
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Self-Adapting Software for Cyberphysical Systems

Permalink
https://escholarship.org/uc/item/1nf0g3zj

Author
Fierro, Gabriel Tomas

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1nf0g3zj
https://escholarship.org
http://www.cdlib.org/

Self-Adapting Software for Cyberphysical Systems

by

Gabriel Tomas Fierro

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David E. Culler, Chair
Professor Joseph M. Hellerstein

Associate Professor Stefano Schiavon

Spring 2021

Self-Adapting Software for Cyberphysical Systems

Copyright 2021
by

Gabriel Tomas Fierro

1

Abstract

Self-Adapting Software for Cyberphysical Systems

by

Gabriel Tomas Fierro

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David E. Culler, Chair

The built environment — the buildings, utilities, infrastructure, cities and other constructed
elements of the anthropocene — is becoming increasingly digitized. The complex array of
equipment, sensors and other devices in these environments constitute cyberphysical systems
which produce an incredible volume of data. However, this cyberphysical data is hard to ac-
cess and understand because of the extreme heterogeneity and scale of the built environment:
essentially every cyberphysical system is a custom-built “one-off” collection of equipment,
devices and data sources that has been continually operated, retrofitted, expanded and main-
tained over years, decades and centuries.

This dissertation argues that existing barriers to widespread adoption of software-driven sus-
tainable practices can in part be overcome through the adoption of rich, semantic metadata
which enables the mass-customization of data-driven cyberphysical software. Applications
will be able to query their environment for the contextual clues and metadata that they need
to customize their own behavior and discover relevant data.

To realize this vision, this thesis proposes a linked-data ontology — Brick — which formally
defines a graph-based data model for describing heterogeneous cyberphysical systems, and
a set of ontology design principles for generalizing Brick to other domains. Brick models are
created and maintained through a continuous metadata integration process also developed in
the dissertation. New programming models are introduced which use graph-based metadata
to implement self-adapting applications. Lastly, the thesis develops a novel data manage-
ment platform, Mortar, which supports storing, serving and managing semantic metadata
at scale. This demonstrates that standardized metadata representations of cyberphysical
environments enable a fundamentally richer set of data-driven applications that are easier
to write, deploy and measure at scale.

i

To my friends, family and colleagues.

ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 Software for Cyberphysical Systems . 2
1.2 Thesis Question . 3
1.3 Challenges for Self-Adapting Software . 4
1.4 Approach and Thesis Roadmap . 5

2 Background 7
2.1 Cyberphysical Systems in the Built Environment 7
2.2 Definitions . 13
2.3 Metadata for Cyberphysical Systems . 14
2.4 Ontologies and Linked Data . 22
2.5 Summary . 29

3 A Vision of Self-Adapting Software 30

4 Managing Heterogeneity with Semantic Metadata 35
4.1 Limitations of Existing Metadata Representations 37
4.2 Modeling Issues for Tag-Based Metadata . 41
4.3 Ontology Design for Consistent Metadata . 47
4.4 Brick+ Formal Implementation . 55

5 Expressing Self-Adapting Software 65
5.1 Using Metadata for Configuration . 66
5.2 Programming Models for Self-Adapting Software 70
5.3 Evaluation of Staged Programming Model 78
5.4 Alternative Programming Models . 85

iii

6 Metadata Management for Self-Adapting Software 88
6.1 Prior Work on Metadata Management . 89
6.2 Extracting Semantic Metadata . 91
6.3 Metadata Management Over the Building Lifecycle 96
6.4 Metadata Management Over Changing Semantics 107

7 Platform Design and Implementation for Self-Adapting Software 114
7.1 Scaling Metadata Management . 114
7.2 reasonable: Abstracting Ontology Management 117
7.3 Mortar: A Platform for Reproducible Building Science 123

8 Adoption and Impact 129
8.1 Metadata Standardization and Semantic Interoperability 129
8.2 Open Data Research Efforts . 133
8.3 Brick Consortium . 135
8.4 Growing Adoption . 136
8.5 Availability of Open Source Code . 136

9 Conclusion 138
9.1 Results and Contributions . 138
9.2 Future Work . 139
9.3 Reflections and Final Remarks . 141

Bibliography 142

iv

List of Figures

1.1 Current practice: deploying software to different sites requires re-implementing
and re-configuring the software for each site . 3

2.1 Figure A-2 from ASHRAE’s Guideline 36 [73], depicting a prototypical Variable
Air Volume box with reheat capability. 8

2.2 Small, representative building consisting of an AHU (blue), 2 VAVs (green), and
2 HVAC zones consisting of rooms and lighting zones (red). 11

2.3 Screenshot of a recently-deployed (2̃009) building management system 12
2.4 Different metadata representations used over the course of a building’s lifecycle . 15
2.5 Part of an IFC representation of a small, 2-story office building in Berkeley, CA 16
2.6 Part of an gbXML representation of a “big box” retail store. The AirLoop tag

contextualizes a set of equipment for a particular segment of the HVAC system
supplying air to a zone . 18

2.7 Graphical representation of part of a Modelica model representing a VAV with re-
heat capability, sourced from the Buildings Library [150]. Modelica also supports
exporting to a JSON-based format [98]. 19

2.8 Snippet of a document detailing point naming conventions for a particular BMS
vendor . 20

2.9 A damper position command point described using Haystack tags, as seen in the
Carytown reference model . 20

2.10 Simple, representative Brick model . 21
2.11 Generic RDF triple, consisting of a subject and object (nodes in a graph) and a

predicate (directed edge from subject to object) 23
2.12 Simple RDF graph — depicted both graphically and textually — describing a

thermostat with an attached temperature sensor. 24
2.13 Example Turtle-formatted RDF graph for the Brick model depicted in Figure 2.10 26
2.14 Simple SPARQL query for the airflow setpoints and sensors associated with VAVs 27

3.1 Current practice: deploying software to different sites requires re-implementing
and re-configuring the software for each site . 30

3.2 Self-adapting software will query a metadata model of its environment in order
to automatically configure a single implementation to operate on new sites. . . . 31

3.3 A high level vision of self-adapting software interacting with the built environment 34

v

4.1 The set of valid (blue + solid outline) and invalid (red + dashed outline) tagsets
for a set of four tags. The class hierarchy is established from top to bottom;subclass
relationships are indicated by arrows . 45

4.2 An OWL-based ontology (right) encodes classes as named sets (left); a subclass
relationship between two classes means that all the members/instances of the
subclass are also members/instances of the superclass. 48

4.3 An example of a logical violation in an instance of a Brick+ model. 51
4.4 SHACL node shapes validating use of the Brick+ hasPoint and isPointOf re-

lationships . 52
4.5 A SHACL shape enforcing the two possible uses of the isPartOf relationship. . 53
4.6 An erroneous SHACL shape for defining two required points for VAVs 54
4.7 The correct SHACL shape for defining two required points for VAVs. 55
4.8 The three main class organizations for Brick+ entities 56
4.9 The Brick+ definition of a temperature sensor. 56
4.10 Part of the brick:Temperature Sensor class definition from Figure 4.9, showing

the unoptimized full implementation of the OWL intersection class 58
4.11 SHACL-AF implementation of tag→class inference for the Brick+ Temperature Sensor

class. Figure 9.2 in the Appendix contains the full expanded shape. 59
4.12 A subset of the Brick+ class lattice for sensors, showing the semantic properties

which characterize each class . 62
4.13 . 63

5.1 Logical workflow for application configuration and execution 66
5.2 Three different Brick models describing the same physical system. It is possible

to author a single SPARQL query which will retrieve the names of the AHU and
downstream rooms, independent of the specific structure of the graph. 69

5.3 A SPARQL query which finds the AHU and two rooms in each of the graphs in
Figure 5.2 . 70

5.4 Architecture of an application written in the staged programming model 71
5.5 Two SPARQL queries used in the qualify step of a rogue zone detection appli-

cation. 72
5.6 Dataframe definition in Python (left) and the resulting dataframes (right) . . . 73
5.7 View definition in Python (left) and resulting table (right) 74
5.8 A simple clean stage implementation in Python which filters out periods of time

where either dataframe is missing a value . 75
5.9 A analyze component implementation in Python for the rogue zone application

which finds periods where the measured airflow is lower than the setpoint. . . . 75
5.10 A simple program written using the interactive model that finds regions of time

when AHUs are both heating and cooling. 77
5.11 The SPARQL query implied by the execution of the program in Figure 5.10 . . 77
5.12 Energy Baseline Calculation and Baseline Deviation Applications: Pre-

dicted baseline using [92] plotted against actual building energy consumption. . 79

vi

5.13 Heating coil and cooling coil valve commands over time for an AHU in a building
demonstrating simultaneous heating and cooling. 82

5.14 A BAS [84] representation of a building’s electrical, lighting, spatial and HVAC
subsystems . 85

6.1 Original Haystack entity from the Carytown reference model 92
6.2 Intermediate RDF representation of the Haystack entity; Haystack software-

specific tags (e.g. cur, tz) are dropped. 93
6.3 Brick inference engine splits the entity into two components: the explicit point

and the implicit outside damper equipment. 93
6.4 The distribution of the number of triples inferred per entity for each wrapper. . 95
6.5 The distribution of the total number of triples inferred by each wrapper. Note

the log-scale on the X axis . 96
6.6 Different tools for different stages: Many different metadata standards and tech-

nologies are applied over the course of a building’s lifecycle, but are relatively
siloed and thus non-interoperable. 97

6.7 Overview of the proposed approach: wrappers interface directly with existing
metadata sources stored in local file systems, or accessed via file shares or net-
worked services. Wrappers continuously publish inferred Brick metadata to a
central server, which produces a unified model. 98

6.8 Example record published by the BuildingSync wrapper, showing the original
metadata (raw) and the inferred Brick metadata (triples). 100

6.9 The phases of the reconciliation algorithm. The latest Brick metadata (far left)
is stored by the integration server. 102

6.10 Example Brick metadata produced by BuildingSync and Project Haystack wrap-
pers. The rdfs:label property denotes the original name or identifier of the
entity in the metadata source. 104

6.11 The inferred unified metadata model for the triples in Figure 6.10. The most
specific type is chosen for each entity, and that associated properties are carried
through. 104

6.12 Visualization of the campus meter database demonstrating how the semantics
change independent of the structure. Schema 1 was active until January 12th
2012 at which point Schema 2 becomes the active schema. 108

6.13 Two different versions of the NSF degree taxonomy. Colored and outlined nodes
are involved in either a split, merge or same relationship across versions. 112

7.1 Logical architecture of reasonable and its interaction with other software com-
ponents of Mortar . 118

7.2 Two OWL 2 RL rules expressed in Datalog. T is the relation (s,p,o) corre-
sponding to the triples in an RDF graph. 119

7.3 Definition of the LIST[] syntax in [100] and an example of a variadic Datalog
rule that uses a variable-sized list. 119

vii

7.4 The cax-sco rule implemented to take advantage of intermediate relations . . . 121
7.5 Comparing performance of reasonable with OWLRL and Allegro over more than

100 Brick models. 123
7.6 Histogram of number of data streams for all sites (µ =241). 124
7.7 Mortar platform . 125

8.1 Technologies for design, operation, analytics, controls and modeling of buildings
are siloed and rarely interoperable . 134

9.1 Brick expression of the building and subsystems illustrated in Figure 2.2 157
9.2 Expanded RDF graph for the shape described in Figure 4.11. 158

viii

List of Tables

4.1 An enumeration of the intended use and context of tags relating to heating and
cooling, as given by the Haystack documentation. Note the differences in diction
across compound tags, and how some compound tags could be assembled from
more atomic tags. Some tags are used both for equipment and for points when
equipment is modeled as a single point (such as VFDs, Fans, Coils) 42

4.2 Brick+ relationships for associating entities with each other 57
4.3 A set of semantic property name definitions . 61

5.1 Applications: Brick LOC and App LOC indicate the lines of code needed to define
the Brick queries and application logic, respectively. “% coverage” is what pro-
portion of the testbed’s buildings qualified for that application; the corresponding
number of buildings is in the “# sites” column. 83

6.1 The results of merging multiple metadata models for two different sites, showing
the diversity of the metadata available between the available metadata sources.
The % Contributed percentages do not add up to 100% because the rest of the
graph consists of inferred metadata not contained in any particular model. . . . 106

6.2 A subset of the split/merge/same relationships between the 2004 and 2010 ver-
sions of the NSF degree taxonomy in Figure 6.13 111

7.1 Count of streams and equipment available in the testbed data set, aggregated by
type. AHU and VAV totals include related equipment such as fans and pumps. . 124

7.2 API operations supported on the Mortar platform. A ? suffix indicates the pa-
rameter is optional. A [parameter] notation indicates the type is a list. 127

ix

Acknowledgments

The work described in this dissertation is the product of years of collaboration, mentorship,
friendship and support from a number of people.

I would like to thank my advisor, David Culler, for being so generous with his time,
experience and wisdom in guiding me through my PhD. Even when I was an undergraduate
working with one of his graduate students, David took the time to meet with me to discuss my
research and, later, applications to graduate school. His ability to derive sharp insights from
my mess of thoughts was an invaluable resource that continues to inspire me to be a better
and more thoughtful researcher. I also owe a great deal to my other dissertation committee
members, Joe Hellerstein, Stefano Schiavon and Marta González, who have provided crucial
perspective and feedback on my dissertation work.

My involvement in research is due to the mentorship and guidance of Andrew Krioukov,
who asked me if I wanted to “hack buildings” during a research mixer in 2012. Our col-
laborations and conversations underlie much of the work described in this thesis. Andrew,
Stephen Dawson-Haggerty, Jay Taneja and Randy Katz and other members of the LoCal
research group at Berkeley got me interested in the intersection of computer science and the
built environment and have provided valuable advice and support over the years.

As a graduate student, I had the privilege of working with a thoughtful, friendly and
talented group of people that all sat or worked together in 410 Soda as part of the Soft-
ware Defined Buildings and Building, Energy and Transportation Systems research groups.
Michael Andersen, Jack Kolb, Kaifei Chen, Sam Kumar, Moustafa AbdelBaky, Kalyanara-
man Shankari and Hyung-Sin Kim were an endless source of ideas, discussions and advice
— I have learned so much from each of you. Albert Goto has been a constant through it all:
his friendship and support made many late nights and harrowing deadlines possible. The
graduate student communities in the Berkeley CS department and the Computer Science
Graduate Student Association have also been a wonderful support network over the years.

I have been extremely fortunate to work with very knowledgable, professional and caring
administrative staff over my time at Berkeley. Shirley Salanio and Jean Nguyen in the
department made sure I was on track to complete my degree, quickly answered any questions
I had, and helped me navigate various processes. Kattt Atchley and Boban Zarkovich in the
RISE lab always had the time to help me through reimbursements and getting paid, and I
enjoyed our conversations about music and food.

Many thanks are due to my collaborators in the Brick community, who have helped me
grow Brick into a recognized and increasingly adopted effort that is already influencing the
industry. Jason Koh, Dezhi Hong, Shreyas Nagare, Yuvraj Agarwal, Mario Bergés, Ambuj
Shatdal and Erik Paulson have each made unique and valuable contributions of their time,
experience and ideas, and Brick is better for it. I am also indebted to my other colleagues
who have collaborated with me on many grants, projects and papers: Therese Peffer, Paul
Raftery, Carlos Duarte, Anand Prakash, Marco Pritoni, Michael Wetter, Sascha von Meier,
Keith Moffat, Ed Arens, Hui Zhang, Joyce Kim, Tyler Hoyt and Carl Blumstein. Over

x

my PhD, I have been generously supported by the California Energy Commission, the U.S.
Department of Energy, the National Science Foundation, Johnson Controls, Intel and SRC.

I want to thank my family — Mom, Dad, Michael, Ollie, Ben, Angelo and Monica —
for providing respite, demonstrating interest in my research and keeping me sane over these
years. To my friends not mentioned above, Brandon, Karoun, Nathan, Ava and Max: I
would not have made it through this program without your friendship, humor and excellent
taste in food and music. Lastly, to Sonia, my partner in everything: thank you for the
unwavering support and compansionship. The best part of finishing my PhD is that I get
to experience that with you.

1

Chapter 1

Introduction

The built environment — the buildings, utilities, infrastructure, cities and other constructed
elements of the anthropocene — is becoming increasingly digitized. The complex array of
equipment, sensors and other devices in these environments constitute cyberphysical systems
which produce an incredible volume of data. This data enables a broad family of data-
driven use cases across many sectors of the built environment enacting energy efficient and
resilient operation: monitoring, analysis and grid-aware control of buildings [127, 148, 137,
111]; smart grids and distributed energy resources [132, 78]; and fault detection, predictive
maintenance and advanced controls for water treatment [5, 135, 34]. Despite the benefits of
these kinds of data-informed applications, most are not widely adopted due to the prohibitive
cost of accessing and understanding cyberphysical data [57].

Cyberphysical data is hard to access and understand because of the extreme heterogeneity
and scale of the built environment: essentially every cyberphysical system is a custom-
built “one-off” collection of equipment, devices and data sources that has been continually
operated, retrofitted, expanded and maintained over years or even decades. The processes
implemented by cyberphysical systems are diverse, complex and can be enacted in a number
of ways. Buildings alone contain different subsystems for heating, cooling, ventilation and
transporting different kinds of water, air, refrigerant and other substances, in addition to
fire, security, lighting and other facility management systems. Each of these subsystems can
contain 10s or 100s of pieces of equipment, each monitored and controlled through a variety
of sensors and actuators from different manufacturers and speaking different protocols.

Heterogeneity presents a challenge for the development and deployment of software in
cyberphysical settings. Each cyberphysical system is so different that software must be
written with specific knowledge of the structure, composition and function of the particular
cyberphysical system at hand. However, there is no standard representation of these systems
that can facilitate such an understanding. The cyberphysical data required by applications
is poorly labeled, often following ad-hoc naming conventions that usually do not contain
machine-readable information about the source, context or significance of the data. Data
scientists already spend upwards of 40% of their time gathering, cleaning and understanding
data [68]. This task is further impeded by a lack of standard representations that encode

CHAPTER 1. INTRODUCTION 2

this metadata in a structured manner [112, 64, 19, 4]. Without such representations, the
rollout of energy efficiency and other data-driven measures involves customizing software
implementations to each potential deployment site.

This thesis proposes a method for the mass-customization of data-driven cyberphysical
software. Applications will be able to query their environment for the contextual clues and
metadata that they need to customize their own behavior, i.e. to choose an appropriate
algorithm to run or model to train based on the kind of cyberphysical system deployed and
the data that is available. Such self-adapting software requires rich, semantic and machine-
readable descriptions of the built environment that can represent the necessary information,
regardless of the complexity and uniqueness of the cyberphysical system. This chapter sum-
marizes how data is usually managed for cyberphysical systems, including current practices
for metadata in the built environment. Then, the chapter identifies four key challenges to
realizing self-adapting software and presents the central thesis statement and roadmap.

1.1 Software for Cyberphysical Systems

The intent of cyberphysical software is to extract data about the physical world in order to
inform some decision-making process. Data may inform diagnostic or descriptive processes,
such as dashboards displaying the current status of a system or alarms which detect faults
or errors within the system. Data may also drive prescriptive processes that use models
to predict when equipment will break or inform a control decision about how to achieve a
certain goal. The digitization of cyberphysical systems, a phenomenon sometimes referred
to as the “industrial internet of things”, will increase both the variety and availability of
data. This presents new opportunities for innovative uses of data across many sectors of the
built environment: from building management to smart grids to renewable energy resources
to water management and transportation.

At the same time, the characteristics of cyberphysical systems are such that making ef-
fective use of data requires a substantial investment of time, money and technology. The
networked infrastructure that allows data to be collected and commands to be sent to actu-
ators is designed around the constraints of the small, primitive controllers and sensors that
are embedded in the physical world. Historically, in these settings, memory and storage
space is at a premium. Any available space is mostly devoted to storing programmable logic,
data registers and mechanisms necessary to implement an industrial communication protocol
such as BACnet, Modbus, LonTalk or OPC. The protocol handles the receipt and delivery
of data to and from the sensors and controllers in the environment. Metadata, the data that
describes the data sources, is usually an afterthought.

Consequently, cyberphysical systems rarely support more than a simple text field for
capturing the name or description of each data source. These names are often the only
available descriptions of the data sources, and are sometimes the only available metadata
about the entire cyberphysical system. The structure of these names is idiosyncratic and
follow ad-hoc conventions and idioms which are site-specific and often inconsistently applied.

CHAPTER 1. INTRODUCTION 3

Data

CPS Application

Reconfiguration
Reimplementation

Data

CPS Application

Reconfiguration
Reimplementation

Data

CPS Application

Reconfiguration
Reimplementation

Data

CPS Application

Reconfiguration
Reimplementation

Figure 1.1: Current practice: deploying software to different sites requires re-implementing
and re-configuring the software for each site

These names must serve as the digital “breadcrumbs” that allow an application developer
to find the data sources they need. However, due to the lack of structured information,
correctly and completely interpreting the names is a manual, time-consuming and error-
prone task. This task is difficult to perform without an expert-level knowledge of how kinds
of cyberphysical systems work and how the installer of the system decided to name the
data [27, 25, 82, 131].

The lack of structured metadata has a significant impact on how software is written for
cyberphysical systems. The complexity and uniqueness of cyberphysical systems means most
software is authored for a particular cyberphysical system. Software uses hard-coded data
source names to fetch required telemetry during operation. The algorithm, model and other
aspects of the application are chosen with knowledge of how the deployment will look, what
data sources and actuators and controllers are available, and what kinds of computational
methods are the most appropriate. Most cyberphysical applications are written in this non-
portable manner. Deploying a particular application in a variety of environments requires
deriving an understanding of each environment, discovering the available data sources, and
rewriting the application logic accordingly (Figure 3.1) [84]. The result is that most data-
driven cyberphysical applications are not deployed at a large scale.

1.2 Thesis Question

Prior work calls for better, standard metadata which facilitates wider adoption of data-driven
cyberphysical applications [19, 4]. However, this vision has yet to be realized. This thesis
addresses fundamental barriers to enabling data-driven software for a variety of cyberphys-

CHAPTER 1. INTRODUCTION 4

ical systems by examining the relationship between how those systems are described and
how software is written for them. Specifically, how can we construct and manage seman-
tically rich, structured representations of complex cyberphysical systems which inform the
automated customization and configuration of software? To answer this question, this thesis
envisions a new paradigm, self-adapting software, in which software uses information about
its cyberphysical environment to discover relevant data and execute appropriate application
logic with minimal human intervention1.

1.3 Challenges for Self-Adapting Software

There are four challenges to realizing self-adapting software for cyberphysical system.

Challenge #1: Descriptions of Heterogeneous Environments

The foundation of self-adapting software is a digital representation of the built environment
that captures the information necessary for self-adaptation. These environments may contain
different kinds of equipment, connected in different ways to enact different physical processes
and are monitored and controlled in different ways. Despite this heterogeneity, software must
still be able to discover salient details without any external or human-driven intervention.
A key challenge is the definition of a metadata model that can effectively describe a variety
of cyberphysical environments. Which principles should inform the design of the metadata
model, and how should the model be expressed and queried?

Challenge #2: Effective Programming Model

Given the potential complexity of the cyberphysical systems at hand, it is not obvious how
self-adapting software should be written. Traditional programming techniques for cyber-
physical systems are still dominated by so-called “expert systems” which use if-then rules to
express application logic, despite these practices falling out of mainstream use in other sec-
tors [65]. This produces rigid programs that are constructed around the needs of a particular
environment. The rich and detailed digital representations of cyberphysical environments
will require a more expressive programming model. What does this programming model
look like, and how can it make effective use of the available metadata?

Challenge #3: Metadata Management Over Time

Change is inevitable. Digital representations must be kept up-to-date with the cyberphysical
environments they describe, and software must be able to make use of emerging information.
Furthermore, the digital representations enabling self-adapting software must be created in
the first place. A challenge for self-adapting software systems is how to bootstrap and

1More complete definitions of self-adapting software are examined in Chapter 3 and later in Chapter 5.

CHAPTER 1. INTRODUCTION 5

maintain the metadata representations, and how to detect and incorporate any changes in
the environment into the model. What systems, protocols and techniques best support the
management of cyberphysical metadata over time?

Challenge #4: Metadata Management At Scale

The value of self-adapting software is its potential to enable the adoption data-driven prac-
tices at the scale of thousands or even millions of environments, each with their own unique
structures and representations. The databases, query processors and application runtimes
that support self-adapting software must be built to accommodate heterogeneity at scale.

This dissertation argues that existing barriers to widespread adoption of software-driven
sustainable practices can in part be overcome through the adoption of rich, semantic meta-
data. This presents challenges for the form, curation and maintenance of this metadata, and
raises questions for how to effectively program against this metadata. This work proposes
new semantic metadata management practices and techniques, a new programming model
— self-adapting software — and novel data platforms which address these challenges.

1.4 Approach and Thesis Roadmap

To address these challenges and answer the thesis question, this thesis proposes the following:

• a linked-data ontology formally defining a graph-based data model for describing het-
erogeneous cyberphysical environments in buildings, and a set of ontology design prin-
ciples for future ontologies targeting other sectors of the built environment;

• new programming models for using graph-based metadata to author self-adapting ap-
plications;

• techniques and a system for continuously maintaining metadata models of cyberphys-
ical environments, even as those environments change;

• a data management system for storing, serving and managing metadata at scale.

These propositions are explored and evaluated over the following chapters.
Chapter 2 reviews the structure, composition and function of common cyberphysical

systems that are potential targets of self-adapting software. The chapter provides an overview
of current metadata practices for such cyberphysical systems, including recent academic and
commercial work, and identifies existing holes where those practices fall short of enabling self-
adapting software. The chapter summarizes ontologies and other linked data technologies
that underlie the metadata model developed later.

Chapter 3 uses the background knowledge covered in Chapter 2 to more precisely illus-
trate the intended approach to self-adapting software described in this thesis. An architec-
ture of a self-adapting software system is described, and the chapter outlines how each of
the challenges above are addressed by components of the architecture.

CHAPTER 1. INTRODUCTION 6

Chapter 4 covers the design and implementation of a linked data ontology, Brick, which
provides a semantically-rich and descriptive representation of cyberphysical systems in build-
ings. The chapter establishes crucial design principles that make Brick successful — inter-
pretability, consistency and extensibility — and demonstrates how current popular metadata
models fail to provide these properties. The chapter details how Brick implements these
properties using formal logic.

Chapter 5 presents the design of two different programming models for self-adapting
software: a staged execution model and an interactive execution model. The chapter explains
how the models operate and how they may be implemented. The efficacy of the staged
model is proved through the self-adapted execution of a family of representative data-driven
applications over many real-world buildings.

Chapter 6 discusses how semantic metadata can be managed and maintained over time.
The system presented in the chapter focuses on how this metadata can be inferred, mined
or otherwise extracted from existing digital representations. These representations may be
structured, semi-structured or unstructured. The chapter describes an algorithm which rec-
onciles differences between the metadata extracted from several representations and merges
these into a single, cohesive, model supporting self-adapting applications. The chapter
presents the implementation of this approach in a real system and the evaluates its behavior
on a set of real-world environments.

Chapter 7 presents two systems which support the storage, management and serving of
metadata models and timeseries data to support self-adapting applications. reasonable is a
software package which abstracts away the computationally expensive and time consuming
components of ontology management behind a simple and performant interface. This facili-
tates the incorporation of linked data into existing databases. The second system, Mortar,
is a data platform which hosts semantic metadata and timeseries data together to support
data-driven and self-adapting analytics.

Chapter 8 reflects on how Brick, Mortar and other technologies and ideas described in
this thesis are influencing data-driven practices in academia, industry and standards bodies.

Chapter 9 presents future work and conclusions, including a discussion on what other
sectors of the built environment could be served by technologies like Brick and Mortar.

7

Chapter 2

Background

This chapter provides necessary background on cyberphysical systems in the built environ-
ment and the linked data technologies that will be leveraged to effectively describe them.

2.1 Cyberphysical Systems in the Built Environment

Cyberphysical systems, typified by the “Internet of Things” are engineered systems that are
embedded in the physical world and provide networked sensing and actuation capabilities.
These kinds of systems are ubiquitous in many facets of the built environment, including
building operations and management, water transportation and treatment, power grid oper-
ations and transportation system management.

Above all, cyberphysical systems are characterized by extreme heterogene-
ity: any given cyberphysical system is an idiosyncratic assembly of equipment and other
devices that has been custom-designed for a particular physical deployment. Cyberphysical
systems are also constantly evolving. This is true both in the sense that recently designed
cyberphysical systems often use newer and more efficient equipment and processes, but also
in the sense that deployed cyberphysical systems experience repairs and retrofits that affect
their composition and behavior.

This section provides a high-level overview of the kinds of cyberphysical systems that will
be studied in this dissertation — primarily those in buildings — and reflect on how these
systems characterize the challenges addressed by this work.

Cyberphysical Systems in Buildings

Buildings provide an excellent case study of the heterogeneity and complexity of cyberphys-
ical systems. Modern buildings are often composed of several different subsystems, which
each fulfill a distinct purpose.

CHAPTER 2. BACKGROUND 8

Figure 2.1: Figure A-2 from ASHRAE’s Guideline 36 [73], depicting a prototypical Variable
Air Volume box with reheat capability.

HVAC Subsystems

Heating, Ventilation and Air Conditioning (HVAC) subsystems manage the heating, venti-
lating, or air conditioning processes within a building. These systems vary widely in their
construction and in the physical processes they use to achieve their goal, but there are several
broad features that are common to most. The primary goal of HVAC systems is to heat, cool
and ventilate spaces in the building. This can be accomplished using a number of physical
mechanisms, the most common of which heats and cools the air supplied to different parts of
the building (so-called “air-based HVAC”). This requires equipment to distribute and con-
trol the flow of the air, such as fans and dampers, which are often independently monitored
and controlled using sensors embedded in the building and air distribution system. There
are many different processes for heating and cooling air, most of which involve introducing
a heat exchanger into the stream of air. Heat exchangers may be electric or gas-powered,
or they may use hot or cold water which is supplied by distinct subsystems referred to as
“hot water” and “cold water” loops. “Radiant systems” are an alternative design in which
hot or cold water is pumped through pipes embedded in concrete slabs which then radiate
or absorb heat to modulate the temperature in a space.

Each of these HVAC functions can be provided by a variety of equipment. Some major
types of equipment include:

• Air Handling Units (AHUs): a large unit often containing dampers, fans or blowers,
filters, heating and cooling elements that regulates and conditions air that is supplied
to a building via connected ducts. AHUs are typically part of large HVAC installations.

• Terminal Unit: a smaller unit, typically downstream of an AHU, that regulates air
volume, temperature or both and is connected directly to spaces in the building. A

CHAPTER 2. BACKGROUND 9

Variable Air Volume box (VAV) is one common flavor of terminal unit (Figure 2.1)
which incorporates a damper to regulate air volume.

• Rooftop Units (RTUs): a unit that contains all or most of the functionality of an AHU
and VAV system, but in a single “packaged unit”. Typically installed in small and
medium-sized office buildings and is connected to a thermostat

The choice of equipment for a particular HVAC system depends on the needs of the build-
ing, including floor area, climate and projected occupancy. There are also many potential
differences between equipment of similar classification (e.g. VAV). Manufacturers may in-
corporate different sensors, mechanisms, actuators and technologies into their equipment in
order to provide more efficient operation or advanced control and fault detection strategies.

The behavior of HVAC systems is governed by a variety of control mechanisms, ranging
from simple schedules to “sequences of operations” to advanced data- and model-driven
optimal controllers. In all cases, HVAC systems make use of a variety of sensors which
report the physical state of the system (such as the temperature and volume of air flowing
to a room) and setpoints which constitute the targets or bounds of a controllers activity.
Sequences of operations, such as those described in ASHRAE Guideline 36 [73], lay out
precise rules for how to actuate components of an HVAC system in response to different
relationships between sensed and measured values, and control setpoints.

Lighting Subsystems

Lighting subsystems serve many different roles, including exit lighting and fulfilling mini-
mum levels of illumination for different occupant activities. These systems consist mostly of
luminaires, which are devices consisting of a lighting element and enclosure. Luminaires are
powered by drivers, which may regulate voltage and connect to a networked control system.
Similar to HVAC, lighting control systems may operate on a simple schedule with manual
control overrides (i.e. a wall switch for lighting, thermostat for HVAC). Advanced lighting
systems operate by measuring illumination and sensing occupancy in the spaces served by
one or more luminaires, and controlling lights and lighting fixtures to meet control targets
or save energy.

Water Subsystems

Buildings contain several kinds of water systems, which typically consist of non-overlapping
groups of equipment and are often siloed from one another.

• Chilled Water Loop: water is chilled through some mechanism (such as evaporation, or
external coolant), and distributed throughout the building. In many HVAC systems,
valves control water flow into coils placed in the air stream; modulating the valve in
response to sensed water and air temperature allows fine-tuned control of downstream
air temperature

CHAPTER 2. BACKGROUND 10

• Hot Water Loop: water is heated through some mechanism and distributed throughout
the building. Similar to chilled water loops, valves control the flow of hot water into
coils placed in the air stream.

• Irrigation: water, from many potential sources, is distributed around a site or building
in order to water plants. Water usage is metered and irrigation typically occurs on
some schedule. Occasionally, sensors are deployed which provide feedback on the pH
and hydration of soil

• Plumbing: water supplying bathrooms, kitchens and other human-facing building as-
sets is also distributed and metered

Each of these systems incorporates a variety of sensors, setpoints, alarms and actuators
which are used to drive controllers and user interfaces.

Electrical Subsystems

Electrical subsystems transform and transport electricity which is used to power the equip-
ment involved in the above subsystems, as well as the multitude of electrical assets contained
within the building. The lowest common denominator for electrical subsystems is the wiring
supplying AC power to building assets, and the meter attached at the point between a build-
ing and the electric grid, which meters the amount of electricity flowing in either direction
for the primary purpose of charging for usage.

Inside buildings, the electrical subsystem can be thought of as a tree with the main
building meter as the root, and submeters and electrically-powered assets as the children.
Submeters may be installed to independently monitor subsystems in the building; for example
a submeter may measure all electricity used to power the HVAC system, or even just the
chilled water loop.

The increasing penetration of renewable energy resources deployed at building sites —
such as photovoltaic arrays and geothermal systems — in addition to the growing adoption
of electric vehicles has introduced new families of supporting equipment which may be found
at a site. These include inverters, voltage regulators and different kinds of batteries.

Spatial “Subsystems”

The set of logical, physical and administrative spaces that make up a building are not a
“subsystem” in a traditional sense, but it is useful to treat these concepts as if they were
a complex arrangement of equipment. Familiarly, buildings can be broken down into floors
and rooms, but there are common concepts that do not fit cleanly into this formalization:
what floor do stairs, elevators and atriums reside on? Is each cubicle in an office space its
own room? Rooms can have many different uses, depending on the time of day, day of the
week, time of the year or even the occupant or owner of a room.

CHAPTER 2. BACKGROUND 11

Figure 2.2: Small, representative building consisting of an AHU (blue), 2 VAVs (green), and
2 HVAC zones consisting of rooms and lighting zones (red).

Spaces in the building fall into logical groups — called zones — which are defined by
their relationship to particular subsystems. An HVAC Zone is a collection of spaces that
are all served by the same segment of an HVAC system, such as a VAV. A Lighting Zone
is the collection of spaces that are illuminated by the same light bank. A Fire Zone is a
subsection of the building which can be isolated from the rest of the building with fire wall
and fire doors that help contain fires and assist in firefighting.

Zones and spaces interact in complex ways: it is not unusual for a space to contain
multiple lighting zones, but be contained within a single HVAC zone. Additionally, spaces
may be a subset of multiple HVAC zones.

In addition to the above, buildings also contain fire safety subsystems, security subsys-
tems, navigation subsystems and many other assemblies of often digitized equipment, sensors
and controllers that assist in the operation of a building. Each of these has their own array
of dedicated, bespoke equipment and control systems.

Networked Monitoring and Control Systems

Building subsystems are controlled and monitored as networked systems. Networked sensors
provide real-time data to both local and supervisory controllers. Local controllers, often
placed on programmable logic controllers (PLCs), handle direct actuation of components
such as valves, dampers and fans. This is in service of closed loop control, in which ob-

CHAPTER 2. BACKGROUND 12

Figure 2.3: Screenshot of a recently-deployed (2̃009) building management system

servations from the environment influence future control actions in order to meet a control
target, commonly called a setpoint. Common examples of closed loop control include tem-
perature control: a controller calls for heating or cooling of supplied air in order to adjust
the temperature.

Local controllers receive control targets from networked, supervisory controllers which
send commands to devices over the network and monitor the status of devices and the values
of sensors. Supervisory controllers commonly implement schedules, but can also coordinate
the behavior of groups of devices to implement advanced control strategies.

Building Management Systems (BMS) are networked, digital control systems that imple-
ment supervisory control and provide programming environments and graphical user inter-
faces that facilitate the management of the building. These interfaces (Figure 2.3) illustrate
the current state of equipment and offer configuration of schedules, direct override control
of devices, and often simple trending and fault detection capabilities. A 2018 survey of U.S.
commercial buildings found that 70% had digital HVAC controls and 50% had digital lighting
controls [86]. This is up from the 10% of commercial buildings in the U.S. in 2005 [29]. How-
ever, the adoption of automated fault detection and building energy management systems
was only 4%. BMS speak using protocols such as BACnet [14] and LonTalk.

Relevant to the work in this paper, each subsystem in a building may have its own
BMS. These BMS are usually installed at different times, by different companies, and may

CHAPTER 2. BACKGROUND 13

speak different protocols. Systems deployed in this way are said to be siloed. This presents
integration challenges for any users of the system — human or software.

Supervisory Control and Data Acquisition (SCADA) systems are a common example of
digital control systems that are not BMS. SCADA systems speak protocols such as Mod-
bus [96], and are commonly found implementing industrial processes such as water manage-
ment and manufacturing.

In contrast with the planned and designed nature of BMS and SCADA are the networked
devices typical of the Internet of Things. These devices are deployed in a piecemeal and ad-
hoc fashion, but implement a wide array of functionality and are being deployed at an
increasing rate. Examples of IoT devices include temperature, CO2 and other sensors,
thermostats, lights, plug load controllers, blenders, televisions, refrigerators and even beds
and toasters. The promise of IoT is in ensembles of smart devices that can collaborate
to save energy, increase comfort, or provide other automated conveniences. However, in
practice, the IoT is plagued by fragmentation at the physical network level (devices may
speak Bluetooth, WiFi, Zigbee, Enocean, Thread or any one of a number of other physical
layers), network level and application level; this results in even more dramatic siloing than
is found within the BMS domain. Industrial collaborations such as Connected Home Over
IP [161] aim to standardize the application layer so that devices from different manufacturers
may communicate.

2.2 Definitions

The following terms are used throughout the thesis and are defined here for clarity.

Definition 2.2.1 (Metadata). Metadata for cyberphysical systems comprises the digital rep-
resentations and descriptions of the structure, composition, identity and functionality of
cyberphysical systems, as well as their composing elements.

Definition 2.2.2 (Metadata Representation). A metadata representation is a data model,
schema, standard or convention which defines the structure, syntax and/or semantics of
the metadata that can be expressed. Structure is the organization of metadata into data
structures, objects and relationships. Syntax is the encoding and rules for how that metadata
can be expressed and communicated. Semantics is the use of logical rules and statements to
encode the “meaning” of metadata.

Definition 2.2.3 (Metadata Model). A metadata model is an instance of a metadata rep-
resentation. It contains the metadata for a particular site, deployment or other scoped col-
lection of “stuff”.

Definition 2.2.4 (Tag). A tag is an atomic fact, annotation or attribute consisting of and
identified by a simple textual label.

CHAPTER 2. BACKGROUND 14

Definition 2.2.5 (Entity). An entity is an abstraction of any physical, logical or virtual
item; the actual “things” in a building.

Definition 2.2.6 (Tag Set). A tag set is an (unordered) set of tags associated with an entity.

Physical entities are anything that has a physical presence in the world. Examples are
mechanical equipment such as air handling units, variable air volume boxes, luminaires and
lighting systems, networked devices like electric meters, thermostats and electrical vehicle
chargers, and spatial elements like rooms and floors.

Virtual entities are anything whose representation is based solely in operational software,
such as a BMS or SCADA system. Examples are sensing and status points that allow software
to read the current state of the world (such as the current temperature of air, the speed of a
fan, or the energy consumption of a space heater), and actuation points which allow software
to write values (such as temperature setpoints or the brightness of a lighting fixture).

Logical entities are those entities or collections of entities that are defined by a set of
rules. Examples are HVAC zones and Lighting zones. Concepts such as class names and
tags also fall into this category.

2.3 Metadata for Cyberphysical Systems

It has been said that “All models are wrong, but some are useful” [28]; this is as true
for digital representations of cyberphysical systems as it is for the statistical models that
are the subject of the original statement. The only “complete” or “correct” representation
of a cyberphysical system is one that is 1-1 with both the digital (“cyber”) and physical
worlds. The intractability of such a model means that the metadata representations that
are the study of this thesis are necessary simplifications. The effective design of a metadata
representation of a building is rooted in choosing appropriate simplifications and abstractions
that best support the intended use cases [54]. This section reviews prevailing approaches
for metadata for cyberphysical systems and discusses their advantages, shortcomings and
trade-offs.

Prevailing Metadata Representations for Buildings

Metadata representations for buildings capture different perspectives and levels of detail on
buildings, their control systems, their subsystems, and the components therein. The intended
use cases of a metadata representation inform the particular structure, syntax and semantics
of the representation. One convenient way to categorize these perspectives is through the
lens of the building lifecycle.

A Building Lifecycle Framing

The lifecycle of a building can be separated into several stages, each with their own partici-
pants, stakeholders and — importantly — metadata representations. Most existing research

CHAPTER 2. BACKGROUND 15

CommissioningConstructionDesign Operation

Maintenance

Audit

IFC, gbXML,
CDL, Modelica

IFC, gbXML,
CDL

BMS,
Haystack,
CDL, Brick

Brick,
Haystack

BuildingSync

Small
Retrofit

Large Retrofit, Renovation

IFC, gbXML

Figure 2.4: Different metadata representations used over the course of a building’s lifecycle

into the building lifecycle uses a two or three stage categorization [143, 125] consisting of a
design and construction phase, an operational phase, and a demolition or end-of-life phase.
This discussion further subdivides the building lifecycle in order to call attention to the
different metadata representations used.

Figure 2.4 presents a building lifecycle, with each stage represented as a box with
commonly-used metadata representations. Briefly, these stages are:

• Design: During the design phase of a building, decisions are made about the layout,
architecture and composition of the building and its subsystems, given specifications
about the intended use and occupancy of the building.

• Construction: During the construction phase of a building, the design specifications
from the prior phase are executed and realized in the physical world.

• Commissioning: During the commissioning phase of a building, sequences of op-
erations for building subsystems are designed and implemented, and the building is
measured to evaluate whether it meets the design specification as laid out in the de-
sign phase.

• Operation: The operational phase of the building consists of the use of the building
and the operation and management of its subsystems. Typically the operational phase
of the building is the longest.

• Maintenance: Buildings may undergo maintenance when the building is not operating
as expected, for example due to broken equipment.

• Auditing: (Energy) audits are formal processes that evaluate the performance of a
building relative to external standards or guidelines. Audits are typically conducted
at regular intervals of a building’s lifespan. For example, buildings in New York City
over 50,000 square feet must be audited every 10 years [159].

CHAPTER 2. BACKGROUND 16

1 #114= IFCPOSTALADDRESS($,$,$,$,('Enter address here'),$,'2087 Addison St','Berkeley','',

2 'CA 94704');

3 #118= IFCBUILDING('1W9$dXIRj77hKpdvvBeVIz',#41,'',$,$,#32,$,'',.ELEMENT.,$,$,#114);

4 #124= IFCCARTESIANPOINT((0.,0.,-20.));

5 #126= IFCAXIS2PLACEMENT3D(#124,$,$);

6 #275062= IFCRELCONTAINEDINSPATIALSTRUCTURE('2p7RyAcN5DYP3YLiEj0ALn',#41,$,$,(#249085),#3066);

7 #269932= IFCSITE('1W9$dXIRj77hKpdvvBeVI_',#41,'Default',$,'',#269931,$,$,.ELEMENT.,

8 (37,52,16,47363),(-122,-16,-6,-549682),0.,$,$);

9 #131= IFCAXIS2PLACEMENT3D(#6,$,$);

10 #132= IFCLOCALPLACEMENT(#32,#131);

11 #133= IFCBUILDINGSTOREY('1W9$dXIRj77hKpdvwqNWjI',#41,'Level 1',$,$,#132,$,'Level 1',.ELEMENT.,0.);

12 #135= IFCCARTESIANPOINT((0.,0.,17.1666666666667));

13 #137= IFCAXIS2PLACEMENT3D(#135,$,$);

14 #138= IFCLOCALPLACEMENT(#32,#137);

15 #139= IFCBUILDINGSTOREY('1W9$dXIRj77hKpdvwqNYsM',#41,'Level 2',$,$,#138,$,'Level 2',.ELEMENT.,

16 17.1666666666667);

17 #141= IFCAXIS2PLACEMENT3D(#6,$,$);

18 #142= IFCLOCALPLACEMENT(#132,#141);

19 #144= IFCCARTESIANPOINT((3.55271367880050E-15,-8.88178419700125E-15));

20 #146= IFCAXIS2PLACEMENT2D(#144,#23);

21 #147= IFCRECTANGLEPROFILEDEF(.AREA.,$,#146,9.33333333333333,14.5116423880952);

Figure 2.5: Part of an IFC representation of a small, 2-story office building in Berkeley, CA

Issues uncovered during maintenance or auditing may result in retrofits, which may be as
minor as updating control sequences and installing new equipment, or as major as adding/re-
moving rooms or replacing the entire HVAC system. Retrofits experience the same broad
phases of the building lifecycle, and often make use of the same metadata representations.

Building Information Modeling

Building information modeling (BIM) is a broad category of metadata representations that
are designed to capture and communicate the properties of buildings, subsystems and con-
stitutent equipment that are relevant for the design and construction phases of the building
lifecycle. BIM representations commonly store the geometry of the building and its compo-
nents, but can also capture the layout and connection of pipes, wires and other connections
between equipment. The two major metadata standards for BIM are IFC and gbXML.

Industry Foundation Classes

Industry Foundation Classes (IFC) [1] is a standard format and data model for the exchange
of data related to the design and construction of a building. This includes equipment and
other assets, basic telemetry, wiring and connections between equipment, and the geometry
and architecture of the building and its components. The IFC standard describes many
common types of HVAC and lighting equipment as well as the sensors dispersed throughout
the building.

CHAPTER 2. BACKGROUND 17

IFC models do not capture the context of the equipment contained within. For example,
an IFC model will contain a representation of the many fans in a particular building, but
will not directly represent the configuration of those fans. The representation of a fan
installed in a supply configuration (blowing air into a zone) will be indistinguishable from
the representation of a fan installed in an exhaust configuration (blowing air out of a zone).
A human expert looking at the IFC model will be able to differentiate the two configurations
based on their familiarity with supply and exhaust systems, but the IFC model itself does
not label the fans as such.

IFC models are expressed in the EXPRESS format (Figure 2.5), which presents chal-
lenges for integration with external tools. There are current efforts to develop more usable
representations of IFC models, such as using RDF and OWL [115].

Green Button XML

Green Button XML (gbXML) [60] is an XML-based data model for the exchange of BIM data.
gbXML focuses on capturing the 3D geometry of the equipment and spaces in a building.
In constrast to other BIM representations like IFC, gbXML provides contextual information
about a building’s components by grouping related equipment and spaces together (Fig-
ure 2.6). The XML tags, attributes and enumerated values defined by the gbXML standard
also include more contextual information about how building components are connected and
configured.

Modelica

Modelica is a declarative, equation-based modeling language used to describe engineered
systems [97]. Modelica decomposes systems into modular objects — defined by the user or
in external libraries — which are coupled to each other to form systems (see Figure 2.7). The
connections between Modelica components are objects themselves, and can have properties
attached to them. Connections represent input and output ports for control signals as well
as physical ports, such as the valve flange through which fluid flows. A model created with
Modelica can be used for simulations of different system configurations, control strategies
and equipment. Modelica’s use is not limited to buildings, and many different libraries are
available which define modular components for different domains. The Modelica Buildings
Library [150] defines common component and system models for building and district energy
and control systems. However, it is possible to define new or extend existing Modelica
components for buildings that are not contained in the library.

Control Description Language

The Control Description Language (CDL) is a subset of Modelica used to express control se-
quences for building automation systems in a digital and vendor-independent manner [149].
By standardizing the representation of control sequences, CDL aims to facilitate the design,
specification, deployment and verification of common and emerging control strategies [151].

CHAPTER 2. BACKGROUND 18

1 <AirLoop id="West2" systemType="VariableAirVolume" controlZoneIdRef="aim19233">

2 <Name>Air loop</Name>

3 <Description>West exterior system using schedule 'FanSch-17' on the bottom floor

4 interior system using schedule 'FanSch-17' on the bottom floor </Description>

5 <TemperatureControl>

6 <MinTemp unit="C">11.1</MinTemp>

7 <MaxTemp unit="C">48.9</MaxTemp>

8 </TemperatureControl>

9 <AirLoopEquipment id="West2-Equip-8" equipmentType="Duct">

10 <Name>3.5" wg static VAV duct system</Name>

11 <Description>3.5" wg static pressure duct system</Description>

12 <DeltaP unit="Pascals">-870.799987792969</DeltaP>

13 <Cost>4.1</Cost>

14 </AirLoopEquipment>

15 <AirLoopEquipment id="West2-Equip-2" equipmentType="Fan">

16 <Name>Std VAV Fan with variable speed drive (VSD)</Name>

17 <Description>Forward curved fan and premium efficiency motor typically used

18 for larger packaged and AHU equipment.</Description>

19 <OperationSchedule scheduleIdRef="FanSch-17" />

20 <MinFlow unit="Fraction">0.3</MinFlow>

21 <DeltaP unit="Pascals">870.799987792969</DeltaP>

22 <Power powerType="Electricity" useType="Both" />

23 <Efficiency standardsType="NEMA" operationType="HeatingAndCooling"

24 efficiencyType="MotorEff">0.93</Efficiency>

25 <Efficiency standardsType="No Defined" operationType="HeatingAndCooling"

26 efficiencyType="MotorEff">0.75</Efficiency>

27 <Control controlType="Fan" stages="Variable " />

28 <Cost>0.733</Cost>

29 </AirLoopEquipment>

30 </AirLoop>

Figure 2.6: Part of an gbXML representation of a “big box” retail store. The AirLoop tag
contextualizes a set of equipment for a particular segment of the HVAC system supplying
air to a zone

CDL sequences can be integrated with building models expressed in Modelica, permitting
the simulation and evaluation of control sequences before they are deployed on actual hard-
ware In fact, the Modelica Buildings library already contains CDL representations of high
performance HVAC control sequences. CDL-driven simulations enable comparing the per-
formance different control sequences, testing their correct specification, and commissioning
their correct implementation in buildings.

Building Management System Metadata

In contrast with the structured and standardized representations detailed above, the meta-
data found in building management systems largely consists of ad-hoc text labels for the
telemetry “points” that are exposed from the underlying digital control system. These la-
bels are often rendered on a web interface (see Figure 2.3) that is exposed to a building
or facility manager. Because these labels are simple strings, their structure is sometimes
(but not always) informed by a site- or vendor-specific naming convention often consisting

CHAPTER 2. BACKGROUND 19

Figure 2.7: Graphical representation of part of a Modelica model representing a VAV with
reheat capability, sourced from the Buildings Library [150]. Modelica also supports exporting
to a JSON-based format [98].

of abbreviations describing related components or relevant features (Figure 2.8). These la-
bels have several limitations. First, the lack of a standard structure (between BMS, and
sometimes even within a BMS) means that it is difficult to extract any metadata about
the building in a structured manner. Conventions and idioms are rarely written down, are
inconsistent between systems (even those from the same vendor), or may not exist at all for
a particular site. Second, the point labels only exist for sources of telemetry and control
signal sinks, and do not describe the actual structure of the building subsystem they are
monitoring or controlling.

As an example, consider a real BMS point label from the Computer Science department
building on the UC Berkeley campus: SODA1R410 ART [25]. This label contains several
pieces of metadata. First, the type of the point is communicated by the ART substring: a
room air temperature sensor. The name of the room is given by R410; R identifies that
the identifier 410 is for a room. Next, the name of the AHU supplying air to the room is
denoted by A, and the identifier points out that AHU 1 is upstream of this room. Lastly,
SOD indicates which building the sensor, room and AHU are located in.

Project Haystack

Project Haystack1 is a commonly-used tag-based metadata scheme for buildings that uses
atomic tags and key-value pairs in place of unstructured labels to describe buildings, equip-
ment and points [118]. A Haystack model of a building consists of a set of documents — one

1Commonly abbreviated as “Haystack”

CHAPTER 2. BACKGROUND 20

Figure 2.8: Snippet of a document detailing point naming conventions for a particular BMS
vendor

1 id: 'd83664ec RTU-1 OutsideDamper'
2 air: X
3 cmd: X
4 cur: X
5 damper: X
6 outside: X
7 point: X
8 regionRef: '67faf4db'
9 siteRef: 'a89a6c66'

10 equipRef: 'd265b064'

Figure 2.9: A damper position command point described using Haystack tags, as seen in the
Carytown reference model

for each equipment or point entity associated with the building. Each document consists of
a number of “marker tags” and “value tags”. “Marker tags” indirectly describe the entity’s
type and behavior by virtue of their association. “Value tags” which are key value pairs
that communicate properties of entities and links between entities. Figure 2.9 contains an
example of one of these documents; field names to the left of the colon are tag names. Tags
with a X value are marker tags; all other tags are value tags.

The intent of marker tags is to provide a “type” for an entity: AHUs have the ahu and
equip tags, zone temperature sensors have the zone, temp and sensor tags. The current
release of Haystack defines a dictionary of over 200 marker tags, which can be combined and

CHAPTER 2. BACKGROUND 21

AHU1A

VAV2-4 VAV2-3

VAV2-4.DPR VAV2-4.ZN-T VAV2-4.SUPFLOW VAV2-4.SUPFLSP

VAV2-3Zone

Room 410

Room 411

Room 412

VAV2-4.DPRPOS

Air Handling Unit

Variable Air Volume Box

Damper

Supply Air Temp Sensor

Supply Air Flow Sensor

Supply Air Flow Setpoint

HVAC Zone

Room

Damper Position Setpoint

feeds feeds

hasPart

hasPoint hasPoint hasPoint

hasPoint

feeds

hasPart

Point class

Location class

Equipment class

Brick Entity

Brick Ontology
definition

Variable Air Volume Box

Brick model of
building instance

Figure 2.10: Simple, representative Brick model

re-combined to describe different entity types. Users of Haystack can also define custom tags
to fill the gaps in the pre-defined dictionary. The resulting flexibility of the model comes
at the cost of consistency and interpretability; these issues will be discussed in-depth in
Chapter 4.

Value tags associate scalar values with entities. The curVal value tag associates the
current value of a point with an entity; other value tags capture timezones, engineering units
and geo-coordinates. An important kind of value tag is a “ref tag”. A ref tag describes a
relationship between two Haystack entities. The particular tag name describes the kind of
entity that the relationship points to. Haystack’s tag dictionary defines several ref tags for
common use: equipRef associates a Haystack point entity (indicated by the point tag) with
an equipment entity (indicated by the equip tag), ahuRef associates a VAV or chiller entity
with an AHU, elecMeterRef associates a piece of equipment with an electric meter, and
siteRef associates an entity with a site.

Brick: Semantic Metadata for Buildings

Brick [16, 54], developed as part of this thesis work in collaboration with others, is a semantic
metadata ontology describing building entities and the relationships between them for the
purpose of enabling data-driven applications. Brick defines a broad set of classes capturing
common types of equipment (from HVAC, lighting and electrical subsystems), locations and
points. The set of classes are informed by an empirical study of the concepts that are
referenced in real building applications [26].

Brick also defines a minimal set of relationships that capture the semantics of how entities
relate to one another. Broadly, these relationships encompass composition (how equipment

CHAPTER 2. BACKGROUND 22

and sytems are made up of other components), topology (how equipment are connected
within a system) and telemetry (how data sources relate to equipment and systems).

A Brick model of a building is a directed labeled graph where the nodes represent entities
and the edges represent relationships between entities. Entity types and the relationships
between entities use the vocabulary defined by Brick. Figure 2.10 contains an example of a
small Brick graph, comprising an AHU and two VAVs. One VAV has an internal damper, and
the other VAV feeds an HVAC zone consisting of two rooms. The model also incorporates
telemetry associated with each of the equipment.

2.4 Ontologies and Linked Data

Linked data models provide a means of representing entities and their properties and rela-
tionships in a much more flexible and extensible manner than traditional entity-relationship
data models: this constitutes a directed, labeled graph. This kind of flexibility is crucial for
modeling cyberphysical systems, which are heterogeneous in both their content (what kinds
of entities are present) and structure (what kinds of relationships exist between entities).
A further benefit of linked data models is that their semantics can be formalized through
the use of an ontology. In a linked data context, an ontology is a set of rules and axioms
which programmatically capture what kinds of information can be represented and derived
from a given linked data model. The process of deriving new information from the applica-
tion of rules to a linked data model is commonly referred to as materialization or inference.
This section presents relevant background on the RDF data model for knowledge graphs,
the OWL family of ontology languages and their companion technologies which together
constitute the “semantic web stack”.

RDF Data Model

The Resource Description Framework (RDF) data model represents directed, labeled
multigraphs. Graph nodes correspond to resources ; edges are directed and labeled with
the name of a property. This implements a flexible model in which the value of an entity’s
property can be another entity.

An RDF graph is defined as a set of triples. A triple is a 3-tuple specifying the content
of a <node, edge, node> segment of a graph. The first element of a triple is the subject
resource; the third element of a triple is the object resource; the second element of a triple
is the predicate which labels the relationship between the subject and the object from the
subject’s perspective (hence the directed nature of the graph). A triple thus has the form
<subject, predicate, object>. Figure 2.11 illustrates a generic triple both in a graphical
form and in a typical textual representation. RDF models can be serialized into a variety of
formats, including XML, JSON-LD, N-Triples and Turtle. In this thesis, figures containing
RDF graphs will either be depicted as a node-edge graph or in the Turtle format.

CHAPTER 2. BACKGROUND 23

<ns>:<value> <ns>:<value> <ns>:<value>

Namespace Value

Subject Predicate Object

Subject Object
Predicate

Figure 2.11: Generic RDF triple, consisting of a subject and object (nodes in a graph) and
a predicate (directed edge from subject to object)

Figure 2.12 shows how the RDF data model can be used to describe a cyberphysical
scenario consisting of a thermostat with an attached temperature sensor. Even without an
understanding of the brick:, example: and rdf: prefixes, the intent of each of the triples
is clear:

• Line 1 declares that a resource tstat ABC has a type relationship to the concept of a
Thermostat, i.e. tstat ABC is an entity that happens to be a thermostat.

• Line 2 (which shares the same subject as line 1) declares that the entity sen1 is a
“point” of the thermostat entity.

• Line 3 mirrors the structure of Line 1 to state that sen1 is a temperature sensor.

The elements of an RDF graph — the nodes and edges — are either IRIs or literals. An
IRI, or Internationalized Resource Identifier, is a Unicode-encoded Uniform Resource Identi-
fier (URI) as defined by RFC 3987 [47]; IRIs may but do not necessarily represent Internet-
hosted resources. Literals are atomic typed data such as strings, integers and floating-point
numbers. In RDF, IRIs can be used as subjects, predicates and objects but literals can only
be used as subjects and objects2. Formally, this means that an RDF triple t is a member of
the set

t ∈ (I × L)× I × (I × L)

where I is the set of all IRIs and L is the set of all literals.

2Many RDF databases and formulations constrain the use of literals to only objects, but this is an
artificial restriction. This restricted RDF model follows from an early intuition that introducing the ability
to make statements about literals, i.e. with literals in the subject position, would encourage bad modeling
practices where a literal is incorrectly used to refer to an entity: for example "Gabe" a foaf:Person rather
than berkeley:Gabe a foaf:Person.

CHAPTER 2. BACKGROUND 24

Subject Predicate Object

example:tstat_ABC brick:Thermostat
rdf:type

brick:Temperature_Sensorexample:sen1
rdf:type

brick:hasPoint

Triple

Figure 2.12: Simple RDF graph — depicted both graphically and textually — describing a
thermostat with an attached temperature sensor.

IRIs are organized into namespaces, which are common prefixes of groups of IRIs. An
IRI is a member of a namespace if that namespace is a prefix of the IRI. Typically, the
namespace of an IRI is all but the last component of an IRI path or all of the IRI except for
the fragment. Because IRIs can be quite lengthy (often in the tens of characters long), IRIs
may be abbreviated by factoring out the namespace to a common identifier.

The Brick ontology has a namespace of https://brickschema.org/schema/Brick#,
with a commonly used prefix of brick. This means that the Brick Thermostat concept’s full
IRI is https://brickschema.org/schema/Brick#Thermostat, but has an abbreviated form
of brick:Thermostat. The mapping from abbreviation to namespace is purely a construct
of RDF graph serialization and is used to simplify syntax. In this abbreviated form, the text
before the : is referred to as the prefix and denotes the namespace.

Sometimes it is useful to model complex values; for example, the value of a sensor may
have a timestamp, a scalar datum and the engineering units of the datum. Using IRIs and
Literals, this could be modeled as the following:

1 example:sensor rdf:type brick:Sensor ;
2 brick:hasValue example:sensorValue1 .
3 example:sensorValue1 brick:hasTimestamp "2021-04-14T00:00:00Z" .
4 example:sensorValue1 brick:units "degF" .
5 example:sensorValue1 brick:value 72.3.

However, this requires the generation of an IRI (example:sensorValue1 above) to refer to
the aggregate of a set of properties and property values. Blank nodes are a special kind
of IRI which act as an anonymous aggregate resource that groups the related information.
Blank nodes are identified by a prefix of and cannot be referred to directly:

CHAPTER 2. BACKGROUND 25

1 example:sensor rdf:type brick:Sensor ;
2 brick:hasValue _:sensorValue1 .
3 _:sensorValue1 brick:hasTimestamp "2021-04-14T00:00:00Z" .
4 _:sensorValue1 brick:units "degF" .
5 _:sensorValue1 brick:value 72.3.

or, in Turtle syntax,

1 example:sensor rdf:type brick:Sensor ;
2 brick:hasValue [
3 brick:hasTimestamp "2021-04-14T00:00:00Z" .
4 brick:units "degF" .
5 brick:value 72.3.
6] .

The use of Blank nodes is a modeling choice which marks certain resources as only useful
as a collection of properties. A sensor entity is named with a full IRI because it needs to
be referred to directly; the value of that sensor only makes sense in the context of a set of
properties, namely the timestamp, value and units.

Figure 2.13 contains the Turtle representation of the RDF graph depicted in Figure 2.10.
In this Brick model — an RDF graph which represents a building and its resources — each
entity has a type which is given by a Brick class. Brick relationships are the predicates which
describe how Brick entities relate to one another.

Linked Data and the Semantic Web

RDF graphs are one example of linked data. “Linked data” is the idea that knowledge can be
defined in a distributed and decentralized manner: a resource, such as a IRI, can be referred
to by many sources which can make arbitrary statements about that resource. Applied to
the Internet, linked data can enable a semantic web. In a semantic web, IRIs refer to online
resources. These resources can be described, typed and related to one another by RDF
statements organized into graphs.

Even though cyberphysical systems are not usually exposed as publicly-accessible IRIs,
they are naturally described as graphs [54]. The RDF data model is a convenient, standard-
ized data model for encoding these graphs. A significant advantage of the RDF data model is
it exists in an ecosystem of useful standards and technologies for querying graphs (SPARQL),
formalizing knowledge (OWL) and constraining the forms of those graphs (SHACL).

SPARQL

SPARQL is the W3C-recommended query language for RDF graphs [66]. SPARQL defines
how RDF graphs can be queried and updated. SELECT queries are the most common kind
of SPARQL operation performed by self-adapting software. A SELECT query consists of a
SELECT clause and a WHERE clause. The WHERE clause is composed of a set of graph

CHAPTER 2. BACKGROUND 26

1 @prefix bldg: <http://example.com/mybuilding#> .
2 @prefix brick: <https://brickschema.org/schema/Brick#> .
3
4 bldg:AHU1A a brick:Air_Handler_Unit ;
5 brick:feeds bldg:VAV2-4,
6 bldg:VAV2_3 .
7

8 bldg:VAV2-3 a brick:Variable_Air_Volume_Box ;
9 brick:feeds bldg:VAV2-3Zone .

10

11 bldg:Room-410 a brick:Room .
12 bldg:Room-411 a brick:Room .
13 bldg:Room-412 a brick:Room .
14

15 bldg:VAV2-3Zone a brick:HVAC_Zone ;
16 brick:hasPart bldg:Room-410,
17 bldg:Room-411,
18 bldg:Room-412 .
19

20 bldg:VAV2-4 a brick:Variable_Air_Volume_Box ;
21 brick:hasPart bldg:VAV2-4.DPR ;
22 brick:hasPoint bldg:VAV2-4.SUPFLOW,
23 bldg:VAV2-4.SUPFLSP .
24

25 bldg:VAV2-4.DPR a brick:Damper ;
26 brick:hasPoint bldg:VAV2-4.DPRPOS .
27

28 bldg:VAV2-4.DPRPOS a brick:Damper_Position_Setpoint .
29 bldg:VAV2-4.SUPFLOW a brick:Supply_Air_Flow_Sensor .
30 bldg:VAV2-4.SUPFLSP a brick:Supply_Air_Flow_Setpoint .
31 bldg:VAV2-4.ZN_T a brick:Supply_Air_Temperature_Sensor .

Figure 2.13: Example Turtle-formatted RDF graph for the Brick model depicted in Fig-
ure 2.10

patterns. A basic graph pattern is a triple of subject, path expression, object. Subjects
and objects can be IRIs, Literals or variables. A path expression describes a route from the
subject to the object in terms of IRIs and variables. SPARQL 1.1 defines a family of path
operators and expressions [66] which include sequence (path1 / path2), transitive closure
(path1*), alternatives (path1 | path2) and optional paths (path1?).

The result of evaluating a graph pattern is a relation R (a set of n-ary tuples) whose n
attributes are bindings of RDF graph terms to the variables in that clause. The . operator
between graph patterns is the conjunctive operator. A variable appearing in more than one
graph pattern amounts to a join between those two graph patterns. The result of executing
a SPARQL query is a relation derived from the natural join of the intermediate relations
produced by each of the graph patterns; this relation has a projection operator applied which
preserves the variables contained in the SELECT clause. Figure 2.14 contains a SPARQL
query which retrieves the name of all VAVs in Figure 2.13 which have air flow sensors and air

CHAPTER 2. BACKGROUND 27

1 prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX brick: <https://brickschema.org/schema/Brick#>
4 SELECT ?vav ?sensor ?setpoint WHERE {
5 ?vav rdf:type/rdfs:subClassOf* brick:VAV .
6 ?vav brick:hasPoint ?sensor .
7 ?vav brick:hasPoint ?setpoint .
8 ?sensor rdf:type brick:Supply_Air_Flow_Sensor .
9 ?setpoint rdf:type brick:Supply_Air_Flow_Setpoint .

10 }

Figure 2.14: Simple SPARQL query for the airflow setpoints and sensors associated with
VAVs

flow setpoints, along with the names of those two points. The result of executing Figure 2.14
on Figure 2.13 is a single tuple with the bindings:

• ?vav: http://example.com/mybuilding#VAV2-4

• ?sensor: http://example.com/mybuilding#VAV2-4.SUPFLOW

• ?setpoint: http://example.com/mybuilding#VAV2-4.SUPFLSP

Self-adapting software can use graph query languages like SPARQL to retrieve necessary
configuration data and other information from an RDF graph representing the semantic
metadata for a particular environment. This is closely examined in Chapter 5.

OWL

On their own, RDF graphs are just collections of statements with a well-defined syntax
and structure. In order to enable the consistent and interpretable exchange of information,
the semantics or meaning of the data must be formally specified. An ontology is a way of
programmatically defining the meaning of data for a particular knowledge domain as a set
of rules and axioms. The Web Ontology Language, or OWL, is a language for declaratively
expressing those rules and axioms.

The rules and axioms expressible in OWL operate under the open world assumption
or OWA. Statements that are contained within a graph are true. Under the open world
assumption, statements that are not contained in the graph are simply unknown and cannot
be asserted as false. Its corollary, the closed world assumption or CWA, treats statements
not in the graph as false; relational database systems operate under CWA. The OWA makes
sense in the context of the semantic web, where the absence of a statement in a particular
graph does not mean that another graph has made that statement. However, as explored in
Chapter 4, OWA presents challenges for cyberphysical systems when the full extent of the
graph can actually be known.

CHAPTER 2. BACKGROUND 28

There are two ways in which computable meaning can be attached to the statements
in an OWL ontology: OWL 2 DL and OWL 2 Full [74]. OWL 2 DL can compute most
of what OWL 2 Full can compute and is dramatically faster and simpler to compute than
OWL 2 Full. The “DL” indicates that OWL 2 DL is a description logic, which is a decidable
but less expressive subset of first-order logic. Chapter 4 establishes that only OWL 2 DL is
required to implement the ontology features required for consistent and extensible semantic
cyberphysical metadata. For this reason and the decidability and reduced computational
complexity of OWL 2 DL compared to OWL 2 Full, this thesis focuses on the former.
Description logics make a distinction between the TBox and the ABox. The TBox, or
“terminological box”, is the set of statements that define the ontology; this includes class
structures and relationships between concepts. The ABox, or “assertion box”, are the ground
statements or “facts” that populate the content of the model. There is no formal distinction
between TBox and ABox; these terms are used to differentiate between the statements that
define the ontology and the statements that define the model instance.

OWL 2 DL can be broken down into several profiles, or sublanguages, that define subsets
of OWL 2 DL that trade off computational complexity for expressive power in different
ways [74]. The ontology features described in Chapter 4 require the OWL 2 RL profile: this
is a subset of OWL 2 DL that can be implemented in a rule-based language such as Datalog3.
Chapters 4 and 7 delve into the OWL 2 RL rules used to express metadata and the systems
that evaluate those rules, respectively.

SHACL

The Shapes Constraint Language (SHACL) is at its core a language for validating an RDF
graph against a set of conditions [81]. RDF graph validation allows a modeler to express
what the graph should and should not contain, depending on other properties of the graph.
SHACL constraints can also helpfully emulate some features of CWA.

SHACL constraints are expressed as RDF triples and take the form of a set of shapes. A
shape is an entity with a target, a specification of the IRIs that it applies to, and a set of
parameterized constraints that describe predicates on that target. There are two kinds of
shapes: node shapes and property shapes. Node shapes specify constraints about the nodes
of an RDF graph; property shapes specify constraints about the edge of an RDF graph.

Validating an RDF graph against a set of SHACL shapes generates a report which de-
scribes whether or not the validation passed and, if not, which constraints were violated by
which elements of the target graph. SHACL-AF [80] is an addendum to SHACL that adds
reasoning and inference capabilities.

3a closed-world relational language

CHAPTER 2. BACKGROUND 29

2.5 Summary

The built environment spans the buildings, cities, power grids, transportation systems and
other networked, physical components of the human experience. These cyberphysical com-
ponents consist of a complex, interconnected array of devices, equipment, sensors and other
data sources. Despite the existence of many possible digital representations of this infras-
tructure, such representations do not capture the salient elements that support self-adapting
software. Linked data specification languages such as RDF, OWL, SHACL and SPARQL
provide a means of specifying a formal representation of cyberphysical systems that can be
reasoned about, validated and queried. These languages form the foundation of the proposed
approach to enabling self-adapting software.

30

Chapter 3

A Vision of Self-Adapting Software

Executing data-oriented cyberphysical software at scale is impractical because of the ef-
fort required to customize the operation of each application to each deployment environment.
This customization effort is manual and time-consuming due to the lack of structured meta-
data about cyberphysical environments, and the lack of an effective method of customizing
the behavior of software.

Software needs to be customized because cyberphysical environments are heterogeneous
and thus require bespoke treatment. The nature of the customization depends on the needs
and complexity of the software. At minimum, the software needs to be configured with the
data sources it needs to read and where to read them from. This requires discovery of which
data sources are relevant to the application. In current practice, data discovery is performed

Data

CPS Application

Reconfiguration
Reimplementation

Data

CPS Application

Reconfiguration
Reimplementation

Data

CPS Application

Reconfiguration
Reimplementation

Data

CPS Application

Reconfiguration
Reimplementation

Figure 3.1: Current practice: deploying software to different sites requires re-implementing
and re-configuring the software for each site

CHAPTER 3. A VISION OF SELF-ADAPTING SOFTWARE 31

Data

Metadata

Self-Adapting Application

Discover Relevant Data

Configure App Logic

Automatic Configuration + Customization

Data

Metadata

Data

Metadata

Data

Metadata

Figure 3.2: Self-adapting software will query a metadata model of its environment in order
to automatically configure a single implementation to operate on new sites.

manually1 through inspection of BMS labels or other unstructured, human-oriented meta-
data. Configuring more complex software may require additional context about what kinds
of subsystems are in the environment and how those subsystems are composed and operated.
Discovery of context is more time consuming and more error prone because this metadata
is not usually captured in available representations. In most cases, each environment is so
unique that configuring software requires a wholly new algorithm or implementation for the
software’s purpose to be achieved. Figure 3.1 describes the current state-of-the-art: for each
building, a new implementation must be developed for each deployment environment. This
approach is impractical at scales larger than a handful of environments and is a significant
bottleneck to the adoption of data-driven sustainable and energy efficiency practices.

Self-adapting software (Figure 3.2) is a new paradigm for programming cyberphysi-
cal systems which eliminates the configuration and implementation bottleneck to deploying
software at large scales. By exploiting rich, descriptive semantic metadata about each envi-
ronment, self-adapting software is able to discover enough about its deployment to configure
itself automatically. This enables a new regime of “write once, run anywhere” software by
making cyberphysical software become substantially easier to write and deploy. Lowering the
barrier to entry for adopting cyberphysical software also democratizes access to data-driven
sustainable practices and energy efficiency measures that were previously cost-prohibitive to
deploy at scale.

Addressing Challenges

Accomplishing this vision requires addressing a family of challenges; each of these is addressed
in a chapter of this thesis.

Challenge #1: Describing Heterogeneous Settings: The success of self-adapting
software for cyberphysical systems is contingent on the existence of a machine-readable
description of the nature and context of the data sources and other resources in a given

1such as browsing through web interfaces, executing regular expressions over lists of points, and the like

CHAPTER 3. A VISION OF SELF-ADAPTING SOFTWARE 32

environment. This description must be able to describe enough of the environment that self-
adapting software can perform the necessary discovery and configuration. However, existing
metadata representations are ill-suited for modeling the diversity and heterogeneity of cy-
berphysical systems. This thesis proposes the use of a formalized graph model for metadata
that is flexible enough to represent many different kinds of cyberphysical environments. Each
cyberphysical environment will be represented by an RDF graph authored in Brick which
captures the data sources and their associated context. The semantics and structure of the
graph will be informed by a formal OWL-based ontology which defines the concepts, axioms
and relationships required to describe cyberphysical environments. Doing this effectively re-
quires new ontology design patterns which enforce interpretability and modeling consistency
of the metadata graph while enabling extensibility of the ontology design. Chapter 4 reviews
shortcomings of existing metadata representations for cyberphysical systems and identifies
fundamental flaws in popular tag-based metadata designs. It then proposes and implements
a set of new ontology design patterns and features which advance the applicability of se-
mantic web technologies for complex cyberphysical systems. These novel design patterns are
evaluated in the context of Brick, a metadata ontology for data-driven smart buildings.

Challenge #2: Designing an Effective Programming Model: Self-adapting soft-
ware must have a means of exploiting the semantic metadata representing each environment
in order to configure itself. How should such software be expressed? Specifically, how should
self-adapting software access the metadata model for an environment and implement their
application logic in terms of the content of that model? The metadata model adheres to
the standard RDF data model, so it is possible for self-adapting software to use existing
query languages and technologies like SPARQL for discovering and accessing the metadata
model. However, a query language alone is insufficient to enable self-adapting software.
Chapter 5 explores the design of two different programming models that provide first-class
support for semantic metadata within a Python-based programming framework. The first
model decomposes application logic into set of stages which progressively abstract away het-
erogeneity between environments, allowing the core application logic to be expressed in an
environment-agnostic manner. This provides a modular, batch-style approach to construct-
ing portable software: query and data cleaning and analytics components (or “stages”) can
be reused or repurposed with minimal reconfiguration. The second model explores an imper-
ative abstraction of SPARQL queries that is more appropriate for interactive and exploratory
programming.

Challenge #3: Metadata Management Over Time: Cyberphysical environments
inevitably evolve over time. These changes may be in response to a variety of stimuli, includ-
ing decay (parts of the environment breaking), repairs and retrofits (replacing or augmenting
parts of the environment), Semantic metadata models must be kept up-to-date with their
cyberphysical counterparts in order for self-adapting software to execute correctly and con-
tinuously. This thesis proposes a metadata management system that can detect changes
in the environment and use those changes to bootstrap edits to the metadata model. The
system can also handle changes to the semantics of the model itself which may occur as the
underlying ontology evolves and expands. Addressing these challenges requires the devel-

CHAPTER 3. A VISION OF SELF-ADAPTING SOFTWARE 33

opment of new semantic data integration techniques. Prior work on database migrations
provides mechanical techniques for how changes can be incorporated into the model, but
does not ensure that these changes are semantically valid. The data integration literature
establishes techniques for extracting structured data from heterogeneous information sources
but does not address how different extracted data can be merged into a single, semantically
valid model. Chapter 6 develops and formalizes a system that addresses the shortcomings
of existing techniques which arise in their application to cyberphysical environments and
metadata.

Challenge #4: Metadata Management at Scale: A final challenge with enabling
and supporting self-adapting software is how to design and implement the platforms that
store, query and manipulate the semantic metadata. Existing platforms for semantic-web
data are largely designed for batch processing on large graphs (on the order of millions or
billions of nodes and edges); most are positioned as knowledge bases and information refer-
ences rather than platforms for large volumes of interactive applications. Most research in
RDF databases has focused on efficient storage and query processing as a result. However,
the ontology features that that make semantic metadata suitable for self-adapting software
require support for performant reasoning and inference. Furthermore, existing platforms
do not implement features for integrating semantic metadata with historical telemetry or
interfaces for cyberphysical control. Chapter 7 presents the architectures and implementa-
tions of two real-world systems that address these gaps in RDF database design. The first,
Mortar, is an analytics platform with an integrated timeseries database and RDF database
that provides a declarative API for programming and executing self-adapting applications
using the staged execution model. This platform is augmented by reasonable, a performant
OWL-RL reasoner that augments semantic metadata models with inferred information and
implements the required ontology features.

Architecture

Figure 3.3 outlines how this vision of self-adapting software can be realized. Cyberphysical
systems — including but not limited to buildings, cities, water treatment and smart grids
— produce data by means of an increasing numbers of sensors and other digital sources, and
are represented by a diverse family of structured and unstructured metadata sources. This
thesis proposes a semantic and structural lifting of these sources into a formal graph-based
model as typified by Brick. This model contains descriptive metadata which captures the
composition and structure of cyberphysical systems in an environment as well as the data
sources and command points which track the behavior of the environment over time.

The metadata model for each environment can be bootstrapped and maintained through
a metadata integration process which extracts and combines semantic metadata from avail-
able digital representations. A self-adapting software platform manages the content of the
metadata model over time, including the evaluation of inference rules and validation of
the model with respect to logical axioms defined by a formal ontology. This ensures that

CHAPTER 3. A VISION OF SELF-ADAPTING SOFTWARE 34

Buildings

Wastewater Management

Smart Grid and Renewables

Built Environment

BIM / Design
Docs

Asset Mgmt

BMS/SCADA

HVAC Control
Optimization

Networked
Devices + IoT

Digital Representations

M
etadata Integration

Metadata and Data
Management

Continuous Inference

Building Occupancy
Prediction

Fault Detection and
Diagnosis ...

Decisions, Analytics

Data and Metadata

Metadata Graph Telemetry and
Timeseries Data

Query Processor

Applications

Self-Adapting Software Stack

Figure 3.3: A high level vision of self-adapting software interacting with the built environ-
ment

self-adapting software can access a valid and semantic representation that is the union of
what is explicitly provided by the environment and what can be inferred about the environ-
ment given that information. Finally, the platform provides access to historical timeseries
data about the environment which is contextualized by the metadata model. Self-adapting
software is expressed by means of a programming model which uses the context captured
and exposed by the platform to configure the operation of an application to perform in a
given environment. This presents an approach to authoring and configuring cyberphysical
software which enables its deployment and execution in hundreds or thousands of different
environments without having to change a single line of code.

35

Chapter 4

Managing Heterogeneity with
Semantic Metadata

We are tied down to a language
which makes up in obscurity
what it lacks in style.

Tom Stoppard, Rosencrantz and
Guildenstern are Dead

A fundamental challenge to enabling self-adapting software is dealing with the intrinsic
heterogeneity of the cyberphysical systems being controlled and analyzed. When every site,
building and system differs both in the nature of its construction and in how it is described,
there is often little choice but to undertake the manual, time-consuming and error-prone
process of rewriting and reconfiguring software for each intended deployment. Prior work
establishes that rich, descriptive metadata is crucial to reducing and even automating this
effort [16, 15, 84, 25, 54]. Self-adapting software queries metadata in order to configure
its operation to the particulars of a given deployment. This includes the discovery of data
sources and their context as well as the determination of which algorithms are appropriate.

Doing this effectively requires a careful balance of potentially conflicting design principles.
An effective metadata representation for self-adapting software must be general enough to
represent many different kinds of cyberphysical systems while capturing enough specific
detail to support the complex requirements of software. The representation should model an
appropriate level of abstraction that permits automated reasoning about the composition and
function of cyberphysical systems. This chapter explores the design and use of a semantic
metadata ontology for cyberphysical systems which effectively manages heterogeneity in
order to support self-adapting applications.

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 36

Metadata Design Principles

Established metadata representations and standards (Chapter 2) do not capture the in-
formation required to support real-world cyberphysical applications [26]. To address these
shortcomings, the Brick ontology, developed in 2016, established three design goals to guide
the design of effective building metadata for such applications [16]:

• Completeness: Can the metadata representation define the concepts, types and en-
tities that exist in buildings and are required by canonical energy-, operations- and
management-related applications?

• Expressiveness: Can the metadata representation define the important relation-
ships between entities that exist in buildings and are required by canonical energy-,
operations- and management-related applications?

• Usability: Can the metadata be presented in a form that supports the development
of applications through integration with existing data analysis frameworks and tools?

These three design goals inform an empirical approach to the design of a metadata rep-
resentation. The set of equipment, location and point concepts defined in Brick are sourced
from the BMS labels for six large college campus office and laboratory buildings [16]. The set
of Brick relationships are sourced from a systematic study of over 90 building applications [26]
Together, these two sources make Brick both complete and expressive. A representative set
of building analytics applications, drawn from the literature, was implemented using queries
against Brick models for the six reference buildings; the success of this initial study indicates
that Brick is also usable.

This chapter argues that these principles, although successful, are not sufficient for man-
aging heterogeneity at large scale. In particular, a metadata representation must also pro-
mote

• Interpretability: The intended meaning of the metadata in the model should be
unambiguous and defined programmatically. If there is more than one interpretation
of a part of the metadata model, software will not be able to reliably identify and
contextualize the data it needs to operate.

• Consistency: The structure and composition of metadata models for cyberphysical
systems should depend more on the level of detail and completeness necessary for
applications, rather than on the opinions and philosophies of the modeler. Similar
cyberphysical systems should be described in a similar manner. Two individuals de-
scribing the same cyberphysical system should produce similar, or at least compatible,
metadata models.

• Extensibility: The metadata representation should support the structured exten-
sion of the concepts and relationships defined within in a consistent and interpretable
manner

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 37

The rest of this chapter will review the issues and design limitations of existing metadata
representations for cyberphysical systems in the context of the design goals outlined above, in
particular, linked data ontologies and tag-based metadata as typified by Project Haystack. A
systematic study of the consistency, interpretability and extensibility issues of the Haystack
metadata representation is performed. A review of the limitations and issues incumbent in
the Brick ontology is also conducted. The resulting discussion explores how these issues are
due to a lack of formal axioms. This motivates the design and implementation of Brick+,
a formalization and extension of Brick that combines the “tag-based” benefits of Haystack
with the “class-based” benefits of Brick.1

4.1 Limitations of Existing Metadata Representations

Despite the large number of metadata representations available in the IoT and smart building
domains, they largely do not address the needs of self-adapting software.

Consumer-facing IoT Platforms

IoT software platforms define APIs and libraries that directly support executing software on
cyberphysical systems. The metadata aspects of these platforms focus on service discovery
and descriptions of device functionality that can be accessed via APIs. Descriptions of device
functionality typically involve structured documents containing well-known service names,
with implementation and access details available as standardized parameters. This is seen
in designs like Ninja [36], Universal Plug-and-Play, and mDNS [31].

Another approach, commonly referred to as “the web of things”, uses linked data and
other web standards to describe and provide access to device functionality [160]. The most
mature effort is the ontology produced by the W3C Web of Things working group [155],
which standardizes the representation of Thing Descriptions. Thing Descriptions represent
the set of supported interactions for a device using a small vocabulary that captures the
structure of data that is input and output to the device. Because these descriptions are
built on RDF they can — and are expected to — leverage external ontologies for semantic
descriptions of what the interactions actually are.

However, a fundamental limitation of these digital representations is that they leave out,
or fail to standardize, contextual information about where devices are, how they are installed
and how they interact with their environment and each other. Service discovery frameworks
are designed to enable access to remote services, regardless of location; the focus is on what
functionality those services provide. Likewise, consumer IoT platforms largely target small
deployments in typically residential settings: devices with straightforward functionality in
relatively homogeneous settings do not have a need for complex contextual metadata. As a

1The distinction between Brick+ and Brick is done solely to differentiate what work has been done as a
part of this thesis. Brick+ has been merged into Brick versions 1.1 and 1.2.

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 38

result, these standards and platforms have a limited ability to support the richer metadata
for the heterogeneous settings typical of large buildings and complex cyberphysical systems.

Building Information Modeling

Building Information Modeling (BIM) technologies — including gbXML [60], IFC [1] and
Revit [11] — are designed to enable the exchange of information between different teams
during the design and construction of a building. As a result, the data model must be flexible
and extensible enough to capture precise definitions of geometry, mechanical, electrical and
plumbing infrastructure [12]. The Industry Foundation Classes standard contains hundreds
of concepts and properties describing furniture, HVAC, lighting and other kinds of physical
equipment, in addition to the segments, fittings and connectors constituting the distribution
systems for different substances in the building [1].

The resulting complexity of these models makes them difficult to maintain and use for
other stages of the building lifecycle, which require different kinds of details to be cap-
tured [139]. In particular, the flexibility provided by BIM data models presents challenges
for the consistent and interpretable exchange of BIM data because the extensions made “in
the field” by the teams designing and constructing buildings do not extend the BIM in the
same way. This lack of interoperability has real costs: the National Institute of Standards
and Technology published a report in 2004 estimating the cost of inadequate interoperability
within the property, construction and facility management industry to be $15.8 billion per
year [57].

The interoperability issues with BIM accentuate the need for a data model to be extensible
in a consistent manner, so that the resulting representations are easily and automatically
interpretable. This begins with defining a data model that is complete and expressive enough
that the necessary concepts can be defined.

Upper Ontologies for IoT

Issues of structural interoperability — the ability of two or more systems to exchange infor-
mation — and semantic interoperability — the ability of two or more systems to exchange
information with a consistent and interpretable meaning — have long been the subject of
study in linked data and semantic web communities. The RDF data model, with its many
serialization formats such as Turtle [18], RDF/XML [17] and more recently JSON-LD [134],
enables a structural interoperability between data sources: triples are triples, and they can
be easily stored and queried.

Ontology design, in particular the design of upper ontologies, intends to solve issues of
semantic interoperability. Upper ontologies attempt to define a common family of generic
concepts and axioms that are common to many (if not all) domains, and can therefore enable
semantic interoperability. Domain-specific ontologies can “anchor” their own concepts and
properties to those provided by an upper ontology. Ontologies based on the same upper
ontology can then interpret each other’s contents in terms of that upper ontology.

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 39

Of course, the issue is that there is no single universal upper ontology. Sowa’s ontology
defines logical and philosophical foundations of knowledge (e.g. what differentiates objects,
concepts and symbols) [133]. The Basic Fundamental Ontology defines notions of function,
role and disposition to inform a coherent perspective on biomedical-oriented ontologies [10].
The General Formal Ontology defines categories of concepts based on space-time (perma-
nence and duration), material structures (physical things that take up space), processes and
occurrences [72]. As is clear from this small sampling of upper ontologies, they deal in
high-level and philosophical concepts.

Ironically, the intended generality of upper ontologies raises more interoperability issues
than are purportedly solved. Consider a family of ontologies that have been developed for
IoT and cyberphysical systems: SSN/SOSA [62], SAREF [37], and the SAREF family of
ontologies [116]. Each of these ontologies provide practical, formal descriptions of elements
of cyberphysical systems. SSN/SOSA describes sensors, actuators and the observations and
actuations made by those entities. SAREF describes “smart appliance” devices, their prop-
erties and purposes, and the tasks and actions they take. Several SAREF extensions define
common building equipment and components (SAREF4BLDG) and system topologies and
connections between systems (SAREF4SYST). However, even though the concepts defined
in these ontologies cover many aspects of cyberphysical systems and are general enough
to model many different kinds of cyberphysical systems, the actual vocabulary provided is
neither specific nor extensive enough to satisfy the requirements of self-adapting applications.

The reason for this is simple: when describing a real-world cyberphysical system, a
modeler wants to be able to use the domain-specific terms familiar to them. For example,
the SAREF Device class may be appropriate for AHUs, VAVs, dampers, fans, meters,
pumps, valves and chillers, but without extra properties, these specific kinds of equipment
are not distinguishable. Modelers can extend the SAREF ontology by subclassing the Device
class, but there is no guarantee that different modelers will extend SAREF in the same
way to model the same concepts. This motivates the need for an ontology to support
structured extensibility, and to define enough common classes that extensions can be avoided
for common cases.

Tags and Folksonomies

On the other side of the spectrum of axiomatic descriptions of knowledge are so-called
“folksonomies”. Folksonomies encompass any kind of user-generated metadata, but the most
common form of this is the use of tags, which are simple words and terms that are associated
with documents or other entities. Tags and folksonomies typify common established practice
for annotating and describing data. Tags allow users to “describe and organize content with
any vocabulary they choose” [91]. Tags exist in a flat namespace with no organization or
associated definitions. The meaning of a tag is ambiguous without additional context, which
may be intimated by other tags, or only evident after observing the entity that is the subject
of the tag.

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 40

The main benefit of tags are their flexibility and low barrier to entry [91]; there is no
need to learn relatively esoteric logic languages and familiarize oneself with the philosophical
underpinnings of an upper ontology. The social bookmarking site del.icio.us and the
photo sharing site Flickr were largely successful due to their adoption of user-generated tags
to describe the content described by users. More recent examples of successful tag-based
products include Instagram and Twitter, which use “hashtags” as a form of tagging. After
tagging an entity such as a post or photo with a tag, users can find other content with the
same tag. This content may not use the tag in the same way, but the intent is to share
content, not to communicate its meaning in an unambiguous manner.

Project Haystack [118] adopts a similar folksonomic approach to metadata in buildings.
The equipment, points and other entities in a Haystack model of a building are described
with sets of tags. Haystack defines a dictionary of common tags which are available to users,
but also allows users to define their own tags. The result is a data model that is flexible and
extensible but also does not enable the consistent, interpretable and interoperable exchange
of building metadata.

Relational Schemas

Although cyberphysical metadata is fundamentally graph-oriented, it is possible to express
most features of the metadata in a relational form. However, the heterogeneous and inter-
connected nature of cyberphysical metadata makes the relational model a poor fit.

Relational tables can represent names and properties of the entities in the environment.
More than one table may be required to represent different types of entities: the properties
of a temperature sensor entity will be different than the properties of a pump equipment
entity. Variability in which properties are available for each entity may result in wide and
sparse tables because the schema must represent all possible properties for an entity, even if
a given entity does not have those properties. Foreign keys, one-to-many and many-to-many
tables can all be used to represent the relationships between entities.

While it is possible to author a relational schema for a particular environment, developing
an efficient schema requires prior knowledge of the kinds of entities in the environment, their
properties, and the relationships. Generalizing the relational schema to other environments
requires denormalization of the schema. Denormalized schemas like entity-attribute-value
tables are essentially a representation of RDF’s subject-predicate-object triple. Recursive
queries are required in order for denormalized schemas to support the required query features
for traversing the graph structure of the metadata; this includes path queries and transitive
closures. For these reasons, a single relational schema would be a poor fit to model hetero-
geneous and complex cyberphysical systems. Developing a unique relational schema for each
cyberphysical environment is only a partial solution, because software would still have to be
rewritten for each environment.

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 41

4.2 Modeling Issues for Tag-Based Metadata

The tag-based Haystack metadata model has several intrinsic issues that fundamentally
limit the semantic interoperability of the data it describes: designing for flexibility at the
cost of consistency, a lack of a formal specification, and inconsistent and ill-defined modeling
practices.

Balancing Composability and Consistency

The design of Haystack prioritizes familiarity, composability and flexibility over consistency
and interpretability. This is one of the key benefits of a tag-based metadata scheme [91].
However, this flexibility hampers the ability of an arbitrary consumer of tags to consistently
interpret how a specific combination of tags is intended. In tag-based metadata schemes,
increased composability comes at the cost of lower consistency. Specifically, without formal
rules defining the meaning of groups of tags and how tags may be composed, the interpreta-
tion of a tag set is dependent upon idiom, convention and other “common knowledge” of the
group or individual who chose the tag set. As a result, the tag set chosen by one individual
to describe an entity may have multiple possible subtly different meanings, or no meaning
at all, to other individuals.

Haystack provides a dictionary of tags with community-provided definitions; these defi-
nitions are intended to make it clear when a modeler should choose one tag over the other.
However, the tag definitions often include caveats and describe idioms, which complicate tag
usage. For example, the Haystack definition of the air tag points out that the use of the
tag implies a dry bulb temperature measurement unless otherwise specified:

“Point associated with the measurement or control of air. In regards to wetBulb,
points with the air tag are associated with dry bulb.[122]”

The root of the semantic ambiguity is the fact that tags can be used in different contexts.
Even if a tag has a specific definition (such as air), the use of a tag does not communicate
how the tag’s concept relates to the other tags associated with a given entity. For example,
the heat and oil tag together do not indicate if oil is being heated, or if hot oil is doing
the heating of some other substance. Haystack identifies this kind of issue as a “semantic
conflict”:

“Another consideration is semantic conflicts. Many of the primary entity tags
carry very specific semantics. For example the site tag by its presence means
the data models a geographic site. So we cannot reuse the site tag to mean
something associated with a site; which is why use the camel case tag siteMeter

to mean the main meter associated with a site.[119]”
To mitigate this issue, Haystack introduces compound tags (called “camel case tags”

above), which are concatenations of existing tags into new atomic tags with specific and dis-
tinct meanings from the tags from which they are composed. This reduces the composability
of the tagging scheme, as tags now only have well-defined meanings in specific contexts and
cannot be arbitrarily combined.

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 42

Tag D
es

c.
e
q
u
i
p

D
es

c.
p
o
i
n
t

D
es

c.
m

ec
h
an

is
m

F
or

A
H

U

F
or

V
A

V

F
or

C
oi

l

F
or

V
al

ve

F
or

C
h
il
le

r

F
or

B
oi

le
r

h
ea

ti
n
g

heat X X X X
heating X
hotWaterHeat X X X
gasHeat X X X
elecHeat X X X
steamHeat X X X
perimeterHeat X X

re
h
ea

ti
n
g reheat X X

reheating X X
hotWaterReheat X X X
elecReheat X X X

co
ol

in
g

cool X X X X
cooling X
coolOnly X X
dxCool X X X
chilledWaterCool X X X
waterCooled X X
airCooled X X

Table 4.1: An enumeration of the intended use and context of tags relating to heating and
cooling, as given by the Haystack documentation. Note the differences in diction across
compound tags, and how some compound tags could be assembled from more atomic tags.
Some tags are used both for equipment and for points when equipment is modeled as a single
point (such as VFDs, Fans, Coils)

As an illustrative example, consider the hotWaterHeat compound tag: Haystack defines
this tag as an annotation on an air handling unit that has a hot water-based heating ca-
pability. Unintuitively, this annotation does not use the heat, hot, water or air tags. In
this way, the need to bring consistency to tags comes impedes their use as a flexible and
permissive annotation feature: the hot, water, heat and air tags applied to an air handling
unit may refer to many different aspects of its functionality.

Table 4.1 contains the results of a survey of defined Haystack tags that contain the word
“heat” or “cool”. Each of the tags in the table is defined in the Haystack dictionary, and
each have a unique and thus nonfungible definition. The first three columns of the table

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 43

capture the contexts in which each tag has meaning:

• Describes equip : if this column is checked, then the tag describes equipment, often
by what function it performs. For example, the gasHeat tag indicates that the related
equipment consumes gas to perform some heating process.

• Describes point : if this column is checked, then the tag describes the context of a
data stream (point). For example, the reheat tag describes data about the reheating
capability of a VAV.

• Describes mechanism: if this columns is checked, then the tag communicates how a
certain process or function is performed. For example, the gasHeat tag describes the
nature of the heating process.

The last six columns of the table indicate if the tag is specifically for use with only one
kind of equipment. The resulting tagging scheme is often unintuitive: the heat tag would
seem to relate to a heating process, but it is in fact intended only for heating coils that
occur in AHU and VAV equipment. Further, the tag definitions are simple text: there are
no formal or standardized rules for communicating how they are intended be used or not
used.

These issues are compounded by the fact that the Haystack query model does not support
string matching operations, meaning that tags can only be matched by equality. This makes
it difficult to use generic tags as a way of searching for relevant or similar entities [91], for
instance, a query for all entities that have a tag containing the word "heat".

Most of the ambiguities exposed above can be tracked to confusion as to what aspect or
process of an entity a tag relates to. To address this issue, tags must either have meaning
independent of context, which is the direction that most tag-based metadata systems take
but also provides the least consistency, or a way of communicating the intended context2.
Because the Haystack data model is so simple — unnested key-value documents with a
unique identifier — there is no mechanism to easily communicate the intended use of a
tag (recall the dilemma “is oil being heated, or is it doing the heating?”). This forces
Haystack into the other model in which tags must have concrete meanings that require no
additional context to interpret correctly; however, this increases the size of the tag dictionary,
complicates usage, and limits the composability of the tags in the dictionary. The rest of
this chapter will explore how composability and consistency can be balanced through the
use of a formal data model.

Formalizing Tag Composition

Haystack lacks rules to formalize how tags may or may not be composed. This raises two
issues for semantic interoperability. First, arbitrary combinations of tags may not have
a consistent interpretation, which hampers Haystack’s ability to provide an effective and

2This is called reification and it will be discussed in-depth in the next section.

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 44

standardized description of data. Ultimately, this makes well-known concepts harder to
communicate consistently, and makes it difficult to figure out what the proper descriptions
are. Second, the use of tags to communicate the type of an entity can result in a class
organization that is not well-formed.

These issues are examined through an OWL-like treatment of classes and entities: all
entities of the same type (i.e. belonging to the same class) are members of the same set. A
subclass is a set that is a subset of its superclass; the entities in the subclass must belong to
the superclass, but not all entities in the superclass are necessarily members of the subclass.
A set of classes and the subclass relationships between them form a directed graph called a
class organization. A class organization is well-formed if it meets two conditions:

1. Acyclic: no class should be a superclass of itself.

2. Consistent semantics: if one class is a subclass of another, then it should be a more
specific concept than its superclass

A well-formed class organization is essential for the creation of consistent metadata mod-
els because it facilitates the automated discovery of classes. In order to discover what classes
are available and to determine which is the most appropriate for a given entity, a user can
browse the class organization from the topmost superclasses (equipment, locations, sensors,
etc) and follow the subclass links to find more specific versions of those classes. Without a
well-formed class organization, the traversal cannot take advantage of the expected “general
to specific” organization in the class organization. A well-formed class organization is also
extensible: users can create new, more specific classes that are subclasses of existing and
more general superclasses. Even in the absence of a textual definition for this new class, the
subclass relationship provides an immediate contextual scoping for how the class is meant
to be used; this follows from the second condition for a well-formed class organization.

In the Haystack metadata model, the type or class of an entity is indicated by its tag
set — the marker tags are associated with the entity. Formally, the tag set of an entity e is
given by T (e). A class C is defined as a set of tags given by T (C). A class Cb is a subclass
of Ca if T (Ca) ⊆ T (Cb). An entity e is an instance of class C if T (e) ⊆ T (C). If an entity
e is an instance of class Cb and Cb is a subclass of Ca, then e is necessarily an instance of
both Cb and Ca.

This formalism reveals how the use of tag sets to communicate the type of an entity is
insufficient for defining a well-formed class hierarchy in two ways: tags imply the existence
of classes that have no consistent or discernible meaning, and the resulting hierarchy may
not have consistent semantics.

To the first point, consider the set of tags sensor, temp, discharge and air. There are

15 =
4∑

n=1

(
4

n

)

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 45

sensor

temp sensor air sensor discharge
sensor

discharge
air sensor

discharge
air temp
sensor

discharge
air temp

discharge
temp sensor

temp airdischarge

air temp
sensor

Figure 4.1: The set of valid (blue + solid outline) and invalid (red + dashed outline) tagsets
for a set of four tags. The class hierarchy is established from top to bottom;subclass rela-
tionships are indicated by arrows

combinations of tags possible from that dictionary. Figure 4.1 contains 12 of these. However,
of these 15 tags, only 4 of them have an interpretation that makes sense in the building HVAC
domain (along the left side).

To the second point, it is possible to construct two class definitions Ci and Cj such that
T (Ci) ⊆ T (Cj) but the definition of Ci is disjoint from Cj. Consider two concepts: Air Flow

Setpoint (the desired cubic feet per minute of air flow) and Max Air Flow Setpoint (the
maximum allowed air flow setpoint). In Haystack, Air Flow Setpoint would be identified
by the air, flow and sp tags, and Max Air Flow Setpoint would be identified by the air,
flow, sp and max tags. Although the tags of Air Flow Setpoint are a subset of the Max Air

Flow Setpoint class, Air Flow Setpoint is not a superclass of Max Air Flow Setpoint:
the former is a setpoint, but the latter is actually a parameter governing the selection of
setpoints and therefore belongs to a distinct subhierarchy.

To circumvent this issue, rules for defining valid tagsets for subclass relationships must
be defined in terms of which tags can be added to a given tag set to produce a valid subclass
relationship. Defining a concept requires knowing which tags cannot be added; without
a clear set of rules for validation, a user may use the max and min tags to indicate the
upper/lower bounds of deadband-based control, which is inconsistent with the intended
usage of these tags. Haystack defines a few rules for extending existing concepts with new
tags. Two examples from many:

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 46

1. AHU entities can be further characterized by their heating method, given by one of
gasHeat, hotWaterHeat, steamHeat or gasHeat.

2. Water meter entities can be further differentiated by the tags domestic, chilled,
condenser, hot, makeup, blowdown and condensate.

In most cases, however, knowledge of which tags may be appropriate to add to an entity
largely depends upon domain familiarity and informal conventions. For example, Haystack
point entities (sensors, setpoints and commands) often have a “what” tag (e.g. air), a
“measurement” tag (e.g. flow) and a “where” tag (e.g. discharge). However, this is not
a hard and fast rule, and many of the tag sets in Haystack’s documentation break with this
convention. Consequently, there is no clear notion of how concepts can be meaningfully
extended or generalized, which limits the extensibility of Haystack.

Inconsistent Modeling Practices

Due to the lack of formal tag composition mechanisms and a well-formed class organization,
there is substantial variance in how users of Haystack model the same concept. These
inconsistent modeling practices limit the semantic interoperability of the Haystack model.

The most common source of modeling inconsistency is the choice of whether to model
pumps and fans as equipment or as points. Although pumps and fans are equipment, in
many BMS they are represented by only a single point (usually the speed or power level).
Haystack’s documentation encourages simplifying the representation of such equipment un-
der such circumstances:

“Pumps may optionally be defined as either an equip or a point. If the
pump is a [variable frequency drive] then it is recommended to make it an equip

level entity. However if the pump is modeled [in the BMS as] a simple on/off
point as a component within a large piece of equipment such as a boiler then it
is modeled as just a point.[120]”

However, not all modelers in Haystack choose to make this simplification, especially when
there are more points that may relate to the same equipment entity. To query a Haystack
model in a consistent way, a user must write complex predicates that take into account the
family of possible modeling choices.

Impact of Tags on Metadata Design

These issues with tag-based metadata inhibit extensibility and consistency at scale. Most
Haystack models are designed to be used by small teams familiar with the site or sites at
hand, so it is enough for these models to be self-consistent. As long as there is agreement on
how to tag a given concept, the informality of the model is not as detrimental; most tag sets
in Haystack make intuitive sense to domain experts. However, the lack of formalization —
specifically, a lack of a formal class hierarchy and rules for composability and extensibility

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 47

— presents issues for adoption as an industrial standard and basis for automated analysis
and reasoning.

The next 2 sections show that the tradeoff between composability and consistency is tied
to the choice to use tags for annotation as well as definition. With an explicit and formal
class hierarchy it is possible to design a system that exhibits the composability of simple
tags, while retaining the consistency and extensibility of an ontology.

4.3 Ontology Design for Consistent Metadata

This chapter introduces the design and implementation of Brick+, a mostly3 backwards-
compatible edition of the Brick ontology that is built on formal composition rules to achieve
desirable properties of tag-based metadata while also improving upon the original Brick
design [16, 15]. The heterogeneity of real-world deployments — including systems composed
in unusual ways or containing novel or legacy equipment — and the innovation in the building
industry mean that extensions to the Brick ontology are a continuous necessity. Experiences
with the original Brick design revealed that simply providing a class organization, even with
textual descriptions, is not sufficient to ensure consistent extensions of the ontology.

Brick+ improves on the original Brick design through the incorporation of the following
features:

• Semantic Class Lattice: classes in Brick+ are not just named sets like in many OWL-
based ontologies. Instead, their definitions are qualified by a number of composable
semantic properties. The result is a lattice of classes that provides more structure to
Brick extensions than a simple hierarchy.

• Compatibility between tags and classes: Brick+ incorporates Haystack-style tags as
definition-free annotations on Brick entities. Entities inherit tags from the classes they
instantiate; the implementation also supports the inference of a Brick class from a
collection of tags. This can be done using both an exact and an approximate matching
algorithm.

• Validation and tooling support: Brick+ defines constraints that enable the automatic
validation of Brick models, and contains additional annotations that inform external
tooling that assists in the development and validation of Brick models.

The implementation of these features requires careful appliation of two different modeling
languages — OWL RL and SHACL — and the invention of several design patterns. Brick+
has been fully implemented and adopted as the authoritative Brick implementation at time
of writing4. The intuition and formal design of each of these features is presented below,
followed by an overview of their implementation using semantic web modeling languages.

3A few mechanical and easily automatable changes must be made to existing Brick models.
4Brick+ features have been released in Brick versions 1.1 and 1.2.

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 48

Point

Sensor

Temperature
Sensor

Air Temperature
Sensor

Supply Air
Temperature

Sensor

Figure 4.2: An OWL-based ontology (right) encodes classes as named sets (left); a subclass
relationship between two classes means that all the members/instances of the subclass are
also members/instances of the superclass.

Semantic Class Lattice

OWL-based ontologies are typically built from classes related to each other through a sub-
class relationship (Figure 4.2) — rdfs:subClassOf. Classes are named sets, but may have
other properties associated with them. For example, the skos:definition property from
the Simple Knowledge Organization System ontology is a common choice for relating a class
declaration to a text-based human-readable definition; alternatively, the rdfs:seeAlso prop-
erty might point an interested user at a citation or other related resource.

However, these additional properties do not capture the semantics of the class in a
machine-interpretable manner. Further, the subclass relationship only indicates members
of one class are a subset of the members of another class. It does not capture what distin-
guishes the members of the subclass from the members of the superclass. Without the ability
to capture this information, it is difficult to ensure that extensions to the class organization
will be done in a compatible manner. Modelers may choose a different class name for the
same concept, and thus ruin any interoperability between models produced using different
extensions. Even though a formalized and well-formed class organization addresses the am-
biguities and inconsistencies inherent to the Haystack design, it is not enough to guarantee
semantic interoperability as an ontology is extended.

A semantic class lattice addresses this issue by removing the requirement that extensions
to the class hierarchy must use the same name for the same concept. This is accomplished by
augmenting the subclass relationship with additional semantic information which captures
the distinguishing characteristics between two classes connected by a subclass relationship.
This semantic information is composable — different combinations of semantic properties

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 49

indicate different concepts. The composition rules determining which semantic properties
have semantic meaning is implicitly defined by the class organization. This means that the
set of valid compositions of semantic properties are exactly those that have been explicitly
equated to a member of the class organization. In this design, a class is defined as a unique
set of semantic properties; two classes are equivalent if they have the same set of associated
semantic properties. Under a well-defined set of semantic properties, extensions to the
class organization can be defined as novel combinations of semantic properties: a subset
relationship between two sets of semantic properties implies a subclass relationship.

Formally, a class lattice is based on a set of semantic properties S. A semantic property
is a tuple (pi, vi) of a property name pi ∈ P (where P is the set of all property names) and
a value vi ∈ V(pi) from the domain of that property. Each class cj in the class organization
C is equivalent to a unique set of semantic properties: cj ≡ sj ∈ Sn, where Sn is a set of n
semantic property tuples drawn from the set of semantic properties S. Because each cj has
a unique sj, this implies that if sj = sk, then cj = ck.

The key assumption in the class lattice design is that any two modelers will reach for the
same set of semantic properties to describe the same concept. At first glance, this approach
is reminiscent of the tag-based metadata model described in §4.2; however, the semantic
property design improves on the tag approach in two ways.

1. The use of a structured tuple (pi, vi) instead of a simple tag makes it possible to more
precisely define the semantics of the property name pi. In the Brick+ implementation,
property names have specific meanings that make their intended usage clear.

2. The property name contextualizes the intended meaning of the property value vi. The
tag-based model cannot capture the relationship between two tags, and Haystack in
particular lacks any enforcement or specification of the domain of possible values for
all “value tags”. In contrast, the key-value nature of semantic properties provides a
richer mechanism for capturing the intent of a given value.

These two improvements make it possible for a modeler to choose a consistent and in-
terpretable set of semantic properties with which to define a new class. §4.4 describes in
detail a few of the semantic properties defined in Brick+ and demonstrate how the class
lattice structure above can be implemented using the OWL and SHACL ontology definition
languages.

Tag/Class Compatibility

Brick+ also embeds a tag-based metadata model which supports the annotation of entities
using Haystack-style tags. The tag-based metadata model improves upon the Haystack
model in two significant ways.

First, Brick+ attaches a unique set of tags to each class. This provides a “dictionary”
of which tag sets have clear, well-known definitions. By removing the need to have tags act
as freely-composable annotations (a role now served by the semantic properties described

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 50

above), tags can be used as simple annotations. Instances of Brick+ classes inherit the
appropriate tags, allowing the tags to be used as a discovery mechanism for both classes and
entities.

Second, Brick+ supports the inference of classes from a tag set; that is, given an entity’s
tag set, Brick+ can automatically derive an appropriate Brick+ class for the entity. This
inference can be done in both an exact (i.e. which Brick+ class exactly matches the given
tag set) and an approximate (i.e. which is the most likely class for the given tag set) manner.
In this way, the Brick+ class organization determines which sets of tags have a valid and
interpretable meaning.

The exact matching inference filters out the entities that do not have an interpretable
set of tags. Crucially, the exact matching inference does not rely solely upon the subset
relationship between two sets of tags. As discussed in §4.2, the subset relationship can
lead to situations where the same set of tags indicates two disjoint classes, resulting in an
uninterpretable model. Even though the Brick+ class organization defines the set of valid
tag sets, it is still possible for a subset of a tag set to imply an incompatible class. Brick+
circumvents this issue by including the cardinality of the tag set as an inference requirement.

Consider the same two classes and concepts that illustrated this issue in the Haystack data
model: Air Flow Setpoint (the desired cubic feet per minute of air flow) and Max Air Flow

Setpoint (the maximum allowed air flow setpoint). In Brick, Air Flow Setpoint would
be identified by the air, flow and setpoint tags, and Max Air Flow Setpoint would be
identified by the air, flow, setpoint and max tags5. In order to infer a Air Flow Setpoint

classification for an entity with the air, flow and setpoint tags, the entity would also need
to have exactly three associated tags. These two conditions (posessing the required tags and
possessing the required number of tags) are sufficient to guarantee that shared tag sets do
not result in the inference of incorrect or inappropriate classes.

The approximate matching inference method is helpful for automating the production of
Brick+ models from other metadata representations such as Haystack. The implementation
of approximate tag matching and its use in producing Brick+ models will be discussed in
depth in Chapter 5.

Brick+ Model Validation

The formal structures in Brick+ also enable the validation of Brick+ models. There are two
kinds of validation supported by Brick: correctness validation, and idiomatic validation.

Correctness validation ensures that the construction of a Brick+ model is logically sound
and does not imply any internally inconsistent information. Importantly, “correctness” in
this sense does not capture whether or not the Brick+ model is “up-to-date” with a building
(that is, whether the Brick+ model a correct representation of the building); §6.3 explores this

5Brick+ defines its own set of tags to avoid unnecessary abbreviations like sp for “setpoint”. Most
Brick+ tags have an analogous version in Haystack

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 51

1 brick:isPointOf a owl:ObjectProperty ;
2 rdfs:domain brick:Point ;
3 owl:inverseOf brick:hasPoint .
4

5 brick:Point a owl:Class ;
6 owl:disjointWith brick:Equipment .
7

8 building:ahu1 a brick:Equipment .
9 building:vav1 a brick:Equipment .

10 building:vav1 brick:isPointOf building:ahu1 .

Figure 4.3: An example of a logical violation in an instance of a Brick+ model.

subject in more depth. Instead, this validation ensures that Brick+ is being used correctly
for the statements that are in the model.

Consider the set of RDF statements in Figure 4.3. Lines 1-6 are a partial implementation
of the Brick+ ontology. Lines 1-3 specify that any subject of the brick:isPointOf property
is implied to be an instance of the brick:Point class. Lines 5-6 state that the set of instances
of brick:Point is disjoint with the set of instances of brick:Equipment; that is, no entity
can be both a Point and an Equipment.

Lines 8-10 define the Brick+ model and contain the violating statements. Lines 8 and
9 define two pieces of equipment. Line 10 introduces the logical violation: the use of the
brick:isPointOf property implies that building:vav1 is a member of brick:Point which
conflicts with the statement on line 9 that building:vav1 is a member of the disjoint class
brick:Equipment. It is not possible to determine which statement is erroneous without
external information about how the model was intended; however, a generated list of the
violating statements can help in the correction of a model. In this example, the two vio-
lating statements are line 9 (building:vav1 cannot be a brick:Equipment if it is to be a
brick:Point) and line 10 (which implies building:vav1 to be a brick:Point).

Idiomatic usage of Brick+ differs from correct usage in that idiomatic violations are still
logically valid. Instead, such violations are failures to meet structural and organizational
expectations. The specification of modeling idioms is essential for normalizing the use of
an ontology to a higher degree than can reasonably be provided by the ontology definition
itself. Because the ontology is meant to generalize to many different kinds of buildings,
subsystems, equipment and organizations thereof, the ontology definition makes very few
statements about what information is required to be present in a given building instance for
it to be considered valid. Idioms fill this gap by encoding “best practices” of what should
be contained in a given model.

Modeling idioms are diverse in form because they can fulfill many roles. For example,
modeling idioms may include the expectation that

• all VAVs in an instance should refer to an upstream AHU and a downstream HVAC

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 52

1 bsh:HasPointShape a sh:NodeShape ;
2 sh:targetObjectsOf brick:hasPoint ;
3 sh:class brick:Point ;
4 sh:message "Objects of the hasPoint relationship should be Points" ;
5 .
6 bsh:IsPointOfShape a sh:NodeShape ;
7 sh:targetSubjectsOf brick:isPointOf ;
8 sh:class brick:Point ;
9 sh:message "Subjects of the isPointOf relationship should be Points" ;

10 .

Figure 4.4: SHACL node shapes validating use of the Brick+ hasPoint and isPointOf

relationships

zone

• all VAVs of a particular make and model should have five associated monitoring and
control points

• all temperature sensors should be reporting in Celsius

Validation for Brick+ is implemented in SHACL [81] (Shapes Constraint Language), a
W3C specification for describing constraints on RDF graphs. Recall that SHACL describes
a graph consisting of shapes : shapes have a set of constraints and rules, which describe
tests for existing triples or the conditions for generation of new triples, and a target which
specifies parts of a data graph are subject to the constraints6. SHACL defines two kinds
of shapes: node shapes and property shapes. These define constraints for nodes and edges
(respectively) in an RDF graph.

Correctness Validation

Brick+ shapes focus on the proper usage of relationships. Because Brick+ does not
specify any minimum level of information, the only way to incorrectly use a Brick+ class is
to connect to it with an inappropriate relationship. For each of the relationships in Table 4.2,
Brick+ defines a node shape which targets the subjects or objects of the relationship. A
shape targets the subjects of the relationship if there are restrictions on its domain, and
targets the objects of the relationship if there are restrictions on the range. The shape then
specifies the intended type of the target node. Figure 4.4 contains the SHACL shape for
the hasPoint relationship. Because correct use of the hasPoint relationship only requires
that the object is a Point, the shape itself is very simple: sh:targetObjectsOf identifies
that the shape applies to all nodes that are objects of triples whose predicate is hasPoint;
sh:class constrains the type of those nodes to be Brick’s Point class.

6§2.4 provides more background on SHACL

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 53

1 bsh:IsPartOfShape a sh:NodeShape ;
2 sh:targetSubjectsOf brick:isPartOf ;
3 sh:xone (
4 [
5 a sh:NodeShape ;
6 sh:class brick:Equipment ;
7 sh:property [
8 sh:path brick:isPartOf ;
9 sh:class brick:Equipment ;

10] ;
11]
12 [
13 a sh:NodeShape ;
14 sh:class brick:Location ;
15 sh:property [
16 sh:path brick:isPartOf ;
17 sh:class brick:Location ;
18] ;
19]
20) ;
21 .

Figure 4.5: A SHACL shape enforcing the two possible uses of the isPartOf relationship.

For other relationships, the usage and implementation is more complex. The isPartOf

relationship can be used in two ways to indicate that equipment can be composed of other
equipment, or that locations can be composed of other locations. A model which indicates
that some locations are composed of equipment (or vice versa) is incorrect. Figure 4.5
implements the SHACL shape for this relationship. sh:xone specifies a list of constraints, of
which exactly one must be met in order for the target node to validate. The two constraints
in the list have the same structure: they each specify the expected type of the subject and
object of the relationship. The former is handled in the same way as the simpler shape in
Figure 4.4, but the second constraint encoded as a property shape.

The library of correctness shapes for each of the Brick+ relationships is included in the
Brick+ distribution where it can be easily accessed by tooling and applications. However, the
correctness shapes constrain very little about the contents of a Brick+ model — for example,
an empty Brick+ model is valid, but is not useful for executing any sort of data analytics.
In order to specify requirements on the desired content in a Brick+ model modelers should
use non-normative idiomatic validation shapes.

Idiomatic Validation

Idiomatic validation is also based on SHACL node shapes, but differs from the above in
its more liberal use of other SHACL features — offering more expressive requirements —
and the focus on targets qualified by class rather than relationship. Shapes for idiomatic
validation are simply all shapes that are not used for correctness. Presented here are several

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 54

1 bsh:BadVAVShape a sh:NodeShape ;
2 sh:target brick:VAV
3 sh:property [
4 sh:path brick:hasPoint ;
5 sh:class brick:Supply_Air_Temperature_Sensor ;
6 sh:minCount 1;
7 sh:maxCount 1;
8], [
9 sh:path brick:hasPoint ;

10 sh:class brick:Supply_Air_Temperature_Setpoint ;
11 sh:minCount 1;
12 sh:maxCount 1;
13]
14 .

Figure 4.6: An erroneous SHACL shape for defining two required points for VAVs

illustrative examples of common kinds of idiomatic validation shapes, and how they may be
used.

Equipment Properties and Relationships: Node shapes can express what Brick+
metadata must be attached to entities of a certain type. For example, in a particular
building it may be the case that all variable air volume box controllers have a standard
set of points exposed in the BMS. By encoding these expectations in an idiomatic vali-
dation shape, tooling can ensure that the Brick+ model actually describes the points and
relationships that are known to exist. Implementing these shapes requires using qualified
SHACL constraints — simply using sh:path in property shapes to encode the expected
type of related points results in unintuitive validation errors. Figure 4.6 contains an exam-
ple of how not to do this: when two different sh:path-based property shapes are associated
with a node shape, then fulfilling one means violating the other because the same entity
which is the object of the relationship cannot be an instance of two (disjoint) classes. Fig-
ure 4.7 shows the corrected node shape, which uses sh:qualifiedValueShape to indicate
that the property shape only applies to those entities that match the node class pointed
to by sh:qualifiedValueShape. sh:qualifiedMinCount and sh:qualifiedMaxCount are
analogous to the classic sh:minCount and sh:maxCount constraints, but only apply in the
same context as the sh:qualifiedValueShape.

Site-wide Requirements: In a similar manner as the above, idiomatic validation can
specify mandatory enumerations of equipment and other expected properties of a particular
site. For example, a modeler may use metadata from external data sources to author a
shape targeting an instance of a brick:Building which has exactly 10 VAVs, two AHUs,
four floors, and 37 rooms. This is possible to model in SHACL using the modeling approach
above: these more complex constraint structures are necessary because Brick+ only defines
a small number of relationships which may be used in different contexts.

Non-validating use of shapes: Shapes can also inform other use cases beyond val-

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 55

1 bsh:GoodVAVShape a sh:NodeShape ;
2 sh:target brick:VAV
3 sh:property [
4 sh:path brick:hasPoint ;
5 sh:qualifiedValueShape [
6 sh:class brick:Supply_Air_Temperature_Sensor ;
7] ;
8 sh:qualifiedMinCount 1 ;
9 sh:qualifiedMaxCount 1 ;

10], [
11 sh:path brick:hasPoint ;
12 sh:qualifiedValueShape [
13 sh:class brick:Supply_Air_Temperature_Setpoint ;
14] ;
15 sh:qualifiedMinCount 1 ;
16 sh:qualifiedMaxCount 1 ;
17]
18 .

Figure 4.7: The correct SHACL shape for defining two required points for VAVs.

idation. First, because shapes can be queried just like any other RDF graph, they serve
as a point of reference for bootstrapping an understanding of what data may be available
in a given Brick+ model. This can be used to populate documentation pages or other vi-
sualizations. Second, shapes can be used as templates for populating Brick+ models: the
required property shapes of a node shape inform the information that needs to be provided
by the user, and node shape itself contains the relevant metadata necessary to automatically
instantiate a Brick+ entity of the right type and with the required properties.

4.4 Brick+ Formal Implementation

The features of Brick+ that make it suitable for providing consistent metadata are imple-
mented in two different ontology languages: OWL-RL and SHACL. This section covers the
implementation of Brick+ and explains how it incorporates novel ontology features into a
traditional ontology design. The result is a practical ontology which enables the consistent
modeling of heterogeneous systems.

Brick+ Overview

Brick+ defines a family of OWL classes and properties using the OWL ontology language.
Recall that a class represents a named set; entities that are instances of a class are members
of that set. Brick+ classes categorize and define the behavior of the physical, virtual and
logical entities found in buildings. They are implemented as instances of owl:Class and are
organized into a class structure using the rdfs:subClassOf predicate. Brick+ defines three

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 56

Point

Sensor

Temperature Sensor

Air Temperature
Sensor

Supply Air Temperature
Sensor

Humidity Sensor

Return Air Temperature
Sensor

...

...

Setpoint

Damper Position Setpoint

Temperature Setpoint

...

Command

...

Equipment

HVAC

Air Handling Unit

Terminal Unit

...

Variable Air Volume Box

Constant Volume Box

Fan Coil Unit

...

Lighting

Switches

...

Luminaires and Lamps

...

Location

Room

Conference Room

Classroom

Lecture Hall

Kitchen

Reception

...

Building

Floor

Zone

HVAC Zone

Lighting Zone

Fire Zone

...

Figure 4.8: The three main class organizations for Brick+ entities

1 brick:Temperature_Sensor a owl:Class ;
2 rdfs:label "Temperature Sensor" ;
3 rdfs:subClassOf [owl:intersectionOf (_:has_Point _:has_Sensor _:has_Temperature)],
4 brick:Sensor ;
5 owl:equivalentClass [owl:intersectionOf ([a owl:Restriction ;
6 owl:hasValue brick:Temperature ;
7 owl:onProperty brick:measures])] ;
8 skos:definition "Measures temperature: the physical property of matter that"
9 " quantitatively expresses the common notions of hot and cold"@en ;

10 brick:hasAssociatedTag tag:Point,
11 tag:Sensor,
12 tag:Temperature .

Figure 4.9: The Brick+ definition of a temperature sensor.

(disjoint) types of entities: Locations, Equipment and Points. Location classes encompass
physical locations such as buildings, floors and rooms as well as logical spaces such as sites
(zero or more buildings) and zones (groups of spaces related to different building subsystems).
Equipment classes organize the physical assets in a building that are metered, monitored and
controlled as part of various building subsystems. Point classes define any source or sink of
data in a building; importantly, this is not limited to the data that is accessed through a
BMS, but rather any kind of digital data. Together, these three categories of classes cover the
majority of relevant concepts for data-driven building applications [54, 16, 15]. Figure 4.8
illustrates a subset of the Brick+ class structure: broader and more generic classes are closer
to the top of the organization, and more specific classes are closer to the bottom.

Each Brick+ class definition (e.g. Figure 4.9) has 6 components:

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 57

Relationship Definition Domain Range Inverse Transitive?

hasLocation Subject is physically located in the object * Location isLocationOf yes

feeds
Subject conveys some media to the
object in some sequential process

Equipment Equipment
isFedBy no

Equipment Location

hasPoint Subject has a monitoring, sensing or control
point given by the object

* Point isPointOf no

hasPart
Subject is composed – logically or
physically – in part by the object

Equipment Equipment
isPartOf yes

Location Location

Table 4.2: Brick+ relationships for associating entities with each other

• A unique URI in the Brick+ name space (line 1 of Figure 4.9)

• A human-readable label identified by rdfs:label (line 2 of Figure 4.9)

• A human-readable definition identified by skos:definition (lines 8-9 of Figure 4.9)

• One or more parent classes identified by rdfs:subClassOf (line 3-4 of Figure 4.9)

• Any associated tags, identified by brick:hasAssociatedTag (line 10-12 of Figure 4.9)

• Semantic properties which define the class. These use a variety of property names, as
explored in the next section (line 5-7 of Figure 4.9)

Several of these are simply annotations on the class definition. rdfs:label, skos:definition
and brick:hasAssociatedTag can be queried by tooling and applications, but do not affect
or contribute to the formal implementation of Brick. The other properties, discussed below,
are interpreted by a reasoner to insert inferred information into the graph.

Brick+ relationships connect entities together to form the model representing a partic-
ular building. Brick+ defines a small, orthogonal set of relationships — implemented as
OWL object properties — which capture composition, topology, telemetry and other asso-
ciations between entities that are required for authoring data-driven applications. These
relationships, carried over from the original Brick+ release, are listed in Table 4.2.

However, the class organization and relationship definitions alone are not enough to guar-
antee the consistent extensibility of the Brick+ ontology. To address these issues, Brick+
includes formal definitions of semantic properties and tags; these enable the structured ex-
tension of Brick+ and allow new and richer kinds of metadata to be associated with Brick+
entities.

Brick+ Tag Implementation

In Brick, tags are entities which are instances of the brick:Tag class. Brick+ tags have no
associated definition, and thus are not designed to provide any additional semantic context to
classes or entities. Tags are associated with Brick+ classes via the brick:hasAssociatedTag

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 58

1 brick:Temperature_Sensor a owl:Class ;
2 rdfs:subClassOf [# beginning of the OWL intersection class definition
3 owl:intersectionOf (# the list of tag classes
4 [a owl:Restriction ; # restriction class for "Temperature" tag
5 owl:hasValue tag:Temperature ;
6 owl:onProperty brick:hasTag]
7 [a owl:Restriction ; # restriction class for "Sensor" tag
8 owl:hasValue tag:Sensor ;
9 owl:onProperty brick:hasTag]

10 [a owl:Restriction ; # restriction class for "Point" tag
11 owl:hasValue tag:Point ;
12 owl:onProperty brick:hasTag]
13)
14], brick:Sensor .

Figure 4.10: Part of the brick:Temperature Sensor class definition from Figure 4.9, show-
ing the unoptimized full implementation of the OWL intersection class

relationship, and are associated with Brick+ entities via the brick:hasTag relationship.
These two relationships differentiate if a tag is intended as part of a definition (for classes)
or to facilitate discovery (for entities). Having two different relationships also makes it
possible for a reasoner to differentiate between the two use cases of tags.

Brick+ uses a reasoner to automatically add the appropriate tags to all instances of a
Brick+ class (referred to as class→tag inference). To implement this, each Brick+ class
definition has a rdfs:subClassOf relationship to a unique OWL intersection class which
encodes the required tags for that class. An OWL intersection class is defined by the con-
junction of membership in other classes: if an entity is a member of each of the indicated
classes, it is inferred to be a member of the intersection class. In the Brick+ tag implementa-
tion, the constituent classes to the OWL intersection class are OWL restriction classes which
individually encode the tag that is to be inherited. OWL restriction classes are defined by a
set of conditions; an entity is inferred to be an instance of a restriction class if it meets all
of the conditions.

Three restriction class definitions can be seen in Figure 4.10 on lines 4-6, 7-9 and 10-
12. Each of the classes is characterized by a single condition which is that the entity has a
given tag as the value of brick:hasTag. By making a Brick+ class a subclass of the OWL
intersection class, any instance of the Brick+ class is also inferred to be a member of the
intersection class, and thus also a member of each of the constituent classes. The inheritance
of the OWL restriction classes enables the reasoner to attach the appropriate tags to the
Brick+ entity.

One optimization that Brick+ includes in the implementation is the re-use of tag restric-
tion classes. In many ontologies, the OWL restriction classes and OWL intersection classes
are anonymous classes called blank nodes; these are typically used and defined in the same
place in the file (such as in Figure 4.10). This results in a large number of duplicate restriction

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 59

1 bsh:Temperature_Sensor_TagShape a sh:NodeShape ;
2 sh:rule [a sh:TripleRule ;
3 sh:condition _:has_Point_condition,
4 _:has_Sensor_condition,
5 _:has_Temperature_condition,
6 _:has_exactly_3_tags_condition ;
7 sh:object brick:Temperature_Sensor ;
8 sh:predicate rdf:type ;
9 sh:subject sh:this] ;

10 sh:targetSubjectsOf brick:hasTag .

Figure 4.11: SHACL-AF implementation of tag→class inference for the Brick+
Temperature Sensor class. Figure 9.2 in the Appendix contains the full expanded shape.

classes: each class that shares a tag will have its own definition of a restriction class encod-
ing the inference of that tag. A large number of restriction classes can severely impact the
performance of the reasoner. Brick+ ameliorates this performance issue by defining a single
restriction class for each tag, which drastically reduces the number of restriction classes that
must be processed by the reasoner. For clarity, these are often named :has <tag name>7;
examples of these can be found on line 3 of Figure 4.9.

Class→tag inference is possible to implement in OWL without encountering the ambigu-
ous classification problems exhibited by Haystack because it only adds tags using unambigu-
ous class declarations, rather than using tags to infer a class. However, it is necessary to
incorporate a closed-world model in order to perform tag→class inference. A closed-world
model allows the reasoner to check for which tags and properties are not associated with a
given entity and reason about the cardinality of certain properties. In particular, Brick+ uses
SHACL’s advanced features (SHACL-AF) to implement tag→class inference. SHACL-AF
provides reasoning capabilities that are based on the closed-world assumption [80].

The SHACL shapes that implement this feature are similar in structure to the OWL
implementation for class→tag inference. Brick+ defines one SHACL shape for each class.
Each SHACL shape has a sh:rule clause and targets subjects of brick:hasTag. SHACL
rules, identified by the sh:rule predicate, consist of a set of conditions and a single triple
that is added to the model if all the conditions are met. For tag→class inference, each
rule requires that the required tags are associated to the entity and that the number of
associated tags is equal to the number of associated tags. Together, these conditions are
sufficient for a rule to fire only if an entity has exactly the required tags, which removes
the ambiguous classification error exhibited by Haystack. Figure 4.11 contains the SHACL
implementation of tag→class inference for the brick:Temperature Sensor class. The blank
node optimization from class→tag inference is also applied here.

7The prefix indicates a blank node

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 60

Substances and Quantities

To support richer semantic definitions of classes, Brick+ defines a set of substances and
quantities which can be used to capture the behavior and purpose of a point or equipment.
A substance is any physical medium that can be observed or manipulated, including air,
water, light, electricity and gas. Brick+ defines several more specific kinds of substances
to clarify the phase of matter or the purpose within a larger subsystem. For example, the
definition of water has several more specific flavors including ice and water vapor (phases
of matter), but also potable water, supply water, return water and other subsystem-specific
uses of water.

In Brick, substances are instances of the brick:Substance class rather than being classes
themselves. This simplifies their usage by removing the need to create an instance of a
substance that can be related to a Brick+ class or entity. Even though substances are
instances rather than classes, it is still helpful to organize them. Brick+ uses the Simple
Knowledge Organization System’s skos:broader and skos:narrower properties to relate
substances as being more general or more specific than each other. These properties are
not interpreted by a reasoner; they only provide organization to the substances to facilitate
discovery.

A quantity represents a quantifiable property of a substance. The set of quantities de-
fined in Brick+ is based on QUDT’s QuantityKind class [75], and includes quantities such as
thermodynamic temperature, active power, volume and volumetric flow. By linking Brick’s
quantities to those defined by QUDT, Brick+ can also embed suggestions for units of mea-
sure that may be associated with points. For example, any Brick+ point that is associated
with the brick:Temperature quantity (representing thermodynamic temperature) can be
automatically inferred to support units of Celsius, Fahrenheit or Kelvin. Like substances,
quantities are instances of a root class (brick:Quantity) rather than being classes them-
selves.

Even though substances and quantities may share the same names as tags (e.g. brick:Air,
the substance, and tag:Air the tag), they are placed into different namespaces in order to
differentiate which terms have significant semantic meaning and which are simply annota-
tions.

Semantic Properties

Brick+ defines a family of semantic properties that augment the rdfs:subClassOf rela-
tionship with additional metadata about the behavior and purpose of entities. Recall that
semantic properties are a tuple (pi, vi) where pi is a property name and vi is the property
value. Many semantic properties have a value that is drawn from the dictionary of substances
and quantities defined by Brick. The property name qualifies the nature of the relationship
between the class definition and the substance or quantity. Table 4.3 defines a few of the
property names defined in Brick+ as well as their ranges (the type of the property value)
and domains (the type of the entity that has the semantic property).

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 61

Property Name Definition Domain Range

measures
Identifies the quantity or substance that
is measured by a point

brick:Sensor
brick:Substance

brick:Quantity

regulates
Identifies the quantity or substance that
is regulated by an equipment

brick:Equipment
brick:Substance

brick:Quantity

hasInputSubstance
Identifies a substance that flows into an
equipment

brick:Equipment brick:Substance

hasOutputSubstance
Identifies a substance that flows out of an
equipment

brick:Equipment brick:Substance

Table 4.3: A set of semantic property name definitions

Each Brick+ class is bound to a unique set of semantic properties. This is implemented
as an OWL intersection class which models the conjunction of an entity having each of the
required semantic properties; each of the constituent classes is an OWL restriction class.
Due to this construction, each Brick+ class has a superset of the semantic properties of
its parent. The semantic properties are assigned such that classes with n + 1 semantic
properties are subclasses of classes with an n-sized subset of those semantic properties. The
rdfs:subClassOf relationships between classes make this relationship explicit. Figure 4.12
depicts the resulting lattice for a subset of the brick:Point class organization.

Consider the example of the brick:Temperature Sensor class depicted in Figure 4.9.
This class is characterized by one semantic property: a brick:Temperature Sensor mea-
sures the temperature quantity of some yet-unspecified substance. Lines 5-7 of Figure 4.9
contain the definition of this single OWL restriction class and the encapsulating OWL in-
tersection class.

Importantly, and unlike tags, semantic properties are interchangeable with the class defi-
nition. For this reason, the implementation relates the OWL intersection class to the Brick+
class using the owl:equivalentClass predicate. This informs an OWL reasoner that it can
infer the semantic properties for an entity from the class definition as well as infer the class
from a set of semantic properties. The semantic properties for a class are inherited all en-
tities which are instances of that class. This allows semantic properties to be used not just
for structuring the extensibility of Brick’s class organization, but also for discovering entities
using richer annotations than simple tags.

Entity Properties

Classes provide helpful organization for groups of entities, but there are many potential uses
of a Brick+ model which require additional information about individual entities. To model
this metadata, Brick+ introduced a new entity properties component to the ontology. Entity
properties are similar to semantic properties in that they are a tuple (pi, vi) where pi is the
property name and vi is the property value, but differ in two important ways:

1. The values of entity properties are structured objects, rather than single values

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 62

Point

Sensor

Temperature
Sensor

Air
Temperature

Sensor

Air Sensormeasures Temperature
of substances

measures properties
of Air

measures Temperature
of Air

measures properties
of substances

Return Air
Temperature

Sensor

Discharge Air
Temperature

Sensor

measures Temperature
of Discharge Airmeasures Temperature

of Return Air

Figure 4.12: A subset of the Brick+ class lattice for sensors, showing the semantic properties
which characterize each class

2. Entity properties are applied directly to entities, rather than inferred or inherited from
class definitions

The values of entity properties are structured objects modeled in RDF. The specific
structure of the object is governed by a SHACL shape which is indicated by the rdfs:range

of the entity property name. The advantage of having a structured object as the value of
an entity property is the value can be reified with additional metadata. This allows the
definitions of entity values to be extended or further reified as the Brick+ ontology evolves.
The object itself is modeled as a URI (often but not necessarily a blank node) and the reifing
metadata is modeled as RDF predicates and objects of that URI.

Reifying a value means to attach additional descriptions and metadata to that value that
are not captured by the value itself. For example, consider modeling the floor area of a room.
The floor area itself is a simple scalar quantity, but the model can be made more helpful
and complete by annotating the quantity with the engineering units and whether or not the
quantity represents net or gross floor area. Other annotations may be the time at which the
observation or measurement was made or an estimation of its accuracy or certainty.

Separating the definitions of the entity property value (the SHACL shape) and the prop-
erty name makes it possible to reuse the same kind of value in different contexts. The
semantic meaning of the value is determined by the property name. The semantics of
the property name can be further refined by creating new subproperties (indicated with
rdfs:subPropertyOf), which inherit definitions from any parent properties.

Most SHACL shapes defining the entity property values follow one of two design patterns.
The first pattern is for modeling scalar values, such as floor area, room volume, or the

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 63

1 brick:area a brick:EntityProperty ;
2 rdfs:domain brick:Location ;
3 rdfs:range brick:AreaShape ;
4 skos:definition "Entity has 2-dimensional area" .
5

6 brick:AreaShape a sh:NodeShape ;
7 sh:property [a sh:PropertyShape ;
8 sh:datatype xsd:float ;
9 sh:minCount 1 ;

10 sh:path brick:value],
11 [a sh:PropertyShape ;
12 sh:in (unit:FT2 unit:M2) ;
13 sh:minCount 1 ;
14 sh:path brick:hasUnit] .
15
16 :x a brick:Floor ;
17 brick:area [
18 brick:value 100^^xsd::float ;
19 brick:hasUnit unit:FT2 ;
20] .

Figure 4.13

nominal rated voltage of a motor: in these cases, the entity property must capture the
value, (identified with a brick:value property), the units of measure (identified with a
brick:hasUnit property) of the property, and the expected datatype (e.g. string, integer,
positive integer, floating point number). The second pattern is for modeling enumerated
values. Here, the value of brick:value can only have one of a fixed number of values; the
SHACL shape contains the enumeration and definition of these values.

Not all entity properties adhere to these idioms. For example, the brick:aggregate en-
tity property, which defines the aggregation method and window of the data associated with
a point, defines its own brick:aggregationFunction and brick:aggregationInterval

properties to characterize the value.
Figure 4.13 contains the definition of the brick:area entity property name, the

brick:AreaShape SHACL shape defining the structure of the value, and an example use
of the property to model floor area. Note that the entity property definition on lines 1-4
indicates that the property is only to be used with Brick+ location entities. The shape
defintiion on lines 6-14 enumerates the possible units (square feet and square meters) and
indicates that floor area should be a floating point number.

Entity properties address several long-standing asks from the Brick community. Over
the past 5 years of Brick development, there have been many ad-hoc attempts to model
static and scalar metadata that is associated with Brick entities. However, until the entity
property design above, these independently-developed models were not consistent in their
form and definition. As Brick continues to evolve, the family of entity property definitions
is likely to grow to cover additional metadata use cases.

CHAPTER 4. MANAGING HETEROGENEITY WITH SEMANTIC METADATA 64

Conclusion

In order to provide a consistent metadata model that can describe the heterogeneous settings
typical of cyberphysical systems, it is not enough to simply define a dictionary of tags
or terms which can annotate data streams. Brick adopts a formal, graph-based model
which not only provides a rich and extensible dictionary of concepts, but provides a means
for instances of concepts to be related to one another. This chapter demonstrated new
ontology design techniques which provide facilities for structured extension of the ontology,
ensuring that additions can be done in a consistent and interpretable manner. Brick also
provides an alternative and usable implementation of tagging for both entities and concepts,
and incorporates a new entity properties feature which associates reiified metadata with
instances of Brick classes. Together, these features enable the robust modeling of complex
cyberphysical systems, and provide a framework for implementing self-adapting software.

65

Chapter 5

Expressing Self-Adapting Software

Write once, run everywhere.

Sun Microsystems

Self-adapting software leverages structured and semantically-rich descriptions of its de-
ployment in order to automatically configure its operation to that environment. The prior
chapter demonstrated how graph-based metadata models, such as Brick, can capture the
necessary information to enable self-adapting software; however, the challenge remains how
to actually write self-adapting software. How does software express what the requirements
are for its operation, and how its structure and execution should react to different configu-
rations of its environment? What are the supporting systems, databases and programming
runtimes that enable the efficient execution self-adapting software? How can the potential
complexity of self-adapting software be automated or otherwise abstracted away from the
programmer?

Two models for expressing and executing self-adapting software are examined. First, the
chapter details a staged execution model for self-adapting software. Software describes the
data and metadata requirements for its operation in an application manifest. To determine if
and how software can execute in a given deployment, the software’s manifest is evaluated on
the metadata model for that deployment. The results of this evaluation provide the applica-
tion with the information it needs to determine if it can execute and, if it can execute, how to
configure itself and adapt its logic to the deployment. While straightforward to implement,
the programming model outsources much of the complexity of self-adaptation logic to the
user. The chapter then contrasts the staged programming model with an interactive ap-
proach that abstracts away much of the bookkeeping associated with writing self-adaptation
logic.

Definition 5.0.1 (Environment). An environment is the cyberphysical context in which a
piece of software is running. This includes, but is not limited to, the networked resources
available to the software, the structure and topology of the cyberphysical subsystems affecting

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 66

Figure 5.1: Logical workflow for application configuration and execution

the environment (such as HVAC, lighting and electrical subsystems in buildings), and any
historical telemetry about the environment.

5.1 Using Metadata for Configuration

The kinds of rich semantic metadata detailed in §4 can inform the execution of self-adapting
software in several ways. An effective programming model for self-adapting software must:

• allow software to access the metadata representation of an environment to determine
if the environment is appropriate and if there is sufficient metadata for the application
to operate

• allow software to adapt its execution with respect to the available metadata about an
environment

Metadata-Driven Software Portability

Definition 5.1.1 (Portability). Portability is the quality of a piece of software that describes
the extent to which the software can adapt the execution of its functionality to a given envi-
ronment without human interaction or configuration. Generally speaking, the more portable
a piece of software is, the more environments it may execute in. Non-portable software may
only run on 1 or a small number of environments; this is characteristic of most data-oriented
cyberphysical software deployed today.

Self-adapting software queries the metadata model of an environment in order to un-
derstand how the software should adapt its behavior. The first task that these queries

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 67

accomplish is establishing whether or not the environment is appropriate for the software.
This predicate, which is specific to the logic of the application, is evaluated by querying the
environment for the kind and structure of the subsystems that are required by the software

Cyberphysical systems are heterogeneous and are characterized by unique, one-off de-
signs. However, while the exact instantiations of these subsystems differ significantly from
building to building, most subsystems of a particular type will contain similar kinds of
equipment organized into similar topologies. For example, recall from Chapter 2 that con-
ditioning the air in buildings may be performed through air-based HVAC systems (usually
with a complex AHU-based system in larger buildings, and simpler RTU-based systems in
smaller buildings), or through water-based radiant systems. In each of these systems, a sub-
stance (water or air) can be traced through different equipment which regulate or condition
different properties of that substance until the substance reaches a point where it interacts
with the human-occupied parts of the environment. The functional relationships between
these components can be captured in a general manner (Chapter 4).

Self-adapting software will query the environment to identify which kinds of subsystems
are installed, and use the results to determine how to adjust the operation. Query results can
drive an algorithmic change — such as what kind of model is trained or which fault conditions
are tested — but may also lead the application to terminate early due to a lack of available
metadata or the presence of a subsystem which is incompatible with the application’s intent.

Once the software knows the structure of the environment it is interacting with, it can
then query the metadata model for application- and subsystem-specific configuration. For
data-driven applications, this includes retrieving the names, units and other salient metadata
for any points and other data streams required for operation. This is complemented with
contextual information about the data streams, such as which equipment or location they
are associated with.

Figure 5.1 illustrates a logical execution model for self-adapting applications in a Brick
context. The queries describing the application’s semantic and data requirements are eval-
uated on a Brick model database, which stores the metadata representation of the current
environment. The answers to these queries give the application the foreign keys or other
identifiers necessary to retrieve historical and live telemetry for any relevant data sources.
This bootstrapping process can then forward the resulting metadata and data to the rest of
the application.

There are fundamental limits to the portability of an application. The most portable
software is an application that requires no metadata about its environment. However, most
useful applications require certain assumptions to hold for the application’s logic to be ap-
propriate. For example, an application that is detecting broken fans in a building will likely
need to know what kinds of data are available for the fans in the building. If a building has
no fans, then the application is not appropriate for the building. Further, an application’s
ability to operate in a certain environment also depends on the metadata available about
the environment. An incomplete or out of date metadata model of an environment will also
impact how well, or if, software can run in that environment. Techniques and systems for
maintaining and managing metadata models over time are described in Chapter 6.

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 68

Another crucial component to application portability is the existence of common APIs for
accessing the metadata model and telemetry for a building. Past work such as sMAP [40] and
recent commercial platforms address how to extract data from cyberphysical environments.
Chapter 7 discusses APIs and platforms that support self-adapting software.

SPARQL Queries for Application Configuration

The SPARQL query language is a W3C standard for querying and manipulating RDF graphs,
and is an essential tool for accessing the contents of metadata models. Self-adapting soft-
ware leverages SPARQL features and ontology structure (using the features described in
Chapter 4) to account for the both the heterogeneity of cyberphysical systems in the envi-
ronment and the heterogeneity in the graph structure describing that environment. This
allows effectively-written software to remain somewhat agnostic to the content and structure
of the metadata model, which increases portability. SPARQL has a large number of features,
but only a subset of them are necessary to support self-adapting software. The overview of
SPARQL presented here will focus on the major features of SPARQL 1.1 [66] used in this
context.

A SPARQL query has two primary components: the SELECT clause which indicates which
variable bindings to return from the query execution, and the WHERE clause which specifies
the predicates on and relationships between variables. A variable is identified with a ? prefix,
e.g. ?x and ?ahu. The name of a variable has no semantic significance, though for clarity
variables often retain names similar to what they will be bound to.

The WHERE clause consists of a set of graph patterns, which are made up of triple patterns
and other operators. A triple pattern has a similar structure to an RDF triple. It is composed
of:

• a subject : a variable or URI

• a predicate: a variable, URI or property path [66]

• a object : a variable, URI or literal

Triple patterns describe the parts of a graph that must be matched for the query predicate
to be true. The flexibility of this matching is what allows SPARQL queries to execute
successfully over heterogeneous graphs. Property paths are a key feature of SPARQL which
facilitate this flexibility. A property path is a complex pattern of RDF predicates and query
variables which can match transitive closures (0 or more of the same predicate in sequence),
optional predicates, alternative predicates, explicit sequences of predicates, and negations of
the above. Triple patterns are joined together into a graph pattern by the “.” conjunction
operator. Many WHERE clauses consist of a single graph pattern; however, it is also possible
to union multiple graph patterns (where “.” is a logical “and”, the union is a logical “or”)
to express more complex query predicates. The programming models explored below differ
primarily in how and when SPARQL queries are expressed and executed.

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 69

AHU
Class

VAV
Class

Damper
Class

HVAC Zone
Class Room

feeds feeds feeds hasPart

hasPart

type type type type type type

AHU
Class

VAV
Class

Damper
Class

HVAC Zone
Class Room

feeds

hasPart

feeds hasPart

hasPart

type type type type type

type

AHU
Class

HVAC Zone
Class Room

feeds hasPart

hasPart

type type type type

hasPart

(a)

(b) (c)

Figure 5.2: Three different Brick models describing the same physical system. It is possible
to author a single SPARQL query which will retrieve the names of the AHU and downstream
rooms, independent of the specific structure of the graph.

Handling Heterogeneous Graph Structures

To be portable, self-adapting software must be able to find the metadata it requires in many
different graphs. Even for the same cyberphysical system, differences in the metadata model
graph may arise for several reasons. Primary among these is the availability of informa-
tion: not all cyberphysical systems have a complete description available that can inform
the creation of the metadata model. Another reason graph structures may differ is the effort
required to make more complete models, or differences in opinion for how the model should
be constructed. The combination of property paths and the small and expressive set of pred-
icates supported by a cyberphysical ontology like Brick allow SPARQL queries to generalize
to many different graph structures. Brick’s design goals of consistency and interpretability
facilitate this task in three concrete ways.

First, the small number of predicates defined by the ontology mean there is a limited num-
ber of ways in which components can be related to one another. Because Brick’s predicates
have orthogonal semantics, it is usually obvious which predicate should or would be used to
relate a given pair of entities. For example, entities representing a sequence of equipment in
a subsystem will be related to one another using the brick:feeds relationship.

Second, the class organization makes it easier for modelers to choose consistent
types for the entities they are modeling. Brick currently defines over 700 different
classes, each with a human-readable definition which can clarify the meaning of the
class. The hierarchical nature of the class organization also makes it possible to dis-
cover entities based on more generic types. This removes the need to know the ex-
act type associated with an entity in order to find it with a SPARQL query. For ex-
ample, an entity with a type of brick:Discharge Air Temperature Sensor is also an

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 70

1 SELECT ?ahu ?room WHERE {
2 ?ahu a brick:AHU .
3 ?ahu brick:feeds+ ?zone .
4 ?zone brick:hasPart ?room
5 }

Figure 5.3: A SPARQL query which finds the AHU and two rooms in each of the graphs in
Figure 5.2
.

instance of brick:Air Temperature Sensor, brick:Temperature Sensor, brick:Sensor

and brick:Point.
Third, the semantic properties that contextualize class definitions can also be used to

discover relevant entities in terms of their behavior and purpose, rather than the name of
their type. For example, it may be more natural for a query author to ask the metadata
model for “all sensors which measure air temperature and are downstream of a particular
VAV” rather than “all discharge air temperature sensors downstream of a particular VAV”.

These design properties of cyberphysical ontologies such as Brick ensure consistency and
compatibility in modeling choices, and provide multiple ways of finding the same information.
Property paths in SPARQL queries help address other variances in how the metadata model
is expressed. This is best illustrated with an example. Figure 5.2 depicts three different Brick
models describing the same basic HVAC system consisting of an AHU, VAV containing a
damper and an HVAC zone containing two rooms. Model (a) depicts a damper as explicitly
in the flow of air from the VAV to the zone. Model (b) models the damper as part of the
VAV, but does not place it in the air flow sequence. Model (c) omits the VAV and damper
entirely.

The query in Figure 5.3 successfully finds the AHU and room entities in each of the graphs
in Figure 5.2. The query uses the brick:feeds relationship to match an “upstream/down-
stream” relationship between the AHU and the rooms to which it supplies air. To account for
different levels of detail with relation to the equipment that are modeled in that air supply,
the query uses a transitive closure on the brick:feeds relationship to match any arbitrary
sequence of those edges (line 3).

5.2 Programming Models for Self-Adapting Software

This section describes and reviews two proposed programming models for self-adapting soft-
ware, termed staged and interactive. The two approaches both use SPARQL queries to ac-
cess the metadata model describing a particular environment, but differ in how the SPARQL
queries are expressed, when they are executed, and how the results are incorporated into the
execution and adaptation of software. The programming models are discussed in the context

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 71

fetch clean analyze

aggregatefetch clean analyze

fetch clean analyze

…

…

…
 qualify

Execute for
each building
returned from
qualify

Figure 5.4: Architecture of an application written in the staged programming model

of analytics for buildings, driven by metadata expressed using the Brick ontology; however,
the techniques and methods do generalize to other cyberphysical settings and ontologies.

Staged Programming Model for Large-Scale Analysis

Many implementations of cyberphysical analytics are not portable due to hard-coded point
names — a characteristic that is addressed with expressive metadata models — but also
tightly-coupled phases of operation which make assumptions about the nature and availabil-
ity of data. The staged programming model is so-named because it decomposes the structure
of a self-adapting application into discrete phases of operation which can individually enforce
key assumptions for other parts of the application. Earlier phases can handle unit conversion,
perform data cleaning, patch missing data and ensure that required data exists. Decoupling
data preparation from the analysis simplifies the implementation of the latter. The modular
application structure also has the benefit of providing re-usable and re-mixable components
which can reduce development effort and assist in reproducibility.

The staged programming model decomposes analytics applications into five phases:
qualify, fetch, clean, analyze and aggregate. These stages are executed by an ap-
plication runtime, a library abstracting away access to the metadata and data stores. The
structure of the backing analytics platform is described in Chapter 7. Figure 5.4 depicts the
flow of execution of a generic self-adapting application expressed in the staged programming
model.

The explanations of each of the stages below will follow a running example of a “rogue
zone detection application”. This application examines pairs of air flow sensors and set-
points for each HVAC zone in a building and identifies zones where the measured air flow is
significantly above or below the setpoint for an extended range of time.

Qualify Stage

The qualify component of a self-adapting application defines the metadata and data require-
ments of an application in a declarative manner. The evaluation of the qualify component

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 72

1 # identifies pairs of sensor/setpoint to be compared
2 SELECT ?sensor ?setpoint ?equip WHERE {
3 ?setpoint a brick:Air_Flow_Setpoint .
4 ?sensor a brick:Air_Flow_Sensor .
5 ?sensor brick:isPointOf ?equip .
6 ?setpoint brick:isPointOf ?equip
7 }
8

9 # (optional) identifies which zones might be effected
10 SELECT ?equip ?zone ?room WHERE {
11 ?equip a brick:Terminal_Unit .
12 ?zone a brick:HVAC_Zone .
13 ?equip brick:feeds+ ?zone .
14 ?zone brick:hasPart ?room
15 }

Figure 5.5: Two SPARQL queries used in the qualify step of a rogue zone detection appli-
cation.

gates the further execution of the application; if the specified conditions are not met, then
the application terminates its execution. One valuable property of the qualify component
is it can be used to filter down a large set of environments to just the set on which an
application can execute; this is instrumental to the implementation of the Mortar building
analytics platform described in Chapter 7. The set of environments that fulfill the qualify

stage’s predicates are the execution set of the application.
The qualify stage of an application consists of a set of SPARQL queries which are eval-

uated against a collection of environments. The output of this stage is a table of how many
results each query returned for each environment. The application uses this information to
make a decision about whether or not to qualify each environment. A simple predicate would
be to qualify an environment only if all queries returned at least 1 result. More complex
predicates could inform the creation of a decision tree which uses the successful execution
of some queries to inform the choice of which other queries should return results in order to
qualify the environment.

Figure 5.5 contains two SPARQL queries which would be used in the qualify step of
the running example of a rogue zone detection application. The first query guarantees the
existence of the sensor and setpoint data streams which are required by the application.
The ?equip variable allows the correct data streams to be compared with one another. The
second query, which could have been incorporated into the first, is listed separately because
it is optional. The results of the second query provide valuable context for which zones and
rooms would be affected by the fault condition and thus considered one of the “rogue zones”.
However, this useful context is not strictly necessary for the application to run, so making
this metadata a supplementary part of the application ensures that the application is more
permissive in the set of environments it can execute on.

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 73

pymortar.DataFrame definition

client.fetch()

pandas.DataFrame results

Figure 5.6: Dataframe definition in Python (left) and the resulting dataframes (right)

Fetch Stage

The fetch component of a self-adapting application describes and retrieves the data required
for the application to run. The component is expressed as a declarative specification of a
dataset. Specifically, this consists of:

• Views: A view contains metadata requested by the application. It is defined as a
named SPARQL query, the evaluation of which on a given environment produces a
table of the results. A fetch component can contain many view definitions.

• Dataframes: a dataframe is a time-indexed table of data requested by the application.
The data stream included in a dataframe are determined by the variable bindings from
one or more views ; the author of the dataframe definition chooses which variables
correspond to interesting data. The dataframe definition also specifies how the data
for each variable is to be aggregated, including the method and window of aggregation.
A fetch component can contain many dataframe definitions.

• Time range: this defines the temporal range of data to be retrieved. A fetch com-
ponent contains exactly one time range.

An application contains a single fetch component that is executed on each of the envi-
ronments in the execution set. Executing the fetch component means evaluating the view
and dataframe definitions on the metadata model and associated databases for each environ-
ment. The output of this evaluation is an object providing access to the now-populated views
and dataframes described by the application. The representation of views and dataframes
depends on the host language of the programming environment. In the Mortar platform [52,

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 74

site
CompSciHall

CompSciHall

CompSciHall

CompSciHall

...

AutogeneratedFrom SELECT clause

pymortar.View definition

s

sen1

sen2

sen3

sen4

...

sp

sp1

sp2

sp3

sp4

...

equip

vav1

vav2

fcu1

fcu2

...

s_uuid
...-9788bdf63cf0

...-d7c96010da5c

...-b1607a419aa4

...-89f84f4ec34e

...

sp_uuid
...-22d998555a35

...-48b700ed841b

...-1140b5c47b67

...-1e3937209cee

...

s_unit

CFM

CFM

CFM

CFM

...

sp_unit

CFM

CFM

CFM

CFM

...

client.fetch()

Figure 5.7: View definition in Python (left) and resulting table (right)

53], views are represented as in-memory SQL tables; this facilitates additional grouping,
filtering and other operations on the metadata. Dataframes are represented as in-memory
Pandas dataframes, which facilitates manipulation, filtering and computation.

Figure 5.7 contains the definition of a view for the rogue zone detection application. The
table containing the results of the evaluated view receives several auto-generated columns
which contain metadata about the data associated with the point entities that are returned
in the query. Each row of the table corresponds to one set of bindings to the variables in the
SELECT clause.

Figure 5.6 contains the definition of two dataframes for the rogue zone detection applica-
tion: one containing the data for the air flow sensors (aggregated using a 15-minute mean)
and another containing the data for the air flow setpoints (aggregated using a 15-minute
max). Data semantics inform the choice to use two dataframes: retrieving the min or max
setpoint in a given window ensures that the data reflects real setpoint values; however for the
sensor it is more important to use an aggregation that captures characteristic rather than ex-
treme readings. Evaluating the two dataframe definitions produces two objects that contain
the timeseries for each of the entities bound to the respective variables for that dataframe;
for example, the id column of the “air flow sensor” dataframe will contain identifiers for
each of the air flow sensors found in the view.

Clean Stage

The clean component of a self-adapting application executes on the output of the fetch

component. This component of the application fulfills a vital role in ensuring application
portability that is not addressed by the ontology structure and flexible SPARQL queries: data
normalization. This includes, but is not limited to, aligning data to a common timeframe
(such as on the hour) and filling in data holes by extrapolating historical data. One common
operation is dropping ranges of data which contain invalid or missing values so that each set
of data streams that will be computed on together has a shared set of timestamps. By making
this data cleaning and normalization step a distinct stage of execution, it is possible for other
application authors to borrow or repurpose data cleaning code from existing applications.
This provides an explicit mechanism for reusing analytics and data cleaning techniques.

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 75

1 # 'data' contains a result object from the 'fetch' component
2 # this pd.Series is True when both dataframes have data for a given timestamp
3 not_null = (data['air_flow_sensor'].value.notna()) & (data['air_flow_setpoint'].value.notna())
4 data['air_flow_sensor'] = data['air_flow_sensor'][not_null]
5 data['air_flow_setpoint'] = data['air_flow_setpoint'][not_null]

Figure 5.8: A simple clean stage implementation in Python which filters out periods of time
where either dataframe is missing a value

1 sensor_df = data["air_flow_sensor"]
2 setpoint_df = data["air_flow_setpoint"]
3 # get all the equipment we will run the analysis for. Equipment relates sensors and setpoints
4 equipment = [r[0] for r in data.query("select distinct equip from airflow_points")]
5 # loop through data columns
6 for idx, equip in enumerate(equipment):
7 # for each equipment, pull the UUID for the sensor and setpoint
8 res = data.query("""SELECT room, s_uuid, sp_uuid, equip
9 FROM sensors

10 LEFT JOIN rooms ON rooms.equip = sensors.equip
11 WHERE equip = $1;""", equip)
12 if len(res) == 0:
13 continue
14 sensor_col = res[0][1]
15 setpoint_col = res[0][2]
16 rooms = set([row[0] for row in res])
17 # create the dataframe for this pair of sensor and setpoint
18 df = pd.DataFrame([sensor_df[sensor_col], setpoint_df[setpoint_col]]).T
19 df.columns = ['airflow','setpoint']
20 bad = (df.airflow + 10) < df.setpoint # by 10 cfm
21 if len(df[bad]) == 0: continue
22 # use this to group up ranges where the sensor reads below the setpoint
23 df['below_setpoint_group'] = bad.astype(int).diff().ne(0).cumsum()
24 groups = df[bad].groupby('below_setpoint_group')
25
26 for group in groups:
27 print(f"{equipment} for rooms {rooms} had low airflow from {grp[0]} to {grp[-1]}")

Figure 5.9: A analyze component implementation in Python for the rogue zone application
which finds periods where the measured airflow is lower than the setpoint.

Analyze and Aggregate Stages

The analyze component contains the actual application logic. It operates on the nor-
malized dataset produced by the clean component. Like fetch and clean, this component
is run individually for each environment in the application’s execution set. This component
can terminate the application, or it may output a result object; the results of each individual
analyze component execution are sent to the aggregate stage which can execute logic over

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 76

the results for all environments. Cross-environment comparisons can be done by returning
analysis results from the analyze component, or simply by passing data through analyze

without any computation and letting aggregate handle computation across all environment
data.

Figure 5.9 contains a sample implementation of the analyze component for the rogue
zone application. The implementation joins views (lines 8-11) to identify which rooms are
part of possible “rogue zones”. The output of the component is a textual report of when
and for how long terminal units and rooms had low air flow.

The staged programming model enables self-adapting software by providing an applica-
tion’s execution with enough information to decide which code paths to run (the qualify

and fetch steps) and enabling data normalization (the clean step) to simplify core applica-
tion logic. By modularizing the implementation, the staged programming model also makes
it easier for new developers to “fork” or build off of existing stages that already accomplish
the desired tasks. For example, the qualify, fetch and clean stages for the running exam-
ple above could be repurposed for a different algorithmic approach for detecting rogue zones
(offering an opportunity for rich comparisons over many different kinds of environments), or
could be used in a completely different application such as one that detects the presence of
nighttime air flow setbacks.

Interactive Programming Model for Exploratory Analysis

Software written using the staged programming model reacts to the details of its environment
at the beginning of its execution. This is effective when the application task is well-defined
and certain assumptions can be made about the availability of metadata, but these are not
always known. Furthermore, software written using the staged programming model can be
complex due to the need to join and filter the metadata and data available, even during the
analysis itself (such as Figure 5.9). Addressing these issues requires the development of a
different programming model for self-adapting software. The description of the interactive
programming model below serves to illustrate how such a model might behave and how it may
be implemented. A fuller exploration, implementation and evaluation of this programming
model is a subject of future work.

The interactive programming model differs from the staged programming model in two
important ways:

• Interactive vs batched execution: a program written in the staged paradigm is exe-
cutes in batch over a collection of environments (multiple buildings). This is possible
because the application must declare all queries and computation up front before it can
be executed. In contrast, the interactive paradigm does not need to pre-declare any
requirements for execution, and allows a programmer to incrementally add constraints
and explore metadata and data during development time.

• Implicit vs explicit queries: the staged programming model explicitly includes SPARQL
queries as part of its configuration (qualify) and execution (fetch). SPARQL queries

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 77

1 base = Graph()
2 # finds all AHUs in the building
3 ahus = base.by_class("brick:AHU")
4 # creates a new relation with the AHU and the heating cmd point instance
5 heat_cmd = ahus.join_point("brick:Heating_Valve_Command")
6 # creates a new relation with the AHU and the cooling cmd point instance
7 cool_cmd = ahus.join_point("brick:Cooling_Valve_Command")
8 # joins on the 'ahu' key of both relations
9 simultaneous = (heat_cmd > 0) & (cool_cmd > 0)

10 # returns data between the two timestamps
11 print(simultaneous.between("2021-01-01", "2021-01-30"))

Figure 5.10: A simple program written using the interactive model that finds regions of time
when AHUs are both heating and cooling.

1 SELECT ?ahu ?heat ?cool WHERE {
2 ?ahu a brick:AHU .
3 ?ahu brick:hasPart*/brick:hasPoint ?heat .
4 ?ahu brick:hasPart*/brick:hasPoint ?cool .
5 ?heat a brick:Heating_Valve_Command .
6 ?cool a brick:Cooling_Valve_Command .
7 }

Figure 5.11: The SPARQL query implied by the execution of the program in Figure 5.10

which account for many variations in the graph structure can be complex, difficult to
write and even harder to reason about. The interactive paradigm explores the use
of application code to incrementally build up data structures which could have been
populated by SPARQL queries but are not.

A key concept in the interactive programming model is the relation, an unordered multiset
of tuples. A program creates relations through evaluating queries against the metadata graph
and by transforming or combining other relations. The metadata graph itself is a special
kind of relation that contains all tuples in the model. The programming model supports a
collection of operations on relations. Relations are immutable; all operations produce a new
derived relation rather than mutating the operand.

• Filter by class: a new relation B can be produced from a relation A by retaining
tuples which contain at least one value that is an instance of the provided class. This
operation is ontology-aware, so more general class names can be provided than appear
in the original relation.

• Augment by relationship: a new relation B can be produced from a relation A by

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 78

joining with all entities that are related to a tuple in A through the indicated relation-
ship(s).

• Fetch data by class: a new relation B can be produced that contains the timeseries
data relating to entities contained in tuples of A. Data retrieval is potentially expensive
and can be postponed until downstream operations materialize which data streams and
segments of time are required

• Dataframe operations: relations support common dataframe operations, such as those
provided by Pandas. The data types of the operands and arguments are used to
disambiguate which elements of the tuples are used in the operation

The relations produced by these operators preserve the elements of the tuples used in their
operation, so that downstream joins on those keys are possible.

Figure 5.10 contains an example program written in the proposed interactive program-
ming model, which identifies regions of time when both the heating and cooling valve are
active for each AHU equipment in a building. This program illustrates how relevant compo-
nents of the graph can be extracted using simple operators, without having to know details
of the model’s expression. For example, lines 5 and 7 use a join point operator, which
implicitly executes a transitive closure to find all Point instances that may be related to the
AHU key. Figure 5.11 reveals the full SPARQL query that is implied by the operation of
this program.

5.3 Evaluation of Staged Programming Model

Evaluation of a self-adapting programming model should incorporate a measure how self-
adapting the software is, and how much extra logic and code is required to express that
self-adaptivity. To this end, the following evaluation focuses on two concrete metrics:

• Conciseness: how many lines of code does it take to express the self-adapting aspects
of an application?

• Portability: how many different environments can the application operate in?

The evaluation is performed in the context of representative building applications which
use the Brick ontology as the metadata model of each environment (building). The set of
applications is informed by the literature and by knowledge of common analyses performed
on buildings. These applications are implemented using the staged programming model on
the Mortar [52] platform and dataset, which are described in detail in Chapter 7.

Portable Application Suite

Descriptions follow of the 12 building analytics applications implemented in the staged pro-
gramming model. While the application suite provides a diverse set of functionality, there

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 79

Figure 5.12: Energy Baseline Calculation and Baseline Deviation Applications:
Predicted baseline using [92] plotted against actual building energy consumption.

is some overlap in the implementations: some applications were able to re-use fetch and
clean stages from other applications.

Energy Baseline Calculation

This application is a re-implementation of an existing open-source package (LBNL-baseline1)
which implements a baseline calculation algorithm [92]. The application requires access to
data representing the energy consumption of the building, and can optionally make use of
outside temperature data when available. The portable implementation has value beyond
the original package because it lowers the effort required to execute the application on new
sites; in conjunction with the data set described in Chapter 7, the single implementation
can compare the accuracy of the predicted baseline in a variety of building environments
including different climates, constructions and building uses. Figure 5.12 contains several
plots of the predicted vs actual measured baseline on three different sites: a public works
yard (top), senior center (middle) and fire station (bottom).

Baseline Deviation

The baseline deviation application compares measured energy consumption with a predicted
baseline in order to identify periods of abnormally high or low consumption. This analysis
is a simple fault detection that can act as a signal to conduct a more detailed investigation.
The implementation borrows most stages from the energy baselining calculation above; only
the analyze component was altered to compare the computed baseline with historical data.

1https://github.com/LBNL-ETA/loadshape

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 80

Energy Usage Intensity

Energy Usage Intensity (EUI) is a metric of building performance which is calculated by
dividing the yearly energy consumption of a building by the total floor area of that building.
Buildings with a low EUI are considered to have better energy performance. The EUI
calculation application uses Brick queries to discover what kinds of energy consumption
data are available about the building. Some buildings may have a single power meter for
the whole building, which then needs to be integrated to compute consumed energy over
time, but others may have multiple submeters that must be added together, or may expose
pre-aggregated measurements (e.g. peak hourly power consumption) that require special
treatment. The floor area of a building may need to be similarly computed from available
data if it is not directly included in the Brick model.

The application logic retrieves a year of meter data, which can optionally be the year
prior to the time of the application’s execution or the previous full calendar year. Depending
on the nature of the data — indicated by the Brick class of the Point entities retrieved and
any attached Entity Properties — the application calculates the total energy consumption
and total floor area in order to compute the EUI.

HVAC Energy Disaggregation

This application estimates the energy consumption of HVAC equipment in a building by
correlating changes in electrical demand with changes in equipment state. Without the use
of a metadata model, this application would be time-consuming to write for many different
sites because it would involve enumerating all HVAC equipment, finding which BMS points
relate to changes in their operating state, and determining which of the available electrical
meters measures the demand of the equipment in question. Using the staged programming
model, the application is able to discover all available data that relate to the operating state
of equipment by querying the Brick model for all instances of the brick:Status class that
are associated with (brick:isPointOf) some HVAC equipment (brick:HVAC Equipment).

Using the above information, the application operates by measuring the largest change
in energy or power consumption (depending on which is available) in a small window of time
surrounding when major state changes occur. Examples of major state changes include a
thermostat calling for heating or cooling and a fan, pump or compressor turning on or off.
With enough historical data, this simple approach is able to estimate the per-state demand
for a given piece of equipment. This is helpful for implementing models used for predicting
the energy consumption of a building or subsystem based on projected equipment behavior.

Thermal Model Identification

This application trains a zone-level thermal model for predicting temperature based on
zone- and room-level temperature sensors, outside air temperature, cloud coverage, HVAC
equipment state data and other available data. The model does not have a minimum or
mandated set of data streams that it requires to operate; rather, it attempts to train a

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 81

data-driven model on whatever thermal-related data it is able to discover by querying the
Brick model. An advanced version of the application could choose specific featurization of
the data based on the Brick classes of the point entities it discovers. While the particular
model in this application is a basic linear regression, the general design pattern of training a
data-driven model based on any available and semantically relevant data is a powerful one.

Rogue Zone Detection

This fault-detection application detects “rogue zones” which are thermal zones whose ther-
mal behavior is consistently outside the intended control target. Because the calculation is
slightly different for temperature-based and airflow-based rogue zones, there are two separate
implementations for the detection of these faults; however, the qualify, fetch and clean

steps are all very similar.
A temperature-based rogue zone exhibits temperature which is consistently outside of the

provided setpoint temperature band. These zones can cause an increase in the energy use
of AHUs, which must be actively cooling or heating a rogue zone when they may otherwise
be on standby. Rogue zones can be caused by thermal loads in the space which are larger
than the HVAC system was designed for, incorrect setpoints, or even broken sensors and
equipment [27]. If enough zones in the building qualify as “rogue”, it can indicate that the
AHU needs to raise or lower the supply temperature of the air being delivered. An airflow-
based rogue zone is one whose measured airflow is consistently below the airflow setpoint.
Both versions of the application query the Brick model to find pairs of sensors and setpoints
that relate to each zone, but can optionally pull in additional metadata (such as the names
of the zones and rooms affected, or which AHU setpoints to change) that can provide more
helpful output to the user of the application.

Simultaneous Heating/Cooling AHUs

Simultaneous heating and cooling is one of the most common kinds of faults in air handling
units [128, 41]). Recall that AHUs have a heating coil valve and a cooling coil valve that
condition the air distributed throughout a building. The AHU opens and closes the valves
in order to adjust the degree of heating or cooling. Having both valves open at the same
time is usually a waste of energy.

This fault-detection application detects simultaneous heating and cooling in AHUs using
the rule-based fault diagnosis algorithms described in [128, 41]. Only a single Brick query is
required to fetch the points corresponding to the valve positions for all AHUs in a building.
The analysis itself consists of looking for periods of time during which both valve positions
are greater than 0 and returning a report to the user. Figure 5.13 demonstrates the output
of the application for one AHU during a week in the summer of 2017.

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 82

Figure 5.13: Heating coil and cooling coil valve commands over time for an AHU in a building
demonstrating simultaneous heating and cooling.

Stuck Damper Detection

This is a simple and common fault-detection application which identifies dampers whose
position has not changed in weeks or months. The implementation automates the task
of finding damper position status (or sensor) streams and identifies the HVAC zones and
rooms affected by possibly broken dampers. Similar to other applications above, the im-
plementation can query the Brick model for other auxiliary information which can augment
the capabilities of the application. The stuck damper application searches for zones with
discharge airflow sensors to identify cases where the damper appears to work correctly, but
the amount of air supplied to the zone does not change with its position. This can indicate
a faulty airflow sensor or a broken linkage between the actuator and the physical damper.

Obscured Lighting Detection

This application implements a basic fault detection procedure for lighting systems in build-
ings. It queries a Brick model for available data about lighting status (both on/off state
and brightness) and measured luminance for each lighting zone in a building. It uses the
available data to construct a model which correlates the digital state of the lighting system
and the measured luminance over time. Deviations from this model can be used to iden-
tify broken or obscured fixtures and luminaires. By leveraging the Brick class organization,

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 83

Category Application Brick LOC App LOC # sites % coverage

Measurement,
Verification &
Baselining

Baseline Calculation 3 120 33 37%
EUI Calculation 10 100 7 8%
HVAC Energy Disaggregation 14 124 14 16%
Thermal Model Identification 17 339 17 19%

Fault
Detection &
Diagnosis

Rogue Zone Temperature 15 104 56 62%
Rogue Zone Airflow 7 98 3 3%
Baseline Deviation 3 204 14 16%
Stuck Damper Detection 8 91 30 33%
Simultaneous Heat/Cool 5 125 54 60%
Obscured Lighting Detection 11 100 2 2%

Advanced
Sensing

Virtual Coil Meter 14 150 60 67%
Chilled Water Loop Virtual Meter 17 160 15 17%

Table 5.1: Applications: Brick LOC and App LOC indicate the lines of code needed to define
the Brick queries and application logic, respectively. “% coverage” is what proportion of the
testbed’s buildings qualified for that application; the corresponding number of buildings is
in the “# sites” column.

the application can remain agnostic to the exact make and model of the lighting systems
deployed in a building.

Virtual Coil Meter

This application implements the algorithm described in [124], which describes how the
amount of heat energy used by a heating or cooling coil can be estimated by performing
a calculation over upstream and downstream air temperature sensors, air flow sensors and
the position of the valve in the coil. The implementation bootstraps itself by using Brick
queries to discover the relevant families of points for each heating and cooling coil in a build-
ing. The result is a “virtual meter” which can be used as a data input to fault detection
applications or predictive models.

Chilled Water Loop Virtual Meter

This application leverages the brick:feeds relationship to identify all equipment on a chilled
water loop and sums the electrical consumption of any component found on that loop.
Assembling this collection of equipment and related building points without a Brick model
involves a high degree of manual effort that does not carry over when porting the application
to other buildings.

Application Portability Evaluation

To evaluate the efficacy of the staged programming model, implementations of the above
applications were executed on a testbed of 90 buildings. Each application is implemented in

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 84

Python. The testbed, which is described in Chapter 7, contains a Brick model and between
6 months and 6 years of telemetry for each building.

Recall that there are two dimensions to the evaluation of the programming model: con-
ciseness and portability. Measuring conciseness consists of counting the number of lines of
code to implement each application; this number is split into configuration (the number of
lines of code to express the SPARQL queries in the qualify step) and execution (the rest
of the application).

Measuring portability consists of counting the number of buildings in the testbed on
which each application successfully ran without any changes; this proportion is labeled as
coverage. Due to differences in the availability of metadata and the subsystems present in
each building, not every application can achieve 100% coverage.

The result of the evaluation are summarized in Table 5.1. Applications with simpler
metadata requirements (such as Rogue Zone Temperature and Basline Calculation) tend to
have higher coverage; this is because they rely on entities that are more likely to be included
in a Brick model. Likewise, applications which are very flexible in the kinds of metadata
that they can leverage — such as Virtual Coil Meter — can run on many buildings, but
will likely perform better (more accurate and robust predictions, for example) on buildings
which have more metadata available.

On the other hand, applications like Rogue Zone Airflow and Obscured Lighting Detection
have very low coverage. This is because Rogue Zone Airflow requires setpoint information,
which is often not available in buildings, and Obscured Lighting Detection requires lighting
metadata. Because lighting systems are often separately installed from the BMS, which
usually manages HVAC systems in the kinds of buildings contained in the testbed, it can be
difficult to include metadata about the lighting system in the Brick model.

Future Evaluations

The ideal self-adapting programming model is one which minimizes the overhead of devel-
oping a self-adapting application. “Overhead” incorporates both the development time of
the application — a self-adapting application should ideally not take dramatically longer to
develop than a non-self-adapting version — as well as the cognitive load of the programming
model. The semantic web technology underlying the metadata model, while powerful, is
mostly unfamiliar to most users and developers. An effective self-adapting programming
model should, where possible, reduce the need for users to be experts in first order logic,
semantic web technologies, and other “implementation details” of how the metadata is ex-
pressed. Studying the usability and efficacy of self-adapting programming models will involve
developing user studies which consult not just programmers but also building and facilities
managers.

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 85

Figure 5.14: A BAS [84] representation of a building’s electrical, lighting, spatial and HVAC
subsystems

5.4 Alternative Programming Models

Other models for programming portable applications are both present in the sensor network-
ing literature and have emerged in the years since Brick was first published in 2016.

Macroprogramming [61, 106] is a family of programming models enabling high-level pro-
grams to be distributed and executed over networks of potentially heterogeneous sensor
nodes. Most macroprogramming models incorporate a limited number of system primitives
which are implementable on a variety of sensor platforms. These system primitives can be
composed together into novel programs. The intellectual overlap between macroprogram-
ming and self-adapting software is in the use of declarative expressions to specify what data
and computation is required. A platform then carries out the fulfillment of this specification;
TinyDB [89] is a prime example of this approach. One significant difference between macro-
programming and self-adapting software is that macroprogramming enforces a separation
between the specification and implementation of the program. Users of a macroprogramming
system can remain agnostic to how the system primitives are implemented and executed;
in contrast, the self-adapting programs above still require the user to write procedural code
that deals with the differences between deployment environments.

Earlier models for portable software for buildings was developed in Building Application
Stack (BAS) [84], Building Operating System Services (BOSS) [39] and BuildingDepot [147].
BAS established a novel portable programming model for analytics and control applications
in buildings. BOSS established a suite of supporting services providing OS-like abstractions

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 86

for executing multiple applications in a building. BAS and BOSS both leverage a non-
formal graph-based representation of mechanical and logical building entities (Figure 5.14).
Rather than storing individual data sources in the graph like Brick, the nodes in the BAS
and BOSS graphs are instantiatable objects that expose system-agnostic APIs for reading
data and writing control commands. Applications discover resources by executing queries
against the graph; the only recognized relationship is analogous to brick:feeds. Entities
are organized into several broad categories such as lighting, VAV and AHUs. The concept of
using expressive graph queries to find resources is a powerful one that ultimately helped to
inspire the Brick work. The lack of a formal model in the BAS graph representation makes
it difficult to represent different kinds of equipment and subsystems; however, the simplified
application programming interface may be an effective substitute for the models explored
above.

BuildingDepot proposes a template-based approach to portable programming. In this
model, the metadata representation of the building is manually adapted to the application,
instead of the other way around. An application defines a “template” of the data sources, re-
lationships and entities required for its operation. The programmer specifies which elements
of the building correspond to which elements of the template. In this way, an application
can still be written once and executed on many buildings, but the burden of porting the
application is shifted to the building modeler rather than the application developer.

Ontology-based data access (OBDA) [30] is a related line of work that employs formal
ontologies to describe the semantics of data stored in other (usually relational) databases.
The goal of OBDA is to faciilitate data access in terms of the semantics of the domain
being modeled, rather than the schema of how the data is represented. Importantly, a single
domain ontology can be mapped onto multiple schemas [156], allowing queries against the
ontology to be portable to many different database instances.

EnergonQL [69] is a recent exploration into an alternative query language for portable
building appliations. It defines a simple SQL-like language that is automatically translated
into queries against the Brick ontology at query time. The intent of the design is to al-
low application queries to be expressed independent of the actual graph queries, which may
be complex. However, the approach embeds several assumptions about the structure of a
Brick model that limit the portability of queries written in EnergonQL: for example, Ener-
gonQL appears to only support certain common classes of equipment and uses hardcoded
associations of certain types of points to certain kinds of equipment in order to generate
queries.

Conclusion

This chapter explored the key ideas, features and benefits of two programming models for self-
adapting software. The staged programming model implements a “configure then execute”
approach. Queries against a graph-based metadata model such as Brick allow the applica-
tion to make decisions about which code paths and configuration decisions to make. The
alternative interactive programming model presents an object-oriented approach to building

CHAPTER 5. EXPRESSING SELF-ADAPTING SOFTWARE 87

self-adapting software that implicitly performs queries against the Brick model during execu-
tion. This model, unlike the staged model, does not require users to have an understanding
of the structure and contents of the metadata graph before the program is executed.

The staged programming model was evaluated by implementing 12 analytics applications
that were executed on a set of 90 buildings. 9 of the 12 applications were able to run on
at least 15% of the buildings without any changes to application code or configuration.
This demonstrates that self-adapting software brings real benefits and can be practically
implemented.

88

Chapter 6

Metadata Management for
Self-Adapting Software

Another flaw in the human
character is that everybody
wants to build, and nobody
wants to do maintenance.

Kurt Vonnegut Jr.

A critical challenge in realizing the vision of self-adapting software is how to maintain the
semantic metadata model over time. Cyberphysical software relies on a correct and up-to-
date representation of the environment. However, cyberphysical environments are constantly
in a state of churn: physical equipment breaks or gets replaced, subsystems get updated
and physical spaces get remodeled. Effective management of semantic metadata requires
detecting changes in the cyberphysical environment and incorporating those changes into
the metadata model which is available to self-adapting applications. This chapter focuses
on methods and systems for producing and maintaining the semantic metadata model for
an environment over time.

Two aspects of the metadata model will change over time: its content and its semantics.
The content of the metadata model changes in response to the evolution of the environ-
ment it models with respect to the scope of the model. For a metadata representation like
Brick, salient environmental changes include repairs, retrofits and remodels that affect the
representation of equipment, controllers, networks and physical architecture.

The semantics of the metadata model are driven by evolution of the domain — for exam-
ple, due to technological advancements — or evolution of the application — for example, if
the ontology developers want to support new kinds of applications. While certain develop-
ment practices such as semantic versioning1 can foster “backwards compatibility” between

1https://semver.org/

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 89

versions of an ontology, these simply place subjective constraints on how the metadata repre-
sentation can be changed and do not provide a mechanism for using older or newer versions.
Since its release in 2016, Brick has seen two major releases that changed the definition and
names of classes and reorganized the hierarchy [16, 51].

This chapter examines why and how changes in metadata models and representations
occur over time in cyberphysical settings. It then formalizes and develops a technique for
handling changes in model content. This technique is implemented in a system, Shepherding,
which handles changes in metadata model content over time and is demonstrated in the
context of Brick models for evolving buildings. The chapter concludes with a brief discussion
of how evolution in semantics may be handled.

6.1 Prior Work on Metadata Management

Managing changes in metadata content and semantics incorporates components of data in-
tegration and schema evolution.

Data Integration and Record Linkage

Data integration is the process of consolidating heterogeneous data from many sources into a
single, “application-facing” representation. Architectures and techniques for data integration
differ in the coupling and mapping between data sources and the destination schema. Recent
work in data integration has favored data warehouses. Here, heterogeneous data sources are
queried indirectly through a “virtual database” which translates queries over a central schema
to the schemas of individual data sources. The wrapper-mediator architecture is one example
of this approach [56, 152]. Queries are executed against a mediator which has knowledge of
many data sources which may contain data relevant to the query. The mediator forwards
queries to wrappers — logical processes which interface directly with the data sources and
rewrite the query to execute on the underlying schema.

However, in cyberphysical environments, different representations are often owned by
different stakeholders. This means that they are not consolidated into a single storage
repository nor are they readily available for consumption by automated tooling. In many
cases, the source data have an unstructured form that does not facilitate querying — recall
the heterogeneous and unstructured labels detailed in Chapter 2. Extract-transform-load
(ETL) pipelines are one mechanism for translating existing data sources into a more desirable
form [144]. ETL pipelines extract data from existing data sources which may be local or
remote, transform the data into the necessary structure and load the processed data into a
unified database.

There are several classic data integration issues which are relevant to managing cyber-
physical metadata. First, the semantics of different metadata representations must be han-
dled. Different data sources are built with differing perspectives on a domain. Integration
of data sources must take into account the different meanings and organizations of the data

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 90

they contain. Often, the data semantics are implicit in the data schema and are not captured
in any formal manner. Systems like Mastro [30] and [87] describe source data using ontolo-
gies in order to inform the data integration process with the semantics of the data being
integrated. Establishing the mapping between many metadata sources and the destination
model can be time-consuming. Systems like [38] and [95] reduce the effort with a “pay-as-
you-go” approach to schema mapping that focuses on only the data required by particular
applications.

Another issue is that of data representation. Different data sources may represent the
same items using different syntax, data structures and schemas. In particular, many sources
of cyberphysical metadata are characterized by a lack of well-defined semantics. Lines of work
on schema mapping [48] and schema matching [22] deal with the mechanics of transforming
data in one form to another. This includes aggregations, disaggregations, relabelings of data
and reorganizations of the schemas. An effective solution for integration of cyberphysical
metadata should handle both structured and unstructured sources of metadata.

The final major issue is how to determine when two or more data sources refer to the
same object or entity under different names or with different descriptions. This is classically
referred to as record linkage or entity disambiguation [153]. Record linkage may be accom-
plished through a variety of classic techniques such as string similarity or matching entities
in different data sources by shared attributes. Newer techniques explore leveraging large
amounts of complex and related data [45] or reasoning through noisy or uncertain data [46].

Schema Evolution

The body of work on schema evolution focuses on how to better manage and automate the
process by rewriting queries to execute on new schemas and transforming source schemas to
fit a new schema. Many frameworks like Python’s Django [42] and Ruby’s ActiveRecord [13]
provide tools for schema evolution, but focus on the migration of data and do not provide
any mechanism for database administrators (DBAs) to reason about the semantic impact
of the schema migration. Systems like [35], [23] and [21] provide greater degrees of automa-
tion through high-level schema modification operators that assist DBAs in evaluating the
impact of a schema modification as well as performing the data transformation itself. Other
approaches take the additional step of automatically transforming applications to match
changing schemas [32].

Schema evolution research focuses on the structural aspects of schemas: the attributes,
their names and datatypes, membership in tables, and integrity constraints between them.
This approach ignores the issue of semantic integrity: how do the meaning and context of
attributes change over time and how do these changes affect the interpretation and usage of
the data in a database?

[107] calls out this difference in the context of ontology evolution. Because an ontology
is an “explicit specification of a conceptualization of a [knowledge] domain”[107], changes
in the domain, conceptualization and explicit specification may all incur changes in the
ontology. Existing approaches for ontology evolution [108, 136, 109] focus on managing

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 91

changes in the ontology itself and do not address how to interpret those changes when the
ontology describes attributes in an external table.

6.2 Extracting Semantic Metadata

One of the most time-consuming and error-prone aspects of managing semantic metadata is
creating the representation that can be accessed by software. This section focuses on how
metadata models such as Brick can be bootstrapped from existing digital representations of
the environment. For a family of common metadata representations — recall BuildingSync,
Haystack, gbXML and Modelica/CDL from Chapter 2 — a wrapper is developed which
is able to produce or infer Brick metadata from the underlying source. Wrappers are a
component of a metadata integration architecture, which is able to combine the individual
Brick models produced by each driver into a unified representation.

BuildingSync

BuildingSync is an XML-based schema for reporting energy-related properties of buildings
and their subsystems and coarse-grained relationships between them. The BuildingSync
wrapper produces Brick metadata from a BuildingSync document by mapping combina-
tions of XML elements and attributes to Brick class definitions. The correspondence be-
tween BuildingSync and Brick is expressed as a mapping from an XPath expression to a
Brick class. For example, the BuildingSync auc:Chiller element aligns with the Brick
brick:Chiller class. If the auc:Chiller element contains a auc:ChillerType property
with the value “Absorption”, then the wrapper can infer the more specific Brick class of
brick:Absorption Chiller.

BuildingSync does not explicitly contain topological information about building sys-
tems which could inform inference of Brick relationships. However, the limited number
of equipment types recognized by BuildingSync means it is feasible to infer some relation-
ships based on the structure of the BuildingSync document and the types of the entities. A
child relationship between one XML element and another usually denotes a compositional
(brick:isPartOf) relationship between the child and parent. One example of this is the
nested relationship between the auc:Site and auc:Building BuildingSync elements. Other
internal attributes such as auc:LinkedSystemID can associate components of a subsystem
with each other. At time of writing, the wrapper defines 27 direct mappings, primarily for
locations and equipment types.

There are a few challenges that must be addressed by the BuildingSync wrapper. Build-
ingSync documents often represent collective properties of building systems and equipment
— e.g. the number of absorption chillers, not how the individual chillers are connected
— which limits the number of Brick relationships that can be derived. Also, by model-
ing systems rather than components, BuildingSync models often lack descriptive labels for
equipment and points.

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 92

1 id: 'd83664ec RTU-1 OutsideDamper'
2 air: X
3 cmd: X
4 cur: X
5 damper: X
6 outside: X
7 point: X
8 regionRef: '67faf4db'
9 siteRef: 'a89a6c66'

10 equipRef: 'd265b064'

Figure 6.1: Original Haystack entity from the Carytown reference model

Project Haystack

The structure of a Haystack model has a straightforward mapping to Brick: each Haystack
entity corresponds to one or more Brick entities. The generic links between Haystack entities
(called refs in Haystack parlance) can be expressed with Brick relationships. However,
because the semantics of a Haystack model are not well-defined, there is no unambiguous
and exhaustive mapping of Haystack metadata to Brick. As a result, the types of Haystack
entities and relationships between them must be inferred. This is accomplished by using the
tags associated with Brick concepts to infer the most likely Brick class for a given set of
Haystack tags.

The inference engine operates on a JSON export of a Haystack model. First, the engine
applies some preprocessing by filtering out tags that do not contribute to the definition
of the entity, including data historian configuration (hisEnd, hisSize, hisStart), current
readings (curVal) and display names (disMacro, navName). Figure 6.1 shows an example
of a “cleaned” Haystack entity containing only the marker and Ref tags from the Carytown
reference model.

Next, the engine transforms the Haystack entity into an RDF representation that can be
understood by the inference engine. The engine translates each of the marker tags into their
canonical Brick form: for example, Haystack’s sp becomes Setpoint, cmd becomes Command
and temp becomes Temperature. The engine creates a Brick entity identified by the label
given by the Haystack id field, and associates each of the Brick tags with that entity using
the brick:hasTag relationship. Figure 6.2 contains the output of this stage executed against
the entity in Figure 6.1.

At this stage, the engine assumes a one-to-one mapping between a Haystack entity and
a Brick entity. This is usually valid for equipment entities which possess the equip tag, but
Haystack point entities (with the point tag) may implicitly refer to equipment that is not
modeled elsewhere. Figure 6.1 is an example of a Haystack point entity that refers to an
outside air damper that is not explicitly modeled in the Haystack model. The last stage of
the inference engine performs the “splitting” of a Haystack entity into an equipment and
point. This proceeds as follows:

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 93

1 :d83664ec brick:hasTag tag:Command . # cmd
2 :d83664ec brick:hasTag tag:Damper .
3 :d83664ec brick:hasTag tag:Outside .
4 :d83664ec brick:hasTag tag:Point .

Figure 6.2: Intermediate RDF representation of the Haystack entity; Haystack software-
specific tags (e.g. cur, tz) are dropped.

1 :d83664ec_point brick:hasTag tag:Damper .
2 :d83664ec_point brick:hasTag tag:Command .
3 :d83664ec_point a brick:Damper_Position_Command . # inferred
4 :d83664ec_equip brick:hasTag tag:Air .
5 :d83664ec_equip brick:hasTag tag:Outside .
6 :d83664ec_equip brick:hasTag tag:Damper .
7 :d83664ec_equip a brick:Outside_Damper . # inferred
8 :d83664ec_point brick:isPointOf :d83664ec_equip . # inferred
9 :d83664ec_point brick:isPartOf :d265b064 # inferred

Figure 6.3: Brick inference engine splits the entity into two components: the explicit point
and the implicit outside damper equipment.

First, the inference engine attempts to classify an entity as equipment. The engine
temporarily replaces all point-related tags from an entity – Point, Command, Setpoint,
Sensor – with the Equipment tag, and finds Brick classes with the smallest tag sets that
maximize the intersection with the entity’s tags. This corresponds to the most generic Brick
class. In the running example, the inference engine would transform the entity in Figure 6.2
to the tags Damper, Outside and Equipment. There are 12 Brick classes with the Damper

tag, but only one class with both the Damper and Outside tags; thus, the minimal Brick class
with the maximal tag intersection is Outside Air Damper. If the inference engine cannot
find a class with a non-negligible overlap (such as the Equipment tag), then the entity is not
equipment.

Secondly, the inference engine attempts to classify the entity as a point. In this case, the
engine does not remove any tags from the entity, and finds the Brick classes with the smallest
tag sets that maximize the intersection with the entity’s tags. In the running example, the
minimal class with the maximal tag intersection is Damper Position Command.

Figure 6.3 contains the two inferred entities output by this methodology. In the case
where a Haystack entity is split into an equipment and a point, the Brick inference engine
associates the two entities with the brick:isPointOf relationship (line 10 of Figure 6.3).
Additionally, the inference engine translates Haystack’s Ref tags into Brick relationships
using the simple lookup-table based methodology established in [15]. The inference engine
applies these stages to each entity in a Haystack model; the union of the produced entities

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 94

and relationships constitutes the inferred Brick model.

Modelica/CDL

Modelica and CDL models consist of a set of connected objects. This linked structure
clearly identifies entities and the relationships between them, which closely resembles the
structure of a Brick model. Modelica objects have classes, which supports the develop-
ment of a mapping between Modelica classes and Brick classes. For example, every in-
stance of the Modelica class Buildings.Fluid.Sensor.Temperature can be translated into
a brick:Temperature Sensor entity.

The wrapper takes as input a JSON export of a Modelica/CDL model [98]. The wrapper
treats each instance of a Modelica model in the document as a Brick entity, and assigns a
Brick class to entities whose class is defined in the Modelica Buildings Library [150]. To
infer relationships between these entities, the wrapper examines the ports for each Modelica
instance; these are connected by connect statements to other instances of Modelica mod-
els. These links between objects in a Modelica model can inform the choice of sequential
(brick:feeds) and compositional (brick:hasPart) relationships between their correspond-
ing Brick entities.

There are a few challenges in producing Brick metadata from a Modelica/CDL model.
First, because Modelica is a general modeling language, it is possible for models to describe
buildings using classes unknown to the wrapper. The wrapper establishes mappings for many
of the common classes in the Modelica Buildings Library [150], but there is no guarantee
that a Modelica model will use these classes. Second, due to Modelica’s model encapsulation,
contextual properties, i.e., how the objects relate to a larger system, need to be inferred. For
example, for an instance of the class Buildings.Fluid.Sensor.Temperature, where it is
located (e.g. exhaust air, return air, entering water, leaving water) need to be inferred from
the system that contains the sensor.

gbXML

Wrappers for BIM can produce Brick metadata about individual components, but inferring
contextual relationships between those components is more difficult. Because BIM models
focus on the geometry and physical connections of spaces and equipment, the representations
may lack or obscure the contextual information needed during the operations and mainte-
nance stages of the building. For example, although several versions of the IFC standard
enumerate possible physical and contextual properties of fans, these details may not be in-
cluded in an IFC model or must be inferred by traversing the connections between other
elements in the model. Previous work also indicates that little Brick metadata can be in-
ferred from IFC models [85]. This is due in part to the complex and generic schema of
IFC in which related pieces of information are often separated by many intermediate ob-
jects [44]. In contrast, gbXML models contain more explicit contextual information such as

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 95

Figure 6.4: The distribution of the number of triples inferred per entity for each wrapper.

the <AirLoop> element, which groups related HVAC equipment together. This permits the
inference of more metadata such as sequential and compositional relationships.

A significant challenge for the production of Brick metadata from a BIM model is vari-
ability in how BIM models are expressed. BIM standards are designed to be flexible and
extensible, which can result in a lack of consistency and thus interoperability [49, 99]. Rep-
resenting BIM models using semantic web technology will allow the wrapper to more easily
validate and inspect the BIM metadata, which may result in a more complete Brick metadata
model [115].

Evaluation of Wrapper Performance

To characterize the behavior and performance of the wrappers, a set of publicly available
metadata models from a variety of metadata representations was assembled. The models do
not cover the same set of buildings, but the population still enables empirical measurement
of the availability of Brick metadata in those representations.

Figure 6.4 and Figure 6.5 illustrate the number of Brick triples inferred per entity and
the total number of triples inferred by each wrapper, respectively. The reason for these
distributions is due to fundamental differences between the metadata representations and
Brick, and implementation details of the wrappers.

The amount of Brick metadata obtained from a BuildingSync model is limited compared
to what can be inferred from gbXML, Modelica or Project Haystack models (Figure 6.5).
This is due to a difference in scope: BuildingSync describes properties and performance
characteristics of building systems, rather than the individual components and relationships
found in other metadata sources. As a result, a BuildingSync model may be a better export
target from a unified Brick model.

Within this population of sites, Modelica models contain the most Brick metadata per
entity, but do not contain as many entities as Haystack models. The BuildingSync and
gbXML wrappers only produce a few triples per entity: usually the type of the entity and
a topological reference to a few other entities. Haystack models contain more entities and
more Brick metadata per entity than metadata sources for energy audits and BIM. This is

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 96

Figure 6.5: The distribution of the total number of triples inferred by each wrapper. Note
the log-scale on the X axis

an intuitive result because the Haystack metadata representation is the most similar to Brick
in terms of its intended use cases, and thus presents much of the same metadata (if in a less
structured form).

6.3 Metadata Management Over the Building

Lifecycle

Effective management of a metadata model which enables self-adapting applications requires
keeping the metadata model “in sync” with the state of the cyberphysical environment in
which applications will be deployed. This section examines the evolution of a building over
time as a case study of handling changes in a cyberphysical environment while enabling
self-adapting software.

In the building context, updates to the metadata model are informed by observing and
deriving updates from other digital representations of the same environment. Many different
digital representations of a building are typically produced over the course of its lifecycle.
These representations contain — in some form — the metadata required to support differ-
ent operational stages and treatments of the building, from initial planning and design, to
construction and commissioning, through operations, audits, retrofits and repairs.

Figure 6.6 describes at a high level the different metadata representations that may be cre-
ated and leveraged over the lifecycle of a building. The design phase of a building, conducted
using BIM, may produce IFC or gbXML models that are used during the construction phase
of the building. During construction, this metadata may be used in conjunction with CDL
descriptions of the building’s sequence of operations to configure the BMS. Unstructured
BMS metadata may be captured in a Brick or Haystack model to facilitate data analysis
and to perform predictive maintenance. Other metadata sources such as BuildingSync may
be used to conduct energy audits before and after retrofits and repairs, which themselves may
rely upon CDL, IFC or gbXML representations of the building’s control loops and assets.

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 97

CommissioningConstructionDesign Operation

Maintenance

Audit

IFC, gbXML,
CDL, Modelica

IFC, gbXML,
CDL

BMS,
Haystack,
CDL, Brick

Brick,
Haystack

BuildingSync

Small
Retrofit

Large Retrofit, Renovation

IFC, gbXML

Figure 6.6: Different tools for different stages: Many different metadata standards and
technologies are applied over the course of a building’s lifecycle, but are relatively siloed and
thus non-interoperable.

Different representations communicate different perspectives on the same building: the
metadata required to support the construction of a building is different than the metadata
required to manage schedules and control sequences. Therefore, it is possible to detect
changes in many different aspects of the environment by observing many different metadata
representations. There are several desirable properties of this approach:

• It is possible to bootstrap the creation of the metadata model from existing digital
representations, lowering the initial cost of building out the model, which can be a
non-trivial investment [27].

• Because the metadata model’s intent is to enable self-adapting software, it does not
need to enable other kinds of use cases that are traditionally served by other technolo-
gies. This preserves any existing investments and makes the proposed system easier to
adopt.

• Many other digital representations are “dropped” or left unmaintained after the op-
erational stage of the building for which they were created is over [114]. Providing a
use for these representations — enabling self-adapting software — incentivizes their
maintenance.

Working with several metadata representations poses challenges for effective manage-
ment. Differences in the semantics, structure and syntax of models generally result in a
lack of interoperability [158] between them. This limits the extent to which metadata from
one stage of a building’s lifecycle can contribute to the metadata for another stage. There
have been previous attempts to increase information sharing and reuse between stakeholders
though a shared knowledge base [83] or by centralizing all data in a BIM model [158]. [139]
demonstrates the semi-automated configuration of a building automation system by export-
ing BACnet objects from the BIM, enabling the exchange of information across the design,
construction and operational stages of a building. However, because representations such

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 98

.xml

.xml

.json

.xml.xml

.json.json

Figure 6.7: Overview of the proposed approach: wrappers interface directly with existing
metadata sources stored in local file systems, or accessed via file shares or networked services.
Wrappers continuously publish inferred Brick metadata to a central server, which produces
a unified model.

as BIM are not appropriate for self-adapting software, the approach developed below deals
with how to lift existing metadata representations into a Brick model.

Specifically, this section develops a protocol and algorithm for performing continuous
integration of heterogeneous metadata representations into a single metadata model which
can be used for self-adapting applications. The protocol and algorithm are incorporated
into a functional system which has been evaluated on several real metadata sources for two
representative buildings.

Architecture for Continuous Metadata Integration

The proposed system adapts existing data integration architectures and techniques to the
problem of lifting heterogeneous metadata sources about buildings into an ontology-defined
structure that serves as a canonical representation.

Figure 6.7 represents the architecture of the ETL data integration system. On the far
left of the figure are existing metadata representations of the building; these may exist in a
structured or unstructured form and support a variety of legacy applications. A wrapper,
described above, is a software process that interfaces with one or more of the existing meta-
data representations and produces a Brick model of the metadata contained within. For
structured or standardized metadata sources such as BuildingSync and gbXML, the wrap-
per may perform a direct translation of the source’s concepts and structures to Brick. For

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 99

less structured and more ad-hoc sources such as Haystack and BMS labels, a wrapper may
require a statistical or heuristic-based approach to inferring Brick metadata. It is the job
of the wrapper to continually monitor the content of the underlying metadata source and
to produce up-to-date Brick models in a timely manner. The architecture places no other
requirements for how Brick metadata must be produced or inferred.

Wrappers report inferred Brick metadata to an integration server by means of a synchro-
nization protocol. The protocol implements a simplified git-style source control system
which ensures that the integration server has the most up-to-date Brick metadata from each
metadata source. The protocol operates in a push-based manner: wrappers report updated
metadata when it is available. A push-based mechanism is preferable because the Brick in-
ference process implemented by the wrapper may require human input that is not available
on-demand.

The integration server is a logically centralized process that assembles Brick metadata
from a collection of wrappers and integrates them into a unified Brick model which is made
available for applications. Because different metadata sources are created at different stages
of the building and by independent stakeholders, the Brick metadata produced by the wrap-
pers is likely to contain disagreements and inconsistencies, or may simply be out of date. To
address this issue, the integration server incorporates a novel reconciliation algorithm—
analogous to the “merge” operation in git—that attempts to resolve the differences between
the metadata reported by the wrappers.

The architecture decouples the tasks of inferring Brick metadata from a particular source
and integrating multiple sources of Brick metadata into a unified model. This establishes
a common platform for Brick metadata inference research and allows existing and future
methods to be used together. For example, inference methods such as [27] and [82] that
operate on ad-hoc metadata representations can be adapted to the protocol.

Formalism of Brick Metadata Integration

The following definitions formalize the behavior of the wrappers, synchronization protocol
and reconciliation algorithm described above.

A Brick model is a directed graph in which nodes are “entities” (physical, virtual, logical
things and concepts) and edges are relationships between entities. Brick models are handily
expressed in the RDF data model, which defines a graph as a set of triples : 3-tuples of
subject (node), predicate (edge), object (node).

A metadata source Si corresponds to a set of metadata models mt
i indexed by a unique

timestamp t. A wrapper Wi is a function which produces a set of entities for a particular
metadata model:

Wi(m
t
i)→ {et1, et2, . . . , etn} (6.1)

where etj is described by a set of fields called a record. Each record includes a set of triples
describing the entity, given by T (etj). Together, the triples produced by a wrapper constitute
a Brick model Gt

i for a given metadata source and timestamp. The content of the Brick model

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 100

1 {"id": "RTU-1",
2 "raw": {
3 "content": "<auc:Delivery ID=\"RTU-1\">
4 <auc:DeliveryType>
5 <auc:CentralAirDistribution>
6 <auc:AirDeliveryType>Central fan</auc:AirDeliveryType>
7 <auc:FanBased>
8 <auc:CoolingSupplyAirTemperature>73</auc:CoolingSupplyAirTemperature>
9 </auc:FanBased>

10 </auc:CentralAirDistribution>
11 </auc:DeliveryType>",
12 "encoding": "XML"},
13 "source": "BuildingSyncWrapper",
14 "source_version": "2.1.0",
15 "timestamp": "2020-07-16T20:02:50",
16 "protocol_version": "1.0.0",
17 "triples": [["http://example.com/building#RTU-1",
18 "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
19 "https://brickschema.org/schema/Brick#Rooftop_Unit"]]}

Figure 6.8: Example record published by the BuildingSync wrapper, showing the original
metadata (raw) and the inferred Brick metadata (triples).

representing metadata from source i at time t is given by

Gt
i =

n⋃
j=1

T (etj) (6.2)

The task of the reconciliation algorithm is to combine the set of Brick models produced
by each wrapper into a single unified Brick model. The input to the reconciliation algorithm
is the set of entities E from the latest metadata model for each of m sources

E =
m⋃
i=1

Wi(m
tmax
i) (6.3)

where tmax is the timestamp of the most recent model for metadata source i.

Metadata Synchronization Protocol

Wrappers update the integration server with the latest Brick metadata from a specific source
via the metadata synchronization protocol. The metadata synchronization protocol decou-
ples the method of inferring or producing Brick metadata from how that metadata becomes
integrated into the authoritative model. This allows the proposed system to incorporate new
metadata sources and novel methods of inferring Brick metadata.

As part of the protocol, each wrapper presents the inferred Brick metadata according
to a metadata profile. The profile is a structured representation of the Brick metadata

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 101

produced by the wrapper at a given time and is expressed as a set of HTTP resources. The
root resource (/) holds a list of entity ids with associated Brick metadata for the current
metadata model, and a timestamp representing the version of that metadata model. The
record resources (/record/<id>) hold the record associated with a given entity id. A record
contains the following fields:

• id: a name or other identifier for the entity, as given by the metadata source

• raw: identifies the encoding (e.g. JSON, XML) and content of the original metadata
that defined this entity. May contain additional metadata not expressed in Brick

• source: identifies the metadata source

• timestamp: denotes the time at which the metadata source was read to produce the
current metadata model

• triples: a list of RDF triples defining the Brick metadata for the entity

The timestamp field constitutes the version of the metadata model and is updated only
when the model or wrapper changes.

Figure 6.8 contains an example of a BuildingSync record for an HVAC delivery system
named “RTU-1”. Note that the original XML element contains additional metadata not
conveyed in the produced Brick triples.

The content of the profile is synchronized with the integration server over the protocol.
The protocol operates over HTTP and consists of two request-response actions: check and
sync.

A check is an HTTP GET which asks the server for the latest known version of metadata
from a particular source, and the number of records at that version. The server responds with
the version as a timestamp and an integer representing the number of records. By comparing
this information with the latest local version and corresponding number of records, the
wrapper can determine if the server has a complete copy of the most recent Brick metadata
from the wrapper. If the server timestamp is older than the local timestamp, or the number
of server records at the latest timestamp is less than the number of local records, the wrapper
performs a sync.

A sync is an HTTP POST of the list of records for the most recent version of the
metadata model to the integration server, These records must contain the same version
timestamp, which allows the set of records to span more than one HTTP POST while still
being associated with the same version of the metadata model.

The server saves all records in a local database. When the server performs the reconcilia-
tion algorithm to produce a unified metadata model, it by default only considers the records
corresponding to the most recent timestamp (version) per source. By extension, the server
can also produce a unified metadata model for any point in the Brick model’s history. This
allows applications to access the history of changes in a building, but through the interface of

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 102

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 ...

e1
Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e3
Triples: <e3,p,o>
 <e3,p,o>
 ...

e1,e2,e3,e4,e5,e6,...

e1e3

e6

e6

e4

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e1
Triples: <e1,p,o>
 <e1,p,o>
 <e1,p,o>

Entity: e5
Triples: <e5,p,o>
 <e5,p,o>
 ...

Gj

Figure 6.9: The phases of the reconciliation algorithm. The latest Brick metadata (far left)
is stored by the integration server.

a standardized, unified representation rather than an ad-hoc collection of diverse metadata
sources.

The triples field can contain arbitrary Brick metadata to be relayed to the server.
Typically this involves type information (vav1 is a brick:VAV), system composition infor-
mation (vav1 is downstream of ahu1), telemetry association (vav1 has temperature setpoint
temp sp1) and location information (tstat1 is in Room 410). The triples may also define
extensions to the Brick ontology, such as to describe additional properties of an unusual
device or point. The union of all triples in all triples fields for all records constitutes the
Brick model for the wrapper (Gtmax

i above).

Reconciliation of Multiple Brick Models

In order to produce a unified Brick model usable by applications, the Brick models produced
by each wrapper must be merged together. This requires reconciling the differences between
each of the Brick models: entities may be named differently and have different associated
types and metadata. Reconciliation must be performed continuously in order to account
for changes in the underlying metadata sources arising from evolving representations and
environments. This subsection presents a reconciliation algorithm that extends existing
record linkage techniques to graph-based semantic metadata and enforces the logical and
semantic validity of the resulting unified model.

Figure 6.9 illustrates the major phases of the reconciliation algorithm. First the most
recent Brick models for each source are loaded from the integration server, having been
deposited there by the wrappers. Then, the algorithm finds clusters of entities such that
all entities in the cluster correspond to the same logical, virtual or physical instance (the
“record linkage” stage in Figure 6.9). For each cluster, the algorithm produces the graph
which is the union of all Brick metadata associated with the entities in that cluster and
validates that the new graph is logically and semantically sound (the “graph union” stage
in Figure 6.9).. Formally, each cluster of entities cj has an associated metadata graph Gj

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 103

which is the union of all the associated triples for entities in that cluster:

Gj =
⋃
ei∈cj

T (ei) (6.4)

The clustering is successful and the algorithm terminates if the metadata graph Gj satisfies
a set of constraints and checks.

The algorithmic processes for each stage are described in detail below.

First Phase: Record Linkage

The record linkage stage takes as input the most recent metadata records for each metadata
source known to the integration server and outputs a set of clusters. The stage applies two
record linkage techniques on the metadata records: string matching and type alignment.

String matching calculates edit distance between entity labels to produce clusters of enti-
ties. The name of an entity can be derived from string-valued properties such as rdfs:label,
or the URI of the entity if no string-valued properties are found. The goal of this step is to
use the semantic information sometimes encoded in entity labels as one heuristic for link-
ing [27]. Due to different naming conventions between metadata sources, there can often
be greater similarity scores between entities from the same source than between entities of
different sources. The algorithm assumes that all entities reported by a metadata source are
distinct and only clusters entities from different metadata sources.

Type alignment leverages semantic information from the proposed types of each entity
to do type-aware clustering. The algorithm identifies all entities with a Brick class and
associates with each entity all Brick classes which are equal to or are superclasses of its
given type. If two or more sources have the same number, k, of entities of a given type,
the algorithm produces k clusters containing one entity from each source with the highest
pairwise similarity between their names. The clusters produced by this second step are added
to the set of clusters produced by the first step.

Second Phase: Graph Union

The second phase of the algorithm takes as input the clusters of entities from the first
phase and builds and validates the graphs formed by merging their associated triples. For
each cluster, the algorithm produces the graph G using the formula in Equation 6.4. The
algorithm also adds statements to the Brick model to merge the different identifiers for the
same entity (this uses the owl:sameAs property).

Unlike many other metadata sources, Brick is built over formal logic. This allows con-
tinuous validation of a Brick model as metadata is added to it, which allows the algorithm
to produce a logically valid model. The logical validation is implemented by a process called
a reasoner, which also generates logical consequences of the statements in a Brick graph
(the reasoning process is described in more detail in Chapter 7). The reasoner examines
the graph Gj for each cluster and produces a set of logical exceptions. These exceptions

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 104

1 # BuildingSync: ahu-1
2 bldg:bsync-ahu-1 rdf:type brick:Air_Handling_Unit ;
3 rdfs:label "AHU-1" .
4 # BuildingSync: main-meter
5 bldg:bsync-meter rdf:type brick:Building_Power_Meter ;
6 rdfs:label "main-meter" .
7

8 # Haystack: rtu-1
9 bldg:ph-rtu-1 rdf:type brick:Rooftop_Unit ;

10 rdfs:label "RTU 1" ; brick:hasPoint bldg:oat-1 .
11 # Haystack: main-meter
12 bldg:ph-meter rdf:type brick:Power_Meter ; rdfs:label "Main Meter" .

Figure 6.10: Example Brick metadata produced by BuildingSync and Project Haystack
wrappers. The rdfs:label property denotes the original name or identifier of the entity in
the metadata source.

1 bldg:rtu-1 rdf:type brick:Rooftop_Unit ; brick:hasPoint bldg:oat-1 .
2 bldg:meter rdf:type brick:Building_Power_Meter .

Figure 6.11: The inferred unified metadata model for the triples in Figure 6.10. The most
specific type is chosen for each entity, and that associated properties are carried through.

indicate that either the entities in the cluster are not equivalent, or the metadata associated
with those entities is incorrect. Examples of exceptions include incompatible types (e.g. if a
cluster contains entities with disjoint types), incompatible relationships (e.g. if the values of
an entity’s properties and relationships do not match associated constraints) and semantic
“sniff tests” which are qualities of the Brick graph that are not logical violations but may
indicate deeper issues. The primary example of the latter is an entity’s types should all be
subclasses or superclasses of each other.

When exceptions occur, the algorithm can optionally re-cluster entities using more se-
lective thresholds, or, as in the implemented prototype, by requesting human input on the
failing cluster. The algorithm then repeats the graph union step. These steps are iterated
until no exceptions are logged, after which all of the cluster-produced graphs are merged into
a single graph. The algorithm validates the unified graph; if this passes, the unified graph
is returned as the authoritative metadata model.

Human-aided Disambiguation

When the algorithm logs exceptions for the entities in a given “bad” cluster, the algorithm
can ask for external input on how to proceed. First, the algorithm asks if it should split

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 105

the bad cluster into two or more smaller clusters; this can be performed automatically by
adjusting clustering hyperparameters or manually by specifying the new clusters explicitly.
If reclustering occurs, then the algorithm begins another iteration of the graph union phase
above using the new clusters.

If reclustering does not occur for a “bad” cluster, then the algorithm asks for manual
resolution of the graph contents before proceeding to the next cluster. This typically involves
choosing which Brick class to assign to a group of entities, but may also require editing
properties and relationships of entities. The algorithm saves the results of manual resolution
so they can be applied during future runs of the reconciliation algorithm.

The reconciliation process can use human feedback to learn how to automatically cluster,
classify and disambiguate entities as well as reduce the amount of manual resolution needed.
Although this has not been implemented in the current proof-of-concept, the continuous
integration architecture can support active learning techniques such as [27].

Reconciliation Example

The behavior of the algorithm can be illustrated with an example of merging the metadata
from Haystack and BuildingSync models for a building. The wrappers for these two sources
produce the Brick metadata listed in Figure 6.10. The algorithm begins by clustering the
entities. The string-matching phase places bldg:bsync-meter and bldg:ph-meter into
the same cluster because their labels are sufficiently similar. The bldg:bsync-ahu-1 and
bldg:ph-rtu-1 entities are not grouped because the labels are too dissimilar.

The type-aware phase examines the Brick-defined classes for the remaining entities. Using
the Brick ontology, the algorithm infers that because brick:Air Handling Unit is a super-
class of brick:Rooftop Unit, each source has metadata for one air handling unit. Because
each source has the same number of instances of that type, the algorithm clusters those
entities by label similarity. This results in bldg:bsync-ahu-1 and bldg:ph-rtu-1 being
clustered. The difference in specificity between the original sources is due to the fact that
BuildingSync does not differentiate between subclasses of air handling units, but Haystack
does.

The algorithm proceeds by unifying the triples for the entities in each cluster and validates
the logical and semantic soundness of the resulting graph. In this simple example, the algo-
rithm only needs to verify that the types of each pair of entities are compatible. This is true:
brick:Air Handling Unit is a superclass of brick:Rooftop Unit and brick:Power Meter

is a superclass of brick:Building Power Meter. Finally, the two graphs are merged into a
single Brick model (Figure 6.11).

The reconciliation algorithm and metadata integration architecture are implemented in
a fully functional prototype. This allows the evaluation of the approach on a set of real and
artificial sites.

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 106

Site Name Metadata Source % Contributed Unique Model Size (Triples) # manual interventions

Carytown
Haystack 32.9% 100%

280 0
BuildingSync 20% 100%

DOE Medium Office
Haystack 31.9% 100%

1,698 4Modelica 41.9% 98.2%
BuildingSync .8% 98.5%

Table 6.1: The results of merging multiple metadata models for two different sites, showing
the diversity of the metadata available between the available metadata sources. The %
Contributed percentages do not add up to 100% because the rest of the graph consists of
inferred metadata not contained in any particular model.

Evaluation of Integration Server

The reconciliation algorithm and integration server have been realized in a Python imple-
mentation. The server exposes the API endpoints required of the metadata synchronization
protocol and logs all sync messages received from wrappers in a SQLite database. The triples
in these messages, which contain the inferred Brick metadata from each wrapper, are inserted
into a dedicated table and indexed by their metadata source and timestamp. This allows
the definition of a SQL View that contains the most recent triples for each wrapper, which
is used as input to the reconciliation algorithm. The server incorporates Allegrograph’s rea-
soner implementation to perform the required logical validation of the Brick metadata [55].
The server also embeds an in-memory instance of HodDB [50] to support application queries
against Brick metadata.

Table 6.1 contains the results of reconciling the Brick metadata from each source for
each site. The % Contributed column contains the proportion of triples in the unified model
that were contributed by each source; this includes redundant triples. The Unique column
contains the proportion of triples in the unified model that are unique to each source.

Although there are only a few sites and models, it is possible to observe some general
behavior about the metadata extracted from the available wrappers. First, the metadata
from Haystack and BuildingSync wrappers are mostly complementary and there is little
overlap between them. This aligns with the respective scopes of each metadata source:
BuildingSync describes holistic properties of systems that may not be covered by Project
Haystack models (at least in a standard way). Secondly, Modelica wrappers provide more
Brick metadata than Haystack wrappers: a Modelica/CDL model can produce a significant
portion of the Brick metadata for a building. This aligns with the detailed treatment of
HVAC systems found in Modelica models compared with the coarse-grained modeling found
in Haystack.

For all sites, the metadata common to all wrappers was very low. This is to some extent
due to the completeness of the wrappers at time of writing, but is also limited by the different
levels of detail and different perspectives of a building that are communicated by different
metadata sources. The metadata contributed from each wrapper was almost completely

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 107

unique: even though there is some overlap in the entities described by each wrapper, it
is rare for two wrappers to produce Brick metadata at the same level of detail or level
of completeness. For example, one sensor was identified as a brick:Flow Sensor by the
Modelica wrapper and a brick:Return Air Flow Sensor by the Haystack wrapper.

Discussion

The development and evaluation of the proof-of-concept implementation demonstrates that
integrating metadata from many different sources is not only practical, but also yields a
richer and more complete representation than any individual source. The resulting unified
metadata model enables self-adapting applications.

The metadata synchronization protocol successfully decouples the tasks of inferring Brick
metadata from a particular source and integrating multiple sources of Brick metadata into
a unified model. This establishes a common platform for Brick metadata inference research;
for example, inference methods such as [27] and [82] that operate on ad-hoc metadata rep-
resentations can be adapted to the protocol. This permits direct comparison of the Brick
metadata produced by different methods, and eases the integration of these methods with
other wrappers. The protocol also offers a clear path for future metadata standards such
as ASHRAE’s 223P [8] to support or integrate with Brick. Future work will develop the
existing wrappers to deliver more complete and accurate Brick metadata, and implement
additional wrappers that operate on historical telemetry and unstructured data like BMS
labels.

Experiences with the reconciliation algorithm demonstrate that the extension of record
linkage techniques to support semantic metadata graphs can successfully produce useful
Brick models. Due to the lack of descriptive labels, record linkage using type alignment was
much more effective than string matching for producing clusters of entities. In particular,
autogenerated labels in Haystack and Modelica models caused a number of false positives
when using string matching. Despite these difficulties, the algorithm was able to detect the
resulting semantic issues in the merged model by using the Brick ontology. Future work will
augment the reconciliation approach with active learning capabilities that can apply human
input to automatically perform the required clustering and disambiguation.

6.4 Metadata Management Over Changing Semantics

The structure and semantics of metadata representations also change over time and must
be managed. These changes are driven by churn in the domain being modeled, the data
being stored, or the requirements of the application. This presents a dilemma for database
administrators and application authors alike: do they undertake the expensive and largely
manual process of rewriting existing applications to take advantage of the new schema? Does
data stored against older schemas need to be transformed or adapted to the new schema?

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 108

2004 2006 2008 2010 2012 2014 2016

Schema 1

Schema 2

Building Meter Timestamp Value
Soda Hall Electric Main #1 2012-01-11 13464800 kWh
Soda Hall Electric Main #1 Demand 2012-01-11 265.853 kW
Soda Hall Steam 2012-01-11 19063400 Lbs

Building Meter Timestamp Value
Soda Hall New (as of 1/12/12) Electric Main #1 2012-01-12 14581085 kWh
Soda Hall New (as of 1/12/12) Electric Main #1 Inst 2012-01-12 166.14 kW
Soda Hall New (as of 1/12/12) Steam Meter 2012-01-12 474540 Lbs

Figure 6.12: Visualization of the campus meter database demonstrating how the semantics
change independent of the structure. Schema 1 was active until January 12th 2012 at which
point Schema 2 becomes the active schema.

If so, how does one determine how well historical data is described by a new schema, and
what are the implications of the new structure?

These issues can be addressed by augmenting existing metadata schemas with ontologies
which define the formal semantics of the descriptive, non-data fields in the schema — i.e.
the meta-metadata. Existing methods for handling data evolution concentrate wholly on
either the structure (schema) of a database or the semantics of an ontology, but never
both. This chapter proposes a different approach in which the taxonomy and database
are co-evolved through subsequent versions. Rather than continually migrating historical
data stored against prior schema versions to the most recent version to support application
queries, this approach rewrites application queries to match historical schema versions. The
evolution of the taxonomy can inform and in some cases completely automate this process.

The following section describes early work on identifying and characterizing the problem
of semantic evolution. This includes the proposal of segmented query generation, a new
technique for rewriting queries over historical and future versions of a schema that takes into
account the semantic evolution of that schema. The full implementation and evaluation of
this technique are the subject of future work.

Semantic Evolution Case Studies

Three real-world case studies, including some from outside of the buidling domain, motivate
the need to handle changes in semantics over time.

NSF Survey of Earned Degrees [102]: The National Science Foundation (NSF) con-

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 109

ducts an annual census of all research doctoral degrees received from accredited U.S. in-
stitutions. The degrees are classified according to a taxonomy developed by the NSF; this
provides the basis for aggregate statistics such as the number of Computer Science degrees
earned in a given year. The degree classification taxonomy has changed over the course of
the survey, which began in 1957, to reflect the evolution of degree programs (Figure 6.13).

Because degree programs do not evolve in “lock-step” with one another, the emergence
and refinement of newer degree areas such as Computer Science are not immediately reflected
in the taxonomy or the survey results. Furthermore, the process of retroactively applying
newer classifications to historical data is largely manual and thus slow.

Campus Meter Database: The UC Berkeley campus contracts with an external
provider for collecting and storing meter data tracking energy, power, steam and water
consumption over time. The stored data is organized into a collection of tables — one for
each building — containing timeseries data for each measurement capability of a meter (re-
ferred to as a field). The set of fields for each building is different: the field names provide
some context for what the meter measures and how it relates to the building. The specific
quantity being measured is left implicit.

Over time, meters have been replaced, resulting in different names for meter fields, or
recalibrated, resulting in a different distribution of data. These changes are reflected in the
database as new tables — for example, the table “Soda Hall” becomes “Soda Hall new (as
of 1/12/12)” — which raises challenges for historical analyses (Figure 6.12).

Brick Ontology: As the Brick ontology evolves to introduce more classes or to refine
the definitions of existing classes, existing databases that depend on older versions of Brick
must decide how to adapt. This involves properly translating queries to take advantage of
new classes or to reinterpret older classes.

Formalism and Preliminaries

This section formalizes the semantic evolution question for relational databases.

Definition 6.4.1. Relational Schema. A relational schema R is a set of attributes a1, . . . , an.
Each attribute ai has a name given by name(ai). The range of values for an attribute ai in
relation Rj is given by Ai

j. The number of attributes in a relational schema Ri is given by
|Ri|.

Definition 6.4.2. Database Instance. A database instance Di is a set of n tuples {d1, . . . , dn}
where each tuple matches a relational schema Ri (written as Di ∈ Ri). This means that
each tuple d ∈ Di obeys |d| = |Ri| (has the same number of attributes) and dj ∈ Aj

i (the jth
attribute in tuple d has a value within the permissible range given by Aj

i).

The subscripts on relational schemas Ri and database instances Dj are logical timestamps
which increase whenever a new relational schema is introduced. A logical timestamp t
corresponds to a physical segment (extent) of time that may or may not be explicitly modeled
in the schema. This notation allows the expression of sequences of schemas over time, e.g.

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 110

[Ri, . . . , Rk]. All logical timestamps in a sequence are unique and are ordered from smallest
(least recent) to largest (most recent).

Definition 6.4.3. Metadata. In the context of relational databases, metadata properties are
the set of attributes in a relational schema that provide context or define properties of some
data. The semantics, or meaning, of each attribute determines what is metadata and what
is data.

In the campus meter database example (Figure 6.12), the data is the combination of a
timestamp and a value. The table contains metadata in the form of which meter originated
the data and which building the meter is associated with.

To simplify the discussion, full temporal segmentation is assumed: a database instance
Di is assumed to contain only records for the temporal extent corresponding to its logical
timestamp, and that records for that temporal extent are only contained within database
instance Di.

The key treatment of each relational schema is to consider each discrete value of an
attribute’s domain Ai

j as an OWL-style class. For example, each value in the Meter column
of the schemas in Figure 6.12 can be considered a label of an independent class. Formally,
each value v in the domain of attribute Ai at schema version j is a new class Ci

jv. This
enables a semantic evolution process to reason about the relationship between classes within
a version using a taxonomy, and between versions using a semantic evolution operator2.

There are three semantic evolution operators:same, merge and split. Together, these
characterize most kinds of semantic evolutions. For any pair of classes Ci and Cj for two
schema versions i and j:

• same(Ci, Cj) indicates that the semantics of a class are unchanged between the two
versions

• merge(C1
i , C2

i , Cj) indicates that the content of class Cj is defined by the union of two
(or more) classes from the previous schema version (C1

i , C2
i).

• split(Ci, C
1
j , C2

j) indicates that the content of class Ci at a prior schema version has
been split into two (or more) new classes in the later schema version (C1

j , C2
j).

A process rewriting schema i queries to execute on schema j can use these operators to
inform the automated transformation of those queries. same operators do not change the
query (except to handle renamed fields). split operators result in a query which expresses
the union of the queries generated by substituting Ci with each of the new Ck

j classes that it
was split into. This can be handled automatically. merge operators require a disaggregation
function to tell the rewritten query “how much” of the new class Cj matches the original
class C1

i .

2For simplicity, a taxonomy (tree-base class organization) is used instead of a full ontology which can
describe a DAG class organization.

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 111

Taxonomy Evolution Type
Engineering2004 ⊆ Engineering2010 Same
Econ2004 ⊆ Econ2010 Same
Psych2004 ⊆ Psych2010 Same
Math/CS2004 ⊆ CS/Info Sci2010 ∪Math2010 Split
Other2004 ⊆ Anthro2010 ∪Other2010 Split
Psych2004 ∪ Social Sci2004 ⊆ Social Sci2010 Merge

Table 6.2: A subset of the split/merge/same relationships between the 2004 and 2010 versions
of the NSF degree taxonomy in Figure 6.13

Figure 6.13 illustrates a subset of two versions of the NSF degree classification taxonomy,
one from 2004 and another from 2010. Table 6.2 contains a few of the binary relationships
between classes across the two versions of the taxonomy.

The set of Engineering degrees recognized by NSF did not change between the two ver-
sions, and thus the relationship is same. The Mathematics and Computer Sciences (Math-
/CS) category from 2004 was split into two separate categories in the 2010 taxonomy. Sim-
ilarly, the Other category under Social Sciences was split to pull Anthropology degrees out.

There is an interesting merge between the two versions: the Psychology category is incor-
porated under the Social Science category in 2010 despite these being separate in 2004. The
2004 Psychology category is also involved in a same relationship with the 2010 Psychology
category because they semantically refer to the same concept.

These three types may be broken down into expressions of relational operators that more
specifically describe the nature of the relationship between two versions of a taxonomy.
Nonetheless the three types are enough to inform query generation for a wide family of
semantic evolutions.

Segmented Query Generation

Segmented Query Generation (SQG) is a proposed technique for transparently executing
queries over a historical sequence of evolving relational schemas. This is one step of a
larger, more complex process and is complementary to classic data cleaning and integration
techniques. SQG operates by generating a new query for each historical schema version. This
allows an application to transparently query multiple database versions as if they were under
a unified schema. SQG accomplishes this without support from the underlying database
while reducing the effort required of a database administrator or application developer.

SQG takes advantage of semantic operators describing relationships between taxonomies
to transitively and automatically apply SQG across multiple versions of the database. The
existence of monotonic relationships (same and split) between subsequent versions of a
taxonomy allows the segmented query generation process to make safe assumptions about

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 112

NSF Degrees
(2010)

Social
Sci. Physical

Sci.

Engineering

Econ Anthro Psych Other CS/Info Sci. Math

NSF Degrees
(2004)

Science
Engineering

Math/CS Psych

Social
Sci.

Econ Other MergeSplitSame

Figure 6.13: Two different versions of the NSF degree taxonomy. Colored and outlined nodes
are involved in either a split, merge or same relationship across versions.

how the query can be rewritten. The existence of a non-monotonic relationship (merge) is
an opportunity for a manual or semi-automated process to provide direction.

SQG operates by taking a query q targeting a schema Ri and produces a sequence of
queries q0, . . . , qi−1 each targeting a previous schema version. Executing each of the generated
queries qk against the corresponding database instance Dk for each prior schema version Rk

produces a set of results as if all database instances were members of Ri.
A generated query is produced as follows. Given an input query qj targeting schema Rj,

the query processor first retrieves or computes the semantic evolution between Rj and the
preceding target schema Rj−1. These taxonomies are Cj and Cj−1, respectively.

The query processor decomposes q into its relational algebra operators, rewrites each
operator according to a set of rules, and reassembles the query. If attribute values a1

j , a
2
j ,

a3
j are all metadata property values referenced in the query, then the query processor feeds

these to a semantic mapping function to derive the generated values a1
i , a

2
i , a

3
i .

A semantic mapping function uses the semantic operators, defined between pairs of
schema versions, to rewrite attribute names and values between those schema versions. From
this output the query processor can determine the mapped attribute name and value for any
other schema version. Mapping functions only handle the immediately preceding schema
version. Mappings between non-consecutive taxonomy versions are computed transitively.

This abstraction affords a variety of possible mapping functions implementations. For
simple taxonomies with straightforward evolutions, the mapping may be stored as a lookup
table. When the semantic mapping is unknown, a probabilistic mapping function may use
external knowledge-bases or statistical inference to produce possible mappings [46].

CHAPTER 6. METADATA MANAGEMENT FOR SELF-ADAPTING SOFTWARE 113

Discussion

Any solution for addressing the issue of semantic evolution should fulfill the following four
properties:

• Correct: the mechanism should be correct and produce valid schemas that preserve
the semantics of the mapping

• Transparent: the mechanism (e.g. schema mappings and semantic mappings) should
not affect how the query is expressed or executed

• Efficient: the mechanism should impose minimal overhead in terms of resource con-
sumption at query time

• Automatic: the mechanism should minimize the human/manual effort involved

Work on SQG is still underway, but demonstrates promise in being able to handle the
kinds of scenarios described above. SQG has the ability to be automatic, transparent and
efficient because it produces queries which execute on the same optimized relational query
processors as the original query, with little or no human input. The correctness of SQG
has yet to be determined for all cases. The semantic evolution operators cover a variety
of semantic evolutions, but it is not known how general they are. Regardless, the need to
handle semantic evolution of schemas is an important issue with real-world applications, and
should be further researched.

114

Chapter 7

Platform Design and Implementation
for Self-Adapting Software

The final challenge in realizing a vision of self-adapting software is how to manage seman-
tic metadata, at scale, on behalf of applications. Managing semantic metadata requires a
platform that can store, update and serve semantic metadata as well as enabling access to
the historical telemetry via the metadata. Linked data technologies — especially the for-
mal axioms and rules defined in OWL and SHACL — place requirements on the metadata
management platform that are not well-served by existing systems. In particular, the use of
both linked data models and timeseries data

This chapter outlines the requirements of semantic metadata management and details
why these properties are difficult to achieve at scale, in the context of existing data and
metadata platforms. Then, the chapter presents two complementary platforms which facili-
tate self-adapting software at scale. The first, reasonable, provides a performant abstraction
for ontology management that simplifies the use of semantic web technologies for platform
developers. The reasonable software library enables new modes of interaction between
linked data and other data models. Second, the chapter develops the implementation of
the Mortar platform, which implements the hybrid linked-data/timeseries access required by
self-adapting software programming models (Chapter 5).

7.1 Scaling Metadata Management

The question of how to store and access metadata at large scale has become increasingly
important for big data and data warehouses [76]. Metadata in these settings describes the
source and provenance of the data in the warehouse, including the transformations and
treatments of that data. Many of the metadata management platforms developed to meet
the needs of large data warehouses leverage a graph-based data model [70]. However, these
platforms do not treat the context of the data as a first-class object: these kinds of semantic
details are to be included in the data being described and are not handled by the platform.

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 115

This section explores how metadata is managed in existing platforms designed for cyber-
physical and IoT settings. In these settings, the content of metadata critically influences how
applications are written and how they find their data. This is especially true for self-adapting
software.

Cyberphysical Data Platforms

A number of specialized databases have been developed for cyberphysical and IoT settings.
These are predominantly characterized by the ability to ingest high rates of timeseries data
from a large array of data sources such as sensors. IoT data is usually organized by attributes
of the data source such as location or sensor type in addition to a unique identifier.

sMAP [39] is a protocol which uses a UUID as a primary key for each sensor channel that
reports to a data archiver. Each sMAP data source is described with key-value metadata.
A number of metadata attributes are required and have well-known definitions, including
engineering units and the temporal resolution of the reported data. All other metadata
attributes have arbitrary names, semantics and values. This design runs aground of most
of the same consistency and interpretability issues as Project Haystack. Other systems
like BuildingDepot 2.0 [147] and VOLTTRON [79] adopt similar key-value approaches to
metadata: a small number of keys have well-defined semantics, but most attributes used by
applications are not standardized.

NoSQL databases are often used in IoT settings due to their flexible data models. Docu-
ment stores can easily store complex metadata that can describe a data source, but the lack
of first-class timeseries support means that NoSQL databases demonstrate poor storage and
query performance on large amounts of timeseries data [146]. Databases like IoTDB [146]
and InfluxDB [101] adopt a slightly different data model. These store timestamped tuples
of key-value pairs and tags. String-valued keys act as attributes of the data source and
numerical-valued keys are treated as telemetry. The restricted data model enables more a
more efficient and performant implementation. TimescaleDB takes this a step further by im-
plementing specialized timeseries indices and storage in the Postgres RDBMS. These kinds
of databases could provide access to telemetry on behalf of self-adapting software, but do
not directly support the RDF data model and related technologies.

RDF Data Management

RDF databases typically focus on efficient storage of millions or billions of triples and pro-
viding performant SPARQL queries over those triples. Research into how to improve these
databases has focused mostly on custom compression and run-length encoding schemes [105],
bitmaps [90] or other specialized indices [67] and much less on Selinger-style [130] query
optimization techniques for SPARQL execution. As a result, many SPARQL query proces-
sors are designed for a single kind of workload: non-interactive but simple queries on very
large knowledge bases. On this workload, modern SPARQL query processors use graphics

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 116

cards [138] or optimized relational query processors [55] to achieve execution times of seconds
or minutes.

For self-adapting software, SPARQL queries are part of the “hot path” of code that
is conducting analytics or controls; even a simple application may run several SPARQL
queries in order to configure its own execution. [50] studied the performance of common
RDF databases on a Brick workload and observed that the storage optimizations made for
large scale storage do not always translate to performant queries on smaller graphs. The
highly-recursive queries characteristic of many Brick applications constitute a pathological
worst-case for the index structures used for large RDF datasets. Thus, there is a need for
SPARQL query processors that can “scale down” to provide good performance on smaller
datasets.

However, most RDF databases and SPARQL query processors do not support OWL or
SHACL reasoning. Notable exceptions are Apache Jena [140], which supports reasoning
through a plugin system, Protege [110] and TopBraid. The exact computation required to
perform OWL or SHACL reasoning depends on the specific ontology language an ontology
is defined in, and which axioms or features it uses. Existing academic research has explored
different ways of scaling reasoners for OWL (such as using Map Reduce [142]). However,
much less work has focused on scaling SHACL reasoning (due to it being a more recent
standard) and the newer OWL ontology languages. Brick is defined in the OWL 2 RL
profile language [154], which has the advantage of being computable in polynomial time using
rule languages such as Datalog. Not all OWL 2 reasoners support the RL profile [58]. A
notable exception is RDFox [103], which implements an in-memory Datalog engine providing
performant SPARQL query processing and OWL 2 RL reasoning in the same package.

Most databases designed to support RDF do not provide support for versioned or tem-
poral graphs. One reason for this deficiency is that the open-world assumption underlying
many semantic web use cases is incompatible with the idea of a graph at a point in time.
Temporal graph management must support inquiries of the form what is the content of the
graph at a given point in time; this requires knowledge of which elements of a graph exist
or are valid for a given temporal extent. However, under OWA the content of the graph is
not closed. This means that it is impossible to differentiate between whether a given fact is
false at a given point in time in the graph, or if it is simply not included in the graph. Most
databases with support for versioning focus on dataset management, such as for scientific
publication. TerminusDB [113] supports a linked data graph model, but other systems like
Datahub [24], ProvDB [94], OrpheusDB [157] and DoltHub [43] support arbitrary struc-
tured (usually relational) and unstructured datasets. These general solutions do not provide
support for RDF data management such as reasoning and graph queries.

Ontology-Based Data Access

Traditionally, RDF data management and timeseries data management techniques have
largely remained separate. Ontology-based data access (OBDA) [30, 156] demonstrates
how RDF-based metadata can contextualize the data stored in an external database. In

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 117

OBDA, the ABox (instance metadata and data) is not stored in the RDF database but in an
external database that is mapped into the RDF data model. The RDF database manages
the TBox (ontology definition) and can be accessed by the client to provide the semantics
for the instance data.

OBDA systems address the same impedance mismatch between the capabilities of RDF
databases and databases for other data models (specifically SQL in [30]) that makes self-
adapting software difficult to implement. While it is possible for RDF to encode timeseries
data [71, 104], the resulting models are cumbersome and verbose. RDF is already an unfa-
miliar technology for most data scientists, most of whom would rather execute SQL queries
or download CSV files than author lengthy SPARQL queries against graphs where the actual
telemetry is 2 or 3 levels removed from the name of the data stream. Data structures for
efficient storage and retrieval of timeseries data, particularly over temporal ranges, are not
well served by the graph data structures used by most RDF databases.

How to provide these features in a performant manner at scale remains relatively unex-
plored for analytics-heavy workloads. OBDA research focuses on data integration, mostly
revolving around how integrity constraints over ABox data, such as that stored in a rela-
tional database, can be expressed and enforced in terms of the TBox. Support for data-heavy
analytics workloads is relatively unexplored.

7.2 reasonable: Abstracting Ontology Management

Self-adapting software requires a deeper integration between RDF and timeseries data man-
agement systems. reasonable is a software library providing efficient, high-level abstractions
over RDF graphs and OWL 2 RL ontologies which facilitate the self-adapting software use
case. It acts as a conduit between a versioned triple store and a SPARQL query processor:
it applies OWL 2 RL reasoning to the triples at a point in time and allows the SPARQL
query processor to operate over the augmented graph. reasonable is based on a differential
Datalog engine and makes use of novel, semantics-preserving transformations of the OWL 2
RL rules to achieve moderate to significant speedups on the reasoning task.

Overview

reasonable is a Datalog implementation optimized for OWL 2 RL reasoning over different
graphs over time. Figure 7.1 illustrates the logical architecture of reasonable in the context
of the Mortar platform explored in the next section. reasonable ingests a set of triples
constituting the content of an RDF graph at a point in time, materializes the OWL 2 RL
entailment of that graph, and makes the resulting triples available to a SPARQL query
processor.

A triple store, at left, stores the content of many RDF graphs over time. These triples are
stored as g,d,s,p,o,t tuples. Recall that a graph g is an arbitrary collection of RDF triples;
in the cyberphysical context, a graph usually describes a single environment. Updates to

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 118

<g,d,s,p,o,t> <g,s,p,o>

Versioned Triple Store SPARQL Data Store

g: graph name
d: dataset identifier
s,p,o: RDF triple
t: valid interval start timestamp

reasonable

Index View Mgr

OWL 2 RL Datalog Dataflow

Figure 7.1: Logical architecture of reasonable and its interaction with other software com-
ponents of Mortar

the graph come from datasets. A dataset d is a particular source of triples for a particular
graph at a particular point in time t; the content of the data source may change over time,
but the identity does not. Examples of datasets would be the content of the Brick ontology
or the Brick model produced by the integration server described in Chapter 6. s, p and o
are the components of an RDF triple in that dataset at that point in time.

During operation, for a given timestamp t and graph g, reasonable ingests the latest
triples for each dataset for that graph. This represents a snapshot of the content of the
graph at that time. reasonable then computes the OWL 2 RL entailment of the graph by
pushing the triples through the dataflow graph. The resulting triples are then exposed to a
SPARQL query processor.

Computing OWL 2 RL Entailment

Recall from Chapter 2 that OWL 2 RL is an ontology language that can be computed with a
rule engine. Prior work has established that Datalog is sufficient to compute these rules [141,
103]. [100] lists the standard axiomitization of OWL 2 RL as a set of Datalog rules (see [2]
for a detailed explanation of Datalog and its properties). A Datalog rule can be written as
a Horn clause with a body — intuitively, the conditions that must be true for the rule to
“fire” — and a head — the output of the rule. In [100] each of the Datalog rules is written
with respect to a single relation T(s,p,o) which contains all of the RDF triples in a graph.

The OWL 2 RL rules define which triples can be added to the graph that are implied
by the statements contained within the graph. An OWL ontology is an RDF graph which
instantiates the rules to model the semantics of some domain. To compute the entailment of
a graph the ontology definition must be loaded into that graph. In reasonable, the Brick
ontology definition will often be included as a separate dataset as the description of the
cyberphysical environment. These two datasets are unioned together when the triples are
ingested into reasonable.

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 119

1 % cax-sco rule for class type inheritance
2 T(X, "rdf:type", C2) :- T(C1, "rdfs:subClassOf", C2), T(X, "rdf:type", C1).
3
4 % scm-sco rule for transitive subclassing
5 T(C1, "rdfs:subClassOf", C3) :- T(C1, "rdfs:subClassOf", C2), T(C2, "rdfs:subClassOf", C3).

Figure 7.2: Two OWL 2 RL rules expressed in Datalog. T is the relation (s,p,o) corre-
sponding to the triples in an RDF graph.

1 % cls-int1 rule for implementing intersection classes
2 T(Y, "rdf:type", C) :- T(C, "owl:intersectionOf", X), LIST[X, C1, ..., Cn], T(Y, "rdf:type", CI).
3 % LIST[X, C1, ..., CN] expands to
4 T(X, rdf:first, C1), T(X, rdf:rest, Z2),
5 T(Z2, rdf:first, C2), T(Z2, rdf:rest, Z3),
6 %
7 T(Zn, rdf:first, CN), T(Zn, rdf:rest, rdf:nil)

Figure 7.3: Definition of the LIST[] syntax in [100] and an example of a variadic Datalog
rule that uses a variable-sized list.

Figure 7.2 lists two OWL 2 RL rules. The first rule, cax-sco, implements subtype
polymorphism: if an entity x is an instance of class C1 and C1 is a subclass of C2, then x

is also an instance of C2. The first atom, T(C1, "rdfs:subClassOf", C2), matches TBox
expressions that describe the structure of a class organization. The second atom, T(X,

"rdf:type", C1), matches ABox expressions that specify the type of entities in the graph.
The head of the rule produces a new triple which indicates the new inferred type of the entity
x. The second rule implements the transitive nature of the rdfs:subClassOf relationship.

While OWL 2 RL is implementable in Datalog, it is not necessarily convenient to do so.
Most of the rules defined in [100] have a fixed size body. This is the default form of Datalog
rules and is how essentially all Datalog implementations expect the rules to be expressed.
However, a handful of rules make use of RDF lists and are thus defined with variable-sized
bodies. Figure 7.3 illustrates one of the OWL 2 RL rules using this variadic form.

This poses a challenge for Datalog rule engines: the rules cannot be be hard-coded into a
Datalog program because the exact form of the rule depends on ABox information. Proper
handling of variadic rules requires Datalog rules to be generated dynamically when the graph
is observed. This feature is not supported by most Datalog implementations. RDFox [103]
addresses this issue by pre-compiling the Datalog rules as a function of the input RDF graph.
However, if the graph changes then this potentially expensive recompilation will need to be
redone. Further, if new rules are generated by through the computation of the OWL 2 RL
entailment, then the Datalog engine will need to regenerate a new Datalog program that can
compute the new rules.

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 120

To be effective, reasonable must be able to nimbly switch between ontology versions
which may contain different instantiations of variadic rules. reasonable addresses the vari-
adic rule problem through a novel rule rewriting technique for OWL 2 RL rules. The rewrit-
ten rules can be computed monotonically and preserve the semantics of the rules but are
not expressed in Datalog. Moreover, implementing the rewritten rules reduces the number
of joins that need to be performed during execution, which improves performance.

Semantics-Preserving Rewriting for Variadic Rules

The goal of the rewriting technique is to not require an external recompilation of the Datalog
program when new instantiations of variadic rules become available in the graph. These rules
are much larger than most OWL 2 RL rules and can require many joins; for example, the
cls-int1 (Figure 7.3) rule has a body of size 2N + 3 where N is the number of classes
in the intersection condition. By avoiding recompilation, which typically involves throwing
away program state and restarting the process, a Datalog engine can maintain partially
materialized rule evaluations that accelerate future computation.

There are two challenges to variadic rule evaluation that must be addressed. First,
because the instances of the variadic rules are derived from an unordered set of triples,
the rewritten rule must be able to create the lists of conditions (LIST[X, C1, ..., CN] in
Figure 7.3) in an efficient manner. Secondly, the rewritten rules must be able to determine
when all of the conditions contained in the list are correct. The rewritten rules are not
expressed in Datalog; instead, they take the form of a small piece of monotonic logic that can
be computed as part of a fixed-point Datalog computation scheme. The logic is executed on
every iteration of Datalog computation and makes use of several monotonic data structures.

To address the first challenge, the rule rewriting technique makes the observation that the
use of RDF lists is intended to make the list a closed collection; that is, no other statements
can be spliced into the list or appended to the beginning or end of the list. This is true
because the head of the list is known (the list is identified by the beginning entity x) and the
end of the list is fixed (rdf:nil). However, the inherent order of the list does not actually
factor into the semantics of the rule. Specifically, changing the order of the elements in the
list (C1 through CN in Figure 7.3) does not change the output of the rule; this is true for all
variadic rules in OWL 2 RL. This observation means that the contents of the RDF lists can
be captured with a set rather than a linked list, as they are normally represented in RDF.
This also means that the content of all RDF lists in a graph can be determined in a single
linear pass over all of the triples by using a disjoint-sets data structure.

This construction works as follows. Recall that the disjoint-set data structure supports
three operations. Add(x) adds an element x to its own set. Find(x) returns the set contain-
ing x. Union(x,y) merges the set containing x with the set containing y into a single set.
The list discovery algorithm requires a single disjoint-sets data structure D. During a pass
over all of the RDF triples in a graph, any triple with a predicate of rdf:rest has both its
subject and object added to D and then unioned. The object of a rdf:rest triple acts as
a pointer to the subject of the next rdf:rest triple describing the structure of the list. By

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 121

1 % original cax-sco rule for class type inheritance
2 T(X, "rdf:type", C2) :- T(C1, "rdfs:subClassOf", C2), T(X, "rdf:type", C1).
3 % rewritten cax-sco rule
4 PSO(P, S, O) :- T(S, P, O). % predicate-indexed relation
5 Instances(X, C) :- PSO("rdf:type", X, C). % entity-indexed type relation
6 Subclasses(C1, C2) :- PSO("rdfs:subClassOf", C1, C2). % class-indexed subclass relation
7 T(X, "rdf:type", C2) :- Subclasses(C1, C2), Instances(X, C1).

Figure 7.4: The cax-sco rule implemented to take advantage of intermediate relations

unioning the heads and tails of the list segments, the sets in D will converge to the contents
of all the lists defined in the RDF graph. The order of the values of the lists is not preserved,
but this is not required for correctness.

Once the content of the lists are known — after one pass over the input triples — the
rewritten rule uses a Map<URI, Bitset> named conditions to determine when all of the
rule conditions in each list are met for each URI. The map has an entry for each URI in the
dataset; the value of the map is a bitset of size N where each position i ∈ 1, ..., N is 1 if
the condition Ci in the list is true for that URI and 0 otherwise. On each iteration of the
Datalog engine, the rewritten rule checks each of the conditions for each URI and updates
the bitset accordingly. If all of the elements of the bitset are set and the other conditions of
the rule are met, then the rule fires. One disjoint-sets data structure is used to capture all
RDF lists in a graph. A unique conditions map is created for each variadic rule.

Redundant checks can be mitigated with two optimizations. First, the rewritten rule
checks the other atoms of the body before updating the bitset. This avoids performing the
checks on URIs that will never meet the other conditions of the rule. Secondly, the rule
checks the value of the bitset before evaluating all of the conditions to avoid rechecking
URIs that have already caused the rule to fire.

Implementation

reasonable is built on DataFrog [93], a simple, embeddable Rust-based Datalog engine.
Because of the embeddable nature of the engine, there is no provided runtime. The host
program has to build and repeatedly evaluate the rules until no additional tuples are pro-
duced. This constitutes a fixed-point evaluation scheme.

The formalization in [100] only uses a single relation T(s,p,o) In a fixed point iteration
evaluation scheme, any new tuples produced by a relation will propagate to all dependent
relations. A rule is dependent on rule relation if its body contains an atom that is the head
of another rule. Each time a new tuple is generated by a rule, all dependent rules must be
run that iteration. The iterations stop when no new tuples are generated. Because of these
dynamics, the use of a single relation, T(s,p,o), to implement all OWL 2 RL rules makes
all rules dependent on one another. This means that if any rule generates a new tuple, all

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 122

“downstream” rules must be reevaluated, even if that rule would otherwise not fire.
To avoid this issue, reasonable redefines the OWL 2 RL rules to make use of intermedi-

ate relations. This reduces the total number of iterations by removing dependencies between
unrelated rules. Consider the cax-sco rule as written in Figure 7.4 as an example. As writ-
ten, the rule would need to be reexecuted each time the T relation changed. Figure 7.4 shows
the implementation of cax-sco that reasonable uses. The implementation makes use of 3
intermediate relations: PSO(P,S,O) is a predicate-indexed relation of the tuples in the RDF
graph; Instances(X,C) is an entity-indexed relation of the types c of each entity x in the
graph; Subclasses(C1,C2) is a class-indexed relation of the subclass relationships. These
relations do not typically change after the first couple of iterations of Datalog evaluation.

reasonable is implemented as a Rust library in order to embed Datafrog and to facili-
tate embedding in other programs. The Datafrog engine was chosen because it was simple
to extend with monotonic, albeit non-Datalog, logic such as the rule rewriting technique de-
scribed above. The reasonable implementation is 3182 lines of code. This does not include
Datafrog but does include the binding code to support a Python 3 package that provides a
high-level interface to reasonable1.

Currently, reasonable can receive triples from Postgres and SQLite, using triggers to
prompt the reevaluation of the OWL 2 RL rules when new data is inserted. reasonable does
not implement any differential computation techniques to reduce redundant computation
when triples are removed; instead, reasonable just reevaluates the entire Datalog program.
reasonable can dump the output of the reasoning process into an in-memory or on-disk
store which can be accessed by a SPARQL query processor.

Benchmarks and Evaluation

The performance of reasonable is evaluated by measuring the execution time of reasonable
performing OWL 2 RL inference on a collection of RDF graphs. The RDF graphs are sourced
from the Mortar dataset described in the next section; there are 109 graphs, ranging in size
from 40 triples to 17,500 triples. reasonable is compared against OWL-RL, a Python
package adopting a naive approach to OWL 2 RL evaluation, and Allegrograph [55], a
commercial triple store with an optimized reasoner.

The experimental setup is as follows. For each RDF graph in the dataset, a new graph
is created that has the Brick v1.1 ontology and RDFS ontology definitions loaded into the
graph; this adds an additional 15,000 triples to each RDF graph. Each augmented graph
is imported into a fresh instance of the reasoner — no state is preserved between runs —
and the reasoner is triggered. A script measures the execution of the reasoning process as
distinct from the time it takes to load the triples into each reasoner. OWL-RL is executed
in-memory; Allegrograph is executed from a Docker container. Each RDF graph is reasoned
10 times.

1https://pypi.org/project/reasonable/

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 123

Figure 7.5: Comparing performance of reasonable with OWLRL and Allegro over more
than 100 Brick models.

The results are summarized in Figure 7.5. On average, reasonable is 7̃x faster than
Allegrograph and 4̃1x faster than OWL-RL. If the reasoning duration is normalized to the size
of the input graph (before loading in the Brick and RDFS ontology definitions), reasonable
is 9̃x faster than Allegro and 4̃8x faster than OWL-RL.

The improved performance of reasonable over available alternatives enables a reasoner
to adopt a new role as a timely transformation of data that can be incorporated into an
analytics workflow rather than an offline batch processing phase. In practice, waiting half
a minute or longer for a reasoning step to complete severely impedes exploration and often
requires the user to manually manage cached versions of the reasoned graph to avoid incurring
the expensive computation.

7.3 Mortar: A Platform for Reproducible Building

Science

Mortar — deployed at https://beta.mortardata.org — is a data platform which enables
the execution and evaluation of self-adapting analytics applications over a large number of
metadata-enriched buildings. This section describes the Mortar dataset and the architecture
and implementation of the data platform that serves that data in a manner supporting
self-adapting applications.

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 124

Figure 7.6: Histogram of number of data streams for all sites (µ =241).

Temperature Sensor 7380 Luminance Sensor 257
Occupancy Sensor 445 Pressure Sensor 148

Outside Air Temp. Sensor 362 Cloud Cover 32
Setpoints (generic) 2331 Power Meters 77

VAVs 4724 AHUs 467
HVAC Zones 4887 Dampers 1662

Non BMS Thermostats 123

Table 7.1: Count of streams and equipment available in the testbed data set, aggregated by
type. AHU and VAV totals include related equipment such as fans and pumps.

Public Dataset

Mortar contains timeseries and metadata for over 100 buildings, constituting over 9 billion
datapoints and 750 million combined hours of telemetry. The majority of the data streams
in the platform adhere to a 15-minute interval (.001 Hz), though some are more fine-grained
(up to 1 Hz).

Figure 7.6 describes the distribution of the number of streams per building. Each building
is accompanied by a Brick model that describes the building, its equipment and subsystems,
available points, and references to timeseries data streams. Table 7.1 enumerates some of
the types of available points and equipment in the testbed.

The majority of the dataset is made up of large commercial buildings belonging to a
university campus. The buildings are typically used as offices, classrooms, research facilities
and health care clinics. The average building has a floor area of 70,000 sqft, 3 floors and
more than 100 rooms, while the largest building is a large library with a floor area above

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 125

SPARQL Query
ProcessorTelemetry and Timeseries Data

bl
dg

1
bl

dg
2

bl
dg

3

Versioned Triple Store

t0 Brick.ttl

bldg1.ttl

<s,p,o>

...

<s,p,o>

...

Brick.ttl

bldg2.ttl

<s,p,o>

...

<s,p,o>

...

Brick.ttl

bldg3.ttl

<s,p,o>

...

<s,p,o>

...

bldg1

bldg1.ttl <s,p,o>

...

t0

t1

t0bldg2

t3

t1

t4

bldg3 OWL 2 RL Reasoner

bl
dg

1
bl

dg
2

bl
dg

3

API Frontend

Data Storage Metadata Inference and Query Processing

Figure 7.7: Mortar platform

400,000 sqft. Most buildings are conditioned using large built-up HVAC systems with air
handlers and local distribution boxes, controlled by building automation systems. Chilled
water and hot water are produced by a central plant and distributed through large pipes to
most buildings. Some additional chillers are installed in some buildings to complement the
central system.

Other buildings in the data set come from a set of independent data collecting efforts.
Most of the non-campus buildings are part of an ongoing project to develop a building
operating system; these are mostly small commercial buildings ranging from movie theatres
to fire stations to animal shelters. Data collected includes sensors, setpoints and other
data associated with thermostats, building meters, electric vehicle charging stations, HVAC
and lighting systems as well as general occupancy, temperature, illumination and humidity
sensors.

Platform Architecture

Mortar — which originally stood for Modular Open Reproducibility Testbed for Analysis
and Research — is a platform for storing contextualized timeseries data to support self-
adapting analytics applications. Mortar supports the long-term storage of many timeseries
streams and RDF graphs that describe and contextualize that data. The management and
access of timeseries data and RDF metadata is provided through a declarative API frontend
designed for high numbers of long, concurrent connections typical of clients downloading
large amounts of data. The API frontend supports the operations supported by self-adapting
software (Chapter 5).

Figure 7.7 illustrates the architecture of the Mortar platform. The data storage com-
ponent contains two logical databases: a timeseries database that organizes data by graph
name (bldg1, bldg2, bldg3 in the figure) as well as stream name, and a triple store using the

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 126

g,d,s,p,o,t schema described in §7.2. The versioned nature of the triple store is illustrated
in the figure: for bldg1, the triples corresponding to dataset Brick.ttl at t0 and the triples
for dataset bldg1.ttl at t1 will constitute the latest version of the graph.

The reasoner wraps the reasonable library in a subscription to the versioned triple store.
The reasoner maintains the materialization of the most recent version of each graph in the
triple store and makes this available to a SPARQL query processor. As new triples are added
to the triple store, the reasoner is able to update the materialized graph using a minimal
amount of work; this facilitates bulk uploads. Historical versions of a graph are evaluated
on demand and cached.

Platform API

An API frontend exposes a set of operations to clients, documented in Table 7.2. These meth-
ods interact with both the timeseries and RDF database (triple store). The register stream

method adds metadata to the RDF graph about a particular data stream, uniquely iden-
tified by a 36-byte UUID. All data streams must exist within exactly one graph. Calling
register stream adds the data stream to that RDF graph; providing the extra arguments
allows Mortar to add additional triples such as rdfs:label for name, rdf:type for class

and brick:hasUnit for units. Any data stream that is registered without a class argu-
ment will be asserted as an instance of brick:Point — the most generic kind of data source.
The add * methods support streaming JSON POSTs as well as batch uploads from Turtle
files (for metadata) and CSV files (for data).

qualify takes as an argument a list of SPARQL queries q0, . . . , qm and an optional list
of graph names g0, . . . , gn and returns an m×n matrix T where each entry Tij is the number
of tuples returned by running query qi on graph gj: Tij = |qi(gj)|. This allows a client to
quickly determine which graphs in Mortar contain the data and metadata necessary to run
an application. If a list of graph names is provided, qualify only executes the queries on
those graphs, otherwise it executes on all stored graphs.

get metadata takes a SPARQL query as an argument and returns the results of the
query executed over the indicated graphs. Because of reasonable, the SPARQL queries are
always served over fully reasoned graphs.

get data takes a SPARQL query as an argument and returns the timeseries data and
metadata for all data streams described by that query. The start and end arguments bound
the temporal extent of the query, and agg and window describe any requested server-side
aggregation (e.g. aggregating each data stream to a 15-minute average). This requires the
API frontend to determine which elements of the SPARQL query correspond to timeseries
data. Nominally, any instance of brick:Point represents a source of data; however, not all
of these will have data associated with them, and the name (URI) of the entity needs to be
associated with the timeseries UUID. A new Brick relationship, brick:timeseries, relates
a data source to the metadata about its storage. The subject of brick:timeseries is a
Brick Point entity; the object is a complex object with several properties:

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 127

API Function Signature

M
et

ad
at

a register stream(uuid, graph, name?, class?, units?)

add metadata(graph, dataset, [triple])

get metadata(query, [graph]?) -> table

qualify([query], [graph]?) -> table

D
at

a add data(uuid, [timestamp, value])

get data(query, start?, end?, agg?, window?, [graph]?) -> [table]

get data([uuid], start?, end?, agg?, window?) -> [table]

Table 7.2: API operations supported on the Mortar platform. A ? suffix indicates the
parameter is optional. A [parameter] notation indicates the type is a list.

• brick:hasTimeseriesId: a literal-valued property that indicates the primary key
identifier for the data stream (in Mortar this is a 36-byte UUID)

• brick:storedAt: an optional property that encodes the location of the database con-
taining the data for the data stream. This allows distributed Brick models to always
retain a pointer to where related data is stored, and allows Brick points to distribute
their storage across multiple databases.

The brick:timeseries property is queried automatically by the API frontend when get data

is called to determine which data streams must be fetched.
The return value of get data is a set of 3 tables. The first table, streams, contains the

names, UUIDs, units and enclosing graph names of each of the data streams returned by
the query. The second table, metadata, contains the results of the SPARQL query. The last
table, data, contains the timeseries data indexed by timestamp and UUID.

Mortar supports basic access control at the level of graphs. API keys can be created that
grant read and/or write access to the metadata and data for a particular graph. The results
returned by the Mortar API will have all inaccessible data streams and graphs elided.

Platform Implementation

The Mortar platform is implemented using a collection of existing open-source software and
custom-built software. The timeseries and versioned triple store in Figure 7.7 are built on
Postgres. The timeseries storage uses TimescaleDB, a timeseries-optimized extension for
Postgres. The reasoner is an HTTP server implemented in Rust that wraps reasonable. It
uses LISTEN/NOTIFY to subscribe to changes to the versioned triple store table and prop-
agates those changes to the in-memory reasoner, and eventually to the SPARQL query
processor. The API frontend is implemented in Go and incorporates a simple throttle mech-
anism to limit the number of concurrent connections; this helps limit the ability of a large
number of clients to overwhelm the server.

CHAPTER 7. PLATFORM DESIGN AND IMPLEMENTATION FOR
SELF-ADAPTING SOFTWARE 128

These three services — the database, the reasoner and the API frontend — are all dis-
tributed in Docker containers to facilitate deployment. These containers may be hosted
directly on a host machine, using a tool like docker-compose to manually manage the de-
ployment and scaling of the services, or using a cluster management system like Kubernetes.

Conclusion

This chapter has explored the platform requirements for self-adapting software. The rich
semantic metadata supporting self-adapting software requires the use of a reasoner to mate-
rialize the inferred elements of the graph. This enables greater flexibility in the queries made
by self-adapting software. The integration with a data platform requires the reasoner to be
timely and efficient so that materialized RDF graphs can be part of interactive workflows.

reasonable is a new OWL 2 RL reasoner optimized to perform reasoning over changing
graphs and ontologies and to act as an efficient transformation step between a versioned
triple store and a SPARQL query processor. reasonable is implemented as a standalone
library and demonstrates performance 7-40x times faster than existing OWL 2 RL reasoners.

The Mortar data platform provides timeseries and RDF storage for large amounts of
data, organized into graphs and described using Brick metadata. Mortar provides a simple
API that allows self-adapting software to discover and access the metadata and data needed
to customize its operation. Mortar is available online at https://beta.mortardata.org.

129

Chapter 8

Adoption and Impact

Brick, Mortar and their related technologies detailed in this thesis are influencing data-
driven practices, standards and research in academia, industry and government.

8.1 Metadata Standardization and Semantic

Interoperability

When Brick was released in 2016 there were few efforts that addressed the need for consistent
and interpretable metadata for analytics and controls, and even fewer that were recognized
or adopted by the building industry. The dominant practice was for controls and BMS
vendors to sell access to telemetry on a point-by-point basis through proprietary APIs and
interfaces. Companies like SkyFoundry, the company behind Project Haystack, helped to
establish that a distinct analytics platform with first-class support for analytics “apps” and
historical telemetry could provide value to building owners and stakeholders. As a result,
Project Haystack’s terminology and marketing characterized much of the building industry’s
understanding of “semantic metadata” despite the fact that the underlying product and
technology did not address the key data modeling challenges (Chapter 4). Publications,
talks, interviews, blog posts and webinars about Brick evinced the shortcomings of informal
tag-based metadata and provided an alternative that was built over existing W3C standards.
Since 2016, Brick and its ideas have influenced a number of technologies, standards and other
ontologies.

ASHRAE 223P

ASHRAE (American Society of Heating, Refrigeration and Air-Conditioning Engineers) is a
professional organization behind many standards in the building industry, including BAC-
net [14]. In 2012, ASHRAE established the Application Profile Working Group (AP-WG) to
develop standardized interfaces for interacting with common types of equipment [9]. Accord-

CHAPTER 8. ADOPTION AND IMPACT 130

ing to the working group website, the proposed standard would “provide a machine-readable
way of representing the capabilities of individual BACnet devices such as services and ob-
jects supported [6].” The intended output of the working group was to author annexes to
the BACnet standard that would encode this information in the networked representation
of each device.

Several years into this effort, it was recognized that standardizing interfaces was only part
of the problem: applications needed contextual information in order to find which interfaces
of which equipment they needed to operate. In 2018, the goal of the working group was
amended to develop a new standard, 223P1, entitled Semantic Tags for Building Data. The
focus was still on applications, but rather than specifying the interfaces to the devices in the
building, the group would

“investigate the development of semantic information concepts and vocabularies
suitable for building data of various application areas. This will extend the level
of semantic information to include application concepts.[7]”

This new direction was intended to incorporate aspects of both the Brick and Project
Haystack metadata efforts [8]. At time of writing, a draft of 223P is expected to be re-
leased in 2022.

223P will be expressed as a semantic web ontology built using OWL and SHACL. The
design is based on the SAREF4SYS ontology, but extends the generic SAREF4SYS concepts
with classes which are relevant to the building domain. The core concepts to 223P are
Systems, Devices, Connections and Connection Points: this provides an abstract data model
which can express more detailed topology and system composition than either Brick or
Haystack. Systems are a collection of connected devices or other systems. Devices are
tangible objects designed for a specific task, such as a pump or variable frequency drive.
Systems can be “connected” to other systems and devices can be “connected” to other
devices. Devices may be composed of atomic Parts, but Parts do not have any connections
to other Parts or other entities in the model. Unlike Brick, 223P Connections are objects
in the model; in Brick, connections are captured through the brick:feeds relationship
which is a simple RDF predicate. By making Connections objects, it is possible to attach
additional properties to them. Example of Connections in 223P include pipes, ducts and
wires. Connections connect to devices and systems by means of Connection Points, which
are also objects and can also be described with additional properties such as the direction
of some medium flowing through the connection.

The relationship between Brick and 223P is promising. The two ontologies differ in their
intended use cases and expected data sources. Brick is designed for “brownfield” settings, in
which the ground truth of which entities and data sources are actually present in a building
is not necessarily known or captured in a structured manager. As a result, Brick models are
designed to be created from partial or incomplete information. Furthermore, by concentrat-
ing on enabling data-driven applications, Brick eschews detailed “white-box” descriptions
of building subsystems: this detail is largely unnecessary, hard to come by, and difficult to

1The P suffix refers to the fact that the standard is considered proposed until it is ratified.

CHAPTER 8. ADOPTION AND IMPACT 131

maintain. In contrast, 223P is designed to be implemented during the commissioning stage of
a building. Parts of a 223P model could be packaged with the equipment and controllers that
are installed in the building. A systems integrator would stitch 223P-compliant metadata
snippets together into a detailed and complete representation of the building’s subsystems.

Brick and 223P are on track to be compatible. Several of 223P’s concepts are rooted in
concepts imported from Brick; at time of writing, the imported concepts include substances,
equipment, points and locations. All elements of 223P’s data model can be simplified into
a form that Brick can express: the relationships between Systems and Devices can be ex-
pressed as compositional and topological relationships in Brick; sources of timeseries data
and their properties may be represented in Brick directly. This means that Brick model will
be derivable from a 223P model, ensuring forward compatibility.

DOE Semantic Interoperability Project

The U.S. Department of Energy has identified the lack of semantic interoperability between
technologies as a fundamental barrier to achieving grid-interactive, energy efficient (GEB)
buildings at scale. In [19], researchers from the National Institute of Standards and Tech-
nologies (NIST) and several national labs and universities propose a 3-part pathway for
enabling semantic interoperability.

The first component is working with industry and existing metadata representation ef-
forts such as Brick and Haystack to address known shortcomings of these existing approaches.
As established in [51] and this thesis, Haystack models suffer from significant customization
in the field which reduces consistency and interpretability between deployments. Brick ad-
dresses these issues, but is built on semantic web technologies that are unfamiliar to many
practitioners. [19] proposes leveraging the existing overlap between Brick and Haystack to
develop a new standard, ASHRAE 223P, to unify industry and academic metadata efforts.

The second component is to design this new standard in such a way that it can be used
by building owners to identify and require interoperable components when procuring equip-
ment, controllers and applications. The key idea is to use the standard not as a post-hoc
description of existing cyberphysical resources but as the mechanism through which inter-
operable cyberphysical systems can be assembled. Products should be bought because they
support this new standard, and the standard should provide a consistent way of describing
the capabilities and structure of the products. This will ultimately reduce commissioning
and system integration costs.

The third component is the creation of standard tools to assist in the implementation
of the standard and a testing framework which can verify compliance of products to the
standard. This is the approach taken by the BACnet standard [14]. According to [19], it
took BACnet more than two decades to achieve its current 64% market share: this was
greatly accelerated by the existing of an independent testing group called BACnet Testing
Laboratories. A similar approach is proposed for semantic metadata. The testing framework
should ensure that standard-compliant products are able to support an array of representa-
tive real-world use-cases and applications.

CHAPTER 8. ADOPTION AND IMPACT 132

Work on this semantic interoperability vision began in 2020 and will accelerate over
the next few years. Software teams ant NREL have begun implementation of ontology-
agnostic tools for constructing metadata models of buildings that can be “compiled” to
either Haystack or Brick. As part of this effort, a recent review [117] compares and contrasts
a variety of metadata schemas and ontologies focusing on energy-oriented applications for
buildings.

Haystack v4

Project Haystack has been undertaking a redesign of the metadata model, addressing long-
standing issues in the design that have been noted by the community and identified by the
work in this thesis [121]. Among the changes is a shift to a Brick-inspired design. Rather than
relying entirely on ad-hoc collections of tags for meaning, the new design defines well-known
sets of tags which have documented definitions:

“It has become clear over the last few months that there is no getting around
coining an identifier for every single point type.[123]”

This addresses some of the consistency issues incumbent in the existing Haystack design,
but does not fully address structured extensibility or unclear subclass relationships — both
issues formalized in Chapter 4. Haystack 4 also provides an RDF-compatible export. Note
that this does not constitute the development of an ontology: the graph export is simply
an RDF representation of the existing Haystack data model. As as result, the inference
techniques for extracting Brick metadata from a Haystack model — covered in Chapter 6
— are still necessary.

Other Alignments and Ontologies

A number of other ontologies and metadata representations for buildings have been developed
since 2016. The Brick ontology has established formal alignments and translators with most
of these other representations.

Building Topology Ontology

The Building Topology Ontology (BOT), introduced in [126], is a simple upper ontology
which defines core physical concepts of a building’s construction. Because the concepts
defined in BOT are generic, it is possible to align it with other ontologies such as Brick and
IFC [129]. BOT is being developed by the Linked Building Data community group through
the W3C organization. Brick maintains a formal alignment with the BOT ontology, meaning
that BOT concepts can be derived from Brick models.

RealEstateCore

RealEstateCore (REC), introduced in [63], is a domain ontology developed to support data-
oriented real estate applications. There is a high degree of overlap between the concepts

CHAPTER 8. ADOPTION AND IMPACT 133

defined in Brick and those defined in REC, and REC does cite Brick as an inspiration for
its design of data sources and sinks. However, REC takes the extra steps of modeling the
interfaces to different building devices, as well as modeling organizations and individuals and
other administrative structures and entities that interact with buildings. Brick maintains a
formal bidirectional alignment with the REC ontology, meaning that REC and Brick models
can be derived from each other.

Virtual Buildings Information System

The Virtual Buildings Information System [145] is a asset tagging and classification scheme
that defines short, hierarchical 4-level names for common types of assets in buildings. VBIS
covers equipment for a broad range of building subsystems including HVAC, water, security,
lighting, fire suppression and kitchens. VBIS is designed to annotate existing records stored
in other databases or files, so it does not define an API (other than requiring string matching).
Because VBIS is distributed as a set of spreadsheets, it is not possible for Brick to define
a formal mapping between the two metadata representations. Instead, Brick defines a new
property for relating a VBIS tag to a Brick entity. The implementation uses SHACL shapes
to define regular expressions which constrain the content of the VBIS tag to be appropriate
to the Brick class. The implementation can also infer a Brick class for an entity with a given
VBIS tag.

Google’s Digital Buildings Ontology

Google has also been developing its own metadata model for real estate, equipment and
equipment data which takes inspiration from Brick [20]. The ontology, named Digital Build-
ings, is built on a custom configuration language and custom tooling which can produce
an OWL-based ontology as output. Part of the reason for a custom configuration language
and tooling is to circumvent some of the modeling issues which arise from the open-world
assumption that underlies OWL. Digital Buildings defines Protobuf messages and fields for
many different kinds of equipment. In contrast to Brick, Digital Buildings equipment are de-
fined by which inputs and outputs they represent; for example, a VAV with Reheat concept
in Digital Buildings would require that the model includes points about a reheat valve in
addition to the points for the VAV. The Digital Buildings effort is open-source and maintains
compatibility with Brick and Haystack as a long-term goal [59].

8.2 Open Data Research Efforts

While Mortar is not the first open-data research platform for buildings and other cyberphys-
ical data, the use of an expressive ontology to describe the hosted data has inspired and
complemented several other open data research efforts.

CHAPTER 8. ADOPTION AND IMPACT 134

Figure 8.1: Technologies for design, operation, analytics, controls and modeling of buildings
are siloed and rarely interoperable

Skewering the Silos

In 2019, DOE accepted a grant proposal for the further development of Brick as a “lin-
gua franca” unifying the silos of technologies used across different data-oriented processes
(Figure 8.1). As part of executing the grant, the Mortar platform would be extended and
further developed into a production-ready analytics platform containing reference implemen-
tations of many common analytics and controls applications. Collaborations with industry
and academic partners have resulted in a large array of datasets being donated to the re-
search team. These datasets will be cleaned, anonymized and hosted on a publicly-accessible
Mortar instance.

The grant work also involves developing connectors or translators between Brick and
other building technologies, including Modelica [150], CDL [149], Haystack [118], gbXML [60]
and BuildingSync [88]. The work in this thesis advances the grant work in an open-source
manner, and establishes a common platform for continuing that kind of research.

CHAPTER 8. ADOPTION AND IMPACT 135

Annex 81: Data-Driven Smart Buildings

Annex 81 is an International Energy Agency project bringing together international experts
in data, metadata, ontologies and buildings to establish best-practices [77]. The project is
divided into multiple sub-tasks, each of which focuses on a different component of data-driven
buildings. Two sub-tasks are directly relevant to the work in this thesis. The “Open Data
and Data Platform” subtask will review and report on standards, protocols and procedures
for capturing data about a variety of building systems and making that data available for
research and applications. This will involve grappling with questions of data governance,
security and privacy in addition to the mechanical issues of how to manage that data. The
“Applications and Services” subtask will explore the range of applications and use-cases that
are enabled through access to high-quality and ubiquitous data about buildings. At time
of writing, Brick and Mortar have already been presented to the group and are helping to
frame the scope of the project over the next 5 years.

CSIRO Data Clearing House

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia
is undertaking the development of a Smart Building Data Clearing House (referred to as the
DCH), a single location for building data at a national scale [3]. The platform will support
secure, differentiated access to thousands of buildings across many different sectors of the
economy and support data-driven applications providing audits, energy efficiency measures,
fault detection and other features. Brick is a key technology to the development of the
DCH. Like in Mortar, each building in the DCH will be described with a Brick model which
represents the structure of the building and its subsystems and the context of the available
data sources. The adoption of Brick in the DCH creates an opportunity for external and
independent development efforts to address some of the open usability issues around Brick,
such as effective query languages and graph management.

8.3 Brick Consortium

Representatives of UC Berkeley, UC San Diego, Carnegie Mellon University, Johnson Con-
trols Inc. and IBM came together to form an open industrial consortium for the continued
development, support and research of Brick [33]. The consortium will publish a Brick Spec-
ification that details how products and buildings can become compliant with Brick. This
will help evolve Brick to a de-facto standard, a stance reinforced by its deep integration
with the emerging ASHRAE 223P standard. The consortium is implemented as a non-profit
corporation with carefully designed disclosure bylaws that ensure that the Brick specification
is unencumbered with proprietary intellectual property.

A Technical Committee publishes new versions of the Brick ontology and specification.
Development of the ontology and specification are undertaken by a collection of Working
Groups which are open, volunteer-run groups of individuals focused on one of four areas:

CHAPTER 8. ADOPTION AND IMPACT 136

• Ontology Development: This working group discusses additions, extensions and
fixes to the Brick ontology definition. This includes, but is not limited to, new classes,
modeling domains, changes to the ontology structure, and documentation for Brick.

• Tooling: This working group develops, tests and documents open-source software that
facilitates use of Brick. This includes software for producing Brick models from existing
representations, as well as software, libraries and databases for querying, managing and
storing Brick models.

• Data and Metadata: This working group collects, creates and releases Brick models,
with the aim of illustrating and documenting idiomatic and correct usage of Brick across
a variety of settings. In addition, the group will gather, clean and release real-world
building data, contextualized with Brick, which will enable data-driven research.

• Applications and Analytics: This working group develops, tests and documents
open-source implementations of controls, analytics and other applications for the Brick
community to use.

8.4 Growing Adoption

Brick addresses a real problem in the industry: how to consistently describe the increasing
amount of data that is being gathered and leveraged in buildings. Because it is built on
semantic web technology, Brick integrates with the family of surrounding metadata standards
and ontologies in the building space. The ontology captures a critical mass of the concepts
that are recognized and required by the industry and has thus attracted developers from
across the world who would rather invest in an existing and extensible effort than go through
the trouble of creating their own. Brick is unique in that it defines how to use an ontology
as a complement to gathered telemetry, rather than awkwardly coercing that telemetry into
the same data model. Mortar illustrates how this hybrid data model enables a new approach
to authoring and deploying analytics software; this is being studied in Annex 81 and DCH
is adopting a similar architecture.

8.5 Availability of Open Source Code

Essentially everything described in this thesis is implemented and available as permissively-
licensed, open-source software. Most Brick-related resources can be found through the or-
ganization’s website: brickschema.org. Individual repositories relating to this thesis work
are listed below.

• The authoritative Brick implementation, described in Chapter 4: https://github.

com/BrickSchema/Brick

CHAPTER 8. ADOPTION AND IMPACT 137

• py-brickschema, a Python library for working with Brick: https://github.com/

BrickSchema/py-brickschema

• Developer-focused documentation for Brick, hosted online at https://docs.brickschema.
org

• The metadata integration work described in Chapter 6 is available at https://github.
com/gtfierro/shepherding-metadata

• Brick Builder and the Reconciliation server are a simple tools for constructing Brick
models in an automated manner: https://github.com/gtfierro/brick-builder,
https://github.com/BrickSchema/reconciliation-api

• The HodDB query processor, described in [54], is available at https://github.com/

gtfierro/hoddb

• The source code for reasonable (described in Chapter 7) is hosted at https://

github.com/gtfierro/reasonable

• The source code for the Mortar platform (described in Chapter 7) is available at https:
//github.com/gtfierro/mortar

• The library of analytics described in Chapter 5 is online at https://github.com/

SoftwareDefinedBuildings/mortar-analytics

• XBOS and DEGC, large-scale control and monitoring platforms for smart buildings and
smart grids, use Brick as part of their implementation. Their source code is available
at https://github.com/gtfierro/xboswave/ and https://github.com/gtfierro/

DEGC, respectively.

138

Chapter 9

Conclusion

I would have written a shorter
letter, but I did not have the
time.

Blaise Pascal

This chapter summarizes the results and contributions of the thesis, proposes future
directions of research that build on these results, and reflects on the thesis work.

9.1 Results and Contributions

This thesis proposes a new paradigm — self-adapting software – for programming and inter-
acting with data in cyberphysical environments. Self-adapting software removes the manual
and deployment-specific configuration and reimplementation costs that limit the widespread
deployment and adoption of data-driven practices. Key to achieving this vision is the in-
sight that both the semantic representation of the environment and an effective programming
model are necessary. Without a metadata model, cyberphysical software has no represen-
tation from which to bootstrap its understanding of an environment and thus configure its
operation. To make self-adapting software practical, this thesis examines not just the de-
sign of the metadata and programming models, but also the concerns of the systems that
support the new paradigm. This thesis offers four contributions, each addressing one of the
challenges laid out in Chapter 1.

For descriptions of heterogeneous environments (challenge #1), this thesis presents Brick,
a semantic ontology representing a graph-based data model of data sources and their context
in smart buildings. Brick is designed to abstract away the irrelevant details of complex cy-
berphysical systems, in order to present a simplified yet functional view that can be accessed
by applications. Crucial to the success of an ontology for cyberphysical systems is the ability
to capture entities — including data sources, equipment and other components that operate
on the environment — as well as the relationships between those entities. Entities have

CHAPTER 9. CONCLUSION 139

semantic definitions, meaning that their behavior and purpose are explicitly represented by
the ontology. This thesis observes that a formal definition of such a data model is necessary
for that model to be interpretable, consistent while remaining extensible to new kinds of
cyberphysical systems. These design principles are implemented in a set of novel ontology
features.

This thesis defines two different programming models for leveraging semantic descriptions
of the built environment (challenge #2). The first model is a staged execution model appro-
priate for batch processing of large amounts of data on many different environments. This
model is implemented in a Python library and is supported by the Mortar data platform.
The second model is an relational algebra-esque model that facilitates the simultaneous and
incremental exploration of both metadata and data for an environment. These two models
demonstrate two different methodologies for expressing self-adapting software over graph-
based metadata. The former uses static queries that project complex graphs to a simpler,
application-specific structure that can be programmed against. The latter uses dynamic
queries that are built up as the developer explores available metadata and data.

The challenge of managing metadata over time (challenge #3) is addressed through
the development of a protocol for gathering inferred semantic metadata from a variety of
sources and an algorithm for merging those models together into a semantically and formally
valid whole. This contribution establishes a common architecture for bringing current and
future metadata inference research together into a usable system. Importantly, this approach
decouples the method of inference from how the produced metadata is incorporated into
applications. The algorithm and protocol have been successfully implemented for a variety
of building metadata standards and representations.

Lastly, to store, manage and serve the metadata and data that enable data-driven self-
adapting applications (challenge #4), this thesis presents the design and implementation of
Mortar and a supporting system, reasonable. reasonable is a software library which pro-
vides efficient and timely reasoning for formal linked data models in a package that is easy to
integrate into existing databases and architectures. Mortar is a data platform incorporating
a relational database for timeseries data that also supports a linked data workload, facili-
tated by reasonable. A public instance of Mortar, hosted on mortardata.org, contains
data and metadata for over 100 real-world buildings that is available for research. These
systems demonstrate the existence of an “impedance mismatch” between the capabilities of
existing data systems and what is required to support self-adapting software, and identify
the necessary features that can bridge that gap.

9.2 Future Work

The work presented in this thesis lays the foundation for future work into semantic metadata
for the built environment and novel programming models and data systems that support that
metadata. Below, several concrete directions of future work are identified.

CHAPTER 9. CONCLUSION 140

Semantic Overlay for the Built Environment: Buildings, and by extension the Brick
ontology, are just one piece of a larger picture. Other sectors of the built environment such as
power generation and water treatment and management also possess complex cyberphysical
infrastructure that is increasingly monitored but remains “information-poor”. There is a
need for semantic metadata models which lower the cost of applying data to the resilient
and efficient operation of smart grids, distributed energy resources, water treatment plants
and other critical systems. The ontology design patterns developed in this thesis offer a
concrete basis for developing and maintaining these models. Ultimately, the existence of
structured and formal digital representations of these systems could be combined into a
unified semantic “overlay” for the built environment. This would allow data from different
sectors to complement and inform the maintenance and operation of other sectors, promoting
a more resilient and co-optimized existence.

Robust Programming Models for Linked Data: The programming models explored
in this thesis are merely a starting point for a more detailed look at how software can
become self-customizing. The semantics for how software reacts to the changing content
of the metadata model must be established. There is an opportunity to pull techniques
from related domains such as software-defined networking which can ensure that software
configuration remains correct and valid. Moreover, it is not a foregone conclusion that the
self-adapting programming models remain so closely tied to the expression of the semantic
metadata. Future research is required to determine intuitive and effective programming
models that place less of a burden on the programmer to be intimately familiar with the
formal and linked nature of the metadata underlying the software.

Handling Semantic Evolution: The question of how to handle evolution of data se-
mantics, outlined at the end of Chapter 6, revealed itself to be a much more complex task
than at first glance. Although techniques from data integration and schema evolution lit-
erature offer promising approaches to how to handle this kind of evolution, these solutions
do not take into account the fact that different consumers of data may care about different
aspects of the evolved data. This means that there is no application-agnostic “correct an-
swer” for how to properly rewrite queries to execute on older or newer semantics. Instead,
the correct transformation is dependent upon the semantics of the application, which is not
currently captured in any representation. Future work will need to determine how to capture
the semantics of applications so that the proper rewriting of their queries can be performed.

Distributed Management of Semantic Metadata: Current research on linked data
databases, including this thesis, primarily focuses on how to manage and query larger and
larger graphs across increasing numbers of machines. However, if linked data is to enable
self-adapting data-driven software across many kinds of cyberphysical systems, then linked
databases must scale down as well as scale up. It is unrealistic to rely on large, cloud-based
storage clusters for the storage and performance capabilities required. Remote, adminis-
tratively centralized databases that require an internet connection to access are anathema
to the resilient and independently operated cyberphysical systems that compose the future
built environment. Future research should investigate the design of linked data databases
that can provide necessary features and decent performance on single-node deployments.

CHAPTER 9. CONCLUSION 141

Further, it is important to investigate how modern database technologies and techniques
may be applied to linked data management in order to improve performance and adoption.

9.3 Reflections and Final Remarks

This thesis comes almost 10 years after the idea of portable applications for buildings was first
published [84]. In that time, the landscape has changed significantly. “Big data” has evolved
from being the charge of a few large tech companies to being ubiquitous and characteristic
of the larger information technology industry. Data science technologies have matured and
been reinvented several times over. Software defined networking has demonstrated how a
rethinking of information organization can dramatically simplify the task of managing large-
scale systems. Many of the pieces for extracting value out of cyberphysical data exist in other
domains, and yet the application of these ideas and technologies to critical cyberphysical
infrastructure remains underdeveloped. This thesis presents a vision of how this gap can be
bridged.

It has been clear since the beginning of this journey that graph-based metadata is a
crucial component of the solution. The effective expression and structure of that graph
are less obvious. Ad-hoc graphs with no regulation to their definition do not sufficiently
generalize and are not necessarily interpretable by those who did not develop the graph. The
semantic web and its technologies offer a cure for inconsistency; however, these communities
are more traditionally more concerned with the philosophical consequences of the models
they develop than the practical implications and barriers to usage. A significant number of
the ontologies and other formal data models developed for IoT and the built environment
experience little to no adoption. Semantic web technology is often rejected on the grounds
of being overly “academic” and impractically complex for simple tasks.

Why then has Brick experienced adoption? Brick has succeeded because it models a
novel abstraction of the built environment that is closer to the needs of the application than
it is to traditional ontology modeling techniques. This use-case driven design philosophy
is crucial to generalizing Brick-like concepts to new models for other sectors of the built
environment. Complex systems are simpler from an application’s perspective. By clearly
defining and modeling the application’s perspective, complex systems can be captured with
a simpler and more usable ontology.

Standardized metadata representations of cyberphysical environments enable a funda-
mentally richer set of applications that are easier to write, deploy and measure. Self-adapting
software is one view of how programming and data systems can evolve to meet the demands
of this new domain. It is my hope that this thesis inspires and informs future work into how
data can be better applied to sustainable practices.

142

Bibliography

[1] Industry Foundation Classes (IFC) for data sharing in the construction and facil-
ity management industries. Standard. Geneva, CH: International Organization for
Standardization, Nov. 2018.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. Vol. 8.
Addison-Wesley Reading, 1995.

[3] Australian Renewable Energy Agency. Smart Building Data Clearing House. 2021.
url: http://web.archive.org/web/20210313091107/http://www.ihub.org.au/
ihub-initiatives/smart-building-data-clearing-house/.

[4] Daniel Aguado et al. “Digital Water: The value of meta-data for water resource re-
covery facilities”. In: IWA Digital Water Programme (2021).

[5] Janelcy Alferes et al. “Advanced monitoring of water systems using in situ measure-
ment stations: data validation and fault detection”. In: Water science and technology
68.5 (2013), pp. 1022–1030.

[6] American Society of Heating, Refrigerating and Air-Conditioning Engineers. AP
Working Group. http://web.archive.org/web/20120806111158/http://www.
bacnet.org/WG/AP/index.html. 2012.

[7] American Society of Heating, Refrigerating and Air-Conditioning Engineers. AP
Working Group. http://web.archive.org/web/20190718105003/http://www.
bacnet.org/WG/AP/index.html. 2019.

[8] American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE’s
BACnet Committee, Project Haystack and Brick Schema Collaborating to Provide
Unified Data Semantic Modeling Solution. http://web.archive.org/web/20181223045430/
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-

project-haystack-and-brick-schema-collaborating-to-provide-unified-

data-semantic-modeling-solution. 2018.

[9] American Society of Heating, Refrigerating and Air-Conditioning Engineers. BACnet
Application Interface Development: Call for Participants! http://web.archive.

org/web/20210403220822/http://www.bacnet.org/Oldnews/Oldnews-12.htm.
2012.

BIBLIOGRAPHY 143

[10] Robert Arp and Barry Smith. “Function, role, and disposition in basic formal ontol-
ogy”. In: Nature Precedings (2008), pp. 1–1.

[11] Inc Autodesk. Revit: Multidisciplinary BIM software for higher-quality, coordinated
designs. 2021. url: https://www.autodesk.com/products/revit/overview (vis-
ited on 05/11/2021).

[12] Salman Azhar. “Building information modeling (BIM): Trends, benefits, risks, and
challenges for the AEC industry”. In: Leadership and management in engineering
11.3 (2011), pp. 241–252.

[13] Michael Bächle and Paul Kirchberg. “Ruby on rails”. In: IEEE software 24.6 (2007),
pp. 105–108.

[14] BACnet: A Data Communciation Protocol for Building Automation and Control Net-
works. ASHRAE Standard 135-2016. Atlanta, Ga: ASHRAE, 2016.

[15] Bharathan Balaji et al. “Brick : Metadata schema for portable smart building ap-
plications”. In: Applied Energy 226 (2018), pp. 1273–1292. issn: 0306-2619. doi:
https://doi.org/10.1016/j.apenergy.2018.02.091. url: http://www.

sciencedirect.com/science/article/pii/S0306261918302162.

[16] Bharathan Balaji et al. “Brick: Towards a unified metadata schema for buildings”. In:
Proceedings of the ACM International Conference on Embedded Systems for Energy-
Efficient Built Environments (BuildSys). ACM. 2016.

[17] Dave Beckett and Brian McBride. “RDF/XML syntax specification (revised)”. In:
W3C recommendation 10.2.3 (2004).

[18] David Beckett et al. “RDF 1.1 Turtle”. In: World Wide Web Consortium (2014),
pp. 18–31.

[19] Harry Bergmann et al. “Semantic Interoperability to Enable Smart, Grid-Interactive
Efficient Buildings”. In: ACEEE (2020).

[20] Keith Berkoben, Charbel Kaed, and Trevor Sodorff. “A Digital Buildings Ontology for
Google’s Real Estate”. In: International Semantic Web Conference (ISWC) (2020).

[21] Philip A Bernstein and Sergey Melnik. “Model management 2.0: manipulating richer
mappings”. In: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data. 2007, pp. 1–12.

[22] Philip A Bernstein, Sergey Melnik, and John E Churchill. “Incremental schema match-
ing”. In: VLDB. Vol. 6. Citeseer. 2006, pp. 1167–1170.

[23] Philip A Bernstein et al. “Implementing mapping composition”. In: The VLDB Jour-
nal 17.2 (2008), pp. 333–353.

[24] Anant Bhardwaj et al. “Datahub: Collaborative data science & dataset version man-
agement at scale”. In: arXiv preprint arXiv:1409.0798 (2014).

BIBLIOGRAPHY 144

[25] Arka Bhattacharya. “Enabling Scalable Smart-Building Analytics”. PhD thesis. EECS
Department, University of California, Berkeley, 2016. url: http://www2.eecs.

berkeley.edu/Pubs/TechRpts/2016/EECS-2016-201.html.

[26] Arka Bhattacharya, Joern Ploennigs, and David Culler. “Short Paper: Analyzing
Metadata Schemas for Buildings: The Good, the Bad, and the Ugly”. In: Proceedings
of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient
Built Environments. ACM. 2015, pp. 33–34.

[27] Arka A. Bhattacharya et al. “Automated Metadata Construction to Support Portable
Building Applications”. In: Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments - BuildSys ’15 (2015),
pp. 3–12. doi: 10.1145/2821650.2821667. url: http://dl.acm.org/citation.
cfm?doid=2821650.2821667.

[28] George EP Box. “Robustness in the strategy of scientific model building”. In: Robust-
ness in statistics. Elsevier, 1979, pp. 201–236.

[29] Michael R Brambley et al. Advanced sensors and controls for building applications:
Market assessment and potential R&D pathways. Tech. rep. Pacific Northwest Na-
tional Lab.(PNNL), Richland, WA (United States), 2005.

[30] Diego Calvanese et al. “The MASTRO system for ontology-based data access”. In:
Semantic Web 2.1 (2011), pp. 43–53.

[31] Stuart Cheshire and Marc Krochmal. Multicast DNS. RFC 6762. 2013. doi: 10.

17487/RFC6762. url: https://rfc-editor.org/rfc/rfc6762.txt.

[32] Anthony Cleve and Jean-Luc Hainaut. “Co-transformations in database applications
evolution”. In: International Summer School on Generative and Transformational
Techniques in Software Engineering. Springer. 2005, pp. 409–421.

[33] Brick Consortium. The Brick Consortium. 2021. url: http://web.archive.org/
web/20210408005045if_/https://brickschema.org/consortium/.

[34] Llúıs Corominas et al. “Performance evaluation of fault detection methods for wastew-
ater treatment processes”. In: Biotechnology and bioengineering 108.2 (2011), pp. 333–
344.

[35] Carlo A Curino, Hyun J Moon, and Carlo Zaniolo. “Graceful database schema evo-
lution: the prism workbench”. In: Proceedings of the VLDB Endowment 1.1 (2008),
pp. 761–772.

[36] Steven E Czerwinski et al. “An architecture for a secure service discovery service”.
In: Proceedings of the 5th annual ACM/IEEE international conference on Mobile
computing and networking. 1999, pp. 24–35.

[37] Laura Daniele, Frank den Hartog, and Jasper Roes. “Created in close interaction with
the industry: the smart appliances reference (SAREF) ontology”. In: International
Workshop Formal Ontologies Meet Industries. Springer. 2015, pp. 100–112.

BIBLIOGRAPHY 145

[38] Anish Das Sarma, Xin Dong, and Alon Halevy. “Bootstrapping pay-as-you-go data
integration systems”. In: Proceedings of the 2008 ACM SIGMOD international con-
ference on Management of data. 2008, pp. 861–874.

[39] Stephen Dawson-Haggerty et al. “{BOSS}: Building operating system services”. In:
10th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
13). 2013, pp. 443–457.

[40] Stephen Dawson-Haggerty et al. “sMAP: a simple measurement and actuation profile
for physical information”. In: Proceedings of the 8th ACM conference on embedded
networked sensor systems. 2010, pp. 197–210.

[41] Suhrid Deshmukh, Leon Glicksman, and Leslie Norford. “Case study results: fault
detection in air-handling units in buildings”. In: Advances in Building Energy Re-
search 0.0 (2018), pp. 1–17. doi: 10.1080/17512549.2018.1545143. eprint: https:
//doi.org/10.1080/17512549.2018.1545143. url: https://doi.org/10.1080/
17512549.2018.1545143.

[42] Django Community. Django Python Package. https://www.djangoproject.com/.
Accessed: February 12, 2020. 2020.

[43] Inc. DoltHub. DoltHub. 2021. url: http://web.archive.org/web/20210311022618/
https://dolthub.com/.

[44] Bing Dong et al. “A comparative study of the IFC and gbXML informational in-
frastructures for data exchange in computational design support environments”. In:
IBPSA 2007 - International Building Performance Simulation Association 2007 3
(Jan. 2007), pp. 1530–1537.

[45] Xin Dong, Alon Halevy, and Jayant Madhavan. “Reference reconciliation in com-
plex information spaces”. In: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data. 2005, pp. 85–96.

[46] Xin Luna Dong, Alon Halevy, and Cong Yu. “Data integration with uncertainty”. In:
The VLDB Journal 18.2 (2009), pp. 469–500.

[47] Martin Duerst and Michel Suignard. Internationalized Resource Identifiers (IRIs).
RFC 3987. Jan. 2005. doi: 10.17487/RFC3987. url: https://rfc-editor.org/
rfc/rfc3987.txt.

[48] Ronald Fagin et al. “Clio: Schema mapping creation and data exchange”. In: Con-
ceptual modeling: foundations and applications. Springer, 2009, pp. 198–236.

[49] Karim Farghaly et al. “Taxonomy for BIM and asset management semantic interop-
erability”. In: Journal of Management in Engineering 34.4 (2018), p. 04018012.

[50] Gabe Fierro and David E Culler. “Design and analysis of a query processor for brick”.
In: ACM Transactions on Sensor Networks (TOSN) 14.3-4 (2018), pp. 1–25.

BIBLIOGRAPHY 146

[51] Gabe Fierro et al. “Beyond a house of sticks: Formalizing metadata tags with brick”.
In: Proceedings of the 6th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation. 2019, pp. 125–134.

[52] Gabe Fierro et al. “Mortar: an open testbed for portable building analytics”. In:
Proceedings of the 5th Conference on Systems for Built Environments. ACM. 2018,
pp. 172–181.

[53] Gabe Fierro et al. “Mortar: an open testbed for portable building analytics”. In: ACM
Transactions on Sensor Networks (TOSN) 16.1 (2019), pp. 1–31.

[54] Gabriel Fierro. “Design of an Effective Ontology and Query Processor Enabling
Portable Building Applications”. MA thesis. EECS Department, University of Cali-
fornia, Berkeley, 2019. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2019/EECS-2019-106.html.

[55] Inc Franz. AllegroGraph: Semantic Graph Database. 2017. url: https://allegrograph.
com/allegrograph/.

[56] Hector Garcia-Molina et al. “The TSIMMIS approach to mediation: Data models and
languages”. In: Journal of intelligent information systems 8.2 (1997), pp. 117–132.

[57] NIST GCR. Cost analysis of inadequate interoperability in the US capital facilities
industry. Tech. rep. National Institute of Standards and Technology (NIST), 2004,
pp. 223–253.

[58] Birte Glimm et al. “HermiT: an OWL 2 reasoner”. In: Journal of Automated Reason-
ing 53.3 (2014), pp. 245–269.

[59] Google. Google Digital Buildings. 2020. url: http : / / web . archive . org / web /

20200919075346/https://github.com/google/digitalbuildings.

[60] Inc Green Building XML Schema. Green Building XML. 2021. url: https://www.
gbxml.org (visited on 01/18/2021).

[61] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. “Macro-programming
wireless sensor networks using kairos”. In: International Conference on Distributed
Computing in Sensor Systems. Springer. 2005, pp. 126–140.

[62] Armin Haller et al. “The modular SSN ontology: A joint W3C and OGC standard
specifying the semantics of sensors, observations, sampling, and actuation”. In: Se-
mantic Web 10.1 (2019), pp. 9–32.

[63] Karl Hammar et al. “The realestatecore ontology”. In: International Semantic Web
Conference. Springer. 2019, pp. 130–145.

[64] Dave Hardin et al. Buildings interoperability landscape. Tech. rep. Pacific Northwest
National Lab.(PNNL), Richland, WA (United States), 2015.

[65] Paul Harmon. “Object-oriented AI: a commercial perspective”. In: Communications
of the ACM 38.11 (1995), pp. 80–86.

BIBLIOGRAPHY 147

[66] Steve Harris and Andy Seaborne. “SPARQL 1.1 Query Language”. In: W3C recom-
mendation (2013).

[67] Andreas Harth and Stefan Decker. “Optimized index structures for querying rdf from
the web”. In: Web Congress, 2005. LA-WEB 2005. Third Latin American. IEEE.
2005, 10–pp.

[68] Bob Hayes. How do Data Professionals Spend their Time on Data Science Projects?
2021. url: http://web.archive.org/web/20210424231945/https://businessoverbroadway.
com/2019/02/19/how-do-data-professionals-spend-their-time-on-data-

science-projects/ (visited on 02/19/2019).

[69] Fang He et al. “EnergonQL: A Building Independent Acquisitional Query Language
for Portable Building Analytics”. In: Proceedings of the 7th ACM International Con-
ference on Systems for Energy-Efficient Buildings, Cities, and Transportation. 2020,
pp. 266–269.

[70] Joseph M Hellerstein et al. “Ground: A Data Context Service.” In: CIDR. Citeseer.
2017.

[71] Cory Andrew Henson et al. “An ontological representation of time series observations
on the semantic sensor web”. In: (2009).

[72] Heinrich Herre. “General Formal Ontology (GFO): A foundational ontology for con-
ceptual modelling”. In: Theory and applications of ontology: computer applications.
Springer, 2010, pp. 297–345.

[73] High-Performance Sequences of Operations for HVAC Systems. ASHRAE Guideline
36. Atlanta, Ga: ASHRAE, 2018.

[74] Pascal Hitzler et al. “OWL 2 web ontology language primer”. In: W3C recommenda-
tion 27.1 (2009), p. 123.

[75] Ralph Hodgson et al. QUDT-quantities, units, dimensions and data types ontologies.
url: http://web.archive.org/web/20201023201424/http://www.qudt.org/
(visited on 03/01/2021).

[76] William H Inmon. Building the data warehouse. John wiley & sons, 2005.

[77] International Energy Agency. IEA EBC - Annex 81 - Data-Driven Smart Buildings.
2021.

[78] Huang Jiayi, Jiang Chuanwen, and Xu Rong. “A review on distributed energy re-
sources and MicroGrid”. In: Renewable and Sustainable Energy Reviews 12.9 (2008),
pp. 2472–2483.

[79] Srinivas Katipamula et al. “VOLTTRON: An open-source software platform of the
future”. In: IEEE Electrification Magazine 4.4 (2016), pp. 15–22.

[80] SHACL Advanced Features. Tech. rep. W3C, June 2017. url: https://www.w3.org/
TR/shacl-af/.

BIBLIOGRAPHY 148

[81] Shapes constraint language (SHACL). Tech. rep. W3C, July 2017. url: https://
www.w3.org/TR/shacl/.

[82] Jason Koh et al. “Scrabble: transferrable semi-automated semantic metadata normal-
ization using intermediate representation”. In: Proceedings of the 5th Conference on
Systems for Built Environments. ACM. 2018, pp. 11–20.

[83] Matija König, Jaka Dirnbek, and Vlado Stankovski. “Architecture of an open knowl-
edge base for sustainable buildings based on Linked Data technologies”. In: Automa-
tion in Construction 35 (2013), pp. 542–550. issn: 0926-5805. doi: https://doi.
org/10.1016/j.autcon.2013.07.002. url: http://www.sciencedirect.com/
science/article/pii/S0926580513001118.

[84] Andrew Krioukov et al. “Building application stack (BAS)”. In: Proceedings of the
Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Build-
ings. 2012, pp. 72–79.

[85] Henrik Lange, Aslak Johansen, and Mikkel Baun Kjærgaard. “Evaluation of the op-
portunities and limitations of using IFC models as source of building metadata”. In:
Proceedings of the 5th Conference on Systems for Built Environments. 2018, pp. 21–
24.

[86] Inc. Leidos. Trends in Commercial Whole-Building Sensors and Controls. Tech. rep.
U.S. Energy Information Administration, 2020.

[87] Maurizio Lenzerini. “Ontology-based data management”. In: Proceedings of the 20th
ACM international conference on Information and knowledge management. 2011,
pp. 5–6.

[88] Nicholas Long et al. BuildingSync®. Tech. rep. National Renewable Energy Lab.(NREL),
Golden, CO (United States), 2018.

[89] Samuel R Madden et al. “TinyDB: An acquisitional query processing system for
sensor networks”. In: ACM Transactions on database systems (TODS) 30.1 (2005),
pp. 122–173.

[90] Kamesh Madduri and Kesheng Wu. “Massive-scale RDF processing using compressed
bitmap indexes”. In: International Conference on Scientific and Statistical Database
Management. Springer. 2011, pp. 470–479.

[91] Adam Mathes. Folksonomies - Cooperative Classification and Communication Through
Shared Metadata. 2021. url: http://web.archive.org/web/20210128003104/
https : / / adammathes . com / academic / computer - mediated - communication /

folksonomies.html (visited on 01/27/2021).

[92] Johanna L Mathieu et al. “Quantifying changes in building electricity use, with ap-
plication to demand response”. In: IEEE Transactions on Smart Grid 2.3 (2011),
pp. 507–518.

BIBLIOGRAPHY 149

[93] Frank McSherry. A relatively simple Datalog engine in Rust. 2021. url: http://web.
archive.org/web/20201109012007/https://github.com/frankmcsherry/blog/

blob/master/posts/2018-05-19.md (visited on 05/19/2018).

[94] Hui Miao, Amit Chavan, and Amol Deshpande. “Provdb: Lifecycle management of
collaborative analysis workflows”. In: Proceedings of the 2nd Workshop on Human-
in-the-Loop Data Analytics. 2017, pp. 1–6.

[95] Renée J Miller et al. “The Clio project: managing heterogeneity”. In: ACM Sigmod
Record 30.1 (2001), pp. 78–83.

[96] Modbus Organization. Modbus. url: http://web.archive.org/web/20201226111707/
https://modbus.org/ (visited on 12/26/2020).

[97] Modelica Association. Modelica Language. 2021. url: http://web.archive.org/
web/20201030043752/https://www.modelica.org/modelicalanguage (visited on
01/19/2021).

[98] Modelica to JSON parser. 2021. url: http://web.archive.org/web/20210119222351/
https://github.com/lbl-srg/modelica-json (visited on 01/19/2021).

[99] Fiona Moore, David Churcher, and Sarah Davidson. BIM Interoperability Expert
Group Report. Report. Center for Digital Built Britain, Mar. 2020.

[100] Boris Motik et al. “OWL 2 web ontology language profiles”. In: W3C recommendation
27 (2009), p. 61.

[101] Syeda Noor Zehra Naqvi, Sofia Yfantidou, and Esteban Zimányi. “Time series databases
and influxdb”. In: Studienarbeit, Université Libre de Bruxelles (2017), p. 12.

[102] National Science Foundation. Survey of Earned Doctorates. https://www.nsf.gov/
statistics/srvydoctorates. 2020.

[103] Yavor Nenov et al. “RDFox: A highly-scalable RDF store”. In: International Semantic
Web Conference. Springer. 2015, pp. 3–20.

[104] Holger Neuhaus and Michael Compton. “The semantic sensor network ontology”. In:
AGILE workshop on challenges in geospatial data harmonisation, Hannover, Ger-
many. 2009, pp. 1–33.

[105] Thomas Neumann and Gerhard Weikum. “RDF-3X: a RISC-style engine for RDF”.
In: Proceedings of the VLDB Endowment 1.1 (2008), pp. 647–659.

[106] Ryan Newton, Greg Morrisett, and Matt Welsh. “The regiment macroprogramming
system”. In: 2007 6th International Symposium on Information Processing in Sensor
Networks. IEEE. 2007, pp. 489–498.

[107] Natalya F Noy and Michel Klein. “Ontology evolution: Not the same as schema
evolution”. In: Knowledge and information systems 6.4 (2004), pp. 428–440.

[108] Natalya F Noy and Mark A Musen. “The PROMPT suite: interactive tools for on-
tology merging and mapping”. In: International journal of human-computer studies
59.6 (2003), pp. 983–1024.

BIBLIOGRAPHY 150

[109] Natalya F Noy et al. “A framework for ontology evolution in collaborative environ-
ments”. In: International semantic web conference. Springer. 2006, pp. 544–558.

[110] Natalya Fridman Noy et al. “Protégé-2000: an open-source ontology-development
and knowledge-acquisition environment.” In: AMIA... Annual Symposium proceed-
ings. AMIA Symposium. Vol. 2003. American Medical Informatics Association. 2003,
pp. 953–953.

[111] Frauke Oldewurtel et al. “Use of model predictive control and weather forecasts for
energy efficient building climate control”. In: Energy and Buildings 45 (2012), pp. 15–
27.

[112] OSTI. The National Opportunity for Interoperability and its Benefits for a Reliable,
Robust, and Future Grid Realized Through Buildings. Tech. rep. Feb. 2016. doi: 10.
2172/1420233. url: https://doi.org/10.2172/1420233.

[113] Matthijs van Otterdijk, Gavin Mendel-Gleason, and Kevin Feeney. “Succinct Data
Structures and Delta Encoding for Modern Databases”. In: (2020).

[114] Viorica Pătrăucean et al. “State of research in automatic as-built modelling”. In: Ad-
vanced Engineering Informatics 29.2 (2015). Infrastructure Computer Vision, pp. 162–
171. issn: 1474-0346. doi: https://doi.org/10.1016/j.aei.2015.01.001. url:
http://www.sciencedirect.com/science/article/pii/S1474034615000026.

[115] Pieter Pauwels and Walter Terkaj. “EXPRESS to OWL for construction industry:
Towards a recommendable and usable ifcOWL ontology”. In: Automation in Con-
struction 63 (2016), pp. 100–133.

[116] Marıa Poveda-Villalón and Raúl Garćıa-Castro. “Extending the SAREF ontology for
building devices and topology”. In: Proceedings of the 6th Linked Data in Architecture
and Construction Workshop (LDAC 2018), Vol. CEUR-WS. Vol. 2159. 2018, pp. 16–
23.

[117] Marco Pritoni et al. “Metadata Schemas and Ontologies for Building Energy Appli-
cations: A Critical Review and Use Case Analysis”. In: Energies 14.7 (Apr. 2021),
p. 2024. issn: 1996-1073. doi: 10.3390/en14072024. url: http://dx.doi.org/10.
3390/en14072024.

[118] Project Haystack. 2021. url: http://web.archive.org/web/20210111211811/
https://project-haystack.org/ (visited on 01/11/2021).

[119] Project Haystack. Project Haystack Documentation: Defs. 2019. url: %5Curl%7Bhttp:
//web.archive.org/web/20190629183024/https://project-haystack.dev/doc/

docHaystack/Defs%7D (visited on 06/29/2019).

[120] Project Haystack. Project Haystack Documentation: VFDs. 2019. url: %5Curl%7Bhttp:
//web.archive.org/web/20190629182856/https://project-haystack.org/doc/

VFDs%7D (visited on 06/29/2019).

BIBLIOGRAPHY 151

[121] Project Haystack v4. 2021. url: http://web.archive.org/web/20210119225945/
https://project-haystack.dev/ (visited on 01/19/2021).

[122] Project Haystack: Air Tag Definition. 2021. url: https : / / web . archive . org /

web / 20210207212635 / https : / / project - haystack . org / tag / air (visited on
02/07/2021).

[123] Proposal: Exploding points types as new first class defs. 2021. url: http://web.
archive.org/web/20210408051839/https://project- haystack.org/forum/

topic/889 (visited on 03/03/2021).

[124] Paul Raftery et al. “Evaluation of a cost-responsive supply air temperature reset
strategy in an office building”. In: Energy and Buildings 158 (2018), pp. 356–370.
issn: 0378-7788. doi: https://doi.org/10.1016/j.enbuild.2017.10.017. url:
http://www.sciencedirect.com/science/article/pii/S0378778817310939.

[125] Thillaigovindan Ramesh, Ravi Prakash, and KK Shukla. “Life cycle energy analysis
of buildings: An overview”. In: Energy and buildings 42.10 (2010), pp. 1592–1600.

[126] Mads Holten Rasmussen et al. “Proposing a central AEC ontology that allows for
domain specific extensions”. In: Joint Conference on Computing in Construction.
Vol. 1. 2017, pp. 237–244.

[127] Jeffrey Schein et al. “A rule-based fault detection method for air handling units”. In:
Energy and Buildings 38.12 (2006), pp. 1485–1492.

[128] Jeffrey Schein et al. “A rule-based fault detection method for air handling units”.
In: Energy and Buildings 38.12 (2006), pp. 1485–1492. issn: 0378-7788. doi: https:
//doi.org/10.1016/j.enbuild.2006.04.014. url: http://www.sciencedirect.
com/science/article/pii/S0378778806001034.

[129] Georg Ferdinand Schneider. “Towards aligning domain ontologies with the building
topology ontology”. In: Proceedings of the 5th Linked Data in Architecture and Con-
struction Workshop (LDAC 2017). 2017.

[130] P Griffiths Selinger et al. “Access path selection in a relational database management
system”. In: Readings in Artificial Intelligence and Databases. Elsevier, 1989, pp. 511–
522.

[131] Zixiao Shi et al. “Evaluation of clustering and time series features for point type
inference in smart building retrofit”. In: Proceedings of the 6th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation.
2019, pp. 111–120.

[132] Pierluigi Siano. “Demand response and smart grids—A survey”. In: Renewable and
sustainable energy reviews 30 (2014), pp. 461–478.

[133] John F Sowa. “Ontology, metadata, and semiotics”. In: International conference on
conceptual structures. Springer. 2000, pp. 55–81.

[134] Manu Sporny et al. “JSON-LD 1.0”. In: W3C recommendation 16 (2014), p. 41.

BIBLIOGRAPHY 152

[135] J-Ph Steyer, A Genovesi, and Jérôme Harmand. “Advanced monitoring and control
of anaerobic wastewater treatment plants: fault detection and isolation”. In: Water
science and technology 43.7 (2001), pp. 183–190.

[136] Ljiljana Stojanovic et al. “User-driven ontology evolution management”. In: Interna-
tional Conference on Knowledge Engineering and Knowledge Management. Springer.
2002, pp. 285–300.

[137] David Sturzenegger et al. “Semi-automated modular modeling of buildings for model
predictive control”. In: ACM. 2012, pp. 99–106.

[138] SYSTAP, LLC. Bigdata Database Architecture Whitepaper. https://www.blazegraph.
com/whitepapers/bigdata_architecture_whitepaper.pdf. 2017.

[139] Shu Tang et al. “BIM assisted Building Automation System information exchange
using BACnet and IFC”. In: Automation in Construction 110 (2020), p. 103049.

[140] The Apache Software Foundation. “A free and open source Java framework for build-
ing Semantic Web and Linked Data applications”. In: https: // jena. apache. org/
(2017).

[141] Jacopo Urbani, Ceriel Jacobs, and Markus Krötzsch. “Column-oriented datalog ma-
terialization for large knowledge graphs”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 30. 1. 2016.

[142] Jacopo Urbani et al. “OWL reasoning with WebPIE: calculating the closure of 100
billion triples”. In: Extended Semantic Web Conference. Springer. 2010, pp. 213–227.

[143] Renaud Vanlande, Christophe Nicolle, and Christophe Cruz. “IFC and building life-
cycle management”. In: Automation in construction 18.1 (2008), pp. 70–78.

[144] Panos Vassiliadis. “A survey of extract–transform–load technology”. In: International
Journal of Data Warehousing and Mining (IJDWM) 5.3 (2009), pp. 1–27.

[145] Virtual Buildings Information System. Virtual Buildings Information System. 2021.
url: http://web.archive.org/web/20210407004118/https://vbis.com.au/
(visited on 04/06/2021).

[146] Chen Wang et al. “Apache IoTDB: time-series database for internet of things”. In:
Proceedings of the VLDB Endowment 13.12 (2020), pp. 2901–2904.

[147] Thomas Weng, Anthony Nwokafor, and Yuvraj Agarwal. “Buildingdepot 2.0: An
integrated management system for building analysis and control”. In: Proceedings of
the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings. 2013,
pp. 1–8.

[148] Samuel R West et al. “Automated fault detection and diagnosis of HVAC subsystems
using statistical machine learning”. In: 12th International Conference of the Interna-
tional Building Performance Simulation Association. 2011.

BIBLIOGRAPHY 153

[149] Michael Wetter, Milica Grahovac, and Jianjun Hu. “Control description language”.
In: Proceedings of The American Modelica Conference 2018, October 9-10, Somberg
Conference Center, Cambridge MA, USA. 154. Linköping University Electronic Press.
2019, pp. 17–26.

[150] Michael Wetter et al. “Modelica Buildings library”. In: Journal of Building Perfor-
mance Simulation 7.4 (2014), pp. 253–270. doi: 10.1080/19401493.2013.765506.
eprint: https://doi.org/10.1080/19401493.2013.765506. url: https://doi.
org/10.1080/19401493.2013.765506.

[151] Michael Wetter et al. “Openbuildingcontrol: Modeling feedback control as a step to-
wards formal design, specification, deployment and verification of building control
sequences.” In: Proceedings of Building Performance Modeling Conference and Sim-
Build co-organized by ASHRAE and IBPSA-USA, , Chicago IL, USA. 2018.

[152] Gio Wiederhold and Michael Genesereth. “The conceptual basis for mediation ser-
vices”. In: IEEE Expert 12.5 (1997), pp. 38–47.

[153] William E. Winkler. The State of Record Linkage and Current Research Problems.
Tech. rep. Statistical Research Division, U.S. Census Bureau, 1999.

[154] World Wide Web Consortium. OWL 2 Web Ontology Language. 2021. url: http://
web.archive.org/web/20210301164820/http://www.w3.org/TR/owl-overview/

(visited on 04/12/2021).

[155] World Wide Web Consortium. Web of Things. 2021. url: http://web.archive.
org/web/20210120092058/http://www.w3.org/WoT/ (visited on 01/20/2021).

[156] Guohui Xiao et al. “Ontology-based data access: A survey”. In: International Joint
Conferences on Artificial Intelligence. 2018.

[157] Liqi Xu et al. “Orpheusdb: a lightweight approach to relational dataset versioning”.
In: Proceedings of the 2017 ACM International Conference on Management of Data.
2017, pp. 1655–1658.

[158] Q.Z. Yang and Y. Zhang. “Semantic interoperability in building design: Methods
and tools”. In: Computer-Aided Design 38.10 (2006), pp. 1099–1112. issn: 0010-4485.
doi: https:// doi.org/10. 1016 /j.cad.2006 .06.003. url: http:// www.

sciencedirect.com/science/article/pii/S0010448506001011.

[159] The City Of New York. New York Local Law 87. 2020. url: http://web.archive.
org/web/20200531233953/https://www1.nyc.gov/html/gbee/html/plan/ll87.

shtml.

[160] Deze Zeng, Song Guo, and Zixue Cheng. “The web of things: A survey”. In: JCM 6.6
(2011), pp. 424–438.

[161] Zigbee Alliance. Connected Home Over IP. url: http://web.archive.org/web/
20210115065718/https://www.connectedhomeip.com/ (visited on 01/14/2021).

154

Appendix

1 @prefix brick: <https://brickschema.org/schema/1.1/Brick#> .
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
5 @prefix tag: <https://brickschema.org/schema/1.1/BrickTag#> .
6 @prefix unit: <http://qudt.org/vocab/unit/> .
7 @prefix ex: <ex:> .
8
9 # Spatial elements

10 ex:Site a brick:Site ;
11 brick:hasPart ex:Building ;
12 .
13

14 ex:Building a brick:Building ;
15 brick:hasPart ex:Floor ;
16 .
17
18 ex:Floor a brick:Floor ;
19 brick:hasPart ex:HVAC_Zone_1, ex:HVAC_Zone_2, ex:Open_Office,
20 ex:Bathroom, ex:Private_Office, ex:Kitchenette, ex:Corridor,
21 ex:Lighting_Zone_OO1, ex:Lighting_Zone_OO2, ex:Lighting_Zone_Bathroom,
22 ex:Lighting_Zone_PO, ex:Lighting_Zone_Kitchenette, ex:Lighting_Zone_Corridor

;↪→
23 .
24
25 ex:Open_Office a brick:Room .
26 ex:Bathroom a brick:Room .
27 ex:Private_Office a brick:Room .
28 ex:Kitchenette a brick:Room .
29 ex:Corridor a brick:Space .
30
31 ex:HVAC_Zone_1 a brick:HVAC_Zone ;
32 brick:hasPart ex:Open_Office, ex:Bathroom, ex:Corridor, ex:Private_Office ;
33 .
34

35 ex:HVAC_Zone_2 a brick:HVAC_Zone ;
36 brick:hasPart ex:Kitchenette, ex:Corridor ;
37 .
38
39

40 # Lighting elements
41 ex:OO_Lighting_1_Sensor a brick:Illuminance_Sensor .
42 ex:OO_Lighting_2_Sensor a brick:Illuminance_Sensor .
43 ex:Bathroom_Lighting_Sensor a brick:Illuminance_Sensor .
44 ex:Private_Office_Lighting_Sensor a brick:Illuminance_Sensor .
45 ex:Kitchenette_Lighting_Sensor a brick:Illuminance_Sensor .

BIBLIOGRAPHY 155

46 ex:Corridor_Lighting_Sensor a brick:Illuminance_Sensor .
47

48 ex:OO_Lighting_1 a brick:Luminaire ;
49 brick:hasPoint ex:OO_Lighting_1_Sensor ;
50 .
51 ex:OO_Lighting_2 a brick:Luminaire ;
52 brick:hasPoint ex:OO_Lighting_2_Sensor ;
53 .
54 ex:Bathroom_Lighting a brick:Luminaire ;
55 brick:hasPoint ex:Bathroom_Lighting_Sensor ;
56 .
57 ex:Private_Office_Lighting a brick:Luminaire ;
58 brick:hasPoint ex:Private_Office_Lighting_Sensor ;
59 .
60 ex:Kitchenette_Lighting a brick:Luminaire ;
61 brick:hasPoint ex:Kitchenette_Lighting_Sensor ;
62 .
63 ex:Corridor_Lighting a brick:Luminaire ;
64 brick:hasPoint ex:Corridor_Lighting_Sensor ;
65 .
66

67 ex:Lighting_Zone_OO1 a brick:Lighting_Zone ;
68 brick:isFedBy ex:OO_Lighting_1 ;
69 brick:isPartOf ex:Open_Office ;
70 .
71 ex:Lighting_Zone_OO2 a brick:Lighting_Zone ;
72 brick:isFedBy ex:OO_Lighting_2 ;
73 brick:isPartOf ex:Open_Office ;
74 .
75 ex:Lighting_Zone_Bathroom a brick:Lighting_Zone ;
76 brick:isFedBy ex:Bathroom_Lighting ;
77 brick:isPartOf ex:Bathroom ;
78 .
79 ex:Lighting_Zone_Private_Office a brick:Lighting_Zone ;
80 brick:isFedBy ex:Private_Office_Lighting ;
81 brick:isPartOf ex:Private_Office ;
82 .
83 ex:Lighting_Zone_Kitchenette a brick:Lighting_Zone ;
84 brick:isFedBy ex:Kitchenette_Lighting ;
85 brick:isPartOf ex:Kitchenette ;
86 .
87 ex:Lighting_Zone_Corridor a brick:Lighting_Zone ;
88 brick:isFedBy ex:Corridor_Lighting ;
89 brick:isPartOf ex:Corridor ;
90 .
91

92 # VAVs
93 ex:VAV_Box_1 a brick:VAV ;
94 brick:hasPoint ex:SATS_1, ex:SATSP_1 ;
95 brick:hasPart ex:Damper_1, ex:Heating_Coil_1 ;
96 brick:feeds ex:HVAC_Zone_1 ;
97 .
98 ex:SATS_1 a brick:Supply_Air_Temperature_Sensor .
99 ex:SATSP_1 a brick:Supply_Air_Temperature_Setpoint .

100 ex:Damper_1 a brick:Damper ;
101 brick:hasPoint ex:Damper_1_Position ;
102 .
103 ex:Damper_1_Position a brick:Damper_Position_Command .
104 ex:Heating_Coil_1 a brick:Heating_Coil ;
105 brick:hasPart ex:Heating_Valve_1 ;

BIBLIOGRAPHY 156

106 .
107 ex:Heating_Valve_1 a brick:Heating_Valve ;
108 brick:hasPoint ex:Valve_Command_1 ;
109 .
110 ex:Valve_Command_1 a brick:Valve_Command .
111

112 ex:VAV_Box_2 a brick:VAV ;
113 brick:hasPoint ex:SATS_2, ex:SATSP_2 ;
114 brick:hasPart ex:Damper_2, ex:Heating_Coil_2 ;
115 brick:feeds ex:HVAC_Zone_2 ;
116 .
117 ex:SATS_2 a brick:Supply_Air_Temperature_Sensor .
118 ex:SATSP_2 a brick:Supply_Air_Temperature_Setpoint .
119 ex:Damper_2 a brick:Damper ;
120 brick:hasPoint ex:Damper_2_Position ;
121 .
122 ex:Damper_2_Position a brick:Damper_Position_Command .
123 ex:Heating_Coil_2 a brick:Heating_Coil ;
124 brick:hasPart ex:Heating_Valve_2 ;
125 .
126 ex:Heating_Valve_2 a brick:Heating_Valve ;
127 brick:hasPoint ex:Valve_Command_2 ;
128 .
129 ex:Valve_Command_2 a brick:Valve_Command .
130
131

132 ex:Exhaust_Fan_1 a brick:Exhaust_Fan ;
133 brick:isFedBy ex:Bathroom ;
134 .
135

136 # AHU
137 ex:AHU a brick:AHU ;
138 brick:hasPart ex:Supply_Fan, ex:Return_Fan,
139 ex:Cooling_Coil, ex:Heating_Coil, ex:Filter,
140 ex:Outside_Damper, ex:Mixed_Damper, ex:Exhaust_Damper ;
141 brick:feeds ex:VAV_Box_1, ex:VAV_Box_2 ;
142 brick:isFedBy ex:HVAC_Zone_1 ;
143 brick:hasPoint ex:OATS, ex:RATS, ex:MATS, ex:SATS,
144 ex:pre_hc_temp, ex:pre_cc_temp,
145 ex:RAFS, ex:SAFS ;
146 .
147 ex:OATS a brick:Outside_Air_Temperature_Sensor .
148 ex:RATS a brick:Return_Air_Temperature_Sensor .
149 ex:MATS a brick:Mixed_Air_Temperature_Sensor .
150 ex:SATS a brick:Supply_Air_Temperature_Sensor .
151 ex:pre_hc_temp a brick:Temperature_Sensor .
152 ex:pre_cc_temp a brick:Temperature_Sensor .
153 ex:SAFS a brick:Supply_Air_Flow_Sensor .
154 ex:RAFS a brick:Return_Air_Flow_Sensor .
155
156 ex:Supply_Fan a brick:Supply_Fan ;
157 brick:hasPoint ex:SF_Speed ;
158 .
159 ex:SF_Speed a brick:Frequency_Command .
160

161 ex:Return_Fan a brick:Return_Fan ;
162 brick:hasPoint ex:SF_Speed ;
163 .
164 ex:RF_Speed a brick:Frequency_Command .
165

BIBLIOGRAPHY 157

166 ex:Cooling_Coil a brick:Cooling_Coil ;
167 brick:hasPoint ex:CC_Valve ;
168 .
169 ex:CC_Valve a brick:Cooling_Valve ;
170 brick:hasPoint ex:CC_Valve_CMD ;
171 .
172 ex:CC_Valve_CMD a brick:Valve_Command ;
173 .
174 ex:Heating_Coil a brick:Heating_Coil ;
175 brick:hasPoint ex:HC_Valve ;
176 .
177 ex:HC_Valve a brick:Heating_Valve ;
178 brick:hasPoint ex:HC_Valve_CMD ;
179 .
180 ex:HC_Valve_CMD a brick:Valve_Command ;
181 .
182
183 ex:Filter a brick:Filter .
184
185 ex:Outside_Damper a brick:Damper ;
186 brick:hasPoint ex:Outside_Damper_Command ;
187 .
188 ex:Outside_Damper_Command a brick:Damper_Position_Command .
189 ex:Mixed_Damper a brick:Damper ;
190 brick:hasPoint ex:Mixed_Damper_Command ;
191 .
192 ex:Mixed_Damper_Command a brick:Damper_Position_Command .
193 ex:Exhaust_Damper a brick:Damper ;
194 brick:hasPoint ex:Exhaust_Damper_Command ;
195 .
196 ex:Exhaust_Damper_Command a brick:Damper_Position_Command .
197

198

199 # controller
200 ex:Controller a brick:Controller ;
201 brick:controls ex:RF_Speed ;
202 brick:hasInput ex:RAFS ;
203 .
204
205 # internal topology of AHU
206 ex:RATS brick:feeds ex:Return_Fan .
207 ex:Return_Fan brick:feeds ex:RAFS .
208 ex:RAFS brick:feeds ex:Exhaust_Damper, ex:Mixed_Damper .
209 ex:Mixed_Damper brick:feeds ex:MATS .
210 ex:Outside_Damper brick:feeds ex:MATS .
211 ex:MATS brick:feeds ex:Filter .
212 ex:Filter brick:feeds ex:pre_hc_temp .
213 ex:pre_hc_temp brick:feeds ex:Heating_Coil .
214 ex:Heating_Coil brick:feeds ex:pre_cc_temp .
215 ex:pre_cc_temp brick:feeds ex:Cooling_Coil .
216 ex:Cooling_Coil brick:feeds ex:SATS .
217 ex:SATS brick:feeds ex:Supply_Fan .
218 ex:Supply_Fan brick:feeds ex:SAFS .

Figure 9.1: Brick expression of the building and subsystems illustrated in Figure 2.2

BIBLIOGRAPHY 158

1 @prefix brick: <https://brickschema.org/schema/1.1/Brick#> .
2 @prefix bsh: <https://brickschema.org/schema/1.1/BrickShape#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix tag: <https://brickschema.org/schema/1.1/BrickTag#> .
5 @prefix sh: <http://www.w3.org/ns/shacl#> .
6
7 bsh:Temperature_Sensor_TagShape a sh:NodeShape ;
8 sh:rule [a sh:TripleRule ;
9 sh:condition [# _:has_Point_condition

10 sh:property [
11 sh:path brick:hasTag ;
12 sh:qualifiedMinCount 1 ;
13 sh:qualifiedValueShape [
14 sh:hasValue tag:Point ;
15] ;
16] ;
17],
18 [# _:has_Sensor_condition
19 sh:property [
20 sh:path brick:hasTag ;
21 sh:qualifiedMinCount 1 ;
22 sh:qualifiedValueShape [
23 sh:hasValue tag:Sensor ;
24] ;
25] ;
26],
27 [# _:has_Temperature_condition
28 sh:property [
29 sh:path brick:hasTag ;
30 sh:qualifiedMinCount 1 ;
31 sh:qualifiedValueShape [
32 sh:hasValue tag:Temperature ;
33] ;
34] ;
35] ,
36 [# _:has_exactly_3_tags_condition
37 sh:property [
38 sh:maxCount 3;
39 sh:minCount 3;
40 sh:path brick:hasTag ;
41] ;
42] ;
43 sh:object brick:Temperature_Sensor ;
44 sh:predicate rdf:type ;
45 sh:subject sh:this] ;
46 sh:targetSubjectsOf brick:hasTag .

Figure 9.2: Expanded RDF graph for the shape described in Figure 4.11.

