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Abstract: After decades of research, fully functional skin regeneration is still a challenge. Skin is a
multilayered complex organ exhibiting a cascading healing process affected by various mechanisms.
Specifically, nutrients, oxygen, and biochemical signals can lead to specific cell behavior, ultimately
conducive to the formation of high-quality tissue. This biomolecular exchange can be tuned through
scaffold engineering, one of the leading fields in skin substitutes and equivalents. The principal
objective of this investigation was the design, fabrication, and evaluation of a new class of three-
dimensional fibrous scaffolds consisting of poly(ε-caprolactone) (PCL)/calcium alginate (CA), with
the goal to induce keratinocyte differentiation through the action of calcium leaching. Scaffolds
fabricated by electrospinning using a PCL/sodium alginate solution were treated by immersion in
a calcium chloride solution to replace alginate-linked sodium ions by calcium ions. This treatment
not only provided ion replacement, but also induced fiber crosslinking. The scaffold morphology
was examined by scanning electron microscopy and systematically assessed by measurements of
the pore size and the diameter, alignment, and crosslinking of the fibers. The hydrophilicity of the
scaffolds was quantified by contact angle measurements and was correlated to the augmentation
of cell attachment in the presence of CA. The in vitro performance of the scaffolds was investigated
by seeding and staining fibroblasts and keratinocytes and using differentiation markers to detect
the evolution of basal, spinous, and granular keratinocytes. The results of this study illuminate the
potential of the PCL/CA scaffolds for tissue engineering and suggest that calcium leaching out from
the scaffolds might have contributed to the development of a desirable biological environment for the
attachment, proliferation, and differentiation of the main skin cells (i.e., fibroblasts and keratinocytes).

Keywords: fiber crosslinking; fibroblasts; hydrophilicity; keratinocytes; electrospun poly(ε-caprolactone)/
calcium alginate scaffolds; porosity; skin tissue engineering

1. Introduction

Skin, the largest organ in the human body, is a multilayered and complex structure
consisting of three characteristic layers—epidermis, dermis, and hypodermis. While fibrob-
lasts are the main cells in the dermis, keratinocytes primarily make up the three sublayers
of the epidermis [1]. The inner layer comprises basal keratinocytes interfaced with the
fibroblasts, followed by two layers consisting of spinous and granular keratinocytes [1,2].
This organization also corresponds to the order of differentiation of these cells, with gran-
ular derived from spinous and spinous derived from basal keratinocytes. In this cellular
arrangement, macronutrients (i.e., glucose, amino acids, and lipids) and micronutrients
(e.g., vitamins A, C, D, and E, zinc, calcium, copper, and selenium) act to modulate skin
health and function [3]. Specifically, calcium gradients through the epidermis play an
important role in regulating sequential differentiation of the keratinocytes. The increase in
calcium proliferates the formation of desmosomes, which are adhesion junctions between
cells playing an important role in different signaling pathways critical for differentiation [4].
An upsurge in calcium concentration also leads to the migration of lamellar bodies to the
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apex of the uppermost cells in the granular layer, where lipids secreted by the lamellar
bodies are arranged within intercellular spaces, contributing to the hydrophobic matrix
responsible for the waterproofing capability of the skin permeability barrier [5].

The skin is the first line of defense against outside pathogens and the environment
(e.g., microorganisms, radiation, and chemicals), providing temperature regulation, sensory
functions, autonomic functions (exocrine secretion), and endocrine regulation [6]. Being
the outermost organ of the body, the skin can be easily injured or damaged. Normal wound
healing of skin encompasses a continuous cascading process including inflammation,
cell proliferation and migration, and remodeling. While the wound healing process is
very effective in the case of superficial injuries, the process becomes impaired for deep
and chronic wounds requiring further treatment due to various inhibiting factors such
as bacterial invasion, comorbidities, medications, and lifestyle habits [7,8]. Therefore,
deep-wound healing is an intricate process whose treatment and management are still
challenging despite decades of research and multiple options for skin replacement and
regeneration such as allografts, autografts, and skin substitutes [9,10]. These challenges are
mainly associated with the integration and rejection of grafts, infection, scar contraction,
and growth of not fully functional skin tissue [9,11].

Scaffolds have played a critical role in tissue regeneration, with past research leading
to potential success in various tissue applications such as cardiac muscle [12], bone [13],
liver [14], and skin [15,16]. Scaffolds are three-dimensional (3D) networks made of dif-
ferent materials by various fabrication processes including decellularized extracellular
membranes [17,18], freeze drying [19], electrospinning [20], and 3D printing [16]. Particu-
larly, electrospinning is a widely used fabrication method that uses electrostatic force to
generate a charged stream of a polymeric solution from a liquid droplet, which stretches
and elongates to generate fibers. Fibrous membranes of tunable fiber diameter, porosity,
pore size, and fiber alignment can be easily fabricated due to the simplicity and flexi-
bility of the electrospinning process [21]. Most of the materials used are biodegradable
polymers encompassing synthetic, natural, or combinations of the former polymers (i.e.,
composites and co-polymers) [22,23]. Some of the most common materials used to fabricate
scaffolds for tissue engineering are poly(L-lactic acid) (PLLA), poly(glycolic acid) (PGA),
and poly(ε-caprolactone) (PCL). The physical and mechanical properties of scaffolds can
be tuned to elicit specific cellular responses by modifying their microstructure (i.e., fiber
diameter, pore size, and porosity) and chemistry (e.g., co-polymers and motifs) [23]. Since
cellular interactions are critical for wound healing, specifically keratinocytes and fibrob-
lasts, a potential successful treatment for skin healing must not only provide structural and
biological support to the cells, but also allow for the exchange and arrangement of nutrients,
oxygen, and biochemical signals in order to stimulate cell proliferation and differentiation.

PCL is a well-known biocompatible material consisting of semicrystalline polyester,
which can be readily degraded by lipases and esterases. The regular structure of PCL
comprises linear carbon–carbon bonds, which are responsible for its relatively low melting
point (~60 ◦C) [24] and low glass transition temperature (about −60 ◦C) [25], resulting in a
stable semicrystalline structure that exhibits high strength in the human body due to the
amorphous domains existing in the rubbery state. However, because the PCL structure
contains hydrophobic –CH2 moieties and does not have any side chains, it degrades
hydrolytically at a slower rate than other synthetic polymers (e.g., the order of degradation
rate is PCL < PLLA < PGA) [26,27]. Nevertheless, PCL is a desirable biomaterial for
scaffold engineering because its properties can be adjusted according to the application
requirements by blending with other materials [28]. Alternatively, calcium alginate (CA)
is a hydrogel possessing high hydrophilicity, high water absorption capacity, and good
biocompatibility. Because alginate-based materials exhibit a hemostatic effect, they are often
used as wound healing agents in wound dressings [29]. CA is brittle and its mechanical
properties depend on the divalent cation (Ca2+) covalent linkages to the alginate to form
a 3D structure, referred to as “egg-box” [29–31]. Alginate has the unique property of
integrating well with other polymers. Specifically, incorporating CA in PCL enables the
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modification of the hydrophilicity, degradation rate, and mechanical strength, enabling
specific cellular behaviors to be elicited, as reported in previous research concerned with
emulsions of synthetic polymers and alginates [32–35].

In this study, a PCL/sodium alginate (SA) solution was used to fabricate fibrous
scaffolds by electrospinning. The produced scaffolds were then treated with a calcium
chloride solution to replace the sodium ions from the alginate with calcium ions, resulting
in the formation of PCL/CA scaffolds. The principal objective was to enhance skin tissue
regeneration through the release of calcium ions from the PCL/CA scaffolds into the
biological media to stimulate keratinocyte differentiation. Subsequently, the microstructure,
hydrophilicity, and in vitro behavior of scaffolds seeded with keratinocytes and fibroblasts
were examined in light of the experimental results. Keratinocyte differentiation was
investigated by immunofluorescence staining. Furthermore, adhesion and proliferation of
the keratinocyte and fibroblast cells were evaluated to assess the pro-regenerative capacity
of the scaffolds for a fully functional epidermis layer. The performance of these scaffolds
was compared to similar constructs fabricated by electrospinning using a PCL/SPAN
80 solution (control scaffolds). The results presented below reveal that calcium leaching out
from the PCL/CA scaffolds augments the behavior of the cells seeded on these scaffolds.

2. Materials and Methods
2.1. Experimental Materials

The electrospinning solution was an emulsion, with the continuous phase being
an oil phase consisting of PCL (80,000 Da) dissolved in a dichloromethane (DCM) and
sorbitan monooleate (SPAN 80) surfactant (all from Sigma-Aldrich, St. Louis, MO, USA).
The PCL was dissolved in DCM at a concentration of 8% w/w and sonicated for 30 min
before adding SPAN 80 at 17% of the PCL weight. The water phase was a discontinuous
phase of SA (Sigma-Aldrich, St. Louis, MO, USA) prepared by dissolving SA in DI water
at a concentration of 40 mg/mL for 24 h at room temperature. The water phase was
combined with the oil phase and vortexed for 10 min, then sonicated for 30 min, and finally
vortexed for 10 min at room temperature. The emulsion was electrospun immediately
after preparation.

2.2. Scaffold Fabrication

Fibrous scaffolds with a thickness ~200 µm were fabricated with an electrospinning
setup equipped with a parallel disk collector, described in detail elsewhere [20,36,37]. The
PCL solution was pumped at a rate of 0.8 mL/h through a 22 G flat-tip needle affixed 10 cm
above the collector axis. In all experiments, the potential difference between the needle and
the collector was set at 20 kV. To ensure uniform fiber deposition during electrospinning, the
collector was rotated at 8.4 rpm. The collector design entails two parallel aluminum plates
attached to a 1.5-cm-diameter shaft and placed at a lateral distance of 1.5 cm from each
other. This collector geometry yields bilayer scaffolds with morphologies characterized by
fibers mostly aligned between the parallel plates (bottom surface) and randomly oriented
fibers (top surface) [36,37].

2.3. Scaffold Post-Treatment

The SA was transformed to CA by immersing the scaffolds in an ethanol solution
(Decon Labs, King of Prussia, PA, USA) with 2 w/w% calcium chloride (Sigma-Aldrich,
St. Louis, MO, USA) for 2 h. The purpose of this treatment was to modify the morphology
(i.e., fiber crosslinking) and the chemical characteristics of the scaffolds, and also to study
how the cell activity was influenced by these modifications. Hereafter, the PCL/SPAN
80 scaffolds will be referred to as the control scaffolds, whereas the post-treated scaffolds
will be referred to as the PCL/CA scaffolds, for brevity.
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2.4. Characterization Techniques

The surface and cross-sectional morphologies of the control and PCL/CA scaffolds
were examined with a field-emission scanning electron microscope (SEM) (TM-4000, Hi-
tachi, Tokyo, Japan) operated at an acceleration voltage of 15 kV. SEM images were used to
determine the fiber diameter and the pore size distribution in the scaffolds. The fiber diam-
eter was determined by randomly selecting 30 fibers from the top and the bottom surfaces
of three similar scaffolds using ImageJ software (version 1.53e, National Institute of Health,
Bethesda, MD, USA). The scaffold pore size was estimated with ImageJ software using
the analyze particle function. The scaffold thickness was measured from cross sections
obtained by cutting the scaffolds with ultrasharp platinum-coated blades. The analysis of
the fiber diameter and the porosity was performed with 500× magnification SEM images,
whereas the scaffold thickness was measured from 200× magnification SEM images.

The hydrophilicity of the control and PCL/CA scaffolds was quantified by dynamic
contact angle measurements obtained by depositing a 5 µL DI water droplet at the top
surface of the scaffolds. DSA software (KRUSS, Hamburg, Germany) was then used to
record a 2-min video of 3600 frames. The start time was set as the moment the droplet
separated from the pipette tip to deposit onto the scaffold surface. Then, the contact angle
of each sample was measured every 5 s for a total of 35 s using the low bond axisymmetric
drop shape analysis (LBADSA) plugin (Biomedical Imaging Group, Lausanne, Switzerland)
in ImageJ software. A total of 3–5 samples were used in the contact angle measurements.

The fiber orientation at the top and bottom surfaces of the scaffolds was analyzed with
a modified fast Fourier transform (FFT) technique detailed elsewhere [36,38]. SEM images
(2500× magnification) were converted to grayscale 8-bit images. ImageJ software (version
1.53e, National Institute of Health, Bethesda, MD, USA) with oval profile plugin [39] was
used to complete the 2D FFT analysis. The data obtained with this method were normalized
to a zero baseline.

2.5. In Vitro Experiments

For optimal cell growth, the scaffolds were suspended in the media by special sam-
ple holders (Figure 1), inspired by a previous study [40]. The sample holder assembly,
fabricated by 3D printing (F170, Stratasys, Eden Prairie, MN, USA) using acrylonitrile
butadiene styrene (ABS-M30™, Stratasys, Eden Prairie, MN, USA), consisted of two parts
with a central rectangular cut-out screwed together by recessed stainless-steel screws and
nuts. The diameter of the holder was 33 mm (i.e., slightly smaller than the diameter of
the six-well plates used in the in vitro experiments). The height of the top and the bottom
casing was 8 and 6 mm, respectively, whereas the central cut-out area was 14 mm × 12 mm.

Before the cell culture, the sample holders and all other assembly components (i.e.,
tweezers, Allen wrench, etc.) were sterilized by immersion in 95% ethanol (Decon Labs,
King of Prussia, PA, USA) for 24 h. Scaffolds cut to a 5 mm width and 15 mm length
and sterilized with ethanol were placed on glass slides and air-dried inside a biosafety
hood (NV25-600, NuAire, Plymouth, MN, USA) equipped with UV light. To maintain a
sterile environment, both the assembly of the sample holders and clamping of the scaffolds
between the casings were performed in a large Petri dish (152 cm2) inside a biosafety hood.
The bottom surface of the scaffold was placed facing the bottom of the well. The scaffold
area exposed to the cells was 14 mm × 5 mm.

To assess the potential of the scaffolds for skin tissue engineering, in vitro testing was
performed with primary normal human dermal fibroblast from adults (HDFa) cells (PCS-
201-012, ATCC, Manassas, VA, USA) and primary normal human epidermal keratinocytes
from adults (HEKa) cells (PCS-200-011, ATCC, Manassas, VA, USA). The cells were cultured
using a mixture of keratinocyte growth kit (PCS-200-040, ATCC, Manassas, VA, USA) and
basal medium (PCS-200-030, ATCC, Manassas, VA, USA) for the keratinocytes and a
mixture of fibroblast growth kit (PCS-201-040, ATCC, Manassas, VA, USA) and basal
medium (PCS-201-030, ATCC, Manassas, VA, USA) for the fibroblasts. Both cell lines were
grown and maintained in their respective media in a humidified incubator of 37 ◦C and 5%
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CO2 atmosphere. During scaffold cell seeding, each medium was supplemented with 1%
streptomycin (Thermo Fisher Scientific, Pittsburgh, PA, USA).
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Control and PCL/CA scaffolds were seeded with HDFa and HEKa cells on two
plates each having six wells. Specifically, four samples were seeded with HEKa cells
(density = 96,000 cells/cm2) on one of the plates and four samples were seeded with HDFa
cells (density = 90,000 cells/cm2) on the other plate. In both cases, the cells were allowed
4 days to attach to the scaffolds and 9 more days to proliferate. Table 1 summarizes the
well-plate arrangements of the test scaffolds, and Figure 1 shows the roadmap to the
in vitro experiments. After a total of 13 days since the instigation of cell seeding, the
scaffolds were fixed with 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield,
PA, USA) and treated with 0.1% Triton X-100 (Fisher Scientific, Fair Lawn, NJ, USA) and
1% bovine serum albumin (Sigma-Aldrich, St. Louis, MO, USA). The antibody staining
was a two-day process. On the first day, the fixed scaffolds with HEKa cells were stained
with KRT5 mouse monoclonal antibody (Sigma-Aldrich, St. Louis, MO, USA), cytokeratin
1 (KRT1) guinea pig polyclonal antibody (OriGene Technologies, Rockville, MD, USA), and
filaggrin rabbit polyclonal antibody (Invitrogen™, Thermo Fisher Scientific, Pittsburgh,
PA, USA) and stored at 4 ◦C overnight. On the second day, rabbit anti-mouse IgG (H + L)
highly cross-adsorbed secondary antibody, Alexa Fluor™ Plus 555 (Invitrogen™, Thermo
Fisher Scientific, Pittsburgh, PA, USA), goat anti-guinea pig IgG (H + L) highly cross-
adsorbed secondary antibody, Alexa Fluor™ 488 (Thermo Fisher Scientific, Pittsburgh, PA,
USA), goat anti-rabbit IgG (H + L) cross-adsorbed secondary antibody, Alexa Fluor™ 633
(Thermo Fisher Scientific, Pittsburgh, PA, USA), and DAPI (MilliporeSigma, Burlington,
MA, USA) were added to the fixed scaffolds. Scaffolds seeded with the HDFa cells were
only stained with DAPI and F-actin (Alexa Fluor™ 488, Invitrogen™, Thermo Fisher Scien-
tific, Pittsburgh, PA, USA) on the second day. Cell attachment, proliferation, infiltration
depth, and differentiation were studied with a laser scanning confocal microscope (Carl
Zeiss Microscopy, Oberkochen, Germany). Table 2 summarizes the antibodies and the
dilution/concentration used in the present study.
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Table 1. Well-plate arrangements of the test scaffolds.

Cell Type Media Type Plate Number Cell Density (cells/cm2)

HDFa fibroblast media + streptomycin 1 90,000
HEKa keratinocyte media + streptomycin 2 96,000

Table 2. List of antibodies and dilution concentrations used in the cell viability studies.

Primary
Antibody

Primary
Antibody Dilution

Secondary
Antibody

Secondary Antibody
Dilution (µL/mL)

Secondary Antibody
Stock Concentration

(mg/mL)

Keratinocyte
Layer

KRT5 1:1000 Alexa Fluor 555 4 2 basal
KRT1 1:200 Alexa Fluor 488 4 2 spinous

Filaggrin 1:1000 Alexa Fluor 633 4 2 granular

2.6. Statistical Methods

The acquired data of the fiber diameter, pore size, and infiltration depth were analyzed
with one-way ANOVA using Stata/SE 16.1. The contact angle data were plotted as mean
values and error bars corresponding to one standard deviation above and below the
corresponding mean value. The box plots and histograms presented in the next section
were created with Stata/SE 16.1.

3. Results
3.1. Scaffold Morphology and Hydrophilicity

Figure 2 shows representative SEM images of the surface morphology of the control,
PCL/SA, and PCL/CA scaffolds. All images show the formation of continuous fibers
having a fairly uniform diameter. The PCL/CA scaffolds display evidence of notable
fiber crosslinking, indicated by the fiber entanglement and fusion at multiple points, as
depicted in the SEM images shown in the right insets of Figure 2. Fiber crosslinking
occurred during the immersion in the ethanol solution that contained calcium chloride
through the replacement of the Na+ ions in the SA by the Ca2+ ions of the solution. This
ion exchange is a well-documented biomolecular phenomenon, often referred to as the
egg-box model [30,31]. During the immersion in the target environment (i.e., the cell culture
media), the Ca2+ ions in the PCL/CA scaffolds leached out both from the surface and the
interior of the fibers by a process schematically depicted in Figure 3, making the Ca2+ ions
readily available for the cells to metabolize. Similar observations (i.e., fiber uniformity and
crosslinking) were made for the through-thickness scaffold morphology.

The bottom and top surfaces of the control scaffolds displayed a mean fiber diameter
of 2.57 and 1.72 µm, respectively, whereas the bottom and top surfaces of the crosslinked
PCL/CA scaffolds exhibited thinner fibers with a mean diameter equal to 1.21 and 1.59 µm,
respectively. The left insets of Figure 2 show the fiber diameter distributions. Statistical
results of the fiber diameter at the bottom and top surfaces of the control and PCL/CA
scaffolds are presented in Figure 4.

Figure 5 shows the results of the estimated pore size at the bottom and top surfaces of
the uncrosslinked PCL/SA and crosslinked PCL/CA scaffolds. The pore size distribution
plots (Figure 5a) revealed slightly smaller pores at the bottom surfaces than the top surfaces
of the PCL/SA and PCL/CA scaffolds. The fact that crosslinking contributed to the
formation of additional pores is evidenced by the slightly higher percentage of small pores
in the distribution plots (Figure 5a) and the slightly narrower dataset, particularly at the
bottom surface of the PCL/CA scaffold (Figure 5b). However, there was no statistically
significant difference between the pore size means (p > 0.05) of the bottom and top surfaces
of the PCL/SA and PCL/CA scaffolds (Figure 5b). The apparent decrease in pore size
may be attributed to the fact that the relatively thinner fibers at the bottom surface of the
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PCL/CA scaffolds increased both the surface area and the number of crosslink sites, also
contributing to the fiber fusion and entanglement.
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The fiber morphology of the PCL/SA and PCL/CA scaffolds was further studied
with a modified FFT technique. While the PCL/SA scaffold surfaces did not demonstrate
a dominant direction of fiber alignment (Figure 6a), the PCL/CA scaffolds revealed that
the crosslinking process yielded a more ordered morphology characterized by planar fiber
alignment, especially at the bottom surface (Figure 6b). The wide distributions of fiber
alignment indicate that there is not a specific angle of alignment in the PCL/CA scaffolds,
but a wide range of alignment directions.
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Figure 3. Schematic illustration of the leaching out process of the Ca2+ ions. (a) As-fabricated
PCL/SA scaffold, (b) scaffold immersion in a CaCl2 ethanol solution triggers three different
processes—calcium diffusion into the scaffold, sodium leaching out from the fibers, and calcium
alginate acting as a crosslinker resulting in (c) a scaffold consisting of only PCL/CA fibers, which
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the fibers.
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not shown for clarity.
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Dynamic contact angle measurements provided insight into the hydrophilicity of the
scaffolds and their potency to elicit cell attachment. All measurements were performed
at the top surface of the scaffolds. The control scaffolds displayed an initial contact angle
of 106◦, which is indicative of a hydrophobic behavior, whereas the PCL/CA scaffolds
showed an initial contact angle of 92◦, which classifies these scaffold surfaces as borderline
hydrophilic (Figure 7a). However, both types of scaffolds exhibited a rapid decrease in
contact angle in the first 20 s, with a slower decrease commencing afterward. Specifically,
the contact angle of the control scaffolds decreased below 90◦ and eventually stabilized at
~70◦, suggesting hydrophilic steady-state characteristics, whereas the contact angle of the
PCL/CA scaffolds exhibited an even more dramatic decrease to a steady-state value of ~45◦.
To further investigate this trend and exclude the possible effects of the scaffold morphology,
contact angle measurements were obtained from spin-coated solid membranes of the control
and PCL/CA solutions (Figure 7b). These assays demonstrated a fairly steady contact angle
of ~90◦ and ~45◦ for the control and PCL/CA samples, respectively, both suggesting a
hydrophilic behavior. Thus, the PCL/CA scaffolds were clearly more hydrophilic than the
control scaffolds, even when comparing a spin-coated alginate solution to an electrospun
control scaffold. Since the surfaces of the spin-coated membranes were much smoother
than those of the electrospun fibrous scaffolds, it may be inferred that the contact angle
of the membrane samples was mostly affected by surface chemistry. The results shown
in Figure 7 indicate that the addition of CA greatly augmented the hydrophilicity of the
polymer solution, suggesting an increased latency for cell attachment.
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The time-dependent variation in the dynamic contact angle of the control and PCL/CA
scaffolds (Figure 7a) may be associated with the dominance of different mechanisms. Ini-
tially, both groups demonstrated a lotus-like effect [41], with large contact angles measured
at the inception of testing. The rapid decrease in the contact angle of the control scaffolds
to a stable angle of ~70◦ was attributed to the entrapment of air in the larger pores of this
scaffold, which slowed down the wetting process until the water fully occupied the pore
area (“sponge” effect). While this phenomenon was also encountered with the PCL/CA
scaffolds, the decrease in the contact angle was more pronounced and a stable value was
obtained after a longer time compared to the control scaffolds. This was attributed to the
latent time of the CA in the PCL/CA scaffolds to react with the water and acquire a gel-like
state, driving water transport through the scaffold via water–water and water–CA surface
interactions, which forced the air out of the scaffold until the pores were totally occupied
by water, consequently resulting in a stable contact angle (CA wetting effect). While the
wetting characteristics of the control group were initially controlled by the lotus-like effect
and afterward by the “sponge” effect, those of the electrospun PCL/CA scaffolds were
sequentially affected by the lotus-like effect, the “sponge” effect, and the CA wetting effect
(Figure 7a). The significantly lower steady-state contact angle of the PCL/CA scaffolds
than that of the control scaffolds denotes a profound enhancement of the hydrophilicity
due to the CA leaching out from the PCL/CA scaffold.

3.2. In Vitro Scaffold Characteristics

HDFa and HEKa cells were seeded on control scaffolds in their designated media
in two plates and two separate plates on the PCL/CA scaffolds. The cells were allowed
4 days to attach to the scaffolds before changing their media. All cells that did not attach
to the scaffolds were aspirated when their media were changed. At 4 days, the seeding
cell density was maximized for the volume of media in each well (3 mL). If the media
were left for too long, they became acidic due to the CO2 released from the cells, affecting
the vitality of the cells. The total time of the scaffolds in the incubator was ~9 days. Cell
seeding under the aforementioned conditions led to HEKa cell infiltration to a depth of
41.05 ± 29.28 µm (Figure 8a) for the control scaffolds and 68.81 ± 21.99 µm for the PCL/CA
scaffolds (Figure 8b). Alternatively, the HDFa cells infiltrated in the control scaffolds to a
depth of 92.62 ± 48.57 µm (Figure 8c) and only 12.97 ± 4.48 µm in the PCL/CA scaffolds
(Figure 8d). Statistical results of the infiltration depths of HEKa and HDFa cells in the
control and PCL/CA scaffolds are presented in Figure 9. The underlying reason for this
difference may be the different cell affinity of the keratinocyte and fibroblast cells for the
chemistry of the PCL/CA scaffolds. Further research is needed to fully explain the reduced
range of fibroblast cell infiltration in the PCL/CA scaffolds.

Cell morphology visualization was aided by differentiation markers KRT5 (red), KRT1
(green), and filaggrin (purple). The HEKa cells seeded on the PCL/CA scaffolds exhibited
large and circular configurations (Figure 10a), whereas the HDFa cells seeded on similar
scaffolds displayed a typical elongated shape (Figure 10b). Some of the HEKa cells at-
tached and aligned along the fibers of the PCL/CA scaffolds while maintaining a round
shape (Figure 11); however, the density of these HEKa cells was not representative of the
overall scaffold cell density. HEKa cell differentiation was evident in the confocal images
(Figure 8a,b), although no apparent sequential layered differentiation could be observed.
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Figure 8. Confocal microscope images showing the infiltration of HEKa cells seeded onto (a) control
and (b) PCL/CA scaffolds, and HDFa cells seeded onto (c) control and (d) PCL/CA scaffolds (KRT1
(green), KRT5 (red), filaggrin (purple), and DAPI (blue)). All scale bars correspond to 100 µm and are
applicable for the horizontal and vertical axes of the images. The antibodies shown in (a,b) do not
indicate exclusivity of expression; these images are only used to visualize the infiltration depth.
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Figure 10. Typical morphology of (a) HEKa cells showing a large and round shape (stained image
merge of KRT1 (green), KRT5 (red), filaggrin (purple), and DAPI (blue)) and (b) HDFa cells showing
an elongated shape (DAPI (blue) and F-actin (green)). It appears that HDFa cell attachment occurred
preferentially along the fibers of the PCL/CA scaffolds, with some fibers appearing to be stained.
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4. Discussion

The formation of more and relatively smaller pores at the bottom surface of the
PCL/CA scaffolds than the top surface (Figure 5) was attributed to more prominent fiber
entanglement due to more pronounced fiber crosslinking (Figure 2). Although the bottom
scaffold surface was slightly more porous even before crosslinking, the difference increased
after post-treatment with the ethanol solution that contained calcium chloride. The decrease
in the fiber diameter at the bottom surface of the crosslinked PCL/CA scaffolds (Figure 4)
also contributed to the formation of more and smaller pores. This was ascribed to the
increased flexibility of the thinner fibers that facilitated crosslinking, a process depending
on close physical proximity and large surface area to generate new connection sites. The
increased crosslinking and reduced pore size at the bottom surface might have produced an
undesirable effect to cell infiltration through the bottom surface of the PCL/CA scaffolds.
Nevertheless, the overall decrease in pore size is consistent with an overall uniform calcium
deposition. This is because the decrease in the pore size at the top and bottom surfaces of
the PCL/CA scaffolds was a consequence of fiber crosslinking and entanglement (Figure 2)
induced by the deposition of Ca2+ ions produced from the CA (Figure 3).

The contact angle measurements showed that the PCL/CA scaffolds were more hy-
drophilic than the control scaffolds, regardless of the fabrication method (i.e., electrospin-
ning and spin-coating) (Figure 7). This can be explained by considering that the control
solution only contained an oil phase of DCM, whereas the process requires a water phase
to dissolve the alginate. Nonetheless, both solutions yielded sharp drops in contact angle
when in scaffold form (Figure 7a), and even the control solution was slightly hydrophilic
when spin-coated (Figure 7b). As reported elsewhere [42,43], the contact angle of elec-
trospun PCL is ~100◦, which is similar to the initial values of the dynamic contact angle
measurements obtained with the control scaffolds, and the ~90◦ contact angle of spin-
coated PCL films measured by others [44]. Although the contact angle tests with the
spin-coated membranes suggest the scaffold morphology was responsible for the sud-
den drop in hydrophilicity, that alone cannot account for the seemingly greater overall
hydrophilicity. Among the various factors that might explain this behavior, it is likely
that the presence of SPAN 80 in all solutions played a key role. Because SPAN 80 is a
surfactant evenly distributed in the polymeric solutions, it may have altered the surface
tension [45] between the PCL and the water droplets, consequently reducing the contact
angle. It is also possible that the heterogeneous surface morphology of the scaffolds further
exacerbated these effects, aiding the adsorption of water onto the scaffold surfaces. It is
known that the hydrophobic behavior of PCL limits cell adhesion, migration, proliferation,
and differentiation [46]. However, the incorporation of CA in the PCL scaffolds enhanced
the hydrophilicity of the material, consequently eliciting a cell behavior conducive of tissue
formation, as demonstrated by the in vitro tests (Figures 8–11).

The primary purpose for incorporating calcium in the scaffolds was to stimulate ker-
atinocyte differentiation. This is because calcium acts as a major regulator in the epidermis,
where the calcium gradient stimulates the differentiation of keratinocytes forming the three
epidermal layers (i.e., basal, spinous, and granular layers) [4]. Moreover, understanding
the behavior of fibroblasts and keratinocytes seeded on the PCL/CA scaffolds is of ut-
most importance because dermal-epidermal cross-talk plays an important role in wound
healing [47]. The in vitro tests showed that cell attachment and infiltration through the
PCL/CA scaffolds were as good or better than the control scaffolds. It was also observed
that the seeding time and density affected the attachment and proliferation of both fibrob-
lasts and keratinocytes. Various keratinocyte morphologies were observed (Figure 10a),
with the round spinous cells and clusters of cells exhibiting striations, indicating the oc-
currence of cell differentiation in the electrospun PCL/CA scaffolds. However, a clear
pattern of sequential keratinocyte differentiation was not apparent in the cross sections
of the PCL/CA scaffolds, in contrast to the findings of a previous study [15], although
the constructs used in the foregoing study were fabricated by 3D printing. Alternatively,
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the control scaffolds demonstrated less cell attachment than the PCL/CA counterparts,
reduced cell proliferation, and less obvious keratinocyte differentiation.

As mentioned earlier, some of the keratinocytes seeded on the control scaffolds were
found to grow along the fibers (Figure 11). It is possible that the thinner fibers and the de-
crease in the pore size due to fiber crosslinking in the PCL/CA scaffolds influenced the cell
behavior, causing more cell spread. Previous research has confirmed that the scaffold mor-
phology can play an important role in cell behavior, regardless of the scaffold chemistry [23].
Apart from cell attachment and proliferation, the keratinocytes infiltrated deeper into the
PCL/CA scaffolds (Figure 8b) compared to the control scaffolds (Figure 8a), also showing
increased spread and proliferation. However, an opposite trend was demonstrated by
the fibroblasts, with an infiltration depth seemingly larger for the control scaffolds, which
requires further examination.

The results of this investigation indicate that the developed PCL/CA scaffolds are
promising candidates for skin tissue engineering. The smaller pores at the bottom surface
might be advantageous for open wounds where small pores may prevent bacteria from
permeating through the scaffolds [48,49] and the fibroblasts to infiltrate and take over
spatially-defined structure reserved for the keratinocytes [50,51]. Culture studies with sand-
wiched PCL/CA scaffolds consisting of two layers separately seeded with keratinocytes
and fibroblasts should be of interest to confirm the cross-talk between the two types of cells
in the making of new tissue, specifically the epidermal layer and the collagen matrix. The
larger pores at the top scaffold surface were found to enhance the ingrowth of both cell
types. In addition, the present study provides an impetus for investigating the mechanical
properties and in vivo degradation over time of the PCL/CA scaffolds, which is critical
to predicting whether these scaffolds possess sufficient strength for the cells to thrive,
while creating new extracellular matrix and ultimately new tissue. Although keratinocyte
differentiation was observed in the present study, further investigation is needed to confirm
that a layered matrix with the form of the native epidermal layer can be produced by a
PCL/CA scaffold comprising layers seeded with keratinocytes and fibroblasts.

5. Conclusions

Scaffolds consisting of PCL/SPAN 80 and PCL/CA with a continuous fibrous struc-
ture were fabricated by electrospinning. The incorporation of CA into the scaffold structure
greatly improved the hydrophilicity, promoted fiber crosslinking, reduced the pore size,
and enhanced the scaffold capability to elicit the attachment of keratinocyte and fibroblast
cells. In addition, CA promoted keratinocyte differentiation, as evidenced from the evolu-
tion of different cell morphologies. The non-cytotoxic character of the PCL/CA scaffolds
was demonstrated by the proliferation, migration, and infiltration of the cells. The findings
of this study illuminate the potential of the present fabrication method to produce skin
substitutes from scaffolds that provide a microenvironment and architecture similar to that
of the native tissue. Further optimization of key fabrication parameters would unleash
the development of scaffolds providing natural micronutrients such as the calcium gradi-
ent existing in the human epidermis, boosting the skin regeneration capabilities and the
development of transplantable skin substitutes.
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