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Abstract

We propose an extended Gaussian mixture model for the distribution of causal effects of common single nucleotide polymorphisms
(SNPs) for human complex phenotypes that depends on linkage disequilibrium (LD) and heterozygosity (H), while also allowing for indepen-
dent components for small and large effects. Using a precise methodology showing how genome-wide association studies (GWASs)
summary statistics (z-scores) arise through LD with underlying causal SNPs, we applied the model to GWAS of multiple human phenotypes.
Our findings indicated that causal effects are distributed with dependence on total LD and H, whereby SNPs with lower total LD and H are
more likely to be causal with larger effects; this dependence is consistent with models of the influence of negative pressure from natural se-
lection. Compared with the basic Gaussian mixture model it is built on, the extended model—primarily through quantification of selection
pressure—reproduces with greater accuracy the empirical distributions of z-scores, thus providing better estimates of genetic quantities,
such as polygenicity and heritability, that arise from the distribution of causal effects.
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Introduction
There is currently great interest in the distribution of causal effects
among trait-associated single nucleotide polymorphisms (SNPs),
and recent analyses of genome-wide association studies (GWASs)
have begun uncovering deeper layers of complexity in the genetic
architecture of complex human traits and disorders (Gazal et al.
2017; Zeng et al. 2018; Zhang et al. 2018; Frei et al. 2019; Holland et al.
2020). This study is facilitated by using new analytic approaches to
interrogate structural features in the genome and their relationship
to phenotypic expression. Some of these analyses take into account
the fact that different classes of SNPs have different characteristics
and play a multitude of roles (Schork et al. 2013; Finucane et al.
2015; Shadrin et al. 2019). Along with different causal roles for
SNPs, which in itself would suggest differences in distributions of
effect-sizes for different categories of causal SNPs, the effects of
minor allele frequency (MAF) of the causal SNPs and their total cor-
relation with neighboring SNPs are providing new insights into the
action of selection on the genetic architecture of complex traits
(Gazal et al. 2017; Wray et al. 2018; Zhang et al. 2018).

Any given mutation is likely to be neutral or deleterious to fit-
ness (Fay et al. 2001). Natural selection partly determines how the
prevalence of a variant develops over time in a population, and
evidence for its action can be found in the relationship between
effect size and MAF in complex traits and common diseases

(Zeng et al. 2018). Negative selection acts predominantly to keep
variants deleterious to fitness at low frequency, or ultimately re-
move them. The larger the effect of a deleterious variant the
more efficient negative selection will be, suggesting that the
lower the MAF the larger the effect size—and this is expected un-
der evolutionary models (Pritchard and Cox 2002; Eyre-Walker
2010), and consistent with empirical findings (Park et al. 2011)
and recent analyses based on genome-wide associations (Zeng
et al. 2018; O’Connor et al. 2019; Schoech et al. 2019).

The effect of linkage disequilibrium (LD) has also been studied,
suggesting that SNPs with low “levels of LD” (LLD) explain more heri-
tability, which is again consistent with the action of negative selec-
tion (Gazal et al. 2017). One unexplored issue is how the prior
probability of a SNP being causal depends on its LD score (or related
measures). Due to the complexity of genetic forces acting on alleles,
it is not clear what form any such dependency might take. However,
explicitly modeling any such role promises to yield a closer match
between empirical distributions of GWAS summary statistics and
model predictions, and thereby can provide more accurate estimates
of quantities of interest like polygenicity and heritability.

In previous work (Holland et al. 2020), building on earlier reports
of others (e.g. George and McCulloch 1993; Erbe et al. 2012; Zhou
et al. 2013), we presented a basic Gaussian mixture model to de-
scribe the distribution of underlying causal SNP effects (the per
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unit allelic effect, b, estimated from simple linear regression). Due
to extensive and complex patterns of LD among SNPs, many non-
causal SNPs will exhibit strong association with phenotypes,
resulting in a far more complicated distribution for the summary
z-scores. The basic model for the distribution of the causal b’s is a
mixture of nonnull and null normal distributions, the latter
(denotedNð0; 0Þ) being just a delta function (or point mass at zero):

b � p1Nð0; r2
bÞ þ ð1� p1ÞN ð0; 0Þ; (1)

where p1 is the polygenicity, i.e. the proportion of SNPs that are
causal (equivalently, the prior probability that any particular SNP
is causal), and r2

b is the discoverability (the expectation of the
square of the effect size), which was taken to be a constant across
all causal SNPs. The distribution of z-scores arising from this
shows strong heterozygosity [H¼MAF�(1-MAF)] and total LD
(TLD) dependence; TLD, defined in the subsection Total Linkage
Disequilibrium, is similar to LD score (Bulik-Sullivan et al. 2015)
but takes into account more neighboring SNPs.

The recent work by others focusing on selection pressure using a
single causal Gaussian (Zeng et al. 2018; Schoech et al. 2019) indicated
that it is important to take SNP heterozygosity into account as a com-
ponent in discoverability [initially explored by examining four fixed
relationships in Speed et al. (2012); see also Lee et al. (2013)]. It was
also recently shown that an additional Gaussian distribution for the
b’s might be appropriate if large and small effects are distributed dif-
ferently (Zhang et al. 2018). These approaches, however, were not
combined—a single causal Gaussian incorporating heterozygosity,
versus two causal Gaussians with no heterozygosity dependence. An
extra complexity is that measures related to total LD, such as LLD
(Gazal et al. 2017), can be expected to play an important role in the
distribution of causal effects. It is unclear how all these factors im-
pact each other. A final and very important matter is that many
analyses in the literature by other groups were conducted in the
“infinitesimal” model framework (Bulik-Sullivan et al. 2015; Finucane
et al. 2015; Gazal et al. 2017; Schoech et al. 2019; Speed and Balding
2019), where all SNPs are causal, though there is compelling evidence
that only a very small fraction of SNPs are in fact causal for any given
phenotype (Zhu and Stephens 2017; Zeng et al. 2018; Zhang et al.
2018; Frei et al. 2019; Shadrin et al. 2019; Holland et al. 2020).

We refer to models in the usual sense as “infinitesimal” if they
do not allow for explicit modeling of the fraction of SNPs that are
identically null for a given phenotype; a feature of such models is
very weak or infinitesimal effects from many SNPs. Different in-
finitesimal models vary in how they handle contributions to heri-
tability from such weak effects (Evans et al. 2018; Jiang et al. 2019;
Speed and Balding 2019). It should be noted, however, that infini-
tesimal models have been shown to be unbiased in their esti-
mates of heritability (Yang et al. 2010; Zhou et al. 2013).

In the current study, we sought to extend our earlier work to
incorporate multiple Gaussians, while taking into account TLD as
a factor in polygenicity and selection effects reflected in hetero-
zygosity, in modeling the distribution of causal b’s. With a wide
range of model parameter values across real phenotypes, the spe-
cificity of the individual parameters for a given phenotype make
them more narrowly defining of the distribution of summary sta-
tistics for that phenotype.

Materials and methods
The model: an extension of prior work
The methodology calls for using an extensive reference panel
that likely involves all possible causal SNPs with MAF greater

than some threshold (e.g. 1%), and regard the z-scores for typed
or imputed SNPs—a subset of the reference SNPs—as arising, di-
rectly or through LD, from the underlying causal SNPs in the ref-
erence panel.

Since the single causal Gaussian, Equation (1), has provided
an appropriate starting point for many phenotypes, it is reason-
able to build from it. With additional terms included, if it turns
out that this original term is not needed, the fitting procedure, if
implemented correctly, should eliminate it. Also, anticipating ex-
tra terms in the distribution of causal b’s, we introduce a slight
change in labeling the Gaussian variance (r2

b ! r2
b), and write the

distributions for the causal component only—it being understood
that the full distribution will include the last term on the right
side of Equation (1) for the prior probability of being null.

Given that for some phenotypes there is strong evidence that
rarer SNPs have larger effects, we next include a term that
reflects this: a Gaussian whose variance is proportional to HS,
where H is the SNP’s heterozygosity and S is a new parameter
which, if negative, will reflect the noted behavior (Zeng et al.
2018). With the addition of the new term, the total prior probabil-
ity for the SNP to be causal is still given by p1. Thus, extending
Equation (1), we get:

bðHÞ � p1fð1� pcÞN ð0; r2
bÞ þ pcNð0; r2

c HSÞg; (2)

where pc (0 � pc61) is the prior probability that the SNP’s causal
component comes from the “c” Gaussian (with variance r2

c HS),
and pb � 1� pc is the prior probability that the SNP’s causal com-
ponent comes from the “b” Gaussian (with variance r2

b). This ex-
tension introduces an extra three parameters pc, rc, and S,
assumed for the moment to be the same for all SNPs. Ignoring in-
flation and implementation details like choice of reference panel
and parameter estimation scheme, setting pc � 1 recovers the
model distribution assumed in Zeng et al. (2018); additionally set-
ting p1 � 1 recovers the primary model distribution assumed in
Schoech et al. (2019); and additionally setting S � �1 recovers the
model assumed in Bulik-Sullivan et al. (2015), while instead set-
ting S � �0:25 partially recovers the “recommended” LD-adjusted
kinships (LDAK) model distribution in Speed et al. (2017) and
Speed and Balding (2019). For a further discussion of LDAK and
variants of the LD Score regression model, including “stratified
LD fourth moments regression” (S-LD4M) (O’Connor et al. 2019)
which introduces an effective number of causal SNPs (Me), see
Appendix A.

Within the infinitesimal models (Speed et al. 2012; Finucane
et al. 2015; Gazal et al. 2017; Speed et al. 2017; Schoech et al. 2019;
Speed and Balding 2019), it is not clear the degree to which ex-
plicit LD-dependence in the variance of the causal effect size
merely takes into account the effect on z-scores due to LD with
causal SNPs, and how much it models any true effect of LD on
underlying causal effect size. Also, such models preclude exam-
ining if the TLD of a variant has any bearing on whether the vari-
ant is causal. In contrast is the “BayesS” model (Zeng et al. 2018),
a causal mixture model (i.e. not infinitesimal), using individual
genotype data and a reference panel of �484 k nonimputed SNPs,
that examines the effects of heterozygosity on effect size. The
model we present here is in some respects an extension of that,
but based on summary statistics, adding TLD dependence and an
additional Gaussian, and we fit the model from a reference panel
of 11 million SNPs using the exact procedure—convolution—to
relate posited underlying distributions of causal effects to empiri-
cal distributions of z-scores.

2 | GENETICS, 2021, Vol. 217, No. 3



Along with heterozygosity, SNP effect size might indepen-
dently depend on TLD (for which we use the variable L in equa-
tions below), and in principle this could be explored in a manner
similar to how heterozygosity is incorporated in the “c” causal ef-
fect Gaussian variance (e.g. with an extra factor LT, say, scaling
r2

c , where T would be a new parameter). However, TLD and het-
erozygosity are often related (given TLD, the expected heterozy-
gosity shows a distinct well-defined pattern for SNPs with TLD
<200, i.e. about 80% of SNPs—see Supplementary Figure S6), and
independent contributions might be difficult to disentangle.
Instead, here we explore a separate mathematical role for TLD.

There is no obvious a priori reason why the probability (in a
Bayesian sense) of a SNP’s being causally associated with any
particular trait should be independent of the SNP’s TLD. Indeed,
with the complex interaction of multiple genetic forces such as
mutation, genetic drift, and selection, the net relationship be-
tween TLD—through mechanisms like background selection—
and causal association with a particular phenotype is not clear.
The results of Gazal et al. (2017), however, indicate that SNPs with
low LLD have significantly larger per-SNP heritability. Note that
in Equation 2, for r2

c HS > r2
b the “c” Gaussian will describe larger

effect. In this case, the LLD dependence suggests modulating the
“c” Gaussian such that pc is larger for smaller TLD. Whatever the
relationship, however, the more accurately it is incorporated in a
model for the distribution of effect sizes should lead to more ac-
curate reproduction of the distribution of empirical summary
statistics and estimation of quantities of interest like polygenic-
ity, heritability, and selection effects.

As heterozygosity decreases, SNPs will continue to have a
range of total LD (see Supplementary Figure S7 for the number
density of SNPs with respect to heterozygosity and TLD). We ex-
plore here the possibility that the prior probability of being causal
with large effect decreases with TLD. If the “c” Gaussian is captur-
ing larger effects from rarer SNPs, reflecting selection pressure,
we inquire if the prior probability for a causal SNP’s contribution
from the “c” Gaussian is TLD-mediated. Specifically, instead of
treating pc as a constant, we explore the possibility that it is larger
for SNPs with lower TLD; in the event that this probability is in
fact constant, or increasing, with respect to TLD, we would at
least not expect to find it decreasing. This can be accomplished
by means of a generalized sigmoidal function that will have a
maximum at very low TLD, might maintain that maximum for
all SNPs (equivalently, pc is a constant), or decrease in amplitude
slowly or rapidly, possibly to 0, for SNPs with higher TLD. With
the variable L denoting the TLD of a SNP, such a function of TLD
can be characterized by three parameters: its amplitude (at L¼ 1),
the TLD at the mid-point of the sigmoidal transition, and the
width of the sigmoidal transition (over a wide or narrow range of
TLD). We use the following general form with three parameters,
ymax, xmid, and xwidth:

yðxÞ ¼ ymax

1þ expððx� xmidÞ=xwidthÞ
; (3)

defined in the range �1 < x < 1, for which y(x) is monotoni-
cally decreasing and bounded 0 < yðxÞ < ymax, with 0 � ymax61;
�1 < xmid < 1 locates the mid-point of the overall sigmoidal
transition (yðxmidÞ ¼ ymax=2), and 0 < xwidth < 1 controls its
width (y(x) smoothly changing from a Heaviside step function at
xmid as xwidth ! 0 to a constant function as xwidth !1). Examples
are shown in Figure 1 (scaled by p1, giving the physically interest-
ing total prior probability of a SNP being causal with respect to
the selection “c” Gaussian, as a function of the SNP’s TLD);

parameter values are in Appendix Table G1. Mathematically, the
curve can continue into the “negative TLD” range, revealing a fa-
miliar full sigmoidal shape; since we are interested in the range
1 � x � maxðTLDÞ, below we report the actual mid-point
(denoted mc) and width (wc, defined below) of the transition that
occurs in this range. Then,

bðH; LÞ � p1fð1� pcðLÞÞN ð0; r2
bÞ þ pcðLÞN ð0; r2

c HSÞg; (4)

where pcðLÞ is the sigmoidal function (0 � pcðLÞ61 for all L) given
by y(x) in Equation (3) for L ¼ xP1, which numerically can be
found by fitting for its three characteristic parameters.

As a final possible extension, we add an extra term—a “d”
Gaussian—to describe larger effects not well captured by the “b”
and “c” Gaussians. This gives finally:

bðH; LÞ � p1fð1� pcðLÞ � pdðLÞÞN ð0; r2
bÞ þ pcðLÞN ð0; r2

c HSÞ
þpdðLÞN ð0; r2

dÞg; ð5Þ

where r2
d is a new parameter, pdðLÞ is another general sigmoid

function (0 � pdðLÞ61 for all L) where now there is the added con-
straint 0 � pcðLÞ þ pdðLÞ61, and the prior probability for the “b”
Gaussian becomes pbðLÞ � 1� pcðLÞ � pdðLÞ.

Depending on the phenotype and the GWAS sample size, it
might not be feasible, or meaningful, to implement the full
model. In particular, for low sample size and/or low discoverabil-
ity, the “b” Gaussian is all that can be estimated, but in most
cases both the “b” and “c” Gaussians can be estimated, and b will
be well characterized by Equation (4). We refer to the model given
by Equation (1) as model B; models C and D are given by
Equations (4) and (5), respectively.

As we described in our previous work (Holland et al. 2020), a z-
score is given by a sum of random variables, so the a posteriori pdf
(given the SNP’s heterozygosity and LD structure, and the pheno-
type’s model parameters) for such a composite random variable
is given by the convolution of the pdfs for the component random
variables. This facilitates an essentially exact calculation of the
z-score’s a posteriori pdf arising from the underlying model of
causal effects as specified by Equations (1), (4), or (5).

For our reference panel, we used the 1000 Genomes phase 3
data set for 503 subjects/samples of European ancestry (The 1000
Genomes Project Consortium et al. 2012, 2015; Sveinbjornsson
et al. 2016). In Holland et al. (2020), we describe how we set up the
general framework for analysis, including the use of the refer-
ence panel and dividing the reference SNPs into a sufficiently fine
10� 10 heterozygosity � TLD grid to facilitate computations.

In our earlier work on the “b” model we gave an expression,
denoted G(k), for the Fourier transform of the genetic contribu-
tion to a z-score, where k is the running Fourier parameter. The
extra complexity in the “c” and “d” models here requires a modifi-
cation only in this term, which we describe below in the Model
PDF subsection. In addition to the parameters presented above,
we also include an inflation parameter r0: if zu denotes uninflated
GWAS z-scores and z denotes actual GWAS z-scores, then r0 is
defined by z ¼ r0zu (Devlin and Roeder 1999). The optimal model
parameters for a particular phenotype are estimated by minimiz-
ing the negative of the log likelihood of the data (z-scores) as a
function of the parameters. This is done with the “b” model as be-
fore, and then proceeding iteratively with the more complex
models, continually re-estimating the new values of the earlier
parameters that maximize the likelihood when a new parameter
is introduced, with extensive single and multiple parameter
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searches (to avoid being trapped in local minima) until all param-
eters simultaneously are at a convex minimum. This involved
many explicit and repeated coarse- and fine-grained linear (for
each individual parameter) and grid (for multiple parameters si-
multaneously) searches as well as many Nelder-Mead multidi-
mensional unconstrained nonlinear minimizations. There is no
artificial constraining on the parameters; for example, no prior
assumption is made about the relative sizes of the causal r’s, or
the parameter values of the TLD-dependent prior probabilities
(the full range of amplitudes, transition widths, and location of
the mid-point of the transitions are searched).

The total SNP heritability is given by the sum of heritability
contributions of each SNP in the reference panel from each of the
relevant Gaussians. In the Bayesian approach, we do not know
the value of the causal effect of any particular SNP, but we as-
sume it comes from a distribution, bðH; LÞ, which characterize our
ignorance of it. For a specific Gaussian (“b,” “c,” or “d”) in our
model, the contribution of the SNP to heritability is given by the
prior probability that the SNP is causal with respect to that
Gaussian, times the expected value of the square of the effect
size, Eðb2Þ, times H. For the “c” Gaussian, for example, the prior
probability that the SNP is causal is p1pcðLÞ, and Eðb2Þ is just the
variance, r2

c HS. Thus, the contribution of this SNP to the overall

heritability associated with the “c” Gaussian, h2
c , is p1pcðLÞHr2

c HS.
Below we report the sums over all such contributions. The num-
ber of causal SNPs associated with the “c” Gaussian, nc, is given
by summing p1pcðLÞ for each reference panel SNP, and similarly
for the other Gaussians. All heritabilities and discoverabilities
are, as before, corrected with respect to the inflation parameter,
i.e. divided by r2

0.
All code used in the analyses, including simulations, is pub-

licly available on GitHub (Holland 2019a, 2019b).

Data preparation
We analyzed summary statistics for fourteen phenotypes-
genotypes (in what follows, where sample sizes varied by SNP, we
quote the median value): (1) bipolar disorder (Ncases ¼ 20,352,
Ncontrols ¼ 31,358) (Stahl et al. 2019); (2) schizophrenia (Ncases ¼
35,476, Ncontrols ¼ 46,839) (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014); (3) coronary artery dis-
ease (Ncases ¼ 60,801, Ncontrols ¼ 123,504) (Nikpay et al. 2015); (4)
ulcerative colitis (Ncases ¼ 12,366, Ncontrols ¼ 34,915) and (5)
Crohn’s disease (Ncases ¼ 12,194, Ncontrols ¼ 34,915) (de Lange et al.
2017); (6) late onset Alzheimer’s disease (LOAD; Ncases ¼ 17,008,
Ncontrols ¼ 37,154) (Lambert et al. 2013) (in the Supplemental
Material, we present results for a more recent GWAS with Ncases

Figure 1 Examples of p1� prior probability functions pcðLÞ used in Equations (4) and (5), where L is reference SNP total LD (see Equation (3) for the
general expression, and Appendix Table G for parameter values). These functions can be summarized by three quantities: the maximum value, pc1,
which occurs at L¼ 1; the total LD value, L ¼mc, where pcðmcÞ ¼ pc1=2, given by the gray dashed lines in the figure; and the total LD width of the
transition region, wc, defined as the distance between where pcðLÞ falls to 95% and 5% of pc1 given by the flanking red dashed lines in the figure.
Numerical values of pc1, mc, and wc are given in Table 1 and Figures 2 and 3. pdðLÞ is similar. Plots of pcðLÞ and pdðLÞ, where relevant, for all phenotypes
are shown in Supplementary Figures S3–S5.
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¼ 71,880 and Ncontrols ¼ 383,378; Jansen et al. 2018); (7) amyotro-
phic lateral sclerosis (ALS) (Ncases ¼ 12,577, Ncontrols ¼ 23,475)
(Van Rheenen et al. 2016); (8) number of years of formal education
(N¼ 293,723) (Okbay et al. 2016); (9) intelligence (N¼ 262,529)
(Sniekers et al. 2017; Savage et al. 2018); (10) body mass index
(UKB-GIANT 2018) (N¼ 690,519) (Yengo et al. 2018); (11) height
(2010) (N¼ 133,735) (Yang et al. 2010); and height (2014)
(N¼ 251,747) (Wood et al. 2014); (12) low- (N¼ 89,873) and (13)
high-density lipoprotein (N¼ 94,295) (Willer et al. 2013); and (14)
total cholesterol (N¼ 94,579) (Willer et al. 2013). Most participants
were of European ancestry. (A spreadsheet giving data sources is
provided in the Supplemental Material.) In the tables, we also re-
port results for body mass index (GIANT 2015) (N¼ 233,554)
(Locke et al. 2015), and height (UKB-GIANT 2018) (Yengo et al.
2018).

In Figure 2 and Supplementary Figure S1, we report effective
sample sizes, Neff, for the case-control GWASs. This is defined as
Neff ¼ 4=ð1=Ncases þ 1=NcontrolsÞ, so that when Ncases ¼ Ncontrols,
Neff ¼ Ncases þ Ncontrols ¼ N, the total sample size, allowing for a
straightforward comparison with quantitative traits.

In estimating heritabilities on the liability scale for the qualita-
tive phenotypes (Holland et al. 2020), we assumed prevalences of:
BIP 0.5% (Merikangas et al. 2011), SCZ 1% (Speed et al. 2017), CAD
3% (Sanchis-Gomar et al. 2016), UC 0.1% (Burisch et al. 2013), CD
0.1% (Burisch et al. 2013), AD 14% (for people aged 71 and older in
the USA; Plassman et al. 2007; Alzheimer’s Association 2018), and
ALS 5� 10�5 (Mehta et al. 2018).

Confidence intervals for parameters were estimated using the
inverse of the observed Fisher information matrix (FIM). The full
FIM was estimated for up to eight parameters used in model C,
and for the remaining parameters that extend the analysis to
model D the confidence intervals were approximated ignoring
off-diagonal elements. In addition, the wd parameter was treated

as fixed quantity, the lowest value allowing for a smooth transi-
tion of the pdðLÞ function to 0 (see Supplementary Figure S5; for
CD, UC, and TC, however, the function pdðLÞ was a constant
(¼pdð1Þ). For the derived quantities h2 and ncausal, which depend
on multiple parameters, the covariances among the parameters,
given by the off-diagonal elements of the inverse of the FIM, were
incorporated. Numerical values are in Appendix Tables E1–E3,
and Tables F1–F2.

In order to carry out realistic simulations (i.e. with realistic
heterozygosity and LD structures for SNPs), we used HAPGEN2 (Li
and Stephens 2003; Spencer et al. 2009; Su et al. 2011) to generate
genotypes for 105 samples; we calculated SNP MAF and LD struc-
ture from 1000 simulated samples.

Total linkage disequilibrium
Sequentially moving through each chromosome in contiguous
blocks of 5,000 SNPs in the reference panel, for each SNP in the
block we calculated its Pearson r2 correlation coefficients (that
arise from LD) with all SNPs in the central block itself and with
all SNPs in the pair of flanking blocks of size up to 25,000 each.
For each SNP, we calculated its total linkage disequilibrium
(TLD), given by the sum of LD r2’s thresholded such that if r2 <

r2
min we set that r2 to zero (r2

min ¼ 0:05). The fixed window size cor-
responds on average to a window of 68 centimorgans. This is de-
liberately larger than the 1-centimorgan window used to define
LD Score (Bulik-Sullivan et al. 2015), because the latter appears to
exclude a noticeable part of the LD structure.

In applying the model to summary statistics, we calculated
histograms of TLD (using 100 bins) and ignoring SNPs whose TLD
was so large that their frequency was less than a hundredth of
the respective histogram peak; typically this amounted to
restricting to SNPs for which TLD6600. We also ignored summary
statistics of SNPs for which MAF60:01.

Figure 2 QQ plots of (pruned) z-scores for qualitative phenotypes (dark blue, 95% confidence interval in light blue) with model prediction (yellow): (A)
Alzheimer’s Disease, excluding chromosome 19; (B) Amyotrophic Lateral Sclerosis, chromosome 9 only; (C) Bipolar Disorder; (D) Schizophrenia; (E) AD,
chromosome 19 only; (F) Crohn’s Disease; (G) Ulcerative Colitis; and (H) Coronary Artery Disease. See Supplementary Figures S15–S22. amplitude of the
full pcðLÞ function, which occurs at L¼ 1; the values (mc, wc) in parentheses following it are the total LD (mc) where the function falls to half its amplitude
(the middle gray dashed lines in Figure 1 are examples), and the total LD width (wc) of the transition region (distance between flanking red dashed lines
in Figure 1). Similarly for pd1 ðmd;wdÞ, where given. h2

b ; h2
c , and h2

d are the heritabilities associated with the “b,” “c,” and “d” Gaussians, respectively. h2 is
the total SNP heritability, reexpressed as h2

l on the liability scale for binary phenotypes. Parameter values are also given in Table 1 and heritabilities are
also in Table 3; numbers of causal SNPs are in Table 2. Reading the plots: on the vertical axis, choose a P-value threshold for typed or imputed SNPs
(SNPs with z-scores; more extreme values are further from the origin), then the horizontal axis gives the proportion, q, of typed SNPs exceeding that
threshold (higher proportions are closer to the origin). See also Supplementary Figure S1, where the y-axis is restricted to 0 � � log 10ðpÞ10. The h2

b
values reported here are from one component in the extended model; values for the exclusive basic model are reported as h2

b in Holland et al. (2020).
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Since we are estimating a dozen or fewer parameters from
millions of data points, it is reasonable to coarse-grain the data.
Knowing the TLD and heterozygosity (H) of each SNP, we divided
the full set of GWAS SNPs into a H�TLD coarse-grained grid; we
found that 10� 10 is more than sufficient for converged results.

Model PDF
When implementing the discrete Fourier transform (DFT) to cal-
culate model a posteriori probabilities for z-score outcomes for a
single SNP, we discretize the range of possible z-scores into the
ordered set of n (equal to a power of 2) values z1; . . . ; zn with equal
spacing between neighbors given by Dz (zn ¼ �z1 � Dz, and
zn=2þ1 ¼ 0). Taking z1 ¼ �38 allows for the minimum P-values of
5:8� 10�316 (near the numerical limit); with n ¼ 210; Dz ¼ 0:0742.
Given Dz, the Nyquist critical frequency is fc ¼ 1

2Dz, so we consider
the Fourier transform function for the z-score pdf at n discrete
values k1; . . . ; kn, with equal spacing between neighbors given by
Dk, where k1 ¼ �fc (kn ¼ �k1 � Dk, and kn=2þ1 ¼ 0; the DFT pair Dz
and Dk are related by DzDk ¼ 1=n).

In our earlier work on the “b” model (Holland et al. 2020), we
gave an expression, denoted GðkjÞ, for the Fourier transform of
the genetic contribution to a z-score, where kj is the discrete
Fourier variable described above. In constructing the a posteriori
pdf for a z-score, the extra complexity in the “c” and “d” models
presented in the current work requires a modification only in this
term.

The set of typed SNPs are put in a relatively fine 10� 10 grid,
called the “H-L” grid, based on their heterozygosity and total LD
(coarser grids are refined until converged results are achieved,
and 10� 10 is more than adequate). Given a typed SNP in LD with
many tagged SNPs in the reference panel (some of which might
be causal), divide up those tagged SNPs based on their LD with
the typed SNP into wmax LD-r2 windows (we find that wmax ¼ 20,
dividing the range 0 � r2

61 into 20 bins, is more than adequate
to obtain converged results); let r2

w denote the LD of the wth bin,

w ¼ 1; . . . ;wmax. Denote the number of tagged SNPs in window w
as nw and their mean heterozygosity as Hw. Then, given model “b”
parameters p1; r2

b, and r2
0, and sample size N, GðkjÞ is given by:

GðkjÞ ¼
Ywmax

w¼1

�
p1 expðBwk2

j Þ þ ð1� p1Þ
�nw

; (6)

where

Bw � �2p2NHwr2
w~r2

b (7)

and ~r2
b � r2

b=r
2
0. For model “c,” this becomes

GðkjÞ ¼
Ywmax

w¼1

ðp1 ðð1� pcðLwÞÞ ððBwk2
j Þ þ pcðLwÞ expðCwk2

j Þ exp

þ ð1� p1Þ exp nw ; (8)

where

Cw � �2p2NHwr2
w~r2

c HS
w; (9)

S is the selection parameter, ~r2
c � r2

c =r
2
0 (r2

c is defined in
Equation (2)), Lw is the mean total LD of reference SNPs in the w
bin, and pcðLwÞ is the sigmoidal function (see Equation (3)) giving,
when multiplied by p1, the prior probability of reference SNPs
with this TLD being causal (with effect size drawn from the “c”
Gaussian). For model “d,” GðkjÞ becomes:

GðkjÞ ¼
Ywmax

w¼1

ðp1ðð1� pcðLwÞ � pdðLwÞÞððBwk2
j Þ

þpcðLwÞ expðCwk2
j Þ

þpdðLwÞ expðDwk2
j Þ exp

þð1� p1Þ Þnw ;

(10)

where,

Table 1 Model parameters for phenotypes, case-control (upper section) and quantitative (lower section)

Phenotype p1 r2
b r2

c S pc1 mc wc r2
d pd1 md wd r2

0

SCZ 2014 5.28e�2 1.4e�6 3.6e�5 �0.52 0.07 87 352 1.4e�4 5.2e�3 519 7 1.07
BIP 5.91e�2 1.2e�6 4.5e�5 �0.40 6.7e�2 102 414 —– —– —– —– 1.01
CD 9.55e�4 5.0e�5 5.5e�4 �0.64 0.20 176 604 7.6e�2 1.0e�4 —– —– 1.14
UC 1.16e�3 3.6e�5 4.0e�4 �0.67 0.16 173 627 8.0e�2 1.0e�4 —– —– 1.12
CAD 1.88e�3 1.1e�5 9.2e�5 �0.51 6.9e�2 171 683 5.3e�3 3.6e�4 102 7 0.92
AD Chr19 4.34e�4 1.0e�4 6.1e�3 �0.57 0.73 35 89 —– —– —– —– 1.09
AD NoC19 1.05e�3 1.8e�5 2.6e�4 �0.52 2.9e�2 264 6 —– —– —– —– 1.04
ALS Chr9 1.12e�2 7.3e�6 3.9e�3 �0.01 1.8e�3 106 6 —– —– —– —– 0.99
Edu 1.43e�2 1.7e�6 7.8e�6 �0.44 0.45 111 339 8.5e�5 6.3e�3 441 7 0.94
IQ 2018 1.27e�2 7.5e�7 6.2e�6 �0.51 0.38 122 309 3.6e�5 7.8e�2 561 6 1.17
Height 2010 1.02e�3 4.1e�5 2.0e�4 �0.44 0.20 322 1243 —– —– —– —– 0.90
Height 2014 1.15e�3 3.7e�5 1.6e�4 �0.46 0.21 242 929 —– —– —– —– 1.57
Height 2018 2.50e�3 8.7e�6 8.9e�5 �0.43 0.37 210 739 —– —– —– —– 2.12
HDL 2.54e�3 1.1e�5 4.5e�4 �0.79 1.4e�2 143 599 2.2e�2 1.1e�3 66 7 0.91
LDL 5.84e�3 3.3e�6 2.4e�4 �0.52 8.8e�3 336 1417 7.3e�3 2.2e�4 346 6 0.92
BMI GIANT 2015 1.54e�3 2.2e�5 4.5e�4 0.00 4.4e�3 288 12 —– —– —– —– 0.85
BMI 2018 2.34e�3 1.6e�5 3.0e�4 0.11 3.8e�3 268 8 —– —– —– —– 1.72
TC 1.15e�3 1.7e�5 6.2e�4 �0.97 2.1e�2 140 583 2.9e�4 3.4e�2 —– —– 0.92

p1 is the overall proportion of the 11 million SNPs from the reference panel that are estimated to be causal. pcðL1Þ is the prior probability multiplying the “c”
Gaussian, which has variance r2

c HS, where H is the reference SNP heterozygosity. Note that pcðLÞ is just a sigmoidal curve, and can be characterized quite generally
by three parameters: the value pc1 � pcð1Þ at L¼ 1; the total LD value L ¼mc at the mid-point of the transition, i.e. pcðmcÞ ¼ pc1=2 (see the middle gray dashed lines in
Figure 1, which shows examples of the function pcðLÞ); and the width wc of the transition, defined as the distance (in L) between where the curve falls to 95% and 5%
of pc1 (distance between the flanking red dashed lines in Figure 1). Note that for AD Chr19, AD NoC19, and ALS Chr9, p1 is the fraction of reference SNPs on
chromosome 19, on the autosome excluding chromosome 19, and on chromosome 9, respectively. Examples of HS multiplying r2

c are shown in Supplementary
Figure S9. Model selection was performed using Bayesian information criterion (BIC). Except for Height 2018, which is shown here for model C for direct comparison
with the 2010 and 2014 GWASs, and whose model D fit is shown in Supplementary Figure S35, missing model D parameters indicate that those parameters could
not reliably be estimated. For Crohn’s disease, ulcerative colitis, and total cholesterol pdðLÞ ¼ pd1 for all L. Estimated BIC values for three models (B, C, and D) are
shown in Appendix Table D1: the 3-parameter model B with only the “b” Gaussian (p1;rb;r0); the 8-parameter model C with both the “b” with “c” Gaussians
(Equation 4); and the 12-parameter model D with “b,” “c,” and “d” Gaussians (Equation 5). Ninety-five percent confidence intervals are in Appendix Tables E1–E3.
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Dw � �2p2NHwr2
w~r2

d; (11)

~r2
d � r2

d=r
2
0 (r2

d is defined in Equation 5), and pdðLwÞ is the sig-
moidal function (again, see Equation 3) giving, when multi-
plied by p1, the prior probability of reference SNPs with this
TLD being causal (with effect size drawn from the “d”
Gaussian).

Let H denote the LD and heterozygosity structure of a particu-
lar SNP, a shorthand for the set of values fnw;Hw; Lw : w ¼
1; . . . ;wmaxg that characterize the SNP, and let M denote the set
of model parameters for whichever model—“b,” “c,” or “d”—is
implemented. The Fourier transform of the environmental con-
tribution, denoted Ej � EðkjÞ, is

EðkjÞ ¼ expð�2p2r2
0k2

j Þ: (12)

Let Fz ¼ ðG1E1; . . . ;GnEnÞ, where Gj � GðkjÞ, denote the vector of
products of Fourier transform values, and let F�1 denote the in-
verse Fourier transform operator. Then for the SNP in question,
the vector of pdf values, pdfz, for the uniformly discretized possi-
ble z-score outcomes z1; . . . ; zn described above, i.e. pdfz ¼
ðf1; . . . ; fnÞ where fi � pdfðzijH;M;NÞ, is

pdfz ¼ F�1½Fz�: (13)

Thus, the ith element pdfz i ¼ fi is the a posteriori probability of
obtaining a z-score value zi for the SNP, given the SNP’s LD and
heterozygosity structure, the model parameters, and the sample
size.

Data availability
Supplementary File S2 contains detailed descriptions of all GWAS
data used, all of which is publicly available.

Supplementary material is available at figshare DOI: https://
doi.org/10.25386/genetics.13132976.

Results
Phenotypes
Summary QQ plots for pruned z-scores are shown in Figure 2 for
seven binary phenotypes (for AD we separate out chromosome
19, which contains the APOE gene), and Figure 3 for seven quanti-
tative phenotypes (including two separate GWAS for height), with
model parameter values in Table 1. An example of the break-
downs of a summary plot with respect to a 4� 4 grid of
heterozygosity�TLD (each grid a subset of a 10� 10 grid) is in
Figure 4 for HDL; similar plots for all phenotypes are in
Supplementary Figures S15–S29. For each phenotype, model se-
lection (B, C, or D) was performed by testing the Bayesian infor-
mation criterion (BIC)— see Appendix Table D1. For comparison,
all QQ figures include the basic (B) model in green; the extended
model C or D, consistently demonstrating improved fits, in yel-
low; and the data in blue.

The distributions of z-scores for different phenotypes are quite
varied. Nevertheless, for most phenotypes analyzed here, we find
evidence for larger and smaller effects being distributed differently,
with strong dependence on total LD, L, and heterozygosity, H.

For r2
b � r2

c HS, and so focusing on the “c” Gaussian (and “d”
Gaussian if applicable for r2

b � r2
d), our model estimates an effec-

tive polygenicity as a one-dimensional function of L. We find that
polygenicity is dominated by SNPs with low L. However, the de-
gree of restriction varies widely across phenotypes, depending on
the shapes and sizes of pcðLÞ and pdðLÞ in Equation 5, the prior
probabilities that a causal SNP belongs to the “c” and “d”
Gaussians. These prior probabilities, multiplied by p1, are shown
in Figure 1 and Supplementary Figures S3–S5. Taking into ac-
count the underlying distribution of reference SNPs with respect
to heterozygosity, these distributions lead to a varied pattern
across phenotypes of the expected number of causal SNPs in
equally spaced elements in a two-dimensional H�TLD grid, as
shown for height (2014) in Figure 5C, and for all phenotypes in
Supplementary Figures S11–S14 (third columns). Furthermore,
for any given phenotype, the effect sizes of causal variants come
from distributions whose variances can be widely different—by

Figure 3 QQ plots of (pruned) z-scores for quantitative phenotypes (dark blue, 95% confidence interval in light blue) with model prediction (yellow): (A)
Body Mass Index; (B) Intelligence; (C) Education; (D) Height (2010); (E) High-density Lipoprotein; (F) Low-density Lipoprotein; (G) Total Cholesterol; and
(H) Height (2014). See Supplementary Figures S23–S29. For HDL, pcðLÞ ¼ pc1 for all L; for bipolar disorder and LDL, pdðLÞ ¼ pd1 for all L. See caption to
Figure 2 for further description. See also Supplementary Figure S2, where the y-axis is restricted to 0 � � log 10ðpÞ10. For (A) BMI, see also
Supplementary Figure S37.
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up to two orders of magnitude. Thus, given the prior probabilities
(pb, pc, and pd) by which these distributions are modulated as a
function of L, we are able to estimate the expected effect size per
causal-SNP, Eðb2Þ, in each H�TLD grid element, as shown in
Figure 5D and Supplementary Figures S11–S14 (fourth columns).
In general, SNPs with lower L have larger Eðb2Þ. However, the se-
lection parameter S in the “c” Gaussian has a large impact on
Eðb2Þ as a function of H (see Supplementary Figure S9). As a re-
sult, for most phenotypes, we find that the effect sizes for low
MAF causal SNPs (H< 0.05) are several times larger than for more
common causal SNPs (H> 0.1). We find that heritability per
causal-SNP is larger for lower L, a general pattern that follows
from at least one of the prior probabilities, pcðLÞ or pdðLÞ, being
nonconstant. However, because heritability per causal-SNP is
proportional to H, we find that, even with negative selection pa-
rameter, S (and thus larger Eðb2Þ for lower H), the heritability per
causal-SNP is largest for the most common causal SNPs
(H> 0.45).

SNP heritability estimates from the extended model, as shown
in Table 3, are uniformly larger than for the exclusive basic

model. With the exception of BMI, generally a major portion of
SNP heritability was found to be associated with the “selection”
component, i.e. the “c” Gaussian, with a smaller contribution
from the “d” Gaussian—see the right-most column in Table 3. In
Appendix Table B2 is a comparison of basic model estimates of
the number of causal SNPs and heritability with the correspond-
ing net contributions nc þ nd and h2

c þ h2
d from the large effects

components of the extended model. The basic model can be seen
as a good approxiation to the large effects components of the ex-
tended model. Correspondingly, the “b” Gaussian as a compo-
nents of the extended model now represents a relatively large
number of much weaker effects.

Simulations
To test the specificity of the model for each real phenotype, we
constructed simulations where, in each case, the true causal b’s
(a single vector instantiation) for all reference panel SNPs were
drawn from the overall distribution defined by the real pheno-
type’s parameters (thus being the “true” simulation parameters).
We set up simulated phenotypes for 100,000 samples by adding

Figure 4 A 4� 4 subset from a 10�10 heterozygosity � TLD grid of QQ plots for HDL; see Figure 3E for the overall summary plot. Similar plots for all
phenotypes are in Supplementary Figures S15–S29. The light gray curves are 95% confidence intervals for the data; k̂D and k̂M are the “genomic inflation
factors” calculated from the QQ subplots, for the data and the model prediction, respectively; n is the number of SNPs; H is heterozygosity, L is total LD,
and the square brackets give their ranges for GWAS SNPs in each grid element.

8 | GENETICS, 2021, Vol. 217, No. 3



noise to the genetic component of the simulated phenotype, and
performed a GWAS to calculate z-scores. We then sought to de-
termine whether the true parameters, and the component herit-
abilities, could reasonably be estimated by our model. In
Figures 6 and 7, we show the results for the simulated case-

control and quantitative phenotypes, respectively. Overall herit-
abilities were generally faithful to the true values (the values esti-
mated for the real phenotypes)—see Appendix Table C2—though
for Crohn’s disease the simulated value was overestimated due
to the hd component. Note that for the case-control simulated
phenotypes, the heritabilities on the observed scale, denoted ĥ

2

in Figure 6, should be compared with the corresponding values in
Figure 2, not with ĥ

2
l , which denotes heritability on the liability

scale, i.e. adjusted for population prevalence; note also that for
case-control phenotypes, we implicitly assume the same propor-
tion P of cases in the real and simulated GWAS (for the basic
model, assuming the liability-scale model is correct, one can eas-
ily see from the definition of h2

l that discoverability r2
b / Pð1� PÞ;

this carries over to rb, rc, and rd used here). Polygenicities and dis-
coverabilities were also generally faithfully reproduced. However,
for ALS restricted to chromosome 9, and BMI, the selection pa-
rameter was incorrectly estimated, owing to the weak signal in
these GWAS (e.g. for BMI, p1pcð1Þ ’ 8� 10�6, Supplementary
Figure S4A, and only around 5% of SNP heritability was found to
be associated with the “c” Gaussian, Table 3) and very low polyge-
nicity (small number of causal SNPs) for the “c” Gaussian. Given
the wide variety and even extreme ranges in parameters and her-
itability components across diverse simulated phenotypes, the
multiple simulated examples provide checks with respect to
each-other for correctly discriminating phenotypes by means of
their model parameter estimates: the results for individual cases
are remarkably faithful to the respective true values,

Table 2 Numbers of causal SNPs

Phenotype nb nc nd ncausal

SCZ 2014 5.6e5 2.3e4 3.0e3 5.82e5
BIP 6.2e5 2.6e4 —– 6.51e5
CD 9.0e3 1.5e3 1 1.05e4
UC 1.1e4 1.4e3 2 1.27e4
CAD 2.0e4 1.0e3 5 2.07e4
AD Chr19 80 33 —– 113
AD NoC19 1.1e4 294 —– 1.12e4
ALS Chr9 5.3e3 7 —– 5.29e3
Edu 1.1e5 4.4e4 956 1.58e5
IQ 2018 9.6e4 3.4e4 1.1e4 1.40e5
Height 2010 9.4e3 1.9e3 —– 1.13e4
Height 2014 1.1e4 2.0e3 —– 1.26e4
Height 2018 2.0e4 7.6e3 —– 2.75e4
HDL 2.7e4 264 15 2.79e4
LDL 6.4e4 463 14 6.43e4
BMI 2015 1.7e4 68 —– 1.69e4
BMI 2018 2.6e4 88 —– 2.57e4
TC 1.2e4 180 434 1.27e4

ncausal is the total number of causal SNPs (from the 11 million in the reference
panel); nb, nc, and nd are the numbers associated with the “b,” “c,” and “d”
Gaussians, respectively. Ninety-five percent confidence intervals are in
Appendix Table F1.

Figure 5 Model results for height (2014) using the BC model. The reference panel SNPs are binned with respect to both heterozygosity (H) and total LD
(L) in a 50� 50 grid for 0:02 � H0:5 and 1 � L500. Shown are model estimates of: (A) log 10 of the percentage of heritability in each grid element; (B) for
each element, the average heritability per causal-SNP in the element; (C) log 10 of the number of causal SNPs in each element; and (D) the expected b2

for the element-wise causal SNPs. Note that H increases from top to bottom.
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demonstrating the utility of the model in distinguishing different
phenotypes.

Discussion
We propose an extended Gaussian mixture model for the distri-
bution of underlying SNP-level causal genetic effects in human
complex phenotypes, allowing for the phenotype-specific distri-
bution to be modulated by heterozygosity, H, and total LD, L, of

the causal SNPs, and also allowing for independent distributions
for large and small effects. The GWAS z-scores for the typed or
imputed SNPs, in addition to having a random environmental
and error contribution, arise through LD with the causal SNPs.
Thus, taking the detailed LD and heterozygosity structure of the
population into account by using a reference panel, we are able
to model the distribution of z-scores and test the applicability of
our model to human complex phenotypes.

Complex phenotypes are emergent phenomena arising from
random mutations and selection pressure. Underlying causal
variants come from multiple functional categories (Schork et al.
2013), and heritability is known to be enriched for some func-
tional categories (Finucane et al. 2015; Gazal et al. 2017; Shadrin
et al. 2019). Thus, it is likely that different variants will experience
different evolutionary pressure either due to fitness directly or to
pleiotropy with fitness related traits.

Here, we find evidence for markedly different genetic architec-
tures across diverse complex phenotypes, where the effective
polygenicity (or, equivalently, the prior probability that a SNP is
causal with large effect) is a function of SNP total LD (L), and dis-
coverability is multi-component and MAF dependent.

In contrast to previous work, modeling the distribution of
causal effects that took total LD and multiple functional annota-
tion categories into account while implicitly assuming a polyge-
nicity of 1 (Gazal et al. 2017), or took MAF into account while
ignoring total LD dependence and different distributions for large
and small effects (Zeng et al. 2018), or took independent distribu-
tions for large and small effects into account (which is related to
incorporating multiple functional annotation categories) while ig-
noring total LD and MAF dependence, here we combine all these
issues in a unified way, using an extensive underlying reference
panel of �11 million SNPs and an exact methodology using
Fourier transforms to relate summary GWAS statistics to the pos-
ited underlying distribution of causal effects. We show that the
distributions of all sets of phenotypic z-scores, including extreme

Table 3 Heritabilities: h2 is the total additive SNP heritability,
re-expressed on the liability scale as h2

l for the qualitative traits
(upper section)

Phenotype h2
b h2

c h2
d h2 h2

l %c

SCZ 2014 0.16 0.31 0.09 0.56 0.31 55.1
BIP 0.16 0.37 —– 0.53 0.26 69.7
CD 0.10 0.40 0.02 0.52 0.24 77.5
UC 0.09 0.29 0.02 0.41 0.18 72.3
CAD 0.05 0.04 0.00 0.09 0.07 41.3
AD Chr19 0.00 0.08 —– 0.08 0.11 97.4
AD NoC19 0.04 0.03 —– 0.07 0.10 42.1
ALS Chr9 0.01 0.00 —– 0.01 0.00 37.1
Edu 0.04 0.11 0.02 0.18 —– 64.9
IQ 2018 0.02 0.08 0.08 0.18 —– 44.4
Height 2010 0.08 0.13 —– 0.22 —– 61.0
Height 2014 0.09 0.12 —– 0.21 —– 58.4
Height 2018 0.04 0.24 —– 0.28 — 86.0
HDL 0.06 0.08 0.05 0.19 —– 40.1
LDL 0.05 0.05 0.02 0.11 —– 40.6
BMI 2015 0.08 0.01 —– 0.08 —– 7.6
BMI 2018 0.00 0.00 —– 0.09 —– 5.2
TC 0.04 0.10 0.03 0.18 —– 59.0

h2
b ; h2

c , and h2
d are the heritabilities associated with the “b,” “c,” and “d”

Gaussians, respectively. The last column, labeled %c, gives the percentage of
SNP heritability that comes from the “c” Gaussian. Ninety-five percent
confidence intervals are in Appendix Table F2. A comparison of the total
heritabilities with estimates from our basic model alone (Holland et al. 2020),
and with estimates from other models (Zeng et al. 2018; Zhang et al. 2018;
Schoech et al. 2019) are given in Appendix Table B1.

Figure 6 QQ plots of (pruned) z-scores for simulated qualitative phenotypes (dark blue, 95% confidence interval in light blue) with model prediction
(yellow). See Figure 2. The value given for pc1 is the amplitude of the full pcðLÞ function, which occurs at L¼ 1; the values (mc, wc) in parentheses
following it are the total LD (mc) where the function falls to half its amplitude (the middle gray dashed lines in Figure 1 are examples), and the total LD
width (wc) of the transition region (distance between flanking red dashed lines in Figure 1). Similarly for pd1 ðmd;wdÞ, where given. h2

b ; h2
c , and h2

d are the
heritabilities associated with the “b,” “c,” and “d” Gaussians, respectively. h2 is the total SNP heritability, re-expressed as h2

l on the liability scale for
binary phenotypes. Reading the plots: on the vertical axis, choose a p-value threshold for typed SNPs (SNPs with z-scores; more extreme values are
further from the origin), then the horizontal axis gives the proportion, q, of typed SNPs exceeding that threshold (higher proportions are closer to the
origin). See Appendix Tables C1 and C2 for a comparison of numerical values between model estimates for real phenotypes and Hapgen-based
simulations where the underlying distributions of simulation causal effects were given based on the real phenotype model parameters (with r0 ¼ 1).
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values that are well within genome-wide significance, are accu-
rately reproduced by the model, both at overall summary level
and when broken down with respect to a 10� 10 H�TLD grid—
even though the various phenotypic polygenicities and per
causal-SNP heritabilities range over orders of magnitude.
Improvement with respect to the basic model can be seen in the
summary QQ plots Figures 2 and 3, and also the H�TLD grids of
subplots, such as Figure 4 for HDL (see also Supplementary
Figures S15–S29). Compared with the basic mixture model, the
extended model primarily improves the fits to data for GWAS
SNPs with low total LD, in several cases for low heterozygosity as
well, where very strong signals are evident. This improved model
fit can be traced to the structure of the prior probability pcðLÞ and
the variance for effect sizes, r2

c HS, features absent in the basic
model. But even when model fits are similar, the extended model
fit taking selection pressure into account results in higher likeli-
hood and lower Bayesian information criterion.

Negative selection can be expected to result in an increasing
number of effects with increasing effect size at lower heterozy-
gosity. It was found in Gazal et al. (2017)—which, in addition to
analyzing total LD, modeled allele age and recombination rates—
that common variants associated with complex traits are weakly
deleterious to fitness, in line with an earlier model result that
most of the variance in fitness comes from rare variants that
have a large effect on the trait in question (Eyre-Walker 2010).
Thus, larger per-allele effect sizes for less common variants is
consistent with the action of negative selection. Furthermore,
based on a model equivalent to Equation (2) with pc � 1, it was ar-
gued in Zeng et al. (2018), using forward simulations and a com-
monly used demographic model (Gravel et al. 2011), that negative
values for the selection parameter, S, which leads to larger effects
for rarer variants, is a signature of negative selection. Similar
results were found for the related infinitesimal model (pc � 1 and
p1 � 1) in Schoech et al. (2019).

We find negative selection parameter values for the most
traits, which is broadly in agreement with Zeng et al. (2018) and
Schoech et al. (2019) with the exception of BMI, which we find can
be modeled with two Gaussians with no or weakly positive (S � 0)
heterozygosity dependence, though it should be noted that the
polygenicity for the larger-effects Gaussian (the “c” Gaussian with

the S parameter) is very low, amounting to an estimate of <100
common causal SNPs of large effect.

A similar situation (S ’ 0) obtains with ALS restricted to chro-
mosome 9. Here, the sample size is relatively low (12,577 cases),
which contributes to the signal being weak, and we estimate only
7 common causal SNPs associated with the “c” Gaussian.

From twin studies, the heritability of sporadic ALS has been
estimated as 0.61 (0.38–0.78) (Al-Chalabi et al. 2010); a clinically
ascertained case series estimated the heritability to be between
0.40 and 0.45 (Wingo et al. 2011). Mutations of the chromosome 9
open reading frame 72 gene C9orf72 are implicated in both famil-
ial and sporadic ALS (Van Blitterswijk et al. 2012), but other chro-
mosomes are also known to be involved (Chen et al. 2013).
However, Supplementary Figure S8, showing QQ plots accounting
for all GWAS SNPs, implies that all the GWAS signal comes from
chromosome 9. It should be noted that the mixture model, which
is primarily focused on characterizing a distribution of undiscov-
ered effect sizes, is designed to capture a broad-based polygenic
contribution, i.e. not dominated by singular variants or effects
from very large LD blocks. In implementing the model, we limit
to SNPs with total LD <600 and randomly prune GWAS SNPs in
LD blocks. From Figure 2B and Supplementary Figure S8, how-
ever, the few excluded GWAS SNPs clearly cannot account for
missing the preponderance of heritability. It is likely that the
GWAS data lacks rare variants pertinent to ALS, and in addition
is underpowered.

Our BMI results are not in agreement with the results of
others. For the UKB (2015) data, Zeng et al. (2018) report a selec-
tion parameter S ¼ �0:283 [�0.377, �0.224], h2 ¼ 0:276, and
ncausal ¼ 45k, while Schoech et al. (2019) report a selection param-
eter a ¼ �0:24 [�0.38, �0.06], and h2 ¼ 0:31. For the same GIANT
2015 dataset used here (Locke et al. 2015), Zhang et al Zhang et al.
(2018) report h2 ¼ 0:20 and ncausal ¼ 18k. It is not clear why our
BMI results are in such disagreement with these, except to note
that we have a two-component (versus single component) causal
Gaussian and the majority of the heritability comes from the
small-effects “b” Gaussian. For height, our selection
parameter S ¼ �0:46 (2014 GWAS) is in reasonable agreement
with S ¼ �0:422 reported in (Zeng et al. 2018), and with a ¼ �0:45
reported in Schoech et al. (2019).

Figure 7 QQ plots of (pruned) z-scores for simulated quantitative phenotypes (dark blue, 95% confidence interval in light blue) with model prediction
(yellow). See Figure 3. See caption to Figure 2 for further description. See Appendix Tables C1 and C2 for a comparison of numerical values between
model estimates for real phenotypes and Hapgen-based simulations where the underlying distributions of simulation causal effects were given based
on the real phenotype model parameters (with r0 ¼ 1).
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Compared with our basic model results (Holland et al. 2020),
we generally have found that using the extended model pre-
sented here, heritabilities show marked increases, with large con-
tributions from the selection (“c”) Gaussian—see Appendix Table
B1. For example, our basic-model heritability estimate for HDL
was 7%, in close agreement with an earlier LDSC estimate (Speed
and Balding 2019) and the M2 model of Zhang et al. (2018) (9%),
though the heritability from discovered loci was known to be 12%
(Willer et al. 2013); our extended-model estimate is 19%, and the
fit to the data are a dramatic improvement over the basic model,
as can be seen in Figure 4 (it should be borne in mind that mix-
ture models are designed to capture broad-based polygenic con-
tributions to heritability, not outlier effects). However, due to the
small effect sizes associated with the “b” Gaussian as a compo-
nent of the extended model, for some phenotypes the overall
number of causal SNPs can be considerably larger than previ-
ously estimated. The concept of effective number of causal SNPs,
Me, in O’Connor et al. (2019), roughly corresponds to nc þ nd here,
though the relationship is not precise (see also Appendix A); e.g.
for schizophrenia, Me ¼ 15 k versus nc þ nd ¼ 26 k. Supplementary
Figures S11–S14 capture the breakdown in SNP contributions to
heritability as a function of heterozygosity and total linkage dis-
equilibrium.

From Equation (4), b is a weighted sum of contributions from
Gaussians of different variance. Since we find rb < rc and S< 0—
which increasingly magnifies the difference in variance of the
two Gaussians as H gets smaller—we find larger Eðb2Þ for rarer
variants. Also, as pcðLÞ increases (from 0) with decreasing L, for a
given H, we also find that as L decreases, per causal-SNP herita-
bility and Eðb2Þ increase, consistent with Gazal et al. (2017). These
patterns can be seen in Supplementary Figures S11–S14 (second
and fourth columns). The per causal-SNP contribution to herita-
bility (second columns) is found to be more smoothly varying
across common and low-frequency variants than Eðb2Þ, in broad
agreement with O’Connor et al. (2019). It was also found in Gazal
et al. (2017) that more recent common alleles have both lower
LLD and larger per-SNP heritability (all SNPs causal); since selec-
tion has had less time to remove recent deleterious alleles, larger
per-SNP heritability from SNPs with lower LLD was indicative of
negative selection.

Generally, we find evidence for the existence of genetic archi-
tectures where the per causal-SNP heritability is larger for more
common SNPs with lower total LD. But the trend is not uniform
across phenotypes—see Supplementary Figures S11–S14, second
columns. The observed-scale heritability estimates given by h2

b

correspond to effects not experiencing much selection pressure.
The new final values of h2 presented here result from a model
that, compared with the basic Gaussian mixture model it is an
extension of, gives better fits between data and model prediction
of the summary and detailed QQ plots, and thus constitute more
accurate estimates of SNP heritability. For 2010 and 2014 height
GWASs, we obtain very good consistency for the model parame-
ters and therefore heritability, despite considerable difference in
apparent inflation. The 2018 height GWAS (Yengo et al. 2018) has
a much larger sample size (almost three quarters of a million);
the slightly different parameter estimates for it might arise due
to population structure not fully captured by our model (Berg
et al. 2019; Sohail et al. 2019). Our h2 estimates for height, how-
ever, remain consistently lower than other reported results (e.g.
h2 ¼ 0:33 in Zhang et al. 2018, h2 ¼ 0:527 in Zeng et al. 2018, and
h2 ¼ 0:61 in Schoech et al. 2019). For educational attainment, our
heritability estimate agrees with Zeng et al. (2018) (h2 ¼ 0:182), de-
spite our using a sample more than twice as large. The difference

in selection parameter value, S ¼ �0:335 in Zeng et al. (2018) ver-
sus S ¼ �0:44 here, might partially be explained by the model dif-
ferences (Zeng et al. use one causal Gaussian with MAF-
dependence but no LD dependence). A comparison of the total
heritabilities reported here with estimates from the work of
others (Zeng et al. 2018; Zhang et al. 2018; Schoech et al. 2019), in
addition to our basic model alone (Holland et al. 2020), are given
in Appendix Table B1.

For most traits, we find strong evidence that causal SNPs with
low heterozygosity have larger effect sizes (S< 0 in Table 1; the ef-
fect of this as an amplifier of r2

c in Equation (5) is illustrated in
Supplementary Figure S9)—see also Supplementary Figures S11–
S14, fourth columns. Thus, negative selection seems to play an
important role in most phenotypes-genotypes. This is also indi-
cated by the extent of the region of finite probability for variants
of large effect sizes (which are enhanced by having S�� 0:4) be-
ing relatively rare (low H), which will be greater for larger pc1, the
amplitude of the prior probability for the “c” Gaussian (see
Supplementary Figures S3 and S4).

The “b” Gaussian in Equations (4) or (5) does not involve a se-
lection parameter: effect size variance is independent of MAF.
Thus, causal SNPs associated with this Gaussian are likely under-
going neutral (or very weakly negative) selection. It should be
noted that in all traits examined here, whether or not there is evi-
dence of negative selection (S< 0), the effect size variance of the
“b” Gaussian is many times smaller—sometimes by more than an
order of magnitude—than that for the “c” Gaussian. Thus, it
appears there are many causal variants of weak effect undergo-
ing neutral (or very weakly negative) selection. For the nine phe-
notypes where the “d” Gaussian could be implemented, its
variance parameter was several times larger than that of the “c”
Gaussian. However, the amplitude of the prior probability for the
“d” Gaussian, pd1, was generally much smaller than the ampli-
tudes of the prior probabilities for the “b” or “c” Gaussians, which
translated into a relatively small number of causal variants with
very large effect associated with this Gaussian. (Due to lack of
power, in three instances—CD, UC, and TC – pdðLÞ was treated as
a constant, i.e. independent of L.) Interestingly, intelligence had
the highest number of causal SNPs associated with this
Gaussian, while the extent of total LD for associated SNPs was
also liberal (md ¼ 561; see also Supplementary Figure S5). It is pos-
sible that some of these SNPs are undergoing positive selection,
but we did not find direct evidence of that.

A limitation of this study is that, we do not take SNP func-
tional categories into account. Inclusion of SNP annotation— e.g.
by having a set of model parameters for each of many functional
categories, and subdividing each SNP’s total LD into contributions
from these categories—is important for deriving more biologi-
cally informed interpretations of genetic effects. However, for the
summary quantities estimated here, annotation is not expected
to have a large impact; indeed, O’Connor et al. (2019) conclude
that the accuracy of S-LD4M is not contingent on modeling anno-
tation. Another limitation, a feature of many large GWAS, is that
rare and disease-specific SNPs are not included. Thus, our analy-
sis strictly applies only to the spectrum of relatively common
SNPs. Indeed, our results point to the importance of rare variants
in order to more comprehensively study the evolutionary archi-
tecture of complex phenotypes.

We find a diversity of genetic architectures across multiple
human complex phenotypes where SNP total LD plays an impor-
tant role in effect size distribution. In general, lower total LD
SNPs are more likely to be causal with larger effects.
Furthermore, for most phenotypes, while taking total LD into
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account, causal SNPs with lower MAF have larger effect sizes.
These phenomena are consistent with models of the action of
negative selection. In addition, for all phenotypes, we find evi-
dence of neutral selection operating on SNPs with relatively weak
effect. We did not find direct evidence of positive selection.
Compared with the basic Gaussian mixture model, which did not
take heterozygosity or total LD into account in the distribution of
effect sizes, the extended model consistently provided a much
better fit to the distribution of GWAS summary statistics, thus
providing more accurate estimates of genetic quantities of inter-
est. Future work will explore SNP functional annotation catego-
ries and their differential roles in human complex phenotypes.
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Appendix A

Related LDAK and LDSR models
The LDAK model of Speed et al. incorporates two predetermined
fixed factors that scale the variance of the causal effect size distri-
bution: SNP-specific local LD weighting (w> 0) and “information
score” (q), the latter a quantification of SNP quality (Speed et al.
2012, 2017). The local LD weighting (which remains implicitly de-
pendent on MAF) is designed to scale down the effect size in the
context of the infinitesimal model, to try to compensate for the ef-
fect itself being replicated, in empirical z-scores, through LD with
neighboring SNPs. It should be noted that this problem of LD is
implicitly taken care of in our basic model by: (1) using a point-
normal distribution for noncausal SNPs; (2) an extensive underly-
ing reference panel; and (3) directly modeling the effects of LD on
z-scores in our PDF for GWAS summary statistics. The LDAK local
LD weighting scheme is quite distinct from exploring the possibility
of whether or not a SNP is causal depending on its TLD, which is
the role of p1 � pc in the extended model presented here, or the de-
gree to which its effect size is LD-dependent. Rather, within the in-
finitesimal framework, i.e. assuming a polygenicity of 1, and not
explicitly taking the direct effects of LD on z-scores into account (as
is done in our basic model), it unwinds the otherwise implicit prob-
lem—that SNPs with larger TLD would have inflated z-scores—by
means of an assumed exponential decay function with respect to
base-pair distance [such a function provides an approximation for
the gross decay of long-range LD (Pritchard and Przeworski 2001;
Laird and Lange 2010)].

Due to potential confusion about what is meant by an
“infinitesimal” model, we note again that in LDAK the effect size
for SNP i implicitly is drawn from a Gaussian distribution with vari-
ance proportional to H�0:25

i , where Hi is the SNP’s heterozygosity.
Multiplying by Hi and then down-weighting by the product of the
weights mentioned above, wi � qi, gives the model’s estimate for
the SNP’s proportional contribution to heritability: E½h2

i � / H0:75
i wiqi.

wi is determined entirely by local LD, and qi measures genotype cer-
tainty (Speed et al. 2012, 2017). Neither have bearing on the specific-
ity of phenotypes; in particular, they have no bearing on
polygenicity. wi was introduced as an effective means of controlling
for what would otherwise be inflated contributions to heritability
arising from replication of effects through LD. Thus, even though
wi may approach zero and qi may equal zero for some SNPs, it is in-
correct to interpret the model as saying that such SNPs are null.
LDAK does not incorporate explicit modeling of the fraction of
SNPs that have in fact no causal effect for any given phenotype,
and is therefore in the infinitesimal framework.

In the LD Score regression model, which is another instance of
the infinitesimal framework, Finucane et al. (2015) introduce an
annotation-weighted LD score l(j, c) for variant j in LD with refer-
ence SNPs with (potentially overlapping) categorical annotation c,
finding that different categories of SNPs are differentially
enriched for heritability. Gazal et al. (2017) extend this to include
continuous-valued annotations, and also introduce rank-based
inverse normal transformation of the LD score—called level of LD
(LLD) —which is calculated independently for different MAF bins
and, in this way, unlike LD Score, is intended to be independent
of MAF, with the effect size variance for SNP j given as a sum of
terms: a baseline parameter common to all SNPs, plus 1 of 10
parameters depending on which of 10 bins the MAF of j is in, plus
another parameter times the LLD of j.

Schoech et al. (2019) implement a variation of their main
model, again in the infinitesimal framework, by augmenting their

variance with an additional factor ð1� s 	 LLDjÞ, searching over
five values of the new parameter s along with the original 20 val-
ues of the selection parameter in a fixed 2 D grid.

Another variation on LD Score regression is “stratified LD
fourth moments regression” (S-LD4M) from O’Connor et al.
(2019). The authors argue that negative selection limits the
contribution to heritability of SNPs with large per-allele effect
(corresponding to b here), and that SNPs with relatively small
per-allele effects can show up in GWAS as having relatively
large chi-squared statistics. They introduce a new definition of
polygenicity, Me=M, where M is the total number of SNPs and Me

is the effective number of causal SNPs: if fi is the fractional con-

tribution of SNP i to heritability (
PM
i¼1

fi ¼ 1), then Me can be un-

derstood as Me ¼ 1=
PM
i¼1

f 2
i . Me lies between 1 and M and will be

weighted toward the number of SNPs with large contributions to
heritability; the more even the distribution of fi the larger Me will
be. Negative selection will not have any obvious effect on polyge-
nicity per se (in the usual sense of counting up all contributing
SNPs), but it will affect Me. In the absence of negative selection, the
authors hypothesize that the effect-size distribution will be domi-
nated by a relatively small number of large effect loci, resulting in
a small Me. Under negative selection, critical large effects will not
become common, thus limiting their contributions to heritability
(smaller fi due to smaller heterozygosity), leading to a more uni-
form distribution of fi across all causal SNPs: the contributions to
heritability of the many small effects from common alleles will
not be drowned out by a small number of very large effects, thus
leading to a much larger Me than in the absence of negative selec-
tion. It is in this sense—negative selection causing a flattening of
the distribution of SNP contributions to heritability—that “extreme
polygenicity of complex traits is explained by negative selection.”

Variance of effect size in several models
Variance of effect size for SNP j in various models follows. Where
given, Hj is the SNP’s heterozygosity, Lj is its total LD, LLDj is its
“level of LD,” acðjÞ is the value of the annotation of ac for category
C at SNP j. Parameters to be estimated are p1, the various r’s and
s’s, S, pc, and the three parameters each that define pcðLÞ and
pdðLÞ. For the mixture models, one uses the mathematical fact
that the variance of the mixture is the mixture of the variances
(plus a term which vanishes if the means of the mixture elements
are zero—which they are). An explanation for each quantity can
be found in the cited papers.

LDAK: (Speed et al. 2012)
varðbjÞ / H�0:25

j ;
LDSR: (Bulik-Sullivan et al. 2015)
varðbjÞ / H�1

j ;
sLDSR: (Finucane et al. 2015)
varðbjÞ ¼

P
c;j2Cc

sc;
Continuous sLDSR (1): (Gazal et al. 2017)
varðbjÞ ¼

P
c acðjÞsc;

Continuous sLDSR (2): (Gazal et al. 2017)
var (bj) ¼ s0 þ

P
m¼1

101 j2MAF bin m sm þ LLD jsLLD;
BayesS: (Zeng et al. 2018)
varðbjÞ ¼ p1HS

j ;
Zhang et al: (Zhang et al. 2018)
varðbjÞ ¼ p1½ð1� pcÞr2

b þ pcr2
c �;

Schoech et al (1): (Schoech et al. 2019)
varðbjÞ ¼ r2HS

j ;
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Schoech et al (2): (Schoech et al. 2019)
var (bj) ¼ r2H j

S(1þ LLD js);
Basic Gaussian: (Holland et al. 2020)
varðbjÞ ¼ p1r2

b;
Extended Gaussian (this paper):
varðbjÞ ¼ p1½ð1� pcðLjÞ �pdðLjÞÞr2

b þ pcðLjÞr2
c HS

j þ pdðLjÞr2
d�.

Appendix B

Comparison of model heritability estimates

Table B1 Comparison of our current extended model heritability estimates (h2
ðlÞ, see Table 3) with estimates from: our earlier basic

model (dressed with a tilde, ~h
2
ðlÞ) (Holland et al. 2020); the two- and three-component Gaussian models in Zhang et al. (2018), denoted

with subscript M2 and M3, respectively; the single Gaussian model with selection parameter in Zeng et al. (2018), subscripted MS; and
the single Gaussian infinitesimal model (polygenicity¼ 1) with selection parameter in Schoech et al. (2019), subscripted a

Phenotypea Nb
ðeffÞ h2

ðlÞ (SE) ~h
2
ðlÞ (SE) h2

M2 (SE) h2
M3 (SE) h2

MS (SE) h2
a (SE)

Schizophrenia (1.0%) 8.07E4 0.31 (0.01) 0.21 (0.001) 0.29 (0.013) —– —– —–
Bipolar Disorder (0.5%) 4.94E4 0.26 (0.01) 0.16 (0.001) 0.24 (0.027) —– —– —–
Crohn’s Disease (0.1%) 3.62E4 0.24 (0.01) 0.18 (0.001) 0.17 (0.021) 0.23 (0.026) —– —–
Ulcerative Colitis (0.1%) 3.65E4 0.18 (0.01) 0.11 (0.001) 0.10 (0.015) 0.13 (0.020) —– —–
CAD (2011; 3.0%) 6.57E4 —– —– 0.07 (0.013) 0.07 (0.012) —– —–
CAD (2015; 3.0%) 1.63E5 0.07 (0.01) 0.03 (0.001) —– —– —– —–
AD (14.0%) 4.67E4 0.21 (0.10) 0.15 (0.013) 0.07 (0.024) 0.10 (0.021) —– —–
Education (2016) 2.94E5 0.18 (0.05) 0.12 (0.001) 0.13 (0.006) —– —– —–
Education (UKB) 1.25E5 —– —– —– —– 0.18 (0.004) 0.15 (0.01)
Intelligence (2017) 7.80E4 —– —– 0.22 (0.015) —– —– —–
Intelligence (2018) 2.63E5 0.18 (0.02) 0.13 (0.001) —– —– —– —–
Height (2010) 1.34E5 0.22 (0.01) 0.17 (0.002) 0.30 (0.014) 0.32 (0.015) —– —–
Height (2014) 2.53E5 0.21 (0.01) 0.17 (0.001) —– 0.33 (0.011) —– —–
Height (2018) 7.08E5 0.28 (0.01) 0.19 (0.001) —– —– —– —–
Height (UKB) 1.26E5 —– —– —– —– 0.53 (0.003) 0.61 (0.00)
HDL 9.43E4 0.19 (0.03) 0.07 (0.000) 0.09 (0.015) 0.11 (0.010) —– —–
LDL 8.99E4 0.11 (0.01) 0.06 (0.002) 0.08 (0.016) 0.11 (0.011) —– —–
BMI (2010) 1.24E5 —– —– 0.20 (0.011) 0.20 (0.010) —– —–
BMI (GIANT 2015) 2.34E5 0.08 (0.01) 0.07 (0.001) —– 0.13 (0.005) —– —–
BMI (GIANT-UKB 2018) 9.91E5 0.09 (0.01) 0.27 —– —– —– —–
BMI (UKB 2015) 1.26E5 —– —– —– —– 0.28 (0.004) 0.31 (0.00)
Total Cholesterol 9.46E4 0.18 (0.08) 0.09 (0.002) 0.09 (0.013) 0.12 (0.012) —– —–

M2 and M3 use the HapMap3 reference panel (International HapMap 3 Consortium et al. 2010) with 1.07 million common SNPs (MAF0:05); MS uses an Affymetrix
panel with 483,634 SNPs (MAF > 0.01) on UK Biobank data; our results are based on a 1000 Genomes Phase3 reference panel with 11 million SNPs (MAF0:002). SE
denotes standard error. h2

ðlÞ is our heritability estimate (see Table 3); those obtained from M2, M3, and MS are labeled h2
M2; h2

M3, and h2
MS, respectively. For quantitative

phenotypes, values are on the observed scale; for binary phenotypes, values are on the liability scale, using the same population prevalence as used for Table 3. It is
important to note that our heritability estimates are corrected for inflation, by dividing by the inflation parameter r2

0; this is not done for M2, M3, or MS. aDisease
prevalences are given as a percentage in parentheses. For binary phenotypes, let h2

obs denote the heritability on the observed 0–1 scale (this is h2 in Figure 2). Let P
denote the proportion of cases in the study: P ¼ Ncases=ðNcases þNcontrolsÞ. Then the heritability on the log-odds-ratio scale reported in Zhang et al. (2018) is
h2

log ¼ h2
obs=ðPð1� PÞÞ. The transformation between the observed and liability scale is given by Equation 39< in Holland et al. (2020). bN is the total sample size for

quantitative traits; for qualitative traits, Neff ¼ 4=ð1=Ncases þ 1=NcontrolsÞ—see main text.

Table B2 Comparison of the basic model estimates (Holland et al. 2020) of the number of causal SNPs (here denoted nb) and heritability
(here denoted h2

b) with the corresponding net contributions nc þ nd and h2
c þ h2

d from the large effects components (“c” and “d”) of the
extended model(all disease heritabilities here are on the observed scale; see Table 3.

Phenotype nb nc þ nd h2
b h2

c þ h2
d

SCZ 2014 3.1E4 2.3e4 0.37 0.40
BIP 3.0E4 2.6e4 0.34 0.37
CD 1.1E3 1.5e3 0.39 0.42
UC 1.4E3 1.4e3 0.27 0.31
CAD 1.3E3 1.0e3 0.04 0.04
AD Chr19 14 33 0.06 0.08
AD NoC19 1.3E3 294 0.06 0.03
ALS Chr9 7 7 b0.01 0.01
Edu 3.5E4 4.5e4 0.12 0.13
IQ 2018 2.4E4 4.5e4 0.13 0.16
Height 2010 4.8E3 1.9e3 0.17 0.13
Height 2014 6.2E3 2.0e3 0.17 0.12
Height 2018a 9.4E3 7.6e3 0.19 0.24
HDL 260 279 0.07 0.13
LDL 390 477 0.06 0.07
TC 469 614 0.09 0.13

For BMI (GIANT 2015), it is the “b” component of the extended model (i.e., the Gaussian with variance rb
2 in Eq. (4)) that dominates, and a comparison with the

basic model gives: nb ¼ 7:5E3; nb ¼ 1:7E4; h2
b ¼ 0:07; h2

b ¼ 0:08.
a Model C for Height 2018.
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Appendix C

Comparison of model parameters for
phenotypes and Hapgen-based simulations

Table C1 Comparison of model parameters for phenotypes and Hapgen-based simulations using the model parameters (with r0 ¼ 1) to
produce the underlying distribution of effects

Phenotype p1 r2
b r2

c S p1pc1 mc wc r2
d p1pd1 md wd r2

0

SCZ 2014 5.28e�2 1.4e�6 3.6e�5 �0.52 3.7e�3 87 352 1.4e�4 3.7e�4 519 7 1.07
Simulation 1.05e�2 2.9e�6 3.2e�5 �0.42 2.6e�3 59 174 1.1e�4 6.8e�3 559 119 1.08
BIP 5.91e�2 1.2e�6 4.5e�5 �0.40 4.0e�3 102 414 —– —– —– —– 1.01
Simulation 6.86e�3 1.6e�5 3.9e�5 �0.40 5.1e�3 64 162 —– —– —– —– 1.07
CD 9.55e�4 5.0e�5 5.5e�4 �0.64 1.9e�4 176 604 7.6e�2 2.0e�5 —– —– 1.14
Simulation 6.29e�4 1.1e�4 4.4e�4 �0.84 1.8e�4 127 409 2.6e�2 9.8e�3 20 50 1.05
UC 1.16e�3 3.6e�5 4.0e�4 �0.67 1.9e�4 173 627 8.0e�2 1.6e�5 —– —– 1.12
Simulation 9.50e�4 5.5e�5 4.0e�4 �0.65 1.8e�4 67 214 6.0e�4 9.5e�3 —– —– 1.04
CAD 1.88e�3 1.1e�5 9.2e�5 �0.51 1.3e�4 171 683 5.3e�3 2.5e�5 102 7 0.92
Simulation 4.01e�3 5.0e�6 3.2e�3 �0.33 6.4e�6 45 143 1.8e�4 2.4e�5 —– —– 1.02
AD Chr19 4.34e�4 1.0e�4 6.1e�3 �0.57 3.2e�4 35 89 —– —– —– —– 1.09
Simulation 3.88e�4 7.4e�4 1.8e�3 �0.60 3.9e�4 —– —– —– —– —– —– 1.11
AD NoC19 1.05e�3 1.8e�5 2.6e�4 �0.52 3.0e�5 264 6 —– —– —– —– 1.04
Simulation 2.52e�3 8.8e�6 9.8e�5 �0.78 5.3e�5 708 757 —– —– —– —– 1.00
ALS Chr9 1.12e�2 7.3e�6 3.9e�3 �0.01 2.0e�5 106 6 —– —– —– —– 0.99
Simulation 5.23e�3 2.0e�5 1.2e�2 1.00 8.4e�6 144 7 —– —– —– —– 1.03
Edu 1.43e�2 1.7e�6 7.8e�6 �0.44 6.4e�3 111 339 8.5e�5 2.8e�3 441 7 0.94
Simulation 7.86e�3 4.4e�6 1.4e�5 �0.45 3.4e�3 62 186 1.0e�4 4.7e�3 1031 8 1.03
IQ 2018 1.27e�2 7.5e�7 6.2e�6 �0.51 4.8e�3 122 309 3.6e�5 3.0e�2 561 6 1.17
Simulation 4.52e�3 8.4e�6 1.6e�5 �0.49 2.1e�3 59 112 2.6e�5 9.2e�2 421 15 1.02
Height 2010 1.02e�3 4.1e�5 2.0e�4 �0.44 2.0e�4 322 1243 —– —– —– —– 0.90
Simulation 1.02e�3 5.2e�5 2.2e�4 �0.57 1.5e�4 152 478 —– —– —– —– 1.02
Height 2014 1.15e�3 3.7e�5 1.6e�4 �0.46 2.4e�4 242 929 —– —– —– —– 1.57
Simulation 8.26e�4 6.7e�5 3.9e�4 �0.40 3.5e�5 1363 193 —– —– —– —– 1.05
HDL 2.54e�3 1.1e�5 4.5e�4 �0.79 3.6e�5 143 599 2.2e�2 1.5e�5 66 7 0.91
Simulation 9.39e�4 3.1e�5 1.1e�3 �0.70 2.3e�5 68 217 9.8e�4 1.6e�4 —– —– 1.02
LDL 5.84e�3 3.3e�6 2.4e�4 �0.52 5.1e�5 336 1417 7.3e�3 1.9e�6 346 6 0.92
Simulation 3.86e�3 5.5e�6 3.3e�4 �0.58 3.1e�5 2046 273 —– —– —– —– 1.03
BMI GIANT 2015 1.54e�3 2.2e�5 4.5e�4 0.00 6.8e�6 288 12 —– —– —– —– 0.85
Simulation 1.09e�3 2.4e�5 7.9e�4 0.73 4.3e�6 440 7 —– —– —– —– 1.02
TC 1.15e�3 1.7e�5 6.2e� �0.97 2.4e�5 140 583 2.9e�4 7.1e�4 —– —– 0.92
Simulation 7.16e�4 2.9e�5 2.1e�4 �0.95 4.8e�5 255 822 5.0e�3 6.7e�4 83 108 1.01

p1 is the overall proportion of the 11 million SNPs from the reference panel that are estimated to be causal. p1 � pcðL1Þ is the total prior probability multiplying the
“c” Gaussian, which has variance r2

c HS , where H is the reference SNP heterozygosity. Note that pcðLÞ is just a sigmoidal curve, and can be characterized quite
generally by three parameters: the value pc1 � pcð1Þ at L¼ 1; the total LD value L ¼mc at the mid-point of the transition, i.e. pcðmcÞ ¼ pc1=2 (see the middle gray
dashed lines in Figure 1, which shows examples of p1 times the function pcðLÞ); and the width wc of the transition, defined as the distance (in L) between where the
curve falls to 95% and 5% of pc1 (distance between the flanking red dashed lines in Figure 1). The “d” Gaussian is similarly defined (but without the HS dependence in
the variance). Note that for AD Chr19, AD NoC19, and ALS Chr9, p1 is the fraction of reference SNPs on chromosome 19, on the autosome excluding chromosome
19, and on chromosome 9, respectively. See Figures 6 and 7, and Supplementary Figures S1 and S2. Ninety-five percent confidence intervals for the parameter
estimates for the real phenotypes are in Appendix Tables E1–E3. The simulations were run in a separate processing stream; we did not additionally calculate
confidence intervals for the simulation parameter estimates, which would have required substantial code modification and extensive processing. However, we
expect on heuristic grounds that they would be similar to those estimated for the real phenotypes.
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Appendix D

Bayesian information criterion (BIC) and
model validity

Table C2 Comparison of model heritabilities for phenotypes and Hapgen-based simulations using the model parameters (with r0 ¼ 1) to
produce the underlying distribution of effects

Phenotype h2
b h2

c h2
d h2

SCZ 2014 0.16 0.31 0.09 0.56
Simulation 0.19 0.23 0.07 0.49
BIP 0.16 0.37 —– 0.53
Simulation 0.19 0.33 —– 0.52
CD 0.10 0.40 0.02 0.52
Simulation 0.13 0.42 0.16 0.72
UC 0.09 0.29 0.02 0.41
Simulation 0.11 0.20 0.07 0.38
CAD 0.05 0.04 0.00 0.09
Simulation 0.05 0.02 0.03 0.10
AD Chr19 0.00 0.08 —– 0.08
Simulation 0.01 0.04 —– 0.05
AD NoC19 0.04 0.03 —– 0.07
Simulation 0.05 0.03 —– 0.09
ALS Chr9 0.01 0.00 —– 0.01
Simulation 0.01 0.00 —– 0.01
Edu 0.04 0.11 0.02 0.18
Simulation 0.07 0.08 0.02 0.17
IQ 2018 0.02 0.08 0.08 0.18
Simulation 0.06 0.06 0.06 0.18
Height 2010 0.08 0.13 —– 0.22
Simulation 0.11 0.12 —– 0.23
Height 2014 0.09 0.12 —– 0.21
Simulation 0.13 0.05 —– 0.18
HDL 0.06 0.08 0.05 0.19
Simulation 0.07 0.08 0.01 0.16
LDL 0.05 0.05 0.02 0.11
Simulation 0.03 0.05 —– 0.08
BMI GIANT 2015 0.08 0.01 —– 0.08
Simulation 0.06 0.00 —– 0.07
TC 0.04 0.10 0.03 0.18
Simulation 0.05 0.08 0.04 0.17

h2 is the total additive SNP heritability on the observed scale. h2
b ; h2

c , and h2
d are the heritabilities associated with the “b,” “c,” and “d” Gaussians, respectively. See

Figures 6 and 7, and Supplementary Figures S1 and S2.

Table D1 Bayesian information criterion (BIC) and model validity

Phenotype B (3) C (8) D (12) B-C C-D Cflag Dflag

SCZ 2014 345,385 342,862 342,668 2,523 194 1 1
BIP 315,359 313,187 —– 2,172 —– 1 0
CD 337,448 336,225 336,000 1,223 225 1 1
UC 323,298 322,182 322,071 1,116 111 1 1
CAD 114,633 113,643 113,49,6 989 147 1 1
AD Chr19 104,047 103,606 —– 441 —– 1 0
AD NoC19 285,119 284,942 —– 177 —– 1 0
ALS Chr9 121,378 121,271 —– 107 —– 1 0
Edu 336,485 333,281 332,820 3,204 460 1 1
IQ 2018 339,400 338,556 338,392 844 164 1 1
Height 2010 293,877 292,768 292,778 1,109 �10 1 0
Height 2014 402,975 400,877 400,904 2,098 �27 1 0
Height 2018 568,229 562,841 561,496 5,388 13,454 1 1
HDL 288,164 281,404 281,321 6,760 83 1 1
LDLb 273,299 270,769 270,760 2,530 9 1 1
BMI GIANT 2015 10,885 10,171 —– 714 —– 1 0
BMI GIANT-UKB 2018 47,507 37,914 —– 9,593 —– 1 0
TC 291,141 288,852 288,738 2,289 114 1 1
TG 274,454 272,227 272,115 2,227 112 1 1

The danger in adding extra parameters to a model is that it will over-fit the data. For a given model with k parameters and n degrees of freedom (number of
independent z-scores), the BIC value is defined as BIC ¼ lnðnÞk� 2lnðL̂Þ, where L̂ is the estimated likelihood of the data given the parameters. All else equal, models
with lower BIC are preferred. Here, we show BIC values for three models: the 3-parameter model B with only the “b” Gaussian (p1;rb;r0); the 8-parameter model C
with both the “b” with “c” Gaussians (Equation 4); and the 12-parameter model D with “b,” “c,” and “d” Gaussians (Equation 5). Since our cost function returns the
product over heterozygosity-total LD bins of the log likelihood probabilities, i.e. the product over H-L elements costHL ¼ ln [pdf (z-score data in H-L bin jmodel
params)], the overall L̂ is calculated as minus the cost for approximately independent elements. For a more conservative estimate of BIC, we calculate this using
aggressive pruning—selecting typed SNPs that are approximately independent, by setting a threshold for LD blocks at r2 ¼ 0:1 and randomly selecting a typed SNP
to represent that block, then averaged over 10 iterations. Cflag and Dflag indicate whether the increases in model complexity (relative to model B) are valid for the
models C and D. bfor model D applied to LDL, only 11 parameters can be considered for BIC to indicate an improvement over model C, i.e. wd is ignored as a
parameter but rather treated as a fixed quantity giving a sharp yet smooth transition to 0 for the pdðLÞ function for large L.
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Appendix E

Ninety-five percent confidence intervals for
model parameters

Table E1 Ninety-five percent confidence intervals for model B parameters: p1, r2
b, and r2

0 (see Table 1)

Phenotype p1 r2
b r2

0

SCZ 2014 [5.03e�2, 5.54e�2] [1.27e�6, 1.42e�6] [1.073, 1.077]
BIP [3.77e�2, 8.05e�2] [8.26e�7, 1.52e�6] [1.009, 1.012]
CD [9.10e�4, 1.00e�3] [4.61e�5, 5.36e�5] [1.136, 1.138]
UC [1.05e�3, 1.27e�3] [3.13e�5, 4.09e�5] [1.116, 1.118]
CAD [1.73e�3, 2.03e�3] [1.01e�5, 1.19e�5] [0.919, 0.924]
AD Chr19 [3.11e�4, 5.57e�4] [6.76e�5, 1.35e�4] [1.083, 1.093]
AD NoC19 [7.44e�4, 1.35e�3] [1.26e�5, 2.40e�5] [1.039, 1.041]
ALS Chr9 [8.45e�3, 1.40e�2] [5.51e�6, 9.17e�6] [0.985, 0.991]
Edu [1.39e�2, 1.48e�2] [1.56e�6, 1.87e�6] [0.937, 0.943]
IQ 2018 [1.24e�2, 1.31e�2] [6.55e�7, 8.45e�7] [1.168, 1.178]
Height 2010 [9.72e�4, 1.07e�3] [3.74e�5, 4.42e�5] [0.894, 0.900]
Height 2014 [1.11e�3, 1.18e�3] [3.54e�5, 3.93e�5] [1.563, 1.570]
Height 2018 [2.38e�3, 2.61e�3] [7.83e�6, 9.50e�6] [2.114, 2.124]
HDL [2.37e�3, 2.71e�3] [1.00e�5, 1.16e�5] [0.906, 0.909]
LDL [5.09e�3, 6.59e�3] [2.83e�6, 3.80e�6] [0.914, 0.917]
BMI GIANT 2015 [1.52e�3, 1.55e�3] [2.12e�5, 2.17e�5] [0.848, 0.857]
BMI GIANT-UKB 2018 [2.31e�3, 2.36e�3] [1.58e�5, 1.61e�5] [1.712, 1.720]
TC [1.02e�3, 1.28e�3] [1.44e�5, 1.95e�5] [0.920, 0.923]

These confidence intervals are likely underestimates (too narrow), due to LD and a consequent over-counting of the number of degrees of freedom (independent
z-scores).

Table E2 Ninety-five percent confidence intervals for additional parameters (i.e. in addition to the three model B parameters) included in
full model C: r2

c , S, pc1, mc, and wc (see Table 1)

Phenotype r2
c S pc1 mc wc

SCZ 2014 [3.43e�5, 3.73e-5] [�0.55, �0.50] [0.054, 0.088] [86, 88] [335, 369]
BIP [4.32e�5, 4.66e�5] [�0.43, �0.38] [6.6e�2, 6.9e�2] [100, 103] [386, 441]
CD [5.35e�4, 5.67e�4] [�0.65, �0.62] [0.19, 0.22] [168, 181] [575, 627]
UC [3.91e�4, 4.17e�4] [�0.68, �0.65] [0.14, 0.18] [165, 181] [594, 658]
CAD [8.73e�5, 9.73e�5] [�0.53, �0.49] [4.4e�2, 9.3e�2] [165, 177] [635, 732]
AD Chr19 [5.17e�3, 7.05e�3] [�0.66, �0.47] [0.66, 0.81] [28, 41] [80, 97]
AD NoC19 [2.31e�4, 2.87e�4] [�0.57, �0.47] [2.2e�2, 3.6e�2] [263, 265] —–
ALS Chr9 [2.39e�3, 5.45e�3] [�0.18, 0.15] [1.2e�3, 2.4e�3] [104, 107] —–
Edu [7.50e�6, 8.07e�6] [�0.47, �0.40] [0.31, 0.60] [94, 127] [276, 402]
IQ 2018 [5.79e�6, 6.56e�6] [�0.55, �0.47] [0.36, 0.40] [117, 122] [294, 309]
Height 2010 [1.87e�4, 2.05e�4] [�0.47, �0.40] [0.19, 0.21] [315, 329] [1137, 1348]
Height 2014 [1.57e�4, 1.71e�4] [�0.49, �0.43] [0.2, 0.22] [238, 246] [872, 986]
Height 2018 [8.66e�5, 9.08e�5] [�0.45, �0.42] [0.36, 0.38] [206, 214] [717, 760]
HDL [4.08e�4, 4.91e�4] [�0.85, �0.73] [5.0e�3 2.3e�2] [142, 144] [559, 639]
LDL [2.10e�4, 2.72e�4] [�0.59, �0.45] [7.9e�3, 9.6e�3] [336, 336] [1401, 1433]
BMI GIANT 2015 [4.47e�4, 4.60e�4] [�0.01, 0.00] [4.3e�3, 4.4e�3] —– —–
BMI GIANT-UKB 2018 [2.96e�4, 3.05e�4] [0.10, 0.11] [3.7e�3, 3.8e�3] —– —–
TC [5.56e�4, 6.74e�4 [�1.04, �0.90] [1.1e�2, 3.1e�2] [139, 141] [538, 627]

These confidence intervals are likely underestimates (too narrow), due to linkage disequilibrium and a consequent over-counting of the number of degrees of
freedom (independent z-scores).
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Appendix F

Ninety-five percent confidence intervals for
number of causal SNPs and heritability

Table E3 Ninety-five percent confidence intervals for additional parameters (i.e. in addition to the eight model C parameters) included in
full model D: r2

d; pd1, md (see Table 1)

Phenotype r2
d pd1 md

SCZ 2014 [1.33e�4, 1.42e�4] [4.2e�4, 4.5e�4] [512, 525]
BIP —– —– —–
CD [6.96e�2, 8.24e�2] [3.8e�4, 4.4e�4] —–
UC [6.86e�2, 9.20e�2] [2.7e�5, 3.6e�5] —–
CAD [4.51e�3, 6.07e�3] [3.8e�5, 5.1e�5] [101, 104]
AD Chr19 —– —– —–
AD NoC19 —– —– —–
ALS Chr9 —– —– —–
Edu [8.19e�5, 8.75e�5] [3.4e�3, 3.7e�3] [442, 448]
IQ 2018 [3.55e�5, 3.66e�5] [5.8e�2, 6.0e�2] [563, 568]
Height 2010 —– —– —–
Height 2014 —– —– —–
Height 2018 —– —– —–
HDL [1.88e�2, 2.56e�2] [1.8e�5, 2.2e�5] [63, 69]
LDL [6.32e�3, 8.29e�3] [2.0e�6, 2.5e�6] [339, 352]
BMI GIANT 2015 —– —– —–
BMI GIANT-UKB 2018 —– —– —–
TC [2.67e�4, 3.14e�4] [7.9e�4, 9.3e�4] —

These confidence intervals are likely underestimates (too narrow), due to linkage disequilibrium and a consequent over-counting of the number of degrees of
freedom (independent z-scores).

Table F1 Ninety-five percent confidence intervals for numbers of causal SNPs

Phenotype nb nc nd ncausal

SCZ 2014 [5.29e5, 5.83e5] [1.73e4, 2.86e4] [2.81e3, 3.11e3] [5.54e5, 6.10e5]
BIP [3.99e5, 8.52e5] [1.66e4, 3.55e4] —– [4.25e5, 8.78e5]
CD [8.57e3, 9.44e3] [1.43e3, 1.61e3] [1, 2] [1.01e4, 1.10e4]
UC [1.02e4, 1.25e4] [1.27e3, 1.60e3] [1, 2] [1.16e4, 1.39e4]
CAD [1.81e4, 2.12e4] [814, 1.20e3] [4, 5] [1.91e4, 2.23e4]
AD Chr19 [50, 110] [17, 50] —– [67, 159]
AD NoC19 [7.75e3, 1.41e4] [1.72, 417] —– [7.92e3, 1.46e4]
ALS Chr9 [3.98e3, 6.58e3] [4, 10] —– [3.98e3, 6.59e3]
Edu [1.02e5, 1.23e5] [3.57e4, 5.29e4] [888, 1.02e3] [1.39e5, 1.77e5]
IQ 2018 [9.19e4, 9.92e4] [3.23e4, 3.61e4] [1.03e4, 1.12e4] [1.34e5, 1.46e5]
Height 2010 [8.90e3, 9.91e3] [1.66e3, 2.07e3] —– [1.07e4, 1.18e4]
Height 2014 [1.02e4, 1.09e4] [1.85e3, 2.21e3] —– [1.22e4, 1.30e4]
Height 2018 [1.89e4, 2.08e4] [7.20e3, 8.09e3] —– [2.65e4, 2.86e4]
HDL [2.58e4, 2.95e4] [178, 350] [13, 16] [2.61e4, 2.98e4]
LDL [5.56e4, 7.21e4] [388, 539] [12, 16] [5.61e4, 7.26e4]
BMI GIANT 2015 [1.67e4, 1.70e4] [67, 69] —– [1.68e4, 1.71e4]
BMI GIANT-UKB 2018 [2.54e4, 2.59e4] [87, 90] —– [2.55e4, 2.60e4]
TC [1.07e4, 1.34e4] [132, 227] [383, 485] [1.13e4, 1.41e4]

ncausal is the total number of causal SNPs (from the 11 million in the reference panel); nb, nc, and nd are the numbers associated with the “b,” “c,” and “d” Gaussians,
respectively. See Table 2. These confidence intervals are likely underestimates (too narrow), due to linkage disequilibrium and a consequent over-counting of the
number of degrees of freedom (independent z-scores).
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Appendix G

Parameters for pcðLÞ and pdðLÞ

Table F2 Ninety-five percent confidence intervals for heritabilities: h2 is the total additive SNP heritability, reexpressed on the liability
scale as h2

l for the qualitative traits (upper section)

Phenotype h2
b h2

c h2
d h2 h2

l

SCZ 2014 [0.16, 0.17] [0.27, 0.35] [0.08, 0.09] [0.52, 0.60] [0.29, 0.34]
BIP [0.15, 0.17] [0.34, 0.39] —– [0.50, 0.56] [0.25, 0.28]
CD [0.10, 0.10] [0.36, 0.44] [0.02, 0.02] [0.48, 0.56] [0.22, 0.26]
UC [0.09, 0.09] [0.26, 0.33] [0.02, 0.03] [0.37, 0.44] [0.17, 0.20]
CAD [0.05, 0.05] [0.03, 0.04] [0.00, 0.00] [0.08, 0.10] [0.07, 0.08]
AD Chr19 [0.00, 0.00] [0.00, 0.22] —– [0.00, 0.22] [0.00, 0.30]
AD NoC19 [0.02, 0.07] [0.01, 0.06] —– [0.02, 0.13] [0.03, 0.17]
ALS Chr9 [0.00, 0.01] [0.00, 0.01] —– [0.01, 0.02] [0.00, 0.01]
Edu [0.03, 0.06] [0.02, 0.21] [0.02, 0.02] [0.07, 0.28] —–
IQ 2018 [0.01, 0.02] [0.05, 0.11] [0.08, 0.09] [0.14, 0.22] —–
Height 2010 [0.08, 0.09] [0.12, 0.14] —– [0.20, 0.23] —–
Height 2014 [0.08, 0.09] [0.11, 0.13] —– [0.20, 0.22] —–
Height 2018 [0.04, 0.04] [0.23, 0.25] —– [0.27, 0.29] —–
HDL [0.06, 0.06] [0.01, 0.14] [0.04, 0.06] [0.13, 0.25] —–
LDL [0.04, 0.05] [0.03, 0.06] [0.02, 0.02] [0.10, 0.13] —–
BMI GIANT 2015 [0.08, 0.08] [0.01, 0.01] —– [0.08, 0.09] —–
BMI GIANT-UKB 2018 [0.09, 0.09] [0.01, 0.01] —– [0.09, 0.09] —–
TC [0.04, 0.05] [0.00, 0.27] [0.02, 0.03] [0.01, 0.34] —–

h2
b , h2

c , and h2
d are the heritabilities associated with the “b,” “c,” and “d” Gaussians, respectively. See Table 3. These confidence intervals are likely underestimates (too

narrow), due to linkage disequilibrium and a consequent over-counting of the number of degrees of freedom (independent z-scores).

Table G1 Parameters for pcðLÞ and pdðLÞ, the sigmoid function y(x) given in Equation (3)

Phenotype ycmax xcmid xcwidth ydmax xdmid xdwidth

SCZ 2014 0.8422 �276.5 116.1 0.0052 518.0 1.0
BIP 1 �360.2 137.4 —– —– —–
CD 0.5 �69.8 177.3 0.0001 —– —–
UC 0.5 �147.8 190.8 0.0001 —– —–
CAD 0.552 �433.4 222.8 0.000357 101.6 1.00
AD Chr19 1 22.8 21.5 —– —– —–
AD NoC19 0.0289 264.0 1.0 —– —– —–
ALS Chr9 0.00182 105.2 1.0 —– —– —–
Edu 0.804 25.2 91.7 0.00626 441.0 1.08
IQ 2018 0.5 84.5 73.8 0.0779 561.0 1.00
Height 2010 1 �540.8 394.7 —– —– —–
Height 2014 1 �393.7 294.4 —– —– —–
Height 2018 1 �116.9 219.9 —– —– —–
HDL 0.738 �795.0 202.0 0.00106 65.6 1.02
LDL 0.876 �2202.9 479.6 0.000224 345.5 1.00
BMI GIANT 2015 0.00439 288.0 1.9 —– —– —–
BMI GIANT-UKB 2018 0.0038 267.1 1.2 —– —– —–
TC 0.845 �716.2 196.1 0.0342 —– —–

The plots in Figure 1 and Supplementary Figures S3–S5, are for L ¼ x1. Thus, for example, pcðLÞ ¼ yðLÞ ¼ ycmax=ð1þ expððL� xcmidÞ=xcwidthÞÞ. For BIP, CD, UC, and TC,
pd is constant: pd ¼ ydmax.
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