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Purcell effect with microwave drive: Suppression of qubit relaxation rate

Eyob A. Sete1, Jay M. Gambetta2, and Alexander N. Korotkov1
1Department of Electrical Engineering, University of California, Riverside, California 92521, USA

2IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA

(Dated: March 24, 2014)

We analyze the Purcell relaxation rate of a superconducting qubit coupled to a resonator, which is
coupled to a transmission line and pumped by an external microwave drive. Considering the typical
regime of the qubit measurement, we focus on the case when the qubit frequency is significantly
detuned from the resonator frequency. Surprisingly, the Purcell rate decreases when the strength
of the microwave drive is increased. This suppression becomes significant in the nonlinear regime.
In the presence of the microwave drive, the loss of photons to the transmission line also causes
excitation of the qubit; however, the excitation rate is typically much smaller than the relaxation
rate. Our analysis also applies to a more general case of a two-level quantum system coupled to a
cavity.

PACS numbers: 03.67.Lx, 03.65.Yz, 42.50.-p, 85.25.-j

I. INTRODUCTION

The spontaneous emission rate of an atom depends
on the environment with which it is coupled. Chang-
ing the atom environment substantially alters the den-
sity of states, leading to suppression or enhancement of
the spontaneous emission rate. This phenomenon was
first predicted by Purcell in his seminal work [1]. When
the atom is coupled on-resonance with a cavity, its re-
laxation rate is enhanced [1, 2] due to increased vacuum
fluctuations at the atom frequency. On the other hand,
if the atom is off-resonant from the cavity frequency, the
spontaneous emission rate can be significantly suppressed
[3–5].

A very similar effect [6] (thus often called the Purcell
effect) occurs in circuit quantum electrodynamics (QED)
systems [7, 8] when a superconducting qubit (artificial
atom) is coupled to a microwave resonator, which in turn
is coupled to a transmission line. The qubit energy re-
laxation via the resonator is one of the main processes
limiting the qubit lifetime. As demonstrated experimen-
tally [9], even coupling with resonator modes that are
far detuned from the qubit frequency can significantly
reduce the qubit lifetime. The Purcell effect is also one
of the limiting factors in achieving a high-fidelity qubit
readout. Several proposals have been put forward to re-
duce or eliminate the resonator-induced qubit relaxation
rate (Purcell rate) either by designing a Purcell filter
[10, 11], engineering a Purcell-protected qubit [12], or
using a tunable coupler [13] that decouples the transmis-
sion line from the resonator during the qubit-resonator
interaction, thereby avoiding the Purcell effect altogether
[14].

In this work, we analyze the effect of an external mi-
crowave drive on the qubit relaxation rate caused by
the loss of photons to the resonator environment. It is
known [15, 16] that the external drive can increase the
qubit relaxation rate (and also cause qubit excitation)
due to the “dressed dephasing” effect, which essentially
converts pure dephasing into photon-number-dependent

energy relaxation (the dressed dephasing was observed
experimentally [17]). In our analysis we assume the ab-
sence of pure dephasing, so that there is no dressed de-
phasing, and we can focus on the question of how the
standard Purcell effect changes in the presence of an ad-
ditional drive. In spite of the general importance of this
question, we are not aware of any direct discussion of
the Purcell effect in the presence of drive, except for an
indirect analysis in Ref. [16].

We consider a superconducting qubit coupled to a res-
onator, which can leak photons into a transmission line
(Fig. 1). The resonator is driven on resonance by an
external microwave field, while the qubit is significantly
detuned from the resonator frequency, so that there is
no direct effect of the drive on the qubit. Nevertheless,
the presence of microwave photons in the resonator (with
average number n̄) may affect the qubit relaxation rate.
Naively, we might expect that the qubit relaxation rate
should scale approximately as n̄+1 with increasing drive,
because the effective interaction between the qubit and
resonator scales as

√
Ne, where Ne is the number of ex-

citations in the system. However, this is not correct:
the Purcell rate does not increase with n̄. It is easy to
understand this fact using a picture of an almost lin-
ear interaction between the qubit and resonator, so that
the photons at the resonator frequency do not affect the
evolution of the qubit excitation, which is at the qubit
frequency. Our calculations confirm that the Purcell rate
does not increase with n̄ even in the strongly nonlinear
regime (when n̄ & ncrit, where ncrit is the so-called criti-
cal photon number [7] – see later).

In fact, somewhat surprisingly, we find the opposite
effect: the qubit decay rate decreases with increasing n̄.
This follows from an analytic formula, obtained in a sim-
ple intuitive approach. In the slightly nonlinear regime
(when n̄≪ ncrit) this formula is confirmed using a formal
approach based on a dispersive expansion of the interac-
tion Hamiltonian; the formula is also confirmed by a nu-
merical simulation in a wider range of nonlinearity. The
suppression of the relaxation rate becomes significant (it
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may exceed an order of magnitude) when increasing n̄
brings the interaction into the strongly nonlinear regime
(n & ncrit). We have also found that besides the en-
ergy relaxation, in the presence of the microwave drive,
the qubit may experience excitation as a result of pho-
ton loss to the resonator environment. In the moderately
nonlinear regime the excitation rate grows with n̄, but re-
mains much smaller than the relaxation rate. The simple
analytics and formal analysis for the relaxation as well as
the excitation rate agree well with the numerical results.
The paper is organized in the following way. In Sec.

II we start with reviewing the standard Purcell effect in
the absence of a microwave drive. Then, in Sec. III, we
calculate the Purcell rate in the presence of the drive
analytically in two ways: using a simple approach and
using a formal master equation approach. The analytical
results are compared with the numerical results in Sec.
IV. Finally, Sec. V is the conclusion.

II. PURCELL EFFECT WITHOUT DRIVE

We begin with a discussion of the Purcell rate cal-
culation [18] by considering a qubit coupled to a res-
onator in the absence of a microwave drive. In this case,
there are only three (bare) states involved in the evo-
lution: |e〉 = |e〉|0〉 = |e, 0〉, |1〉 = |g〉|1〉 = |g, 1〉, and
|g〉 = |g〉|0〉 = |g, 0〉, where |e〉 and |g〉 denote the qubit
states, while |0〉 or |1〉 represents the resonator state with
0 or 1 photon. We assume that the system is initially in
the state |e〉 or a superposition of |e〉 and |1〉. Then
the qubit-resonator coupling causes coherent oscillations
between the states |e〉 and |1〉; however, leakage of the
photon to the resonator environment eventually causes ir-
reversible relaxation to the system ground state |g〉 (note
that in some cases the Purcell relaxation can be consid-
ered as a coherent process [19]).
The qubit-resonator system is described by the usual

Jaynes-Cummings (JC) Hamiltonian (~ = 1)

H = ωra
†a+

1

2
ωqσz + g (a†σ− + aσ+), (1)

where ωr and ωq are the resonator and the qubit fre-
quencies, respectively, and g is the qubit-resonator cou-
pling, assumed to be real for simplicity of notations.
Here σ± are the qubit raising and lowering operators,
σz = |e〉〈e| − |g〉〈g| = σ+σ− − σ−σ+, and a (a†) is the
annihilation (creation) operator for the resonator field.
Let us use the rotating frame, which rotates with

frequency ωr for both the resonator and qubit. For-
mally, this is introduced by using the interaction pic-
ture, based on separating the Hamiltonian into two parts,
H = H0 + V , with

H0 = ωra
†a+

1

2
ωrσz , (2)

V =
∆

2
σz + g (a†σ− + aσ+), (3)

Resonator

Qubit
rf

g

(a) (b)

FIG. 1. (a) Schematic of the considered system with
(b) the energy-level diagram. The qubit is off-resonantly
(∆ = ωq − ωr) coupled to the resonator, with coupling con-
stant g. The resonator decays with the rate κ, which causes
the energy relaxation (Purcell relaxation) of the qubit. In
a circuit QED qubit measurement setup, a microwave (rf)
drive with resonant frequency ωr and normalized amplitude ε
is applied to the resonator. We show that the qubit relaxation
rate decreases with increasing strength of this drive, and that
there exists a relatively weak qubit excitation.

where ∆ = ωq − ωr, H0 is the free Hamiltonian, and
V is the remaining interaction part. Note however that
in the interaction picture the Hamiltonian does not de-
pend on time, VI = exp(iH0t)V exp(−iH0t) = V , be-
cause V commutes with H0. Even though the res-
onator and qubit operators now formally depend on
time, a(t) = a(0) exp(−iωrt), a

†(t) = a(0) exp(iωrt), and
σ±(t) = σ±(0) exp(±iωrt/2), they always come in pairs,
so that the time dependence is canceled out. This is why
we can still use the time-independent operators a, a†, and
σ±, which simplifies calculations. This trick is possible
because the JC Hamiltonian (1) is only the rotating-wave
approximation of the actual physical Hamiltonian.

The evolution of the qubit-resonator system that ac-
counts for the photon loss from the resonator can be de-
scribed by a master equation in Lindblad form [18]

ρ̇ = −i[V, ρ] + κD[a]ρ, (4)

κD[a]ρ = κ(aρa† − a†aρ/2− ρa†a/2), (5)

where κ is the resonator decay rate. Note that as dis-
cussed above, all operators here (except the density ma-
trix ρ) do not depend on time, even though we are us-
ing the interaction picture. Also note that in this mas-
ter equation we assumed that coupling between the res-
onator and the bath (transmission line) is frequency-
independent; this assumption is no longer valid in the
case of the Purcell filter [10, 11], when κ becomes
frequency-dependent.

Since we are only interested in quantifying the qubit
relaxation through the resonator, we do not take into
account the intrinsic qubit relaxation and pure dephas-
ing. Using Eq. (4), one easily obtains the equations for
the density matrix elements in the single-excitation sub-
space (in the bare-state basis of |e〉 and |1〉), which are
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decoupled from the elements containing state |g〉,








ρ̇ee
ρ̇11
ρ̇−e1
ρ̇+e1









=







0 0 ig 0
0 −κ −ig 0
2ig −2ig −κ

2 −i∆
0 0 −i∆ −κ

2















ρee
ρ11
ρ−e1
ρ+e1









, (6)

where ρ±e1 = ρe1 ± ρ1e. Here the bare-state populations
ρee and ρ11 are coupled to the coherences ρ±e1 via terms
proportional to g, while the damping term proportional
to κ contributes to the decay of ρ11, but does not affect
ρee. Note that the coherences ρ±e1 decay with the rate
κ/2. The population of the state |g〉 obviously increases
as ρ̇gg = κρ11. Equation (6) can be used in numerical as
well as in analytical calculations. In particular, the eigen-
values of the evolution can be found analytically from the
corresponding quartic equation, which in this case has a
relatively simple solution. Below we will obtain these
eigenvalues in a different way.
Instead of using the density matrix language for the

description of the Purcell effect, it is also possible to
use the simpler language of wavefunctions, even in the
presence of the decay κ. Physically, this is because in
the single-excitation subspace unraveling of the Lindblad
equation (see, e.g., [20]) corresponds to only one scenario
with no relaxation, and therefore the wavefunction evolu-
tion is non-stochastic. More formally, we can rewrite the
master equation (4) as [21, 22] ρ̇ = −i[Heff , ρ] + κaρa†,
where Heff = V − iκa†a/2 is an effective non-Hermitian
Hamiltonian. The term κaρa† can be neglected because
in the single-excitation subspace it produces a contribu-
tion only from higher-excitation subspaces, which are not
populated. Therefore, in the single-excitation subspace
we have ρ̇ = −i[Heff , ρ] or equivalently |ψ̇〉 = −iHeff |ψ〉,
which describes the evolution of the decaying wavefunc-
tion |ψ(t)〉 = α(t)|e〉 + β(t)|1〉:

α̇ = −i∆
2
α− igβ, (7)

β̇ = i
∆

2
β − igα− κ

2
β. (8)

(Another way to derive these equations is by consid-
ering only the no-relaxation scenario when unraveling
the evolution [20].) These are the usual equations for a
two-level system, but with complex energy −∆/2− iκ/2
of the bare state |1〉. Using the standard diagonaliza-
tion procedure, we can find two eigenstates with energies
Ẽ = −iκ/4±

√

−κ2/16 + g2 +∆2/4 + iκ∆/4, which can
be written as

Ẽe =
Ω

2
− i

Γ

2
, Ẽ1 = −Ω

2
− i

κ− Γ

2
, (9)

with

Γ =
κ

2
−

√
2

2

√

−A+
√

A2 + (κ∆)2, (10)

Ω =

√
2

2

√

A+
√

A2 + (κ∆)2 sgn(∆), (11)

A = ∆2 + 4g2 − κ2/4. (12)

Here Ẽe is the complex energy of the eigenstate
(“dressed” state, which includes decay), corresponding to

the excited qubit, while Ẽ1 corresponds to the dressed
resonator photon (notice the sign of ∆ in the formula for

Ω). Since Im(Ẽe) = −Γ/2, the population of the qubit
dressed state decays with the rate Γ. Therefore Γ is the
qubit relaxation rate, i.e., the Purcell rate, while the pho-
ton relaxation rate is κ−Γ. If the initial state is not one
of these eigenstates, then the evolution also includes os-
cillations with beating frequency Ω, decaying with the
rate −Im(Ẽe + Ẽ1) = κ/2. We have checked that the
same rates can be obtained by diagonalizing the evolu-
tion matrix in Eq. (6), which has four eigenvalues: −Γ,
−(κ−Γ), and −κ/2± iΩ, as expected from Eq. (9). Note
that for small κ the frequency |Ω| is close to the usual

Rabi frequency
√

∆2 + 4g2, but large κ may change it
significantly.
The eigenstates (dressed states with decay) |ẽ〉 =

α̃e|e〉 + β̃e|1〉 and |1̃〉 = α̃1|e〉 + β̃1|1〉 corresponding to

the energies Ẽe and Ẽ1 can be found in the standard
way, via the ratio β̃e,1/α̃e,1 = (Ẽe,1 − ∆/2)/g and the
normalization condition. However, note that these eigen-
states are not mutually orthogonal, so finding the expan-
sion of an initial state in the eigenbasis, |ψin〉 = c̃e|ẽ〉 +
c̃1|1̃〉, is somewhat more involved: c̃1 = 〈ẽ⊥|ψin〉/〈ẽ⊥|1̃〉,
where |ẽ⊥〉 is the vector orthogonal to |ẽ〉 (similarly for
c̃e). The evolution in the single-excitation subspace is
then |ψ(t)〉 = c̃ee

−iΩt/2e−Γt/2|ẽ〉+ c̃1e
iΩt/2e−(κ−Γ)t/2|1̃〉,

and it is easy to find the density matrix elements; for
example the bare-state qubit occupation is ρee(t) =
|c̃eα̃ee

−iΩt/2e−Γt/2 + c̃1α̃1e
iΩt/2e−(κ−Γ)t/2|2.

Now let us consider several special cases starting with
the case usually discussed for optical systems (e.g., [18]),
in which the resonator damping rate is much larger than
the coupling: κ ≫ |g|, while ∆ is arbitrary. Expanding
Eqs. (10) and (11) in g/κ and keeping the first two leading
terms produces

Γ =
κg2

∆2 + (κ/2)2
, (13)

Ω = ∆

(

1 +
2g2

∆2 + (κ/2)2

)

. (14)

This formula for the Purcell rate Γ can be interpreted as
Fermi’s golden rule for the transition from the state |e〉
to the relaxation-widened state |1〉 with width κ. Note
that at resonance, ∆ = 0, the Purcell rate (13) reduces
to Γ = 4g2/κ, while in the case |∆| ≫ κ it becomes Γ =
κg2/∆2; also note that Γ ≪ κ because of the assumption
|g| ≪ κ. If the evolution starts with the bare state |e〉,
then the probability to find the qubit in the excited state
decays as

ρee(t) ≈ e−Γt

[

1 +
8g2(κ2 − 4∆2)

(κ2 + 4∆2)2

]

− 8g2e−κt/2

(κ2 + 4∆2)2

×
[

4κ|∆| sin(|Ω|t) + (κ2 − 4∆2) cos(Ωt)
]

. (15)

In this formula the oscillation amplitude is always small
because of the assumption |g| ≪ κ (the amplitude of
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the neglected term e−(κ−Γ)t is even smaller), so that in
the leading order ρee(t) ≈ e−Γt. We have obtained Eq.
(15) from the density matrix evolution (6) by using the
method of Laplace transform, in which ρ(t) → ρ(s) and
ρ̇(t) → sρ(s) − ρ(t = 0). The solution is then obtained
by taking the inverse Laplace transform of ρ(s).
In circuit QED experiments the typical regime is dif-

ferent from what is usually considered in optics. Most
importantly, instead of the above assumption κ≫ |g|, in
the circuit QED systems the relation is usually the oppo-
site: κ . |g| or even κ ≪ |g|. Therefore, the result (13)
for the Purcell rate is inapplicable in the way we derived
it, but we can still use the exact formula (10). [Note that
Eq. (13) can actually be derived from Eq. (10) using a
weaker assumption: |g| ≪ max(κ, |∆|).] The formula for
the Purcell rate that is most widely used in the circuit
QED is the strong-dispersive-regime formula [7]

Γd =
κg2

∆2
, (16)

which can be derived from Eq. (10) by assuming |∆| ≫
max(|g|, κ), keeping the relation between |g| and κ ar-
bitrary. This formula has a simple interpretation: the
fraction (g/∆)2 of the dressed qubit state (i.e. the eigen-
state) is in the form of the resonator photon, and this
part decays with the rate κ.
Now let us derive the expression for the Purcell rate us-

ing the weaker assumption κ≪
√

∆2 + 4g2, which is usu-
ally well-satisfied in the circuit QED experiments. The
detuning |∆| may be much larger or comparable to the
coupling |g|. In this case it is physically natural to use the
basis of the single-excitation eigenstates (dressed states

without decay) |e, 0〉 and |g, 1〉 besides the basis of the
bare states |e〉 = |e, 0〉 and |1〉 = |g, 1〉. (Note the differ-
ence from the eigenbasis {|ẽ〉, |1̃〉}, which includes decay.)

If the initial state is |e, 0〉, then the system would remain
in this state if κ = 0. However, non-zero (but still small)
κ causes the rare jumps |g, 1〉 → |g, 0〉. Therefore, the
rate of jumps should be proportional to the occupation
of the bare state |g, 1〉 and the Purcell rate can be ap-
proximated as

ΓP = κ|〈g, 1|e, 0〉|2 =
κ

2

(

1− ∆
√

∆2 + 4g2

)

, (17)

where we used the exact formula for the overlap between
the states |e, 0〉 and |g, 1〉. Numerical comparison be-
tween this formula and exact result (10) shows that it is
a very good approximation for small κ; in particular, the
relative error is less than 0.25κ2/(∆2 +4g2) for κ/g < 4.
We will be using Eq. (17) in the following sections. It
is easy to see that in the regime |∆| ≫ |g| the rate ΓP

reduces to Γd in Eq. (16).
If the evolution starts with the bare state |e, 0〉, then

in the dispersive regime, |∆| ≫ |g| & κ, its population
evolves as

ρee(t) ≈ e−ΓP t

(

1− 2g2

∆2

)

+
2g2

∆2
cos(Ωt) e−κt/2, (18)

where |Ω| ≈
√

∆2 + 4g2. The oscillation amplitude is
small, but still noticeable for moderate values of ∆/g.
In contrast, if the evolution starts with the eigenstate
|e, 0〉, then the population of this eigenstate decays al-
most without oscillation,

ρee ≈ e−ΓP t

(

1 +
g2κ2

2∆4

)

− g2κ2

2∆4
cos(Ωt)e−κt/2 ≈ e−ΓP t.

(19)
The small remaining oscillation amplitude g2κ2/2∆4 is

due to the difference between |e, 0〉 and |ẽ〉, while the
amplitude 2g2/∆2 in Eq. (18) is due to the much larger

difference between |e, 0〉 and |e, 0〉 (the factor of 2 comes
from two conversions: from the bare basis to the eigen-
basis and then back).

III. PURCELL EFFECT WITH MICROWAVE

DRIVE

So far we have only considered one excitation in the
system. This situation is relevant to the qubit decay
during coherent operations in circuit QED systems. How-
ever, the qubit measurement [7, 23–25] requires adding
a microwave drive in resonance (or close to resonance)
with the resonator frequency – see Fig. 1. This is the
main motivation here to analyze qubit relaxation through
the resonator in the presence of additional excitations in
the system. To this end, we consider a dispersive qubit-
resonator interaction (but not necessarily strongly dis-
persive, say |∆/g| ≥ 5) with an external microwave drive.
The Hamiltonian for the qubit-resonator system with a
coherent microwave drive is given by

H = ωra
†a+

1

2
ωqσz + g (a†σ− + aσ+)

+ ε(aeiωdt + a†e−iωdt), (20)

where ωd is the drive frequency and ε, assumed to be
real and constant, is the normalized amplitude of the
microwave drive.
Following the same line of reasoning as was used to

derive Eq. (4), we introduce the frame rotating at ωr via
the free Hamiltonian (2), so that the interaction part of
the Hamiltonian in this frame has the form

HI =
∆

2
σz + g (a†σ− + aσ+)

+ε
(

ei(ωd−ωr)ta+ e−i(ωd−ωr)ta†
)

, (21)

where all operators are time-independent. For simplicity
we assume the drive to be exactly on resonance with the
resonator frequency, ωd = ωr, though this assumption
is not critical for our analysis. The master equation,
including the loss of photons through the resonator [see
Eq. (5)], is given by

ρ̇ = −i[HI , ρ] + κD[a]ρ. (22)
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We focus on the experimentally important regime of
sufficiently small resonator damping rate, κ≪ |∆|. More

precisely, we assume κ ≪
√

∆2 + 4g2(n̄+ 1), where n̄ is
the average number of photons in the resonator, induced
by the drive. In this case the Jaynes-Cummings ladder of
levels [26] (Fig. 2) is affected by an interaction (between
|e, n〉 and |g, n + 1〉) with the strength

√
Ne g, but the

effect of κ is relatively small. Here Ne is the total num-
ber of excitations, Ne = n for the bare state |g, n〉 and
Ne = n + 1 for the state |e, n〉. Therefore, it is natural
to introduce the basis of the pairwise eigenstates repre-
sented by red dashed lines in Fig. 2 and denoted by the
overline:

|e, n〉 = cos θn+1|e, n〉 − sin θn+1|g, n+ 1〉, (23)

|g, n〉 = cos θn|g, n〉+ sin θn|e, n− 1〉, (24)

tan(2θn) = 2g
√
n/∆. (25)

The level splitting between the eigenstates is

Ee,n−1 − Eg,n =
√

∆2 + 4ng2 sgn(∆)

= ∆
√

1 + 4Neg2/∆2, (26)

and in the rotating frame, which we use, both energies are
symmetric about zero, Eg,n = −Ee,n−1. Note that the
level splitting changes significantly when the number of
photons n becomes comparable with the so-called critical
photon number [7],

ncrit =
∆2

4g2
. (27)

The use of eigenstates as logical states in quantum
computing applications is more natural than the use of
the bare states [27], and in most practical cases the dy-
namics is sufficiently adiabatic to be naturally repre-
sented in the eigenbasis [14]. Therefore, when we will
consider the qubit being initially in the excited state, we
will actually assume that the initial state is the (coherent-
state) superposition of eigenstates (23) corresponding to
the excited state of the qubit (right set of red dashed
lines in Fig. 2). Accordingly, the relaxation process cor-
responds to increasing occupation of the |g〉-eigenstates
(24) (left set of red dashed lines in Fig. 2). The use
of eigenstates allows us to avoid oscillations in the evo-
lution, caused by the difference between the bases [see,
e.g., Eqs. (18) and (19) for the single-excitation case].

In the following, we present two ways to derive an ap-
proximate analytical formula for the Purcell rate in the
presence of a microwave drive. We first use a simple in-
tuitive approach applicable for an arbitrary nonlinearity
(arbitrary ratio n̄/ncrit) and then use a formal perturba-
tive approach applicable in the slightly nonlinear regime
(n̄≪ ncrit). The results of the two approaches are shown
to coincide in the validity range of the formal approach.

| ,  

| , 0  

| , 2  

| , 1  

+ 4  | ,  

| , + 1  

| ,  

| , + 1  

| , 1  

| ,   

| , 0  

| , 1  

 

| , 1  

| , 0  

 

 

 

| , 2  

 

| , 1  

| , 1  

 

 

FIG. 2. The Jaynes-Cummings ladder in the bare-state basis
(black solid lines) and the eigenstate basis (red dashed lines).
Here transitions (”jumps”) from the right set to the left set
of eigenstates correspond to qubit relaxation with rate ΓR,
while transitions from the left to the right set of eigenstates
give rise to qubit excitation with rate γE.

A. Purcell rate with drive: Simple approach

The damping of the resonator state is described by the
Lindblad form (5). We can think of this process by un-
raveling it into “jump” and “no jump” scenarios (see,
e.g., [20]), so that the first term in Eq. (5) describes ran-
dom jumps due to the action of the operator a, which
occur with the rate κTr(a†aρ) = κn̄, while the remaining
two terms describe the state evolution due to absence of
jumps. Without the qubit the driven resonator would
reach a steady coherent state, for which the jump pro-
duces no change (because the coherent state is an eigen-
state of the operator a), while the photon-number decay
due to the no-jump evolution [20] is compensated by the
drive. In the presence of the qubit there are two sets of
eigenstates (Fig. 2, we will refer to them as two ladders)
and within each ladder the process is approximately the
same as without the qubit (up to a factor, accounting
for the overall population of each ladder). However, the
jumps between the ladders lead to Purcell-effect relax-
ation (or excitation).
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Qubit relaxation rate

If the system is in the eigenstate |e, n〉 (see Fig. 2), then
the (random) action of the operator a gives the unnor-

malized state a|e, n〉. This state is a superposition of bare

states |e, n − 1〉 and |g, n〉. Expanding the state a|e, n〉
in the eigenbasis, we see that most of it contributes to
|e, n− 1〉, which belongs to the set of excited eigenstates.

However, there is a non-zero overlap between a|e, n〉 and
|g, n〉, which leads to the qubit energy relaxation (tran-
sition from the right to left ladder of eigenstates in Fig.
2). The rate of this relaxation process [28] (Purcell rate

from the state |e, n〉) is therefore

ΓR(n) = κ|〈g, n|a|e, n〉|2, (28)

where the subscript R means relaxation. Note that
ΓR(0) = ΓP [see Eq. (17)]. Using explicit expressions
(23) and (24) for the eigenstates, we find

ΓR(n) = κ(
√
n+ 1 sin θn+1 cos θn −

√
n sin θn cos θn+1)

2,
(29)

where θn is given by Eq. (25).
It is important that there is a significant energy shift

(≃
√

∆2 + 4g2n̄) between the two ladders of eigenstates,

so that the contribution to |g, n〉 due to the next jump

from |e, n〉 is incoherent with the previous jump contribu-
tion (it brings a different random phase), which allows us
to characterize the relaxation process by a rate ΓR. How-
ever, when different eigenstates |e, n〉 are populated, then
the jumps from these states occur in a mutually coherent
way (the operator a acts on the superposition), resulting
in a mutual coherence within the set of eigenstates in the
left ladder in Fig. 2. Nevertheless, this does not affect the
jumps between the left and right ladders of states, and
therefore the rate ΓR(n) can be simply averaged over the

population P (n) of the states |e, n〉,

ΓR =

[

∞
∑

n=0

P (n) ΓR(n)

]

/

∞
∑

n=0

P (n). (30)

A natural assumption is that P (n) is close to the
coherent-state distribution (the normalization is not im-
portant),

P (n) = e−n̄n̄n/n! . (31)

Actually, this coherent-state assumption becomes invalid
at sufficiently large n̄, when non-linearities (like squeez-
ing) become significant; however, this is not important
because at n̄≫ 1 the averaging (30) is not really needed
as long as the spread of occupied values of n is much
smaller than n̄. For n̄, it is natural to use the value in
the absence of qubit, n̄ ≈ 4|ε|2/κ2, or a more accurate
value, which accounts for the shift of the resonator fre-
quency by the qubit – see Eq. (71) later. Note that here
n̄ is the average number of photons in the ladder of “ex-
cited” eigenstates (it would be better to use a different

ææ
æ
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FIG. 3. The Purcell relaxation rate ΓR normalized by the no-
drive value ΓP , as a function of the mean photon number n̄
induced by the drive for several values of normalized detuning
∆/g: 15, 10, and 5. The dashed red lines show ΓR(n̄) cal-
culated using Eq. (29), the blue solid lines show ΓR averaged
over the coherent state distribution using Eq. (30). For the
upper curve we also show the truncated expansion [up to λ8,
Eq. (33)] by the green dot-dashed line. The blue dots on the
lines indicate ncrit.

notation, n̄e, for this meaning – see the next subsection,
but we will use n̄ here for brevity).
The blue solid lines in Fig. 3 show the n̄-dependence

of the Purcell rate ΓR (normalized by the no-drive value
ΓP ) for several values of the normalized detuning ∆/g.
As we see, the Purcell rate decreases with increasing n̄,
and the suppression (compared with the no-drive case)
can be strong at large n̄. The dashed red lines show
ΓR(n̄) calculated using Eq. (29), in which a non-integer
n̄ is introduced in the natural way via a non-integer n̄ in
Eq. (25). As expected, the dashed and solid lines almost
coincide at n̄≫ 10, while there is a noticeable difference
between them for n̄ . 10 when ∆/g is not very large.
In the experimentally interesting regime when ∆ ≫ g,

the rate ΓR can be expanded in powers of

λ = g/∆. (32)

(We will need this expansion for comparison with the
results of the formal approach in the next subsection.)
Expanding Eq. (29) in powers of λ, we obtain ΓR(n) =
κλ2[1− 3λ2(2n+1)+ λ4(31n2 +31n+ 10)− λ6(150n3 +
225n2 + 145n+ 35) + ...]. The averaging (30) then gives

n2 = n̄2 + n̄, n3 = n̄3 + 3n̄2 + n̄, etc., thus resulting in a
series

ΓR = κλ2
[

1− 3λ2(2n̄+ 1) + λ4(31n̄2 + 62n̄+ 10)

− λ6(150n̄3 + 675n̄2 + 520n̄+ 35) + ...
]

. (33)

This truncated series is shown by the green dot-dashed
line in Fig. 3.
The first term in the expansion (33) gives the standard

Purcell rate Γd = κg2/∆2 in the strong dispersive regime
(λ ≪ 1) – see Eq. (16). The negative sign of the second
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term means that the Purcell rate decreases with increas-
ing number of photons in the resonator. In the leading
order of the correction (assuming 1 ≪ n̄ ≪ ncrit) Eq.
(33) becomes

ΓR ≈ Γd

(

1− 3

2

n̄

ncrit

)

, (34)

where ncrit is given by Eq. (27). Note that Eq. (34) gives
a slightly inaccurate value for n̄ . 1 since at n̄ = 0 the
expansion (33) gives ΓR(0) = ΓP [see Eq. (17)]; however,
the difference between Γd with ΓP is small when |g/∆| ≪
1.
When n̄ ≫ 1, we do not need the summation in Eq.

(30) and can use approximation ΓR ≈ ΓR(n̄) if the ef-
fective spread of n values is much smaller than n̄, i.e.,
√

n2 − n̄2 ≪ n̄ (therefore, moderate nonlinear effects
still allow this simplification). In this case |θn̄+1−θn̄| ≪ 1
in Eq. (29), and using the first-order expansion of this
equation we obtain the approximation

ΓR ≈ κg2

4∆2

(

1

1 + n̄/ncrit
+

1
√

1 + n̄/ncrit

)2

, (35)

which is valid when n̄ ≫ 1 with arbitrary ratio n̄/ncrit.
(This is in contrast to the truncated perturbative expan-
sion in powers of λ, which works well only for n̄/ncrit ≪
1.)
From Eq. (35) we see that the Purcell rate ΓR decreases

significantly when n̄ becomes comparable to ncrit, and it
continues to decrease with increasing n̄, eventually ap-
proaching zero. Figure 4 illustrates the dependence of
the Purcell rate ΓR (normalized by the no-drive value
ΓP ) on the ratio n̄/ncrit for several values of the nor-
malized detuning ∆/g. We see that the different curves
shown in Fig. 3 now collapse onto practically the same
line for |∆/g| & 10, with a significant deviation start-
ing only when |∆/g| . 5. The approximation (35) is
shown by the black dot-dashed line for large ∆/g. This
approximation also works well (not shown) for the upper
curve, ∆/g = 5, except for the range n̄ . 3 (correspond-
ingly n̄/ncrit . 0.5), because of the difference between Γd

and ΓP . From Eq. (35), the suppression at n̄ = ncrit is

ΓR/ΓP ≈ (3 + 2
√
2)/16 = 0.36 for large ∆/g.

In the strong suppression limit when n̄ ≫ ncrit, the
rate (29) [or (35)] can be approximated as

ΓR ≈ Γd
ncrit

4n̄

[

1 + 2

√

ncrit

n̄

]

. (36)

This approximation and the opposite-limit approxima-
tion (34) are shown by red dashed lines in Fig. 4.

Qubit excitation rate

Similar to the calculation of the qubit energy relax-
ation rate (28), we can calculate the qubit excitation rate.

D � g = 5

D � g ³ 10

np ncrit

n` ncrit

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

n�ncrit

G
R
�G

P

FIG. 4. The Purcell relaxation rate ΓR [Eq. (30)] normal-
ized by the no-drive value ΓP [Eq. (17)] versus n̄/ncrit for
several values of ∆/g: 5, 10, 15, and 20 (blue solid lines).
The curves for ∆/g ≥ 10 are practically indistinguishable
from each other. The dashed red lines show the approxima-
tions (34) and (36) for n̄ ≪ ncrit and n̄ ≫ ncrit, respectively.
The dot-dashed black line (almost indistinguishable from the
lowest blue line) shows the approximation (35). In the ap-
proximations we assume large ∆/g, so that ΓP ≈ Γd.

Now the initial state is assumed to be |g, n〉, and the jump
due to the action of the operator a yields the unnormal-
ized state a|gn〉, which has a non-zero overlap with the

eigenstate |e, n− 2〉, corresponding to the excited state
of the qubit. Therefore, the qubit excitation rate is

γE(n) = κ|〈e, n− 2|a|g, n〉|2, (37)

which can be written as [see Eqs. (23)–(25)]

γE(n) = κ(
√
n− 1 sin θn cos θn−1 −

√
n sin θn−1 cos θn)

2.
(38)

Similar to Eq. (30) this rate should be averaged,

γE =

[

∞
∑

n=0

P (n) γE(n)

]

/

∞
∑

n=0

P (n), (39)

over the probability distribution P (n) for the states

|g, n〉, for which we will use the coherent-state approx-
imation (31) with mean photon number n̄ (a better no-
tation used in the next subsection is n̄g). The dependence
of γE on n̄ is shown in Fig. 5 by blue solid lines (γE is
normalized by ΓP and n̄ is normalized by ncrit).
Expanding γE(n) in powers of g/∆ and carrying out

the summation (39) produces the series

γE = κn̄2λ6
[

1− 5λ2(2n̄+ 3)

+ λ4(69n̄2 + 276n̄+ 159) + ...
]

, (40)

which has the leading-order approximation

γE ≈ Γd

16

(

n̄

ncrit

)2

(41)
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D � g ³ 10
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FIG. 5. The qubit excitation rate γE [Eq. (39)] normalized by
the no-drive relaxation rate ΓP versus n̄/ncrit for several val-
ues of ∆/g: 5, 10, 15, and 20 (blue solid lines). The curves for
∆/g ≥ 15 are practically indistinguishable from each other.
The red dashed lines show the approximations (41) and (42)
for n̄ ≪ ncrit and n̄ ≫ ncrit, respectively. The dot-dashed
black line (barely distinguishable) shows the approximation
(43). In the approximations we assume large ∆/g.

at 1 ≪ n̄ ≪ ncrit. This dependence is shown by the
left dashed red line in Fig. 5; it works well only when
n̄/ncrit . 0.1. [The truncated expansion (40) works well
until n̄/ncrit . 0.2.] Approximating Eq. (38) in the op-
posite limit, n̄≫ ncrit, gives

γE ≈ Γd
ncrit

4n̄

[

1− 2
(ncrit

n̄

)1/2

+ 3
(ncrit

n̄

)3/2
]

, (42)

which is shown by the right dashed red line in Fig. 5.
The approximation for arbitrary n̄/ncrit, which assumes
n̄≫ 1 and ncrit & 1 [derived similar to Eq. (35)] is

γE ≈ κg2

4∆2

(

1

1 + n̄/ncrit
− 1
√

1 + n̄/ncrit

)2

. (43)

Note that for n̄ . ncrit the excitation rate is much
smaller than the relaxation rate, γE/ΓR . (n̄/4ncrit)

2 ≪
1. However, for n̄ ≫ ncrit the relaxation and excitation
rates become identical in the leading order, as follows
from Eqs. (36) and (42) (we were not able to reach this
regime in numerical simulations discussed in Sec. IV).
The dependence γE(n̄) has a maximum (Fig. 5), which
for |∆/g| > 3 occurs at n̄ ≈ 3ncrit [this value follows from
Eq. (43)] Even at this maximum the excitation rate is
much smaller than the no-drive relaxation rate, γE/ΓP <
0.02, as seen in Fig. 5 [the maximum value which follows
from the approximation (43) is γE = Γd/64].

Our derivation for the relaxation and excitation rates
ΓR and γE was based on considering only the “jump”
processes caused by the operator a and finding their con-
tribution to transitions between the two ladders of eigen-
states in Fig. 2. The remaining (non-unitary) “no jump”
evolution and the unitary evolution due to the drive with

amplitude ε also contribute to transitions between the
two ladders of eigenstates. However, since these tran-
sitions are non-stochastic, the energy shift between the
two ladders suppresses the transitions (as expected for
a coherent off-resonant process) and prevents the linear-
in-time increase of the “wrong” ladder population. This
is why these processes are not expected to contribute
directly to the relaxation and excitation rates. Never-
theless, the evolution due to the drive and due to the
absence of jumps effectively changes the ladders of eigen-
states. Thus, at very large n̄ our results (29) and (38)
for the relaxation and excitation rates are expected to
become invalid.

B. Purcell rate with drive: Formal approach

The results of the previous subsection were based on a
physical intuition, leading to Eqs. (28) and (37). Here we
present a formal derivation of the analytical expression
for the Purcell rate with the microwave drive. In the
formal approach we need to assume the slightly nonlinear
dispersive regime: |∆/g| ≫ 1 and n̄/ncrit ≪ 1. The
derivation essentially follows the formalism developed in
Ref. [16].
We first transform the master equation (22) to the

frame where the JC Hamiltonian is diagonal. While it
is simple for wavefunctions [see Eqs. (23) and (24)], it is
not so simple for the operator form of the Hamiltonian.
This can be done by introducing the transformation D

of the form

D = e−Λ(Ne)I− , (44)

where

I± = σ+a± σ−a
†, Ne = a†a+ |e〉〈e|, (45)

Ne is the number operator for total excitations in the
system and the function Λ(Ne) still has to be determined.
After this transformation the master equation reads

ρ̇D = −i[HD
I , ρ

D] + κD[aD]ρD, (46)

where

ρD = D†ρD, aD = D†aD, HD
I = D†HID, (47)

and HI is given by Eq. (21) (in our notation the wave-

functions are transformed with D† rather than with D).
The JC part of the transformed Hamiltonian, HD

JC =
(∆/2)σD

z + gID+ , can then be written as [16]

HD
JC =

[

∆

2
cos(2Λ

√

Ne)− g
√

Ne sin(2Λ
√

Ne)

]

σz

+

[

∆

2
√
Ne

sin(2Λ
√

Ne) + g cos(2Λ
√

Ne)

]

I+, (48)

where Λ = Λ(Ne). Note that here we treated the opera-
tor Ne in the square root as a c-number. This is possible
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because Ne is a positive operator and its square root is
defined via taking the square root of the eigenvalues in
the diagonalizing basis. Also note that Λ commutes with√
Ne, and that the

√
Ne in denominator is canceled when

the sine function is expanded.
Since we want to diagonalize the JC Hamiltonian, we

need to eliminate the second line of Eq. (48) by zeroing
the coefficient of I+, which can be done by choosing

Λ = − 1

2
√
Ne

arctan
(

√

4λ2Ne

)

. (49)

Then the transformed JC Hamiltonian is only the first
line of Eq. (48), which using Eq. (49) can be written as

HD
JC =

∆

2

√

1 + 4λ2Ne σz =
∆

2

√

1 +Ne/ncrit σz. (50)

This is exactly the desired Hamiltonian for the qubit-
resonator system in the eigenbasis – see Eq. (26).
Next, we find explicit form of the D-transformed anni-

hilation operator a, which enters the drive Hamiltonian
and the Lindblad term of the master equation (46). Cal-

culating D†aD by expanding the exponent in the defini-
tion of D, we obtain

aD = a− [a,ΛI−] +
1

2!
[[a,ΛI−],ΛI−] + ... . (51)

Then by expanding Λ(Ne) [using Eq. (49)] in powers
of

√
4λ2Ne with the assumption that

√
4λ2Ne < 1 (i.e.

Ne < ncrit) and explicitly computing the resulting com-
mutation relations, we obtain after a lengthy algebra the
following expression,

aD = aD1 + aD2 + aD3 , (52)

with

aD1 =
{

1 +
λ2

2
σz −

λ4

8
[12(n̂+ 1)σz + 1]

+λ6
[(

5n̂2 + 10n̂+
73

16

)

σz +
n̂+ 1

4

]

+ ...
}

a, (53)

aD2 = λ
{

1− 3

2
λ2(2n̂+ 1) + λ4

(

11n̂2 + 11n̂+
31

8

)

−λ6
(

42n̂3 + 63n̂2 +
355

8
n̂+

187

16

)

+ ...
}

σ−, (54)

aD3 = λ3
{

1− 5λ2

2
(2n̂+ 3) + λ4

(

22n̂2 + 66n̂+
411

8

)

+...
}

a2σ+, (55)

where n̂ = a†a is the photon number operator. Note
that in the transformed frame the field operator aD ac-
quires a qubit part (aD2 is proportional to σ− and aD3 is
proportional to a2σ+). Equation (52) has the following
interpretation. Each term describes an “annihilation”
process, which reduces the number of excitations by 1.
The first term aD1 (proportional to a) describes annihi-
lation of a photon in the eigenbasis, which is modified
due to the presence of the qubit. The second term aD2 ,

which describes qubit relaxation, also reduces the num-
ber of excitations by 1. Thus the photon annihilation
process is partly converted into qubit relaxation: this
second term eventually leads to the Purcell relaxation.
The last term aD3 , which describes annihilation of two
photons and qubit excitation, also reduces the number of
excitations by 1. This process leads to qubit excitation
as a result of leakage of photons through the resonator.
There are no more groups of terms because qubit can-
not absorb or emit more than one excitation, and thus
there are no more processes decreasing the total number
of excitations by 1.
It is interesting to relate the terms in Eq. (52) with the

matrix elements of a in the eigenbasis, considered in the
previous subsection. Since aD is essentially the operator
a in the eigenbasis, we would expect that aD sandwiched
between two bare states should be equal to the operator
a sandwiched between the corresponding eigenstates so
that

〈e, n− 1|a|e, n〉 = 〈e, n− 1|aD1 |e, n〉, (56)

〈g, n|a|e, n〉 = 〈g, n|aD2 |e, n〉, (57)

〈e, n− 2|a|g, n〉 = 〈e, n− 2|aD3 |g, n〉. (58)

We have checked these relations explicitly using the trun-
cated expansions (53)–(55) and corresponding expan-
sions of the eigenstates (23)–(25). These relations give
us an insight why the formal-approach results which we
will obtain later are essentially equivalent to the results
of the simple approach.
The next step in the derivation is to use the polaron-

type transformation described below.

Polaron-type transformation

We expect that in the eigenbasis the quasi-stationary
state is close to a coherent state within the subspace of
“excited” eigenstates (right ladder of red dashed lines in
Fig. 2) and also close to a (possibly different) coherent
state within the subspace of “ground state” eigenstates
(left ladder of dashed lines). Therefore, it is natural to
apply displacement transformations within these (eigen)
ladders, which transform the coherent states to the low-
est levels in the ladders. In this way the case with the
microwave drive should, to a considerable extent, be re-
duced to the case without the microwave drive, thus sim-
plifying the analysis.
Formally, we apply the polaron-type [29] transforma-

tion P to the master equation (46), so that the density

operator transforms as ρDP = P†ρDP with

P = |e〉〈e|D(αe) + |g〉〈g|D(αg), (59)

where D(α) is the usual displacement operator and αe(g)

are resonator field amplitudes corresponding to the qubit
state |e〉 or |g〉. Note that Eq. (59) formally uses the
bare states, but the conversion between bare states and
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eigenstates is already performed by the transformation
D. Also note that we apply P† (not P) to the wave-
functions, so this is a displacement by −αe(g). So far the
amplitudes αe(t) and αg(t) are arbitrary and in general
time-dependent. The master equation after the polaron-
type transformation becomes

ρ̇DP =− i[HDP
JC + ε(aDP + a†DP), ρDP] + κD[a DP]ρDP

+ i[Im(TαṪ
∗
α), ρ

DP] + [aṪ ∗
α − a†Ṫα, ρ

DP], (60)

where Tα = αe|e〉〈e|+αg|g〉〈g| and the second line in this
equation is due to time-dependence of αe(t) and αg(t).
The explicit form of the master equation (60) is very
lengthy and we do not present it here. Its perturbative
form can be obtained by first expanding the Hamilto-
nian HD

JC in powers of Ne/ncrit [see Eq. (50)] and then
applying the P-transformation to the field and qubit op-
erators,

P†aP = a+ Tα, (61)

σP
z = σz , P†σ−P = D(αg)

†D(αe)σ−, (62)

while the transformation of higher-order terms for field
operators can be obtained using sequential application of
(61), for example,

P†n̂P = n̂+ aT ∗
α + a†Tα + |Tα|2, (63)

P†n̂2P = [(1 + 2|Tα|2)T ∗
αa+ a2T ∗2

α + 2n̂aT ∗
α +H.c.]

+|Tα|2(4n̂+ 1) + n̂2 + |Tα|4. (64)

Now we want to find “good” values of αe and αg, which
correspond to the quasi-stationary state. This can be
done using the following trick. Let us impose the condi-
tion that the total coefficient for the operator a† in the
transformed master equation (60) is zero (then the co-
efficient for a also vanishes automatically). This would
correspond to the situation without drive (in the effec-
tive frame), and then because of the relaxation due to
κ, the lowest state within each ladder will be eventually
reached, independent of the initial state. [This will not
be exact because of non-zero terms (a†)2, (a†)3, etc., but
this is good as an approximation.] Imposing this condi-
tion and keeping terms up to λ4, we obtain equations

α̇j(t) ≈− κ

2

[

1± λ2(1 − 6λ2n̄j)
]

αj

+ iχ{λ2 ∓ [1− 2λ2(n̄j + 1)]}αj

− iε

{

1− λ4

8
± λ2

2

[

1− 3λ2(2n̄j + 1)
]

}

, (65)

with the top sign for j = e and the bottom sign for
j = g; here n̄j = |αj |2 is the corresponding mean photon
number and χ = g2/∆ is the resonator frequency shift in
the strong dispersive regime (λ ≪ 1, n̄j ≪ ncrit). In Eq.
(65) the term proportional to κ is a contribution from
the Lindblad master equation, the term proportional to
χ is a contribution from JC Hamiltonian, and the last
term is due to the microwave drive. It is easy to see
that Eq. (65) is essentially the equation for classical field

amplitudes αe(g)(t), as expected. The stationary solution
of this equation, α̇j(t) = 0, gives the steady-state values
αe and αg, which are then substituted into the master
equation (60).
With these “good” values of αe and αg, we expect

a significant population of only two states in the DP-
transformed frame: |e, 0〉 and |g, 0〉. We also expect that
these populations, ρDP

e0,e0 and ρDP
g0,g0, are close to the total

occupation of the right and left ladders of eigenstates in
Fig. 2. Therefore the transition rates between the states
|e, 0〉 and |g, 0〉 in the DP-transformed frame should give
the relaxation and excitation rates for the qubit; these
rates can now be found from Eq. (60). The expansion
form of the equation for ρ̇DP

e0,e0 is very lengthy and we do

not show it here, but if we keep only the terms with ρDP
e0,e0

and ρDP
g0,g0, we then obtain

ρ̇DP
e0,e0 ≈ −ΓRρ

DP
e0,e0 + γEρ

DP
g0,g0, (66)

where (to order λ8) we find

ΓR = κλ2
[

1− 3λ2(2n̄e + 1) + λ4(31n̄2
e + 62n̄e + 10)

− λ6(150n̄3
e + 675n̄2

e + 520n̄e + 35)
]

, (67)

and (to order λ10)

γE = κn̄2
gλ

6
[

1− 5λ2(2n̄g + 3) + λ4(69n̄2
g + 276n̄g + 159)

]

.

(68)

These results for the relaxation and excitation rates ΓR

and γE are in exact agreement with Eqs. (33) and (40),
obtained using the simple intuitive approach. Note how-
ever that since our formal derivation was based on the
expansion in λ, it can be used only for relatively small
values of the nonlinearity parameter n̄e(g)/ncrit (see, e.g.,
the green dashed line in Fig. 3), in contrast to the simple
approach.
Thus the results (67) and (68) of the formal approach

confirm that the Purcell relaxation rate decreases with
increasing strength of the microwave drive, and there ex-
ists a relatively weak qubit excitation due to resonator
damping. The results of the formal approach are essen-
tially an extension of the previous work [16], where only
the leading order was considered, and hence the photon-
number-dependent Purcell rate and the excitation rate
were not obtained.

C. Physical interpretation

We do not have a compete physical interpretation of
the Purcell relaxation suppression due to additional pho-
tons induced by the microwave drive, so we may say that
this is just the mathematical property of the matrix el-
ement 〈g, n|a|e, n〉 [see Eq. (28)], which decreases with
n. However, we have a crude physical interpretation.
The idea is that the additional drive changes the effec-
tive qubit frequency due to the ac (dynamic) Stark shift,
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FIG. 6. Four neighboring levels of the Jaynes-Cummings lad-
der of Fig. 2, redrawn in a slightly different way. The shown
energy is relative to the energy of the state |g, n〉. Assuming
n ≈ n̄ ≫ 1, the level splitting in both pairs of eigenstates
is approximately |ΩS | =

√

∆2 + 4g2n̄. The level splitting in-
creases with n̄. There are four possible transitions marked by
down arrows; two of them have frequencies almost coinciding
with ωr (neglecting the dispersive shift), and two of them are
at frequencies ωr ± ΩS . These transitions can be thought of
as the Mollow triplet [30] at non-zero detuning.

which increases the detuning |∆|. Then if we use the for-
mula for the single-excitation Purcell rate [Eqs. (16) or
(17)], we find the suppression of the rate with increasing
mean photon number n̄.
More quantitatively, the effective detuning with n̄≫ 1

photons is the level splitting between the eigenstates of
the JC ladder (see Figs. 2 and 6),

ΩS =
√

∆2 + 4n̄g2 sgn(∆) = ∆
√

1 + n̄/ncrit. (69)

(Note that the resonator frequency changes by less than
g2/∆ = ∆/4ncrit, so the change of effective detun-
ing is mostly due to the qubit frequency change.) In
the regime n̄ ≪ ncrit, this gives the effective detun-
ing ∆(1 + n̄/2ncrit). Therefore, if we use the dispersive
single-excitation formula Γd = κg2/∆2 [Eq. (16)] with
increased |∆|, we would expect the Purcell rate suppres-
sion as ΓR ≈ Γd(1− n̄/ncrit), which is different from the
actual result [Eq. (34)] by the missing factor 3/2. The
additional suppression could in principle be explained by
the change of effective κ (due to decreasing overlap); how-
ever, we did not find a reasonable quantitative explana-
tion of this kind. Besides the difficulty with quantitative
explanation of the suppression, a natural question is why
we can still use the no-drive formula (16), essentially mix-
ing the linear and nonlinear approaches to the dynamics.
Thus we cannot call the physical interpretation based on
the ac Stark shift a perfect interpretation.
Note that it is also possible to discuss the reduction of

the qubit relaxation rate and appearance of the nonzero
excitation rate in terms of the Mollow triplet physics [30]
at non-zero detuning ∆ (Fig. 6). In our case the triplet is
transformed into a quadruplet (neglecting the “fine struc-
ture” due to n-dependence of the transition frequencies).

The two central “peaks” correspond to the qubit-state-
dependent resonator frequency ωr±g2/ΩS; the difference
between them is used for the qubit readout [7, 23–25]
(the quadruplet becomes a triplet if the dispersive shift
±g2/ΩS is neglected, as in Fig. 6). The two side peaks
correspond to the qubit relaxation and excitation (Fig.
6). In the case of relaxation the qubit emits the photon
with frequency approximately ωr + ΩS . In the case of
excitation the qubit absorbs this energy, which is taken
from two photons in the resonator, so that the photon
emitted into the transmission line has frequency ωr−ΩS .
With increasing drive (increasing n̄) the side peaks move
further away from the central peaks (ac Stark shift). As
discussed above, this leads to the suppression of the re-
laxation rate ΓR (at least qualitatively). The excitation
rate γE first increases with increasing n̄, as expected for a
two-photon process, but eventually the suppression due
to increasing detuning becomes the dominating effect,
and γE starts to decrease.

IV. NUMERICAL RESULTS

Besides developing the analytical approaches discussed
in the previous section, we have also solved the full mas-
ter equation (22) for the qubit-resonator system numer-
ically and thus computed the qubit relaxation and ex-
citation rates. In this section we present the numerical
results and compare them with analytical results.

A. Qubit relaxation rate

Since we do not consider intrinsic qubit relaxation
as well as dressed dephasing (a process which converts
pure depahsing into photon-number-dependent qubit re-
laxation), the decay rate obtained from the numerical
solution is only due to the Purcell effect. To calculate
the relaxation rate we start with an initial state that is
the coherent-state superposition of the eigenstates cor-
responding to the excited state of the qubit [14] (right
ladder of red dashed lines in Fig. 2),

|ψin〉 = e−|αin|
2/2

∞
∑

n=0

αn
in√
n!

|e, n〉, (70)

where αin is the initial amplitude of the resonator field.
For αin we use the value αin = −iε/[i(g2/∆+ωr −ωd) +
κ/2], obtained classically by assuming that the resonator
frequency is increased by g2/∆ due to the qubit in the
excited state (recall that the driving frequency ωd is ex-
actly ωr). The corresponding mean photon number is
n̄in = |αin|2 = 4|ε|2/[4(g2/∆ + ωr − ωd)

2 + κ2]. How-
ever, this initial value of αin is good only in the lin-
ear regime when n̄ ≪ ncrit. In the non-linear regime
the effective resonator frequency becomes (see Fig. 2)

ωr+∆(
√

1 + n̄/ncrit−
√

1 + (n̄− 1)/ncrit) ≈ ωr+g2/ΩS ,
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FIG. 7. Normalized Purcell rate ΓR/ΓP vs the mean photon
number for κ = g = 2π×50 MHz and several values of detun-
ing: ∆/g = 5, 10, 15, and 20. The red dots show the results
obtained numerically, blue solid lines are calculated using Eq.
(30). The large blue dots indicate the critical photon number
ncrit.

where the level splitting ΩS is given by Eq. (69). There-
fore the quasi-steady state is expected to have αe ≈
−iε/[i(g2/ΩS + ωr − ωd) + κ/2] and the corresponding
mean photon number is expected to be

n̄ =
|ε|2

(g2/
√

∆2 + 4g2n̄+ ωr − ωd)2 + (κ/2)2
. (71)

This equation allows easy calculation of ε for a desired n̄.
Note that for the qubit in the ground state, the frequency
shift g2/ΩS is replaced with −g2/ΩS . However, since we
use ωd = ωr, the mean photon number n̄ given by Eq.
(71) does not change. Therefore, n̄ is not affected by the
Purcell relaxation. Also note that Eq. (71) does not show
bistability when ωd = ωr, though the bistability occurs
for a range of detuning ωd − ωr 6= 0 if κ < 4g4n̄/Ω3

S. In
simulations we first find ε for a desired n̄ analytically, but
then calculate the actual n̄ numerically. We have checked
that Eq. (71) works quite well for the parameters we used,
but still not perfectly.
We use the bare basis to compute the evolution using

the master equation (22), but then convert the results
into the eigenbasis; in particular, we monitor the popu-
lation of the exited qubit state in the eigenbasis,

ρee(t) =
∑

n
Tr[ρ(t) |e, n〉 〈e, n| ]. (72)

The use of the initial condition (70) allows us to
mostly avoid initial oscillations of ρee(t) (decaying on the
timescale ∼ κ−1), so that the decay of ρee is smooth in
time, and therefore the Purcell rate ΓR can be relatively
easily defined numerically as the slope of the dependence
− ln[ρee(t)], which is close to a straight line for a suffi-
ciently long duration. Note that because of a non-zero
excitation rate, the dependence ρee(t) eventually satu-
rates at a non-zero value; therefore it is necessary to re-
strict the time duration, making sure that ρee remains
much larger than the saturation value.
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FIG. 8. Numerical results for the normalized Purcell rate
ΓR/ΓP as a function of n̄ for κ/g = 0.1 (blue diamonds) and
κ/g = 1 (red dots); the detuning parameter is ∆/g = 5, 10,
15, and 20 (as in Fig. 7).

Red dots in Fig. 7 show the numerically calculated
Purcell rate ΓR [normalized by the no-drive value ΓP

given by Eq. (17)] as a function of the steady-state mean
photon number n̄ in the resonator, for κ = g and sev-
eral values of ∆/g (the calculations have been done for
g/2π = 50 MHz, but the results do not depend on g be-
cause of the linear overall scaling). The solid lines show
the approximate analytical result, obtained in the simple
approach, Eq. (30). We see a very good agreement be-
tween the analytics and numerics. It is important that
the Purcell rate continues to decrease when n̄ is signifi-
cantly larger than ncrit, and agreement with analytics is
still very good in this regime. The numerical results con-
firm that the Purcell rate suppression can be more than
an order of magnitude.

The analytics [Eqs. (28)–(30)] predict that the Purcell
rate ΓR scales linearly with κ (keeping the same n̄). In
Fig. 8 we check this scaling numerically by comparing
the results for κ/g = 1 (red dots, same as in Fig. 7) and
for κ/g = 0.1 (blue diamonds). (Note that κ/g = 0.1
and even lower values are typical in circuit QED exper-
iments). We see that the numerical results confirm, at
least in this regime, the simple scaling of ΓR with κ (so
that ΓR/ΓP does not depend on κ) for the same value of
n̄. Note however that decreasing κ assumes decreasing
drive amplitude ε to keep n̄ fixed.

B. Qubit excitation rate

We have also calculated numerically the qubit exci-
tation rate due to the resonator decay. For that we
start with the initial state, which is the superposition
of the eigenstates corresponding to the ground state of
the qubit:

|ψin〉 = e−|αin|
2/2

∞
∑

n=0

αn
in√
n!

|g, n〉, (73)
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FIG. 9. The qubit excitation rate γE (normalized by the no-
drive relaxation rate ΓP ) as a function of n̄ for κ = g (we used
g/2π = 50 MHz) and several values of detuning, ∆/g=5, 10,
15, and 20. The red dots show the numerical results, the blue
solid lines are obtained analytically using Eq. (39). The large
blue dots indicate ncrit.

where αin now corresponds to the ground state of the
qubit, αin = −iε/[i(−g2/∆+ωr−ωd)+κ/2] or in a bet-
ter approximation αg = −iε/[i(−g2/ΩS+ωr−ωd)+κ/2].
Since we use ωd = ωr, only the phase of αin is different
from what was used in Eq. (70), while n̄in is still the
same. Note that the initial value αin is not very impor-
tant because the system converges to the quasi-steady-
state value of α within few resonator lifetimes κ−1. Sim-
ilar to what was discussed in the previous subsection, we
calculate the quasi-steady-state value of n̄ numerically.

Following the same procedure as for computing the
qubit relaxation rate, we calculate the qubit excitation
rate γE . The only difference is that now we monitor the
decrease of ρgg(t) = 1 − ρee(t), and the qubit excitation
rate γE is defined numerically as the negative slope of
ln[ρgg(t)] during a time range when this dependence is

linear (this time range should be much shorter than Γ−1
R ).

Figure 9 shows the excitation rate γE normalized by
the no-drive Purcell rate ΓP [Eq. (17)], as a function
of the mean photon number n̄. The excitation rate is
quite weak and first increases with the strength of the
microwave field. The rate also depends on the detuning:
the smaller the detuning, the larger the excitation rate
becomes. The rate calculated numerically agrees well
with the analytical result given by Eqs. (39). As dis-
cussed in Sec. IIIA, the dependence γE(n̄) should reach
maximum at n̄ ≈ 3ncrit (when ∆/g > 3). Figure 9 con-
firms this behavior for ∆/g = 5. Even at the maximum,
the value of γE remains much smaller than ΓP (over 50
times), and at this point it is ∼ 8 times smaller than ΓR.

V. CONCLUSION

We have analyzed the Purcell relaxation rate of a su-
perconducting qubit coupled to a leaking microwave res-
onator, which is pumped on-resonance by an external mi-

crowave drive. The main result is that the Purcell rate
ΓR is suppressed due to the presence of photons in the
resonator, with the strong suppression obtained in the
nonlinear regime. The presence of photons in the res-
onator also leads to qubit excitation, but the excitation
rate γE is always much smaller than the no-drive Purcell
relaxation rate ΓP . We have derived approximate ana-
lytical formulas for the relaxation and excitation rates
[e.g., Eqs. (29), (35), (38), and (43)], which agree well
with the numerical results.

In this work we assumed a time-independent drive
amplitude ε. It is rather simple to introduce a time-
dependent drive ε(t) to describe experiments with short
measurement time, as long as the dynamics is sufficiently
adiabatic (which is almost always the case in experiments
– see Ref. [14]). Using the simple intuitive approach (Sec.
IIIA), we first solve the classical equations for the field
with account of nonlinearity to find n̄(t) and then obtain
the corresponding time-dependent Purcell rate ΓR(t) and
the excitation rate γE(t). In the formal perturbative ap-
proach (Sec. IIIB) the evolution of the field can be taken
into account automatically via Eq. (65).

To experimentally observe the Purcell rate suppression
with increasing microwave drive predicted in this work,
it is important to make sure that other mechanisms do
not increase the qubit relaxation rate faster than the ob-
tained suppression. One such mechanism for supercon-
ducting qubits is the dressed dephasing [15–17], which in-
creases the relaxation rate as Γ↓,dd ≃ γϕn̄/2ncrit, where
γϕ is the pure dephasing rate (this formula assumes a sim-
ilar noise spectrum at the qubit frequency ωq and at low
frequency). This increase is weaker than the first-order
Purcell rate suppression −3n̄ΓP /2ncrit [see Eq. (33)] if
the no-drive Purcell rate ΓP ≈ Γd = κg2/∆2 exceeds
the pure dephasing, ΓP > γϕ/3. Therefore, to observe
the Purcell rate suppression experimentally, it may be
necessary to deliberately increase the Purcell rate by de-
creasing the detuning ∆ and/or increasing the resonator
damping rate κ and coupling g. Note an indication of
possible Purcell rate suppression in a recent experiment
– see Fig. S7 in Ref. [24].

In this paper we treated the qubit as a two-level sys-
tem. In reality, most of present-day superconducting
qubits are essentially only slightly nonlinear oscillators,
with almost equidistant energy spectrum. The anhar-
monicity A = 2E|e〉−E|g〉−E|f〉 (with |f〉 being the next
excited level) is typically much smaller than the qubit fre-
quency (A/ωq ≃ 0.03− 0.05) and only a few times larger
than the coupling |g|. The presence of the level |f〉 does
not affect the no-drive Purcell rate ΓP ; however, it af-
fects the qubit relaxation and excitation rates when the
microwave drive is applied. The analysis of this effect is
beyond the scope of this paper, but we have done pre-
liminary calculations based on the natural extension of
Eqs. (28) and (37), assuming that they are still applica-
ble. These calculations show that the Purcell rate is still
suppressed with increasing photon number n̄ in the typ-
ical regime (A > 0, ωq < ωr), though the suppression is
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weaker than in the two-level model. We have also found
that the suppression can still be crudely (not quantita-
tively) described as being due to the ac Stark shift of the
qubit frequency.
In the slightly nonlinear regime the repulsion of the

level |e, n〉 from the level |f, n−1〉 (which is added to the
repulsion between the levels |e, n〉 and |g, n + 1〉) leads
to the effective detuning ∆eff = ∆ + 2(n + 1)g2/∆ −
n(
√
2 g)2/(∆ − A), where

√
2 g is the approximate cou-

pling constant for the transitions between |e〉 and |f〉.
This can be rewritten as

∆eff = ∆

(

1 +
n

2ñcrit

)

, ñcrit =
∆2

4g2
A−∆

A , (74)

where ñcrit is the appropriately redefined critical pho-
ton number (27), which takes into account the third
level, and we assumed 1 ≪ n ≪ ncrit × min[1, (∆ −
A)2/2∆2] (so that both level repulsions are in almost
linear regimes). Note that the effective qubit-state-
dependent change of the resonator frequency (which is
used for the qubit measurement) is governed by the sim-
ilar factor, ωeff

r,|e〉 − ωeff
r,|g〉 = d∆eff/dn = ∆/(2ñcrit) for

the same range of n. Now crudely estimating the Purcell
rate as ΓR ≃ κ(g/∆eff)

2, we obtain the crude estimate
of the Purcell rate suppression as ΓR/ΓP ≃ 1 − n/ñcrit

when 1 ≪ n ≪ ncrit × min[1, (∆ − A)2/2∆2]. This has
the same form as Eq. (34), with ncrit replaced by ñcrit

and with absent factor 3/2, which cannot be obtained in
this crude derivation (preliminary numerical results in-
dicate that this factor, describing the difference between

the numerical suppression and the Stark-shift model be-
comes closer to 1). Note that for positive A and nega-
tive ∆ (i.e. ωq < ωr, which is the more typical situation
for transmon qubits) the effective critical photon num-
ber (74) is increased, ñcrit > ncrit (strongly increased if
−∆ ≫ A), and therefore the Purcell rate suppression
is weaker than in the two-level model. (For large ratios
−∆/A preliminary numerical results indicate that the
suppression is not as weak as follows from strongly in-
creased ñcrit.) A more complete analysis of the effect of
the third and higher levels on the Purcell rate (including
the numerical simulations as in Sec. IV) is the subject of
a further research.
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