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Abstract

Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) 

contaminated, shallow alluvial aquifer have provided insight into the coupling 

of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial 

experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could 

enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment 

(Anderson et al., 2003; Williams et al., 2011). In parallel, in situdesorption tracer tests 

using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al., 2012). These 

results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and 

suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a 

new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment 

were combined and compared to an acetate amendment-only experiment in the same experimental 

plot. Results confirm that bicarbonate amendment to alluvial aquifer sediments desorbs U(VI) and 

increases the abundance of Ca-uranyl-carbonato complexes. At the same time, the rate of acetate-

promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the 

increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of 

U(VI) reduction was ∼3.8 times higher during acetate-bicarbonate treatment than under acetate-only 

conditions. Lack of consistent differences in microbial community structure between acetate-

bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction in 

the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction 

induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that 
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bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in 

aquifers.

1. Introduction

The importance of direct enzymatic or microbially-mediated reduction of soluble U(VI) has been 

established by extensive laboratory and field experiments (Lovley et al., 1991, Gorby and Lovley, 

1992, Suzuki et al., 2005, Wu et al., 2006, Wu et al., 2010, Kelly et al., 2008, Hwang et al., 

2009, Kostka et al., 2009, Xu et al., 2010, Tang et al., 2013, Newsome et al., 2014), including those 

conducted in, or with material from, an alluvial aquifer at Rifle, CO, USA (Anderson et al., 

2003, Holmes et al., 2007b, Komlos et al., 2008, Fang et al., 2009a, Bopp et al., 2010, Chandler et 

al., 2010, Williams et al., 2011, Druhan et al., 2014a, Druhan et al., 2014b). Other studies have 

likewise established the importance of bicarbonate concentrations on the desorption of U(VI) from 

subsurface sediments (Curtis et al., 2004, Davis et al., 2004, Hyun et al., 2009), and the slowing of 

bioreduction when ternary Ca-uranyl-carbonato aqueous species dominate U(VI) aqueous speciation 

(Dong and Brooks, 2006, Stewart et al., 2007). The idea of coupling U(VI) desorption using 

bicarbonate and microbial reduction of U(VI) was first proposed by Phillips et al. (1995) based on 

laboratory desorption of U(VI) from a variety of sediment types followed by bioreduction 

using Desulfovibrio desulfuricans. Subsequent field research at Rifle suggested the likely efficacy of 

such an approach under in situ aquifer conditions (Ortiz-Bernad et al., 2004a). An in situ bicarbonate-

only desorption experiment at the Rifle site (referred to as “Little Rusty”) confirmed that dissolved 

U(VI) concentrations increased significantly (1.2–2.6-fold above background levels), resulting from 

increases in bicarbonate alkalinity from injectate solution and Ca concentrations due to cation 

exchange (Fox et al., 2012). Earlier field experiments also conducted at the Rifle site (especially one 

referred to as “Big Rusty”) had indicated that the predominance of Ca-uranyl-carbonato species did 

not prevent significant U(VI) bioreduction, which bolstered the idea that bicarbonate desorption could 

be combined with down-gradient, acetate-induced biostimulation to increase the mass of U(VI) 

reduced in a the subsurface aquifer (Williams et al., 2011). The field experimental results from Big 

Rusty were also the focus of an extensive reactive transport modeling effort (Yabusaki et al., 2011) 

that provided the underlying biogeochemical reaction network used in modeling for this paper.

The objectives of this study (dubbed “Super 8”) were to: (1) confirm and extend 

previous uranium desorption results using bicarbonate (Fox et al., 2012); (2) quantify uranium mobility

during acetate amendment under conditions of varying alkalinity and where microbial iron reduction is

the dominant metabolic process; (3) assess the extent to which higher alkalinity values would impact 

U(VI) speciation and the rate of enzymatic uranium reduction; and (4) compare the post-amendment 

rebound of U(VI) with and without desorption of U(VI) by bicarbonate amendment. Here we 

emphasize the conservative tracer, biogeochemistry, microbiology, and U(VI) reduction results from 

the bicarbonate-acetate and acetate-only parts of the Super 8 field experiment. Other studies 

conducted as part of the same experiment are reported elsewhere (Chandler et al., 2013, Shiel et al., 

2013, Holmes et al., 2013a, Holmes et al., 2013b, Alessi et al., 2014, Bao et al., 2014, Handley et al., 

2014). These studies investigated selected aspects of the experiment, including reactive transport 
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modeling, microbiology of selected wells, gene expression, U isotopic shifts during bioreduction, and 

predation by protists on bacteria during biostimulation. Here, we combine biogeochemistry, 

microbiology, conservative tracer, and modeling of U(VI) reduction from the bicarbonate-acetate and 

acetate-only treatments, to demonstrate that bicarbonate both increases the pool of uranium available

for acetate-induced U(VI) reduction and also impacts the microbial community in a way that enhances

the intrinsic rate of U(VI) bioreduction.

2. Materials and methods

Site location, site geohydrology, analytical methods, and materials are described elsewhere (Williams 

et al., 2011, Fox et al., 2012 and references therein). For this experiment, we installed a new set of 34

wells in 2010 (Plot C) in a previously unstimulated portion of the Rifle site (Fig. 1) using the rotary 

sonic drilling method. The well layout was designed to combine bicarbonate and acetate amendment 

on one side of Plot C with the other side reserved solely for acetate addition. The timing of 

amendments was designed to span the period when microbial Fe reduction was the dominant 

terminal electron accepting process. However, the target initial bicarbonate concentration (∼30 mM) 

in the aquifer was chosen to mimic that produced during biostimulation when sulfate reduction is at a 

maximum. In field experiments at the Rifle site, acetate amendment initially stimulates Fe-reducing 

microbial populations that transitions to dominance of sulfate reducers after about 3 weeks (Williams 

et al., 2011), producing greater bicarbonate concentrations. Stoichiometrically, the background 

concentration of ∼10 mM of sulfate reduced yields a 20 mM increase in bicarbonate above the 

background concentration of ∼10 mM. However, Fe-reducers continue to reduce metals even during 

dominance of sulfate reduction hence the desire to understand the impact of increased bicarbonate 

on Fe-reducing microbial populations.
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Download full-size image

Fig. 1. Well layout for Plot C, site of the Super 8 field experiment. The Rifle field site location is provided in Williams et al., (2011). Inset 

shows the two tanks containing the separate injectates used in the experiment.

Wells were emplaced to a depth corresponding to the contact between the aquifer alluvium and the 

largely impermeable Wasatch formation (∼6–7 m below ground surface, see DOE (1999) for 

additional information on geologic setting). Wells were typically screened over the entire saturated 

thickness of the aquifer (∼3–7 m below ground surface). Selected wells were designed to collect 

samples at 3 discrete depths.

Deuterium (2H or D) was used as a conservative tracer for the bicarbonate injectate and quantified (as

water with one hydrogen (H), one D and one oxygen (O) or HDO) with a liquid water 

isotope instrument (Los Gatos Research Inc.) as described in Berman et al. (2009) except for 

differences detailed in Appendix A. Supplementary Data. NaBr was used as a conservative tracer for 

the acetate (CH3COONa·3H2O) amendment and analyzed by ion chromatography as described 

elsewhere (Williams et al., 2011).

2.1. Experimental design and timeline

The experimental objectives required that groundwater amendments (acetate and sodium 

bicarbonate) be introduced at spatially distinct locations and timed such that acetate followed 

bicarbonate desorption of U(VI) on the bicarbonate-acetate side of the experiment. To achieve these 

objectives, groundwater from a location with no previous biostimulation (well #655) was pumped into 

two separate tanks, (1) a 6000 L high-density polyethylene(HDPE) tank for bicarbonate plus 
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deuterium as a tracer and (2) a 2120 L stainless steel tank for acetate and NaBr as a tracer. 

NaHCO3 (Fisher Scientific) and 70% D2O (Cambridge Isotope Laboratories, Inc.) were added to the 

HDPE tank to achieve a δD of tank water of ∼380‰ and a bicarbonate concentration of 50 mM. The 

HDPE tank was sparged with CO2 to prevent extensive oxygenation of stored groundwater, and 

achieve a pH of ∼7. Tank contents were circulated for 4 days (first tank) and 2 days (second tank) to 

enhance mixing and dissolution. The HDPE tank remained open to atmosphere over the injection 

period (Table 1), with a 30–45 min daily CO2sparging to maintain pH at 7.1 ± 0.2. The stainless steel 

tank (2120 L) was amended with 50 mM CH3COONa·3H2O (Sigma Aldrich) and 20 mM NaBr (Sigma 

Aldrich) while sparging with N2. The tank remained sealed under N2headspace during the injection 

period.

Table 1. Summary of injection activities, wells utilized, duration and dates of injection, injected volume, and concentration 

of injectates for the “Super 8” field experiment.

Injection 
activity

Injection 
well 
numbers

Date[time] Duration
[days]

Injected
volume

[L]

Reagent 
concentration⁎[mM]

Isotope 
enrichment⁎[‰]

Precursory tracers

NaBr CA02 10-Aug-
10[1603]

0.58 400 5.8 [Br−] –

H2
18O CG04 15-Aug-

10[1750]

0.53 350 – 23 [18O]

Posterior tracers

NaBr + D2O CA02 20-Nov-
10[1000]

0.58 400 5.8 [Br−] 500 [D]

Bicarbonate–deuterium

#1 start CA01-
CA03

16-Aug-
10[0630]

11 6000 50 [HCO3
−] 500 [D]

#1 end “ ” 27-Aug-
10[1400]

#2 start “ ” 29-Aug-
10[1200]

10 6000 50 [HCO3
−] 500 [D]

#2 end “ ” 7-Sept-
10[1912]

Acetate–bromide

#1 start CG01-
CG10

23-Aug-
10[1256]

14 2200 50 [CH3COO−] –

#1 end “ ” 7-Sept-
10 [0700]

20 [Br−]

#2 start⁎⁎ “ ” 13-
Sept-
10[1845]

9 1500 50 [CH3COO−] –

#2 end “ ” 22-
Sept-
10[1718]

20 [Br−]
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⁎ Concentration/enrichment within the injection tank.

⁎⁎ Tank #2 injection was initially started on 9-Sept-10; however, a closed injection valve prevented flow from the tank;

injection was re-started on 13-Sept-10, as indicated.

Both injectates were introduced to the aquifer using separate sets of boreholes oriented 

approximately orthogonal to groundwater flow direction and spaced at 1.5 m intervals (Fig. 1). Tank 

contents were introduced to each injection well at 3.5 and 5.5 m below ground surface at rates of 

180 L well−1 day−1 (bicarbonate tank; 3 wells, CA01, CA02, CA03) and 16 L well−1 day−1 (acetate tank; 

10 wells, CG01-CG10). Injection of acetate/bromide was interrupted for ca. 5 days between the first 

and second filling of the acetate tank (Table 1). Cross-well mixing was used to disperse the injectates 

across the zone of injection, with peristaltic pumps circulating fluids (0.7 L min−1) between adjacent 

wells through HDPE tubes (Williams et al., 2011). For both injectates, fluids from two wells (e.g. CA01

and CA03) were withdrawn from a depth of 6 m and injected simultaneously into an adjacent well 

(e.g. CA02) at a depth of 4 m to create head differences between adjacent wells. Water level 

elevations were monitored at 15-min intervals in all injection wells using pressure transducers. Pump 

directions were changed daily such that individual wells served alternately as extraction and injection 

wells for cross-well mixing.

NaHCO3 (∼50 mM) was delivered to the aquifer through wells CA01-CA03, such that 

NaHCO3 entered the system upgradient of subsequent acetate amendment (Fig. 1). After injection, 

HCO3
− was advected along the primary groundwater flow direction and intersected the region of 

acetate amendment in wells CG06-CG09. Wells CG01-CG05 were located in a region unimpacted by 

HCO3
−. All of the CG wells (CG01-CG10) were used for injection of acetate and NaBr.

2.2. Aqueous U(VI) speciation calculations

Uranium(VI) speciation calculations were performed using the thermodynamic data published in Hyun

et al. (2009) and the computer program FITEQL4 set to equilibrium mode (Herbelin and Westall, 

1999). Most of the uranium thermodynamic data are consistent with the NEA database (Guillaumont 

et al., 2003) with the exception of Ca-uranyl-carbonato complexes and Mg-uranyl-carbonato complex 

(Dong and Brooks, 2006, Dong and Brooks, 2008). Ionic strength corrections in FITEQL4 were made 

with the Davies equation.

2.3. Microbiological analyses

Bicarbonate-acetate and acetate-only treatments were compared microbiologically by 16S rRNA gene

analysis of the groundwater. A 16S rRNA-targeted gel element ‘amplification’ microarray (combining 

amplification, labeling and hybridization in a single closed microfluidic chamber) method was used, 

which targets 24 genera of dissimilatory metal-, sulfate- and nitrate-reducers (Chandler et al., 2013). 

The link between phylogeny and function in the microarray targets has been established via culture-

based methods (see Andersen et al., 2010 and references therein). Total nucleic acid from 1 to 2 L 

groundwater was extracted from filter cartridges with a MoBio PowerSoil DNA Isolation Kit (Carlsbad, 

CA) following manufacturer’s instructions. Three microliters of purified nucleic acid representing 30–

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/dna
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nucleic-acid
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0020
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/phylogeny
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0075
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hybridization
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0110
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0105
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0165
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0165
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0185
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0185
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0215
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0215
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermodynamics
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#f0005
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0350
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#t0005
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#f0005
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/groundwater-flow
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/boreholes


60 mL equivalent of groundwater was processed in duplicate as described in detail elsewhere 

(Chandler et al., 2010).

Microbial groundwater communities from a select time point during peak Fe(III) reduction were further

analyzed using clone library analysis. DNA was extracted from groundwater collected on 9/14/2010 

from acetate-only and bicarbonate-acetate treatment wells CD04 and CD14, respectively, as 

previously described (Giloteaux et al., 2013). Briefly, 16S rRNA sequences were amplified using 

primers 338F (Lane et al., 1985) and 907R (Amann et al., 1990) and clone libraries were constructed 

with a TOPO TA cloning kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. 

One hundred and fifty plasmid inserts per clone library were sequenced with the universal 

M13F/M13R primer set.

DNA from sediment-attached microbial populations was also extracted from sediment collected during

drilling of well CD04 as part of a different study (Handley et al., 2014). In short, freshly obtained Rifle 

aquifer sediment was first packed into flow through columns, and incubated within wells during 

acetate-amendment. DNA was extracted from homogenized sediment using PowerMax Soil DNA 

Isolation Kits (MoBio Laboratories, Inc., Carlsbad, CA, USA). 16S rRNA genes were amplified using 

the universal bacterial primers 27F and 1492R, and gradient PCR (11 annealing temperature 

increments, 48–58 °C). Amplicons were fragmented to ∼300 bp and paired-end libraries were 

constructed prior to sequencing on the HiSeq2000 platform (Illumina® Inc., San Diego, CA, USA). 

Quality trimmed reads (Q > 3) were reconstructed into full-length sequences using the EMIRGE 

method (Miller et al., 2011, Miller et al., 2013).

2.4. Reactive transport modeling

Modeling of the Super 8 experiment is based on a simulation capability developed for prior Rifle field 

biostimulation experiments (Yabusaki et al., 2007, Li et al., 2009, Li et al., 2010, Fang et al., 

2009b, Yabusaki et al., 2011), and relies heavily on model parameters developed for the 2008 Big 

Rusty acetate biostimulation field experiment (Williams et al., 2011). eSTOMP, a massively parallel 

processing, multifluid flow and multicomponent reactive transport subsurface simulator provided the 

framework and the high performance computing (HPC) infrastructure to address high spatial 

resolution and the complex biogeochemical processes involved in the field experiment as described 

below. Simulations covered a 70-day period to capture the time period that includes the focus of this 

paper, which is comparing reduction rates under acetate-only and bicarbonate-acetate conditions. 

The 70-day cutoff was thus chosen to capture the behaviors of interest while conserving HPC 

resources.

A large biogeochemical reaction network is required to model Rifle field experiments in part because 

of the broad range of uranium mobility that is sensitive to pH, alkalinity, major ion chemistry, redox 

state and the surface reactivity of the subsurface sediments (Morrison et al., 1995, Davis et al., 

2002, Fox et al., 2012). The modeling challenge is that products of the biostimulation (e.g., 

bicarbonate, Fe(II), U(IV), sulfide) can alter the geochemical conditions controlling uranium mobility 

(Fang et al., 2009b, Zhao et al., 2013). Using the Yabusaki et al. (2011) biogeochemical reaction 

network (i.e., stoichiometry, thermodynamics, and rate laws), we simulated the 2010 Super 8 field 
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biostimulation experiment with 102 chemical species and 7 minerals addressing 3 microbially-

mediated terminal electron accepting processes (i.e., Fe(III), U(VI), sulfate), and Fe(III)- and sulfate-

reducing microorganisms and their biomass. Major ion chemistry, mineral reactions 

(i.e., calcite, siderite, goethite, magnetite, FeS, elemental sulfur, uraninite), surface complexation (i.e.,

H+, Fe(II), U(VI)), and ion exchange processes (i.e., Ca++, Mg++, Na+, K+) were included. Ion exchange 

capacity and surface sites for U(VI) sorption were modified from the Yabusaki et al. (2011) model to 

provide an improved fit to the observed desorbed U(VI) and major cationconcentrations, especially 

Ca++ (see SI for additional details).

Two key assumptions in the model are (1) U(VI) aqueous species re-equilibrate, diffuse, or advect 

rapidly such that after formation or consumption of one species the equilibrium proportions for the 

local geochemical conditions are re-established rapidly, and (2) uraninite (UO2) is the product of 

bioreduction of U(VI). Uranyl ion concentration is used in the bioreduction reaction and rate law. Since

the uranyl ion concentration is small relative to the total aqueous U(VI) concentration, its inclusion 

instead of total U(VI) does limit the conversion rate. However, the kinetic reductive removal of uranyl 

ion from solution is rapidly restored via the equilibrium speciation of the remaining U(VI) in solution.

While monomeric (or non-crystalline) U(IV) is an important component of total U(IV) in bioreduced 

Rifle sediments (Bargar et al., 2013, Cerrato et al., 2013, Alessi et al., 2014), and Bargar et al. 

(2013) point out the need for reactive transport models that include monomeric U(VI) as bioreduction 

products, the lack of stability constants and uncertainty regarding biogeochemical controls for 

formation of monomeric U(IV) limit our ability to incorporate non-uraninite forms of U(IV) into the 

model. Uraninite is also assumed to be stable under subsurface conditions at Rifle that include 

low dissolved oxygen (typically <0.2 mg/L, Yabusaki et al., 2007) and based on in situ experiments at 

Rifle that show slow dissolution rates for uraninite (Campbell et al., 2011).

The geology in the well field (Plot C) is predominantly the sandy gravel lithofacies defined in Yabusaki

et al. (2011) for an earlier field experiment at the site, the Big Rusty acetate biostimulation experiment

conducted in the Summer and Fall of 2008. The lithofacies-based properties of the sandy gravel 

classification (30 m/d hydraulic conductivity, 0.230 porosity, and 3.25 m2/g specific surface area) were

therefore assumed. As in the simulation for the Big Rusty experiment, longitudinal and 

transverse dispersivity were 0.4 and 0.04 m, respectively (based on analysis of bromide tracer data, 

see Yabusaki et al. 2011).

The modeled subsurface domain is approximately 14 m downgradient by 18 m transverse by 6.5 m 

deep, and is represented by 209,664 grid cells with nominal grid spacing of 0.25 m laterally and 

0.10 m vertically. The flow fieldand saturated thickness are driven by time-dependent water levels on 

the domain boundary, and bicarbonate and acetate solutions introduced at injection wells. The model 

boundary conditions are based on water level measurements over the 70-day simulation period. In all

cases, it was assumed that the total injectate volume was distributed equally over the specified set of 

injection wells for the duration of the release, a reasonable assumption for a newly established well 

field in the Rifle alluvial aquifer (Yabusaki et al., 2007, Williams et al., 2011).

3. Results
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Samples from ∼33 wells were analyzed during the course of the field experiment; here we 

plot geochemistry results from three wells that show the results from different parts of the experiment:

bicarbonate-only (well CU03), acetate-only (well CD01) and bicarbonate-acetate (well CD14). Other 

wells exhibit similar trends depending on location in the experimental plot (experimental data for all 

wells are available at doi: 10.1594/PANGAEA.830272). Observations are well matched by 

the reactive transport model (e.g., Fig. S-3). Bicarbonate-only well CU03 was located ∼1 m 

downgradient from the bicarbonate injection wells and 1 m upgradient from the acetate injection 

wells, such that it was exposed to the NaHCO3/deuterium injection but minimally impacted by the 

CH3COONa/NaBr injection. Sporadic, low concentrations of acetate and bromide were occasionally 

detected during sampling of well CU03, in part due to cycling of cross-well mixing within ∼1 m of the 

CG01-CG10 injection gallery. Wells CD01 and CD14 were both impacted by the acetate injection, 

with both wells located ∼2.5 m downgradient from the region of acetate injection (Fig. 1).

3.1. Groundwater quality parameters and conservative tracer breakthrough

The effects of bicarbonate and/or acetate on pH, specific/electrical conductance, Fe(II) 

concentrations, and δD values are illustrated in Fig. S-1. As expected, breakthrough of deuterium was

primarily observed downgradient from NaHCO3 injection wells CA01-CA03, with increased dilution 

observed between CU03 and CD14 (peak δD ≈ 340‰ at CU03 versus δD ≈ 175‰ at CD14). A +5‰ 

increase over baseline in δD was observed at CD01 (Fig. S-1; inset), something we attribute to the 

cross-well mixing process. A significant increase in HDO (δD of >35‰) was observed in wells CU04, 

CD11-CD17 (as intended), as well as CD06, CD08, CD09, and CD10 (not shown). Such 

breakthrough is generally consistent with the predicted flow direction (175–180° azimuth from north), 

but the channel feature along the top of the Wasatch Formation may have impacted flow of the 

relatively dense deuterium-bearing injectate (see Fig. 1 for isopleths of the contact between the 

Wasatch and the alluvium). Overall the conservative tracers (D and NaBr) demonstrate that the 

injectates were distributed over the experimental domain as intended.

Irrespective of the injectate (acetate, bicarbonate, or both), pH values generally remained within the 

7–7.5 range; the abrupt excursion (pH > 7.5) observed in CU03 (bicarbonate only) accompanied a 

rapid rise in pH within the NaHCO3/D2O injection tank, which was eliminated by CO2 sparging. 

Changes in groundwater electrical conductivity (EC) tracked the delivery of both injectates (50 mM 

NaHCO3, and 50 mM NaCH3COO + 20 mM NaBr, Table 1), with the greatest increases over baseline 

values observed in wells that were impacted by the bicarbonate injection. EC increases observed at 

CD01 and other wells solely impacted by the CH3COONa/NaBr injectate increased by <40%. 

Although the tank concentrations of the CH3COONa/NaBr injectate were similar in ionic strength that 

of the bicarbonate tank, injection flow rates were different for the two tanks such that a greater in-well 

dilution occurred for the acetate-only injection. As a consequence, the peak total inorganic 

carbon (TIC) in CU03 (bicarbonate-only) is ∼50 mM (10–13 mM of which is background TIC), 

whereas peak acetate plus the NaBr tracer in CD01 (acetate-only) is ∼9 mM. For bicarbonate-

acetate (CD14) peak TIC + NaBr + acetate is ∼40 mM, including 10–13 mM TIC background. 
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Considering the background TIC, the ionic strength from amendments in the acetate-only part of the 

experiment is ∼50% of that of bicarbonate-acetate.

Increases in ferrous iron concentration were observed downgradient from the region of acetate 

addition, reflecting the reduction of Fe(III) by acetate-stimulated, iron-reducing bacteria, consistent 

with all previous acetate injections at the Rifle site. Some increase in Fe(II) was observed at CU03, 

which was likely caused by cation exchange (50 mM Na+) releasing Fe(II) sorbed to surface exchange

sites (Fox et al., 2013) and/or movement of stimulated groundwater from the vicinity of the acetate 

injection wells toward CU03 (<1 m).

3.2. Geochemical changes accompanying bicarbonate injection

Expanding upon previous NaHCO3 injection experiments at Rifle (Fox et al., 2012), geochemical 

changes in well CU03 were used to evaluate the impact of sustained (>20-day) levels of elevated 

HCO3
− on uranium mobility, metals (V, Fe, Mn), as well as its impact on other 

exchangeable cations (Ca, Mg, K, Na, Fig. 2). The results are consistent with an ion exchange model 

(Ca, Mg, K) driven by the ∼70 mM Na in the amendments and enhanced desorption of uranium 

driven by the formation of stable aqueous species (e.g., Ca2UO2(CO3)3
0, the predominant U(VI) 

species under the conditions of the experiment). Abrupt and prolonged decreases in total Mn 

concentration are inferred to result from the low solubility of manganese carbonates.
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Fig. 2. Concentration of selected geochemical constituents in well CU03 plotted versus time in days after 8/16/2010 (bicarbonate-only 

conditions). NaHCO3 injection period delineated by vertical bars. Relevant, maximum contaminant levels (MCL) and UMTRA standard 

concentrations are denoted by horizontal dashed lines with concentration values as shown.

Concentrations of multiple cations (Ca, Mg, and K) fell below their pre-injection values once 

NaHCO3 injection ceased likely due to re-exchange of these cations with Na following the 

NaHCO3 flush. This effect was previously observed in the Little Rusty field experiment (Fox et al., 

2012, Fox et al., 2013) and was simulated in an updated ion exchange model. Following injection, 

influx of groundwater from regions upgradient of the zone of NaHCO3 injection leads to removal of 

U(VI) from solution, as sorption sites for U(VI) species are re-filled. Once such sites are largely 

occupied, groundwater U(VI) concentrations rebound to pre-injection levels. In comparison with Little 

Rusty (Fox et al., 2012), both cation and U(VI) concentrations were generally slower to rebound 

following the Super 8 injection, likely due to the longer duration of the Super 8 injection (21 versus 

0.18 d). In contrast, total Fe (FeTTL = FeII + FeIII ionic species) remained elevated following 

NaHCO3 injection, potentially the result of enhanced release of Fe(III) colloids (<45 μm particle size) 

during injection (note that Fe(II) levels determined colorimetrically also fall to pre-injection values; Fig.

S-1).

3.3. Geochemical changes accompanying acetate injection

The acetate-only portion of Plot C provided a direct comparison to the NaHCO3-impacted portion of 

the flow cell. Geochemical changes in well CD01 are shown in Fig. 3. Desorption and re-sorption of 

exchangeable cations was also observed during and after CH3COONa/NaBr injection, respectively, 

although the magnitude of the effect was less than that observed at CU03. The much smaller 

increase in ionic strength (and hence less injected Na+) accounts for the observed difference between

the two sections of Plot C. The presence of acetate, absence of amended bicarbonate, and resulting 

stimulation of metal-reducing bacteria also led to markedly different changes in concentrations of 

redox-sensitive metals in CD01 relative to CU03. The contrast was especially strong for U(VI) and V, 

both of which can be reductively immobilized via enzymatic reduction by microorganisms (Lovley et 

al., 1991, Ortiz-Bernad et al., 2004b, Yelton et al., 2013). For ∼5–7 days there was a slight increase 

in U(VI) and total V groundwater concentrations upon delivery of acetate to the wellbore region, 

followed by a rapid decrease in both U(VI) and total V in groundwater via reductive immobilization. A 

decrease in total V concentration in groundwater occurs immediately following the slight increase, 

similar to the observations made during the first Rifle field experiment (Ortiz-Bernad et al., 2004b), 

whereas removal of U(VI) was delayed by approximately 5 days. Groundwater U(VI) concentrations 

fell below the EPA’s maximum contaminant level (MCL = 0.126 μM) so long as acetate remained at 

detectable levels, as previously observed at the site (Williams et al., 2011). Once acetate injection 

ceased, U(VI) concentrations steadily rebounded due to the influx of U(VI)-bearing groundwaters from

upgradient locations and a slowing of microbial reduction in the absence of acetate addition. In 

contrast, total V concentrations in groundwater remained below the cleanup target concentration 

(0.67 μM) far beyond the period where acetate fell below detectable levels (Ortiz-Bernad et al., 

2004b, Yelton et al., 2013).
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Fig. 3. Concentration of selected geochemical constituents in well CD01 plotted versus time in days after 8/16/2010 (acetate-only 

conditions). Acetate injection period delineated by vertical grey bars. MCL’s and UMTRA standard are as shown in Fig. 2.

3.4. Combined Impact of bicarbonate and acetate injection

As anticipated, the temporal behavior of exchangeable cations, metals, and uranium at CD14 was a 

combination of the processes observed at CU03 and CD01 (Fig. 4, Fig. 5). Following an initial 

increase in U(VI) and V (as also observed in CU03), both metals were rapidly removed to very low 

concentrations. In contrast to the CU-03 and CD01 locations, U(VI) concentrations remained below 

the MCL for ∼55 days after acetate fell below detection. Total V concentration remained below the 

cleanup target at the point of exposure (DOE, 2001) of 6.48 μM for more than 55 days after acetate 

levels fell below detection. Vanadium showed no indication of rebound, similar to the results obtained 

in well CD01 and observed in earlier experiments (Ortiz-Bernad et al., 2004b). Fe(II) reached greater 

maximum concentrations at CD14 than at CD01 (150 μM at CD01 versus 225 μM at CD14, Fig. 

3, Fig. 4). While the impact of elevated HCO3
− concentration on Fe(III) reduction is still uncertain, the 

significant increases in Fe(II) at CD14 relative to CD01 may simply be the result of a heterogeneous 

distribution of bioavailable Fe(III) in subsurface sediments or a combination of Fe(III) reduction and 

Fe(II) release through ion exchange (as observed in CU03). Uranium(VI) concentration increased 

twofold at CU03 (ca. 0.65–1.3 μM), whereas the increase at CD14 prior to acetate-induced U(VI) 

bioreduction was fourfold (ca. 0.5–2 μM). The likely explanation is a longer transport distance (i.e., a 

larger volume of extracted sediments) over which bicarbonate is able to desorb U(VI). Specifically, the

distance between the NaHCO3injection wells and monitoring well CU03 is ∼1 m versus well CD14 

which is ∼3.5 m from the NaHCO3 injection wells (cf. Fox et al., 2012).
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Fig. 4. Concentration selected geochemical constituents in well CD14 plotted versus time in days after 8/16/2010 (bicarbonate-acetate 

conditions). Acetate injection period delineated by vertical bars. MCL’s and UMTRA standard are as shown in Fig. 2.
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Fig. 5. Comparison of the behavior of aqueous U(VI), D and bromide tracers, acetate, and total inorganic carbon (TIC) in CU03 (A), 

CD01 (B) and CD14 (C). TIC concentrations result from the NaHCO3 injection (start and stops represented by dashed vertical lines). 

Starts and stops for acetate injection denoted by vertical grey bars (see Table 1). The inset in (A) shows acetate with an expanded 

scale where acetate is above detection. MCL is as shown in Fig. 2.

There was a large difference in total inorganic carbon (TIC) concentration associated with 

NaHCO3 addition that resulted in a 6-fold difference in U(VI) desorption from sediments between 
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CD01 and CD14 (Fig. 5). Regardless of TIC concentration (and by extension [HCO3
−]), 

the apparent rates of U(VI) decrease (ΔU(VI)obs conc/t) associated with stimulated microbial activity were 

largely indistinguishable under high and low alkalinity and both wells reached relatively low values of 

U(VI) concentration (CD01: 0.03 μM on day 42 and CD14: 0.06 μM on day 53). The apparent rates 

are significant from the perspective of applied bioremediation, but understanding the underlying 

mechanisms and associated rates requires separating competing processes of aqueous speciation 

changes, desorption, bioreduction, and precipitation of new solid phases. We address this need by 

reactive transport modeling, establishing estimates of the actual rate of bioreduction of U(VI), as 

described in Section 3.8.

3.5. Uranium rebound

One of the most pronounced differences between the bicarbonate-acetate versus the acetate-only 

parts of the experiment is the extent to which uranium rebounds after acetate injection ends (Fig. 5). 

Irrespective of the large increase in U(VI) concentrations associated with HCO3
−-mediated desorption,

uranium was not only removed rapidly from groundwater at the wells impacted by both bicarbonate-

acetate, but it also remained at low levels (below the MCL) long after acetate injection ended (well 

CD14, Fig. 5C). The same was typically not true for locations exposed solely to acetate. There, 

uranium concentrations rebounded immediately or soon after acetate concentrations fell to levels 

below detection (well CD01, Fig. 5B). The most likely explanation for this phenomenon involves the 

extent to which re-sorption of advecting U(VI) occurs in areas where desorption was greatly 

enhanced by NaHCO3 injection. As noted above, movement of upgradient groundwater with U(VI) into

the part of the bicarbonate-acetate part of the experiment is impacted by sorption onto newly vacant 

sorption sites; the same effect does not occur in wells close to the injection point (CD03, CD02, 

CD01, Fig. S-3 and Fig. 5B) and amended with acetate-only because U(VI) desorption was limited in 

the acetate-only part of the experiment (an increase in U(VI) of ca. 0.7–0.9 μM, much less than for 

either CU03 or CD14).

Fox et al. (2012) demonstrated that there is a kinetic limitation to U(VI) desorption in Rifle sediments, 

likely due to a mass transfer limitation related to intragranular porosity of the sediments, a pore-size 

constraint on movement of U(VI) off mineral surfaces into groundwater. Kinetic limitation to U(VI) 

desorption likely caused a limited availability of sorbed inventories of U(VI) to microbial reduction 

(Ortiz-Bernad et al., 2004a). Were the sorbed pool of U(VI) not kinetically limited, a similar refilling of 

vacant sorption sites with U(VI) in upgradient groundwater (and the suppression of U(VI) 

concentrations) would have been expected under acetate-only conditions (e.g. at CD01). This is 

because removal of U(VI) from groundwater by bioreduction of U(VI), without the kinetic limitation, 

would result in additional desorption of U(VI). The rate of U(VI) desorption is apparently slow enough 

in the acetate-only region that the sorbed pool of U(VI) is not significantly reduced. Microbial 

reduction of the sorbed pool of U(VI) could be direct (bacteria directly reduce sorbed U(VI) to U(IV)) 

or indirect (bacteria reduce dissolved U(VI) which is rapidly replenished by U(VI) desorption from 

sediments). Apparently neither of these mechanisms is significant under the in situ conditions at the 

Rifle site, otherwise longer-term suppression of U(VI) concentrations would be expected under 
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acetate-only conditions. An important assumption here is that U(VI) is not reduced abiotically or 

biotically during the post-acetate amendment time period, or otherwise scavenged by incorporation 

into a newly formed phase such as calcite. While such mechanisms have been proposed (N’Guessan

et al., 2008, Hyun et al., 2012), the process of filling of vacated sorption sites is consistent with 

reactive transport modeling described below, and provides the simplest explanation of the differences 

in U(VI) rebound under bicarbonate-acetate and acetate-only conditions.

3.6. Speciation of aqueous U

Fig. 6 compares the calculated U(VI) speciation in groundwater over the duration of the experiment in

wells CD01 (acetate-only) and CD14 (bicarbonate-acetate). The dissolved U(VI) speciation was 

dominated by the same five complexes in both cases, with uncharged calcium-uranyl tricarbonato 

species (Ca2)UO2(CO3)3
0 making up ∼97% of the dissolved U, followed by CaUO2(CO3)3

2−, 

MgUO2(CO3)3
2−, and UO2(CO3)3

4−. Note that these species all contain 3 carbonate ligands, so we refer 

to the sum of these four species as the uranyl-tricarbonato species, and the group of all other 

dissolved U(VI) species as the non-tricarbonato species. The UO2(CO3)2
2−species has the fifth highest 

concentrations of dissolved U(VI) in both wells; its concentration was more than 3 orders of 

magnitude lower than the uncharged, calcium-uranyl tricarbonato species, but was about an order of 

magnitude higher under acetate-only conditions (CD01) than under bicarbonate-acetate conditions 

(CD14).
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Fig. 6. Plots of the total concentration of dissolved U and calculated U(VI) aqueous species concentrations as a function of time in wells

CD01 (A) and CD14 (B). Vertical lines are the same as in Fig. 5. See “Section 2” for details on calculations.

The concentrations of dissolved U(VI) in wells CD01 and CD14 were slightly different at the beginning

and varied over the duration of the experiment. In well CD01 (acetate-only), the initial concentration 

was 0.75 μM, and 0.051% was calculated to be present as non-tricarbonato species. For CD14 

(acetate-bicarbonate), the values were 0.66 μM and 0.064%. Fig. 7 shows the ratio of the relative 

fraction of non-tricarbonato species in well CD14 (bicarbonate-acetate) to that in well CD01 (acetate-

only) over the course of the experiment. The non-tricarbonato ratio is slightly greater than 1 at the 

beginning of the experiment, but then the ratio decreases rapidly to 0.25 during the bicarbonate and 

acetate additions to the groundwater (Fig. 7), as the increased bicarbonate concentration causes a 

greater proportion of dissolved U(VI) to be present as uranyl-tricarbonato species in well CD14. Later 

in the experiment (>40 days), the water chemistry at CD14 changes significantly as the bicarbonate 

plume is transported away and the non-tricarbonato ratio for CD14:CD01 is again greater than 1 for a 

period of time.
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Fig. 7. Plot of the ratio of the calculated fractional contribution of non-tricarbonato species to total dissolved U in well CD14 versus well 

CD01 as a function of time. Vertical lines are the same as in Fig. 5.

As shown by Ulrich et al. (2011), the kinetics of uranium bioreduction are highly sensitive to U(VI) 

aqueous speciation, and thus depend significantly on pH and calcium and bicarbonate 

concentrations. The greater proportion of uranyl-tricarbonato species present under bicarbonate-

amended conditions is therefore expected. However, ΔU(VI)obs conc/t under bicarbonate-acetate and 

acetate-only conditions were still indistinguishable in spite of the laboratory observation that Ca-

uranyl-tricarbonato species in particular are bioreduced at slower rates than non-tricarbonato species 

(Dong and Brooks, 2006, Stewart et al., 2007).

3.7. Microbiology

Relative changes in Plot C microbiology with time are shown in Fig. 8, and provide more extensive 

data than the amplification microarray data reported previously for this experiment (Chandler et al. 

2013). Relative to the CU01 background (i.e., unimpacted by acetate or bicarbonate) signatures, 

the bloom of metal-reducing bacteria in all wells was dominated by Geobacterand Pelobacter 16S 

rRNA gene signatures, as expected. The transition from iron to sulfate reduction was accompanied by

a decline in planktonic metal-reducers and an increase in Desulfotomaculum and Clostridium (data 

not shown, see doi: 10.1594/PANGAEA.830272). The relative increase 

in Desulfotomaculum and Clostridium signatures is interesting in light of recent data indicating that 

some Desulfotomaculum and Clostridium species are capable of U(VI) reduction under fermentative 

conditions, even as spores(Junier et al., 2009, Bernier-Latmani et al., 2010, Junier et al., 2011). 

Discernable differences among the composition of microbial communities were not evident between 

acetate-only and bicarbonate-acetate amendments.
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Fig. 8. Spatial distribution and time variation of metal reducers, sulfate reducers and fermenters in selected wells based on microarray 

data. The Y-axis scale on graphs is the signal to noise ratio, SNR, X-axis scale is days since the start of the experiment. All graphs 

have the same scales (X-axis 0–70 days, Y-axis 0–500 SNR). Charts show stacked results for the three functional groups of bacteria. 

Wells CD11, CD14 and CD16 represent bicarbonate-acetate impacted wells as compared to CD02, CD05, and CD07 as acetate-only 

wells. Well CD-17 was missed by bicarbonate but was impacted by acetate. Day zero was 16 August 2010.

16S rRNA clone libraries constructed from groundwater samples collected from wells CD04 and 

CD14 on 9/16/2010 (Day 31) were collected as part of another microbiological study of the Super 8 

experiment but provide results that are consistent with the hybridization microarray results (Fig. 9, 

upper panel). As expected for the acetate-only well CD04 (∼1.5 m downgradient from CD01), a large 

fraction (∼75%) of the community belongs to the Deltaproteobacteria (Geobacter, sp. mainly, 

some Desulfobacteraceae). CD14 is also enriched in Betaproteobacteria, Gammaproteobacteria, 

and, notably, fermenters, including microorganisms from candidate division OD1 (Wrighton et al., 

2012). The variability between the proportion of Deltaproteobacteria between the two wells is within 

the range of that observed previously (e.g., Anderson et al., 2003).

https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0025
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0355
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#b0355
https://www.sciencedirect.com/science/article/pii/S0016703714006838?via%3Dihub#f0045
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hybridization
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/acetates
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/bicarbonate
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/signal-to-noise-ratios
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sulphate-reducers
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-distribution
https://ars.els-cdn.com/content/image/1-s2.0-S0016703714006838-gr8.jpg


Download full-size image

Fig. 9. 16S rRNA gene clone library results (topmost chart) summarized to the class level for groundwater samples from wells CD-04 

(acetate-only) and CD14 (bicarbonate-acetate) on 16 September 2010. For comparison, reconstructed 16S rRNA gene results are 

given below for unamended sediment and sediment from 4 replicate flow-through columns collected from acetate-only wells on 12th 

and 19th of September 2010 (CD03, CD01 and CD05). Reconstructed sequences used were present at ⩾1% relative abundance.

Microbial community data from a more extensive time series (13 samples from in situ sediment 

columns) representing the acetate-only treatment have been analyzed in a manner similar to data 

reported on earlier Rifle experiments (Handley et al., 2012, Handley et al., 2013, Handley et al., 

2014, Wrighton et al., 2012). In brief, results indicate a community structure that is analogous to the 

groundwater communities in CD14 and CD04 at a similar time point in the experiment (Fig. 9, lower 

panel), with the exception that bacteria belonging to the Bacteroidetes phylum are more prevalent in 

the sediment (namely unclassified Sphingobacteria, Flavobacteria and Bacteroidetes). As in the 

groundwater acetate-bicarbonate CD14 community, Deltaproteobacteria and Betaproteobacteria 

dominate in near equal proportions within the sediment and are clearly enriched relative to un-

amended background sediment and groundwater. Overall results indicate a similar microbiological 

response was achieved during both acetate and acetate-bicarbonate experiments that also reflects 
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results obtained during previous experiments (Anderson et al., 2003, Handley et al., 2012). 

Recognizing that 16S rRNA data on groundwater and sediments may not be exactly comparable to 

the hybridization microarray data, the 16S rRNA data indicate that the microbial community during 

biostimulation was typical for Rifle in situ acetate amendment experiments. They are broadly 

consistent with the hybridization microarray results and thus provide independent corroboration of the

microarray data.

3.8. Reactive transport modeling and U(VI) reduction rates

Observed and simulated aqueous U(VI) concentrations were well correlated for most of the 27 

monitoring locations over a 70-day simulation period (Fig. S-3). Simulated aqueous U(VI) 

concentrations under bicarbonate-only conditions (CU03 and CU04) rapidly increased from 0.5 to 

∼1.5 μM before a continuous decline. In the three rows of monitoring wells directly downgradient from

the bicarbonate injection (CD11/12, CD13/14/15, and CD16/17), the peak concentration of the 

simulated aqueous U(VI) pulse progressively increased to ∼2.0 μM. This peak reflects the 

accumulation of desorbed U(VI) as more of the aquifer sediments were impacted by the bicarbonate 

front moving through the aquifer. The occurrence of the simulated peak before the observed peaks in 

U(VI) concentration are related to the use of an equilibrium model, and the attenuation could be better

described with a kinetic model for U(VI) desorption (Fox et al., 2012). The duration of this elevated 

U(VI) pulse is limited by both depletion of adsorbed U(VI) and U(VI) bioreduction that begins with 

injection of acetate on day 8.

Fig. 10 shows simulated U(VI) reduction rates at all monitoring locations over the 70-day simulation 

period. These rates are normalized to U(VI) concentration to account for the expected increase in 

U(VI) reduction rate with increasing U(VI) concentration based on Monod kinetics or the in silicomodel

for iron-reducing bacteria (FeRB) used for this plot (Fang et al., 2012). Figs. S-4, S-6, S-7, and S-

8 show absolute rates and rates normalized to FeRB biomass using the method of Bao et al. (2014). 

Per the modeling schema, the simulated rates are exclusively the result of U(VI) bioreduction and are 

derived from the time-dependent change in amount of U(VI) reduced (i.e., slope of graphs in Fig. S-

2), providing the local reaction rate for U(VI) reduction.
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Download full-size image

Fig. 10. Plots of the simulated U(VI) reduction rate normalized to U(VI) concentration as a function of time across the experimental 

domain. Y-axis values are mol L−1 d−1 molU(VI)
−1 L−1 or d−1.Well numbers with a digit after a decimal point (e.g., CD-13.5) indicate wells 

with discrete sampling ports ranging from 1 to 3 m above the base of the modeling domain (elevation 1612.85 m above MSL). The 

ground surface is 6.5 m above the base of the modeling domain.

The highest simulated U(VI)-bioreduction rates (normalized to U(VI) concentration, Fig. 10) occur in 

the bicarbonate-acetate part of the experiment at day 37 to day 55, depending on well location. At 

wells CD10, CD11, CD12, CD13, CD14, and CD16, peak simulated reduction rates range from 0.30 

to 0.35 mol L−1 d−1 molU(VI)
−1 L−1 (or d−1), with a mean value of 0.33 (1σ = 0.014, n = 6). Locations 

unimpacted by the bicarbonate injection (e.g., CD01) have simulated rates of ∼0.06–
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0.1 mol L−1 d−1 molU(VI)
−1 L−1 at the times of peak reduction rate in the wells above with a mean 

value = 0.087 (1σ = 0.015, n = 6). Thus peak simulated rates in bicarbonate-acetate wells are ∼3.8 

times higher than in the acetate-only wells.

The model output estimates the U(VI) bioreduction rate during the experiment for either bicarbonate-

acetate or acetate-only wells. Results clearly show that the estimated bioreduction rates for the 

acetate-bicarbonate treatment (well CD11) are higher than those for the acetate-only treatment (well 

CD01) 7 to ∼25 days from the start of acetate amendment for both the un-normalized U(VI) 

bioreduction rate and for the U(VI) reduction rate normalized to biomass (Fig. S-6). For the U(VI) 

bioreduction rate normalized to U(VI) concentration (Fig. 10 and Fig. S-5), the estimated rate for the 

bicarbonate-acetate treatment exceeds rates for the acetate-only treatment from ∼7 to ∼62 days 

from the start of the experiment. The rates diverge from ∼13 to ∼35 days, with increasingly greater 

rates for the bicarbonate-acetate treatment while rates in CD01 (for example) remain nearly constant. 

This is the appropriate comparative time period during which acetate levels are similar on both sides 

of the experiment. As expected, the time of peak estimated U(VI) reduction rates shift to later times in 

further down-gradient wells.

The model does show significant simulated reduction rates for wells CU03 and CU04 that are ∼1 m 

upgradient from the line of acetate injection wells. Non-zero U(VI) reduction rates are expected in 

these wells due to transport of acetate away from injection wells during cycling of cross-well mixing. 

Peak rates of 1/3 or 1/2 of the peak rates in nearby down-gradient wells are likely overestimated 

given the low measured acetate concentrations in these wells.

4. Discussion

4.1. U(VI) desorption and changes in U aqueous complexes

The impact of U(VI) desorption on U(VI) aqueous concentrations is clearly demonstrated by this 

experiment. Results from monitoring wells downgradient from the bicarbonate injection (e.g., CU03) 

suggest that U(VI) desorption began to deplete the available pool of sorbed U(VI) based on the 

declining U(VI) concentrations, while bicarbonate concentrations remained at or near their peak 

concentrations. The implication of this observation is that near-complete desorption of labile U(VI) is 

feasible over reasonably short time frames (days to weeks) and that it might be practical to use 

desorption as a remedial technology either as a stand-alone U(VI) flushing process or in combination 

with bioreduction to enhance bioavailability of U(VI). Results from the experiment confirm earlier work

(Phillips et al., 1995, Williams et al., 2011) that shows no apparent inhibition of the reduction of U(VI) 

even when calcium-uranyl tricarbonato complexes dominate aqueous species.

However, the net effect of bicarbonate addition to the system is complex, increasing total dissolved 

U(VI) but also decreasing the proportion of more readily bioavailable non-tricarbonato species. Note 

that the decrease in U(VI) concentration begins even when DIC and δD are still rising, indicating that 

microbial reduction is outpacing U(VI) desorption on the bicarbonate-acetate side of the experiment 

(e.g. well CD14). The net effect on enzymatic U(VI) reduction is thus also complex, with the 

simulated absolute rate of reduction faster in CD14 than at CD01 (for days 7–23, Fig. S-4), partly 
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related to the greater total dissolved U(VI) concentration. The simulated rate of reduction per mole of 

U(VI) is faster on the bicarbonate-acetate side for a longer duration (days 12–62). The proportion of 

uranyl-tricarbonato species during days 10–40 on the bicarbonate side of the experiment likely plays 

a limited role in the U(VI) reduction rates (Fig. 7 cf. Fig. 10 CD01 and CD14), but the mechanistic 

interaction between U speciation and microbial reduction of U(VI) is still poorly understood. Given the 

increase abundance of uranyl-tricarbonato species under conditions of bicarbonate-acetate (Ulrich et 

al., 2011 and Fig. 7), it would be expected that there would be lower ΔU(VI)obs conc/t on the acetate-

bicarbonate amended side of the experiment. This difference might be expected to be significant 

enough to show up directly in U(VI) concentrations as function of time. As this is not the case, it 

suggests that (1) the model assumption that U(VI) aqueous species re-equilibrate, diffuse, or advect 

rapidly such that there is no decrease in the ΔU(VI)obs conc/t with bicarbonate amendment is correct, or 

(2) under Rifle field conditions the in situ biostimulated microbial community is not sufficiently 

sensitive to U(VI) aqueous speciation to affect the rates of bioreduction (Ortiz-Bernad et al., 2004a).

4.2. Impacts of bicarbonate on the microbial community and U(VI) bioreduction rates

Univariate and multivariate statistical analysis of the microarray data show no consistent differences 

in the microbial community structure between the bicarbonate-acetate and the acetate-only 

treatments (Fig. S-9). The analysis indicates that total biomass is not correlated with 

TIC, acetate concentration and metal reducers but positively correlated with sulfate reducers and 

fermenters, consistent with the microbial succession during the field experiments at Rifle (i.e., 

biomass increases with time or the degree of stimulation). This analysis is consistent with the 

temporal differences in microbial biomass (total signal to noise ratio, SNR) in bicarbonate-impacted 

wells in Fig. 8. In addition, simulated U(VI) reduction rates normalized to U(VI) concentration are 

higher for the bicarbonate-acetate treatment than for the acetate-only treatment. These results 

suggest that although the acetate-bicarbonate treated microbial community is compositionally 

indistinguishable from the acetate treated community, the former is more effective at U(VI) reduction, 

irrespective of total planktonic biomass (Fig. S-6), or concurrent reduction of bioavailable oxidized 

iron (Bao et al., 2014). Heterogeneity in bioavailable Fe(III) could partially account for differences in 

Fe-reducers across the experimental domain, but these difference do not translate into modeled 

differences in U(VI) reduction rate. Since there are no consistent differences in community structure, 

or biomass between the bicarbonate-acetate and acetate-only treatments, the difference in U(VI) 

reduction rate must be related to the difference in bicarbonate and its impact on the intrinsic U(VI) 

reduction rate of that part of the microbial community responsible for U(VI) reduction, most likely the 

metal reducers (Fig. 8).

Chandler et al. (2013) suggested that dissolved CO2 may enhance the reverse tricarboxylic acid cycle

of U-respiring organisms, leading to increased rates of U(VI) reduction per cell. Oxyanions, 

sulfate, silicate, and phosphate have been shown to favor microbial precipitation of monomeric U(IV) 

by increasing bacterial extracellular polymeric substances (EPS) and bacterial viability (Stylo et al., 

2013), providing further evidence that the oxyanion bicarbonate may also impact U(IV) species and 
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reduction rates. On the other hand, the oxyanion bicarbonate favors formation of uraninite (UO2) and 

suppresses the production of monomeric U(IV) (Bernier-Latmani et al., 2010). The general 

importance of bicarbonate to microbial redox processes is also supported by its effect on microbial 

products of Fe(II) oxidation, in which the formation of goethite (α-FeOOH) at the 

expense lepidocrocite (γ-FeOOH) was favored under conditions of high increased bicarbonate 

and humic acid(Larese-Casanova et al., 2010). However, bicarbonate does not seem to have a 

strong impact without the presence of microbes. For example, abiotic reduction of U(VI) by FeS was 

not impacted by the presence or absence of bicarbonate (Gallegos et al., 2013), again supporting the 

concept that bicarbonate increases U(VI) reduction rates by impacting the metabolism of the 

subsurface microbial community.

The attached microbial community may also play a role in governing U(VI) reduction rates under Fe-

reducing conditions (Bargar et al., 2013), which would not be fully accounted for by sampling the 

planktonic community in groundwater in this study. However, attached and planktonic Geobacter sp. 

are similar during acetate biostimulation (Holmes et al., 2007a), although other important differences 

in community membership may exist (e.g. Fig. 9). Based on currently available data, it seems unlikely

that the un-sampled, attached population of Fe-reducers accounts for the difference in U(VI) reduction

rate on the two sides the Super 8 experimental plot. Since the Holmes et al. (2007a) data were 

collected only under conditions of acetate stimulation, the possibility that attached versus unattached 

Fe-reducer populations are different under conditions of bicarbonate-acetate cannot be entirely ruled 

out. In addition, changes in DNA signatures over time do not necessarily correlate with metal-

reducing activity or rates in situ. For example, analysis of samples collected from CD04 during the 

Super 8 experiment in conjunction with ex situ column experiments demonstrate that rpsC gene 

expression correlates better with the rate of Geobacter sp. growth and metabolism than changes in 

cell abundance (Holmes et al., 2013a). U(VI) is a trace electron acceptor at Rifle compared to the 

major electron acceptors that are available for anaerobic respiration (e.g. Fe(III)), and as noted 

above, a wide range of organisms can reduce U(VI), so relatively low-abundance of any U(VI)-

reducing cells could account for the difference in U(VI) reduction rate.

Putative fermenters are present in most wells (Fig. 8), commonly increasing as the experiment 

progressed. Part of the taxonomically inferred fermentative community includes organisms from the 

OD1 candidate division (Wrighton et al., 2012). Recent research indicates that the fermentative 

community is important in carbon, sulfur, and nitrogen cycling under biostimulated conditions with 

implication for utilization of natural dissolved and detrital organic carbon in sediments (Wrighton et al.,

2014). Some of the organisms inferred to be obligate fermenters described in these studies also cycle

hydrogen which may drive U(VI) reduction and could account for some of the U(VI) reduction in the 

later stages of the experiment (Bernier-Latmani et al., 2010, Bargar et al., 2013). In addition, abiotic 

reduction of U(VI) by sorbed Fe(II) or by FeS could make a small contribution to the total observed 

U(VI) reduction under these experimental conditions (Hyun et al., 2012, Fox et al., 2013).

4.3. Complexity of processes governing U(VI) concentrations during bioreduction
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In the case of both iron and uranium, it is particularly difficult to quantitatively discern the individual 

contributions of processes governing their concentrations from measured concentrations alone. This 

is because both elements have complex aqueous and solid species that are directly involved in 

aqueous and surface complexation, microbially mediated terminal electron accepting processes 

(TEAPs), and mineral reactions, which are sensitive to geochemical parameters such as pH, Eh, 

Fe(III), and alkalinity which are in turn controlled by reactions involving other elements. For example, 

minor increases in bicarbonate as a byproduct of microbial respiration during electron donor field 

experiments (Williams et al., 2011) not only promotes U(VI) desorption, but also may exert a positive 

feedback for enhanced microbial reduction of U(VI), albeit at a lower rate than when high 

concentrations of bicarbonate are amended to the subsurface.

Another example of the complexity of U biogeochemistry is the structure and bonding of U(IV) 

products of bioreduction. The simulated U(VI) bioreduction rates are the most readily available 

estimate because of the practical difficulty of obtaining subsurface sediment samples and the 

challenge of simultaneously measuring sorbed U(IV) and the concentration of monomeric U(IV) and 

uraninite in bioreduced sediments (Alessi et al., 2012, Stoliker et al., 2013). Moreover, X-ray 

spectroscopy has been very successful at identifying U redox status and bonding of U phases, but 

has not yet been able to quantify U(IV) at typical concentrations in a sediment matrix (total U in Rifle 

sediments is 0.4–0.9 mg/kg, see Bargar et al., 2013  Table 1). In-well columns in which the 

concentration of U(VI) was increased by amendment with 20 μM uranyl do enable both reliable 

bicarbonate extractions and synchrotron X-ray spectroscopy (Alessi et al., 2012, Alessi et al., 

2014, Bargar et al., 2013, Cerrato et al., 2013). In these studies, limited sampling (e.g., 3 time points 

over 102 days, Alessi et al., 2014) precludes calculation of rates comparable to the simulated rates 

reported here. Sediments from the in-well columns do show the prevalence of U(IV) (90%), two thirds 

of which is non-crystalline U(IV) (Alessi et al., 2014). Broadly the thermodynamics of uraninite and 

non-crystalline U(VI) formation from soluble U(VI) are likely similar since both involve the same 

electron transitions, supporting the model use of uraninite formation constants for this study. However,

the reactivity of non-crystalline U(VI) is clearly greater than that of uraninite (Cerrato et al., 2013). 

Future reactive transport models will be more useful for assessing the post-bioreduction behavior of 

U(IV) if they incorporate the differences in reactivity between uraninite and non-crystalline U(IV).

Fe(III) concentrations in aquifer sediments provide another example of complex relationships among 

geochemical reactions. In the reactive transport model described in this paper, neither physical nor 

geochemical heterogeneity is required in the model for it to match observations, suggesting that the 

biogeochemical process behaviors dominate any impacts of heterogeneity in this experiment. 

Modeling of the same experimental data by Bao et al. (2014) is based on a fundamentally different 

view of the role of geochemical subsurface heterogeneity in Fe(III). In the Bao et al. (2014)model, an 

inverse relationship between permeability and the concentration of bioavailable oxidized Fe is posited

for the subsurface aquifer hosting the Super 8 experiment. The model simulation of Bao et al. did 

show higher bioreduction rates in the bicarbonate injection zone, similar to the simulation results 

presented here. The Bao et al. rates are, on average, similar, but their simulations show significant 

heterogeneity in bioreduction rates, which derives from the variable content of Fe(III)-containing 
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minerals in the model domain inferred from the correlation between Fe(III) mineral, clay content, and 

the associated hydraulic conductivity based on the borehole flow metermeasurement. Another key 

difference between the two models is that the fully 3-D model described in this paper accounts for 

changes in the saturated thickness and gradient magnitude, whereas the 2-D Bao et al. model uses a

constant pressure gradient and saturated thickness. The differences in the two models offers 

opportunity for detailed comparison in future research that would make it possible to determine if 

biogeochemical heterogeneity, including reduced phases (Borch et al., 2012, Bargar et al., 

2013, Zhao et al., 2013), or the fundamental capabilities of the microbial community are more 

important in determining outcomes of U(VI) bioreduction at Rifle. Results of such a determination 

would have broad implications for subsurface biogeochemical processes globally.

5. Conclusions

The field experiment described here compares, for the first time, bicarbonate-

promoted uranium desorption and acetate amendment within the same subsurface experimental plot. 

Enzymatic U(VI)-reduction was not inhibited by the addition of bicarbonate and the associated 

increase in the predominance of Ca-uranyl-carbonato aqueous complexes. Instead, the simulated 

peak rate of U(VI)-reduction during acetate-bicarbonate amendment was ∼3.8 times higher than 

under acetate-only conditions. Lack of statistically significant differences between the microbial 

populations under conditions of elevated versus background concentrations of bicarbonate suggest 

that metabolic processes associated with increased bicarbonate concentrations may be responsible 

for the increased rate of bioreduction of U(VI); however, additional research is needed to elucidate the

mechanisms involved. Overall, the experiment indicates that, under the conditions studied, the 

efficacy of bioremediation of uranium in aquifers can be enhanced by bicarbonate amendment, and 

that natural cycling of the redox status of uranium in the subsurface may be more sensitive to 

bicarbonate concentrations than previously thought.
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