 10 runs in 

the scanner (8 runs in the training set x 9 orientations). Note that, as described below, data 

in the test set were not averaged across trials, and a unique channel response function was 

estimated for every trial. 

Adopting the terminology of Brouwer and Heeger (2009; 2011), let m be the 

number of voxels in a given visual area, n1 be the number of observations in the training 

set (either 54 or 72), n2 be the number of trials in the test set, and k be the number of 

hypothetical orientation channels. Let B1 (m x n1 matrix) be the training data set, and B2 

(m x n2 matrix) be the test data set. Under the assumption that the observed BOLD signal 

is a weighted sum of underlying orientation selective neural responses, we generated a 
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matrix of hypothetical channel outputs (C1, k x n1) comprised of nine half-sinusoidal 

functions raised to the 6th power as a basis set (see Figure 4). The training data in B1 were 

then mapped onto the matrix of channel outputs (C1) by the weight matrix (W, m x k) that 

was estimated using a GLM of the form: 

B1 = WC1          (1) 

where the ordinary least-squares estimate of W is computed as: 

Ŵ = B1C1
T(C1 C1

T)-1     (2) 

The channel responses C2 (k x n2) were then estimated for the test data (B2) using the 

weights estimated in (2): 

Ĉ2 = (ŴTŴ)-1ŴTB2     (3) 

The first steps in this sequence (equations 1-2) are similar to a traditional univariate GLM 

in that each voxel is assigned a weight for each feature in the model (in this case, one 

weight for each hypothetical orientation channel). Equation 3 then implements a 

multivariate computation because the channel responses estimated on each trial (in C2) are 

constrained by the estimated weights assigned to each voxel and by the vector of 

responses observed across all voxels on that trial in the test set. Thus, one key feature of 

this approach is that a set of estimated channel responses can be obtained on a trial-by-trial 

basis so long as the number of voxels is greater than the number of channels. If there are 

fewer voxels than channels, then unique channel response estimates cannot be derived as 

the number of variables being estimated exceeds the number of available measurements. 
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This ability to estimate the orientation-selective tuning profile on each trial is exploited 

when comparing channel responses on correct and incorrect trials and when correlating 

channel responses with accuracy and drift rates on a trial-by-trial basis (see Results). The 

shape of the basis functions used in C1 has a large impact on the resulting channel 

response estimates. In the present experiment, we used half-sinusoidal functions that were 

raised to the 6th power to approximate the shape of single-unit tuning functions in V1, 

where the 1/√2 half-bandwidth of orientation tuned cells is approximately 20° (although 

there is a considerable amount of variability in bandwidth, see Ringach et al., 2002a; 

Ringach et al., 2002b; Gur et al, 2005; Schiller 1976). Given that the half-sinusoids were 

raised to the 6th power, a minimum of seven linearly independent functions was required 

to adequately cover orientation space (Freeman and Adelson, 1991); however, since we 

presented nine unique orientations in the experiment, we used a set of nine evenly 

distributed functions. The use of more than the required seven basis functions is not 

problematic so long as the number of functions does not exceed the number of measured 

stimulus values, in which case the matrix C1 would become rank deficient. While we 

selected the bandwidth of the basis functions based on physiology studies, all results that 

we report are robust to reasonable variations in this value (i.e., raising the half-sinusoids to 

the 5th-8th power, all of which are reasonable choices based on the documented variability 

of single-unit bandwidths). Note that since the magnitude of the channel responses is 

scaled by the amplitude of the basis functions (which was set to 1 here), the units along 

the y-axes of all data plots are in arbitrary units. Importantly, however, scaling the basis 

functions to some other common value would not change the differential response 

between conditions. 
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Using this modeling approach, the center position of each function in the basis set 

can be systematically shifted across orientation space to estimate the response in a channel 

centered at any arbitrary orientation (as long as the channels remain linearly independent; 

Freeman and Adelson, 1991). While this method of shifting the center of each channel 

across orientation space could in principle be used to generate channel response profiles 

with a resolution of 1° (or even smaller), we opted to reconstruct the response functions in 

5° steps as no additional insights were gained by estimating the responses at a higher 

resolution. After generating a channel response function on each trial in 5° steps across 

orientation space, each function was circularly shifted to a common stimulus-centered 

reference frame, and these re-centered response functions were averaged across left and 

right V1 and across all trials of a like kind. Thus, by convention the 0° point along the x-

axis in all plots refers to the stimulus that evoked the response profile. Finally, since all 

channel response functions were found to be symmetrical about their center point, we 

averaged data from corresponding offsets on either side of the 0° point (i.e., data were 

averaged from the channels offset by +5° and -5° from the stimulus, +10° and -10°, and so 

forth) to produce the reported orientation tuning functions. Note that in the process of 

collapsing across channels centered on both positive and negative offsets from 0°, we 

necessarily collapsed across mismatch trials in which there was either a clockwise or a 

counterclockwise offset between sequentially presented gratings within a trial. However, 

sorting the data by the rotational offset of the deviant grating had no qualitative impact on 

any of our results, presumably because the two gratings were flickering back and forth on 

sequential presentations over the course of the 3s trial (see Figure 1) and because there 

was a random jitter of up to ± 6° introduced on each trial (see task description above), 
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which was on the same order as the offset between sequential gratings on mismatch trials 

(±5°). 

Bootstrapping/randomization procedure for evaluating statistical significance 

Because the basis functions used to estimate channel responses overlapped – thus 

violating the independence assumption of traditional statistical tests – we estimated 

statistical significance using a non-parametric bootstrapping/randomization procedure. 

Note that this bootstrapping/randomization procedure was used for all comparisons related 

to BOLD tuning functions (see Figures 6 and 7, AE v. SE, correct AE v. incorrect AE, 

correct SE v. incorrect SE, the interaction between AE v. SE based on accuracy, AE 

logistic regression beta weights v. SE logistic regression beta weights, and single-trial 

correlations between AE responses and drift rate v. single-trial correlations between SE 

responses and drift rate). First, a series of standard paired t-tests was performed to 

determine which points along the two tuning curves differed significantly (using a 

threshold of p<0.05 for each individual t-test). We then generated a new data set by 

randomly selecting 14 participants with replacement and then re-assigning the condition 

label associated with data from each participant with a probability of 0.5. A series of 

paired t-tests was performed on the re-sampled and randomized data set using the same 

procedure applied to the observed data. This re-sampling plus randomization procedure 

was then iterated 10,000 times to determine the probability of obtaining the pattern of 

significant differences obtained using the intact data set under the null hypothesis that the 

two conditions are equivalent (i.e., interchangeable). The reported p-values in the main 

text thus reflect the proportion of times we observed a pattern of significant t-tests in the 
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re-sampled data that matched the pattern obtained in the observed data. Note that the 

behavioral data were evaluated using conventional parametric statistical techniques. 

Results 

Response time (RT) and accuracy results 

Trials on which RTs were faster than 200 milliseconds were discarded in all 

subsequent analyses (including model fitting procedures described below, see Materials 

and Methods). Two-way repeated-measures analysis of variance (ANOVA) with factors 

for response-emphasis (speed vs. accuracy emphasis, or SE and AE trials, respectively) 

and trial type (match vs. mismatch) was used to assess accuracy and RT data collected 

during the scanning session (see Table 1 for a summary of the group data). The task 

instructions produced a strong SAT effect: participants responded faster on SE trials 

compared to AE trials (F(1,13)=39.168, p<0.001, Table 1), and there was a corresponding 

drop in accuracy on SE trials (F(1,13)=71.975, p<0.001, Table 1). 

On average, subjects gave a “match” response 55% of the time, which is 

significantly greater than chance (one-sample t-test, t(13)=2.49, p=0.03). In addition, RTs 

were slower and accuracy slightly better on match trials compared with mismatch trials 

(F(1,13)=13.26, p<0.01; F(1,13)=5.4, p<0.05, Table 1), which is consistent with the bias 

to respond “match” over “mismatch” and commensurate with the well-known propensity 

for making confirmatory responses (Clark and Chase, 1972). There was an interaction 

between response-emphasis and trial type for RTs (F(1,13)=12.6, p<0.01, Table 1), with 
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selectively long RTs on match AE trials. However, there was no interaction between 

response-emphasis and trial type for accuracy rates (F(1,13)=0.61, p=0.45, Table 1). 

Linear Ballistic Accumulator (LBA) Model Results 

Accuracy rates and RTs might be lower on SE trials compared to AE trials due to 

differences in response caution and/or in the rate at which sensory evidence is 

accumulated. Therefore, we used a mathematical model of decision making (see Figure 3) 

to investigate how emphasizing either speed or accuracy influenced the rate of sensory 

evidence accumulation (as captured by the drift rate parameter) and response caution (as 

captured by the distance between the starting point and the response threshold, see 

Materials and Methods). Given that the neuronal mechanisms thought to support fine 

orientation discriminations are reasonably well-characterized (see Figure 2 and 

Predictions section below), we focused our analyses on mismatch trials (data from match 

and mismatch trials were nonetheless fit simultaneously, see LBA model analyses under 

Materials and Methods for more details). Eight different versions of the LBA model of 

Brown and Heathcote (2008) were fit by allowing all combinations of three different 

parameters (drift rate, response caution, and non-decision time) to either vary freely across 

SE and AE conditions or to be fixed across those conditions, while keeping the maximum 

starting point always fixed across AE and SE conditions (see Figure 3 and Linear Ballistic 

Accumulator model and LBA model analyses under Materials and Methods for more 

details). We then used the Bayesian Information Criterion (BIC) to select the most 

parsimonious of the eight models, which is a commonly used measure that evaluates the 

trade-off between model complexity and goodness of fit (Schwarz, 1978; Raftery, 1995). 
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The model yielding the best BIC was the one that estimated different values for the 

parameters corresponding to response caution, drift rate, and non-decision time on AE 

trials compared to SE trials (see Table 2 for a summary of the parameter fits to data 

averaged over all the subjects). Based on approximated posterior model probabilities (see 

LBA model analyses under Materials and Methods for more details), this design was 

found to be more than 1010 times more likely than the next best design. Individually, this 

design was also the modal result: the BIC values for 6 out of 14 subjects preferred this 

design. Four subjects had best-BIC designs that included an effect on drift rate but not 

response threshold, while three had best-BIC designs that included an effect on threshold 

but not drift rate. Only one subject had a best-BIC design which included no effect at all 

of the experimental manipulation. 

Figure 5 shows the fit of this best-BIC model to the cumulative response time 

distributions from the data. This figure estimates the distributions using quantiles plotted 

against response probability. These plots are also known as “defective cumulative 

distribution plots” and are a standard method for evaluating the quality of fit for response 

time models, as they provide a much more rigorous test than histograms (for introductions 

to this method and related discussion, see Ratcliff and Tuerlinckx, 2002 or Donkin et al., 

2011a). The model fits the data quite well, matching the probability (as indicated by the 

height on the graph) of each response type in each condition accurately. The latency of 

each part of the response time distribution (abscissa axis) is also accurately captured by 

the model. For example, in the SE and AE conditions, the median observed correct RT 

differs from the median LBA predicted value by less than 25 milliseconds. 
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In any choice task, it is possible that participants occasionally make random 

guesses that are independent of the available stimulus information. This is especially a 

concern in the SE condition where error rates were relatively high. However, since the 

decision model fits the response time distributions from both conditions very well (see 

Figure 5, left panel), we assume that simple random guessing is not a plausible 

explanation for observed differences in parameters between the SE and AE conditions. 

Nevertheless, to avoid having the model results overly biased by contaminant processes 

such as guessing, we incorporated a mixture process with the assumption that each 

response had a 98% probability of arising from the LBA choice process, and a 2% 

probability of arising from a guessing process with random responses and uniform RT 

over the observed range (see Ratcliff and Tuerlinckx, 2002 and Donkin et al., 2011a, for 

details). With this built in assumption, the decision model fit the response time 

distributions from both conditions very well (Figure 5), consistent with the hypothesis that 

participants were making informed decisions on the vast majority of trials. 

Consistent with most SAT studies, we observed a difference in response caution 

(Table 2; see Ratcliff, 1985; Ratcliff and Rouder, 1998; Voss et al., 2004; Palmer et al., 

2005). Moreover, we observed a larger difference in the rate of evidence accumulation 

associated with correct and incorrect accumulators on AE trials compared with correct and 

incorrect accumulators on SE trials (F(1,13)=18.27, p<0.005, repeated measures two-way 

ANOVA, with no main effect of stimulus type nor interaction between response type and 

stimulus type, F(1,13)=2.82 and 
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F(1,13)=0.95, respectively, p>0.10 for both). In the LBA, high accuracy occurs when the 

accumulator corresponding to the correct response for the stimulus gathers evidence more 

quickly than the accumulator corresponding to the incorrect response. The larger 

difference in drift rates between correct and incorrect accumulators on AE trials therefore 

suggests that sensory information about the correct response is being selectively 

accumulated at a higher rate when subjects make decisions in the absence of speed 

pressure. Such selectivity represents a departure from the typical assumption employed by 

mathematical psychologists that the rate of sensory evidence accumulation is fixed across 

AE and SE conditions (for extensive discussion, see Ratcliff and Rouder, 1998), as well as 

the typical assumption that response caution is the only cognitive process involved in the 

SAT. However, others have also observed evidence for a change in drift rates with task 

demands (Vandekerckhove et al., 2011) and we speculate that the effect may be even more 

apparent in the present task because subjects were engaged in a difficult perceptual 

discrimination in which the quality of sensory representations critically determined 

behavioral performance (see also Hubner et al., 2010 for a more theoretical treatment). 

Finally, the small observed differences in the time taken for non-decision processing 

between SE and AE conditions (see Table 2) are sometimes observed as a consequence of 

task instructions, but these differences are not usually of interest when the main purpose of 

the manipulation is to influence decision processing (see Starns and Ratcliff, 2010; Voss 

et al., 2004). 

In general, the parameter estimates from the LBA model have been shown to be in 

agreement with the corresponding parameters in the Ratcliff diffusion drift model (Donkin 
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et al., 2011b). Nevertheless, in order to demonstrate that our modeling results are not 

specific to our choice of model and fitting procedures, we also fit our behavioral data 

using the Diffusion Model Analysis Toolbox (DMAT) implemented in MATLAB 

(Vandekerckhove and Tuerlinckx, 2007; 2008). We used DMAT to fit the same eight 

models tested in our LBA analysis (i.e., all possible combinations of drift rate, response 

threshold, and non-decision time varying or staying fixed across AE and SE conditions 

while keeping all other parameters fixed). Group BIC values for each model design were 

calculated in the same manner as those computed for the LBA models (see LBA model 

analyses). Consistent with the results of the LBA model, the diffusion model design with 

the best BIC was the one that estimated different values for the parameters corresponding 

to drift rate and response threshold on AE versus SE trials (AE drift rates were larger than 

SE drift rates t(13)= 4.93, p<0.01, and AE response thresholds were higher than SE 

response thresholds t(13)=5.94, p<0.01). We then approximated posterior model 

probabilities using the group BIC value across all subjects for each model design. The 

model where only drift rate and response threshold varied yielded the greatest posterior 

probability (close to 1 while all other posterior probabilities were close to 0). 

Predicting feature-selective response patterns in V1 on mismatch trials 

We next sought to establish a relationship between feature-selective BOLD 

responses in early visual areas and behavior. In situations that require discriminating 

between two highly similar stimuli (as in the present experiment where orientations on 

mismatch trials were offset by only 5°), neurons tuned to off-target orientations provide 

the most information about the presence of mismatching orientations (see Figure 2; Hol 
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and Treue, 2001; Butts and Goldman, 2006; Jazayeri and Movshon, 2006; Purushothaman 

and Bradley, 2005; Navalpakkam and Itti, 2007; Regan and Beverley, 1985; Schoups et 

al., 2001; Scolari and Serences, 2009; 2010). Hence, we focused our analyses on 

mismatch trials in which the activation of off-target neurons is predicted to support such 

decisions. Given the relatively large difference in drift rates associated with correct and 

incorrect accumulators on AE mismatch trials (see Table 2), we predicted that correct 

mismatch AE trials should be associated with more activation in off-target neural 

populations compared to incorrect mismatch AE trials. The difference between the drift 

rates associated with the correct and incorrect accumulators on SE mismatch trials, on the 

other hand, is much smaller (see Table 2). We would therefore expect a small difference 

between off-target activation on correct SE mismatch trials compared to incorrect 

mismatch SE trials. 

Assessing feature-selective tuning functions in V1 on mismatch trials 

We used fMRI and a forward encoding model of BOLD responses (see Brouwer 

and Heeger, 2009, 2011; reviewed by: Naselaris et al., 2011; Serences and Saproo, 2011) 

to estimate how the SAT modulates orientation selective response profiles in V1 (see 

section entitled Estimating feature-selective BOLD response profiles using a forward 

encoding model under Materials and Methods). On mismatch trials, we first compared the 

BOLD-based orientation tuning functions (TFs) associated with AE trials with those 

associated with SE trials (Figure 6a) and found no significant difference in the shape of 

the curves (p=0.91; this and all subsequently reported p-values associated with TFs were 

estimated using a non-parametric randomization procedure due to the non-independence 
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of adjacent data points, see Materials and Methods). However, when examining only the 

AE mismatch trials, we found a significant interaction between channel offset and 

behavioral accuracy (p<0.01, Figure 6b). In particular, responses in channels tuned 

approximately 25°-65° away from the target-orientation showed larger responses on 

correct trials compared to incorrect trials. The observation of more activation in these off-

target channels on correct trials is consistent with our predictions, as these neural 

populations should better signal small changes in orientation. In turn, more gain in off-

target population should increase the quality of the information being sent to downstream 

decision mechanisms and thus increase the probability of a correct response (see Figure 

2c). In contrast, no differences were observed between channel responses associated with 

correct and incorrect SE trials (p=0.90, Figure 6c), and the difference between off-target 

channel responses on correct and incorrect AE trials was significantly larger than the 

difference on correct and incorrect SE trials (p<0.01, Figure 6d). This interaction is 

consistent with the relatively large difference in drift rates associated with correct versus 

incorrect accumulators on AE trials compared with SE trials (see Table 2). 

As shown in Figure 6b, we observed more activation in off-target channels on 

correct trials compared to incorrect trials in the AE condition. To further test the 

relationship between the magnitude of off-target responses and behavior, we performed a 

between-subject correlation between the change in drift rate and the change in off-target 

activation on correct and incorrect AE trials (where our measure of off-channel activation 

was the area between the TFs associated with correct and incorrect responses across 

channels tuned 25°-65° from the target orientation, see Figure 6b). Across subjects, larger 
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differences between correct and incorrect accumulator drift rates were positively 

correlated with larger differences in off-target activation on correct compared to incorrect 

AE trials (Figure 7a, R2=0.36, t(12)=2.59, p<0.025). This relationship was still observed 

even when the total area between the TFs associated with correct and incorrect AE trials 

(i.e., from 0° to 90°) was correlated with the differential drift rates (R2=0.30, t(12)=2.24, 

p<0.05), demonstrating that the positive correlation did not strongly depend on the exact 

points along the TFs that were entered into the analysis. This between-subjects 

relationship between BOLD and behavior suggests that individual differences in the 

degree of off-target activation in V1 – and by inference, individual differences in the 

amount of information encoded about the orientation offset of mismatched stimuli – 

predicts the speed of evidence accumulation during decision making when subjects are not 

under speed pressure. 

The correlation analysis presented in Figure 7a establishes a subject-by-subject 

relationship between off-target responses in V1 and the rate of sensory evidence 

accumulation. To further explore this relationship on a within-subject basis, we next used 

logistic regression to map fluctuations in the magnitude of the response in each orientation 

channel to accuracy on a trial-by-trial basis. A positive fit coefficient (beta coefficient) 

indicates that higher activation in a given channel predicts a higher probability of a correct 

behavioral response; negative beta coefficients indicate an inverse relationship between 

BOLD activation levels and behavioral performance. On AE mismatch trials, larger 

responses in channels tuned to the target (0° offset) were associated with a higher 

probability of incorrect responses, whereas larger responses in channels tuned 
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approximately ~40°-60° from the target were associated with a higher probability of a 

correct response (Figure 7b). In contrast, the beta coefficients on SE trials fluctuated 

around zero. This pattern gave rise to a significant cross-over interaction between the AE 

and SE beta coefficient curves (p=0.021, Figure 7b). As with the increased off-target 

activation on correct AE trials (Figure 6b) and the corresponding relationship with the rate 

of sensory evidence accumulation on a between-subject basis (Figure 7a), this trial-by-trial 

coupling between the magnitude of off-target channel responses and behavioral 

performance suggests that perceptual decisions are tightly coupled to activation levels 

across informative off-target sensory neurons, but only when subjects emphasize accuracy 

over speed. 

Correlating single-trial LBA (STLBA) estimates with off-target activation levels 

Given the data presented thus far that off-target activation levels in V1 predict 

behavior on AE trials, we would also predict a positive correlation between trial-by-trial 

estimates of the rate of sensory evidence accumulation and the magnitude of the BOLD 

response in off-target channels. To evaluate this relationship, we correlated trial-by-trial 

estimates of off-target channel responses and trial-by-trial estimates of drift rates derived 

from the STLBA model on a within-subject basis. 

As in the standard LBA model described above, we let the rate of sensory evidence 

accumulation (drift rate), response caution, and non-decision time vary freely across AE 

and SE conditions (and as in the standard LBA model, the height of the starting point 

distribution was fixed). Next, we estimated both channel responses and single-trial drift 
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rates on each correct mismatch trial and then computed a correlation between these 

metrics across all trials for each subject. We observed larger correlation coefficients on 

AE compared to SE trials in channels tuned 30°-55° away from the target. This pattern 

produced a significant crossover interaction between task instruction and correlation 

coefficient (p=0.01, Figure 7c), and suggests that larger off-target responses selectively 

predict higher rates of evidence accumulation on AE trials. This finding converges with 

the prior analyses of both channel response amplitude (Figure 6b,d), between-subject 

correlation (Figure 7a), and within-subject logistic regression (Figure 7b), and is 

consistent with the idea that responses in informative sensory neurons are strongly 

coupled with behavioral performance, but only in the absence of speed pressure. However, 

this analysis more directly links trial-by-trial fluctuations in off-target channel responses 

with the rate of sensory evidence accumulation during decision making. 

Note that the correlations shown in Figure 7c were expected to be small because 

both measures (model parameters and BOLD responses) are extremely variable when 

estimated on a trial-by-trial basis. Nevertheless, even though they were small in 

magnitude, the observed correlations were robust to reasonable changes in assumptions 

about how model parameters were constrained across conditions. For example, the same 

general pattern was observed using a variant of the STLBA model where the non-decision 

time was fixed across trials. These results were also specific to trial-by-trial estimates of 

the model parameter corresponding to the rate of sensory evidence accumulation: 

correlating V1 channel responses to raw response times or to trial-by-trial estimates of the 

parameter corresponding to response caution did not yield robust correlations. The 
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selectivity of the correlations presented in Figure 7c thus illustrate the explanatory power 

of the rate of sensory evidence accumulation on the SAT data and further supports the 

relationship between optimal response patterns in V1 and decision making when subjects 

emphasize accuracy over speed. 

Discussion  

When subjects emphasized accuracy, higher off-target activation levels predicted 

larger differential rates of sensory evidence accumulation (Figure 7a), logistic regression 

revealed a trial-by-trial relationship between behavioral accuracy and BOLD activation 

levels in off-target orientation channels (Figure 7b), and a model that provides trial-by-

trial estimates of the latent cognitive processes involved in perceptual decision making 

(Van Maanen et al., 2011) revealed a correlation between activation levels in off-target 

channels and the rate of sensory evidence accumulation (Figure 7c). 

The observation that off-target activation levels consistently predict behavioral 

performance on AE trials suggests that decision mechanisms can selectively pool inputs 

from the most informative sensory neurons (Purushothaman and Bradley, 2005; Law and 

Gold, 2009). However, this reliance on informative off-target channels during decision 

making only appears to happen on AE trials, as fluctuations in off-target responses do not 

predict behavior under speed pressure. This observation leads to an interesting prediction: 

given the low overall accuracy under speed pressure, we might have expected that off-

target activation levels on SE trials more closely match off-target activation levels on 

incorrect AE trials (compare Figures 6a and 6b). Contrary to this prediction, we instead 
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observed that tuning functions in the SE condition more closely resemble tuning functions 

on correct AE trials. This suggests that poor performance on SE trials is not related to low 

overall signal in off-target channels per se, but instead is caused by a failure to rely on 

informative populations of sensory neurons in an optimal manner during decision making. 

Although further investigation is clearly warranted, this apparent failure to rely on 

informative off-target neural responses on speeded trials may reflect a heuristic that 

enables a quick but imprecise readout of sensory information when response speed is at a 

premium. 

One interpretation of the relationship between behavior and off-target modulations 

on AE trials holds that top-down attentional signals originating in frontal and parietal 

cortex differentially bias activation levels in off-target channels on a trial-by-trial basis. 

This type of attentional-feedback account is consistent by many theories of attentional 

control (reviewed in: Corbetta and Shulman, 2002; Desimone and Duncan, 1995; Kastner 

and Ungerleider, 2000; Noudoost et al., 2010; Serences and Yantis, 2006; Yantis, 2008) as 

well as recent evidence that the frontal operculum plays a causal role in governing 

attentional modulations in visual cortex and concomitant changes in performance across 

observers (Higo et al., 2010), and that subregions of frontal cortex mediate perceptual 

decisions (Purcell et al., 2010; Gold and Shadlen, 2007; Heekeren et al., 2004; de Lafuente 

and Romo, 2005; 2006; Lemus et al., 2010; Hernandez et al., 2010; Ho et al., 2009; 

Kayser et al., 2010). However, since we did not directly manipulate attention in this study, 

it is difficult to dissociate sources of variability in V1 that are due to fluctuations in top-

down biasing signals as opposed to sources of variability that are local to visual cortex. 
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Future studies could more critically examine this issue by pairing a SAT task with either a 

valid or a neutral attention cue to determine if speed pressure selectively impairs a 

subject’s ability to use prior information to appropriately bias population response profiles 

in visual cortex. 

In addition to suboptimal usage of sensory information during decision making, it 

is likely that performance under speed pressure in our task is further limited by other 

neural mechanisms that operate outside of primary visual cortex. Several studies have 

found increased activation in the striatum when speeded responses are emphasized (Van 

Veen et al., 2008; Forstmann et al., 2008; Forstmann et al., 2010), consistent with a 

response threshold account that only motor and frontal areas are involved in mediating the 

SAT (Van Veen et al., 2008; Ivanoff et al., 2008; Forstmann et al., 2008, 2010; Wenzlaff 

et al, 2008; Ratcliff, 1985; Ratcliff and Rouder, 1998). In contrast, our findings provide 

support for the sensory-readout account, which posits that perceptual performance under 

speed pressure is also limited by how efficiently sensory information is integrated during 

decision making. 

The forward encoding model that was used to estimate responses in different 

orientation channels is a proxy for the actual neural activity in the underlying populations 

of sensory neurons. This leads to an inevitable loss of resolution as a single V1 voxel 

contains many neural populations, and the bandwidth of V1 neurons can be highly 

variable. Therefore, it is difficult to pinpoint the exact orientation offset at which off-target 

BOLD modulations would peak given a perfectly optimal modulation of underlying neural 

responses. However, the observation of increased responses starting in channels tuned 
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25°-30° from the target is reasonable given the known tuning function properties of cells 

in V1 (see Ringach et al., 2002a; Ringach et al., 2002b; Gur et al, 2005; Schiller 1976). 

More generally, the robust relationship between off-channel activation levels and behavior 

supports the functional importance of the observed modulations, and is consistent with 

established models of optimal gain during fine-discriminations (Figure 2). 

Generating channel tuning functions also depends critically on the ability of fMRI 

to reliably measure orientation-selective responses in primary visual cortex. In V1, it is 

likely that these feature-selective response biases depend to a large degree on relatively 

coarse maps of orientation space that unfold across the cortical surface (Freeman et al., 

2011; Mannion et al., 2010; Leventhal, 1983; Sasaki et al., 2006; Schall et al., 1986; 

Zhang et al., 2011). For instance, there is a radial orientation bias in V1 (Freeman et al., 

2011; Sasaki et al., 2006; Zhang et al., 2011). Thus, neurons with spatial receptive fields 

in (say) the upper right visual field tend to respond more to oblique orientations around 

45°, and so on. Given the robust retinotopic organization of V1, this radial bias would 

generate an orderly representation of orientation across patches of cortex that represent 

each visual quadrant (Freeman et al., 2011; Sasaki et al., 2006; Zhang et al., 2011). In 

addition to this coarse orientation map across V1, voxel-level orientation selectivity may 

also reflect contributions from random anisotropies in the distribution of orientation 

selective columns within a voxel (Kamitani and Tong, 2005; Haynes and Rees, 2005; 

Swisher, et al., 2010; see Boynton, 2005 for a useful graphical illustration). Thus, there is 

growing evidence that the combination of BOLD fMRI and encoding models can be used 
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to index feature-selective responses arising from neural signals at both coarse and fine 

spatial scales. 

Despite this link, we do not claim that orientation selective response functions are 

solely related to neural spiking activity, as the BOLD signal is modulated by many sources 

including synaptic input from both local and distant inputs, tuned local field potentials, 

and even responses in astrocytes (Heeger et al., 2000; Heeger and Ress, 2002; Logothetis 

et al., 2001; Buxton, 2002; Logothetis and Wandell, 2004; Sirotin and Das 2009; Das and 

Sirotin, 2011; Handwerker and Bandettini, 2011a, 2011b; Jia et al., 2011; Kleinschmidt 

and Muller, 2010; Schummers et al., 2008). However, given that neurons in early sensory 

areas like V1 are massively interconnected (e.g., Douglas and Martin, 2007), changes in 

the BOLD signal related to synaptic activity should be highly correlated with changes in 

local spiking activity. Despite these caveats, the robust predictive relationship between 

off-target channel modulations and behavior strongly supports the functional significance 

of these indirect BOLD assays of neuronal activation. 

The instruction dependent change in the reliance of decision mechanisms on off-

target channels in V1 is consistent with other recent studies of perceptual decision making. 

For instance, Kahnt and colleagues (2011) found that training-related improvements in 

performance on a difficult perceptual discrimination task could be explained by a model in 

which sensory information is read out more effectively, thereby improving the 

representations of the decision variables leading up to the ultimate choice (see also: Law 

and Gold, 2008; 2009; Purushothaman and Bradley, 2005; Pestilli et al., 2011). Similarly, 

Rahnev et al. (2011) observed that manipulating prior expectation increased functional 
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connectivity between posterior and frontal areas, consistent with an increase in the rate of 

sensory evidence transfer from earlier visual areas to putative decision mechanisms. Thus, 

the present results complement other recent studies that emphasize the importance of 

efficient sensory readout in perceptual decision making, and suggest that the optimality of 

readout breaks down under speed pressure. 

 

Chapter 2, in full, is a reprint of the material as it appears in The Optimality of 

Sensory Processing During the Speed-Accuracy Tradeoff in Journal of Neuroscience, 

23(32), 7992-8003. Ho, T.C., Brown S.D., Van Maanen, L., Forstmann, B.U., 

Wagenmakers, E.J., Serences, J.T. (2012). The dissertation author was the primary author 

of this paper. 
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Table 2.1. Behavioral accuracy and response times on correct trials during the fMRI 
experiment for each condition and for the main effect of response emphasis (speed vs. 
accuracy) and the main effect of trial type (match vs. mismatch). See Results for more 
details. Means ± 1S.E.M. across subjects. 

Condition Accuracy Response Time (ms) 

Speed (Match) 71.37+2.71 947.7 + 64.2 

Speed (Mismatch) 61.08+3.08 896.8+49.4 

Accuracy (Match) 90.00+1.78 1697.8+131.2 

Accuracy (Mismatch) 82.05+3.28 1443.9+92.9 

Speed (Match+Mismatch) 66.23+2.24 922.4+40.1 

Accuracy (Match+Mismatch) 86.02+2.00 1570.8+82.6 

Match (Speed+Accuracy) 80.69+2.40 1322.8+101.7 

Mismatch (Speed+Accuracy) 71.57+2.99 1170.4+73.7 
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Table 2.2. Average LBA parameter estimates for the best BIC model on mismatch and 
match trials. All parameters were fixed to be constant across “match” and “mismatch” 
trials except for the drift rates, which are assumed to be directly related to the quality of 
the stimuli (see LBA results for more details). Note that the response threshold parameter 
is equivalent to what we refer to as “response caution” in the main text, as the starting 
point is fixed across conditions (see Materials and Methods). Note that in the main text we 
refer to “correct accumulators” as the accumulator corresponding to the “match” response 
on trials where the stimulus gratings match, and also the accumulator corresponding to the 
“mismatch” response on trials where the gratings mismatch (and the converse is true for 
“incorrect accumulators.” Critically, there was a greater difference in the rate of sensory 
evidence accumulation (drift rates) between correct and incorrect accumulators on 
accuracy-emphasis trials compared to speed-emphasis trials (last row in the table). 

LBA parameters Speed 
(Mismatch) 

Accuracy 
(Mismatch) 

Speed 
(Match) 

Accuracy 
(Match) 

Starting point (A) 2.31 2.31 2.31 2.31 

Non-decision time (t0) 0.41 0.42 0.41 0.42 

Response threshold (b) 2.75 4.43 2.75 4.43 

Drift rate for accumulator 
corresponding to correct 
response (vc) 

2.67 3.00 2.75 2.58 

Drift rate for accumulator 
corresponding to incorrect 
response (ve) 

1.71 0.69 1.19 -0.07 

Differential drift rate (vc - ve) 0.96 2.31 1.56 2.65 
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Figure 2.1. Behavioral paradigm. Subjects were presented with an oriented grating at 
full contrast flickering at 6 Hz (on for 83.33 milliseconds, off for 83.33 millisecond, etc. 
for a total of 3 seconds). On each trial, the target orientation of the grating was selected 
from one of nine possible orientations (0°, 20°, 40°, 60°, 80°, 100°, 120°, 140°, 160°), plus 
or minus an offset randomly selected between 0° and 6°. On half the trials, the same 
stimulus was presented on every ‘flicker’ (match trials), but for the remaining trials 
(mismatch trials), the orientation of the grating was offset by 5�‹ on alternating flickers 
(either clockwise or counterclockwise, counterbalanced across trials). On alternating runs, 
subjects had to emphasize either speed or accuracy in their responses. See Materials and 
Methods for additional details. 
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Figure 2.2. Model of optimality for fine perceptual discrimination tasks. (a) 'On-
target' neurons (0° offset on the abscissa axis) exhibit small changes in firing rates (Δ1) in 
response to two similar stimuli (denoted by the vertical solid line and the vertical dashed 
line). Off-target neurons, on the other hand, undergo larger changes in firing rates in 
response to similarly spaced stimuli (as denoted by Δ 2). (b) The information available for 
supporting a fine-discrimination - here defined as the slope of the tuning curve of a neuron 
at the target angle - plotted for neurons selective to all possible orientations (with 0° on the 
abscissa axis indicating the target). As suggested by panel (a), off-target neurons are 
potentially more informative when performing a fine discrimination. (c) Increasing the 
gain of the informative off-target neurons serves to further increase their sensitivity to 
small changes in the stimulus feature, thereby leading to improved discrimination 
performance. 



109 
 

 

Figure 2.3. Schematic of the linear ballistic accumulator (LBA) model. Schematic 
illustration of the LBA model as applied to the orientation discrimination task. The 
stimulus grating (top) provides information to two racing accumulators; the first 
accumulator to reach threshold determines the response, and thus, the decision processing 
time. One accumulator corresponds to each possible response (“match” shown in black or 
“mismatch” shown in gray). The drift rates are assumed to be determined by the stimulus 
properties. The drift rate for each accumulator varies trial by trial based on a normal 
distribution, and the LBA reports the average rates from this distribution. Response 
caution determines how much sensory evidence needs to be accumulated before a 
response is made and is captured by the distance between the response threshold and the 
starting point. The final response time is the time taken for the first accumulator to reach 
threshold plus a constant offset (the non-decision time). 
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Figure 2.4. Schematic of the forward encoding model. (a) Basis set comprised of nine 
half-sinusoidal functions raised to the 6th power: the functions are evenly distributed 
across orientation space. (b) Depiction of the design matrix C1. There is one column 
corresponding to each observation in the training data matrix, and each row represents the 
response profile of one of the 9 half-sinusoidal basis functions shown in panel (a). This 
matrix is used to calculate the weight matrix (W) that estimates the magnitude of the 
response in each voxel in each of the 9 hypothetical orientation channels. This weight 
matrix can then be used to infer the response profile across all 9 channels on each trial in 
the test data set. See equations 1-3 under Estimating feature-selective BOLD response 
profiles using a forward encoding model for more details. 
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Figure 2.5. LBA model fits. Cumulative response time distributions estimated from the 
data using quantiles (black circles and lines) and predicted by the LBA model (gray dots 
and lines). Data are shown separately for the speed emphasis condition (left panel) and the 
accuracy emphasis condition (right panel). In each panel, the upper lines and symbols 
show quantile estimates for correct responses, and the lower set are for incorrect 
responses. The data quantiles and model predictions were generated separately for each 
individual participant and then averaged. The height of the graphs shows response 
probability. Nine quantile estimates are shown in each condition, corresponding to 10%, 
20%, … , 90%. 
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Figure 2.6 (a) Orientation-selective tuning functions for mismatch AE and SE trials. 
Channel tuning functions (TFs) for the AE data (gray) and SE data (black) are plotted as a 
function of each orientation-channel’s offset from the stimulus presented on each trial 
(which is by convention always set to 0°; note that channel responses were collapsed 
across clockwise and counterclockwise offsets as the functions were symmetrical about 
the 0° point, see Materials and Methods). (b) Tuning functions for mismatch accuracy 
emphasized (AE) trials. A comparison of tuning functions for correct (gray) versus 
incorrect (black) AE trials. The activation profile for correct responses was significantly 
different from incorrect responses, with greater activation in channels offset by 35°-60° on 
correct AE trials. All error bars ± 1S.E.M. (c) Tuning functions for mismatch speed 
emphasized (SE) trials. A comparison of tuning functions for correct (gray) versus 
incorrect (black) SE trials. There was no significant difference between the two tuning 
functions. All error bars ± 1S.E.M. (d) Interaction between mismatch AE trials and 
mismatch SE trials on correct and incorrect trials. A comparison of the difference between 
correct and incorrect trials for AE (gray) and SE (black) tuning functions. There was a 
significant difference between these two tuning functions, with larger off-target 
modulations on AE trials. All error bars ± S.E.M. across subjects. All p-values were 
calculated based on a non-parametric randomization procedure (see Materials and 
Methods for more details). 
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Figure 2.7 (a) Between-subject correlation between differences in off-target channel 
responses and differences in drift rates. The difference in the drift rates associated with 
correct and incorrect accumulators is positively correlated with the difference in off-target 
activation on correct and incorrect trials. (b) Logistic regression results. Beta coefficients 
computed using a logistic regression to relate BOLD channel responses and behavioral 
performance (correct/incorrect) on a trial-by-trial basis. Positive coefficients indicate that 
larger BOLD signals correspond to correct responses, while negative coefficients indicate 
that larger BOLD signals correspond to incorrect responses. On AE trials (gray), larger 
signals in channels that were offset by 40°-60° from the stimulus predicted a higher 
probability of correct responses. The fit coefficients on SE trials (black) clustered around 
zero, except in the 0° channel, giving rise to a significant cross-over interaction. All error 
bars ± 1S.E.M. across subjects. (c) Correlations between STLBA drift rates with channel 
responses on correct mismatch trials. Correlation coefficients (r-values) between STLBA 
drift rates and BOLD channel responses for the AE data (gray) and SE data (black) as a 
function of channel-orientation. On each trial, we estimated both the channel response and 
the drift rate and then computed a correlation coefficient across trials per subject. The r-
values plotted here are averaged across subjects. The STLBA parameters were estimated 
based on a model where response threshold, non-decision time, and drift rate were allowed 
to vary between task conditions. All error bars ± 1S.E.M. across subjects. All p-values 
were calculated based on a non-parametric randomization procedure (see Materials and 
Methods for more details). 
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CHAPTER 3: Perceptual Consequences of Feature-based Attentional Enhancement 

and Suppression 

Ho TC, Brown S, Abuyo NA, Ku EJ, Serences JT (in press). Journal of Vision. 

Abstract 

Feature-based attention has been shown to enhance the responses of neurons tuned to an 

attended feature while simultaneously suppressing responses of neurons tuned to 

unattended features. However, the influence of these suppressive neuronal-level 

modulations on perception is not well understood. Here, we investigated the perceptual 

consequences of feature-based attention by having subjects judge which of four random 

dot patterns (RDPs) contained a motion signal (Experiment 1) or which of four RDPs 

contained the most salient non-random motion signal (Experiment 2). Subjects viewed 

pre-cues which validly, invalidly, or neutrally cued the direction of the target RDP. 

Behavioral data were fit using the linear ballistic accumulator (LBA) model; the model 

design that best described the data revealed that the rate of sensory evidence 

accumulation (drift rate) was highest on valid trials and systematically decreased until the 

cued direction and the target direction were orthogonal. These results demonstrate 

behavioral correlates of both feature-based attentional enhancement and suppression. 
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Perceptual Consequences of Feature-based Attentional Enhancement and Suppression 

Top-down visual attention is a highly adaptive mechanism that modulates sensory 

signals in order to facilitate the processing of behaviorally significant stimuli. Attention 

can be allocated based on prior knowledge of spatial locations (spatial attention) or of a 

target defining feature (feature-based attention). Numerous studies demonstrate that 

spatial attention improves behavioral performance on a wide array of tasks (Posner, 1980; 

reviewed in Carrasco, 2011) and that these improvements in performance are accompanied 

by corresponding increases in the gain of sensory neurons that have a receptive field at the 

attended location (e.g. McAdams and Maunsell, 1999; Reynolds et al., 1999, 2000; 

Williford and Maunsell, 2006; reviewed in Reynolds and Heeger, 2009). In contrast, 

feature-based attention enhances the gain of neurons that are tuned to an attended feature 

and suppresses the gain of neurons that are tuned away from the attended feature 

(Martinez-Trujillo and Treue, 2004; Treue and Martinez-Trujillo, 1999; Khayat et al., 

2010; Cohen and Maunsell, 2011; Scolari, Byers, Serences, 2012).  

Consistent with neurophysiology data, previous psychophysical studies suggest 

that feature-based attention selectively increases sensitivity to relevant visual features in a 

variety of perceptual tasks (Busse et al., 2008; Sàenz et al., 2003; Baldassi and Verghese, 

2005; Felisberti and Zanker, 2005; Liu et al., 2007; Liu and Hou, 2011; Ling et al., 2009). 

However, the behavioral correlates of feature-based attentional suppression are less clear. 

One recent study suggests that feature-based attention suppresses neurons tuned away 

from an attended feature, consistent with evidence from single-unit recording (Ling et al., 

2009), while another study reported only an enhancement of an attended feature value 

without concurrent suppression of dissimilar features (White and Carrasco, 2011). 
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However, neither study systematically varied the relationship between the target stimulus 

and the focus of feature-based attention, so the consequence of attentional suppression on 

the efficiency of processing unattended features was not directly evaluated.  

In the present study, we employed a cueing paradigm to investigate both the 

facilitatory and suppressive effects of top-down feature-based attention on visual 

processing using a paradigm in which feature-based attention had to be deployed to 

stimuli that were distributed across the entire visual field. Using a quantitative model of 

perceptual decision making – the Linear Ballistic Accumulator (LBA; Brown and 

Heathcote, 2008) – we show that the rate of sensory evidence accumulation is highest for 

an attended feature and suppressed for stimulus directions rotated away from the attended 

direction. These findings provide behavioral evidence that feature-based attention can give 

rise to both improvements and impairments in perceptual processing. 

Experiment 1 

Methods 

Subjects 

11 right-handed subjects (5 females) were recruited from the University of 

California, San Diego (UCSD, La Jolla, CA) community. All had normal or corrected-to-

normal vision. Each subject gave written informed consent in line with the guidelines of 

the local Institutional Review Board at UCSD and the Declaration of Helsinki and 

completed two 1-1.5 hr sessions in a climate and noise controlled subject room. 

Compensation for participation was $10.00/hr for the experiment. Data from 3 subjects 
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were discarded due to subjects’ failure to return for the second session of the experiment 

(thus, data from 8 subjects were analyzed). 

Stimuli and task 

Subjects viewed the stimuli in a darkened room on a CRT monitor (MultiSync 

FP2141, refresh rate 85Hz) that was controlled by a PC running Windows XP. The 

luminance output of the monitor was measured with a Minolta LS-110 photometer and 

linearized in the stimulus presentation software. Subjects viewed the screen from a 

distance of approximately 60 cm. Visual stimuli were generated using the Psychophysics 

Toolbox stimulus presentation software (version 3; Brainard, 1997; Pelli, 1997) for Matlab 

(version 7.8.0; Mathworks, Natick, MA).  

Subjects were presented with four random dot patterns (RDPs). One RDP was 

presented in each quadrant of the screen, and centered 7.82° from the horizontal midline 

and 6.98° from the vertical midline (see Figure 1). Each RDP was composed of small dots 

(0.15° x 0.15°) confined within a circular aperture 8° in diameter. Each dot was presented 

for a limited lifetime of 100 ms and moved at a speed of 5°/s. Dots that reached the edge 

of the aperture were moved to the opposite side of the aperture and redrawn. The target 

RDP contained 100% coherent motion (i.e., all dots moved in the same direction), while 

the distractors contained 0% coherent motion (the direction of each dot was drawn from a 

uniform distribution). Subjects had to indicate which RDP contained coherent motion 

using one of four keys on the number pad that corresponded to the spatial position of each 

of the four stimulus locations. At the beginning of each trial there was either a valid cue 
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(50% of the trials) that correctly indicated the impending direction of the target stimulus, 

an invalid cue (25% of the trials) that incorrectly indicated the impending direction of the 

target stimulus, or a neutral cue (25% of the trials) that gave no indication of the 

impending target direction (see Figure 1). Invalid cues indicated directions that were offset 

from the target direction by +30° to +180° in 30° steps, where the order of presentation 

was determined pseudo-randomly on each trial with the constraint that all offsets were 

equally represented. All cues were presented centrally for 1000 ms and were followed by a 

1000 ms presentation of the four RDPs. Subjects were instructed to keep their eyes at 

fixation throughout the trial and were allowed to make a response any time after the onset 

of the stimulus array; each trial was self-paced and terminated once subjects provided a 

response. All subjects were encouraged to respond as quickly and as accurately as 

possible. Each block contained 48 trials in total, and the experiment consisted of 20 

blocks. Subjects typically completed 4 to 8 blocks on the first day of the experiment (in 

addition to training, see below) and then returned a second day to complete the remaining 

blocks. Subjects were allowed to rest between blocks if they chose to do so, and all 

analyzed data came from subjects who completed all 20 blocks.  

All participants were trained for a minimum of 160 trials immediately prior to the 

main experiment. All cues in the training session were neutral and provided no directional 

information. In order to equate performance and to ensure that subjects were not at ceiling, 

a staircasing procedure implemented in Psychtoolbox (QUEST, Watson and Pelli, 1983) 

was run to estimate the contrast threshold of the stimuli at which each individual could 

perform the task with approximately 75% accuracy. The contrast value estimated for each 
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subject was then fixed for the remaining blocks for the main experiment. The mean 

contrast level + SEM across 8 subjects was 1.65% + 0.05%. 

Linear Ballistic Accumulator (LBA) model 

The LBA model frames every decision as a race between N independent 

accumulators that correspond to each possible choice alternative, where N=4 in our 

experiments (see Figure 2 for a schematic of the model and Brown and Heathcote, 2008 

for more details). The first accumulator to reach the response threshold (or b) determines 

the response choice and the response time. For every trial, each accumulator begins with a 

random activation level (the starting point or k) that is independently drawn from a 

uniform distribution on [0, A]. The starting points vary from trial to trial and from 

accumulator to accumulator, but the height of the distribution (A) was fixed for each of the 

four accumulators. Since “response caution” is defined as the distance between the 

response threshold and the starting point, we hereon use the response threshold parameter 

to represent “response caution,” since the maximum of the starting point distribution here 

was fixed (in other situations where A is allowed to vary freely, “response caution” is 

sometimes defined as the response threshold minus the height of the starting point 

distribution; see Wolfe and Van Wert, 2010 for an example, although in that paper, 

“response caution” is referred to as “decision criterion”). During decision making, activity 

in each accumulator increases linearly and a response is deployed as soon as an 

accumulator crosses the response threshold. The predicted response time is thus the time 

taken to reach the threshold, in addition to a constant offset time (non-decision time or t0). 

The stimulus display drives the rate at which sensory evidence is gathered for each 
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accumulator (drift rate or d). These drift rates vary from trial to trial according to 

independent normal distributions (with the standard deviation, s, of these distributions 

being arbitrarily fixed at 1), with means v1, v2, … , vN for the N different response 

accumulators. The drift rate parameter estimated by the LBA model is thus the mean of 

this drift rate distribution, which reflects the quality of sensory information in favor of that 

particular response. For instance, if the upper right RDP contains 100% coherent motion 

while the other RDPs contain 0% coherent motion, there will be a large mean drift rate 

parameter for the accumulator corresponding to the upper right response, and small mean 

drift rates for the other three accumulators. All random values (i.e., the start points and 

drift rates) are drawn independently for each accumulator and are independent across 

decision trials. 

Since the starting point for the evidence accumulator is a random sample from a 

uniform distribution on [0,A], the amount of evidence that needs to be accumulated to 

reach the threshold b is a sample from the uniform distribution U[b-A,b], assuming b≥A. 

Since the drift rate for the i-th accumulator is a random draw from N(vi,s), the distribution 

function for the time taken for the i-th accumulator to reach threshold is the given by the 

ratio of these two, which has the following CDF (at time t>0):  
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Note that lower case Greek letters above refer to probability density functions 

(PDFs), while the upper case Greek letters refer to cumulative distribution functions 

(CDFs). For more details regarding these equations and their derivations, see Brown and 

Heathcote, 2008. 

We used the LBA for several reasons. First, the parameter estimates are jointly 

constrained by both accuracy and response time (RT) data (for both correct and incorrect 

responses), as opposed to using only one dependent measure. Second, the joint use of 

accuracy and RT data allows the LBA to naturally handle any speed-accuracy tradeoffs 

that may arise in the data. Finally, the LBA (and other similar models) isolate specific 

aspects of cognitive processing that are influenced by various experimental conditions (as 

captured by the different parameters in the model). For instance, in our cueing experiment, 

it could be that the cue influences the rate or quality of information extracted from the 

stimulus (as captured by the drift rate parameter), how much response caution a 

participant displays (as captured by the distance between the start point and the response 

threshold parameter), or it may affect non-decision related processes (as captured by the 

non-decision time parameter).  

To evaluate the plausibility of each of these possible models, we fit 8 different 

versions of the LBA model to the data (using all possible combinations of these three 

parameters to capture the effects of cueing). The parameters were estimated using the 

method of maximum likelihood (see Donkin et al., 2011 for full details of these methods, 
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as well as an extensive discussion of alternative approaches). Initial parameter values for 

searches were generated two ways: 1) heuristic calculations based on the data and 2) start 

points determined from the end points of searches for simpler, nested models. Different 

mean drift rates were estimated for accumulators corresponding to the correct responses 

(that is, responses that matched the actual location of the target RDP) and the same single 

value was estimated for all three accumulators corresponding to incorrect responses 

(responses which did not match the true location of the target RDP). These correct and 

incorrect drift rates were then averaged across all 4 accumulators for each subject, 

respectively. For the purposes of our experiments, we report only the correct drift rates.  

The most parsimonious of the 8 models that we evaluated was selected using the 

Bayesian Information Criterion (BIC), a commonly used criterion that evaluates the trade-

off between model complexity and goodness of fit (Schwarz, 1978; Raftery, 1995):  

.)(log)(log2 dNlikBIC ⋅+⋅−=  

Where lik=likelihood, N=number of data and d=number of parameters.  

We calculated the group BIC across all subjects for each model design, by 

summing log-likelihoods, sample sizes and parameter counts. The design with the lowest 

BIC value was considered the most parsimonious model. We then approximated posterior 

model probabilities based on the BIC by assuming a fixed effect for subjects. This 

approach assumed that every subject had an identical structure, such that when we 

compared model designs (e.g., the model where only drift rate varied versus the model 

where only response threshold varied), it was assumed that all subjects were described by 



123 
 

the same model design. These posterior model probabilities provide support regarding the 

likelihood of each model design (for more details, see Burnham and Anderson, 2002).  

Results 

A one-way repeated measures ANOVA revealed a significant effect of cue validity 

on accuracy (F(7,49) = 5.140, p=0.0002, Figure 3a). Mean accuracy rates in the neutral 

condition were slightly higher than in the invalid condition, but not different from the 

valid condition (see Figure 3a and the first column of Table 1). Most notably, accuracy 

was lowest when the target was offset by 90° or 120° from the attention cue, after which 

there was a gradual improvement in accuracy (i.e., rebound effect, see Discussion). 

Consistent with this observation, a one-way repeated measures ANOVA on the accuracy 

rates for only the invalid trials revealed a significant difference between accuracy levels 

across the different cue-target offsets (F(5,35)=2.8717, p=0.02). 

Similarly, RTs varied significantly as a function of cue condition (F(7,49) = 2.505, 

p=0.0278, Figure 3b). RTs were significantly faster on valid trials compared to neutral 

trials, but RTs on valid and invalid trials were of a similar magnitude (see Figure 3b and 

the second column of Table 1). A one-way repeated measures ANOVA on the RTs for 

only the invalid trials revealed no significant differences between RTs across the different 

cue-target offsets (F(5,35)= 0.7621, p=0.5832). 

The accuracy and RT data present a mixed picture: the accuracy data suggest that 

attention confers no facilitation for validly cued features, but instead operates primarily by 

suppressing features dissimilar from the cue. In contrast, the RT data suggest facilitation 

for the cued feature and little suppression of features dissimilar from the cue. However, 
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there is a speed-accuracy tradeoff occurring: subjects were equally accurate on both valid 

and neutral trials, but responded significantly faster on valid trials (see the first and second 

columns of Table 1 and Figure 3). By using both accuracy and RT data, the LBA model 

accounts for such tradeoffs and is able to estimate how the cue manipulation selectively 

influences various latent variables such as the rate of sensory evidence accumulation (i.e., 

the drift rate), the amount of information required to make a decision (i.e., the response 

threshold), and the time related to non-decisional processes.  

Out of the 8 tested model designs (where either response caution, drift rate, or non-

decision time could stay fixed or vary), the best fitting LBA model – as determined by the 

BIC – only allowed drift rate to vary between the 8 possible cue-target conditions (i.e. 

validly cued targets, neutrally cued targets, and the 6 possible invalidly cued targets, 

collapsing across clockwise and counterclockwise offsets). The parameter estimates for 

response caution and non-decision time for this model were 3.188 and 0.169, respectively 

(see Figure 4 for the drift rates across the cue conditions). The posterior probability of this 

model was almost 1, which was more than 1040 times more likely than the next best 

design, in which both drift rate and non-decision time varied (see Methods for more 

details). Extremely strong support for one alternative like this is characteristic of group-

average analyses like ours since such analyses compare extreme hypotheses (i.e., every 

subject is better described by one particular model compared to another). To confirm that 

these analyses did not bias our results, we also calculated posterior model probabilities 

separately for each individual participant and averaged the resulting probabilities: the 

model where only drift rate varied still had the greatest average posterior probability.  
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Figure 4 shows the drift rates corresponding to the accumulators that matched the 

correct response (and all subsequent stats focus on these drift rates as well, see the Linear 

Ballistic Accumulator (LBA) model section under Methods for more details). A one-way 

repeated-measures ANOVA revealed a strong effect of cue condition on drift rates 

(F(7,49) = 6.793, p<0.0001), and an individual t-test revealed that drift rates were larger 

on valid trials compared to neutral trials (see Figure 4 and see third column of Table 1). In 

contrast, the drift rates on with invalidly-cued trials were not significantly different from 

the drift rates observed on neutrally-cued trials (see Figure 4 and the third column of Table 

1). A one-way repeated measures ANOVA on the drift rates associated with just invalidly-

cued targets revealed a significant difference across the possible offsets (F(5,35)=5.092; 

p=0.0013). Thus, drift rates on invalid trials did exhibit a pattern that is analogous to the 

rebound effect observed in the accuracy data: as the offset between the cued direction and 

target direction increased, the drift rates corresponding to the correct response decreased 

up until an offset of 90°, after which they began to rise again. 

In Experiment 2, we attempted to amplify the suppressive effects of feature-based 

attention by creating a variant of the behavioral paradigm in which the distractors 

competed more effectively with the search target.  

 

Experiment 2  

Methods 

Subjects 
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13 right-handed subjects (5 females) were recruited from the University of 

California, San Diego (UCSD, La Jolla, CA) community. All had normal or corrected-to-

normal vision. Each subject gave written informed consent per Institutional Review Board 

requirements at UCSD and completed two 1-1.5 hr sessions in a climate and noise 

controlled subject room. Compensation for participation was $10.00/hr for the experiment. 

Data from 1 subject were discarded due to failure to return for the second testing session, 

so data from 12 subjects were analyzed. 

Stimuli and task 

All methods used in Experiment 2 are similar to those used in Experiment 1 unless 

noted. In Experiment 2, we also used a four alternative forced choice task, but the single 

target RDP contained 80% coherent motion, while the distractors contained 40% coherent 

motion (see Figure 5). The purpose of this manipulation was to magnify competition 

between distractors and the target, which we anticipated would lead to larger attentional 

effects compared to Experiment 1. The direction of each distractor RDP was offset from 

the target direction by either +15°, +45°, +75°, +105°, +135°, +165° (pseudo-randomly 

chosen on each trial, with the constraint that each distractor direction was unique). 

Subjects indicated which RDP contained the high coherence RDP using keys on the 

number pad to indicate their decision. Invalid cues indicated directions that were offset 

from the direction of motion of the target RDP anywhere from +30° to +180° (in 30° 

steps) on a trial by trial basis. All cues were presented centrally for 1000 ms and the 

stimulus array was presented for 2000 ms. Subjects were instructed to keep their eyes at 

fixation throughout the trial and were allowed to make a response any time after the 
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stimulus onset; each trial was self-paced and terminated once subjects provided a 

response. All subjects were encouraged to respond as quickly and as accurately as 

possible. Each block contained 48 trials and in total, the experiment consisted of 20 

blocks. Subjects typically completed 4 to 8 blocks on the first day of the experiment (in 

addition to training) and then returned a second day to complete the remaining blocks. 

Subjects were allowed to rest between blocks if they chose to do so, and all analyzed data 

came from subjects who completed all 20 blocks.  

We used the same training and staircasing procedures described in Experiment 1 to 

titrate performance to approximately 75% before data collection in the main task. For the 

main experiment, the mean contrast level + SEM across the 12 subjects was 15.21% + 

4.3%. 

 

Results 

A one-way repeated measures ANOVA revealed a significant effect of cue-validity 

on accuracy (F(7,77) = 19.561, p<0.0001; Figure 6a). Accuracy was higher on valid trials 

compared to neutral trials, and generally lower on invalid trials compared to neutral trials 

(see Figure 6a and the first column of Table 2a). A one-way repeated measures ANOVA 

for accuracy rates on only the invalid trials also revealed a highly significant difference 

(F(5,55)=11.319, p<0.0001). Most notably, accuracy was lowest at 90° and 120° (see 

Figure 6a and the first column of Table 2a), after which there was a gradual improvement 

(a rebound effect, see Discussion). 
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RTs also varied as a function of cue condition (F(7,77) = 7.44, p<0.0001; Figure 

6b). Compared with neutral trials, RTs were significantly faster on valid trials and 

significantly slower on invalid trials (see Figure 6b and the second column of Table 2a). A 

one-way repeated measures ANOVA for RTs on only the invalid trials also revealed a 

significant difference (F(5,55)=3.2106, p=0.013). 

A one-way repeated measures ANOVA also revealed a significant modulation in 

the error rate as a function of the directional offset between the cue and an incorrectly 

selected distractor (F(5,55) = 36.164, p<0.0001; see Table 2b and Figure 6c). In particular, 

subjects selected a distractor whose direction was only 15° away from the invalid cue 

significantly more often than distractors rotated more than 105° from the invalidly cued 

direction (see Table 2b and Figure 6c).  

As in Experiment 1, we found that the best fitting model based on the lowest BIC 

value was the one where only drift rate varied between the 8 possible cue types (collapsing 

across clockwise and counterclockwise offsets). The parameter estimates for response 

caution and non-decision time were 20.215 and 0.139, respectively (see Figure 7 for the 

drift rates across the cue conditions). 

 The approximate posterior model probability (see Methods for more details) was 

close to 1, more than 106 more likely than the next best design in which both drift rate and 

non-decision time varied. A one-way ANOVA revealed a robust effect of cue-type on drift 

rates (F(7,77) = 8.281, p<0.0001). Consistent with the raw accuracy rates and RTs, drift 

rates estimated from valid trials were significantly larger than drift rates estimated from 

neutral trials. Drift rates were also significantly lower for all invalid offsets compared to 



129 
 

neutral trials, with the exception of the 180° offset. A one-way repeated measures 

ANOVA for drift rates on only the invalid trials revealed a highly significant difference 

(F(5,55)=6.7937, p<0.0001). Drift rates showed the same rebound effect evident in the 

accuracy data: drift rates continued to decrease as the offset between the cue and target 

increased, up until an offset of 90°, after which they returned to the level observed on 

neutral trials (see Figure 7 and the third column of Table 2a).  

 

Discussion 

We utilized two variants of a cueing paradigm to show that goal-directed feature-

based attention influences visual performance through both facilitatory and suppressive 

mechanisms. In Experiment 1, when subjects searched for an oddball motion target, the 

LBA model revealed increased rates of sensory evidence accumulation for validly cued 

targets compared to neutral targets (facilitation). In addition, drift rates on invalidly cued 

trials varied as a function of the cue target offset, with highest drift rates observed for 

invalid targets that most closely matched the cue. However, while these patterns are 

suggestive, the drift rates on invalid trials were not significantly lower than drift rates on 

neutral trials. In Experiment 2, two key changes were made in an attempt to amplify 

attentional enhancement and suppression. First, we increased competition between the 

target and distractors in an effort to place additional demands on suppressive attentional 

mechanisms. Second, as a result of the increased  difficulty associated with having more 

salient distractors, the RDPs in Experiment 2 had higher mean contrast levels compared to 

Experiment 1: 15.21% versus 1.65%. Given that both neurophysiological and 

psychophysical work suggest that higher contrast levels can yield greater feature-based 
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attentional effects (e.g. Martinez-Trujillo and Treue, 2002; Hermann, Heeger, and 

Carrasco, 2012), it is possible that this increase in contrast might also contribute to more 

pronounced attentional modulations. Indeed, these manipulations had the intended effect, 

as an analysis of drift rates revealed extremely robust evidence for both attention-related 

facilitation and suppression (Figure 7).  

Rebound effect 

In Experiment 1, drift rates corresponding to invalidly cued targets were 

suggestive of a suppressive effect of feature-based attention (see Figure 4 and the third 

column of Table 1). This pattern, however, was far more pronounced in Experiment 2, 

where drift rates corresponding to the invalidly cued targets were significantly lower than 

those for neutrally cued targets as the offset between the invalid cue and target approached 

90° (see Figure 7 and the third column of Table 2a). However, as the offset between the 

invalid cue and target increased from 90° to 180°, the corresponding drift rates also 

gradually increased, giving rise to a “rebound effect” (see Figure 7 and the third column of 

Table 2a). A similar rebound pattern was also observed in Experiment 1, where a ANOVA 

conducted on drift rates on invalidly cued targets was significant (see Figure 4 and the 

third column of Table 1).  

This non-monotonic change in drift rate as a function of cue-to-target separation is 

superficially inconsistent with neurophysiological data showing maximal neural 

suppression for directions opposite from the attended direction (Martinez-Trujillo and 

Treue, 2004). Recall that our task only required subjects to identify the quadrant that 

contained the RDP with the highest motion coherence (among distractors containing 0% 
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motion coherence in Experiment 1 and 40% motion coherence in Experiment 2). As a 

result, the observed rebound effect could be related to subjects monitoring orientation 

signals associated with the axis of motion rather than the direction of motion per se. 

Indeed, many neurons in areas such as primary visual cortex will respond robustly to the 

axis of motion in a manner analogous to a static bar rendered at the same orientation (see 

Albright, 1984; Livingstone, 1998; Conway and Livingstone, 2003; Livingstone and 

Conway, 2003). Note, however, that behavioral performance in Experiment 2 on invalid 

trials with a 180° offset was not as good as performance on valid trials (see Figures 6-7 

and Table 2a). Therefore, signals from motion selective neurons tuned 180° from the cue 

might very well have been suppressed in motion selective visual areas such as MT, and 

the partial recovery of performance might be supported by attentional gain targeted 

towards orientation selective neurons in other areas that are tuned to the axis of motion. In 

either case, the data suggest that subjects were using the cue to guide search, and clear 

evidence supporting the suppressive effects of feature-based attention were observed. 

Comparisons with the feature-similarity gain model 

Compared to a condition in which only a fixation mark was attended, Martinez-

Trujillo and Treue (2004) reported enhanced responses in MT neurons that were tuned to 

an attended direction of motion and suppressed responses in neurons that were tuned away 

from the attended direction of motion (see also: Cohen and Maunsell, 2011). These data 

predict enhanced perceptual sensitivity for attended features as well as a reduction in 

perceptual sensitivity for features that are maximally separated from the target in feature 

space (e.g. opposite directions of motion). Consistent with a suppressive component of 
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feature-based attention, Ling et al. (2009) used an equivalent-noise paradigm and a task in 

which subjects had to discern whether or not a centrally presented RDP contained motion 

that was clockwise or counterclockwise from one of four reference directions (see also 

Baldassi and Verghese, 2005). The coherence (proportion of dots moving in the same 

direction) of the RDP was systematically adjusted across multiple levels, and the 

directional offset between the target direction and the reference directions was adjusted to 

estimate a perceptual sensitivity threshold for each subject. On validly cued trials, 

attention reduced sensitivity thresholds across all motion coherence levels, suggesting that 

feature-based attention suppressed neural responses evoked by dots within the RPDs that 

were moving in uncued directions. This putative suppression of uncued motion directions 

is consistent with previous neurophysiology studies and with our psychophysical and 

modeling results. However, the present results further demonstrate that the suppressive 

effect of feature-based attention can operate across multiple locations in the visual field, as 

opposed to being restricted to a single spatial location that contains both the cued and the 

uncued features (as in the variable coherence RDPs used by Ling et al., 2009). In addition, 

our data reveal a systematic decline in processing efficiency as a function of the 

directional offset between the cue and the target. This systematic relationship between the 

cue/target offset and the efficiency of sensory processing is evident both in the pattern of 

drift rates on invalid trials (see Figure 7), and in the pattern of errors made on invalid 

trials, as subjects in Experiment 2 more often chose a distractor whose direction was 

similar to the cue compared to a distractor whose direction was far from the cue (see 

Figure 6c).  
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White and Carrasco (2011) also directly assessed the relationship between feature-

based attentional suppression and behavior using a dual-task paradigm. Subjects were 

asked to indicate whether there was a speed change in a primary RDP (that was shown in 

one hemifield) and then asked to discern which of two secondary RDPs shown in the other 

hemifield contained coherent motion. The direction of coherent motion in the secondary 

RDP either matched or mismatched (by 180°) the direction of motion of the primary 

stimulus. As in the present study, performance was enhanced when subjects were given a 

valid cue that indicated the direction of the primary RDP compared to when they were 

given a neutral cue. In addition, subjects were more sensitive to coherent motion in the 

secondary stimulus when the motion in the secondary stimulus matched the cued 

direction. However, when the direction of the secondary stimulus mismatched the cued 

direction, performance was not impaired compared to a neutral cue condition. Thus, their 

overall pattern of data is consistent with attentional facilitation in the absence of 

suppression. In contrast, the results from our experiments – particularly Experiment 2 – 

provide strong evidence for both attentional facilitation and suppression. However, our 

results are not necessarily inconsistent with White and Carrasco’s findings, as motion in 

their secondary stimulus either matched the cued direction or was offset by 180° from the 

cued direction. In both of our experiments, suppression was minimized for directions that 

were 180° from an invalid cue (the “rebound effect,” see Figures 3-4 and 6-7). Thus, 

suppression might simply have been minimized at the 180° offset in their study.  

Finally, Tombu and Tsotsos (2008) evaluated a feature-based version of their 

selective-tuning model, which posits that attention facilitates the processing of attended 
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features, suppresses the processing of immediately adjacent features, and has little impact 

on the processing of distant features (see also Tsotsos, 1995). In their study, subjects had 

to decide whether the stripes on a grating stimulus were jagged or straight, and the 

attended orientation was cued on a block-by-block basis. The orientation of the stripes 

either matched the attended orientation, or was offset by 45° (the “similar” condition) or 

by 90° (the “dissimilar” condition). Accuracy rates were highest when the stripes matched 

the cued orientation, lowest in the similar condition (45° offset) and intermediate in the 

dissimilar condition (90° offset). Although this pattern was only observed with “jagged” 

stripes (and not with straight stripes), their data are consistent with the pattern of 

suppression and rebound that we report in Experiment 1 (see Figures 3-4) and Experiment 

2 (see Figures 6-7). Namely, the pattern of suppression was non-monotonic as the offset 

between the cued orientation and the presented orientation increased, and offsets farther 

away from the cued feature were not suppressed as strongly as offsets that were at an 

intermediate distance from the cued feature value. Thus, it is possible that our results – 

particularly in Experiment 2 – tap into a similar mechanism proposed in Tsotsos’ 

selective-tuning model. The present study, however, complements and extends their 

results by demonstrating enhancement and suppression relative to a neutral cue baseline, 

by sampling more feature values, and by implementing a quantitative decision model that 

can better isolate the different latent cognitive factors that are involved in perceptual 

decision making. 

In sum, our results reveal both facilitatory and suppressive effects of feature-based 

attention that systematically depend on the directional offset of the stimulus and the 

currently attended direction. These graded attention effects – that primarily influence the 
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rate of sensory evidence accumulation – are generally consistent with the feature-

similarity gain model, which predicts increasingly impaired performance for features that 

are tuned progressively farther away from the cued direction (but see our discussion of the 

“rebound effect” and the selective tuning model above). To extend these findings in future 

studies, we can couple our general experimental and analytical approach with paradigms 

developed by other investigators to examine interactions between suppression and the 

spatial extent of feature-based attention (e.g. Liu et al., 2011), as well as the impact of 

feature-based attention on the simultaneous processing of multiple relevant stimuli (e.g. 

White and Carrasco, 2011; Sàenz et al., 2003).  

Mechanisms of attentional enhancement and suppression: sensory gain versus selective 

weighting 

Given the large and growing amount of neurophysiological evidence, it is tempting 

to ascribe the facilitatory and suppressive behavioral effects observed in our study to 

modulations of neurons at relatively early stages of sensory processing (Treue and 

Maunsell, 1996; 1999; Martinez-Trujillo and Treue, 2004; Maunsell and Treue, 2006; 

Sàenz et al., 2002; Serences et al., 2009; Scolari et al., 2012; Liu et al., 2007). However, 

the attentional enhancement and suppression effects that we observe may not reflect 

changes in early sensory gain, but instead a selective weighting of sensory responses by 

downstream decision mechanisms (Law and Gold, 2008, 2009; Dosher and Lu, 1999; 

Eckstein et al., 2000; Palmer, 1995; Palmer et al., 2002; Baldassi and Verghese, 2002; 

Baldassi and Verghese, 2005). On this account, areas involved in integrating sensory 

evidence during decision making might overweight the output of direction-selective neural 
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populations tuned to the cued feature, and underweight input from neural populations 

tuned away from the cued direction. This selective weighting would give rise to enhanced 

performance in the valid-cue condition, and systematically worse performance for targets 

rotated farther from the cue (as in Figures 3-4 from Experiment 1, and Figures 6-7 from 

Experiment 2). Moreover, this type of selective weighting also predicts the systematic 

pattern of errors observed in Experiment 2, as neurons that respond to distractor directions 

that are close to the cued direction might more strongly influence decision mechanisms 

and trigger more frequent incorrect responses (Figure 6c). Finally, the selective weighting 

account might explain the larger suppressive effects that we observed in Experiment 2 

compared to Experiment 1, as the 40% coherent RDP distractors in Experiment 2 are more 

likely to influence decision mechanisms that differentially weight responses from neural 

populations that respond to directions that are adjacent to the cued direction.  

Thus, based on the current behavioral data alone, we cannot unambiguously 

determine if the behavioral facilitation on valid trials and the impaired performance on 

invalid trials is due to sensory enhancement, selective weighting during decision making, 

or – more likely – to some combination of the two mechanisms. One potential method to 

disentangle these alternatives would be to re-run a version of Experiment 2 with fewer 

offsets and more sessions in order to dramatically increase the amount of data that is 

collected. With more power, it may be possible to use a modified LBA model to estimate 

response caution for every possible cue-distractor offset on trials in which a distractor is 

incorrectly selected in place of the target. Thus, one could test whether or not response 

caution is lower when distractors are similar to the invalid cue, which might support the 
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idea that the decision criteria are adjusted based on cue-stimulus similarity. However, an 

alternate, and perhaps more fruitful, approach would be to adapt a version of Experiment 2 

to either single unit recording or functional magnetic resonance imaging environments. 

This would enable measurements of attention-mediated changes in sensory gain 

throughout visual cortex, and allow one to examine if most of the variability in behavior 

can be accounted for by only considering the observed changes in sensory gain or if 

positing an additional mechanism that selectively reweights sensory responses during 

decision making is needed to fully explain the nature and magnitude of the observed 

changes in behavior (see Pestilli et al., 2011).  

Linear ballistic accumulator versus signal detection models 

The linear ballistic accumulator (LBA) model is one of many models that utilizes 

RT and accuracy to examine how experimental manipulations impact latent cognitive 

factors such as drift rate, decision boundaries, and non-decision times (e.g. Ratcliff, 1978; 

Brown and Heathcote, 2008; Link and Heath, 1975; Usher and McClelland, 2001; van 

Zandt et al. 2000; Wagenmakers et al., 2007). Other models, such as those based on SDT, 

also do an excellent job explaining accuracy data that is obtained in experiments similar to 

ours (see Palmer, 1995; Eckstein et al., 2000; Palmer et al, 2000; Baldassi and Verghese, 

2002; Baldassi and Verghese, 2005). In these SDT models, each element in a visual 

display elicits a noisy representation within each relevant feature dimension. The observer 

then combines these representations across all features to obtain a single decision variable, 

and the stimulus with the maximum value is deemed the most likely to be the target. This 

approach is particularly adept at explaining behavior in situations where the target is 
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exposed briefly in a data-limited manner, and accuracy is the primary dependent measures 

(as opposed to RT). However, even though SDT models account for performance on an 

impressive array of search tasks, sequential sampling models often have an advantage. 

This is particularly true when a decision is based on noisy sensory inputs that are 

continuously present so that the reliability of the final decision variable continuously 

increases as more evidence is unveiled (Smith and Ratcliff, 2004). In addition, the 

conception of a perceptual decision as an accumulation process is now well supported 

based on studies that examine the buildup of firing rates of sensorimotor neurons that are 

thought to play a key role in mediating basic perceptual decisions (Mazurek et al., 2003; 

Gold and Shadlen, 2007; Leon and Shadlen, 1999; Heekeren et al., 2004). 

Feature-based attention and changes in neural variability 

As discussed above, changes in the rate of sensory evidence accumulation 

(depicted in Figures 4 and 7) can be intuitively linked to changes either in the firing rate of 

sensory neurons or to changes in the relative weighting of sensory signals by downstream 

decision mechanisms. However, there is growing evidence that top-down attention can 

also influence neural variability (Mitchell et al., 2007; 2009; Cohen and Maunsell, 2009; 

2010; 2011; Kohn and Cohen, 2011). For example, space and feature-based attention have 

been shown to reduce the ratio of the variance of individual sensory neurons to their mean 

firing rate (or the fano factor; Mitchell et al., 2009; Cohen and Maunsell, 2011). In turn, a 

reduction in neural variability should lead to more stable sensory responses across time, 

thus speeding the process of evidence accumulation during decision making. Recently, 

Rahnev and colleagues (2011) used a signal detection theory (SDT) model to demonstrate 
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that such a reduction in neural variability can increase behavioral performance by 

increasing the signal available for supporting perceptual decisions. Interestingly, this 

reduction in variability improves performance on average, but also reduces the probability 

of a high signal response on any given trial, thereby leading to a more conservative bias in 

behavioral responses (Rahnev et al., 2011). While these results are not directly comparable 

to the present findings due to differences in the task and the type of model that was 

employed, they suggest an important role for attention-mediated reductions in neural noise 

during perceptual decision making. An advantage of sequential sampling models, like the 

LBA, is that such explanations can be directly investigated. For example, one could 

explore LBA models in which the parameter governing the variance of the drift rate 

distributions was free to vary with cueing manipulations. Such models can be difficult to 

estimate due to the highly correlated posterior distributions for mean drift rate and 

variance parameters, so such investigations will require future studies that have many 

more data points per participant (see Smith et al., 2004; Donkin et al., 2009). 

Conclusions 

Here, we provide evidence for both facilitatory and suppressive effects of top-

down feature-based attention on human performance that can best be explained by 

changes in the rate of sensory evidence accumulation, particularly when competition 

between the target and distractors was high. One critical outstanding issue concerns 

developing a mechanistic explanation for the observed effects and determining whether 

feature-based attention mediates behavior primarily via changes in sensory gain, changes 

in the weighting of sensory evidence by downstream decision mechanisms, or through 
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some combination of the two. Future studies employing neurophysiological or 

neuroimaging approaches will hopefully dissociate these possibilities and isolate the 

relative contributions of each mechanism. 

 

Chapter 3, in full, is a reprint of the material as it appears in Perceptual 

Consequences of Feature-based Attentional Enhancement and Suppression in Journal of 

Vision. Ho, T.C., Brown, S. Abuyo, N.A., Ku, E.J., Serences, J.T. (in press). 
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Table 3.1. Pair-wise comparisons of mean accuracy rates, mean response times, and 
mean drift rates between different cued conditions for Experiment 1 (n=8). Offsets 
were collapsed across clockwise and counterclockwise directions. Please refer to Figure 
3.3 and Figure 3.4. Note: the reported p-values here have been corrected for multiple 
comparisons using a False Discovery Rate procedure.  *p<0.05, **p<0.01, ***p<0.001. 

Comparison Accuracy rate Reaction time Drift rate 

Neutral v. Valid p=0.9948 p=0.0364 * p=0.0168 * 

Neutral v. 30° p=0.995 p=0.085 p=0.9392 

Neutral v. 60° p=0.1367 p=0.1962 p=0.8191 

Neutral v. 90° p=0.1003 p=0.7059 p=0.7433 

Neutral v. 120° p=0.1 p=0.2545 p=0.744 

Neutral v. 150° p=0.1699 p=0.254 p=0.8631 

Neutral v. 180° p=0.1 p=0.1895 p=0.1157 

Valid v. 30° p=0.17 p=0.25 p=0.0566  

Valid v. 60° p=0.1005  p=0.0847 p=0.0642 

Valid v. 90° p=0.1168  p=0.254 p=0.0616  

Valid v. 120° p=0.1005  p=0.19 p=0.062 

Valid v. 150° p=0.17 p=0.1895  p=0.057  

Valid v. 180° p=0.101 p=0.0770  p=0.1814 

30° v. 60° p=0.1862 p=0.019 p=0.5965 

30° v. 90° p=0.14 p=0.3811 p=0.3192 

30° v. 120° p=0.1367 p=0.1962 p=0.345 

30° v. 150° p=0.2625 p=0.0196  p=0.056 

30° v. 180° p=0.1699 p=0.1305 p=0.062  
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Table 3.1. Pair-wise comparisons of mean accuracy rates, mean response times, and 
mean drift rates between different cued conditions for Experiment 1 (n=8), 
Continued. Offsets were collapsed across clockwise and counterclockwise directions. 
Please refer to Figure 3.3 and Figure 3.4. Note: the reported p-values here have been 
corrected for multiple comparisons using a False Discovery Rate procedure.  *p<0.05, 
**p<0.01, ***p<0.001. 

Comparison Accuracy Reaction time Drift rate 

60° v. 90° p=0.2123 p=0.784 p=0.8635 

60° v. 120° p=0.1368 p=0.9225 p=0.8651 

60° v. 150° p=0.5676 p=0.7840 p=0.345 

60° v. 180° p=0.2625 p=0.92 p=0.0617 

90° v. 120° p=0.3746 p=0.7908 p=0.9392 

90° v. 150° p=0.995 p=0.791 p=0.25 

90° v. 180° p=0.4597 p=0.784 p=0.062  

120° v. 150° p=0.2787 p=0.79 p=0.249  

120° v. 180° p=0.3084 p=0.9667 p=0.059 

150° v. 180° p=0.9949 p=0.785 p=0.056  
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Table 3.2a. Pair-wise comparisons of mean accuracy rates, mean response times, and 
drift rates between different cued conditions for Experiment 2 (n=12). Offsets were 
collapsed across clockwise and counterclockwise directions. Please refer to Figures 3.6a,b 
and Figure 3.7. Note: the reported p-values here have been corrected for multiple 
comparisons using a False Discovery Rate procedure. *p<0.05, **p<0.01, ***p<0.001. 

Comparison Accuracy rate Response time Drift rate 

Neutral v. Valid p=0.000364 *** p=0.0021 ** p=0.0056 ** 

Neutral v. 30° p=0.3960 p=0.5851 p=0.0409 * 

Neutral v. 60° p=0.0022 ** p=0.052 p=0.0491 * 

Neutral v. 90° p=0.0004 *** p=0.0491 * p=0.0409 * 

Neutral v. 120° p=0.00035 *** p=0.0037 ** p=0.0436 * 

Neutral v. 150° p=0.0019 ** p=0.0031 ** p=0.044 * 

Neutral v. 180° p=0.1656 p=0.01 * p=0.4928 

Valid v. 30° p=0.00043 *** p=0.052 p=0.0261 * 

Valid v. 60° p=0.00035 *** p=0.0018 ** p=0.0325 * 

Valid v. 90° p=0.0003 *** p=0.01 * p=0.026 * 

Valid v. 120° p=0.0003 *** p=0.0019 ** p=0.027 * 

Valid v. 150° p=0.0004 *** p=0.0037 ** p=0.026 * 

Valid v. 180° p=0.0065 ** p=0.01 * p=0.0437 * 

30° v. 60° p=0.00037 *** p=0.046 * p=0.3794 

30° v. 90° p=0.00036 *** p=0.052 p=0.0659 

30° v. 120° p=0.00036 *** p=0.0112 * p=0.1376 

30° v. 150° p=0.0019 ** p=0.0328 * p=0.5381 

30° v. 180° p=0.1387 p=0.0835 p=0.0491 * 
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Table 3.2a. Pair-wise comparisons of mean accuracy rates, mean response times, and 
drift rates between different cued conditions for Experiment 2 (n=12), Continued. 
Offsets were collapsed across clockwise and counterclockwise directions. Please refer to 
Figures 3.6a,b and Figure 3.7. Note: the reported p-values here have been corrected for 
multiple comparisons using a False Discovery Rate procedure. *p<0.05, **p<0.01, 
***p<0.001. 

Comparison Accuracy Reaction time Drift rate 

60° v. 90° p=0.0239 * p=0.3645 p=0.02 

60° v. 120° p=0.0575 p=0.1426 p=0.041 

60° v. 150° p=0.7924 p=0.3948 p=0.7489 

60° v. 180° p=0.3326 p=0.6406 p=0.044 * 

90° v. 120° p=0.6875 p=0.5851 p=0.4029 

90° v. 150° p=0.057  p=0.7351 p=0.0473 * 

90° v. 180° p=0.0275 * p=0.6283 p=0.03 * 

120° v. 150° p=0.0565 p=0.3171 p=0.0436 * 

120° v. 180° p=0.0145 * p=0.1737 p=0.026 * 

150° v. 180° p=0.0413* p=0.7499 p=0.027 *  
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Table 3.2b. Pair-wise comparisons of the mean error rate on invalid trials according 
to the different offsets between the invalid cue and chosen distractor direction 
(n=12). Offsets were collapsed across clockwise and counterclockwise directions. Please 
refer for Figure 3.6c. Note: the reported p-values here have been corrected for multiple 
comparisons using a False Discovery Rate procedure. *p<0.05, **p<0.01, ***p<0.001. 

Comparison  
 

15° v. 45° p=0.4164 

15° v. 75° p=0.2786 

15° v. 105° 
 

p=0.0015 ** 

15° v. 135° 
 

p=0.006 ** 

15° v. 165° 
  

p=0.0321 * 

45° v. 75° p=0.8433  

45° v. 105° 
 

p=0.1436 

45° v. 135° p=0.0071 **  

45° v. 165° p=0.084  

75° v. 105° p=0.1579 

75° v. 135° p=0.006 ** 

75° v. 165° p=0.2217  

105° v. 135° p=0.2456 

105° v. 135° p=0.8051 

135° v. 165° p=0.169 
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Figure 3.1. Behavioral paradigm for Experiment 1. At the beginning of each trial there 
was either a valid cue (50% of the trials) correctly indicating the impending target 
direction of motion, an invalid cue (25% of the trials) incorrectly indicating the impending 
target direction of motion, or a neutral cue (25% of the trials) which contained no 
directional information whatsoever. Invalid cues indicated directions that were offset from 
the direction of motion of the target RDP anywhere from +30° to +180° on a trial by trial 
basis (determined pseudo-randomly within a given block of trials). All cues were 
presented centrally for 1000 ms and were followed by 1000 ms of the four RDPs. Note: 
cues in the first panel are exaggerated in size for the purposes of clarity). 
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Figure 3.2. Schematic of the linear ballistic accumulator (LBA) model. The stimulus 
provides information to four racing accumulators (each corresponding to one of four 
spatially distinct RDPs); the first accumulator to reach the response threshold determines 
the response, and thus the decision time. One accumulator corresponds to each possible 
response and their average rates of increase (drift rates) are assumed to be determined by 
the stimulus properties. Response caution determines how much sensory evidence needs 
to be accumulated before a response is made and is captured by the relative distance 
between the response threshold and the start point. The final response time is the decision 
processing time (i.e., the time taken for the first accumulator to reach the response 
threshold) plus a constant offset (non-decision time). 
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Figure 3.3 (a) Mean acccuracy rates across the different cue conditions for 
Experiment 1. Mean accuracy rates computed across subjects (ordinate) as a function of 
the 8 possible cue conditions (abscissa). (b) Mean Response  times on correct trials 
across the different cued conditions for Experiment 1. Mean response times computed 
across subjects (ordinate) as a function of the 8 possible cue conditions (abscissa). Offsets 
were collapsed across clockwise and counterclockwise directions. All error bars are +1 
SEM, computed after subtracting the mean from each subject.  

  



149 
 

 

Figure 3.4. Drift rates for the accumulators corresponding to the correct response on 
the different cue conditions for Experiment 1. Mean drift rates corresponding to the 
correct response on each trial computed across subjects (ordinate) as a function of the 8 
possible cue conditions (abscissa). Offsets were collapsed across clockwise and 
counterclockwise directions.All error bars are +1 SEM, computed after subtracting the 
mean from each subject. 
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Figure 3.5. Behavioral paradigm for Experiment 2. At the beginning of each trial there 
was either a valid cue (50% of the trials) correctly indicating the impending direction of 
motion, an invalid cue (25% of the trials) incorrectly indicating the impending direction of 
motion, or a neutral cue (25% of the trials) which contained no directional information 
whatsoever. Invalid cues indicated directions that were offset from the direction of motion 
of the target RDP anywhere from +30° to +180° on a trial by trial basis (determined 
pseudo-randomly within a given block of trials). The target RDP contained 80% motion 
coherence, while the distractors contained 40% motion coherence, where each distractor 
direction was offset from the target direction by either +15°, +45°, +75°, +105°, +135°, 
+165° (randomly chosen per trial, where each distractor direction was unique) for 8 of the 
subjects or by +18°, +36°, or +72° for the remaining 4 subjects. Note: cues in the first 
panel are exaggerated in size for the purposes of clarity. 
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Figure 3.6 (a) Accuracy rates across the different cue conditions for Experiment 2. 
Mean accuracy rates computed across subjects (ordinate) as a function of the 8 possible 
cue conditions (abscissa). (b) Mean response times on correct trials across the 
different cued conditions for Experiment 2. Mean accuracy rates computed across 
subjects (ordinate) as a function of the 8 possible cue conditions (abscissa). (c) Mean 
proportion of error trials for every offset between the chosen distractor and invalid 
cue for Experiment 2. Mean proportion of errors as a function of the offset between the 
direction of the chosen distractor (ordinate) and the invalid cue for that trial (abscissa). 
Only incorrect trials with invalid cues were used in this analysis. Offsets were collapsed 
across clockwise and counterclockwise directions. All error bars are + SEM, computed 
after subtracting the mean from each subject. 
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Figure 3.7. Drift rates for the accumulators corresponding to the correct response on 
the different cue conditions for Experiment 2. Mean drift rates corresponding to the 
correct response on each trial computed across subjects (ordinate) as a function of the 8 
possible cue conditions (abscissa). Offsets were collapsed across clockwise and 
counterclockwise directions. All error bars are +1 SEM, computed after subtracting the 
mean from each subject. 
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GENERAL DISCUSSION 

Sequential sampling models have been used to describe a variety of cognitive 

processes, including perceptual decision making (PDM; Luce, 1986; Usher and 

McClelland, 2001; Ratcliff and Smith, 2004). According to these models, sensory data is 

repeatedly sampled so that confidence or evidence for a particular choice option grows. 

Once enough evidence for an option exceeds a set threshold or criterion, the decision 

process terminates and the option with the most evidence determines the decision (and 

the time it takes for this process to finish, the response time). Such models possess 

parameters corresponding to latent cognitive processes involved in PDM, such as the 

response threshold (the amount of evidence needed before terminating the decision 

process), the drift rate (the rate of evidence accumulation), and non-decision time (time 

unrelated to the decision process itself, such as motor execution). Thus, these models are 

able to provide powerful explanations based on the response time (RT) and accuracy data 

from PDM tasks that extends beyond simply reporting mean RT and accuracy rate. 

More recently, neurophysiological studies recording from individual neurons 

found that the firing rates of neurons involved with evidence accumulation can be fit with 

a sequential sampling model: these firing rates steadily increase until reaching a fixed 

threshold near the time of a behavioral response (Gold and Shadlen 2001; 2002; 2007; 

Shadlen and Newsome, 2001). The majority of these neurons were found in areas related 

to the planning of oculomotor commands (Roitman and Shadlen, 2002; Huk and Shadlen, 

2005; Gold and Shadlen, 2000; 2003; Bichot et al., 2000; Horwitz et al., 2004; Ratcliff et  
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al., 2003; Kim and Shadlen, 1999), lending credence to the idea that the neurons 

underlying motor responses also compute perceptual decisions. Such findings were 

unsurprising given that making a perceptual decision was designed to be tantamount to 

selecting a particular motor response in these PDM tasks. However, in many everyday 

situations, a combination of motor responses is issued in response to a single stimulus 

(e.g., pressing on the brake while looking at a red light). While these single-unit 

recordings made major advancements in understanding the neural basis of PDM, the 

mechanisms underlying more general and abstract decisions have yet to be clarified. 

Moreover, understanding how the activity of individual neurons translates to population-

level responses or to actual perception still remains unclear. 

With the use of a simplified sequential sampling model (Brown and Heathcote, 

2005), Ho et al. (2009) investigated the possibility of a general mechanism of PDM by 

measuring BOLD activation in human subjects performing PDM task with two different 

response modalities (Chapter 1). The right insula was the only region whose activation 

profile matched our simulations for an evidence accumulator across different response 

modalities. Two fMRI studies since then have also employed similar mathematical models 

to fit their data in order to predict the neural signature of an evidence accumulator (Kayser 

et al., 2010; Liu and Pleskac, 2011). Using similar criteria as Ho et al. (2009) to adjudicate 

the expected BOLD profile (i.e., responses should be higher on more low coherence 

trials), Kayser et al. (2010) found that the mean BOLD signal in the medial intraparietal 

sulcus (mIPS) was the only region to match their predictions. These results are not entirely 

inconsistent with the ones Ho et al. report, as the latter also observed bilateral regions of 

IPS with greater activation on more difficult trials. However, Ho et al. predicted latency 
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onsets in addition to larger BOLD responses on difficult trials, yet no parts of IPS 

exhibited the exact profile across both response modalities. Kayser and colleagues, on the 

other hand, required subjects to respond with only manual button presses, thereby possibly 

explaining the differences in these results. Liu and Pleskac (2011) adopted a task 

paradigm similar to Ho et al. (2009) and required subjects to respond either by making 

saccades or manual button presses. In addition, subjects were cued about response 

modality either in advance of the stimulus or after a delay. The authors isolated BOLD 

responses in independently defined sensorimotor areas, as well as task-defined non-

sensorimotor areas – an approach that differed from Ho et al. since the latter conducted a 

whole brain exploratory analysis. To look for sensory evidence accumulators, Liu and 

Pleskac explored only areas where BOLD activation was greater on difficult trials (similar 

to what Ho et al. and Kayser et al. had done). This analysis revealed FEF, IPS, anterior 

insula, and inferior frontal sulcus as potential sensory evidence accumulators not 

dependent on response modality or foreknowledge. While Liu and Pleskac’s criterion for 

an evidence accumulator was less stringent than Ho and colleagues – the former did not 

require differences in latency offsets between easy and hard trials – the results from both 

of these studies are nevertheless consistent. Ho et al. also found regions of FEF, IPS, and 

insula as being more active on hard trials. All together, these findings strengthen the 

account that modality-independent signals are also formed during perceptual decision 

making. 

In order to map the activity of neural populations with perceptual performance, Ho 

et al. (2012) conducted a fMRI experiment while human subjects performed a fine 

discrimination between oriented gratings. Previous studies have demonstrated that such 
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fine discriminations utilize neurons that are tuned away from the target (termed off-target 

neurons) as opposed to those tuned to the target (on-target neurons). By using a forward 

encoding model that maps stimuli to population responses (Brower and Heeger, 2009; 

2011), the authors found that the off-target neurons in V1 predicted trial-by-trial 

performance when subjects emphasized accuracy over response speed. While it is possible 

that attentional-feedback originating from regions outside of visual cortex (Higo et al., 

2010; Purcell et al., 2010; Gold and Shadlen, 2007; Heekeren et al., 2004; de Lafuente and 

Romo, 2005; 2006; Lemus et al., 2010; Hernandez et al., 2010; Ho et al., 2009; Kayser et 

al., 2010) could explain this observed relationship between behavior and off-target 

modulations in V1, Ho et al. (2012) did not explicitly manipulate attention in this study. 

Thus, it was difficult to dissociate whether the changes observed were indeed solely or 

partly due to top-down biasing signals. Future studies could test these possibilities by 

adopting valid and neutral attentional cues in a similar paradigm in order to determine if 

speed pressure selectively impairs the ability to utilize prior information in optimally 

biasing population response profiles in visual cortex. Nevertheless, these findings provide 

support for how the integration and readout of sensory information impacts perceptual 

performance and are consistent with a set of other recent studies. In 2011, Kahnt and 

colleagues found that training-related improvements in performance on a difficult 

perceptual discrimination task could be explained by a greater efficiency in the readout of 

sensory information, thereby sharpening the representations of the decision variables 

leading up to the ultimate choice. Likewise, Rahnev et al. (2011) observed that 

manipulating prior expectation increased functional connectivity between posterior and 

frontal areas, consistent with an account where greater rates of sensory evidence transfer 
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from earlier visual areas to putative decision mechanisms. Pestilli and colleagues (2011) 

also jointly modeled psychophysical and BOLD data to determine whether sensory gain, 

noise reduction, or selective readout models could explain attentional modulations 

throughout visual cortices. The data were best fit by a model that included both additive 

response shifts in early visual areas and a selective readout rule, where inputs from the 

most responsive neurons are preferentially weighted. Thus, the present results complement 

other recent studies that emphasize the importance of efficient sensory readout in 

perceptual decision making.  

In Chapter 3, Ho et al. (in press) tests the perceptual predictions of the feature-

similarity gain model of attention, which postulates that feature-based attention selectively 

increases the gain of neuronal populations that are tuned to a relevant feature value while 

simultaneously suppressing the gain of neurons that are tuned to features dissimilar from 

the target (McAdams and Maunsell, 1999; Treue and Martinez-Trujillo, 1999; Martinez-

Trujillo and Treue, 2004; Maunsell and Treue, 2006). Ling et al. (2009) reported that 

feature-based attention suppresses neurons tuned away from an attended feature, while 

White and Carrasco (2011) observed only attentional enhancement without suppression. 

However, neither study systematically varied the degree of similarity between the attended 

feature value and the target (as was done in Martinez-Trujillo and Treue, 2004), so the 

effect of attentional enhancement and suppression on the processing efficiency of 

unattended features was not directly evaluated. Ho and colleagues (in press) had subjects 

discern which of four random dot patterns contained the maximal amount of coherent 

motion (100% in Experiment 1 and 80% in Experiment 2). At the beginning of each trial, 
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subjects were neutrally, validly, or invalidly cued to the impending motion direction of the 

target (with 6 different offsets between the invalid cue and target). An analysis of drift 

rates revealed evidence for facilitation in both experiments and evidence of suppression in 

Experiment 2 (where distractors contained a low level of motion coherence so as to make 

the task more attentionally demanding). Changes in the drift rate can be intuitively linked 

to changes in the firing rate of sensory neurons or to changes in the relative weighting of 

sensory signals by downstream decision mechanisms. The current study proposed by Ho 

et al. (2012), however, is unable to differentiate between these two possibilities. Future 

investigations could implement a variant of the LBA model to estimate response caution 

for every possible offset between the invalid cue and distractor (analyzing specifically the 

trials where a distractor is incorrectly chosen). Lower response caution on trials when the 

distractors are similar to the invalid cue would provide support that the decision criteria 

are adjusted based on the similarity between the cue and the stimulus. Neurophysiological 

or neuroimaging approaches could also investigate whether or not attention-mediated 

changes in visual cortex are explained by changes in sensory gain – or if the addition of a 

mechanism that selectively reweights sensory responses during perceptual decision 

making is needed (see Pestilli et al., 2011).  

The picture that emerges from these set of fMRI and psychophysical studies of 

perceptual decision making is consistent with the neurophysiological literature in some 

respects: off-target neurons provide the most sensory information for a fine discrimination 

task (Chapter 2) and attentional enhancement and suppression at the neuronal level 

appears to translate to improvement and impairment, respectively, in perceptual 
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performance (Chapter 3). However, evidence of a domain general mechanism of 

perceptual decision making is also clear (Chapter 1) and challenges much of the previous 

neurophysiological work. Furthermore, these studies demonstrate the utility of modeling 

psychophysical and neural data. Precisely quantifying psychological processes of interest 

for each individual and then relating these inter-subject differences with corresponding 

individual differences in brain measurements (e.g., BOLD fMRI, EEG, etc) provides a 

powerful tool to understanding the neural basis of various cognitive functions. Future 

progress in the understanding perceptual decision making will come from quantitative 

models that link reaction time distributions and accuracy data in the behavioral domain to 

firing rate data and neural patterns in the neuroimaging domain, forming a unified theory 

of the psychology and neurobiology of decisions.  
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