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Theory of Capillary Tension and Interfacial Dynamics of Motility-Induced Phases

Luke Langford1 and Ahmad K. Omar1, 2, ∗
1Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA

2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

The statistical mechanics of equilibrium interfaces has been well-established for over a half century. In the
last decade, a wealth of observations have made increasingly clear that a new perspective is required to describe
interfaces arbitrarily far from equilibrium. In this work, beginning from microscopic particle dynamics that
break time-reversal symmetry, we systematically derive the interfacial dynamics of coexisting motility-induced
phases. Doing so allows us to identify the athermal energy scale that excites interfacial fluctuations and the
nonequilibrium surface tension that resists these excitations. Our theory identifies that, in contrast to equilib-
rium fluids, this active surface tension contains contributions arising from nonconservative forces which act to
suppress interfacial fluctuations and, crucially, is distinct from the mechanical surface tension of Kirkwood and
Buff. We find that the interfacial stiffness scales linearly with the intrinsic persistence length of the constituent
active particle trajectories, in agreement with simulation data. We demonstrate that at wavelengths much larger
than the persistence length, the interface obeys surface area minimizing Boltzmann statistics with our derived
nonequilibrium interfacial stiffness playing an identical role to that of equilibrium systems.

INTRODUCTION

Nonequilibrium phase transitions are ubiquitous in the liv-
ing world and are increasingly realized in synthetic systems.
“Active matter” – systems with constituents that locally con-
sume and convert energy into mechanical motion – represents
a broad class of these out-of-equilibrium systems. Whether
found in colonies of motile bacteria [1] or suspensions of cat-
alytic colloids [2], these active phase transitions are inherently
dissipative and thus elude a thermodynamic description. The
interface separating coexisting active phases has displayed a
number of surprising findings, including negative mechanical
surface tensions (despite manifestly stable interfaces) [3–9],
propagating waves [10], and odd surface flows [11]. More-
over, many of these unique aspects of active interfaces are
implicated in the observation of novel droplet coarsening dy-
namics [12] and even in determining macroscopic phase be-
havior [13–15]. However, the statistical mechanical frame-
work for understanding fluid interfaces, developed over a half
century ago [16], relies on equilibrium Boltzmann statistics.
It is clear that a new perspective that can describe interfaces
arbitrarily far from equilibrium is now required.

The interface associated with motility-induced phase sep-
aration (MIPS) – the phenomenon in which purely repulsive
particles phase separate at sufficient activity – has been crucial
in attempts to understand nonequilibrium interfaces. Efforts to
understand active interfaces have focused on the surface ten-
sion, γ, the central material property for describing equilib-
rium fluid interfaces. Indeed, the equilibrium surface tension
controls capillary fluctuations [16, 17], the Laplace pressure
and shape of finite-sized fluid droplets [18], as well as the
nucleation barrier of droplets [19]. Kirkwood and Buff [20]
provided the mechanical definition of surface tension using
reversible work arguments – a stress-based definition which
may appear to be applicable to systems out of equilibrium.
However, when applying this definition to an active interface,
Bialké et al. [3] measured a strongly negative surface tension.
Subsequent attempts to alternatively define the surface tension

were found to reduce the magnitude of the measured tension
with the sign remaining negative [7] or relied on equilibrium
relations (such as the Gibbs-Duhem relation) that are strictly
inapplicable to active systems [6].

Despite the ambiguity in defining the surface tension, the
MIPS interface displays scaling that is remarkably similar to
equilibrium capillary-wave theory (CWT) [3], with the inter-
facial height fluctuations of phase-separated active Brownian
particles (ABPs) scaling as ⟨∣h(k)∣2⟩ ∼ k−2 at low wavevector
magnitudes k [4]. In equilibrium, these height fluctuations are
proportional to the inverse interfacial stiffness, γ/kBT : ther-
mal energy acts to excite interfacial fluctuations and surface
tension acts as a restoring force [16]. The observed consis-
tency of active interfaces [3, 4, 21] with CWT raises a number
of intriguing questions: what is the theoretical foundation for
this k−2 scaling?; what plays the role of thermal energy in
exciting an athermal active interface?; and, crucially, what is
the definition and nature of the surface tension that attenuates
these fluctuations?

Recent progress has been made towards the theory of
nonequilibrium interfacial fluctuations. Lee [22] proposed
an interfacial equation-of-motion using kinetic theory but ne-
glected the effects of mass conservation. Nardini and col-
leagues [12, 23, 24], building on the work of Bray [25], made
this approach more concrete by linking the stochastic density
field dynamics of the continuum active model B+ (AMB+)
to those of the interfacial height field [24]. The stationary
height fluctuation spectra that emerged from their equation-
of-motion was in agreement with CWT. This perspective for
deriving interfacial height field dynamics begins from the
stochastic dynamics of a coarse-grained density field (mod-
els B [26] and AMB+ in Refs. [25] and [24], respectively)
and knowledge of the averaged density profile of the macro-
scopically phase separated state [12, 27, 28]. Importantly,
while obtaining closed-form expressions for the fluctuating
hydrodynamics of microscopic models of active matter re-
mains an outstanding challenging, the theoretical description
of the phase-separated state of active Brownian spheres, in-
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cluding the average density profile, was recently presented in
Ref. [15]. We are now poised to begin developing a phys-
ical understanding of how microscopic forces contribute to
nonequilibrium interfacial dynamics.

In this work, we systematically derive a fluctuating hy-
drodynamic description of interacting active Brownian parti-
cles (ABPs), beginning from microscopic considerations. The
fluctuating hydrodynamics are then used to solve for the dy-
namics of the interfacial height field, allowing us to iden-
tify the capillary-wave tension (γcw) of MIPS and the en-
tirely athermal energy scale (kBT act) that excites the inter-
face. Crucially, we show that this surface tension is distinct
from the mechanical surface tension and includes effects be-
yond the interparticle forces that determine equilibrium inter-
facial tensions, including nematic surface flows that act to sta-
bilize the interface against active fluctuations. These contribu-
tions are reminiscent of the physical picture proposed by Ed-
wards and Wilkinson [29], in which a surface tension emerges
from preferential accumulation of granular particles at con-
cave surfaces over convex surfaces. Our derived height field
dynamics are found to recover area-minimizing Boltzmann
statistics, i.e., P [h(x)] ∼ exp [−(γcw/kBT act) ∫ dx∣∇h∣2] in
the limit of long wavelengths despite the microscopic dynam-
ics remaining far from equilibrium. It is precisely in this limit
of area-minimizing dynamics that CWT is recovered. It is our
hope that the perspective offered in this work will provide a
concrete path forward towards an understanding of interfaces
arbitrarily far from equilibrium beginning from microscopic
considerations.

RESULTS

Fluctuating hydrodynamics of interacting ABPs

Our aim is to systematically derive the interfacial dynamics
of active phase separations beginning from microscopic con-
siderations. We consider a system of N interacting ABPs in
which the time variation of the position ri and orientation qi

of the ith particle follow overdamped Langevin equations:

ṙi = Uoqi + 1

ζ

N∑
j≠iFij , (1a)

q̇i = qi ×Ωi, (1b)

where Fij is the (pairwise) interparticle force, Uo is the intrin-
sic active speed, ζ is the translational drag coefficient, and Ωi

is a stochastic angular velocity with zero mean and variance⟨Ωi(t)Ωj(t′)⟩ = 2DRδijδ(t − t′)I (where I is the identity
tensor). Here, DR is the rotational diffusivity, which may be
athermal in origin, and is inversely related to the orientational
relaxation time τR ≡ D−1R . One can then define an intrinsic
run length, ℓo = UoτR, the typical distance an ideal particle
travels before reorienting.

We seek to describe the dynamics of an instantaneous in-
terface that is defined by the coarse-grained density field,

ρ(r, t) = ∑N
i=1∆(r − ri(t)) where ∆ is a kernel of finite

spatial width such that ρ is spatially continuous. Begin-
ning from Eqs. (1a) and (1b), we derive a fluctuating hy-
drodynamic [30] description of the coarse-grained density of
ABPs, as detailed in Section 1 of the Supplementary Infor-
mation [31]. The evolution equation for the density satis-
fies the continuity equation ∂ρ/∂t = −∇ ⋅ J where the den-
sity flux, J = (∇ ⋅σC + ζUom) /ζ, contains a diffusive con-
tribution from the interparticle conservative stress, σC , and
a term proportional to the polar order density, m(r, t) =∑N

i=1 qi(t)∆(r − ri(t)).
An evolution equation for m(r, t) and all other one-body

orientational fields is required for a full spatial and tempo-
ral description of the density field. However, the inclusion
of higher order orientational fields simply acts to increase the
temporal and spatial resolution [32]. To describe MIPS, in-
clusion of the traceless nematic order density Q′ = Q − ρ/dI
[where Q(r, t) = ∑N

i=1 qi(t)qi(t)∆(r − ri(t))], is neces-
sary [15]. We therefore close the hierarchy of equations
by assuming B(r, t) = ∑N

i=1 qi(t)qi(t)qi(t)∆(r − ri(t)) is
isotropic, as demonstrated in SI Section 1.2 [15, 31]. We
further note that the polar and nematic order relax on faster
timescales than the density field, allowing us to neglect their
time variation and assume quasi-stationary density relaxation.
Under these closures, the deterministic component of the po-
larization force density takes the form ζℓo

d−1∇⋅(UQ) ≡ ∇⋅σact,
where U is the effective speed of the particles (reduced from
Uo due to interparticle interactions) and σact is an active ef-
fective stress [7, 33–35]. The nematic field can be directly
related to the density field, allowing for a closed set of equa-
tions solely in terms of the density with:

∂ρ

∂t
= −∇ ⋅ J, (2a)

J = 1

ζ
∇ ⋅ (σC +σact) + ηact, (2b)

σC = [−pC(ρ) + κ1(ρ)∇2ρ + κ2(ρ)∣∇ρ∣2] I+ κ3(ρ)∇ρ∇ρ + κ4(ρ)∇∇ρ, (2c)

σact = [−ℓoUoζUρ

d(d − 1) + a(ρ)∇2ρ] I + b(ρ)∇ρ∇ρ, (2d)

a(ρ) = 3ℓ2o
2d(d − 1)(d + 2)U2 dpC

dρ
, (2e)

b(ρ) = 3ℓ2oU

2d(d − 1)(d + 2) d

dρ
[U dpC

dρ
] , (2f)

where pC(ρ) is the conservative interaction pressure [15],
U(ρ) ≡ U(ρ)/Uo is the dimensionless effective speed [15],
d(> 1) is the system dimensionality. Here {κi(ρ)} are ex-
pansion coefficients of the conservative stress [36] in the re-
versible limit as first derived by Korteweg [17, 18, 37]. We
note that the derivation of Eq. (2) made use of a quasi-
stationary approximation (i.e., ∣J∣ is small) which is valid for
dynamics near the flux-free states (e.g., stationary phase co-
existence) under consideration in this work.
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Equation (2) introduces an entirely athermal stochastic con-
tribution to the flux, ηact, with zero mean and a variance of:

⟨ηact(r, t)ηact(r′, t′)⟩ =2kBT act

ζ
(ρI − d

d − 1Q′)× δ(t − t′)δ(r − r′) , (3)

where kBT
act ≡ ℓoζUo/d(d − 1) is the active energy scale.

We reemphasize that, within our closure, the traceless ne-
matic field Q′ can be expressed fully in terms of the den-
sity field [see SI Eq. 1.32]. To arrive at these noise statistics
we approximate the coarse-graining kernel as ∆(r − ri(t)) ≈
δ(r−ri(t)) [12, 38–40], allowing us to make use of the prop-
erties of delta functions [30] and express Eq. (3) solely in
terms of one-body fields, as shown in SI Section 1.2. We em-
phasize that this approximation was only necessary for finding
the noise variance. These statistics are similar to those found
by Cugliandolo et al. [41] in the context of passive dipolar
particles [42]. Unlike the fluctuating hydrodynamic descrip-
tion of passive systems, the noise derived here is anisotropic
due to the presence of the nematic order. In a system with no
spontaneous nematic order (i.e., Q′ = 0), the noise reduces to
a form identical to that of a passive system [30] with kBT

act

playing the same role as thermal energy. However, even in
this scenario where the fluctuation-dissipation theorem is sat-
isfied, the dynamics described in Eq. 2 remain distinctly active
as the nematic flows encapsulated in σact cannot be derived
from a variational principle. As expected, deterministic terms
in Eq. (2) are identical to those of Ref. [15]. However, the
route to deriving an expression for the density evolution which
preserves the stochastic fluctuations is distinct from the route
used in Ref. [15] which averaged over all noise and focused
on stationary states.

System details

The above fluctuating hydrodynamics may be applied to
any system with particles obeying Eq. (1) – pairwise inter-
actions of different forms will simply alter the constitutive re-
lations present in Eq. (2). Here, we focus on three dimen-
sional (3d) active Brownian hard spheres as: (i) the order
parameter distinguishing the two coexisting phases is sim-
ply the volume fraction; (ii) the phase diagram is well char-
acterized [44] and entirely described by two dimensionless
geometric parameters, the run length ℓo/dhs (where dhs is
the hard-sphere diameter) and volume fraction; and (iii) ex-
pressions for the required constitutive relations have been re-
cently developed [15]. Furthermore, for active hard spheres,
MIPS occurs at an appreciable level of activity [ℓo/dhs ≥O(10)] resulting in {κi(ρ)} ≪ a(ρ), b(ρ) [15] and allow-
ing us to neglect the interaction interfacial stresses present
in Eq. (2c). This approximation has recently been justified
numerically through multiple approaches Refs. [7, 45]. We
conduct particle-based Brownian dynamics simulations [46]

FIG. 1. (a) Visualization [43] of instantaneous interface construction
obtained through Brownian dynamics. See SI Section 5 for videos
of interfacial dynamics. (b) Average interfacial fluctuation spectrum
(units of d4hs). Statistical uncertainty is provided in SI Section 4.7. (c)
Values of ω (dimensionless) and K−1s (units of d−2hs ) obtained from
power law fits ⟨∣h̃(k)∣2⟩ =Ksk

ω .

at activities and volume fractions within the MIPS binodal,
with simulation details in SI Section 4.7. The chosen simu-
lation geometry results in a planar interface with its normal
(on average) in the z-direction [44]. The remaining coordi-
nates are tangent to the interface and are denoted by the vec-
tor x, i.e., r → (x, z). The height field h(x) associated with
the instantaneous interface [47] is defined as the location in
space where ρ is halfway between the binodal densities [see
Fig. 1(a)], i.e., ρ(x, z = h) = (ρliq + ρgas) /2 = ρsurf . The dis-
crete Fourier transform (x→ k) of h(x) is denoted by h̃(k).

As we later establish, (see SI Section 4.7), the computa-
tional cost for observing the relaxation of capillary-waves as-
sociated with k scales as (1/k)d+3, limiting the numerical ac-
cessibility of the mesoscopic limit where CWT might apply.
We therefore conduct, to our knowledge, the largest scale sim-
ulation of 3d ABPs currently in the literature, with 631444
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particles for a duration of 89000 dhs/Uo [46]. The calculated
fluctuation spectrum is shown in Fig. 1(b). Power law fits
(i.e., ⟨∣h(k)∣2⟩ = Ksk

ω) to the first decade of wavevectors
reveal that the height fluctuations approach a k−2 scaling in
the low-k limit [see Fig. 1(c)], consistent with the 2d data of
Patch et al. [4] and corroborating the apparent applicability of
CWT to these driven interfaces. These fits also demonstrate
the interfacial stiffness, K−1s [see Fig. 1(c)], scales linearly
with run length, again consistent with 2d simulations [4].

Fluctuations of MIPS interfaces

In order to connect the dynamics of the density field to
those of an interfacial height field we introduce the ansatz pro-
posed by Bray et al. [25], which states that the instantaneous
stochastic density field is, within a displacement of the inter-
facial height field h in the z-dimension, equal to the noise-
averaged stationary density field, φ:

ρ(r, t) = φ [z − h(x, t)] . (4)

This ansatz implies that ∣∂h/∂x∣2 << 1 [25]; it is equivalent to
stating the normal vector to contours of ρ negligibly deviate
from the z-direction [48].

As recently demonstrated by Fausti et al. [24], substitution
of the ansatz [Eq. (4)] into the continuity equation [Eq. (2)]
results in nonlinear terms which coincide with those found
in the quasi-1D flux balance used to derive the generalized
Maxwell construction pseudovariable needed to calculate the
binodals [13–15]. The use of the pseudovariable allows us to
incorporate the effects of the nematic flows (nonlinear terms in
the fluctuating hydrodynamics) to the interfacial tension (lin-
ear term in the height field dynamics), which we demonstrate
in SI Section 4.6. This pseduovariable, E , satisfies the differ-
ential equation a∂2E/∂ρ2 = (2b− ∂a/∂ρ)∂E/∂ρ and is found
to be E ∼ pC for the present system [15].

The ansatz [Eq. (4)] coupled with our fluctuating hydrody-
namic theory allow for the determination of a linear equation-
of-motion for h(k), the continuous Fourier transform of h(x).
The resulting Langevin equation (see SI Section 2 for a de-
tailed derivation) for h(k) is:

ζeff
∂h

∂t
= −k3γcwh + χiso + χaniso , (5a)

ζeff(k) = ζA2(k)
2B(k)ρsurf , (5b)

γcw(k) = A(k)
ρsurfB(k)[∫

∞
−∞ du

∂E
∂u

∂φ

∂u
a(φ)

+∫ ∞
−∞ du

∂E
∂u
∫ ∞
−∞ dz′sgn(u − z′)e−k∣u−z′∣b(φ) (∂φ

∂z′ )
2] ,
(5c)

where the integration coordinate is defined as u = z − h. γcw

is the capillary-wave tension and has physical dimensions of
energy per unit area (length) in 3d (2d). ζeff is an effective

FIG. 2. Stationary fluctuations of the interfacial height field (units of
d4hs) as given by Eq. (7) (solid lines) and Eq. (8) (dotted lines). The
critical activity is ℓco/dhs ≈ 16.2. The anisotropic terms of Eq. (7)
result in a non-monotonic dependence of the stationary fluctuations
with activity.

drag coefficient, and χiso(k, t) and χaniso(k, t) are indepen-
dent stochastic forces with zero mean that, respectively, orig-
inate from the isotropic and anisotropic contributions to ηact.
The variance of χiso is:

⟨χiso(k, t)χiso(k′, t′)⟩ =2k(kBT act)ζeff
× δ(t − t′)δ(k + k′)(2π)(d−1), (6)

while the variance of χaniso and integral expressions for
A(k),B(k) (which solely depend on φ and E) are provided
in SI Section 2.1.

The derived capillary-wave tension γcw(k) is distinct from
the mechanical surface tension, as shown in SI Section 4. For
active hard spheres, the active force and diameter must set the
scale of the surface tension with γcw ∼ ζUo/dhs while the
run length dependence is nontrivial. Defining a reduced run
length, λ ≡ ℓo/ℓcrito − 1 (where λ > 0 results in the phase-
separated states of interest), the surface tension has the form
γcwdhs/ζUo = g(λ, k) where g(λ, k) is a dimensionless func-
tion that must approach zero as the critical point is approached
(i.e., λ → 0). In this limit of vanishing capillary tension, the
characteristic timescale that naturally emerges from Eq. (5a),
τ(k) ≡ ζeff/γcwk

3 → ∞. These increasingly long timescales
with decreasing λ are consistent with the increased statistical
uncertainty numerically observed at low activities in Fig. 1.
We note that the reduction of γcw with decreasing λ implies
a vanishing stabilizing force (with γcw > 0) in Eq. (5a) as the
critical point is approached – in this regime, the assumptions
underlying the ansatz [Eq. (4)] no longer hold.

To determine the natural energy scale of γcw we use
Eq. (5a) to determine the stationary fluctuations of the height
field with:

⟨∣h(k)∣2⟩ = L(d−1)
γcw

[kBT act

k2
+ C(k) +D(k)
2k3(d − 1)ρsurfB(k)], (7)

where L(d−1) is the projected area (length) of the interface
for 3d (2d) systems. The first term in Eq. (7) arises entirely
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due to χiso and is consistent with CWT while the second
term emerges from χaniso (C(k) and D(k) are provided in
SI Section 2.2). In the low-k limit, the scaling of the second
term of Eq. (7) with k can be identified as 1/k by inspect-
ing SI Eqs. (4.14-4.17). Using the equations-of-state of 3d
ABPs [15] and solving for φ (see SI Section 4.2), we cal-
culate the fluctuations with and without anisotropic contribu-
tions, as shown in Fig. 2. While the anisotropic contributions
can result in a non-monotonic dependence of the height fluctu-
ations with activity at finite wavelengths, these contributions
are negligible at wavelengths much larger than the run length,
i.e., ℓok << 1, and at low activities. As a result, CWT is pre-
cisely recovered at low k with:

⟨∣h(k)∣2⟩ = L(d−1)kBT act

γcwk2
+O (1

k
) . (8)

While in this large wavelength limit, the variance of
the height fluctuations are consistent with CWT, it can
be shown that all statistical moments of h(k) will have
the same form of those of an equilibrium interface.
We demonstrate this by solving the steady-state Fokker-
Planck equation associated with Eq. (5a) in SI Section
2.5, finding a Boltzmann distribution of interfacial shapes
P [h(x)]∝ exp [−(γcw/kBT act) ∫ dx∣∇h∣2]. This distribu-
tion implies that at long wavelengths our interfacial dynam-
ics can be exactly mapped onto that of an equilibrium sys-
tem [25] with an interfacial energy given by the product of
γcw with the surface area and a temperature of kBT act. Thus,
when the anisotropic fluctuations can be ignored, an area-
minimizing principle is recovered for the MIPS interface, de-
spite the nonequilibrium origins of the interfacial tension and
athermal excitations.

From Eq. (8) it is clear that interfacial fluctuations are ex-
cited by the athermal active energy scale and suppressed by
the capillary-wave tension: the active interfacial stiffness is
γcw/kBT act. We numerically evaluate this stiffness, shown
in Fig. 3. The capillary-wave tension is positive for all ac-
tivities and increases towards a constant in the macroscopic
(i.e., k → 0) limit. In the limit of large activity, we find that
the interfacial stiffness scales linearly with run length, consis-
tent with the observed stiffness scaling reported by Patch et
al. [4]. Our theory now allows us to determine the origin of
this scaling by identifying the precise form of γcw [Eq. (5c)]
and the interfacial stiffness. While the active energy scale has
a trivial scaling with reduced activity, kBT act ∼ λ, the scaling
of the capillary-wave tension with activity requires examining
the λ dependence of the density profile (φ), interfacial coef-
ficients (a and b), and the pseudovariable (E). For the present
system, E is independent of activity while the density profile
is also largely independent of activity at large λ. The latter
can be appreciated by considering the relatively constant bin-
odal densities of the MIPS phase diagram at large λ [15, 44].
The asymptotic activity dependence of γcw thus closely fol-
lows that of the active interfacial stress coefficients, a and b,
which generate nematic flows in response to density gradients

FIG. 3. (a) Interfacial stiffness (units of d−2hs ) as a function of the
reduced activity, λ, and k, calculated using Eq. (5c). (b) Schematic
demonstrating the impact of tangential nematic flows that are encap-
sulated in γcw. Following time evolution ∆t ∼ τ(k) ≡ ζeff/k3γcw,
nematic flows lead to particle escape from convex hills and accumu-
lation at convex troughs.

and scale as λ2. In SI Section 4.6, we provide numerical ev-
idence that use of the pseudovariable E further encapsulates
the effects of nematic flows into the capillary-wave tension.
The physical origin for the linear dependence of the stiffness
on activity is therefore a result of stabilizing nematic flows
competing with the active energy scale. Fig. 3(b) provides a
schematic of nematic flows which result in particles escaping
from hills and accumulating in troughs.

While we have focused on the stationary properties of the
interface, our theory also makes predictions for dynamic prop-
erties. Starting from Eq. (5a), we solve for the interfacial
power spectra ⟨∣h(k,ω)∣2⟩ (as detailed in SI Section 2.3):

⟨∣h(k,ω)∣2⟩ = 2kLd−1ΓkBT act

ζeff (ω2 + τ(k)−2) , (9)

where Γ is the total simulation time. We note that Eq. (9) as-
sumes values of k such that anisotropic fluctuations are negli-
gible (i.e., ℓok << 1). At these low values of k and in the low
frequency limit (i.e., ω → 0), we predict the power spectra to
scale as k−5. Figure 4 displays the power spectra measured
from Brownian dynamics simulation. We note that despite the
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FIG. 4. Power spectra ⟨∣h(k,ω)∣2⟩ at each simulated activity as a
function of k with ωdhs/2πUo = 2.82 × 10−4 fixed. (Inset) Power
law scaling obtained from logarithmic fits to ⟨∣h(k,ω)∣2⟩ ∼ kβ for
low values of k (i.e., kdhs/2π < 0.5).

extensive size and duration of our computer simulations, our
analysis is limited to less than a single decade of k values,
and thus a robust power-law fit cannot be established. Never-
theless, it is encouraging that the fit obtained approaches the
theoretically predicted scaling of k−5 with increasing activ-
ity, agreeing well with this prediction at the highest activity.
A potential source of error for the low run length dynamics
are nonlinear corrections [49, 50] to Eq. (5a), neglected in the
present study through use of Eq. (4). These nonlinear correc-
tions are anticipated to be more important closer to the crit-
ical point due to the larger magnitude of interfacial fluctua-
tions [see Fig. 1(c) or SI Section 5]. At higher activities, error
may also come from the significance of anisotropic noise as
the identified parameter kℓo grows. These competing depen-
dencies of our theory’s error may offer an explanation for the
non-monotonic behavior of the inset of Fig. 4. We hope that
this finding will encourage additional numerical studies of the
dynamics of active interfaces.

DISCUSSION

Starting from microscopic particle dynamics, we system-
atically derive a mesoscopic Langevin equation for the in-
terface of MIPS. From this equation-of-motion, we identify
the capillary-wave tension governing the dynamics of the in-
terface and identify the athermal source of interfacial excita-
tions. Interestingly, the derived energy scale for interfacial ex-
citations is consistent with predictions made utilizing stochas-
tic thermodynamics [3, 51]. Our capillary-wave tension en-
capsulates the effects of active nematic flows on the height
field dynamics and is rooted in mass transport generated by
nonconservative forces. The origins of this tension are simi-
lar to the physical picture proposed by Edwards and Wilkin-
son [29], in which surface tension emerged from deposited
particles preferentially settling in local minima, and perhaps

points to a general phenomena of dynamically-stabilized in-
terfaces. Our interfacial Langevin equation recovers a surface-
area minimizing Boltzmann distribution at low activities and
low wavevectors, despite the microscopic particle dynamics
breaking time-reversal symmetry. In this limit, an active ana-
log to CWT is recovered with an interfacial stiffness that
scales linearly with run length.

The fluctuating hydrodynamics derived in this Article may
be applied to understand other nonequilibrium phenomena
requiring a stochastic description, including active nucle-
ation [52–55]. Moreover, it is our hope that by deriving in-
terfacial dynamics beginning from microscopic equations of
motion, the procedure outline here could provide a way for-
ward for examining the interfacial dynamics of chiral active
matter, which can exhibit odd surface flows [11]. This work
might also be extended to include multiple order parame-
ters, shedding light on phenomena such as active crystalliza-
tion [44] or multicomponent driven systems [21, 56–59], such
as biomolecular condensates [60–62]. Finally, while our de-
rived interfacial dynamics are linear, the inclusion of nonlin-
ear contributions could allow for the determination of the uni-
versality class of the MIPS interface [49, 50, 63]. It is our
hope that the theoretical explanations for puzzling observa-
tions in active matter provided here will assist in setting a
foundation for further investigation of nonequilibrium inter-
facial phenomena.
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1 Fluctuating Hydrodynamics of Active Brownian Particles

In this Section, we derive the fluctuating hydrodynamics of ABPs that serve as the starting point for
our interfacial analysis discussed in Section 2 as well as the main text. Our derivation begins from the
microscopic particle dynamics and systematically derives the evolution of the coarse-grained density
field. This procedure resembles that of Irving and Kirkwood [1], which is used to derive the dynamics
of fields or collective variables averaged over the relevant N -body microscopic distribution. A key
distinction here is that we do not average over a statistical ensemble in order to obtain stochastic
evolution equations, as demonstrated by Dean in the case of passive systems [2]. The absence of
averaging over a statistical distribution introduces an additional term to the dynamical operator
needed to determine the evolution equation of arbitrary fields, as we discuss below. In the case
of athermal ABPs, the stochastic particle orientations give rise to a contribution to the dynamical
operator that is identical to that of passive systems with orientational degrees of freedom [3]. We
arrive at a fluctuating hydrodynamic description of the coarse-grained density field that solely
depends on the stochastic density and the prescribed activity.

1.1 Exact Coarse-Grained Density Evolution

Our derivation of the fluctuating hydrodynamics for active Brownian particles begins with the
overdamped Langevin equation for the position ri and orientation qi of particle i:

ṙi = Uoqi +
1

ζ

N∑

j ̸=i

Fij , (1.1a)

q̇i = qi ×Ωi, (1.1b)

where ȧ denotes the time variation of a, Fij is the interparticle force, Uo is the intrinsic active
speed, ζ is the translational drag coefficient, Ωi is a Brownian angular velocity with zero mean
and a variance of ⟨Ωi(t)Ωj(t

′)⟩ = 2DRδijδ(t − t′)I, and DR is the rotational diffusivity. We note
that, as presented, Eq. (1.1b) must be interpreted in the Stratonovich convention to conserve the
magnitude of qi [3]. By adding the relevant drift term (see Section 1.4) we may convert Eq. (1.1b)
to an equivalent statement interpreted with the Itô convention:

q̇i = qi ×Ωi − 2DRqi. (1.1c)

We aim to describe the fluctuations of the coarse-grained density field, ρ(r; t) =
∑N

i=1∆(r−ri),
where ∆(r − ri) is a kernel of finite spatial width such that ρ(r; t) is spatially continuous. To do
this, we first define the dynamical operator required to describe the time evolution of an observable
(interpreted with the Itô convention), O, which can arbitrarily depend on the microscopic degrees
of freedom, (rN ,qN ) ‡:

∂O
∂t

=

N∑

i=1

[
ṙi ·

∂O
∂ri

+ q̇i ·
∂O
∂qi

+ I
]
. (1.2)

I represents terms emerging from the the Itô chain rule (see Section 1.4 for details):

I = DR∇2
qi
O + 2DRqi ·

∂O
∂qi

, (1.3)

‡We note that while we have denoted the time derivative O as a partial derivative, it is in fact a total derivative
as the only time dependence of O is implicit through the microscopic degrees of freedom [4]. We choose to express it
as a partial derivative in order to avoid confusion with a material derivative later on.
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where ∇qi ≡ qi×∂/∂qi is the rotational gradient operator. Substitution of Eq. (1.3) and Eq. (1.1c)
into Eq. (1.2) results in:

∂O
∂t

=
N∑

i=1

[
ṙi ·

∂O
∂ri

+DR∇2
qi
O + (qi ×Ωi) ·

∂O
∂qi

]
. (1.4)

We now define the dynamical operator L that evolves an arbitrary observable in time as:

L =
N∑

i=1

[
ṙi ·

∂

∂ri
+DR∇2

qi

︸ ︷︷ ︸
deterministic

+(qi ×Ωi) ·
∂

∂qi︸ ︷︷ ︸
stochastic

]
, (1.5)

where we note that the first two terms are deterministic (i.e., solely depending on the microscopic
configuration) while the last term is stochastic through the explicit dependence on Ωi. This distinc-
tion allows us to further appreciate that the dynamical operator can be split into two contributions
with:

L = L∗
FP + LS , (1.6a)

L∗
FP =

N∑

i=1

[
ṙi ·

∂

∂ri
+DR∇2

qi

]
, (1.6b)

LS =
N∑

i=1

[
(qi ×Ωi) ·

∂

∂qi

]
, (1.6c)

where we have recognized that the deterministic portion of the operator is precisely the adjoint of
the Fokker-Planck operator for ABPs (see Ref. [5]). The dynamics of an arbitrary observable are
thus given by:

∂

∂t
O = LO = L∗

FPO + LSO. (1.7)

An alternative and equivalent derivation of these dynamics, following Refs. [3, 6], is described in
Section 1.4.

In what follows, we will proceed to derive the dynamics of the density and its one-body ori-
entational moments as derived by Ref. [5]. There, exact expressions for L∗

FPO were derived and
ultimately an expectation over the noise-averaged N -body distribution was performed. The latter
operation eliminated the need to evaluate LSO which vanishes upon averaging over the noise dis-
tribution. Here, for completeness, we will recapitulate the expressions found in Ref. [5] for L∗

FPO §

while now also determining the stochastic contributions to our field variables.
The primary field variable of interest is the density, which acts as the unambiguous order

parameter in three dimensional motility-induced phase separation [7]. In this Subsection, we will
first focus on the exact dynamics of the coarse-grained density field before introducing the closures
and approximations necessary to ultimately describe these dynamics solely in terms of the density
field itself in the following Subsection.

The coarse-grained density at position r is defined as:

ρ(r, t) =
N∑

i=1

∆(r− ri). (1.8)

§We note that, in this work, we are considering the dynamics of coarse-grained variables while Ref. [5] examined the
dynamics of microscopic variables (averaged over the distribution). The use of coarse-grained field variables, however,
will simply introduce the coarse-graining kernel in place of the Dirac delta function employed in the definition of
microscopic field variables.
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Substituting O = ρ into Eq. (1.7) results in simply ∂ρ/∂t = L∗
FPρ (and is thus fully derived in

Ref. [5]) as the density contains no explicit dependence on the particle orientations. The exact
evolution equation for the coarse-grained density follows as:

∂ρ

∂t
= −∇ · J, (1.9a)

where J =
∑N

i=1 ṙi∆(r− ri) is the flux of density and is given by:

J = Uom+
1

ζ
∇ · σC , (1.9b)

where m =
∑N

i=1 qi∆(r− ri) and σC are, respectively, the polar order and conservative interaction
stress. For the pairwise interactions under consideration in this work, the interaction stress is:

σC = −1

2

N∑

i=1

N∑

j ̸=i

Fijrijbij , (1.10)

where bij(r; ri, rj) =
∫ 1
0 ∆(r− rj − λrij) dλ is the bond function [8–11] and rij = ri − rj .

The density flux [Eq. (1.9b)] naturally introduces the polar order field, the dynamics of which
we now consider. The time evolution of the polarization is given by ∂m/∂t = L∗

FPm+LSm where
we now must consider the stochastic operator. The resulting evolution equation follows as:

∂m

∂t
= −∇ · Jm − (d− 1)DRm+ ηm, (1.11a)

where we have defined a polarization noise vector as ηm = LSm. The polarization flux Jm =∑N
i=1 ṙiqi∆(r− ri) (a second rank tensor) is given by:

Jm = UoQ+
1

ζ
κm +

1

ζ
∇ ·Σm. (1.11b)

The polarization flux consists of three contributions: convection at the ideal active speed by the
nematic density tensor Q =

∑N
i=1 qiqi∆(r− ri), forcing from a “body-force-like” term κm (dimen-

sions of force density) and forcing from a “stress-like” term Σm (dimensions of stress). These terms
emerge from the Fokker-Planck portion of the operator and are defined as:

κm =
1

2

N∑

i

N∑

j ̸=i

Fij(qi − qj)bij , (1.12a)

Σm = −1

2

N∑

i

N∑

j ̸=i

rijFijcij , (1.12b)

where cij =
∫ 1
0 dλ (qj − λqij)∆ (r− rj − λrij) and qij = qi − qj . The physical interpretation of

these terms are discussed in Ref. [5]. Here, we note that κm vanishes for two particles with the
same orientation and is maximal for two particles with opposite orientation. One can thus interpret
κm as a force that resists the nematic convection and reduces the effective convective speed. While
the first two terms in Eq. (1.11b) are associated with convection, the final term, captures the flux
of polar generated by interactions across surfaces. Constitutive equations for Eq. (1.12) will later
be introduced.

3



We now consider the stochastic term, ηm, appearing in Eq. (1.11a). Applying the stochastic
operator on the polarization results in an expression for the polarization noise with:

ηm =
N∑

i=1

qi ×Ωi∆(r− ri). (1.13)

We can immediately recognize that this noise is nonlocal in space for finite coarse-graining width.
Furthermore, describing the variance of this noise in terms of field variables is also not readily
possible. An approximation that allows this noise to be expressed solely in terms of the one-body
orientional fields will be made in Section 1.2.

The time evolution of the nematic order is now required. Again, like the polar order (and unlike
the density), the stochastic contribution cannot be neglected. The nematic dynamics are found to
be:

∂Q

∂t
= −∇ · JQ − 2dDR

(
Q− 1

d
ρI

)
+ ηQ, (1.14a)

where we have defined a polarization noise tensor as ηQ = LSQ. The nematic flux JQ =∑N
i=1 ṙiqiqi∆(r− ri) (a third rank tensor) is given by:

JQ = UoB+
1

ζ
κQ +

1

ζ
∇ ·ΣQ. (1.14b)

Just as in the case of the polar order flux, the nematic flux consists of three contributions: convection
at the ideal active speed by B =

∑N
i=1 qiqiqi∆(r − ri), forcing from a “body-force-like” term

κQ (dimensions of force density) and forcing from a “stress-like” term ΣQ (dimensions of stress).
Expressions for the latter two contributions have the following form:

κQ =
1

2

N∑

i

N∑

j ̸=i

Fij(qiqi − qjqj)bij , (1.15a)

ΣQ = −1

2

N∑

i

N∑

j ̸=i

rijFijdij , (1.15b)

where dij =
∫ 1
0 dλ (qiqi − λ (qiqi − qjqj))∆(r − rj − λrij). Despite the change of the tensorial

rank of these quantities from those found in the polar order, the physical interpretations remains
the same. The nematic noise vector takes the following form:

ηQ =
N∑

i=1

2qi ×Ωiqi∆(r− ri), (1.16)

and, as with ηm, will have statistics approximately found in Section 1.2.
We can similarly obtain an evolution equation for the traceless nematic order, defined as:

Q′ = Q− ρ

d
I. (1.17a)

Inserting this definition into Eq. (1.14) results in:

∂Q′

∂t
= −∇ · JQ′ − 2dDRQ

′ + ηQ, (1.17b)
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where the traceless nematic field flux is simply JQ′
= JQ − 1

dJI with:

JQ′
= UoB+

1

ζ
κQ − 1

d
JI+

1

ζ
∇ ·ΣQ. (1.17c)

In principle we could continue deriving the evolution equation of B and the infinite hierarchy of
one-body orientation fields. However, as discussed in Section 1.2, obtaining the linear height field
dynamics of the interface does not require the consideration of orientation fields beyond the nematic
tensor. We thus conclude our derivation of the coarse-grained density dynamics of athermal ABPs
and now begin to simplify our expressions with approximations consistent with obtaining a long
wavelength capillary theory.

1.2 Approximations and Closures

Our aim is to derive to stochastic height field dynamics associated with ABP interfaces. Doing so
requires a stochastic description of the field variable used to define the location of the interface. In
our case, this is the coarse-grained density. In Sec. 1.1, we derived the exact stochastic dynamics of
the coarse-grained density field and, in doing so, found that the density field dynamics are coupled
to the dynamics of the other one-body orientational fields. An exact description of the height field
dynamics would require solving the coupled dynamics of the density, polarization and nematic order
and an ansatz that introduces less error than that of Bray’s [12] (see Section 2). However, as we
are interested in obtaining a theory for long wavelength capillary fluctuations, we will make use
of Bray’s ansatz and other simplifying approximations in our fluctuating hydrodynamics consistent
with this aim. These assumptions reduce our fluctuating hydrodynamic description of the density
field to solely consist of a single field variable, the density field itself. This proves convenient in the
derivation of the interfacial dynamics, as a single field was assumed in Bray’s treatment and more
recently by Fausti et al. [13].

We first assume that the relaxation dynamics of the polar and nematic order are faster than
those of the density field. The faster relaxation dynamics of higher order one-body orientational
moments can be appreciated from the conservation equations derived in Sec. 1.1. Comparison
of Eqs. (1.11a) and (1.17b) in the absence of a spatial gradient reveals that the nematic order will
exhibit a temporal decay that is a factor of 2d/(d−1) faster than that of the polar order. We neglect
the time variation of both the polar and nematic order in Eqs. (1.11a) and (1.17b), respectively, as
they are anticipated to be faster than those of the density field. Doing so allows us to identify that
the polar order can be expressed as m = τR

d−1 (∇ · Jm − ηm). Substitution of this into the density
flux [Eq. (1.11b)] allows us to define several key mechanical terms:

J =
1

ζ
∇ ·Σ+

ℓo
d− 1

ηm, (1.18a)

where we have defined the dynamic stress tensor:

Σ = σact + σC , (1.18b)

recognizing that the body force generated by the polarization appears to take the form of an effective
stress upon neglecting the temporal variation of the polar order. This effective active (or “swim” [14])
stress is defined as [15,16]:

σact =
ζℓo
d− 1

Jm. (1.18c)

5



We now find the statistics of ηm, which is given by:

ηm =
N∑

i=1

qi ×Ωiδ(r− ri). (1.19)

While the mean is clearly zero, the variance is given by:

〈
ηm(r, t)ηm(r′, t′)

〉
=

N∑

i=1

N∑

j=1

⟨(qi ×Ωi)(qj ×Ωj)⟩∆(r− ri)∆(r′ − rj), (1.20)

where ⟨···⟩ denotes an expectation over the distribution of the stochastic angular velocities. Straight-
forward manipulation allows us to express ⟨(qi ×Ωi)(qj ×Ωj)⟩ = 2DR [(qi · qj)I− qiqj ] δijδ(t− t′),
substitution of which into Eq. (1.20) results in:

〈
ηm(r, t)ηm(r′, t′)

〉
=

N∑

i=1

2DR (I− qiqi)∆(r− ri)∆(r′ − ri)δ(t− t′), (1.21)

where the independence of the variance of angular velocities between different particles has elimi-
nated one of the particle summations and ensured that the noise is a one-body property. We now
approximate the statistics of ηm with the statistics of η̂m, which is the noise associated with the
microscopic polar order flux and has a variance of:

〈
η̂m(r, t)η̂m(r′, t′)

〉
=

N∑

i=1

2DR (I− qiqi) δ(r− ri)δ(r
′ − ri)δ(t− t′). (1.22)

Using the identity δ(r − ri)δ(r
′ − ri) = δ(r − r′)δ(r − ri), which is the only component of our

approximation that cannot be applied to arbitrary ∆, and invoking the definitions of the microscopic
density and nematic order, we arrive at our final expression for the microscopic polarization noise
statistics:

⟨η̂m(r, t)⟩ = 0, (1.23a)
〈
η̂m(r, t)η̂m(r′, t′)

〉
= 2DR

(
ρ̂I− Q̂

)
δ(r− r′)δ(t− t′), (1.23b)

where ρ̂ and Q̂ can be evaluated at r or r′. This stochastic polarization term is identical to that
found by Cugliandolo et al. [3] in describing the fluctuating hydrodynamics of passive dipoles with
the only physical distinction being the (generally) athermal origins of DR for active systems. By
approximating the statistics of ηm with the statistics of η̂m we find:

⟨ηm(r, t)⟩ = 0, (1.24a)〈
ηm(r, t)ηm(r′, t′)

〉
= 2DR (ρI−Q) δ(r− r′)δ(t− t′), (1.24b)

Furthermore, by absorbing the factor of ℓo/(d− 1) present in Eq. (1.18a) into ηm, we define ηact =
ℓo/(d− 1)ηm which has statistics following directly from those of the polar order noise [Eq. (1.24)]:

〈
ηact(r, t)

〉
= 0, (1.25a)

〈
ηact(r, t)ηact(r′, t′)

〉
= 2

kBT
act

ζ

(
ρI− d

d− 1
Q′
)
δ(t− t′)δ(r− r′) , (1.25b)
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where we have defined the active energy scale as kBT act ≡ ℓoζUo/d(d− 1). The statistics of ηQ can
be approximated analogously to those of the polarization flux with:

〈
ηQ(r, t)

〉
= 0, (1.26a)

〈
ηQ(r, t)ηQ(r′, t′)

〉
= 8DR (QI−C) δ(r− r′)δ(t− t′), (1.26b)

where C =
∑N

i=1 qiqiqiqi∆(r− ri).
At this point, the unknown quantities required to describe our stochastic density flux are consti-

tutive relations for the conservative stress [Eq. (1.10)] as well as the body-force-like and stress-like
terms [Eqs. (1.12) and (1.15)] and the remaining one-body orientational moments, Q′, B and C.
Before proposing constitutive equations and closure relations we recall that predicting states of
coexistence requires the retention of terms that are at least third order in spatial gradient of the
density in our flux expression [Eq. (1.18a)] and thus second order in our dynamic stress [Eq. (1.18b)].

We first focus on the required constitutive equations, beginning with the conservative stress.
In the case of a homogeneous density, the conservative stress would simply return the isotropic
interaction pressure, σC = −pCI, an equation of state that depends on the bulk density and
activity. A general second-order gradient expansion of the conservative stress has the form:

σC =
[
−pC + κ1∇2ρ+ κ2|∇ρ|2

]
I+ κ3∇ρ∇ρ+ κ4∇∇ρ, (1.27)

where the linear term vanishes due to inversion symmetry. In the reversible limit, which occurs as
ℓo → 0, the coefficients {κi} take the form of the Korteweg stress [17–19] as noted in the main text.
We forgo providing general microscopic expressions for {κi} that are valid for all activities as, for
active hard spheres, there is likely only a narrow region of activity where these coefficients both
depart significantly from the reversible Korteweg stress and are comparable in scale to the gradient
terms that will arise from the active stress.

The physical interpretation of the body-force-like terms is clear: they arise from interparticle
interactions and oppose free convection at the intrinsic active speed Uo. Following Ref. [5], we
therefore propose the following constitutive relation for κm:

κm = −ζ (Uo − U)Q, (1.28)

where U is the effective active speed and is bound between 0 and Uo. We adopt a similar constitutive
equation for the body-force-like term appearing in the nematic flux with:

κQ = −ζ (Uo − U)B, (1.29)

where we have assumed that the same effective active speed appears here as in Eq. (1.28). The
polarization flux also requires a constitutive relation for the stress-like term, Σm, which cannot be
a priori discarded on the basis of spatial gradients. However, here we neglect this contribution as
it was shown to have a marginal quantitative impact on the ABP hard sphere/disk phase diagrams
in Ref. [5].

With Eq. (1.28) and Σm ≈ 0, the simplified polarization flux results in the active stress taking
the following form:

σact = −pactI+
ζℓo
d− 1

(
UQ′) , (1.30a)

where the active pressure is defined as:

pact =
ζℓoU

d(d− 1)
ρ. (1.30b)
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From Eq. (1.30) it is clear that the gradient contributions to the active stress will be generated by
the convection of the traceless nematic order and equation of state for U (which will depend on the
nature of the particle interactions) in addition to pC .

We now turn to the traceless nematic field. Neglecting the time evolution of Q′ in Eq. (1.17b)
allows us to express Q′ = τR

2d

(
∇ · JQ′ − ηQ

)
. A description of the nematic order requires ex-

pressions for ηQ (and thus, C), B, and ΣQ [recall, we have already assumed the form of κQ in
Eq. (1.29)]. We can now appreciate that each orientational field contains contributions related to
the divergence of the next higher order field (e.g., m ∼ ∇ ·Q) and therefore introduces higher order
spatial gradients. We thus can safely assume that B is isotropic:

B =
1

d+ 2
α ·m, (1.31)

where α is the fourth-order identity tensor given in Einstein notation as αijkl = δijδkl+δikδjl+δilδjk.
Further, ΣQ can be neglected as its contribution to the dynamic stress will be higher than second
order in spatial gradient. We will also discard ηQ as its variance (at lowest order) will enter into the
flux at the level of ∇ ·∇ ·QI. Finally, the fast relaxation of the polar order and nematic field implies
that the density flux can be approximated to be vanishingly small such that ζUom ≈ −∇ ·σC [see
Eq. (1.9b)]. Under these simplifications, the traceless nematic field takes the following form:

Q′ =
τR

2ζUod(d+ 2)
∇ ·

[
U
(∇ · σC

)
·α
]
. (1.32)

With expressions for the bulk and gradient contributions for the conservative and active stress
and the active noise statistics, we now have an expression for the density flux that solely depends on
the density field itself. Evaluating these expressions will require equations of state for the effective
active speed, bulk interaction pressure, and any relevant interfacial coefficients in the conservative
stress.

1.3 Summary of Coarse-Grained Density Fluctuating Hydrodynamics

We now summarize the fluctuating hydrodynamic equations for the coarse-grained density field,
ρ. It is convenient to reorganize Eq. (1.32) under the simplification (consistent with our gradient
theory) of σC ≈ −pCI:

Q′ =
3ℓo

2ζd(d+ 2)

[
−U(ρ)

∂pC
∂ρ

∇2ρI− ∂

∂ρ

[
U(ρ)

∂pC
∂ρ

]
∇ρ∇ρ.

]
, (1.33)

where we have introduced the dimensionless effective active speed, U ≡ U/Uo. Substitution of
Eq. (1.33) into the active stress allows us to straightforwardly identify the active stress gradient
terms.

The fluctuating hydrodynamics of athermal ABPs can now be summarized:

∂ρ

∂t
= −∇ · J, (1.34a)

J =
1

ζ
∇ ·Σ+ ηact, (1.34b)

Σ = σC + σact, (1.34c)

σC =
[
−pC(ρ) + κ1(ρ)∇2ρ+ κ2(ρ)|∇ρ|2

]
I+ κ3(ρ)∇ρ∇ρ+ κ4(ρ)∇∇ρ, (1.34d)

σact =
[
−pact + a(ρ)∇2ρ

]
I+ b(ρ)∇ρ∇ρ, (1.34e)
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a(ρ) =
3ℓ2o

2d(d− 1)(d+ 2)
U

2dpC
dρ

, (1.34f)

b(ρ) =
3ℓ2oU

2d(d− 1)(d+ 2)

d

dρ

[
U

dpC
dρ

]
, (1.34g)

where the statistics of the noise ηact are:

⟨ηact⟩ = 0, (1.34h)

⟨ηact(r, t)ηact(r′, t′)⟩ = 2
kBT

act

ζ

(
ρI− d

d− 1
Q′
)
δ(t− t′)δ(r− r′), (1.34i)

and the simplified traceless nematic tensor is provided in Eq. (1.33) and its slightly more general
form provided in Eq. (1.32). As stated in Section 1.1, our derived Langevin equations for observables
such as Eq. (1.34) are to be interpreted in the Itô convention. However, as the noise appearing in
Eq. (1.34) is conserved, the drift term associated with switching to the Stratonovich convention
vanishes [20–23].

The derived fluctuating hydrodynamics are general to athermal ABPs that obey the equations-
of-motion described at the outset of this Section [Eqs. (1.1)]. As input, these fluctuating hydrody-
namics require equations of state that will certainly depend on the precise form of the conservative
particle interactions. Specifically, the density and activity dependence of U , pC , and the gradient
coefficients {κi} must be provided. For hard spheres, the active stress gradient coefficients scale as
ℓ2o [see Eqs. (1.34f) and (1.34g)] while those of the conservative interaction stress ({κi}) can only
scale with powers of the hard sphere diameter dhs. We therefore can safely discard {κi} as we
will exclusively focus on phase-separated hard spheres where the run length is at least an order of
magnitude larger than the hard sphere diameter [ℓo/dhs ≥ O(10)].

1.4 Supplemental Stochastic Calculus Details

Here, we provide further details on the derivation of the dynamical operator L which evolves an
arbitrary observable O [see Eqs. (1.6)]. We begin by detailing the procedure used to find the drift
term necessary to define Eq. (1.1c) and the Itô chain rule term necessary to find Eq. (1.4). Within
this section we will make frequent use of Einstein notation. While doing so, particle indices will
remain as Latin subscripts while tensor components will be given by Greek superscripts.

To convert from the Stratonovich convention to the Itô convention, it is convenient to express
Eq. (1.1b) in the following form:

q̇i = gi(qi) ·Λi(t), (1.35)

where Λi(t) is a unit Gaussian white noise vector with correlations ⟨Λi(t)Λj(t
′)⟩ = δijδ(t− t′)I and

gi is a second rank tensor. The variance of qi ×Ωi, found in Section 1.2, allows us to immediately
identify gi as:

gi = (2DR (I− qiqi))
1/2 . (1.36)

We simplify Eq. (1.36) by noting that:

(I− qiqi) (I− qiqi) =
(
δαβ − qαi q

β
i

)(
δβγ − qβi q

γ
i

)

= δαγ − qαi q
γ
i − qαi q

γ
i + qαi q

γ
i

= (I− qiqi) , (1.37)

where we have used |qi| = 1. gi thus takes the form:

gi =
√
2DR (I− qiqi) . (1.38)
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As outlined by van Kampen [6,24], we may convert Stratonovich interpreted dynamics to Itô inter-
preted dynamics by addition of the drift term given by:

1

2

∂gλµ

∂qκi
gκµ = DR

(
∂

∂qκi

(
δλµ − qλi q

µ
i

))
(δκµ − qκi q

µ
i )

= −DR

(
δλκqµi + qλδκµ

)
(δκµ − qκi q

µ
i )

= −2DRqi. (1.39)

Thus the Itô equivalent dynamics to Eq. (1.1b) are:

q̇i = qi ×Ωi − 2DRqi, (1.40)

completing our derivation of Eq. (1.1c).
We now solve for the associated Itô chain rule term when taking a time derivative of O. The

form of such a term (see Refs. [6, 24]) is:

I =
1

2

∂2O
∂qαi ∂q

β
i

gαγgγβ = DR
∂2O

∂qαi ∂q
β
i

(
δαβ − qαi q

β
i

)
. (1.41)

Let’s now consider the effect of a rotational Laplace operator acting on O:

∇2
qi
O = ϵαβγqβi

∂

∂qγi

(
ϵαµνqµi

∂O
∂qνi

)

= ϵαβγϵαµνqβi

(
δγµ

∂O
∂qνi

+ qµi
∂2O

∂qγi ∂q
ν
i

)

=
(
δβµδγν − δβνδγµ

)
qβi

(
δγµ

∂O
∂qνi

+ qµi
∂2O

∂qγi ∂q
ν
i

)

=
∂2O

∂qβi ∂q
γ
i

(
δβγ − qβi q

γ
i

)
− 2qβi

∂O
∂qβi

. (1.42)

Eq. (1.42) together with Eq. (1.41) implies that:

I = DR∇2
qi
O + 2DRqi ·

∂O
∂qi

, (1.43)

which concludes our derivation of the Itô chain rule term appearing in Eq. (1.2).
We now present an alternative derivation for the evolution of O that starts from the Stratonovich

expression of the orientational dynamics Eq. (1.1b) using the Kramers-Moyal expansion as outlined
in Refs. [3,6]. Beginning with Eq. (1.1b), the Stratonovich interpreted time evolution of an arbitrary
observable O is given by:

∂

∂t
O =

N∑

i=1




Uoqi +

1

ζ

N∑

j ̸=i

Fij


 · ∂O

∂ri
+ (qi ×Ωi) ·

∂O
∂qi


 . (1.44)

Comparison with the Itô description [Eq. (1.4)], the rotary diffusion term is absent. To make use
of the connection to the Fokker-Planck adjoint operator, it is convenient to recover this diffusion
operator. We therefore solve for a Langevin equation equivalent to Eq. (1.44) but interpreted in
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the Itô convention, which will contain the desired diffusion term. We do so by solving for the
Kramers-Moyal expansion coefficients, where the kth coefficient is given by:

lim
∆t→0

⟨(∆O)k⟩
∆t

, (1.45)

where ⟨· · ·⟩ denotes an expectation over the distribution of the stochastic angular velocities and we
have defined:

∆O ≡ O(t+∆t)−O(t) =

∫ t+∆t

t
dτ

∂O
∂τ

. (1.46)

As outlined in Refs. [3,6], a Langevin equation for O in the Itô convention has deterministic terms
given by the k = 1 Kramers-Moyal expansion coefficient and a stochastic term with variance given
by the k = 2 coefficient. We solve for the k = 1 expansion coefficient:

lim
∆t→0

⟨∆O⟩
∆t

=
N∑

i=1

[
ṙi ·

∂O
∂ri

+DR∇2
qi
O
]
, (1.47)

where the term proportional to the rotational Laplace operator arises due to the noise averaging of
the stochastic term. The k = 2 terms are found to be:

lim
∆t→0

⟨(∆O)2⟩
∆t

=
1

∆t

〈[∫ t+∆t

t
dt′

N∑

i=1

ṙi ·
∂O
∂ri

]2〉

+
2

∆t

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′
〈

N∑

i=1

N∑

j=1

ṙi ·
∂O
∂ri

(qj ×Ωj) ·
∂O
∂qj

〉

+
1

∆t

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′
〈

N∑

i=1

N∑

j=1

(qi ×Ωi) ·
∂O
∂qi

(qj ×Ωj) ·
∂O
∂qj

〉
. (1.48)

As argued by van Kampen [6], the only non-negligible term in Eq. (1.48) is the last line. Thus we
may write the Langevin equation for O as

∂O
∂t

=
N∑

i=1

[
ṙi ·

∂O
∂ri

+DR∇2
qi
O
]
+ ηO(r,q, t), (1.49)

where we have defined ηO as a noise with zero mean and correlations:

⟨ηO(r,q, t)ηO(r′,q′, t′)⟩ =
〈

N∑

i=1

N∑

j=1

(qi ×Ωi) ·
∂O
∂qi

(qj ×Ωj) ·
∂O
∂qj

〉
. (1.50)

We may therefore equivalently express ηO as:

ηO(r,q, t) =
N∑

i=1

(qi ×Ωi) ·
∂O
∂qi

. (1.51)

Substitution of Eq. (1.51) into Eq. (1.49) results in:

∂O
∂t

=

N∑

i=1

[
ṙi ·

∂O
∂ri

+DR∇2
qi
O + (qi ×Ωi) ·

∂O
∂qi

]
. (1.52)

Eq. (1.52) is identical to Eq. (1.4) and both are interpreted in the Itô sense.
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2 Langevin Dynamics of an Active Interface

In this Section, we introduce the ansatz proposed by Bray et al. [12, 25] to connect the stochastic
density field dynamics to a Langevin equation for the interfacial height field up to linear order in
the height. From this Langevin equation, we define a capillary-wave tension as the coefficient of the
linear term. This capillary tension is defined such that it has dimensions of energy per area (length)
in 3d (2d) and correctly accounts for the effects of nonconservative forces on height fluctuations,
in contrast to the mechanical tension of Kirkwood and Buff [26]. The athermal noise derived in
our fluctuating hydrodynamics [see Eq. (1.25b)] breaks detailed balance and will thus result in
height field noise statistics that generally violate the fluctuation dissipation theorem (FDT). We
derive these noise statistics in detail and discuss the limit of when the FDT is effectively satisfied in
Section 4.5 in addition to the main text. Using the derived interfacial equation of motion and noise
statistics, we then solve for the stationary height fluctuations ⟨|h(k)|2⟩ and the capillary relaxation
time scale. A dimensional analysis of all derived terms is subsequently given for reference. Finally, we
demonstrate the conditions required for an interfacial equation to recover a Boltzmann distribution
related to the area of the interface.

In the remainder of this Supplemental Material, we will use a prime (′) symbol to denote two
distinct operations. If a prime follows an integration variable, e.g.,

∫
dz′, the prime is simply

meant to indicate that the variable is a dummy variable. If the prime follows a function, then
the prime is meant to indicate a derivative with respect to the argument of that function (e.g.,
a′(ρ) = ∂a(ρ)/∂ρ,φ′(z) = ∂φ/∂z).

2.1 Height Field Evolution

We transform the density evolution to a height field evolution using the ansatz proposed by Bray et
al., ρ(r, t) = φ(z − h(x, t)) [12], where φ is the noise-averaged stationary density field. We assume
that the conditions for a planar phase-separated state are met such that φ(z) is simply a function
of z, the normal direction to the interface. Furthermore, φ(z) is spatially constant (at the binodal
densities) at nearly all points except for within the interface, where the density transitions between
the two binodal densities. The ansatz implies the following chain-rule relations:

∂ρ

∂t
= −φ′∂h

∂t
(2.1a)

|∇ρ|2 =
(
1 + |∇xh|2

)
(φ′)2 (2.1b)

∇2ρ =
(
1 + |∇xh|2

)
φ′′ −∇2

xhφ
′, (2.1c)

where we denote the gradient in all directions other than z with ∇x. Substitution of the continuity
equation and our derived constitutive equation for the density flux [Eq.(1.34)] into Eq. (2.1a) results
in:

−φ′∂h
∂t

= −1

ζ
∇ ·∇ ·Σ−∇ · ηact. (2.2)

We now express the double divergence of the dynamic stress using the above chain rule relations,

∇ ·∇ ·Σ =∇2
[
−P(φ) +

(
1 + |∇xh|2

)
a(φ)φ′′ −∇2

xha(φ)φ′]+∇ ·∇ · (b(ρ)∇ρ∇ρ) , (2.3)

where P ≡ pC + pact is the dynamic pressure. It is straightforward to show:

∇ ·∇ · (b(ρ)∇ρ∇ρ) = − ∂

∂z

[
b(φ)(φ′)2

]
∇2

xh+∇2
[
b(φ)(φ′)2

(
1 + |∇xh|2

)]
. (2.4)
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Substituting Eq. (2.4) into Eq. (2.3) gives

∇ ·∇ ·Σ =∇2
[
−P(φ)−∇2

xha(φ)φ′ +
(
1 + |∇xh|2

) (
a(φ)φ′′ + b(φ)(φ′)2

)]

− ∂

∂z

[
b(φ)(φ′)2

]
∇2

xh. (2.5)

The height evolution is then given by

−ζφ′∂h
∂t

=−∇2
[
−P(φ)−∇2

xha(φ)φ′ +
(
1 + |∇xh|2

) (
a(φ)φ′′ + b(φ)(φ′)2

)]

+
∂

∂z

[
b(φ)(φ′)2

]
∇2

xh− ζ∇ · ηact. (2.6)

Throughout the SM and the main text, we will denote the continuous Fourier transform of
h(x, t) as h(k, t) (dimensions of [length]d), defined as

h(k, t) =

∫
dxeik·xh(x, t), (2.7)

while we will denote the discrete (fast) Fourier transform as h̃(k, t) (dimensions of [length]). The
continuous Fourier transform of Eq. (2.6) in the x direction (i.e. all directions except z) results in

−ζφ′∂h
∂t

=−
[
∂2

∂z2
− k2

] [
−P(φ)δ(k) + k2ha(φ)φ′ + F

[
1 + |∇xh|2

] (
a(φ)φ′′ + b(φ)(φ′)2

)]

− ∂

∂z

[
b(φ)(φ′)2

]
|k2h− ζF

[∇ · ηact(r, t)
]
, (2.8)

where we have defined the wavevector magnitude as k = |k| and the Fourier transform of f(x) as
F [f(x)]. The statistics of the Fourier transformed noise, as well as all subsequent transformations
to the noise, will be derived in Section 2.2.

The Green’s function of a Laplace operator that has been Fourier transformed in all directions
but the z-direction is defined by [27]:

[
∂2

∂z2
− k2

]

︸ ︷︷ ︸
Laplacian

[
1

2k
e−k|z−z′|

]

︸ ︷︷ ︸
Green’s Function

= −δ(z − z′). (2.9)

We thus multiply Eq. (2.8) by the Green’s function and integrate across all z to find:

ζ
∂h

∂t

∫
dz′e−k|z−z′|φ′(z′) = −2k3ha(φ)φ′ − 2kF

[
|∇xh|2

] (
a(φ)φ′′ + b(φ)(φ′)2

)

+ k2h

∫
dz′e−k||z−z′| ∂

∂z′
[
b(φ)(φ′)2

]
|+ ζ

∫
dz′e−k|z−z′|F

[∇ · ηact(r, t)
]
, (2.10)

where we have discarded terms proportional to kδ(k) = 0. At this point, Eq. (2.10) retains a de-
pendence on the z-dimension and contains nonlinear terms (i.e., F

[
|∇xh|2

]
) that are outside of

the scope of the ansatz. Fausti et al. [13] recognized that both the z-dependence and the nonlin-
ear terms can be eliminated by multiplying Eq. (2.10) by the z-derivative of a density-dependent
pseudovariable E and integrating across the z-dimension. Under the ansatz, this pseudovariable co-
incides with the same pseudovariable used in equal-area constructions to determine nonequilibrium
binodals [5, 28,29]. Here E , first introduced by Aifantis and Serrin [28], is defined by:

∂2E
∂ρ2

=
2b(ρ)− a′(ρ)

a(ρ)

∂E
∂ρ

. (2.11)
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We therefore multiply Eq. (2.10) by the z-derivative of the pseudovariable, E , that depends solely
on density (and is nonzero only within the interface) and integrate over all u = z − h. We note
that while integrating over u, the error incurred by approximating this integral as solely over z (i.e.,
neglecting h) has been shown to introduce error on the order of k2h3 [12], which is higher order than
the error introduced by using the ansatz. Such a treatment also implies that we may freely switch
between φ and ρ in all integrals with respect to u. The physical interpretation of multiplying by
the pseudovariable is further discussed in Section 4.6. Use of the pseudovariable results in:

∫
du

∂E
∂u

[
a(φ)φ′′ + b(φ)(φ′)2

]
= 0. (2.12)

Up to a constant of integration, ∂E/∂z can be solved for using the definitions of b(φ) and a(φ) as

∂E
∂z

= C ∂ρ
∂z

(
p′C(ρ)U(ρ)

)2

a(ρ)
∼

∂ρ

∂z

∂pC
∂ρ

, (2.13)

which is in agreement with the pseudovariable for active Brownian particles found in Ref. [5]. We
note that in the equilibrium limit, ℓo/dhs → 0, the coefficients associated with Eq. (2.11) are dictated
by the Korteweg expansion [17] and the resulting solution becomes E ∼ 1/ρ.

Multiplication of Eq. (2.10) by ∂E/∂u and integrating over all u = z − h results in:

ζA(k)
∂h

∂t
=− 2k3h

∫
dua(φ)φ′∂E

∂u
+ k2h

∫
du

∂E
∂u

∫
dz′e−k|u−z′| ∂

∂z′
[
b(φ)(φ′)2

]

+ ζ

∫
du

∂E
∂u

∫
dz′e−k|u−z′|F

[∇ · ηact(r, t)
]
, (2.14)

where A(k) is defined as

A(k) =

∫ ∫
dudze−k|u−z|∂E

∂u
(u)φ′(z). (2.15)

Consider the second integral on the RHS of Eq. (2.14). Integrating by parts gives
∫

dz′e−k|u−z′| ∂

∂z′
[
b(φ)(φ′)2

]
= −

∫
dz′ksgn(u− z′)e−k|u−z′|b(φ)(φ′)2, (2.16)

where sgn denotes the sign function which returns 1 (−1) for any positive (negative) argument.
Then the equation of motion for the height field simplifies to

ζeff
∂h

∂t
= −k3γcwh+ χ(k, t) +O

(
k3h2

)
, (2.17)

where the error is due to both the ansatz and approximating integrals with respect to u as if they
were with respect to z. The effective drag coefficient is defined as:

ζeff =
ζA2(k)

2B(k)ρsurf
. (2.18)

γcw is the capillary-wave tension:

γcw(k) =
A(k)

ρsurfB(k)

[∫ ∞

−∞
du

∂E
∂u

φ′a(φ) +

∫ ∞

−∞
du

∂E
∂u

∫ ∞

−∞
dz′sgn(u− z′)e−k|u−z′|b(φ)(φ′)2

]
,

(2.19)
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where ρsurf ≡
(
ρliq + ρgas

)
/2. The noise χ has the form:

χ(k, t) =
A(k)ζ

B(k)2ρsurf

∫
du

∂E
∂u

∫
dz′e−k|u−z′|F

[
∇ · ηact

]
, (2.20)

where the function B(k) is defined as:

B(k) =

∫ ∫
dudu′e−k|u−u′|∂E

∂u
(u)

∂E
∂u′

(u′). (2.21)

The emergence of ρsurf and B(k) occurs when solving for the statistics of χ, as detailed in the next
Subsection.

2.2 Noise Statistics

We first solve for the statistics of ξ(k, z, t) = F
[∇ · ηact(r, t)

]
. The variance of ξ is given by

⟨ξ(k, z, t)ξ(k′, z′, t′)⟩ =
∫ ∫

dxdx′eix·keix
′·k′∇ ·∇′ · ⟨ηact(r, t)ηact(r′, t′)⟩. (2.22)

Then by substituting Eq. (1.25b) into Eq. (2.22) we find:

⟨ξ(k, z, t)ξ(k′, z′, t′)⟩ =

− 2
kBT

act

ζ
δ(t− t′)

∫ ∫
dxdx′eix·keix

′·k′∇ ·
((

ρI− d

d− 1
Q′
)
·∇δ(r− r′)

)
. (2.23)

Using Eq. (1.33), and the definitions of a(ρ) and b(ρ),
(
ρI− d

d− 1
Q′
)

= ρI+
d

ℓ2oDRζU(ρ)

[
a(ρ)∇2ρI+ b(ρ)∇ρ∇ρ

]
. (2.24)

Then the statistics of ξ can be split into three contributions

⟨ξ(k, z, t)ξ(k′, z′, t′)⟩ =
3∑

i=1

⟨ξ(k, z, t)ξ(k′, z′, t′)⟩i, (2.25)

with the three contributions defined as:

⟨ξ(k, z, t)ξ(k′, z′, t′)⟩1 =− 2
kBT

act

ζ
δ(t− t′)

∫ ∫
dxdx′eix·keix

′·k∇ ·
(
ρ∇δ(r− r′)

)
, (2.26a)

⟨ξ(k, z, t)ξ(k′, z′, t′)⟩2 =− 2kBT
actd

ℓ2oζ
2DR

δ(t− t′)
∫ ∫

dxdx′

× eix·keix
′·k∇ ·

(
1

U(ρ)
a(ρ)∇2ρ∇δ(r− r′)

)
, (2.26b)

⟨ξ(k, z, t)ξ(k′, z′, t′)⟩3 =− 2kBT
actd

ℓ2oζ
2DR

δ(t− t′)
∫ ∫

dxdx′

× eix·keix
′·k∇ ·

(
1

U(ρ)
b(ρ)∇ρ∇ρ ·∇δ(r− r′)

)
. (2.26c)

We evaluate these terms separately to lowest order in k, beginning with the first. Consider the
term:

∇ ·
(
ρ∇δ(r− r′)

)
=

∂

∂z

(
ρ
∂

∂z
δ(r− r′)

)
+∇x ·

(
ρ∇xδ(r− r′)

)
. (2.27)
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Upon substitution of Eq. (2.27) into Eq. (2.26a), and ignoring the dependence of φ on h, we integrate
by parts to find that

⟨ξ(k, z, t)ξ(k′, z′, t′)⟩1 =2
kBT

act

ζ
(2π)d−1δ(k+ k′)δ(t− t′)

×
(
k2φδ(z − z′)− ∂

∂z

(
φ

∂

∂z
δ(z − z′)

))
. (2.28)

The same lines of argument may be used for Eq. (2.26b) to show:

⟨ξ(k, z, t)ξ(k′, z′, t′)⟩2 =
2kBT

actd

ℓ2oζ
2DR

(2π)d−1δ(k+ k′)δ(t− t′)

×
(
k2a(φ)

U(φ)
φ′′δ(z − z′)− ∂

∂z

(
a(φ)φ′′

U(φ)

∂

∂z
δ(z − z′)

))
. (2.29)

The lowest order in k contribution from Eq. (2.26c) will be the term where all derivatives are in the
z-direction, giving

⟨ξ(k, z, t)ξ(k′, z′, t′)⟩3 = −2kBT
actd

ℓ2oζ
2DR

(2π)d−1δ(k+ k′)δ(t− t′)
∂

∂z

(
b(ρ)

U(ρ)
(φ′)2

∂

∂z
δ(z − z′)

)
. (2.30)

Now we introduce L(k, t):

L(k, t) =

∫
du

∂E
∂u

∫
dz′e−k|u−z′|ξ(k, z′, t). (2.31)

The variance of L is given by:

⟨L(k, z, t)L(k′, z′, t′)⟩ =
∫

du
∂E
∂u

∫
du′

∂E
∂u′

∫ ∫
dz′dz′′e−k|u−z′|e−k|u′−z′′|⟨ξ(k, z′, t)ξ(k′, z′′, t′)⟩.

(2.32)

Then, as with ξ, we split up the variance of L into three contributions,

⟨L(k, t)L(k′, t′)⟩1 =
∫

du
∂E
∂u

∫
du′

∂E
∂u′

∫ ∫
dz′dz′′e−k|u−z′|e−k|u′−z′′|⟨ξ(k, z′, t)ξ(k′, z′′, t′)⟩1,

(2.33a)

⟨L(k, t)L(k′, t′)⟩2 =
∫

du
∂E
∂u

∫
du′

∂E
∂u′

∫ ∫
dz′dz′′e−k|u−z′|e−k|u′−z′′|⟨ξ(k, z′, t)ξ(k′, z′′, t′)⟩2,

(2.33b)

⟨L(k, t)L(k′, t′)⟩3 =
∫

du
∂E
∂u

∫
du′

∂E
∂u′

∫ ∫
dz′dz′′e−k|u−z′|e−k|u′−z′′|⟨ξ(k, z′, t)ξ(k′, z′′, t′)⟩3.

(2.33c)

We begin with the first contribution, Eq. (2.33a):

⟨L(k, t)L(k′, t′)⟩1 =2
kBT

act

ζ
(2π)d−1δ(k+ k′)δ(t− t′)

∫
du

∂E
∂u

∫
du′

∂E
∂u′

∫ ∫
dz′dz′′

× e−k|u−z′|e−k|u′−z′′|
(
k2φδ(z′ − z′′)− ∂

∂z′

(
φ

∂

∂z′
δ(z′ − z′′)

))
. (2.34)
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The first contribution may be separated into two subcontributions,

⟨L(k, t)L(k′, t′)⟩a1 =2
kBT

act

ζ
(2π)d−1

∫
du

∂E
∂u

∫
du′

∂E
∂u′

∫ ∫
dz′dz′′

× e−k|u−z′|e−k|u′−z′′|δ(k+ k′)δ(t− t′)
(
k2φδ(z′ − z′′)

)
, (2.35a)

⟨L(k, t)L(k′, t′)⟩b1 =− 2
kBT

act

ζ
(2π)d−1

∫
du

∂E
∂u

∫
du′

∂E
∂u′

∫ ∫
dz′dz′′

× e−k|u−z′|e−k|u′−z′′|δ(k+ k′)δ(t− t′)
∂

∂z′

(
φ

∂

∂z′
δ(z′ − z′′)

)
. (2.35b)

In Eq. (2.35a), the delta function immediately eliminates one of the integrals, leaving us with

⟨L(k, t)L(k′, t′)⟩a1 =
2DR(d− 1)

d
(2π)d−1

∫
du

∂E
∂u

∫
du′

∂E
∂u′

∫
dz′

× e−k|u−z′|e−k|u′−z′|δ(k+ k′)δ(t− t′)k2φ. (2.36)

Because ∂E/∂z is zero everywhere except within the interface, we will approximate φ as its value
halfway between the binodal densities, i.e., φ ≈ (ρliq + ρgas)/2 = ρsurf . In addition, by splitting up
the integral over z′ into its contributions when z′ is less than, greater than, or between u, u′ one
can show that

∫
dz′e−k|u−z′|e−k|u′−z′| =

1

k
e−k|u−u′|. (2.37)

As a result, Eq. (2.35a) simplifies to:

⟨L(k, t)L(k′, t′)⟩a1 =
2kBT

actρsurf

ζ
(2π)d−1kδ(k+ k′)δ(t− t′)B(k).

Next we simplify Eq. (2.35b). Integrating by part results in:

⟨L(k, t)L(k′, t′)⟩b1 =2
kBT

act

ζ
(2π)d−1

∫
du

∂E
∂u

∫
du′

∂E
∂u′

∫ ∫
dz′dz′′

× e−k|u−z′|e−k|u′−z′′|sgn(u− z′)kδ(k+ k′)δ(t− t′)φ
∂

∂z′
δ(z′ − z′′), (2.38)

followed by another integration by parts:

⟨L(k, t)L(k′, t′)⟩b1 =2
kBT

act

ζ
(2π)d−1

∫
du

∂E
∂u

∫
du′

∂E
∂u′

∫
dz′

× e−k|u−z′|e−k|u′−z′|sgn(u− z′)sgn(u′ − z′)k2δ(k+ k′)δ(t− t′)φ. (2.39)

Because u′ and u will only be evaluated where their magnitudes are very small, and z′ will go from
negative infinity to infinity, we will approximate sgn(u− z′)sgn(u′ − z′) as one. Then, via the same
lines of argument, b simplifies to the same contribution as a,

⟨L(k, t)L(k′, t′)⟩b1 =
2kBT

actρsurf

ζ
(2π)d−1kδ(k+ k′)δ(t− t′)B(k). (2.40)

Which results in

⟨L(k, t)L(k′, t′)⟩1 =
4kBT

actρsurf

ζ
(2π)d−1kδ(k+ k′)δ(t− t′)B(k). (2.41)
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For Eq. (2.33b), it is convenient to define the quantity C(k),

C(k) =

∫ ∫
dudu′

∂E
∂u

(u)
∂E
∂u′

(u′)
∫ ∫

dz′dz′′

×e−k|u−z′|e−k|u′−z′′|
(
k2

a(ρ)

U
φ′′(z)δ(z − z′)− ∂

∂z

(
a(ρ)

U
φ′′(z)

∂

∂z
δ(z − z′)

))
. (2.42)

Then Eq. (2.33b) can be rewritten as

⟨L(k, t)L(k′, t′)⟩2 =
2kBT

actd

ℓ2oζ
2DR

δ(t− t′)δ(k+ k′)(2π)(d−1)C(k). (2.43)

Similarly, Eq. (2.33c) can be rewritten by defining the quantity D(k),

D(k) =

∫ ∫
dudu′

∂E
∂u

(u)
∂E
∂u′

(u′)
∫ ∫

dz′dz′′

× e−k|u−z′|e−k|u′−z′′| ∂

∂z′

[
b(ρ)

U
(φ′(z′))2

∂

∂z′
δ(z − z′)

]
, (2.44)

which results in

⟨L(k, t)L(k′, t′)⟩3 =
2kBT

actd

ℓ2oζ
2DR

δ(t− t′)δ(k+ k′)(2π)(d−1)D(k). (2.45)

Altogether, we find the full noise correlator as

⟨L(k, t)L(k′, t′)⟩ =2
kBT

act

ζ
δ(t− t′)δ(k+ k′)(2π)(d−1)

×
[
2ρsurfkB(k) +

d

ℓ2oζDR
C(k) +

d

ℓ2oζDR
D(k)

]
, (2.46)

where B(k), C(k), and D(k) are all to be evaluated numerically. Finally, we define χ(k, t) with the
coefficients as defined in Eq. (2.20). We then break up the noise into two independent contributions,
χ = χiso + χaniso which have zero mean and variances:

⟨χiso(k, t)χiso(k′, t′)⟩ = 2k(kBT )
actζeffδ(t− t′)δ(k+ k′)(2π)(d−1), (2.47a)

⟨χaniso(k, t)χaniso(k′, t′)⟩ = ζeff(C(k) +D(k))

(d− 1)ρsurfB(k)
δ(t− t′)δ(k+ k′)(2π)(d−1). (2.47b)

2.3 Height Correlations, Relaxation Timescale, and Power Spectrum

Now with the complete height-field Langevin equation, we proceed to evaluating the capillary fluc-
tuations of the interface, i.e., evaluate ⟨h(k)h(−k)⟩. If we multiply Eq. (2.17) by h(−k, t), average
over the noise, and consider only the steady state, we find

k3γcw⟨h(k)h(−k)⟩ = ⟨χ(k, t)h(−k, t)⟩. (2.48)

Determining the stationary fluctuations thus require evaluating the noise-averaged correlation of
the height field with the noise. The implicit solution for h is given by,

h(−k, t) = h(−k, 0)exp
(
− t

τ(k)

)
+

1

ζeff

∫ t

0
dt′exp

(
− t− t′

τ(k)

)
χ(−k, t′), (2.49)
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where the timescale for the relaxation of a capillary wave τ is given by

τ(k) ≡ ζeff
k3γcw

. (2.50)

We now multiply Eq. (2.49) by χ(k, t) and take an expectation:

⟨χ(k, t)h(−k)⟩ = 1

ζeff

∫ t

0
dt′exp

(
− t− t′

τ(k)

)
⟨χ(−k, t′)χ(k, t)⟩. (2.51)

We substitute in the statistics of χ, Eq. (2.47a), and Eq. (2.47b) to find

⟨χ(k, t)h(−k)⟩ = 1

ζeff

∫ t

0
dt′exp

(
− t− t′

τ(k)

)
δ(t− t′)Ld−1

×
[
2ζeffk(kBT

act) +
ζeff (C(k) +D(k))

(d− 1)ρsurfB(k)

]
, (2.52)

where we have noted that (2π)d−1δ(k = 0) = Ld−1 for a system of finite size (in three dimensions
this is the area projected by the interface onto the (x, y) plane). The stationary fluctuations can
now be determined:

⟨h(k)h(−k)⟩ = L(d−1)

γcw

[
kBT

act

k2
+

C(k) +D(k)

k3(d− 1)2ρsurfB(k)

]
. (2.53)

As shown in Fig. 2 of the main text, the anisotropic contributions to the fluctuations can be safely
ignored at low k and low run length. Under these conditions we are left with

⟨h(k)h(−k)⟩ = L(d−1)kBT
act

γcwk2
. (2.54)

We can also Fourier transform Eq. (2.17) in time to find:

iωζeffh(k, ω) = −k3γcwh(k, ω) + χ(k, ω). (2.55)

After rearranging Eq. (2.55) and multiplying both sides of the equation by its own complex conjugate
we find:

h(k, ω)h(−k,−ω) =
1

ζ2effω
2 + k6γ2

cw

χ(k, ω)χ(−k, ω). (2.56)

We can then average over the noise to extract the power spectra:

⟨|h(k, ω)|2⟩ = Ld−1Γζeff
ζ2effω

2 + k6γ2
cw

[
2k(kBT )

act +
C(k) +D(k)

(d− 1)ρsurfB(k)

]
, (2.57)

where we have used 2πδ(ω = 0) = Γ, the total time of a finite duration trajectory. At low k and
low run length, we ignore the anisotropic contributions to the power spectra and find:

⟨|h(k, ω)|2⟩ = 2kLd−1ΓkBT
act

ζeff (ω2 + τ(k)−2)
. (2.58)
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2.4 Dimensional Analysis

In order to make the dependencies and scaling of the low-k fluctuations as explicit as possible in
3d, we pick a natural system of units with dhs as unit length and ζUo as unit force. Then the non-
dimensionalized run length is given by ℓo = ℓ̄odhs, the non-dimensionalized wave vector is given by
k = k̄d−1

hs , the non-dimensionalized system length L = L̄dhs, and the non-dimensionalized density
ρ = ρ̄d−3

hs . From these quantities we can non-dimensionalize more complicated quantities such as:

a(ρ) =
3ℓ2o

2d(d− 1)(d+ 2)
U(ρ)U(ρ)

∂pC
∂ρ

=
3ℓ̄2od

2
hs

2d(d− 1)(d+ 2)
U(ρ)U(ρ)

∂p̄C
∂ρ̄

ζUo

d2hs
d3hs

= ā(ρ̄)ζUod
3
hs, (2.59)

b(ρ) =
3ℓ2o

2d(d− 1)(d+ 2)
U(ρ)

∂

∂ρ

[
U(ρ)

∂pC
∂ρ

]

=
3ℓ̄2od

2
hs

2d(d− 1)(d+ 2)
U(ρ)

∂

∂ρ

[
U(ρ)

∂p̄C
∂ρ̄

]
ζUo

d2hs
d6hs

= b̄(ρ̄)ζUod
6
hs, (2.60)

A(k) = C
∫

dz1φ′
∫

dz2

(
p′CU

)2

a(φ)
φ′e−k|z1−z2|

= C
∫

dz̄1φ̄′d−3
hs

∫
dz̄2

(
p̄′CUζUodhs

)2

ā(φ̄)ζUod3hs
φ̄′d−3

hs e
−k|z̄1−z̄2|

= Ā(k)CζUod
−7
hs , (2.61)

B(k) = C2

∫
dz1φ′

(
p′CU

)2

a(φ)

∫
dz2

(
p′CU

)2

a(φ)
φ′e−k|z1−z2|

= C2

∫
dz̄1φ̄′d−3

hs

(
p̄′CUζUodhs

)2

ā(φ̄)ζUod3hs

∫
dz̄2

(
p̄′CUζUodhs

)2

ā(φ̄)ζUod3hs
φ̄′d−3

hs e
−k|z1−z2|

= B̄(k)C2 (ζUo)
2 d−8

hs , (2.62)

where C is an arbitrary constant of integration resulting from the definition of the pseudovariable
E and

γcw(k) =
A(k)

B(k)ρsurf

[∫ ∞

−∞
duφ′φ′ (Ep′CU

)2

+

∫ ∞

−∞
du
(
Cp′CU

)2

a(φ)
φ′
∫ ∞

−∞
dz′sgn(u− z′)e−k̄|u−z′|b(φ)(φ′)2

]

=
d4hs

CζUoρ̄surf

[∫ ∞

−∞
dūφ̄′φ̄′d−7

hs

(
Cp̄′CUζUodhs

)2

+

∫ ∞

−∞
dūdhs

(
Cp′CUζUod

3
hs

)2

ā(φ̄)Uod7hs
φ̄′d−4

hs

∫ ∞

−∞
dz̄′dhssgn(ū− z̄′)e−k̄|ū−z̄′|b̄(φ̄)Uo(φ̄

′)2d−2
hs

]
,

(2.63)
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Cancelling the like terms in the above expression results in a dimensionless capillary-wave tension:

γcw(k) = γ̄cw(k)ζUod
−1
hs , (2.64)

and we can identify the dimensionless function g(λ, k̄) = γ̄cw = γcwdhs/ζUo, where λ ≡ ℓo/ℓ
c
o − 1,

as

g(λ, k) =
1

ρ̄surf

[∫ ∞

−∞
dūφ̄′φ̄′ (p̄′CU

)2

+

∫ ∞

−∞
dūdhs

(
p′CU

)2

ā(φ̄)
φ̄′
∫ ∞

−∞
dz̄′sgn(ū− z̄′)e−k̄|ū−z̄′|b̄(φ̄)(φ̄′)2

]
, (2.65)

where the dependence on λ is inherited from the dependence of the active speed U on activity. The
low-k capillary fluctuations in d = 3 should then be given by

⟨h(k)h(−k)⟩ = L2ℓoUoζ

6γcwk2

=
d6hsL̄

2ℓ̄o

6γ̄cwk̄2
. (2.66)

A similar procedure can be carried out with d = 2 in order to find the units of all quantities in two
dimensions.

2.5 Area Minimization

We wish to find a condition such that interfacial dynamics (at steady state) recover a Boltzmann
distribution weighted by the interfacial area. In other words,

P [h] ∼ exp
[
−C

∫
dx
√

1 + |∇xh|2
]
, (2.67)

where C is a physical constant. For a weakly fluctuating interface where |∇xh|2 << 1, this area
may be Taylor expanded as:

P [h] ∼ exp
[
−C

∫
dx
(
1 +

1

2
|∇xh|2

)]
. (2.68)

The value of
∫

dx [1] is simply the area of a flat interface, which is an inconsequential constant:

P [h] ∼ exp
[
−C

2

∫
dx|∇xh|2

]
. (2.69)

We now express the discrete Fourier series expansion of h(x) as:

h(x) =
∑

k

hkexp [−ik · x] . (2.70)

Then the gradient of h(x) is:

∇xh(x) = −i
∑

k

hkkexp [−ik · x] . (2.71)
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We can then solve for square gradient of h(x) as:

|∇xh(x)|2 = −
∑

k

∑

k′
hkhk′k · k′exp

[
−i
(
k+ k′) · x

]
. (2.72)

Then our distribution is proportional to:

P [h] ∼ exp

[
C

2

∫
dx
∑

k

∑

k′
hkhk′k · k′exp

[
−i
(
k+ k′) · x

]
]
. (2.73)

Evaluating the integral allows us to only consider the cases where k = −k′, and the symmetry of
hk = h−k for the even components and hk = −h−k for the odd components allows us to identify:

P [hk] ∼ exp
[
−C

2
|hk|2|k|2

]
. (2.74)

We now wish to determine whether the linearized interfacial dynamics derived in Section 2.1 exhibits
this distribution at steady-state. We rewrite Eq. (2.17):

ζeff(k)
∂h

∂t
= −k3γcw(k)h+ χ(k, t). (2.75)

For small k, the tension and effective drag become constants:

∂h

∂t
= −k3

γcw

ζeff
h+ χ′(k, t), (2.76)

where the noise χ′ has zero average and variance:

⟨χ′(k, t)χ′(k′, t′)⟩ =
(
2k

(
kBT

act
)

ζeff
+A(k)

)
δ(t− t′)δ(k + k′)(2π)d−1. (2.77)

Here A(k) is the component noise variance originating from the anisotropic noise,

A(k) =
ζeff(C(k) +D(k))

(d− 1)ρsurfB(k)
. (2.78)

The Fokker-Planck equation describing the distribution of P [h] is then straightforwardly found:

∂

∂t
P [h] = − ∂

∂h

[
−k3

γcw

ζeff
hP [h]

]
+

1

2
Ld−1

(
2k

(
kBT

act
)

ζeff
+A(k)

)
∂2

∂h2
[P [h]] . (2.79)

Solving for the steady state of Eq. (2.79) results in:

0 =
∂

∂h

[
k3

γcw

ζeff
hP [h] +

1

2
Ld−1

(
2k

(
kBT

act
)

ζeff
+A(k)

)
∂

∂h
[P [h]]

]
. (2.80)

After rearranging Eq. (2.80) and integrating we find:

P [h] ∼ exp

[
−2L1−dk2γcwh

2

(
2
(
kBT

act
)
+

1

k
A(k)

)−1
]
. (2.81)
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At small wavevectors, A(k) is negligible and we find:

P [h] ∼ exp
[
−2k2h2

L1−dγcw

kBT act

]
, (2.82)

which is indeed a Boltzmann distribution weighted by the interfacial area and the interfacial stiffness
γcw/kBT

act. However, if A(k) is not negligible, then this distribution will only be recovered if A(k)
scales linearly with k. Based on inspection of Eqs. (4.15), (4.16), and (4.17), A(k) scales as k2 in the
low-k limit. This implies that when the anisotropic contributions to the noise are non-negligible, a
Boltzmann distribution with respect to an effective free energy proportional to the interfacial area
is not recovered.
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3 Langevin Dynamics of an Equilibrium Interface

In this Section we show that an equilibrium theory constructed in the same manner as Sections 1
and 2 is equivalent to equilibrium capillary-wave theory when taken to a macroscopic limit. For
brevity we will skip many steps of the derivation as this procedure will be entirely analogous to
those outlined by Sections 1 and 2.

3.1 Equilibrium Density and Height Field Dynamics

We begin with the fluctuating hydrodynamics for an equilibrium system. We consider particles which
follow an overdamped Langevin equation with an additional translational Brownian stochastic noise
that satisfies the FDT. The overdamped Langevin equation for the ith particle of this system is:

ṙi =
1

ζ

N∑

j ̸=i

Fij + ηi(t), (3.1)

where ηi is the translational Brownian noise with zero average and variance ⟨ηi(t)ηj(t
′) = 2(kBT/ζ)δ(t−

t′)δijI⟩. We assume that the interparticle forces, overall system density, and temperature are such
that the system is phase separated. Following Ref. [2], we start from Eq. (3.1) and derive the
following fluctuating hydrodynamics:

∂ρ

∂t
= −∇ · J, (3.2a)

J =
1

ζ
∇ ·

(
σC + σB

)
+ ηeq, (3.2b)

σC =

[
−pC(ρ) + ρκ(ρ)∇2ρ+

(κ(ρ) + ρκ′(ρ))
2

|∇ρ|2
]
I− κ(ρ)∇ρ∇ρ, (3.2c)

σB = −kBTρI, (3.2d)

where ηeq is a stochastic flux with statistics

⟨ηeq(r, t)ηeq(r′, t′)⟩ = 2DTρIδ(t− t′)δ(r− r′) , (3.3)

and σB is the “ideal gas” stress generated by the stochastic translational Brownian force (absent in
our treatment of athermal active matter). We then use Bray’s ansatz [12,25], i.e. ρ = φ(z−h(x, t)),
and proceed in the same manner as Section 2, except now the identity of our pseudovariable is
E ∼ 1/ρ [5]. This results in the following equation of motion for the height field:

ζeff
∂h

∂t
= −k3γcwh+ χ(k, t), (3.4)

where we have defined an effective drag coefficient,

ζeff =
ζA2(k)

2ρsurfB(k)
. (3.5)

γcw is the capillary wave tension defined as

γcw(k) =
2ζeff
ζA(k)

[∫ ∞

−∞
du

∂E
∂z

φ′φκ(φ)−
∫ ∞

−∞
du

∂E
∂z

∫ ∞

−∞
dz′sgn(u− z′)e−k|u−z′|κ(φ)(φ′)2

]
, (3.6)
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χ is a noise defined as

χ(k, t) =
A(k)ζ

B(k)(ρliq + ρgas)

∫
du

∂E
∂z

∫
dz′e−k|u−z′|F [∇ · ηeq] , (3.7)

A(k) is a function defined as

A(k) =

∫ ∫
dudze−k|u−z|∂E

∂z
(u)φ′(z), (3.8)

and B(k) is a function defined as

B(k) =

∫ ∫
dudu′e−k|u−u′|∂E

∂z
(u)

∂E
∂z

(u′). (3.9)

Following the same procedure as in Section 2.2, the statistics of χ(k, t) can be solved for as

⟨χ(k, t)χ(k′, t′)⟩ = 2k(kBT )ζeffδ(t− t′)δ(k+ k′)(2π)(d−1) (3.10)

We next argue that this Langevin equation for the height field agrees with equilibrium capillary
wave theory in a macroscopic limit. This macroscopic limit implies two conditions:

• The magnitude of the wave vector goes to zero, i.e. k → 0

• The width of the interfacial region becomes negligibly small compared to system dimensions,
i.e. the density profile φ becomes infinitely sharp.

In this macroscopic limit we will be able to argue that the capillary-wave tension is equivalent to the
mechanical surface tension and that the interfacial fluctuations are given by the mechanical surface
tension.

3.2 Macroscopic Agreement With Equilibrium Capillary-Wave Theory

The mechanical surface tension as defined by Kirkwood and Buff [26,30] can be found by integrating
the difference in the normal and tangential components of the stress tensor, i.e.

γmech = −
∫

dz
[
σC
zz −

1

2

(
σC
xx + σC

yy

)]
, (3.11)

where contributions to Eq. (3.11) from σB will vanish because the ideal gas stress is isotropic. We
now substitute our definition for σC into our expression for the mechanical surface tension, and
take the limit as k goes to zero

lim
k→0

γmech =

∫
dzκ(φ)(φ′)2. (3.12)

From our macroscopic assumptions listed in Section 3.1, we can show that the ratio A(k)/B(k) for
an equilibrium system goes to

lim
k→0

A(k)

B(k)
≈
(
ρsurf

)2

C , (3.13)

where again, C is an arbitrary constant of integration associated with the pseudodvariable. Then
the low-k capillary tension is given by:

lim
k→0

γcw(k) =ρsurf
[∫ ∞

−∞
du

φ′

φ2
φ′φκ(φ)
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−
∫ ∞

−∞
du

φ′

(φ)2

∫ ∞

−∞
dz′sgn(u− z′)κ(φ)(φ′)2

]
. (3.14)

The second integral can be split into regions where z′ > u and z′ < u, giving

lim
k→0

γcw(k) =ρsurf
[∫ ∞

−∞
du

φ′

φ2
φ′φκ(φ)

−
∫ ∞

−∞
du

φ′

(φ)2

(∫ u

−∞
dz′κ(φ)(φ′)2 −

∫ ∞

u
dz′κ(φ)(φ′)2

)]
. (3.15)

These integrals across z′ are equal to the mechanical surface tension if the integral goes across the
interface and zero otherwise since, in the macroscopic limit, the interfaces are infinitely sharp. Then,

lim
k→0

γcw(k) =ρsurf
[∫ ∞

−∞
du

φ′

φ2
φ′φκ(φ)

−
∫ ∞

−∞
du

φ′

(φ)2

(
γmechH(u)− γmech(1−H(u))

)]
, (3.16)

where H is the Heaviside step function. From the identity 2H(u)− 1 = sgn(u), it follows that:

lim
k→0

γcw(k) = ρsurf
[∫ ∞

−∞
du

φ′

φ2
φ′φκ(φ)− γmech

∫ ∞

−∞
du

φ′

(φ)2
sgn(u)

]
. (3.17)

For an infinitely sharp profile, φ′ is nonzero only exactly at interface. We therefore approximate
the 1/(φ)2 terms as constants evaluated at u = 0, leaving us with

lim
k→0

γcw(k) =

∫ ∞

−∞
duκ(φ)(φ′)2 = lim

k→0
γmech. (3.18)

This derivation demonstrates that at equilibrium, the capillary-wave tension equals the mechanical
surface tension in the macroscopic limit. By using the equivalence of the capillary-wave tension and
mechanical surface tension, and using the same lines of argument as Section 2.3, we can show that

⟨h(k)h(−k)⟩ = L(d−1)kBT

γmechk2
. (3.19)
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4 Numerical Details

In this Section, we list the details of all numerical calculations and simulations. We start by providing
the equations of state necessary for calculating the quantities derived in Sections 1 and 2. We then
summarize the procedure used to calculate the stationary noise-averaged density profile, φ(z).
Next, we give the details on computing the capillary-wave tension, interfacial height fluctuations,
relaxation times, and mechanical surface tension. We then calculate the variance of the anisotropic
noise χaniso relative to the total noise in order to identify the conditions under which our interfacial
Langevin equation effectively obeys the fluctuation dissipation theorem. A comparison of the above
quantities calculated with and without the pseudovariable is then presented. This comparison
strengthens our argument that the capillary-wave tension encapsulates the effects of nematic flows.
Finally, we list the details of the Brownian dynamics simulations and statistical uncertainty of the
interfacial fluctuations measured from simulation.

4.1 Equations of State

In order to numerically solve for the quantities derived in this supplemental material, we use the
equations of state reported Ref. [5] for athermal active hard spheres. The two contributions to the
bulk dynamic pressure were found to be well described by:

pact
ζU0/(d2hs)

= ϕ

(
ℓ0
dhs

)
1

π
U

= ϕ

(
ℓ0
D

)
1

π

[
1 +

(
1− exp

[
−27/6

(
ℓ0
dhs

)])
ϕ

1− ϕ/ϕmax

]−1

(4.1a)

pC
ζU0/(d2hs)

= 6× 2−7/6 1

π

ϕ2

√
1− ϕ/ϕmax

, (4.1b)

where pact is the active pressure, ϕ = ρπd3hs/6 is the volume fraction, and ϕmax = 0.645 is the
maximum volume fraction of disordered hard spheres. The active pressure above is consistent with
a dimensionless active speed given by:

U =

[
1 +

(
1− exp

[
−27/6

(
ℓ0
dhs

)])
ϕ

1− ϕ/ϕmax

]−1

. (4.2)

Although these equations were empirically fit to simulations conducted in the homogeneous region
of the phase diagram (λ < 0), we assume that they remain valid in the phase separated region.
From these equations of state one has all information needed to numerically evaluate the quantities
reported in the main text.

4.2 Density Profile Evaluation

We solve for the noise-averaged steady-state profile φ by invoking the static linear momentum
balance, ∇ ·Σ = 0. As φ is only a function of z, we focus on the z-component of the momentum
balance with:

Σzz = −Pcoexist = const., (4.3)
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where the dynamic pressure P is defined as the bulk contribution to the dynamic pressure P ≡
pC + pact. From Section 1.3 we can also express Σzz as:

Σzz = −P(ρ) + a(ρ)
∂2ρ

∂z2
+ b(ρ)

(
∂ρ

∂z

)2

. (4.4)

Substitution of Eq. (4.3) into Eq. (4.4) and rearranging results in:

P(ρ)− Pcoexist = a(ρ)
∂2ρ

∂z2
+ b(ρ)

(
∂ρ

∂z

)2

. (4.5)

We now integrate Eq. (4.5) from the liquid phase to the gas phase with respect to the pseudovariable
E :

∫ Egas

E liq

(P(ρ)− Pcoexist) dE =

∫ Egas

E liq

(
a(ρ)

∂2ρ

∂z2
+ b(ρ)

(
∂ρ

∂z

)2
)

dE , (4.6)

where all functions dependent on density are implicitly dependent on E . Eq. (4.6) can be rewritten
in terms of an integral with respect to density:

∫ ρgas

ρliq
(P(ρ)− Pcoexist)

∂E
∂ρ

dρ =

∫ ρgas

ρliq

(
a(ρ)

∂2ρ

∂z2
+ b(ρ)

(
∂ρ

∂z

)2
)

∂E
∂ρ

dρ. (4.7)

Integrating the right hand side of Eq. (4.7) by parts and invoking Eq. (2.11) then results in:

∫ ρgas

ρliq
(P(ρ)− Pcoexist)

∂E
∂ρ

dρ =

[
a(ρ)

∂E
∂ρ

(
∂ρ

∂z

)2
]∣∣∣∣

ρgas

ρliq
. (4.8)

Note that because the density profile is spatially constant at the binodal densities, the right hand
side of Eq. (4.8) is equal to zero (the pseudovariable is defined precisely such that this is the case, as
discussed in Section 2.1 and Refs. [5,28,29]). Then, recalling that E ∼ pC(ρ) for ABPs, we identify
the coexistence criteria for the binodal densities [5]:

P(ρliq) = P(ρgas), (4.9a)
∫ ρgas

ρliq

(
P(ρ)− Pcoexist

)
∂pC
∂ρ

dρ = 0. (4.9b)

The binodal densities corresponding to each value of ℓo were evaluated by simultaneous solution of
Eqs. (4.9a) and (4.9b).

To solve for the full spatial density profile (rather than just the binodal densities), we integrate
Eq. (4.5) from one of the binodal densities to an intermediate density between the two binodal
densities. In this case Eq. (4.8) would have the form:

∫ ρ

ρliq
(P(ρ)− Pcoexist)

∂E
∂ρ

dρ = a(ρ)
∂E
∂ρ

(
∂ρ

∂z

)2

. (4.10)

We use Eq. (1.34f) to identify a(ρ) and recall that E ∼ pC(ρ) for ABPs in order to map any value
of density between the binodals to its derivative in the z-direction by rearranging Eq. (4.10):

∂ρ

∂z
= ±f(ρ) = ±

√
4d(d−1)(d+2)

3

∫ ρ
ρliq

(
P(ρ′)− Pcoexist

)∂pC
∂ρ′ dρ′

U ∂pC
∂ρ

. (4.11)

28



Then all densities between the binodals can be mapped to a z-coordinate using

z(ρ) =

∫ ρ

ρliq

1

f(ρ′)
dρ′. (4.12)

We identify this steady-state mapping between density and z-coordinate as φ(z).

4.3 Capillary-Wave Tension and Fluctuations

Substituting the solution for E into the definition of capillary wave tension gives

γcw(k)/C =
A(k)

B(k)ρsurf

[∫ ∞

−∞
duφ′φ′ (p′CU

)2

+

∫ ∞

−∞
du
(
p′CU

)2

a(φ)
φ′
∫ ∞

−∞
dz′sgn(u− z′)e−k|u−z′|b(φ)(φ′)2

]
. (4.13)

Similarly, we find that the functions A(k), B(k), C(k), D(k) are given by

A(k) = C
∫

dz1φ′
∫

dz2
∂pC
∂ρ

φ′e−k|z1−z2|, (4.14)

B(k) = C2

∫
dz1φ′∂pC

∂ρ

∫
dz2

∂pC
∂ρ

φ′e−k|z1−z2|, (4.15)

C(k) =C2

∫
duφ′∂pC

∂ρ

∫
du′φ′∂pC

∂ρ

∫
dz′e−k|u−z′|e−k|u′−z′|k2

a(φ)

U(φ)
φ′′

×
(
1 + sgn

(
(u− z′)(u′ − z′)

))
, (4.16)

and

D(k) =C2

∫
duφ′∂pC

∂ρ

∫
du′φ′∂pC

∂ρ

∫
dz′e−k|u−z′|e−k|u′−z′|

× k2
b(φ)

U(φ)
φ′φ′sgn

(
(u− z′)(u′ − z′)

)
. (4.17)

All of the above quantities were evaluated using trapezoidal integration with density profile vectors
of size 200001. For double (e.g. Eq. 4.14) and triple (e.g. Eq. 4.16) integrals the size 200001 vector
density profiles were too fine in resolution to compute in reasonable time. Compressed vectors using
every 20th entry were used to compute the double integrals and the innermost integral of the triple
integrals. The two outer integrals of the triple integrals were computed using every 200th entry of
the full sized density profiles. In order to avoid numerical instabilities associated with the sgn(z)
functions, they were replaced with tanh(yz) functions, where y = 1× 106 d−1

hs was a constant large
enough to make the tanh function closely resemble a sign function for our data. The results of
calculating the above equations as a function of activity for selected values of k are plotted in the
main text. The results of calculating the above equations as a function of k for selected values of
activity are plotted in Fig. S.1.
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Figure S.1: γcw(k) normalized by its k → 0 limit for selected values of λ ≡ ℓo/ℓ
c
o − 1

4.4 Relaxation Times and Mechanical Surface Tension

As derived in Section 2.3, the characteristic timescale for the relaxation of a capillary wave is set
by:

τ =
ζeff

k3γcw
. (4.18)

Details on calculating all dependencies of τ have been discussed in Section 4.3. We plot this quantity
as a function of activity for several selected values of k.

We now demonstrate that within our theory, the mechanical surface tension defined by Bialké et
al. [31] is indeed distinct from the capillary-wave tension and negative. This mechanical surface
tension can be found by integrating the difference in the normal and tangential components of the
dynamic stress tensor Eq. (1.34c):

γmech = −
∫

dz
[
Σzz −

1

2
(Σxx +Σyy)

]
. (4.19)

We now substitute Eq. (1.34c) into Eq. (4.19) and make the approximation that the variation of
the stochastic density (and therefore the stress) in the x, y-directions are far less than that in the
z-direction,

γmech = −
∫

dzb(φ)(φ′)2. (4.20)

We calculate quantity as a function of run length in the same manner described by Section 4.3.
The mechanical surface tension is negative for all run lengths above the critical point. We plot
the magnitude of both the mechanical and capillary-wave tension (relative to kBT

act) in Fig. S.3.
Intriguingly, when comparing the magnitudes of the two surface tensions, we find that there is
little qualitative distinction. Both surface tensions encapsulate the effects of nematic flows — while
the sign of the mechanical surface tension suggests that nematic flows are destabilizing, our derived
capillary tension reveals that these same flows suppress interfacial fluctuations, reflected in a positive
capillary tension.
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Figure S.2: Activity dependence of relaxation time τ for selected values of k.

Figure S.3: Absolute value of the mechanical surface tension as defined by Eq. (4.20) and k → 0
limit of the capillary-wave tension. Both quantities are normalized by kBT

act. Vertical axis has
units of d−2

hs . Mechanical surface tension is negative for all run lengths above the critical point.
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Figure S.4: Relative error of the isotropic fluctuations as a function of k for three selected activities.

4.5 Isotropic Approximation Error

We plot the relative error of the height field fluctuations calculated from only isotropic noise
Eq. (2.47a) as compared to calculated from both Eq. (2.47a) and Eq. (2.47b) as a function of
wave vector magnitude k and as a function of reduced run length λ. We define the relative error of
the fluctuations as

Riso =

∣∣∣∣
⟨|h(k)|2⟩iso − ⟨|h(k)|2⟩

⟨|h(k)|2⟩

∣∣∣∣ . (4.21)

The results of this calculation are shown in Fig. S.4 and Fig. S.5. At low activities and low values of k,
the anisotropic components of the noise can be safely discarded. However, the error associated with
ignoring the anisotropic noise components becomes more significant as the wavelength decreases and
activity increases. We remark that the kinks present in Fig. S.4 and Fig. S.5 are due to a transition
from the isotropic approximation underestimating to overestimating the fluctuations. This can be
seen in Fig. S.6 crossing from positive to negative values.

Fig. S.6 demonstrates that as the run length approaches the wavelength of a capillary fluctuation,
i.e. ℓok approaches unity, the magnitude of the anisotropic noise becomes significant as compared
to the isotropic noise. On the other hand, when ℓok << 1 the anisotropic noise can be safely
ignored and the interfacial Langevin equation will recover area minimizing Boltzmann statistics
[See Sec. 2.5] [12].

4.6 Effect of Pseudovariable

In the main text we have argued that γcw includes the effect of nematic flows on the height field
dynamics due, in part, to the use of the pseudovariable E . Here we provide numerical analysis
supporting this claim. Suppose Eq. (2.10) was multiplied by φ′ (as Bray [12] proposed in the
context of passive systems) rather than ∂E/∂z and integrated across all u. Doing so would result
in a final interface Langevin equation:

ζφeff
∂h

∂t
= −k3γφ

cwh+ kνF
[
|∇xh|2

]
+ χ(k, t)iso,φ + χ(k, t)aniso,φ. (4.22)
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Figure S.5: Relative error of the isotropic fluctuations as a function of λ for three selected values
of k.

Figure S.6: Variance of χaniso divided by the variance of χiso as a function of ℓok.
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We note that while this equation contains a nonlinearity, the nonlinearity is outside of the scope of
Bray’s ansatz: although this equation may capture a contribution to the nonlinear interfacial height
evolution, there may be terms other than ν that would be found if a nonlinear ansatz was used.
The coefficients in the above equation with superscript φ are defined differently than above, given
by:

ζφeff =
ζ(Aφ)2(k)

2ρsurfBφ(k)
, (4.23)

γφ
cw(k) =

2ζφeff
ζAφ(k)

[∫ ∞

−∞
du(φ′)2a(φ) +

∫ ∞

−∞
duφ′

∫ ∞

−∞
dz′sgn(u− z′)e−k|u−z′|b(φ)(φ′)2

]
, (4.24)

⟨χiso,φ(k, t)χiso,φ(k′, t′)⟩ =2k(kBT )
actζφeffδ(t− t′)δ(k+ k′)(2π)(d−1), (4.25a)

⟨χaniso,φ(k, t)χaniso,φ(k′, t′)⟩ =2ζφeff(C
φ(k) +Dφ(k))

(d− 1)2ρsurfBφ(k)
δ(t− t′)δ(k+ k′)(2π)(d−1), (4.25b)

Aφ(k) = Bφ(k) =

∫ ∫
dudze−k|u−z|φ′(u)φ′(z), (4.26)

Cφ(k) =

∫ ∫
dudu′φ′(u)φ′(u′)

∫ ∫
dz′dz′′ × e−k|u−z′|e−k|u′−z′′|

×
(
k2

a(ρ)

U
φ′′(z)δ(z − z′)− ∂

∂z

(
a(ρ)

U
φ′′(z)

∂

∂z
δ(z − z′)

))
, (4.27)

and

Dφ(k) =

∫ ∫
dudu′φ′(u)φ′(u′)

∫ ∫
dz′dz′′

× e−k|u−z′|e−k|u′−z′′| ∂

∂z′

[
b(ρ)

U
(φ′(z′))2

∂

∂z′
δ(z − z′)

]
. (4.28)

We numerically evaluate ζφeff , γφ
cw, and the compare them to the analagous quantities that are

obtained using the pseudovariable. We define this comparison as

Rφ (f) =

∣∣∣∣
f − fφ

fφ

∣∣∣∣ ,

where f is an arbitrary quantity that we have calculated with and without the use of a pseudovari-
able. These numerical results are plotted in Figs. S.7-S.10. The kinks in the plots correspond to
the quantities in the absolute values switching from positive to negative. At low k the numerics offer
an attractive physical interpretation. In this limit the effective drag and isotropic noise variance
defined by the pseudovariable become nearly identical to those defined by φ′. As identified in Sec-
tion 4.5, the anisotropic noise variance is negligible in this limit, so the only difference in parameters
for our interfacial Langevin equation are in the capillary-wave tension γcw and driving coefficient ν.
From Eq. (2.24) one can identify the coefficients of the traceless nematic order to be proportional
to the nonlinearity in Eq. (2.10) (up to a 1d approximation), and because ∂E/∂z is orthogonal to
this nonlinearity, ν vanishes when the pseudovariable is used. In contrast, the magnitude of γcw

increases by up to three times (depending on activity) when the pseudovariable is used. Because the
only identified changes are in the disappearance of the nonlinearity proportional to nematic ordering
and the increase of γcw, we interpret the effect of the pseudovariable as encoding the stabilizing
effects of tangential flows into the capillary-wave tension.
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Figure S.7: Relative difference of the capillary-wave tension as a function of λ for four selected
values of k.

Figure S.8: Relative difference of the effective drag as a function of λ for four selected values of k.
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Figure S.9: Relative difference of the isotropic noise variance as a function of λ for four selected
values of k.

Figure S.10: Relative difference of the anisotropic noise variance as a function of λ for four selected
values of k.
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4.7 Brownian Dynamics Simulation

We take the interparticle force Fij to result from a Weeks-Chandler-Anderson (WCA) potential [32],
characterized by an an energy scale ε and Lennard-Jones diameter dLJ. Despite our use of a
continuous potential, the finite and constant amplitude of the active force along with the use of
a stiff WCA allow us to achieve hard-sphere statistics. A stiffness of S ≡ ε/ζUodLJ = 50 was
found to be sufficient to achieve effective hard-sphere interactions with a hard-sphere diameter
of dhs = 21/6dLJ. In this hard-sphere limit, the system state is independent of the active force
magnitude and is fully described by two parameters: the density and the intrinsic run length ℓ0.
We will focus on the case of three-dimensional ABPs for the reasons outlined in the main text.

Before choosing the specific details of our simulations, we consider the computational scaling.
As demonstrated in Section 2.3, the number of timesteps required to observe the relaxation of a
capillary wave is derived to scale as k−3. In addition, obtaining lower k requires expansion of a
simulation cell which, at constant density, requires additional particles. An isotropic expansion of
the simulation cell will thus result in the scaling 1/k ∼ Nd. The computational cost of a single
timestep scales linearly with N . Therefore, in order to relax capillary waves of increasingly small k,
the computational cost of every time step scales as (1/k)d while the number of timesteps to obtain
statistically significant data scales as (1/k)3. As a result, for a square interface in 3d the total
computational cost of relaxing a capillary-wave scales as (1/k)6, placing intense resource limitations
on sampling a low k limit. In addition, because of the vanishing capillary-wave tension at low λ
found in Section 2.3, we expect simulations at lower activities to have significantly longer relaxation
times and therefore higher statistical uncertainty for the same number of simulation time steps as
higher activities.

Brownian dynamics simulations of the above system were then performed using 631444 particles
with intrinsic run lengths of ℓ0/dhs = {40.09, 63.70, 89.09, 148.3} for a length of 89000 dhs/Uo

using HOOMD-blue [33]. Rectangular simulations with dimensions of Lz/dhs = 221.1, Lx/dhs =
196.7, Ly/dhs = 19.2 were employed. This combination of cell dimensions and number of particles
corresponds to an overall volume fraction of ϕ = 0.397.

Simulation cell dimensions were unequal in the directions tangential to the interface in order
to maximize the length of one dimension (and therefore access lower wave vector fluctuations)
without incurring additional computational expense. For our 3d system, this allows the cost of
each time step to scale as (1/k)2 rather than (1/k)3. A priori, it was unclear whether introducing
unequal dimensions would introduce artefacts into the measured height fluctuation spectra. We
therefore measured the height fluctuations of (smaller) systems with square and rectangular inter-
faces at an activity of ℓo/dhs = 89.09. The dimensions of the square and rectangular interfaces were
Lx/dhs = Ly/dhs = 80.5 and Lx/dhs = 91.4, Ly/dhs = 19.7, respectively. Their height fluctuation
spectra are plotted in Fig. S.11. The fluctuation spectrum from the systems with equal and unequal
dimensions are indistinguishable until wave vector far outside the scope of a low-k theory, justifying
the unequal simulation cell dimensions used in our production runs.

The instantaneous location of interfaces was identified using the algorithm proposed by Willard
and Chandler [34]. The coarse grained density field was defined by specifying the kernel ∆(r− ri)
to be a Gaussian,

ρ(r, t) =
(
2πξ2

)−d/2
N∑

i=1

exp
[
−|r− ri(t)|

2ξ2

]
, (4.29)

where ξ is a coarse-graining length. The value of this field was calculated every 4.45 dhs/U0 with
ξ/dhs = 1.78 on a cubic grid of points with spacing 0.89 dhs. The (d − 1) dimensional surface at
which the density field was equal ρsurf was then determined through linear interpolation.
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Figure S.11: Interfacial fluctuation spectrum for square (80.5 × 80.5 d2hs) and rectangular (91.4 ×
19.7 d2hs) interfaces. Simulations were conducted at an activity of ℓo/dhs = 89.

The statistical uncertainty of the height fluctuation spectra (as well as the exponent ω, stiff-
ness Ks, and later power spectra fits) was determined by calculating dividing the trajectory into
five equally spaced periods in space, calculating the average fluctuation spectrum of each period
independently, and taking the standard deviation between the periods. The spread on the data
corresponding to ℓo/dhs = 40.09 was significantly higher than the other data points. This is because
the relaxation time of capillary excitations at this run length was up to an order of magnitude higher
than the other activities simulated for any given wave vector, as shown by Eq. (2.50) and plotted in
Fig. S.2. We also attempt to collapse the height fluctuation spectra by multiplying each curve by
ℓo. This collapse was first observed by Patch et al. [35] for 2d ABPs and a theoretical justification
for this collapse is discussed in the main text. This curve collapse should, in principle, apply to 3d
ABPs at sufficiently low k but it is unclear whether our sampling reached low enough values of k
for Eq. (2.54) to hold. In addition, the statistical uncertainty found in Fig. S.12 may be concealing
any potential curve collapse.

From a fit of the height spectrum data to ⟨|h̃(k)|2⟩ = Ksk
ω we obtain the interfacial stiffness

K−1
s . We find that the interfacial stiffness measured from simulation is within an order of magnitude

agreement to the predictions of the theory, as plotted by Fig. S.14.
The power spectra data with ωdhs/2πUo = 2.82× 10−4 fixed is plotted in Fig. S.15. The lowest

twelve points of the power spectra was fit to ⟨|h(k, ω)|2⟩ ∼ kβ and values of β are included in the
inset of Fig. S.15. This plot is interested in probing the ω → 0 limit as closely as possible, so the
lowest two values of k were not included in the plot or fit as τ(k) as predicted by Fig. S.2 was on
the order of ω−1
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Figure S.12: Interfacial fluctuation spectrum for production runs with error bars included.

Figure S.13: Interfacial fluctuation spectrum multiplied by ℓo. At k low enough to be described by
Eq. (2.54), all plots should collapse to a single point.
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Figure S.14: Interfacial stiffness γcw/kBT
act as predicted by theory (lines) and as measured via

simulation data (points). The stiffness is presented in units of d−2
hs . The simulation data points

were fit from the low-k (kdhs/2π < 0.5) data.

Figure S.15: Power spectra ⟨|h(k, ω)|2⟩ at each simulated activity as a function of k with
ωdhs/2πUo = 2.82 × 10−4 fixed. (Inset) Power law scaling obtained from logarithmic fits to
⟨|h(k, ω)|2⟩ ∼ kβ , considering low k such that kdhs/2π < 0.5. Lowest two values of k not in-
cluded in plot or fit.
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5 Supplemental Media

Each video listed below displays the instantaneous interface [34] determined from a Brownian dy-
namics simulation of ABP phase separation at a specified activity and simulation geometry. In each
video, the instantaneous interface was computed using a cubic grid of points with a uniform spacing
of 0.89 d

hs
and a coarse-graining length of ξ/dhs = 1.78. Each frame is separated by a duration of

4.45 dhs/Uo and the videos are played at a rate of 25 frames per second. All videos are publicly
available at the following URL:
https://berkeley.box.com/s/09q5ccbbhf1h14d93gbsw70qjcdv4ufe

• [interfacedynamics_40square.mp4]:
Instantaneous interface dynamics with an activity of 40 ℓo/dhs. The simulation box has
dimensions Lx/dhs = Ly/dhs = 80.5, Lz/dhs = 144.0.

• [interfacedynamics_89square.mp4]:
Instantaneous interface dynamics with an activity of 89 ℓo/dhs. The simulation box has
dimensions Lx/dhs = Ly/dhs = 80.5, Lz/dhs = 144.0.

• [interfacedynamics_40rectangle.mp4]:
Instantaneous interface dynamics with an activity of 40 ℓo/dhs. The simulation box has
dimensions Lx/dhs = 196.7, Ly/dhs = 19.2, Lz/dhs = 221.1.

• [interfacedynamics_89rectangle.mp4]:
Instantaneous interface dynamics with an activity of 89 ℓo/dhs. The simulation box has
dimensions Lx/dhs = 196.7, Ly/dhs = 19.2, Lz/dhs = 221.1.

• [interfacedynamics_148rectangle.mp4]:
Instantaneous interface dynamics with an activity of 148 ℓo/dhs. The simulation box has
dimensions Lx/dhs = 196.7, Ly/dhs = 19.2, Lz/dhs = 221.1.
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