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Computational methods for the analysis of high 

throughput genomic data in cancer and development 

Aleksandr Pankov 

 

ABSTRACT 

This dissertation describes the research carried out within the scope of two 

projects that deal with novel biomedical technologies and their use for 

advancing medical knowledge through statistical integration of genomics 

assays. I have explored and characterized epigenetic intratumoral 

heterogeneity and brain cancer evolution by creating customized statistical 

analyses and novel methodology for understanding and integrating RNA-

seq, methylation arrays, and exome-seq data. To explore functional effects 

of the Ilf2 RNA-binding protein (RBP) through embryonic stem cell 

differentiation in mice, I created statistical pipelines to remove data-

generation artifacts, applied various testing methods, and integrated the 

information utilizing small RNA-seq, ribosome profiling, and RNA-seq 

technologies.
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Chapter 1: Introduction
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BACKGROUND 

Computational methods are paramount to gaining insights from high-throughput 

biological data. Increased accessibility of fast processors and high-memory computers 

created the opportunity to develop powerful high-throughput analytical strategies for 

scientists from both experimental and computational biology fields.  These methods are 

essential for the fields of cancer and development where research and clinical decisions 

are directly based on conclusions from the data analysis techniques that are applied. The 

false positive and true positive rate of predictions will depend on the exact methods and 

significance definitions used. Therefore, when a method is developed, it is important to 

consider the accuracy and sensitivity of our results and how our biological conclusion 

will change when applying diverse analytical approaches.  

 

To tackle a biological question, it is essential to not only understand the underlying 

cellular and molecular mechanisms, or the techniques that are being used to generate the 

data, but it is also important to understand what computational methods are most 

appropriate to interpret the generated data. Throughout my training as a bioinformatician, 

I have learned to integrate the mechanics and applications of different computational 

techniques, as well as to create necessary modifications and method innovations in order 

to address the questions with the most appropriate approach.  Along these lines, to 

understand the evolution and tumor heterogeneity of Glioma, I adapted classical methods 

to integrate the high-throughput genomic data available from somatic mutations, DNA 

methylation arrays, and RNA expression measures under the complex experimental 

design employed in that project. Likewise, to understand how removing a RBP changes 
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the differentiation potential of embryonic stem cells, I created novel analytical strategies 

by extending currently used methods and developing new techniques for genomic 

analysis. 

 

USE OF STATISTICS IN GENOMICS 

Statistics is used to characterize and model the random variables in the population of 

interest. In fact, many methods are based on underlying models that simplify the 

biological process involved. While these models could be applicable in specific situations 

and apply well to certain scenarios, their performance is not guaranteed across all similar 

data types or experimental designs. To understand when a method is appropriate, it is 

essential to understand the underlying assumptions and understand the outcome of 

making such assumptions. Importantly, even though only a handful of data points are 

observed, conclusions are being inferred about the entire population. Thus, the 

observations produced by an experiment are extrapolated using an assumption of the 

underlying distribution of the data in order to understand the important parameters of the 

population. 

 

Statistical methods used in the analysis of genomic data can be broadly classified into 2 

main categories: supervised and unsupervised learning. Supervised methods attempt to 

identify the functional relationship between a predictor variable and a response. By 

contrast, unsupervised methods are used to understand the similarity of the sampled data 

points and observed variables and find the hidden structure within the data without any 

response variable that can help guide the separation.  
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CLUSTERING 

A fundamental problem in biology is to identify groups of data points that are more 

similar to each other than they are to all other data points in a sample. To understand how 

high-dimensional data points are grouped together, clustering is a general technique that 

can be used. Throughout this work, I have specifically used hierarchical clustering. This 

method uses the distances between data points to identify the two most similar data 

points, join those points into a group, recalculate the distance between all data points and 

groups, and continuously find the most similar data points or collections and join them 

until all points are contained in a single group. This allows us to understand the higher 

order similarity between data points. I have extensively used this technique in 

understanding the similarity between tumor samples when studying how low-grade 

glioma undergoes malignant progression. 

 

PRINCIPAL COMPONENT ANALYSIS 

In a related problem, it is often inefficient to perform computation in the original high 

dimensional space that each sample is represented in. For example, every sample has 

over 30,000 gene expression measurements, and while comparing pairs of samples, it is 

often not feasible to compute the high-dimensional distributions that represent the entire 

sample population. Thus, principal component analysis (PCA) was developed to 

represent the high-dimensional data as accurately as possible using only a smaller number 

of dimensions. PCA removes any redundant information across the high-dimensional 

space and condenses the data to a smaller number of dimensions that is able to faithfully 
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recreate the value of each sample and maintain the relative distance between samples. 

The PCA procedure first finds the direction that can best separate all samples of a data 

set, called the first principal component; this direction is some linear combination of the 

initial features of the data. It then identifies the next principal component as one that is 

orthogonal to the first principal component and is able to best separate the samples after 

the separation from the first principle component has been taken into account. This 

process is repeated until the desired number of principal components needed to 

approximate the data is extracted. PCA is a valuable method to reduce the dimensionality 

of a dataset while maintaining important information necessary to conserve separation 

between the data points. This technique provided the foundation for identifying which 

variables are most important for creating a branching event in a phylo-epigenetic process. 

 

CLASSICAL T-TEST 

A common supervised learning question that is being asked in biology is whether there 

exists a difference in the distributions of variables between two different groups. Even 

though this particular question remains ambiguous as to how a difference between 

distributions is defined, statisticians have been studying a related question for more than a 

hundred years since the formation of the t-test. To further define how two distributions 

are different, the question was narrowed down to ask if the central tendency, specifically 

the mean, is different between the two distributions. Specifically, the classical t-test uses 

the assumption that there is only a single underlying distribution that generates both of 

the distributions for the two groups, and that it computes the difference between the 

means of the two groups, determines a common standard deviation and a scaling factor to 
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adjust the influence of the standard deviation based on the observed sample size, and 

estimates what the probability of observing a difference of such a magnitude while 

considering the spread of the data. However, when there is a small sample size and the 

two groups are not generated from a normal, the classical t-test could give misleading 

results. 

 

CLASSICAL T-TEST IN GENOMICS 

The classical t-test has provided an important step in understanding how to interpret 

biological data, but is insufficient for determining differences between groups in 

genomics data. Unlike traditional experimental design, where an emphasis was placed on 

gathering a larger sample size to better estimate the parameters of the distribution, 

experiments with genomic data often emphasize measuring many variables over 

collecting a larger sample size. To account for the reduced sample size and the technical 

artifacts that are found in high-throughput technologies collecting multivariate 

measurements, a novel scenario was created and lead to the development of a new 

approach in the testing for a difference in distributions.  

 

LIMMA: AN EXTENSION TO THE CLASSICAL T-TEST 

Limma (Linear Models for Microarray Data) [1] testing is the procedure that was created 

to help alleviate such complications associated with genomic data, and is an expansion of 

the classical t-test. The limma software also incorporates a general framework for 

analyzing gene expression experiments from both microarray and sequencing data. This 

method smooths out the variance of each gene by a scaling factor that pushes each 
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estimated variance toward a global gene variance. This method offsets any errors in 

estimating the standard deviation due to the particular signature of data generated from 

various genomic assays. The smoothing factor is in turn estimated from the data itself by 

an empirical Bayes estimation method that assumes a shared hyperparameter across all 

variables being measured [2]. This methodology is now prominently used in microarray 

and sequencing data analysis, and has provided the framework to understand the changes 

in methylation and transcriptional profiles upon malignant transformation. 

 

T-TEST EXTENSIONS TO DISCRETE SEQUENCE DATA 

While both the limma and classical t-test are meant to calculate the difference between 

two groups with normal, continuous distributions, sequencing data is discrete. Thus, for 

count-represented sequencing outputs, a Poisson regression method is more appropriate 

to model the parameters and tests for a difference between groups. On the downside, the 

Poisson regression approach makes a strong assumption that the mean is equal to the 

variance which has been shown not true for most sequencing data. Thus, a negative 

binomial regression approach has been suggested to be more appropriate, since it allows 

for an additional parameter that has a larger variance than allowed by Poisson regression. 

This approach has been further extended similar to how limma extended on the classical 

t-test, and models the variance with an additional parameter that makes a variable have a 

more similar variance to the average variance of other variables with similar mean 

counts. This methodology has been implemented in DESeq2, a tool that was prominently 

used in this dissertation [3]. These extensions have been specifically incorporated when 
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looking for changes in translation as well as transcription throughout embryonic stem cell 

differentiation. 

 

CORRECTING FOR MULTIPLE TESTING 

A further complication in genomic data analysis occurs when estimating probability of a 

difference between groups or distributions across a large number of variables. Previously, 

when testing was done on an individual variable, the probability of observing a difference 

under the null hypothesis was relatively straightforward to assess. However, the 

probability of observing a small difference is likely to occur even when randomly 

generating data from the exact null hypothesis. This has become especially important 

when the number of variables that are being tested is more than 10,000. To visualize this, 

we could imagine data randomly generated from the null distribution, with probabilities 

uniformly distributed between 0 and 1. If there are variables that are truly different, they 

will form a uni-modal distribution with a mean trending towards 0. Storey’s method [4] 

and the Benjamini-Hochberg procedure [5] for adjusting the probabilities takes advantage 

of these observations and is further applied to genomic data to estimate more accurate 

probabilities when testing for a large number of variables. This is a fundamental step in 

deciding which genomic variables are important and need to be experimentally validated.  

 

INTEGRATED GENOMICS ANALYSIS 

Moreover, correcting for multiple hypothesis testing is also an essential aspect of 

integrating multiple genomic data sets. In particular, since different genomic assays 

produce a different numbers of variables that are being tested, it is necessary to adjust 



! 9!

their probability estimates to be comparable before making conclusions that are 

biologically meaningful. This key concept of integrated genomics data analysis is further 

developed and incorporated throughout the projects of this thesis. 
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Chapter 2: Understanding the role of the RNA-binding 

protein Ilf2 in differentiation
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INTRODUCTION 

Understanding the regulation underlying how embryonic stem cells (ESCs) differentiate 

to an early somatic lineage is pinnacle to biological science. The regulation of cell fate 

transition is important not only for expanding our basic understanding of how 

mammalian blastocysts develop into different tissue types, but also for various clinical 

applications. A better understanding of pluripotency regulation and embryonic 

development allows ESCs to be effectively utilized for disease modeling [6], drug 

discovery [7], and tissue regeneration [8]. 

 

While epigenetic and transcriptional regulation has been a primary focus [9-11], post-

transcriptional regulation of ESCs has only started to be studied [12]. It has been 

previously shown that individual microRNAs (miRNAs), which destabilize and inhibit 

translation of their messenger RNA targets, and long non-coding RNAs, which have been 

shown to act both as an activator and a repressor, can drive profound cell fate shifts 

between pluripotency and differentiation [13] [14]; however, differentiation regulation by 

miRNAs and lincRNAs do not capture the entire complexity of post-transcriptional 

control in ESC development. 

 

RNA-binding proteins (RBPs) are important for regulating different machinery within the 

cell; they have been implicated to play a major role in regulating splicing, nuclear export, 

stability/storage, localization (most studied in highly polarized cells like neurons and 

oocytes), translation, decay (deadenylases, decapping enzymes, exonucleases), as well as 

other process [15]. For this project, we are interested in discovering which RBPs are 
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important for pluripotency and differentiation; to this extent, it is vital to determine which 

RBPs play a role in the ESC to Epiblast (EpiSC) transition.   

 

REPORTER SYSTEM 

To evaluate the role of RBPs in ESC differentiation, my collaborators in the Blelloch lab 

have developed a dual reporter system to probe ESC differentiation. In recent findings 

[16], the Blelloch lab has discovered that during normal embryonic development, all cells 

initially transition from expressing only the miR-290 cluster to expressing both the miR-

290 and miR-302 clusters and then to only expressing the miR-302 cluster. Thus, they 

implemented a knock-in fluorescent reporter system containing the promoters of these 

two miRNA clusters, the miR-290, which is labeled with mCherry, and miR-302, which 

is labeled with GFP. This fluorescence system allows embryos to express Red (R) at the 

time of the inner cell mass from which ESCs are derived and then turn Yellow (Y), when 

expressing both mCherry and GFP, at the epiblast stage and finally only Green at 

gastrulation. Monitoring the well-defined ESC-to-EpiSC transition in a culture dish 

minimizes issues of cellular heterogeneity (Figure 2.1). 

 

STUDY DESIGN 

With this well-established reporter system, it has become possible to systematically track 

the ESC-to-EpiSC transition. This allows a direct way to monitor phenotypic information 

while also associating the molecular signature promoting that state. To study which RBPs 

are important to differentiation, we decided to identify all potential RBPs whose 

expression changes through the cells transitions. After directly perturbing each protein’s 



! 13!

expression and understanding what effect it had on the transition phenotype, we would 

select a single protein to functionally profile. 

 

RBP SCREEN 

To select the specific RBPs for further evaluation of their functional role in ESC 

differentiation, the Blelloch lab first subset the entire portfolio of previously identified 

RBPs to 356 proteins that are differentially expressed between any stage of the ESC 

differentiation system. Each potential RBP was then inhibited utilizing a 96-well siRNA 

pools screen. The effect of siRNA on differentiation was monitored through a GFP-

mCherry system. The RBP siRNAs were arranged alphabetically in the C – 3 to F – 10 

(row – column) section of a 96-well plate and each plate is replicated three times (Figure 

2.2). The experiment had four different negative siRNA controls (“sictrl1” – “sictrl4”), 

each of which has three technical replicates on each biological replicate of each plate. 

Additionally, the siOct4 were used as negative controls due to high toxicity and resulting 

complete cell death. The additional controls were procedural controls and included the 

negative GFP controls and viability controls (e.g. delivery agent without an siRNA); for 

this analysis they were referred to as “other” controls. Overall, there were 12 plates each 

one in triplicate (Figure 2.3). 

 

Each of the wells was followed everyday using the InCell high throughput, high content 

microscopy system, providing a time course for the transition from miR-290 expressing 

ESCs to miR-302 expressing EPLCs. After 4 days, the experiment was stopped and cells 
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were stained with DAPI. Using InCell software with custom designed macros, wells were 

evaluated for relative levels of red to green.  

 

Computational challenges 

From this RBP screen, we were interested in identifying the proteins that most severely 

affected the differentiation phenotype. To complete this task, I first needed to establish 

which plate readouts are the most informative. Every plate has a certain amount of GFP 

and RFP expression that corresponds to the size of the cells, where a larger cell will be 

expected to emit more fluorescence. I first had to identify which variables are the best 

measure of fluorescence and then how to adjust for a change in cell size. After creating a 

normalized measure of fluorescent intensity, I would need to create a testing strategy that 

would identify proteins that are changing more than would be expected in the 

experimental control. However, due to the small number of replicates, it would be 

beneficial to pool the information across all plates in this experiment. Thus, my next steps 

were to determine the per-plate and per-replicate batch effects and, consequently, to 

adjust out that non-biological influence. The final steps were to identify which proteins 

have the most influence on differentiation and determine which protein of interest would 

be a candidate for functional profiling.  

 

Exploratory analysis 

Fluorescence area relationship with mean density x area  

First, by examining scatterplots between fluorescence area and fluorescence mean-

density x area (Figure 2.4), I concluded that because a simple (but non-linear) 
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relationship could describe how the two variables are related, using just the fluorescence 

area would be sufficient for determining which RBPs influence differentiation. 

 

Fluorescence area relationship with DAPI area 

Next, visually examining the fluorescence area and DAPI area relationship showed a 

nearly linear relationship between the variables. While the RFP vs. DAPI plots showed a 

highly linear relationship, the GFP vs. DAPI plots showed much more variance (both 

within GFP control wells, as well as excluding those)(Figure 2.5). Even when excluding 

“other” controls, the RFP and DAPI had a mean Pearson correlation of 0.986 (ranging 

from 0.968 to 0.999) and the GFP and DAPI had a mean Pearson correlation of 0.934 

(ranging from 0.824 to 0.987)(Figure 2.6). This suggested that little additional 

information is gathered from using the RFP area in addition to the DAPI area. 

 

Quality control 

Before further analysis was done, it was important to remove the wells that “failed”, i.e. 

where the majority of cells died. The simplest approach would be to remove any siRNAs 

that are below the maximum of the DAPI control within each replicate. Another approach 

was to normalize the DAPI measure (through the normalization method described below) 

across replicates and across plates, then to discard any siRNA’s values falling within a 

threshold defined by the distribution built from the DAPI controls (Figure 2.7). For this 

analysis, the DAPI readouts were normalized across all plates and all entries whose DAPI 

area was less than the maximum from the DAPI controls were discarded. This 
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conservative approach aimed at minimizing the chance of identifying RBPs whose 

knockdown produced dead cells (Figure 2.8). 

 

Normalization 

Across replicates normalization 

To combine the data for a plate, we first needed to normalize it across all its biological 

replicates. To do this, for each replicate, I would first shift the data by the location 

estimator defined in [17] and scale the data by the scale estimator from the same source 

(using the scaleTau2 function defined in R’s robustbase package [18]), thus normalizing 

the data across the replicates for each plate.  

 

However, this exact procedure could not be used to normalize data across all plates 

because it contains the implicit assumption that the distributions are the same across 

plates, which might not be valid for this experimental design.  

 

Across plates normalization  

To normalize across all plates, I made the assumption that the distribution of all the 

controls within themselves (not including the RBP siRNA knockdowns) was identical on 

each plate. Therefore, the distribution of the control siRNAs for each plate was used to 

calculate a robust measurement of location and scale by which to shift and divide that 

plate’s data. This approach re-scaled the data to describe each observation in terms of 

robust control deviations away from the control center. 
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Identifying significant RBPs 

Finally, to identify the significant RBPs that influence ESC differentiation, I kept all data 

points with at least three entries with DAPI Area above controls. The difference of the log 

fluorescence area and log DAPI area is calculated to account for the total amount of cells 

available. I then proposed the following approaches: 

 

1. Normalizing the log fluorescence data across all replicates. Then, for each plate 

separately, applying a simple t-test with equal variance for each RBP siRNA 

against the combined siRNA control of that plate. Then calculating the q-value of 

each test using the qvalue package in Bioconductor. (Figure 2.9) 

 

2. Normalizing the log fluorescence data across all replicates and all plates. Then 

applying a simple t-test with equal variance for each RBP siRNA against the 

control siRNA combined over all plates. Then calculating the q-value of each test 

using the qvalue package in bioconductor. (Figure 2.9) 

 

3. Creating a null test statistic distribution by taking the four different siRNA 

controls and comparing them against each other to identify the background 

distribution of t-statistics. Similarly, we could be subsampling the siRNA controls 

to determine a background distribution in that way. However, I do not believe that 

this would create a major difference for the majority of the RBPs. Thus, I left this 

approach as a future direction of the project.  
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4. It is important to identify the optimal cut-off for determining significant RBPs. 

The simplest approach was to use a cutoff of the q-value. However, this approach 

ignored other controls that could be useful in assessing an RBP’s importance. For 

example, the dfect control, which measures the effect of transfecting the cells with 

a reagent without any siRNA, often seemed to show up as “significantly” 

different from the siRNA controls. So, I only considered RBPs significant if they 

were below a q-value cutoff and had a q-value less than the dfect control (Figure 

2.10). 

 

5. We also had additional controls that were not used in the analysis, but might 

contain information to distinguish the signal from noise. Specifically, we had the 

siGFP knockdown that always reduced the GFP fluorescence and was highly 

significant. Similarly, we had the 2li control, which is a media additive that 

prevents differentiation and also highly significantly reduced the GFP 

fluorescence. These two controls consistently showed the most significant change 

compared to the siRNA controls. Finally, we had the fluorescence signal resulting 

from just the media in the “nothing” control. This control could have also been 

used like the dfect control, as an additional cutoff to identify significant RBPs. 

This aspect, of using positive controls in addition to the negative controls, was not 

been implemented. 

 

Results 
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The t-statistics, p-values, and significant RBPs are included in (Tables 2.1 and 2.2). The 

results from testing siRNA controls against RBPs per plate, as well as across all plates are 

presented in (Figure 2.11). In the across all plate analysis [2 in the above section], using a 

q-value of less than .01 and requiring that the q-value was less than the q-value of the 

“dfect” control identifies 25 “significant” siRNAs (including controls); however, 

requiring that the q-value was less than the q-value of the “nothing” control and less than 

.01 identifies only 5 “significant” siRNAs (including controls) out of 150 siRNAs total. 

In the by plate analysis [1 in the above section], using a q-value of less than .001 and 

requiring that the q-value was less than the q-value of the “dfect” control identified 83 

“significant” RBP siRNAs; however, requiring that the q-value was less than the q-value 

of the “nothing” control and less than .001 identified only 49 “significant” RBP siRNAs 

out of 146 total RBP siRNAs. From these results, it seemed the across plates analysis 

using the dfect control cutoff gives the most biologically-relevant, yet slightly 

conservative, significant RBPs. 

 

Caveat 

The biology suggests that it would be easier to prevent the transition from ESC to EpiSC 

using siRNAs than it would be to promote it. In other words, it should be expected that 

most siRNAs will disrupt the transition process. This phenomena can also be suggested 

from an empirical evaluation of the t-statistic of the GFP measure in (Figure 2.12). The 

shift of the center of the distribution towards negative values suggests that most siRNAs 

only have a small change from the ESC state. However, the current version of the 

analysis did not take this assumption into account. One way to account for it would be to 
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use a non-symmetric distribution when testing for the significance of a fluorescence area 

difference. 

 

IDENTIFYING ILF2 AS A MASTER REGULATOR 

After a critical evaluation of the statistical analysis that was performed, our collaborators 

in the Blelloch lab identified Ilf2 as an essential RBP to evaluate its role through 

differentiation. Among the screen hits, knockdowns leading to accelerated transition to 

the EpiSC state were especially important and Ilf2 was one of those hits. Ilf2 was first 

discovered as a transcriptional activator of IL2 in T cells [19] and has since been 

identified as an RBP in three independent mammalian RBP profiling studies [20-22]. Ilf2 

has been proposed to function in post-transcriptional and translational regulation of RNA, 

suggesting that it may be acting an essential role in ESC development. Additionally, Ilf2 

has been described to regulate miRNA biogenesis, preventing the processing of pri-let-7 

to pre-let-7 [23], affect splicing by being a part of the exon junction complex (EJC) [24], 

and has been connected to an internal ribosomal entry site (IRES) trans-acting factor that 

binds to AU-rich sequences in IRES in the 5’ UTR of several transcripts to modulate the 

translation of both viral and cellular proteins [25-28]. Furthermore, Ilf2 has been found in 

a complex with the pluripotency transcription factor Nanog [29] and is down-regulated in 

Nanog-depleted ESCs [30]. 

 

To understand the effect of functional role of Ilf2, our collaborators in the Blelloch lab 

acquired Ilf2 knockout (KO) cells from Dr. Kyoji Horie who had homozygosed ESCs 

with single allele gene traps. To begin to dissect the molecular roles of Ilf2, we have 
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performed PAR-CLIP, RNA-seq, small RNA-seq, and ribosome profiling on wild-type 

[31] and Ilf2-knockout ESCs.  

 

TRANSCRIPTOME PROFILING OF WT AND KO ILF2 CELLS 

Using a strand-specific protocol that selectively sequences poly-A-tailed mRNA 

transcripts, a library of the transcriptome sequences of both the WT and KO cells was 

created. After applying the Kallisto [32] method for isoform quantification, I identified 

1046 isoform changes in the knockout cells (q-value < 0.05 and an absolute log2 fold 

change greater than 1) by the Sleuth testing method followed by an adjustment for 

multiple hypothesis testing. The most-enriched molecular functions and biological 

processes associated with both the upregulated and downregulated genes can be found in 

(Figure 2.13). 

 

Due to the Ilf2’s role in the EJC and presumed importance in regulating RNA splicing, it 

is important to detect alternative splicing events that are occurring between the WT and 

KO cells. This is substantially different from identifying differential isoform expression 

between the two conditions because it involves a change from one isoform to another of a 

particular gene rather than just an expression difference. To study this change, I applied 

the MATS software [33] to determine that identified the following list of events in (Table 

2.3). 

 

RIBOSOME PROFILING OF WT AND KO ILF2 CELLS 
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Due to Ilf2’s role in regulating translation, it was essential to measure the translation of 

the transcripts present in a cell. To measures changes in translation rates, ribosome 

profiling was performed in both the WT and KO cells. The technique involves a short 

pulse of cycloheximide followed by cell lysis, DNase treatment, and gentle RNase 

treatment. Ribosome-bound fragments of the RNAs are protected from the RNase 

digestion and therefore are enriched in nuclease treated versus untreated fractions. Both 

fractions are transformed into RNA-seq libraries following rRNA depletion. To analysis 

the sequencing data produced by ribosome profiling, we adapted a commonly used 

protocol.  

 

Alignment 

1. Clipped adapter sequences off the ends of all reads and trim all bases at base 

quality of 1 or below 

a. Only kept reads with an adapter in the Ribosome Protected samples 

b. Kept all reads in the mRNA samples 

2. Aligned all reads against possible contaminants using bowtie [34] 

a. Contaminants include: polyA, polyC, adapter, ChrM, phix, Ribosomal 

RNA, tRNA 

3. Aligned all the reads that did not align to contaminants to the mm10 genome 

using transcriptome-guided tophat2 alignment [35]. 

a. Transcriptome model used was Gencode annotation [36] 

4. Filtered all aligned reads to those that did not: 

a. Fail QC (bit flag set by the aligner) 
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b. Map to random chromosome  

c. Aligned to multiple positions on the genome 

 

Assess Experiment Efficacy 

After alignment, we assessed the quality of the data as follows: 

1. I investigated the coverage along the CDS of genes 

a. For all regions in the transcriptome annotation, I added a pseudocount of 1 

as locations previously identified as being expressed. 

b. To avoid any bias from using multiple isoforms of the same gene, I 

collapsed each gene to only represent a single isoform. I first ranked the 

average isoform coverage within each sample; then, I chose the isoform 

with the highest average rank across all samples. Thus representing a 

single isoform for each gene and displaying the same isoform in all 

samples. 

c. The genes were then ranked according their average coverage. 

d. To normalize for the length of the genes, I divided each gene into 50 bins 

and calculated the average coverage per bin. 

e. To represent the change of coverage along the gene, I calculated the Z-

score of each bin (Figure 2.14).  

 

2. I also investigated the codons that occur with the most enriched 3-mers across all 

genes. 
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a. For regions in the transcriptome annotation, I added a pseudocount of 1 as 

locations previously identified as being expressed. 

b. I calculated the coverage in a running window of size 3 divided by the 

mean of that coverage per isoform. 

c. I then identified the maximum enrichment score and its location along the 

isoform. 

d. Per gene, I used only the isoform that has the highest maximum 

enrichment score. 

e. These calculations were done within frame for only the CDS data. 

f. I plotted the enrichment of codons associated with the maximum 

enrichment scores for the CDS regions (Figure 2.15 and 2.16). 

 

Identified genes with differential translation rates 

After confirming that the experiment has worked correctly, we went on to measure 

expression in the CDS region of each gene for both the mRNA samples and ribosome 

protected samples. We then used the following linear model to test for differential 

translation rates between the two conditions:  

log(mu) = a + bribo I[37] + bKO I(KO) + bcross (I(ribo) x I(KO)),  

where I(.) is an indicator that equals 1 when the sample satisfies the condition and 0 

otherwise. Here, I modeled the log average of the expression as a linear combination of 

the overall average expression, a, the difference between the WT and KO cells, bKO, the 

difference for the ribosome protected fragments, bribo, and the difference of the ribosome 

protected fragments within the KO condition, bcross. Then by assigning a p-value to the 
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bcross coefficient, I was able to determine which genes are consistently changing in their 

translation rates between the conditions after accounting for their expression levels by 

DESeq2 [3] (Figure 2.17). This analysis identified 252 significant genes (p-value < .05). 

 

MIRNA PROFILING OF WT AND KO ILF2 CELLS 

As a crucial first step to exploring the miRNA profile of our KO and WT samples, a 

quantification of the miRNAs within the cell must be computed. To quantify the 

miRNAs, I wrote an aligner specifically for the characteristics involved in small RNA 

sequencing that takes into account redundant reads and a small reference set to quickly 

align the sequencing data on a desktop machine. First, I determined that the length of 

each sequencing read is fairly short, usually between 17 and 24 nucleotides in length 

(Figure 2.18). Next, I recognized that the MirBase microRNA reference database [38] is 

small with only 1193 precursors and 1915 mature for the mouse genome, where each 

hairpin is less than 100 nucleotides. Additionally, since the target space is so small, we 

can expect to have many identical short reads being sequenced. Thus it is best to align 

each read only once and maintain quick access to the mapping information. To preserve 

memory usage, I used Hoffman encoding to compress each read’s sequence content 

before storing it.  

 

Alignment 

The following is the algorithm for mapping small RNA sequencing reads against a 

miRNA reference: 
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1. Read in the mature miRNA reference, break up each reference miRNA into k-

mers, and hash each k-mer with a pointer back to the miRNA sequence that it 

originated from. 

2. Redo #1 for the precursor sequences as well. 

3. Map the location of the mature miRNA sequences within the precursor sequences. 

4. For each read in a sequencing library do the following 

a. Break the read in k-mers 

b. Check the k-mers against the known hash tables generated from the 

mature sequences 

c. If all the k-mers overlap with a specific mature miRNA, do an exact 

pairwise alignment against that mature miRNA to determine if the read 

originated from there and assign the read as belonging to that mature 

miRNA. 

d. If the k-mers do not overlap with a specific mature miRNA or the read 

does not originate from the mature miRNAs, repeat the mapping 

procedure against the hash table of the precursor miRNAs and similarly 

determine if the read originates from any precursor. 

e. If a read originates from the precursor, determine if it is a read that spans 

part of the mature and precursor miRNA and assign it to the mature. 

f. Compress the read and add it to a set 

g. Quantify for all reads. 

Using this simple mapping procedure, I was able to achieve fast and accurate 

quantification of gigabyte-scale small RNA sequencing libraries. 
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Testing for differential expression 

After I aligned each read against the miRbase database, I quantified the reads falling into 

the following categories: 

• Reads mapping perfectly to a single mature miRNA reference 

• Reads mapping above 90% and below 99.9% similarity to mature miRNA but 

mapping perfectly to a single hairpin reference 

This allowed me to estimate the expression at the most unique level quantifiable. After 

comparing different normalization techniques, I conclude that even though the log CPM 

transform has the best variance stabilizing properties when comparing to CPM and 

anscombe CPM (Figure 2.19), the anscombe CPM should be used because the number of 

false negatives with large changes in expression decreases using that transform.  

 

To guarantee that the miRNAs that I was testing had a large enough concentration in the 

cells to have a functional effect, I subset the miRNA to only test the ones that have an 

expression measurement of CPM > 50 (Figure 2.20). After running a simple limma 

model to determine which miRNAs are changing between the KO and WT conditions, I 

was able to narrow down the list to a handful of significant miRNAs in (Table 2.4). 

 

Testing cis-transcribed miRNAs for differential expression 

Here, I tested different groupings of miRNAs. To do this, I used anscombe CPM as the 

normalized expression measure and used the same moderated t-test as before. However, I 

used the expression values of all hairpins associated with a grouping and created 
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indicator variables for each individual hairpin (in addition to the WT vs. KO state) to 

account for individual hairpin expression values. For a grouping j with two hairpin 

members, the equation is estimated: 

CPMj=bko,j xj+bh1,jh1+bh2,jh2+ϵj 

where CPMj is a vector of CPM expressions for that grouping, xj is an indicator variable 

with 1 if the measurement is for the KO condition and 0 otherwise, h1 is an indicator 

variable with 1 if the measurement is for the first hairpin in the grouping and 0 otherwise, 

and h2 is an indicator variable with 1 if the measurement is for the second hairpin in the 

grouping. After running this test across all groupings, I was able to identify the cis-

transcribed miRNA groupings that are different between conditions in (Table 2.5). 

 

Testing functional families of miRNAs for differential expression 

After identifying the differentially expressed cis-transcribed miRNA clusters, we then 

asked whether expression differs from functional families of miRNAs which are defined 

through target scan. Unlike the cis-transcribed clusters, since these miRNAs are acting on 

the same target element, it is more appropriate to aggregate the counts across all miRNAs 

of the same family. After aggregating the miRNA quantities over the functional family, 

we were able to test for differential expression and identify the most significantly 

changing targetscan-defined families of miRNAs in (Table 2.6): 

 

INTEGRATING MIRNA AND ISOFORM EXPRESSION CHANGES 

While we have shown that a number of changes occur in the expression of a particular 

isoform as well as the quantity of a miRNA between the KO and WT conditions, an 
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integrative analysis would confer information about direct targets of Ilf2. It has been 

previously shown that RBPs provide the regulation to express either an isoform or a 

miRNA within the intron of that isoform while downregulating the other member of the 

interaction. Thus, I extracted all the miRNAs within the intron of an isoform. To identify 

the changing isoforms associated with a changing miRNA, I first checked how 

comparable the miRNA analysis is to the RNA-seq differential expression. I created the 

qq-plots comparing the p-values, coefficients, and test statistics between the hairpin 

testing and the isoform testing procedures. One thing to notice is the departure of the p-

value relationship from the y=x line, indicating that the p-values are considerably 

different between hairpin and isoform testing (Figure 2.21). 

 

To correct for this difference in p-value distributions, I normalized the p-values of both 

test statistics to be comparable to each other. It is important to rank-normalize all the 

hairpin p-values and all the isoform p-values, not just the ones containing an association 

between the two groups. This provided a much more similar distribution of p-values 

between the two testing sets (Figure 2.22). 

 

After associating all the intronic hairpins with the isoforms where those hairpins are 

found in introns, I plotted the p-value, coefficient, and test statistic relationships (left to 

right) of all the hairpins and their isoforms (Figure 2.23). (Since this is a many-to-many 

relationship, a hairpin may appear multiple times and the same for isoforms). 

From the plots below, there did not seem to be a clear relationship between intronic 

hairpin expression and the expression of isoform where it. In the left most plot, there did 
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not seem to be a trend p-value in hairpins and p-values in isoforms. 

In the middle plot, there were a handful of points where a positive change estimate in the 

hairpin is associated with a negative expression estimate in its isoform (bottom right 

quadrant). 

In the right plot, most points fall uniformly in a square around (0,0) and there are only a 

small number of instances that were outside that square. 

In the middle and left plots, the size of each point is proportional to how significant the 

hairpin is (larger points had more significant hairpins) and the hue of the blue is 

proportional to the significance of the isoform (the more blue, the more significant the 

isoform was). 

 

However, when I subset to only the hairpins that were significantly differentially 

expressed and examine their relationship with the isoforms that overlap that hairpin’s 

genomic location, we can see a modest positive correlation between the isoform and 

hairpin changes across the cell types.  

 

CONCLUSION 

These preliminary studies provide much of the data required to develop and validate a 

bioinformatically derived network of Ilf2-regulated genes. However, these experiments 

did not provide conclusive evidence of whether these changes are direct or indirect effect 

of Ilf2 inactivation. To understand which genes are directly affected by Ilf2, the Blelloch 

lab sequenced the RNA fragments bound by the Ilf2 protein. That experiment showed us 

that there were very few bound RNA fragments and not more than would be expected by 
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chance. This led us to suggest that Ilf2 was in fact not directly binding RNA targets but 

was working through its binding partner Ilf3 to control differentiation. Ilf3 has already 

been shown to be a DNA-binding protein [39] and is likely a master-regulator RBP. 

Further works is still required to determine the function of Ilf3 in these cells, as well as to 

understand the importance of the interaction of Ilf2 and Ilf3 to differentiation. 

 
FIGURES 
 

!
Figure'2.1.'ESC'to'EpiSC'Reporter'system.''
The!Blelloch!lab!has!developed!knock=in!fluorescent!reporters!for!two!miRNA!clusters!associated,!each!of!which!

has!been!shown!to!be!associated!with!the!ESC!to!EpiSC!transition.![From!Julia’s!Presentation]!

!

!
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!
Figure'2.2.'Plate'design'visualization.''
The!blue!wells!are!media!controls,!labeled!“nothing”!throughout!the!analysis;!the!red!wells!contain!media!with!

an! additive! that! prevents! differentiation;! the! light! green! wells! contain! siGFP;! the! dark! green! wells! indicate!

controls!to!measure!the!effect!of!transfecting!reagent!without!an!siRNA;!the!orange!marks!wells!where!all! the!

cells!died!and!are!used!as!DAPI!controls;!the!yellow!wells!contain!non=RBP!siRNAs;!and!the!grey!wells!contain!

the!RBP!siRNAs.!

!

!
Figure'2.3.'Experiment'Design.'
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Each!experiment!consists!of!12!unique!plate!setups,!performed!in!triplicate.!

!

!
Figure'2.4.'Scatterplots'of'fluorescence'area'and'mean'density'x'area'relationship'across'plates.''
The!left!panel!shows!the!relationship!for!the!GFP!reporter,!while!the!right!panels!shows!it!for!the!RFP.!Here!we!

can!see!that!a!simple,!but!non=linear,!relationship!could!describe!how!the!two!variables!are!related.!

!

'
Figure'2.5.'Scatterplots'of'fluorescence*area*and'DAPI*area*relationship'across'replicates.''
The!top!left!panel!shows!the!relationship!for!the!RFP!reporter,!while!the!top!right!panel!shows!it!for!the!GFP;!the!

blue! color! signifies! the! controls! and! the! RBPs! are! marked! in! magenta.! The! bottom! left! panel! shows! the!

relationship! for! just! the! RBP! siRNAs! for! the! RFP! reporter! and! the! bottom! right! panel! shows! it! for! the! GFP!

reporter.! The!RFP! has! a! very! strong! correlation!with!DAPI,! suggesting! that! knowing! the! reporter! Area! gives!
minimal!additional!information!above!just!the!DAPI'area.!
!
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!
Figure'2.6.'Histogram'of'correlation'between'fluorescence*area'and'DAPI*area*across'all'replicates.''
The!left!panel!shows!the!distribution!for!the!RFP!reporter,!while!the!right!panel!shows!it!for!the!GFP.!The!high!

correlation! between! the! RFP' area! and! DAPI' area' suggests! that! not! much! additional! information! can! be!
incorporated!from!the!reporter!above!what!is!available!in!the!DAPI.!The!GFP!is!less!correlated!and!could!contain!
more!information!than!using!the!DAPI!only.!
!

!
Figure'2.7.'Boxplots'of'the'log'DAPI*area*per'replicate.''
The!siRNA!controls!are!in!purple,!the!RBPs!are!in!green,!the!DAPI!controls!are!in!blue,!and!the!“other”!controls!
are!in!red.!

!

!
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!
Figure'2.8.'Density'Plots'of'the'log'DAPI*area*normalized'across'all'plates.''
The!siRNA!controls!are!in!red,!the!RBPs!are!in!green,!the!DAPI!controls!are!in!blue,!and!the!“other”!controls!are!
in! purple.! The! dashed! vertical! line! identifies! the! DAPI! cut=off! location,! below! which! all! observations! were!
discarded.!This!approach!discards!~26%!of!the!data!out!of!which!6%!are!DAPI!control!measurements..!

!

!
Figure'2.9.'Distributions'of'pLvalues.''
The!left!panel!shows!the!p=value!distribution!for!the!per!plate!analysis.!The!right!panels!shows!the!distribution!

for!the!across!all!plate!analysis.!

!
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!
Figure'2.10.'Graphical'summary'of'approaches'to'identify'significant'RBPs.'
'
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'
Figure'2.11.'Important'siRNAs'identified.''
The!scatterplot!of!siRNAs!with!the!axes!on!log!10!of!the!mean!RBP!divided!by!the!mean!control!of!normalized!

fluorescence!values.!The!top!left!panel!has!the!important!siRNAs!in!the!across!all!plates!analysis!using!the!“dfect”!

control!as!a!q=value!cutoff!in!addition!to!requiring!the!q=value!to!be!below!.01.!The!top!right!panel!is!the!same!

except! using! the! “nothing”! control! as! a! q=value! cutoff! instead! of! the! “dfect”.! The! bottom! left! panel! has! the!

important!siRNAs!in!the!by!plate!analysis!using!the!“dfect”!control!as!a!q=value!cutoff!in!addition!to!requiring!the!

q=value! to!be!below! .001.!The!bottom!right!panel! is! the! same!except!using! the! “nothing”! control! as! a!q=value!

cutoff!instead!of!the!“dfect”.'
'

'
Figure'2.12.'Distribution'of'tLstatistics'of'the'RFP'and'GFP'measures.''
!
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!
Figure'2.13.'Gene'set'enrichment'analysis'for'the'differentially'expressed'genes.''
The!top! left!and!top!right!barplots!shows!the! !p=values! for! the! top!enriched!molecular! function!and!biological!

processes!gene!ontology!sets! for!upregulated!genes.!The!bottom! two!barplots! show! the! same! information! for!

downregulated!genes.!''
!

!
Figure'2.14.'Average'ZLscore'for'each'bin'along'the'normalized'gene.''
The! top!5,000!genes!with! the!highest! average! coverage!are!displayed.!Here! the!x=axis! is! the!normalized!gene!

location!and!the!y=axis! is! the!averaged!Z=score!per! location.! [Left!4!plots]!The!replicates! for!KO!cells.! [Right!4!

plots]!The!replicates!for!WT!cells.!Within!each!set!of!4,!the!topleft!and!bottomright!are!the!profiles!for!the!two!
ribosme!protected!samples.!The!topright!and!bottomleft!are!the!profiles!of!the!mRNA!samples.!!

!

0" 1" 2" 3" 4" 5" 6"

insulin.like"growth"factor"receptor"
phospholipase"A2"ac<vity"(GO:0004623)"

ca<on"binding"(GO:0043169)"
metal"ion"binding"(GO:0046872)"

ion"binding"(GO:0043167)"
calcium"ion"binding"(GO:0005509)"

protein"binding"(GO:0005515)"
molecular_func<on"(GO:0003674)"

olfactory"receptor"ac<vity"(GO:0004984)"
binding"(GO:0005488)"

!log10'(P'value)'

Top'10'molecular'func6on'GO'terms'
(upregulated'genes)''

0" 1" 2" 3" 4" 5" 6"

cellular"developmental"process"(GO:
detec<on"of"chemical"s<mulus"involved"

detec<on"of"chemical"s<mulus"(GO:
developmental"process"(GO:0032502)"

single.organism"developmental"process"
detec<on"of"chemical"s<mulus"involved"

sensory"percep<on"of"smell"(GO:
biological_process"(GO:0008150)"

anatomical"structure"morphogenesis"
single.organism"process"(GO:0044699)"

!log10'(P'value)'

Top'10'biological'process'GO'terms'

0" 1" 2" 3" 4" 5" 6" 7" 8"

heterocyclic"compound"binding"(GO:
molecular_func<on"(GO:0003674)"
neutral"amino"acid"transmembrane"

ion"binding"(GO:0043167)"
serine"transmembrane"transporter"

L.serine"transmembrane"transporter"
olfactory"receptor"ac<vity"(GO:0004984)"

protein"binding"(GO:0005515)"
sequence.specific"DNA"binding"(GO:

binding"(GO:0005488)"

!log10'(P'value)'

Top'10'molecular'func6on'GO'terms'
(downregulated'genes)'

0" 1" 2" 3" 4" 5" 6"

cellular"process"(GO:0009987)"
nervous"system"development"(GO:
skeletal"system"development"(GO:

posi<ve"regula<on"of"transcrip<on"from"
nega<ve"regula<on"of"biological"process"

system"development"(GO:0048731)"
regula<on"of"cellular"process"(GO:

regula<on"of"transcrip<on"from"RNA"
single.organism"process"(GO:0044699)"
single.organism"cellular"process"(GO:

!log10'(P'value)'

Top'10'biological'process'GO'terms'

Normalized+Gene+

Z/
sc
or
e+
of
+th

e+
co
ve
ra
ge
+



! 39!

!
Figure'2.15.'Distributions'of'codons'in'maximum'enrichment'locations'(KO).''
The!max!enrichment!score!is!above!20.!For!each!plot!the!top!barplot!shows!the!codons!counts!normalized!by!the!

occurrence! of! each! codon! in! the! transcriptome! annotation;! the! bottom!plot! is! the! raw! counts! per! codon;! the!

number!of!genes!above!the!cutoff!is!in!the!middle!of!each!plot.![Top!Row]!The!mRNA!samples.![Bottom!Row]!The!

ribosome!protected!samples.!This!data!is!for!the!KO!cells.!

!
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!
Figure'2.16.'Distributions'of'codons'in'maximum'enrichment'locations'(WT).''
This!is!the!same!figure!as!above!but!for!the!WT!cells.!

!
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!
Figure'2.17.'Scatterplot'of'the'ribosome'efficiency'in'the'KO'vs'WT'cells.''
Each! point! is! a! gene;! the! red! points! are! genes! significant! below! a! p=value! of! .05;! the! blue! points! are! genes!

significant!below!a!p=value!of!.001!

!

!
Figure'2.18.'Distribution'of'read'length'for'each'replicate'in'the'experiment.'
'
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!
Figure'2.19.'The'meanLvariance'relationship'when'comparing'different'transforms.''
Every!point!is!a!hairpin!with!a!loess!trend!drawn!to!describe!the!relationship!between!the!mean!and!variance.!'
!

!
Figure'2.20.'Distribution'of'CPM'across'all'miRNAs'and'a'cutoff'at'50.''
!
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!
Figure'2.21.'Qqplots'comparing'the'distribution'of'pvalues'(left),'coefficients'(middle),'and'test'statistics'
(right)'across'hairpin'and'isoform'groups.''
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'
Figure'2.22.'Qqplot'of'the'normalized'pLvalues.''
!

!
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'
Figure'2.23.'Comparing'isoform'and'miRNA'changes.'
Every!point! is! a!hairpin!matched!with! its! isoform.!The!more! significant!a!hairpin! is,! the! larger! the! size!of! the!

point.!Similarly!the!more!significant!the!isoform!is,!the!darker!the!blue!of!that!point.!'
! !
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TABLES 

genes%
GFP%
qvalue%

GFP%
tstatistic%

RFP%
qvalue%

RFP%
tstatistic%

Significant%RBPs%
from%dfect%

Significant%RBPs%
from%nothing%

nothing' 2.95E-69' 1.99E+01' 1.69E-42' -1.48E+01' 3' 0'

l2i' 1.65E-213' -4.58E+01' 3.48E-08' 5.70E+00' 1' 1'

dfect' 2.68E-26' 1.12E+01' 6.93E-12' -7.13E+00' 0' 0'

sigfp' 8.90E-253' -5.40E+01' 1.02E-09' 6.33E+00' 1' 1'

cstf2' 3.99E-01' 3.36E-01' 2.21E-02' 2.27E+00' 0' 0'

b020018g12rik' 3.62E-06' -4.78E+00' 1.44E-04' 3.90E+00' 0' 0'

1190005f20rik' 2.03E-16' -8.66E+00' 4.16E-01' -2.85E-01' 0' 0'

ddx3x' 6.21E-03' -2.75E+00' 2.70E-08' -5.77E+00' 0' 0'

1700021f05rik' 5.38E-05' 4.15E+00' 9.57E-02' 1.50E+00' 0' 0'

d1pas1' 1.31E-01' -1.31E+00' 5.31E-02' 1.84E+00' 0' 0'

cpeb1' 4.30E-01' 2.29E-01' 7.22E-05' 4.08E+00' 0' 0'

baz2a' 4.43E-09' -6.10E+00' 3.29E-02' -2.08E+00' 0' 0'

1810035l17rik' 1.95E-10' -6.65E+00' 4.41E-01' 1.90E-01' 0' 0'

dis3l2' 2.81E-01' -7.30E-01' 6.61E-02' 1.72E+00' 0' 0'

dhx29' 3.26E-01' -5.99E-01' 4.13E-01' -2.99E-01' 0' 0'

dclre1b' 4.61E-02' -1.91E+00' 3.84E-01' -4.08E-01' 0' 0'

anks1' 4.58E-01' -1.34E-01' 6.80E-10' 6.43E+00' 0' 0'

dhx32' 4.61E-02' -1.90E+00' 2.32E-01' -8.82E-01' 0' 0'

c030048b08rik' 4.97E-08' -5.65E+00' 2.31E-09' 6.22E+00' 0' 0'

apex1' 8.88E-10' -6.38E+00' 5.04E-03' -2.82E+00' 0' 0'

cryz' 1.26E-49' -1.66E+01' 2.32E-01' 8.83E-01' 1' 0'

csad' 2.32E-02' -2.24E+00' 1.50E-01' 1.22E+00' 0' 0'

csda' 3.23E-01' 6.10E-01' 1.84E-01' 1.09E+00' 0' 0'

adar' 2.59E-26' -1.14E+01' 1.77E-04' 3.84E+00' 1' 0'

ascc1' 1.87E-18' -9.27E+00' 3.89E-01' -3.73E-01' 0' 0'

denr' 2.96E-01' 6.84E-01' 4.73E-01' -8.07E-02' 0' 0'

cbx8' 3.06E-05' -4.29E+00' 2.91E-03' -3.00E+00' 0' 0'

adat1' 3.41E-12' -7.29E+00' 4.30E-01' 2.30E-01' 0' 0'

igf2bp1' 9.04E-05' -4.02E+00' 1.87E-08' 5.84E+00' 0' 0'

g3bp2' 3.89E-01' 3.71E-01' 1.61E-02' 2.39E+00' 0' 0'

mars2' 1.54E-01' -1.21E+00' 1.42E-03' -3.25E+00' 0' 0'

lrpprc' 1.12E-02' 2.54E+00' 7.46E-10' 6.41E+00' 0' 0'

igf2bp2' 6.61E-02' 1.72E+00' 6.74E-08' -5.59E+00' 0' 0'

eefsec' 1.16E-06' -5.02E+00' 3.93E-02' 2.00E+00' 0' 0'

igf2bp3' 2.54E-04' -3.74E+00' 1.99E-02' 2.31E+00' 0' 0'

gfm1' 6.09E-07' -5.15E+00' 2.03E-01' -9.93E-01' 0' 0'

eftud1' 3.29E-02' -2.08E+00' 1.43E-06' 4.98E+00' 0' 0'

mbnl2' 3.93E-31' -1.25E+01' 2.03E-01' 1.00E+00' 1' 0'

lsm12' 6.24E-10' -6.45E+00' 6.08E-02' -1.76E+00' 0' 0'

ilf2' 7.30E-08' 5.57E+00' 1.50E-03' 3.22E+00' 0' 0'



! 47!

grb7' 1.50E-03' -3.23E+00' 2.06E-01' -9.80E-01' 0' 0'

mettl1' 4.84E-01' 4.44E-02' 3.97E-02' -1.99E+00' 0' 0'

elavl1' 3.46E-38' -1.41E+01' 4.18E-36' -1.37E+01' 3' 0'

hbp1' 9.85E-02' -1.48E+00' 3.67E-01' -4.73E-01' 0' 0'

elavl2' 1.03E-05' -4.54E+00' 6.22E-09' 6.04E+00' 0' 0'

eif1b' 7.36E-06' -4.62E+00' 1.18E-17' 9.03E+00' 2' 0'

mex3a' 3.50E-03' -2.94E+00' 3.89E-01' -3.71E-01' 0' 0'

hbs1l' 4.58E-01' -1.33E-01' 3.18E-02' 2.11E+00' 0' 0'

elavl3' 6.93E-02' -1.69E+00' 2.16E-03' 3.10E+00' 0' 0'

eif2a' 3.28E-21' -1.00E+01' 5.64E-02' -1.80E+00' 0' 0'

mex3c' 1.18E-05' -4.51E+00' 2.26E-06' 4.88E+00' 0' 0'

ireb2' 3.40E-21' -1.00E+01' 1.81E-03' 3.16E+00' 0' 0'

hdlbp' 1.90E-01' -1.06E+00' 9.36E-08' 5.52E+00' 0' 0'

eif2ak2' 1.03E-05' -4.54E+00' 1.81E-06' -4.93E+00' 0' 0'

jmjd6' 7.44E-04' -3.44E+00' 1.88E-03' 3.15E+00' 0' 0'

hexim1' 1.48E-17' -9.00E+00' 1.59E-07' 5.42E+00' 0' 0'

fubp1' 9.19E-64' -1.94E+01' 9.01E-02' -1.53E+00' 1' 0'

luc71' 5.11E-06' -4.70E+00' 3.81E-01' -4.23E-01' 0' 0'

hexim2' 3.93E-02' -1.99E+00' 4.68E-10' 6.50E+00' 0' 0'

fubp3' 6.80E-03' -2.71E+00' 1.29E-11' -7.07E+00' 0' 0'

eif4b' 8.26E-02' -1.59E+00' 4.44E-01' 1.80E-01' 0' 0'

khdrbs3' 3.31E-01' -5.77E-01' 6.60E-02' 1.72E+00' 0' 0'

hnrnpf' 2.35E-05' -4.35E+00' 4.73E-01' -8.50E-02' 0' 0'

fus' 4.00E-29' -1.21E+01' 1.16E-12' 7.45E+00' 3' 0'

mkrn3' 1.87E-08' -5.84E+00' 4.61E-02' 1.91E+00' 0' 0'

ict1' 3.03E-04' 3.69E+00' 4.16E-01' -2.88E-01' 0' 0'

eif2c2' 4.61E-02' 1.91E+00' 3.53E-06' 4.79E+00' 0' 0'

rg9mtd2' 2.59E-01' 7.99E-01' 1.49E-04' -3.89E+00' 0' 0'

raver2' 3.10E-05' -4.28E+00' 3.78E-01' 4.36E-01' 0' 0'

rnaset2b' 2.49E-10' 6.61E+00' 3.11E-02' -2.12E+00' 0' 0'

rbm5' 2.91E-03' 3.00E+00' 7.19E-02' 1.67E+00' 0' 0'

rbm10' 2.07E-01' 9.69E-01' 3.85E-03' -2.91E+00' 0' 0'

mthfsd' 2.79E-08' -5.76E+00' 3.70E-01' -4.60E-01' 0' 0'

rngtt' 6.93E-25' -1.10E+01' 7.13E-26' -1.13E+01' 2' 0'

rbm6' 4.52E-01' 1.55E-01' 2.75E-02' 2.17E+00' 0' 0'

rmb11' 4.08E-02' 1.97E+00' 1.01E-01' 1.46E+00' 0' 0'

pum2' 4.60E-01' 1.23E-01' 7.99E-02' 1.61E+00' 0' 0'

mtrf1' 2.25E-01' -9.12E-01' 6.39E-04' -3.48E+00' 0' 0'

mrpl11' 4.18E-12' -7.26E+00' 4.29E-01' -2.39E-01' 0' 0'

rnmtl1' 3.86E-07' -5.25E+00' 1.99E-01' 1.03E+00' 0' 0'

rbm12' 3.31E-01' -5.80E-01' 4.86E-03' 2.83E+00' 0' 0'

pus1' 8.14E-12' -7.15E+00' 2.22E-02' 2.26E+00' 0' 0'

pop4' 2.25E-10' 6.62E+00' 4.29E-12' 7.25E+00' 2' 0'
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obfc2a' 2.41E-04' -3.76E+00' 4.86E-01' -3.59E-02' 0' 0'

rbms1' 3.84E-01' -4.11E-01' 1.20E-01' 1.36E+00' 0' 0'

rbm15' 1.38E-127' -3.19E+01' 1.08E-07' 5.49E+00' 1' 1'

pus10' 3.71E-04' -3.63E+00' 1.25E-03' 3.29E+00' 0' 0'

ppargc1b' 1.38E-13' -7.77E+00' 1.14E-01' -1.39E+00' 0' 0'

mrpl16' 4.32E-01' -2.19E-01' 4.41E-01' -1.92E-01' 0' 0'

rbms2' 5.63E-16' -8.52E+00' 1.31E-02' -2.48E+00' 0' 0'

pus3' 1.10E-05' -4.52E+00' 4.73E-01' 8.26E-02' 0' 0'

pabpc4' 4.55E-07' -5.21E+00' 8.43E-02' -1.57E+00' 0' 0'

mrpl2' 7.77E-02' -1.63E+00' 8.73E-02' 1.55E+00' 0' 0'

rbms3' 4.29E-12' -7.25E+00' 1.96E-02' 2.32E+00' 0' 0'

pus7l' 1.57E-16' -8.69E+00' 3.81E-10' -6.53E+00' 0' 0'

mrpl20' 1.45E-64' -1.96E+01' 1.96E-03' 3.14E+00' 1' 0'

rbmx' 9.19E-08' -5.53E+00' 1.54E-02' 2.42E+00' 0' 0'

rbm3' 6.76E-06' -4.64E+00' 4.41E-02' -1.94E+00' 0' 0'

prkcsh' 3.48E-04' 3.65E+00' 1.99E-02' 2.31E+00' 0' 0'

nkrf' 2.84E-07' -5.31E+00' 1.68E-13' 7.74E+00' 2' 0'

mrps17' 3.11E-41' -1.48E+01' 2.03E-01' 9.90E-01' 1' 0'

rbpms' 2.16E-03' -3.11E+00' 8.07E-72' -2.10E+01' 2' 2'

rbm38' 2.95E-09' 6.17E+00' 4.80E-01' 5.77E-02' 0' 0'

raly' 2.23E-13' -7.70E+00' 2.03E-01' -1.00E+00' 0' 0'

prkra' 2.85E-01' -7.14E-01' 1.60E-07' 5.42E+00' 0' 0'

papola' 4.55E-80' -2.26E+01' 1.13E-08' -5.93E+00' 1' 1'

mrps5' 1.46E-03' -3.24E+00' 4.08E-02' -1.97E+00' 0' 0'

rbpms2' 7.99E-02' -1.61E+00' 1.04E-30' -1.24E+01' 2' 0'

rbm4' 5.87E-04' 3.51E+00' 4.95E-02' -1.87E+00' 0' 0'

raly1' 5.64E-02' -1.80E+00' 7.05E-03' -2.70E+00' 0' 0'

prkrip1' 4.34E-10' -6.51E+00' 2.03E-01' -1.00E+00' 0' 0'

mrps6' 3.33E-05' -4.26E+00' 4.05E-12' -7.26E+00' 2' 0'

rdbp' 4.02E-25' -1.11E+01' 3.29E-03' 2.96E+00' 0' 0'

rbm43' 1.23E-16' -8.73E+00' 4.89E-04' 3.56E+00' 0' 0'

park7' 2.85E-04' -3.71E+00' 2.95E-13' 7.65E+00' 2' 0'

rdm1' 1.26E-18' -9.32E+00' 4.29E-01' -2.39E-01' 0' 0'

rbm45' 2.31E-01' -8.90E-01' 4.57E-02' -1.92E+00' 0' 0'

msi2' 2.15E-08' -5.81E+00' 3.28E-01' 5.90E-01' 0' 0'

yipf1' 2.13E-04' 3.79E+00' 3.79E-01' -4.32E-01' 0' 0'

trim32' 6.04E-02' -1.77E+00' 2.80E-01' 7.38E-01' 0' 0'

trmt1' 3.10E-02' -2.12E+00' 3.87E-01' -3.97E-01' 0' 0'

stau1' 8.21E-02' -1.59E+00' 3.54E-01' 5.08E-01' 0' 0'

rpusd4' 1.77E-18' -9.28E+00' 3.36E-01' -5.56E-01' 0' 0'

zcchc12' 3.31E-01' 5.73E-01' 4.29E-01' -2.42E-01' 0' 0'

trmt2a' 1.05E-01' -1.44E+00' 4.28E-01' 2.52E-01' 0' 0'

trove2' 2.46E-02' 2.22E+00' 1.42E-01' 1.26E+00' 0' 0'
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strbp' 2.03E-01' 9.93E-01' 3.87E-01' 3.95E-01' 0' 0'

smarcad1' 1.62E-01' -1.17E+00' 3.67E-01' -4.71E-01' 0' 0'

tsfm' 3.53E-08' -5.71E+00' 1.86E-01' 1.08E+00' 0' 0'

thoc6' 6.61E-02' 1.72E+00' 9.38E-02' 1.51E+00' 0' 0'

sart3' 3.87E-01' 3.90E-01' 2.09E-04' 3.80E+00' 0' 0'

zfp346' 4.62E-18' -9.15E+00' 3.94E-01' 3.55E-01' 0' 0'

thumpd1' 4.93E-01' -1.34E-02' 3.92E-02' -2.00E+00' 0' 0'

sbds' 4.01E-42' -1.50E+01' 2.80E-01' 7.35E-01' 1' 0'

tut1' 6.87E-06' -4.63E+00' 9.01E-02' -1.53E+00' 0' 0'

thumpd3' 2.07E-01' 9.72E-01' 3.89E-01' -3.76E-01' 0' 0'

scaf1' 1.02E-03' 3.35E+00' 3.78E-02' 2.02E+00' 0' 0'

tnrc6a' 8.60E-09' -5.98E+00' 8.13E-02' 1.60E+00' 0' 0'

zrsr2' 1.94E-27' -1.16E+01' 3.21E-02' -2.10E+00' 1' 0'

upf1' 8.57E-05' -4.03E+00' 3.48E-03' 2.94E+00' 0' 0'

tcea3' 2.73E-14' -8.00E+00' 3.99E-01' -3.39E-01' 0' 0'

xpo5' 2.03E-01' 1.01E+00' 1.57E-01' 1.19E+00' 0' 0'

traf6' 1.01E-04' -3.99E+00' 1.94E-01' -1.04E+00' 0' 0'

tceal5' 1.32E-02' -2.47E+00' 1.46E-01' 1.24E+00' 0' 0'

snupn' 4.37E-63' -1.93E+01' 3.39E-04' -3.66E+00' 1' 0'

trdmt1' 2.91E-03' -3.01E+00' 3.21E-02' 2.10E+00' 0' 0'

tdrd3' 6.93E-02' 1.69E+00' 1.64E-03' -3.20E+00' 0' 0'

ybx2' 1.52E-34' -1.33E+01' 5.16E-06' 4.70E+00' 1' 0'

trim3' 3.41E-02' -2.06E+00' 2.03E-01' 9.99E-01' 0' 0'

tdrd7' 2.70E-03' -3.03E+00' 1.30E-01' -1.32E+00' 0' 0'
Table'2.1.'Results'for'RBP'testing'combined'across'all'plates.''
The!RBPs!more!significant!than!the!dfect!are!highlighted!in!Green!and!the!ones!more!significant!than!nothing!are!

highlighted! in!Yellow;!the! last! two!columns!of!each!sheet!are!the!significance!cutoff!columns!for!the!dfect!and!

nothing! controls,! respectively,!with!0!being!not! significant,! 1!being! significant! for!GFP,! 2!being! significant! for!

RFP,!and!3!being!significant!for!both.!
!

Plates% Gene%
GFP%
qvalue%

GFP%
tstatistic%

RFP%
qvalue%

RFP%
tstatistic%

Significant%RBPs%
from%dfect%

Significant%RBPs%
from%nothing%

Plate'4a' 1190005f20rik' 2.85E-08'
-

6.88E+00'
4.70E-

01' -3.40E-02' 1' 1'

Plate'4a' 1700021f05rik' 2.29E-03' 3.24E+00'
1.08E-

01' 1.39E+00' 0' 0'

Plate'4a' 1810035l17rik' 4.13E-06'
-

5.35E+00'
3.77E-

01' 3.57E-01' 1' 1'

Plate'4a' b020018g12rik' 5.17E-04'
-

3.78E+00'
3.12E-

03' 3.12E+00' 1' 0'

Plate'4a' baz2a' 2.27E-05'
-

4.82E+00'
1.19E-

01' -1.32E+00' 1' 1'

Plate'4a' cpeb1' 3.94E-01' 2.89E-01'
9.40E-

04' 3.56E+00' 2' 2'

Plate'4a' cstf2' 3.82E-01' 3.41E-01'
4.40E-

02' 1.94E+00' 0' 0'

Plate'4a' d1pas1' 1.95E-01'
-9.80E-

01'
6.48E-

02' 1.72E+00' 0' 0'

Plate'4a' ddx3x' 2.83E-02' - 2.76E- -4.00E+00' 2' 2'
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2.17E+00' 04'

Plate'4a' dfect' 6.74E-02' 1.68E+00'
2.47E-

01' -7.81E-01' 0' 0'

Plate'4a' dhx29' 3.68E-01'
-3.93E-

01'
4.70E-

01' -4.63E-02' 0' 0'

Plate'4a' dis3l2' 3.32E-01'
-5.02E-

01'
7.47E-

02' 1.62E+00' 0' 0'

Plate'4a' l2i' 4.88E-15'
-

1.10E+01'
2.17E-

02' 2.29E+00' 1' 1'

Plate'4a' nothing' 4.50E-04' 3.78E+00'
8.04E-

03' -2.71E+00' 1' 0'

Plate'4a' sigfp' 2.69E-19'
-

1.40E+01'
7.08E-

02' 1.65E+00' 1' 1'

Plate'4b' anks1' 4.34E-01' 1.63E-01'
2.31E-

05' 4.81E+00' 2' 2'

Plate'4b' apex1' 6.61E-07'
-

5.93E+00'
3.76E-

02' -2.03E+00' 1' 1'

Plate'4b' c030048b08rik' 1.01E-05'
-

5.08E+00'
2.67E-

05' 4.76E+00' 3' 3'

Plate'4b' cryz' 3.76E-12'
-

9.56E+00'
2.77E-

01' 6.74E-01' 1' 1'

Plate'4b' dclre1b' 7.61E-02'
-

1.61E+00'
3.92E-

01' -3.00E-01' 0' 0'

Plate'4b' dfect' 7.43E-03' 2.74E+00'
1.47E-

01' -1.19E+00' 0' 0'

Plate'4b' dhx32' 7.84E-02'
-

1.59E+00'
2.97E-

01' -6.08E-01' 0' 0'

Plate'4b' l2i' 2.86E-13'
-

9.82E+00'
2.57E-

02' 2.21E+00' 1' 1'

Plate'4b' nothing' 4.23E-05' 4.54E+00'
2.28E-

03' -3.22E+00' 1' 0'

Plate'4b' sigfp' 1.93E-14'
-

1.06E+01'
4.64E-

03' 2.94E+00' 1' 1'

Plate'4c' adar' 3.02E-15'
-

1.19E+01'
2.32E-

03' 3.24E+00' 1' 1'

Plate'4c' adat1' 1.05E-06'
-

5.77E+00'
3.83E-

01' 3.34E-01' 1' 0'

Plate'4c' ascc1' 5.09E-11'
-

8.75E+00'
3.93E-

01' -2.96E-01' 1' 1'

Plate'4c' cbx8' 1.38E-04'
-

4.22E+00'
3.65E-

03' -3.06E+00' 1' 0'

Plate'4c' csad' 2.17E-02'
-

2.31E+00'
1.12E-

01' 1.36E+00' 0' 0'

Plate'4c' csda' 3.21E-01' 5.33E-01'
1.69E-

01' 1.09E+00' 0' 0'

Plate'4c' denr' 2.87E-01' 6.41E-01'
4.78E-

01' 3.90E-03' 0' 0'

Plate'4c' dfect' 5.56E-03' 2.87E+00'
2.95E-

02' -2.14E+00' 0' 0'

Plate'4c' l2i' 7.48E-19'
-

1.36E+01'
2.38E-

02' 2.25E+00' 1' 1'

Plate'4c' nothing' 5.77E-07' 5.83E+00'
3.38E-

05' -4.61E+00' 3' 0'

Plate'4c' sigfp' 2.69E-23'
-

1.72E+01'
1.15E-

01' 1.34E+00' 1' 1'

Plate'5a' dfect' 7.06E-02' 1.66E+00'
7.01E-

05' -4.38E+00' 0' 0'

Plate'5a' eefsec' 1.53E-05' - 4.40E- 1.94E+00' 1' 0'
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4.94E+00' 02'

Plate'5a' eftud1' 2.56E-02'
-

2.22E+00'
3.23E-

05' 4.70E+00' 2' 0'

Plate'5a' g3bp2' 3.89E-01' 3.14E-01'
1.81E-

02' 2.39E+00' 0' 0'

Plate'5a' gfm1' 2.89E-06'
-

5.47E+00'
1.78E-

01' -1.05E+00' 1' 1'

Plate'5a' grb7' 1.26E-03'
-

3.46E+00'
1.79E-

01' -1.04E+00' 0' 0'

Plate'5a' igf2bp1' 1.32E-04'
-

4.23E+00'
1.05E-

06' 5.78E+00' 3' 0'

Plate'5a' igf2bp2' 7.29E-02' 1.64E+00'
1.86E-

04' -4.12E+00' 0' 0'

Plate'5a' igf2bp3' 2.80E-04'
-

3.99E+00'
3.86E-

02' 2.02E+00' 1' 0'

Plate'5a' ilf2' 1.01E-06' 5.80E+00'
3.13E-

03' 3.12E+00' 1' 1'

Plate'5a' l2i' 1.34E-21'
-

1.57E+01'
1.20E-

04' -4.21E+00' 1' 1'

Plate'5a' lrpprc' 1.26E-02' 2.54E+00'
1.21E-

07' 6.44E+00' 2' 0'

Plate'5a' lsm12' 1.24E-07'
-

6.43E+00'
1.40E-

01' -1.22E+00' 1' 1'

Plate'5a' mars2' 1.15E-01'
-

1.34E+00'
3.04E-

03' -3.13E+00' 0' 0'

Plate'5a' mbnl2' 2.70E-14'
-

1.11E+01'
2.00E-

01' 9.54E-01' 1' 1'

Plate'5a' nothing' 8.47E-06' 5.04E+00'
2.73E-

14' -1.05E+01' 3' 0'

Plate'5a' sigfp' 1.31E-20'
-

1.49E+01'
1.61E-

02' 2.43E+00' 1' 1'

Plate'5b' dfect' 1.91E-02' 2.35E+00'
6.49E-

03' -2.81E+00' 0' 0'

Plate'5b' eif1b' 1.53E-05'
-

4.94E+00'
4.81E-

11' 8.78E+00' 3' 2'

Plate'5b' eif2a' 8.73E-13'
-

1.00E+01'
5.02E-

02' -1.87E+00' 1' 1'

Plate'5b' eif2ak2' 7.21E-05'
-

4.43E+00'
4.38E-

05' -4.59E+00' 3' 0'

Plate'5b' elavl1' 1.42E-14'
-

1.14E+01'
7.11E-

10' -7.97E+00' 3' 3'

Plate'5b' elavl2' 4.49E-05'
-

4.58E+00'
8.02E-

07' 5.87E+00' 3' 0'

Plate'5b' elavl3' 5.02E-02'
-

1.87E+00'
5.30E-

03' 2.91E+00' 0' 0'

Plate'5b' hbp1' 7.29E-02'
-

1.64E+00'
3.07E-

01' -5.75E-01' 0' 0'

Plate'5b' hbs1l' 4.13E-01'
-2.25E-

01'
4.09E-

02' 1.99E+00' 0' 0'

Plate'5b' hdlbp' 1.55E-01'
-

1.15E+00'
5.22E-

06' 5.28E+00' 2' 0'

Plate'5b' ireb2' 1.39E-13'
-

1.06E+01'
4.14E-

03' 3.01E+00' 1' 1'

Plate'5b' l2i' 2.68E-20'
-

1.47E+01'
4.18E-

02' -1.96E+00' 1' 1'

Plate'5b' mettl1' 4.70E-01'
-3.95E-

02'
7.47E-

02' -1.62E+00' 0' 0'

Plate'5b' mex3a' 2.94E-03' - 3.38E- -4.78E-01' 0' 0'
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3.14E+00' 01'

Plate'5b' mex3c' 4.23E-05'
-

4.61E+00'
9.10E-

05' 4.35E+00' 3' 0'

Plate'5b' nothing' 8.16E-08' 6.39E+00'
2.63E-

08' -6.70E+00' 3' 0'

Plate'5b' sigfp' 1.74E-22'
-

1.65E+01'
5.94E-

02' 1.77E+00' 1' 1'

Plate'5c' dfect' 1.83E-02' 2.37E+00'
2.05E-

02' -2.32E+00' 0' 0'

Plate'5c' eif2c2' 7.06E-02' 1.66E+00'
8.32E-

05' 4.38E+00' 2' 0'

Plate'5c' eif4b' 1.09E-01'
-

1.38E+00'
3.90E-

01' 3.07E-01' 0' 0'

Plate'5c' fubp1' 2.79E-17'
-

1.35E+01'
1.78E-

01' -1.05E+00' 1' 1'

Plate'5c' fubp3' 1.91E-02'
-

2.36E+00'
1.32E-

06' -5.71E+00' 2' 2'

Plate'5c' fus' 1.13E-11'
-

9.23E+00'
4.19E-

09' 7.43E+00' 3' 3'

Plate'5c' hexim1' 2.06E-09'
-

7.65E+00'
1.01E-

05' 5.08E+00' 3' 1'

Plate'5c' hexim2' 6.36E-02'
-

1.74E+00'
2.21E-

07' 6.26E+00' 2' 2'

Plate'5c' hnrnpf' 8.41E-04'
-

3.60E+00'
4.70E-

01' 3.71E-02' 1' 0'

Plate'5c' ict1' 2.48E-03' 3.21E+00'
4.38E-

01' -1.49E-01' 0' 0'

Plate'5c' jmjd6' 7.37E-03'
-

2.77E+00'
2.54E-

03' 3.20E+00' 0' 0'

Plate'5c' khdrbs3' 3.35E-01'
-4.88E-

01'
5.84E-

02' 1.78E+00' 0' 0'

Plate'5c' l2i' 1.35E-27'
-

2.12E+01'
7.29E-

02' -1.63E+00' 1' 1'

Plate'5c' luc71' 2.88E-04'
-

3.98E+00'
3.96E-

01' -2.80E-01' 1' 0'

Plate'5c' mkrn3' 1.53E-05'
-

4.94E+00'
5.06E-

02' 1.86E+00' 1' 1'

Plate'5c' nothing' 7.21E-05' 4.36E+00'
1.32E-

06' -5.58E+00' 3' 0'

Plate'5c' sigfp' 9.49E-27'
-

2.03E+01'
2.82E-

02' 2.16E+00' 1' 1'

Plate'6a' dfect' 4.74E-06' 5.21E+00'
4.18E-

02' -1.96E+00' 0' 0'

Plate'6a' l2i' 2.46E-27'
-

2.09E+01'
4.07E-

02' 1.98E+00' 1' 1'

Plate'6a' mrpl11' 1.53E-09'
-

7.74E+00'
3.77E-

01' -3.69E-01' 1' 0'

Plate'6a' mthfsd' 1.02E-06'
-

5.79E+00'
2.98E-

01' -6.03E-01' 1' 0'

Plate'6a' mtrf1' 1.81E-01'
-

1.03E+00'
5.61E-

04' -3.75E+00' 2' 0'

Plate'6a' nothing' 1.35E-11' 8.75E+00'
1.02E-

05' -4.98E+00' 3' 0'

Plate'6a' obfc2a' 2.55E-04'
-

4.02E+00'
4.41E-

01' -1.39E-01' 0' 0'

Plate'6a' pop4' 4.80E-08' 6.72E+00'
1.64E-

07' 6.35E+00' 3' 2'

Plate'6a' pum2' 4.70E-01' 3.22E-02' 7.83E- 1.59E+00' 0' 0'
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02'

Plate'6a' pus1' 9.78E-08'
-

6.51E+00'
2.45E-

02' 2.24E+00' 1' 0'

Plate'6a' raver2' 4.24E-05'
-

4.61E+00'
3.77E-

01' 3.58E-01' 0' 0'

Plate'6a' rbm10' 2.08E-01' 9.24E-01'
7.34E-

03' -2.77E+00' 0' 0'

Plate'6a' rbm12' 2.72E-01'
-6.93E-

01'
5.73E-

03' 2.88E+00' 0' 0'

Plate'6a' rbm5' 3.65E-03' 3.06E+00'
7.29E-

02' 1.64E+00' 0' 0'

Plate'6a' rbm6' 4.68E-01' 6.46E-02'
2.58E-

02' 2.21E+00' 0' 0'

Plate'6a' rg9mtd2' 2.59E-01' 7.40E-01'
3.28E-

04' -3.93E+00' 2' 0'

Plate'6a' rmb11' 4.17E-02' 1.98E+00'
9.82E-

02' 1.45E+00' 0' 0'

Plate'6a' rnaset2b' 1.18E-07' 6.45E+00'
5.58E-

02' -1.81E+00' 1' 0'

Plate'6a' rngtt' 4.91E-14'
-

1.09E+01'
2.25E-

06' -5.54E+00' 3' 3'

Plate'6a' rnmtl1' 4.19E-06'
-

5.35E+00'
2.44E-

01' 7.99E-01' 1' 0'

Plate'6a' sigfp' 2.46E-27'
-

2.09E+01'
3.92E-

03' 3.01E+00' 1' 1'

Plate'6b' dfect' 1.78E-05' 4.81E+00'
7.84E-

02' -1.58E+00' 0' 0'

Plate'6b' l2i' 4.94E-51'
-

5.86E+01'
9.33E-

02' 1.48E+00' 1' 1'

Plate'6b' mrpl16' 3.96E-01'
-2.75E-

01'
4.68E-

01' -6.12E-02' 0' 0'

Plate'6b' mrpl2' 6.40E-02'
-

1.72E+00'
5.71E-

02' 1.80E+00' 0' 0'

Plate'6b' mrpl20' 2.79E-23'
-

1.91E+01'
1.25E-

02' 2.55E+00' 1' 1'

Plate'6b' mrps17' 5.83E-18'
-

1.41E+01'
1.60E-

01' 1.13E+00' 1' 1'

Plate'6b' nkrf' 6.10E-06'
-

5.23E+00'
2.77E-

10' 8.25E+00' 3' 2'

Plate'6b' nothing' 4.35E-11' 8.44E+00'
5.54E-

07' -5.85E+00' 3' 0'

Plate'6b' pabpc4' 3.63E-06'
-

5.39E+00'
9.91E-

02' -1.45E+00' 1' 0'

Plate'6b' ppargc1b' 1.72E-09'
-

7.70E+00'
1.16E-

01' -1.34E+00' 1' 0'

Plate'6b' prkcsh' 6.95E-04' 3.67E+00'
1.07E-

02' 2.61E+00' 0' 0'

Plate'6b' pus10' 6.57E-04'
-

3.69E+00'
1.35E-

03' 3.43E+00' 0' 0'

Plate'6b' pus3' 3.78E-05'
-

4.65E+00'
4.16E-

01' 2.15E-01' 0' 0'

Plate'6b' pus7l' 5.66E-11'
-

8.71E+00'
1.60E-

05' -4.92E+00' 3' 0'

Plate'6b' rbm15' 3.82E-30'
-

2.80E+01'
1.02E-

06' 5.79E+00' 3' 1'

Plate'6b' rbm3' 6.73E-05'
-

4.46E+00'
6.40E-

02' -1.73E+00' 0' 0'

Plate'6b' rbms1' 3.39E-01' -4.72E- 7.61E- 1.61E+00' 0' 0'
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01' 02'

Plate'6b' rbms2' 4.87E-11'
-

8.77E+00'
4.40E-

02' -1.94E+00' 1' 0'

Plate'6b' rbms3' 3.47E-09'
-

7.50E+00'
1.04E-

02' 2.63E+00' 1' 0'

Plate'6b' rbmx' 1.38E-06'
-

5.68E+00'
7.92E-

03' 2.74E+00' 1' 0'

Plate'6b' sigfp' 5.43E-42'
-

4.01E+01'
4.33E-

03' 2.97E+00' 1' 1'

Plate'6c' dfect' 6.54E-03' 2.80E+00'
2.23E-

02' -2.27E+00' 0' 0'

Plate'6c' l2i' 2.30E-37'
-

3.28E+01'
6.62E-

02' 1.70E+00' 1' 1'

Plate'6c' mrps5' 5.12E-03'
-

2.92E+00'
6.06E-

02' -1.76E+00' 0' 0'

Plate'6c' mrps6' 5.48E-04'
-

3.76E+00'
1.14E-

07' -6.47E+00' 3' 2'

Plate'6c' msi2' 6.00E-06'
-

5.24E+00'
2.56E-

01' 7.53E-01' 1' 0'

Plate'6c' nothing' 4.47E-08' 6.55E+00'
1.32E-

06' -5.58E+00' 3' 0'

Plate'6c' papola' 2.28E-22'
-

1.82E+01'
6.10E-

05' -4.49E+00' 3' 1'

Plate'6c' park7' 1.74E-03'
-

3.34E+00'
1.35E-

09' 7.78E+00' 2' 2'

Plate'6c' prkra' 2.93E-01'
-6.21E-

01'
3.90E-

07' 6.10E+00' 2' 2'

Plate'6c' prkrip1' 6.83E-07'
-

5.92E+00'
2.58E-

01' -7.47E-01' 1' 0'

Plate'6c' raly' 4.26E-08'
-

6.76E+00'
2.37E-

01' -8.23E-01' 1' 1'

Plate'6c' raly1' 8.77E-02'
-

1.52E+00'
1.10E-

02' -2.60E+00' 0' 0'

Plate'6c' rbm38' 1.38E-06' 5.68E+00'
3.89E-

01' 3.15E-01' 1' 0'

Plate'6c' rbm4' 2.60E-03' 3.19E+00'
6.40E-

02' -1.73E+00' 0' 0'

Plate'6c' rbm43' 7.32E-10'
-

7.96E+00'
3.68E-

04' 3.89E+00' 3' 1'

Plate'6c' rbm45' 2.47E-01'
-7.83E-

01'
5.61E-

02' -1.81E+00' 0' 0'

Plate'6c' rbpms' 7.11E-03'
-

2.79E+00'
2.96E-

13' -1.03E+01' 2' 2'

Plate'6c' rbpms2' 9.96E-02'
-

1.44E+00'
3.78E-

14' -1.10E+01' 2' 2'

Plate'6c' rdbp' 1.13E-11'
-

9.23E+00'
2.92E-

03' 3.15E+00' 1' 1'

Plate'6c' rdm1' 5.13E-10'
-

8.07E+00'
4.78E-

01' 3.12E-03' 1' 1'

Plate'6c' sigfp' 6.87E-24'
-

1.77E+01'
2.63E-

01' 7.26E-01' 1' 1'

Plate'7a' dfect' 6.33E-04' 3.60E+00'
4.54E-

02' -1.90E+00' 0' 0'

Plate'7a' l2i' 9.29E-21'
-

1.51E+01'
1.11E-

05' 4.95E+00' 3' 3'

Plate'7a' nothing' 4.49E-05' 4.51E+00'
9.96E-

02' -1.44E+00' 1' 0'

Plate'7a' rpusd4' 1.21E-11' - 1.97E- -9.69E-01' 1' 1'
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9.20E+00' 01'

Plate'7a' sigfp' 1.03E-23'
-

1.75E+01'
2.67E-

01' 7.11E-01' 1' 1'

Plate'7a' smarcad1' 1.06E-01'
-

1.40E+00'
2.18E-

01' -8.92E-01' 0' 0'

Plate'7a' stau1' 5.21E-02'
-

1.85E+00'
4.72E-

01' -2.37E-02' 0' 0'

Plate'7a' strbp' 2.47E-01' 7.89E-01'
4.45E-

01' -1.25E-01' 0' 0'

Plate'7a' trim32' 3.81E-02'
-

2.03E+00'
4.28E-

01' 1.81E-01' 0' 0'

Plate'7a' trmt1' 1.78E-02'
-

2.40E+00'
2.35E-

01' -8.32E-01' 0' 0'

Plate'7a' trmt2a' 6.74E-02'
-

1.69E+00'
4.04E-

01' -2.51E-01' 0' 0'

Plate'7a' trove2' 3.69E-02' 2.04E+00'
2.85E-

01' 6.47E-01' 0' 0'

Plate'7a' yipf1' 8.54E-04' 3.60E+00'
2.26E-

01' -8.62E-01' 0' 0'

Plate'7a' zcchc12' 3.77E-01' 3.57E-01'
2.72E-

01' -6.94E-01' 0' 0'

Plate'7b' dfect' 3.15E-04' 3.83E+00'
1.67E-

03' -3.28E+00' 0' 0'

Plate'7b' l2i' 1.26E-27'
-

2.13E+01'
8.35E-

05' 4.32E+00' 3' 3'

Plate'7b' nothing' 2.85E-08' 6.68E+00'
1.48E-

01' -1.18E+00' 1' 0'

Plate'7b' sart3' 3.77E-01' 3.66E-01'
3.69E-

04' 3.89E+00' 2' 2'

Plate'7b' sbds' 1.91E-16'
-

1.28E+01'
2.72E-

01' 6.92E-01' 1' 1'

Plate'7b' scaf1' 1.44E-03' 3.41E+00'
3.86E-

02' 2.02E+00' 0' 0'

Plate'7b' sigfp' 1.20E-20'
-

1.50E+01'
4.70E-

01' 3.43E-02' 1' 1'

Plate'7b' thoc6' 6.40E-02' 1.73E+00'
9.03E-

02' 1.50E+00' 0' 0'

Plate'7b' thumpd1' 4.70E-01'
-5.21E-

02'
2.57E-

02' -2.22E+00' 0' 0'

Plate'7b' thumpd3' 2.00E-01' 9.54E-01'
3.35E-

01' -4.89E-01' 0' 0'

Plate'7b' tnrc6a' 4.53E-07'
-

6.05E+00'
8.62E-

02' 1.53E+00' 1' 0'

Plate'7b' tsfm' 6.61E-07'
-

5.93E+00'
1.79E-

01' 1.04E+00' 1' 0'

Plate'7b' tut1' 2.65E-05'
-

4.76E+00'
6.56E-

02' -1.71E+00' 1' 0'

Plate'7b' zfp346' 9.13E-09'
-

7.21E+00'
3.96E-

01' 2.77E-01' 1' 1'

Plate'7c' dfect' 1.34E-05' 4.73E+00'
6.80E-

03' -2.75E+00' 0' 0'

Plate'7c' l2i' 4.59E-30'
-

2.38E+01'
3.35E-

06' 5.31E+00' 3' 3'

Plate'7c' nothing' 4.07E-07' 5.93E+00'
1.15E-

02' -2.57E+00' 1' 0'

Plate'7c' sigfp' 1.80E-25'
-

1.91E+01'
4.17E-

02' 1.97E+00' 1' 1'

Plate'7c' snupn' 2.89E-22' - 4.73E- -3.81E+00' 3' 3'
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1.80E+01' 04'

Plate'7c' tcea3' 3.82E-09'
-

7.46E+00'
3.81E-

01' -3.46E-01' 1' 1'

Plate'7c' tceal5' 2.22E-02'
-

2.29E+00'
1.08E-

01' 1.39E+00' 0' 0'

Plate'7c' tdrd3' 5.42E-02' 1.83E+00'
1.29E-

03' -3.45E+00' 0' 0'

Plate'7c' tdrd7' 7.19E-03'
-

2.78E+00'
1.06E-

01' -1.40E+00' 0' 0'

Plate'7c' traf6' 6.44E-04'
-

3.70E+00'
1.63E-

01' -1.11E+00' 0' 0'

Plate'7c' trdmt1' 6.60E-03'
-

2.82E+00'
2.19E-

02' 2.30E+00' 0' 0'

Plate'7c' trim3' 4.76E-02'
-

1.90E+00'
1.62E-

01' 1.12E+00' 0' 0'

Plate'7c' upf1' 1.01E-03'
-

3.54E+00'
6.54E-

03' 2.82E+00' 0' 0'

Plate'7c' xpo5' 1.53E-01' 1.16E+00'
1.20E-

01' 1.32E+00' 0' 0'

Plate'7c' ybx2' 2.32E-15'
-

1.20E+01'
2.36E-

05' 4.80E+00' 3' 3'

Plate'7c' zrsr2' 1.08E-14'
-

1.15E+01'
2.83E-

02' -2.17E+00' 1' 1'
Table'2.2.'Results'for'RBP'testing'per'plate.''
The!RBPs!more!significant!than!the!dfect!are!highlighted!in!Green!and!the!ones!more!significant!than!nothing!are!

highlighted! in!Yellow;!the! last! two!columns!of!each!sheet!are!the!significance!cutoff!columns!for!the!dfect!and!

nothing! controls,! respectively,!with!0!being!not! significant,! 1!being! significant! for!GFP,! 2!being! significant! for!

RFP,!and!3!being!significant!for!both.!
!

!

Alternative!splicing!event!

type!

Number!of!events! Significant!events!(different!

in!Rev!vs.!KO)!

Skipped!exon! 20,249! 353!

Mutually!exclusive!exon! 2,594! 40!

Alternative!5’!splice!site! 3,623! 24!

Alternative!3’!splice!site! 4,306! 26!

Retained!intron! 4,071! 19!

Table'2.3.'MATS'results'for'occurrence'of'isoform'events.'
!

!
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!
Table'2.4.'Significant'miRNAs'
!

mirna change statistic pvalue
mmu#miR#335#5p #46.98 #22.75 0
mmu#miR#381#3p 165.6 22.186 0
mmu#miR#335#3p #57.06 #17.386 0.0001
mmu#miR#27a#3p #32.78 #15.369 0.0002
mmu#miR#7a#5p 35.98 14.61 0.0002
mmu#miR#186#5p 79.15 13.757 0.0002
mmu#miR#181d#5p #38.14 #13.639 0.0002
mmu#miR#3473d 23.98 12.11 0.0004
mmu#miR#200b#3p 44 10.162 0.0007
mmu#miR#9#5p #27.61 #9.354 0.001
mmu#miR#544#3p 19.42 9.15 0.0011
mmu#miR#142a#5p #65.74 #9.112 0.0011
mmu#miR#410#3p 27.14 9.07 0.0011
mmu#miR#293#5p #85.79 #9.01 0.0011
mmu#miR#142a#3p #62.29 #8.927 0.0012
mmu#miR#182#5p #137.55 #8.723 0.0013
mmu#miR#341#3p 41.17 8.533 0.0014
mmu#miR#1954 18.67 8.068 0.0017
mmu#miR#493#3p 19.65 7.981 0.0017
mmu#miR#24#2#5p #16.61 #7.921 0.0018
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!
Table'2.5.'Significant'cisLtranscribed'miRNA'clusters.'
!

Family Members change statistic pvalue padj

miR-134-5p; miR-134-3p; miR-154-5p; miR-154-
3p; miR-299a-3p; miR-299a-5p; miR-300-3p; miR-
323-5p; miR-323-3p; miR-329-3p; miR-329-5p; 
miR-376a-3p; miR-376a-5p; miR-377-3p; miR-377-
5p; miR-379-5p; miR-379-3p; miR-380-5p; miR-
380-3p; miR-381-3p; miR-382-5p; miR-382-3p; 
miR-409-5p; miR-409-3p; miR-410-3p; miR-376b-
3p; miR-376b-5p; miR-411-3p; miR-411-5p; miR-
412-5p; miR-485-5p; miR-485-3p; miR-543-3p; 
miR-543-5p; miR-539-5p; miR-541-3p; miR-541-
5p; miR-494-3p; miR-376c-3p; miR-487b-3p; miR-
369-5p; miR-369-3p; miR-758-5p; miR-758-3p; 
miR-668-3p; miR-667-3p; miR-667-5p; miR-666-
5p; miR-666-3p; miR-496a-3p; miR-679-5p; miR-
495-3p; miR-544-3p; miR-1193-5p; miR-1193-3p; 
miR-1197-3p

15.763 8.506 0 0

miR-470-5p; miR-871-3p; miR-881-3p; miR-465c-
5p -9.859 -12.226 0 0

miR-335-3p; miR-335-5p -52.018 -20.951 0 0

miR-23a-3p; miR-24-2-5p; miR-27a-3p; miR-27a-
5p -18.204 -7.939 0 0

miR-127-3p; miR-127-5p; miR-136-5p; miR-136-
3p; miR-337-5p; miR-337-3p; miR-431-3p; miR-
431-5p; miR-433-3p; miR-433-5p; miR-434-5p; 
miR-434-3p; miR-540-3p; miR-665-3p; miR-673-
3p; miR-673-5p; miR-493-3p

13.545 5.43 0 0

miR-142a-3p; miR-142a-5p -64.013 -13.162 0 0

miR-181c-5p; miR-181c-3p; miR-181d-5p -31.233 -7.525 0 0.0001

miR-106a-5p; miR-363-3p; miR-363-5p; miR-20b-
3p; miR-20b-5p; miR-18b-5p 13.144 5.191 0 0.0001

miR-200b-3p; miR-200a-5p; miR-200a-3p; miR-
429-3p 27.089 6.413 0 0.0001

miR-582-3p; miR-582-5p 9.62 6.631 0.0002 0.0024

miR-3473d 23.976 11.725 0.0002 0.0025

miR-196a-1-3p; miR-196a-5p 11.567 5.926 0.0004 0.0043

miR-423-3p; miR-423-5p 12.082 5.803 0.0004 0.0046

miR-9-5p -27.615 -9.558 0.0005 0.0046

miR-28a-5p; miR-28a-3p 18.295 5.644 0.0005 0.0047

miR-23b-3p; miR-27b-3p; miR-27b-5p; miR-24-
3p; miR-24-1-5p 14.033 4.046 0.0007 0.0059

miR-1954 18.666 8.013 0.0009 0.0077

miR-341-3p; miR-341-5p; miR-370-3p 20.744 4.186 0.001 0.0077

miR-1191a 17.459 7.63 0.0012 0.0086

miR-182-5p; miR-183-5p; miR-183-3p; miR-96-3p; 
miR-96-5p

-42.119 -3.447 0.0027 0.0185
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!
Table'2.6.'Significant'targetscanLdefined'miRNA'clusters.'
!

!

!

!

! !

miRNA family change statistic pvalue

miR-300/381/539-3p 165.6 21.827 0

miR-335/335-5p -46.98 -19.662 0.0001

miR-335-3p -57.06 -16.292 0.0001

miR-186 79.15 13.422 0.0003

miR-7/7ab 35.98 13.117 0.0003

miR-674/674-5p/3473d 22.92 9.755 0.0009

miR-142-5p -65.74 -8.957 0.0012

miR-142-3p -62.29 -8.767 0.0013

miR-200bc/429/548a 44.23 8.728 0.0013

miR-182 -137.55 -8.665 0.0013

miR-9/9ab -27.61 -8.649 0.0013

miR-410/344de/344b-1-
3p 27.14 8.402 0.0015

miR-341 41.17 8.255 0.0016

miR-544/544ab/544-3p 19.42 7.961 0.0018

miR-181abcd/4262 -53.52 -7.656 0.0021

miR-28-
5p/708/1407/1653/3139 22.35 7.474 0.0023

miR-380-3p 58.06 7.27 0.0025

miR-493/493b 19.65 7.166 0.0026

miR-1954/3158-5p 18.67 7.155 0.0026

miR-673-5p 42.87 7.12 0.0027
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Chapter 3: Inferring tumor evolution through 

heterogeneity of the epigenome  
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IMPORTANCE'OF'STUDYING'CANCER 

Cancer is a vastly complex disease exhibiting a plethora of genomic alterations and 

resulting regulatory failures at the root of its progression. Following the milestone of the 

Human Genome Project era, researchers are now focusing on integrating the rich 

genome-wide association studies (GWAS), single-nucleotide polymorphism (SNP) data, 

and identified gene signatures within the in vitro, in vivo and clinical frameworks to 

further our understanding of the molecular mechanisms of carcinogenesis. More recently, 

the study of epigenetic changes that occur during carcinogenesis is rapidly developing 

into an important research field. For example, epigenetic silencing that occurs through the 

CpG island methylator phenotype (CIMP) embodies a novel viewpoint in cancer 

diagnosis and therapy [40]. The dynamic co-dependencies between genomics, epigenetic 

signatures, and post-translational modifications contribute to the complicated regulation 

of tumor progression. Additionally, the regulatory effect of non-coding RNAs, such as 

microRNAs, has been also implicated in the malignant signaling networks. While the 

information derived from novel technologies becomes abundant, the current challenge 

lies in the ability to effectively and rigorously integrate and analyze such diverse data 

types to create biological insights and actionable translational solutions that improve 

cancer therapy strategies [41, 42]. 

 

TUMOR HETEROGENEITY  

At the time a patient is first diagnosed with cancer, the tumor may be composed of tens of 

millions of cells. These cell populations have already diversified, producing a tumor that 

can be highly heterogeneous. Such intratumoral heterogeneity (ITH) has been observed in 
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spatially distinct regions of solid tumors [43-46] and among individual cells in solid 

tumors or leukemias [47-52]. Profiling ITH provides a powerful opportunity to trace back 

through the formation of the malignancy and reconstruct the tumor’s evolution, allowing 

for the discovery of tumor initiating events and subsequent stepwise development of 

malignant subclones [53, 54]. 

 

In addition to genomic alterations, tumor formation involves the co-evolution of cancer 

cells together with its stroma – the extracellular matrix, vasculature and immune cells. 

Successful outgrowth of tumors and eventual metastasis is thus determined not only by 

oncogenic mutations, but also by the fitness advantage such alterations confer in a given 

environment. As fitness is context dependent, evaluating tumors as complete organs, and 

not simply as masses of transformed cells, becomes essential. Through such studies, it 

became apparent that the dynamic tumor topography varies drastically even throughout 

the same lesion, and moreover, that the heterologous cell types within tumors and its 

environment can actively influence therapeutic response and treatment resistance [55]. 

 

It has been shown that ITH present at diagnosis may be altered by cytotoxic or targeted 

cancer therapies that exert additional selective pressure, promoting outgrowth of one or 

more therapy-resistant tumor cell clones [56]. Therapeutic interventions could therefore 

lead to contraction of ITH in some cases or expansion in others, influencing response to 

subsequent therapies and patient outcome. In most ITH studies, however, only a small 

fraction of the whole tumor is available for analysis. Furthermore, for most ITH studies 
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the samples lack information on where within the heterogeneous tumor they were 

obtained.  

 

GLIOMAS 

Diffuse low-grade and intermediate-grade gliomas (World Health Organization [WHO] 

grades II and III, hereafter called lower-grade gliomas) are infiltrative neoplasms that 

arise predominantly in the cerebral hemispheres of adults and include astrocytomas, 

oligodendrogliomas, and oligoastrocytomas [57, 58]. Due to their highly invasive nature, 

total neurosurgical resection is often not possible. The presence of residual tumor is thus 

the leading cause of recurrence and malignant progression. The treatment options are 

decided based on factors such as the extent of the tumor resection, tumor grade and the 

presence of metastatic disease, and include clinical monitoring, chemo- and radio-therapy 

[59-63]. Given these strategies, the rate of recurrence is highly variable [64-66]; a subset 

of low-grade gliomas will progress to glioblastoma (WHO grade IV gliomas) within 

months, while others could remain stable for years. The survival of low grade-glioma 

patients ranges from 1 to longer than 15 years, with a subset of patients exhibiting an 

impressive therapeutic sensitivity [67].  

Recent genomic findings of driver mutations in lower-grade gliomas have become 

paramount in assisting histopathological classification in adequately predicting clinical 

outcomes [68]. Mutations in IDH1 and IDH2 (referred to collectively as IDH) 

characterize the majority of low-grade gliomas in adults and are associated with a 

favorable prognosis. It has also been reported that low-grade oligodendrogliomas with 

both an IDH mutation and a co-deletion of chromosome arms 1p and 19q have better 
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responses to radiochemotherapy and are associated with longer survival than diffuse 

gliomas without these alterations [69, 70]. Similarly, TP53 and ATRX mutations are more 

frequent in astrocytomas and are likewise important markers of clinical behavior [71]. 

Mutation of the TERT promoter, which has been frequently reported in grade II 

oligodendrogliomas and is the most frequent mutation across grade IV GBMs, may be an 

additional classification aiding defining feature [31]. 

GENETIC ANALYSIS OF GLIOMAS AND THEIR RECURRENCES 

With Glioma recurrence being a relatively frequent event and a major cause of mortality, 

it is essential to profile the genetic and molecular drivers of the recurrence. Furthermore, 

to facilitate evaluating which therapies will be most effective in treating the recurrent 

disease, it becomes critical to determine how genomic drivers differ between the initial 

and the recurrent tumor. [45] sequenced the initial and recurrent Gliomas from 23 

patients. Their work showed that for more than 40% of the patients, the majority of 

mutations found in the initial tumors were not present in their patient-matched 

recurrences. This observation suggested that the recurrent tumor was already seeded at 

during the growth and evolution of the initial Glioma.  

 

It was further shown that recurrent Gliomas that progress to a GBM acquire genetic 

alterations in the RB and AKT-mTOR pathways [45, 72-74]. In fact, [45] linked 

treatment-associated driver mutations in these two pathways to malignant progression of 

grade II glioma to GBM, induced by the alkylating chemotherapeutic temozolomide 

(TMZ). 
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The treatment associated malignant progression follows selection of tumor cells with 

epigenetic silencing of the DNA repair protein MGMT [75]. It remains unknown, 

however, how genome-wide epigenetic alterations contribute to the different courses of 

evolution of low-grade gliomas and how or if they relate to concurrent mutational 

evolution. 

 

WHAT IS EPIGENETICS? 

All cells throughout the body maintain the same sequence within their DNA, leading to a 

fundamental question of how does the same starting material lead to different tissue 

types. It becomes apparent that the genetic code is not the only determining factor in 

differentiation and development. This can be partially explained by epigenetics, the study 

of how the tertiary structure of the genome controls gene expression. In short, cells, 

tissues, and organs differ because they have certain sets of genes that are expressed, as 

well as others that are inhibited. Epigenetic modification is one such way to regulate the 

transcription state of a gene and it can contribute to differential expression. Moreover, 

epigenetics has been shown to play an important role in X-chromosome inactivation in 

female mammals, which regulates the number of X-chromosome gene products [76]. 

 

IMPORTANCE OF EPIGENETICS TO CANCER 

How cancer cells harness such epigenetic processes for therapy resistance is an important 

topic in current research. Powerful in vitro and in vivo models have shown that epigenetic 

heterogeneity can drive variable responses to therapy and differences in tumor-

propagating potential. Gupta et al. [77] show that upon separation of a breast cancer cell 
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line into its basal, luminal, and stem-like cell populations, each of the purified cell types 

expands into a heterogeneous culture that fully recapitulates the initial cell type 

heterogeneity through cell state interconversions. Kreso et al. [78] further show that after 

isolating individual cells from the same genetic background and transplanting them into 

mice, the separate transplants display differences in growth dynamics and treatment-

response. Similarly, Sharma et al. [56] find that while the majority of cells in a single cell 

derived non-small cell lung cancer subline are drug-sensitive, a small subpopulation of 

cells are drug-tolerant. Following removal of drug, these drug-tolerant persister cells 

expand and reacquire drug-sensitivity. Persister cells display an altered chromatin 

landscape, suggesting that epigenetic therapies could block persister cells. Indeed, 

treatment of cell lines with HDAC inhibitors or knockdown of the histone demethylase 

KDM5A reduces the emergence of persister cells. This persister cell model mimics 

observations that some patients respond initially to therapy, develop resistance, and then 

will respond again to the same chemotherapy after a drug holiday [79]. Thus, one 

hypothesis is that epigenetic ITH at the single cell level may play a role in therapy 

responses in patients, and concurrent treatment with epigenetic therapies may improve 

drug responses [80, 81].  

 

DNA METHYLATION 

One of the forms of epigenetic control is DNA methylation, which is a heritable chemical 

change to DNA that involves attachment of a methyl group to the DNA. This 

modification is common to a nucleotide sequence site where a cytosine is followed by a 

guanine and linked by a phosphate, called a CpG site [76, 82, 83]. CpG sites are 
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methylated by one of three enzymes called DNA methyltransferases (DNMTs) [76, 83]. 

Methylation changes the appearance and structure of DNA, resulting in modification of 

gene's interactions with the nuclear transcription machinery. Thus when a gene’s 

promoter CpG dinucleotides become methylated, this results in transcriptional silencing 

that can be inherited by daughter cells following cell division. 

 

DNA METHYLATION IN CANCER 

The finding of increased DNA methylation in colorectal cancer tissue when compared to 

healthy tissues of the same patients was one of the first links made between epigenetics 

and cancer [84]. Loss of DNA methylation can cause abnormally high gene activation via 

lack of methylation-mediated suppression. On the other hand, too much methylation 

could suppress the protective tumor suppressor genes. 

 

While a majority of CpG cytosines are methylated in mammals, there are stretches of 

DNA near promoter regions that have higher concentrations of CpG sites (CpG islands) 

that are free of methylation in normal cells. In early cancer development, it has been 

reported that these CpG islands become excessively methylated, silencing the genes that 

should be expressed or maintaining silencing in genes that were already transcriptionally 

inactive [76, 82, 83]. Moreover, hypermethylation of CpG islands can initiate tumors by 

turning off tumor-suppressor genes. Such malignant signaling may in fact be more 

widespread in the cell that DNA sequence mutations.  
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While epigenetic changes themselves do not alter the nucleotide sequence of DNA, they 

have been found to cause mutations downstream of the epigenetic gene silencing. For 

example, hypermethylation of the promoter of MGMT was associated with an increase in 

the number of G-to-A mutations [85]. Additionally, about half of the genes that cause 

familial or inherited forms of cancer, and thus driven by their genetics, can also be turned 

off by aberrant methylation in sporadic cancers.  

 

In another mode of action, hypomethylation can cause instability of microsatellites which 

as been linked to many cancers, including colorectal, endometrial, ovarian, and gastric 

cancers [82]. Increased methylation of the promoter MLH1 DNA repair gene can make 

microsatellites unstable and either lengthen or shorten them.  

 

DNA METHYLATION IN GLIOMA 

The critical role that epigenetic alterations play in the development and therapeutic 

response of gliomas is increasingly being appreciated [86]. Epigenetic mechanisms can 

alter gene expression and affect tumor suppressors and oncogenes in gliomas [87-92]. 

Somatic mutation in IDH1 or IDH2 may be the first genetic driver in the development of 

many low-grade gliomas [45, 93, 94]. Genetic mutations in IDH genes induce a pattern of 

early epigenetic alterations known as the glioma CpG island methylator phenotype (G-

CIMP) characterized by extensive remodeling of the DNA methylome [95-98]. The 

inactivation of other genes mutated in low-grade gliomas, such as ATRX [99] and 

SMARCA4 [45], is known to induce specific DNA methylation changes as well [100, 

101]. Of clinical importance is DNA hypermethylation of the MGMT promoter, which is 
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associated with loss of SP1 binding, closed chromatin, and transcriptional silencing in 

GBM cells [102], and increased survival in GBM patients treated with TMZ [37]. 

Whether the DNA methylation status at this locus predicts the same survival benefit in 

patients with low-grade glioma is unclear [75, 103-106]. Although there has been 

extensive characterization of tumor methylomes using a single sampling per tumor, little 

is known about intratumoral heterogeneity at the epigenetic level or of temporal evolution 

of the low-grade glioma methylome and its relationship to the genome. An integrated 

model of the genomic and epigenomic evolutionary trajectory of initially low-grade 

gliomas may suggest strategies for delaying or treating recurrent disease, identify 

biomarkers for predicting the clinical course of a low-grade glioma, and shed light on 

dynamic relationships between the genome and epigenome in other cancer types. 

 

DNA METHYLATION ANALYSIS 

To understand the importance of epigenetics through brain cancer development and 

progression, 19 initial grade II glioma patients had their initial and recurrent tumors 

profiled using the Illumina HumanMethylation450 bead array (Illumina 450K). This 

technology measures approximately 485,000 CpG sites along the genome and estimates 

the percentage of methylated cytosines at each of those sites. Probe-level signals for 

individual CpG sites were subject to both background and global dye-bias correction 

[107]. Probes that map to regions with known germline polymorphisms (Illumina 

supplementary SNP list v1.2, downloaded Sept. 3, 2013), to multiple genomic loci [108], 

or to either sex chromosome were filtered out. 297,342 probes remained following 

filtering. From looking at the DNA methylation profiles of each individual patient, it is 
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apparent that the sampled sites produce a bimodal distribution for each individual patient 

sample. Specifically, the two peaks, centered around 0.15 and 0.85, suggest that cytosines 

are primarily methylated across the entire population of cells or not with fewer sites 

occurring at a rate of 50% throughout the cells (Figure 3.1). 

 

All gliomas profiled here (Table 3.1) are IDH1 mutant [45, 75] and are therefore 

expected to possess the characteristic methylation patterns associated with G-CIMP [30, 

95, 96]. From these methylation array data (Figure 3.2), we confirmed that the glioma 

CpG island methylator phenotype (G-CIMP) is present in all tumors profiled here by 

examining methylation levels at CpGs adjacent to eight previously defined markers 

(ANKRD43, HFE, MAL, DOCK5, LGALS3, FAS-1, FAS-2, RHOF) [96]. The 

observation that G-CIMP was present in all initial tumors and always maintained at 

recurrence highlights that these epigenetic changes arise very early and are potentially 

tumor-initiating. 

 

Global difference between Grade IV and low-grade methylation profiles 

To determine the extent to which these tumors had altered methylomes beyond the 

ubiquitous G-CIMP methylation patterns, we identified the most variable CpG sites 

across all initial and recurrent gliomas and performed unsupervised hierarchical 

clustering. To determine common and specific methylation profiles in the paired initial 

and recurrent tumors, we performed two-way unsupervised hierarchical clustering using 

Euclidean distance and Ward linkage on the most variable CpG sites across the cohort, 
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with variability ranked by standard deviation (0.5% cutoff = 1,486 CpGs; 50% cutoff = 

148,572 CpGs). 

 

Initial and recurrent tumors from the same individual clustered together. This result 

reflects patient-specific methylation patterns, consistent with a previous report on glioma 

[109], and may be indicative of normal inter-individual epigenetic variation, patient-

specific aberrant methylation from early stages of gliomagenesis, or both. Within the 

clustering, six of the seven patients who recurred with GBM formed a distinct subgroup, 

suggesting there may be a shared methylation pattern associated with malignant 

progression to GBM relative to a lower grade of recurrence. To further evaluate this 

pattern, we performed unsupervised clustering with progressively more lenient selections 

of variable CpG sites to discover additional global DNA methylation patterns. At 

intermediate cut-offs, a gradual switch in clustering patterns was evident (Figure 3.3). At 

the most lenient cutoff, the methylation patterns separated GBM recurrences, as well as 

two initial tumors that recurred as GBM, from the grade II and III gliomas (Figure 3.4). 

This further supports a GBM recurrence-specific methylation pattern and suggests 

extensive evolution of the methylome during malignant progression to GBM (Figure 3.5). 

This unique pattern of epigenome evolution was prominent across GBM recurrences that 

arose in the absence of adjuvant therapy as well as in GBMs that arose in a treatment-

associated manner, adding to our previous genetic findings that spontaneous and 

treatment-associated progression to GBM have convergent genetic alterations (Johnson et 

al., 2014). 
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TRANSCRIPTOME ANALYSIS 

Additionally, strand-specific transcriptome sequencing libraries were prepared for the 

initial and recurrent tumors of 13 patients as previously described [45]. All transcriptome 

sequencing data from initial and recurrent tumor pairs were aligned with TopHat 

(v2.0.12) [110] to the hg19 reference genome using a GENCODE transcriptome-guided 

alignment. The aligned data were then processed through custom quality-control scripts 

to remove unmapped, improperly matched, multi-mapping, and chimeric reads, as well as 

accumulation in non-assembled chromosomes. To estimate transcript abundance, aligned 

data were processed with the cuffnorm and cuffquant commands from the Cufflinks 

package (v2.2.1) [111]. For all subsequent statistical analyses, FPKM estimates generated 

from cuffnorm output for individual genes were made more Gaussian using a log2-

transformation. 

 

Interestingly, clustering of the transcriptome at both the top 1% and the top 50% most 

variably expressed genes segregated some of the grade III recurrences with GBM 

samples (Figures 3.6), indicating transcriptional changes are complementary to, but not 

exclusively overlapping with, changes in the DNA methylome during malignant 

progression. Thus, integrating the methylome and transcriptome may provide important 

insight into the functional epigenetic events that underlie malignant progression to GBM.  

 

INTEGRATED ANALYSIS 

Identification of CpGs that Lose Methylation Specifically during Malignant 

Progression to GBM 
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We next examined changes in the methylome and transcriptome to determine whether 

there is a signature of methylation or expression changes associated with recurrence. We 

calculated the change in methylation (β value, methylated fraction at a CpG site) from 

initial to recurrent tumor at each CpG site in each patient, and then identified CpG sites 

with consistent methylation changes upon recurrence across all patients.  

 

The beta values for individual CpG sites were made more Gaussian using the logit-

transformation. We subtracted the transformed beta values between patient-matched 

recurrent and initial tumors and used Limma [2], an empirical Bayes approach utilizing a 

moderated t-statistic, to test for significant differences in individual CpG sites between 

the group of patients that recurred as GBM and the group that did not. Differentially 

methylated CpGs were defined as those with both a nominal p-value < 0.05 and an 

average methylation change upon recurrence ≤ -0.2 or ≥ 0.2. The same empirical Bayes 

approach was also used to compare methylation differences between the GBM and non-

GBM groups. Hypomethylated CpGs were defined as those with both a nominal adjusted 

p-value < 0.05 and an average methylation change upon recurrence as GBM ≤ -0.2 and a 

difference of the average change between the GBM and non-GBM group of -0.15. 

 

This powerful intra-patient approach controls for differences in DNA methylation that are 

age-related or reflect germline genetic effects, which confound inter-patient comparisons. 

DNA methylation differences between normal brain and glioma may be aberrant events 

in the tumor or may reflect differences between the normal brain tissue sample and the 

methylation patterns of the tumor’s cell of origin [112, 113]. We used Limma to test for 
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the differential methylation between 33 fetal and 8 adult brain tissues. We selected probes 

having both a nominal adjusted p-value (derived from the previous analysis) < 0.05 and 

an average methylation change upon aging ≥ 0.2. 

 

In contrast, the differences we report between initial and recurrent tumors are more likely 

to be aberrant changes attributable to tumor progression rather than cell of origin. We 

also applied an equivalent model to the transcriptome sequencing data and identified 

genes that commonly increase or decrease in expression from initial to recurrent glioma 

(Figure 3.7). We subtracted the transformed FPKM estimates between patient-matched 

recurrent and initial tumors and used Limma to test for significant differences among 

individual genes within the group of patients that recurred as GBM and the group that did 

not. Differentially expressed genes were defined as those with both a nominal p-value < 

0.05 and an average log 2-fold change upon recurrence ≤ -1 or ≥ 1. Limma was again 

used to compare methylation differences between the GBM and non-GBM groups. 

Upregulated genes were defined as those with both a nominal p-value < 0.05 and an 

average log 2-fold change upon recurrence as GBM ≥ 1 and a difference of the average 

change between the GBM and non-GBM group of at least 1. 

 

The separation by grade in the methylation clustering suggested that a specific pattern of 

DNA methylation changes may underlie malignant progression to GBM. To discover this 

pattern in detail, we stratified patients by grade of recurrence. There were few common 

methylation changes evident in tumors that recurred at grade II or III, whereas a strong 

pattern of hypomethylation was associated with malignant progression to GBM (Figures 
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3.8). Patients with tumors that recurred at grade II or III were combined into a single 

group for further analysis. 

 

To determine which methylation changes were specific to recurrence as GBM, we 

compared the change in methylation from initial to recurrence in patients who recurred as 

GBM versus those that recurred at grades II or III. We identified 1,953 CpG sites that 

were hypomethylated specifically upon recurrence as GBM (Figure 3.9 and 3.10).  

 

Given the G-CIMP-associated hypermethylation in these tumors, we first set out to 

determine if the hypomethylation in GBM recurrences affected G-CIMP genes. 

Noushmehr et al. [96] identified 50 genes that were hypermethylated and downregulated 

in a G-CIMP specific manner. Only two of those genes (ACSS3 and RAB36) showed 

GBM-specific hypomethylation, but in neither case did the genes show concurrent 

increased expression. Further examination of these sites of decreasing methylation 

revealed a surprising enrichment for CpG sites that undergo age-related increased 

methylation in a comparison of normal fetal and adult brain (odds ratio 4.64, p < 0.0001, 

permutation test). This is contrary to the typical pattern in cancer in which CpG sites that 

are hypermethylated during aging are also hypermethylated in cancer [97, 114].  

 

To further investigate whether the methylation changes alter gene regulation, we 

integrated active regulatory regions defined from histone H3K4me3, H3K4me1, and 

H3K27ac chromatin immunoprecipitation sequencing in adult normal brain and primary 

GBM tissue and found that sites of GBM-specific DNA hypomethylation were enriched 
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for candidate active enhancers (odds ratio 1.68, p < 0.0001, permutation test). These 

hypomethylated loci thus may have gene regulatory effects. To enrich for functional 

methylation changes and exclude passenger events, we next integrated our transcriptome 

sequencing data with the DNA methylation analysis. 

 

Statistical tests for assessing significant differences in gene expression and methylation 

status were performed independently. The varying number of tests performed (~300k for 

methylation and ~25k for expression), makes it difficult to directly compare the resulting 

p-values. While Storey’s false discovery rate controlling for multiple-testing corrections 

are standard [4], our data show bimodal distribution of the RNA-seq analysis p-values 

and do not satisfy the assumptions required to apply the method, resulting in incorrect 

estimation of the number of genes in the null distribution. Thus, we chose our p-value 

cutoffs by identifying the value at which we would identify an equal number of false 

positives if all the test cases satisfied a null hypothesis and the p-values had a uniform 

distribution. Specifically, by using a .05 cut-off in the expression data, under our 

simplistic assumptions, to identify the same number of false positives in the methylation 

data, we would need to use a cutoff padjusted–methylation = pmethylation * (N450k 

probes/ Ngenes). Our use of p-values here is primarily to rank all probes and genes in our 

study and follow-up by selecting only those with the most consistent difference. 

 

Cell Cycle Genes Are Specifically Hypomethylated upon Malignant Progression 

We applied an analysis similar to that of the methylation data and identified 528 genes 

with GBM-specific overexpression. Of these, 39 genes showed GBM-specific 
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hypomethylation of at least one CpG site within their promoter regions. Among genes 

with GBM-specific promoter hypermethylation, only NTSR2 showed consistent 

transcriptional downregulation. We additionally identified four genes with consistent 

downregulation and gene body hypomethylation. Strikingly, the set of 39 promoter-

hypomethylated and overexpressed genes was significantly enriched for cell cycle genes 

(Figure 3.11). Ki-67 is a marker of cells in the active stages of the cell cycle, and staining 

in initial and recurrent tumors confirmed that a statistically significantly higher fraction 

of positive cells (p = 0.026, two-sided Wilcoxon rank sum test) were found among the 

GBM recurrences (Figure 3.11). Increased proliferation is a hallmark of GBM. These 

results thus highlight an epigenetic mechanism that may contribute to increased 

proliferation, concurrent with genetic alterations in key members of the RB pathway [45] 

that abrogate the G1/S cell cycle checkpoint. 

 

The functional effect of DNA hypomethylation of cell cycle genes specifically upon 

recurrence as GBM parallels the known GBM-specific genetic events that inactivate the 

G1/S cell cycle checkpoint [45, 73, 74, 96]. These convergent genetic and epigenetic 

signals, in addition to the well-characterized functional relationships between genetic and 

epigenetic aberrations [95, 100, 101, 115, 116], prompted us to explore evolutionary 

relationships among different tumor cell populations within a tumor, as has been 

previously done with genetic data, and then compare the relationships inferred from DNA 

methylation to those inferred from somatic mutation in the same samples. 
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RECONSTRUCTION OF TUMOR EVOLUTION FROM INTRATUMORAL 

AND LONGITUDINAL DNA METHYLATION PATTERNS 

For the phylogeny analysis of both the genetic and epigenetic data, we used an 

independent, but parallel, analysis of the methylation data and somatic mutations derived 

from exome sequencing. For the exome-seq data, we used binary mutation calls to build a 

distance matrix for all samples from a patient using the Manhattan distance metric, 

including a normal tissue sample for which all mutations were absent. Similarly, for the 

methylation data, we used only the probes that had a beta value difference of at least 0.4 

between any of the samples from a patient to build a Euclidean distance matrix. Using 

several other probe selection cut-offs produced similar results. A normal brain sample 

(adult insula tissue from a different individual) was not included in the probe selection, 

but was added to the distance matrix calculation to serve as the tree root. To compare the 

distance matrices from the mutation data and the methylation data, we calculated the 

Spearman’s rho correlation. We then built the phylogeny trees using an ordinary least-

squares minimum evolution [117] approach from the ape R package [118] using the 

distance matrices from the genetic and epigenetic data independently. 

 

We first examined the evolutionary relationships of tumor samples that were previously 

genetically characterized [45]. We performed methylation profiling of seven spatially 

distinct pieces of tumor tissue from Patient17, three from the initial tumor and four from 

the recurrent tumor, and built a phyloepigenetic tree (Figure 3.12). The phyloepigenetic 

tree presented an intriguing model with early divergence between the initial and recurrent 

tumors, and more subtle divergences among the samples within each time point (initial A 
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versus initial B/C; recurrence A/C versus recurrence B/D). We then used exome 

sequencing data of these same spatially distinct tumor samples to independently construct 

a phylogenetic tree (Figure 3.12) [45]. The genetically defined relationships (branch 

length and bifurcation?) among tumor cell clones were consistent with those determined 

from DNA methylation data. We quantified this surprising degree of similarity as the 

correlation between the distance matrices that were used to build the phyloepigenetic and 

phylogenetic trees (Spearman’s rho = 0.90). 

 

To identify the CpG sites underlying each branch point in the phyloepigenetic tree, we 

applied singular value decomposition to the methylation data from each patient to weigh 

the influence of individual CpG sites on separating particular subsets of samples. The 

singular value decomposition (SVD) starts with a mean-centered p x n data matrix X, 

where the rows are probes and the columns are samples from a patient. A rank-k 

approximation of X is obtained from the SVD of X as Xk = UDVT, where U contains the 

first k left singular vectors as columns, V contains the first k right singular vectors as 

columns, and D is a diagonal matrix of the first k singular values. We can rewrite Xk as 

Xk= [31] (D1-a VT) = GH, where a determines the scaling of the probes and samples. A 

biplot uses k=2 and plots the rows of G as points and the columns of H as arrows. For the 

purpose of performing PCA on samples in the probe space, we used the parameter a = 0. 

The axes at the bottom and left of the biplot are the coordinate axes for the probes while 

the axes at the top and right of the biplot are the coordinate axes for the samples, allowing 

us to simultaneously represent both the separation of the samples and the magnitude of 

each probe contributing towards that separation. 
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For Patient17, the first singular vector (SV1), which accounts for the most methylation 

variability, mimicked the first major branch point of the phyloepigenetic tree (Figure 

3.12). We then selected the most influential CpGs for each singular vector and inferred 

that these underlie a particular branch point. The most highly weighted CpG sites within 

SV1 from Patient17 clearly showed differential methylation between the initial and 

recurrent tumor samples (Figure 3.12). We examined the potential implications of these 

methylation changes by focusing on those affecting active promoters and enhancers in 

normal brain and primary GBM tissue and performed a gene ontology enrichment 

analysis. For Patient17, the CpG sites that underlie the first major branch point were 

enriched for a variety of developmental, biosynthetic and metabolic processes, indicating 

that methylation changes during tumor progression may influence cellular metabolic 

states, in parallel with the genetic events disrupting cell cycle that separate these two 

main branches on the phylogenetic tree. 

 

We then looked specifically at the evolutionary relationships of tumor samples from 

patients who underwent chemotherapy-associated malignant progression [45, 75]. We 

performed methylation profiling of four spatially distinct pieces of the initial tumor and 

three pieces of recurrent tumor from Patient01 and inferred a phyloepigenetic tree (Figure 

3.12). Whereas the four pieces of the initial tumor clustered together, the recurrent tumor 

consisted of two distinct populations. Recurrence B was relatively closely related to the 

initial tumor, while a long branch separated it from recurrences A and C, indicating 

significant evolutionary distance. A phylogenetic tree from these same tumor pieces 
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(Figure 3D, right; Tables S2 and S5) similarly demonstrates the large evolutionary 

distance between recurrence B and recurrences A and C (Spearman’s rho = 0.83). In the 

phylogenetic tree, this longest branch corresponds to the development of a hypermutated 

population in the recurrent tumor. Intriguingly, this same branch is the longest in the 

phyloepigenetic tree, indicating that the hypermutated cells also have the greatest 

methylation change. Similarly, in Patient18, the phyloepigenetic tree identified three 

epigenetically similar pieces of the initial tumor, a piece of the initial tumor that branched 

off at an earlier evolutionary time point, and a recurrence that diverged even earlier—

relationships that are accurately recapitulated in the phylogenetic tree (Spearman’s rho = 

0.90) (Figure 3.12). Thus, even in extreme evolutionary events such as chemotherapy-

associated hypermutation, both DNA methylation changes and mutational landscapes 

encode similar tumor evolutionary relationships. In these two cases with TMZ-associated 

hypermutation (Figures 3D and 3E), the longest branch length in both the 

phyloepigenetic and phylogenetic trees is the hypermutated recurrence. These results 

suggest a potentially quantitative relationship between the number of mutations and 

epimutations in each tumor cell clone. 

 

To determine if the strong correlations between phylogenetic and phyloepigenetic trees 

depend on the large-scale hypomethylation during malignant progression to GBM, we 

next compared the evolutionary relationships only in lower grade initial and recurrent 

tumors. Six pieces of tissue from the initial tumor and two pieces of tissue from the grade 

II recurrence from Patient90 were subjected to DNA methylation profiling. Construction 

of a phyloepigenetic tree revealed three distinct clusters of samples, with the initial tumor 
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separating into two populations, and the recurrence forming a third (Figure 3.12). We 

then performed exome sequencing of these same pieces of tissue to identify somatic 

mutations and constructed a phylogenetic tree (Figure 3.12). This phylogenetic tree 

mirrored the evolutionary relationships defined from DNA methylation (Spearman’s rho 

= 0.56). We further pursued this question with Patient49 who underwent a single 

resection for an initial tumor from which we profiled six spatially distinct pieces. 

Construction of a phyloepigenetic tree revealed that the six pieces separate into two 

groups, in agreement with the phylogenetic tree derived from exome sequencing of the 

same pieces of tissue (Spearman’s rho = 0.64) (Figure 3.12). Thus, even in the absence of 

malignant progression to GBM, DNA methylation changes among tumor cell clones 

yielded a very similar evolutionary trajectory as was inferred from somatic mutations.  

 

Enhanced Model of Tumor Evolution Derived from Variation between 

Phyloepigenetic and Phylogenetic Trees 

To further address phyloepigenetic relationships over time, we examined tumor samples 

from Patient04, who underwent four sequential surgical resections over 5 years. We 

profiled six spatially distinct pieces of tumor from the initial surgery, and one from each 

of the three subsequent surgeries for tumor recurrence. The phyloepigenetic tree reveals 

two distinct populations within the initial tumor and an evolutionary trajectory shared 

among the three recurrences, with a relatively closer relationship between recurrences 2 

and 3 (Figure 3.13). The phylogenetic tree again reveals many similar clonal 

relationships, but also reveals differences that may be informative (Figure 3.13) 

(Spearman’s rho = 0.78). Based on somatic mutations, the first recurrence shares 
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evolutionary history with the initial tumor, while the second recurrence diverges earlier in 

the evolution of the tumor and therefore independently progressed to grade III [45]. 

Despite divergent genetic paths, methylation patterns are shared among the first 

recurrence and the second and third recurrences. This raises the possibility that the last 

common ancestor of the first and second recurrences was primed for progression with a 

set of DNA methylation changes required for progression to a higher grade. This case 

illustrates how differences in genetic and epigenetic phylogenies may bring to light an 

enhanced understanding of the evolution of a tumor. 

 

INTEGRATED MODEL OF GLIOMA GENETIC AND EPIGENETIC 

EVOLUTION 

DNA methylation patterns record a remarkable breadth of information about cells, 

including their chronological age, developmental history, and differentiation potential. 

Here, we show that despite epigenome plasticity, chemotherapy, and the ubiquitous IDH1 

mutation-driven G-CIMP pattern, patient-specific tumor phyloepigenetic analyses 

replicated and extended tumor phylogenetic analyses. From this striking result, we 

conclude that the precise chronological order of epigenetic changes, from initiating to late 

events, can be determined from intratumoral methylation patterns, thus surpassing prior 

binary categorization of epigenetic events as early or late. While our study is focused on 

methylation and somatic mutations in IDH1 mutant gliomas, a study of prostate cancer 

and prostate cancer metastasis showed a complementary unified model of evolution for 

DNA methylation and copy number alterations [44]. Thus, genomic-epigenomic co-
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dependency may be a feature of multiple types of cancer, and may span somatic 

mutations, copy number, and DNA methylation. 

 

The importance of epigenetic variation within individual human tumors is just beginning 

to be uncovered. Recent work in chronic lymphocytic leukemia suggests that stochastic 

changes in the methylome lead to increased heterogeneity, allowing for selection of more 

malignant epi-phenotypes coupled with an adverse clinical outcome [47]. Somatic 

genetic events, such as IDH1 mutations, have been directly linked to alterations in the 

methylome [95, 96], whereas germline variants have been indirectly associated with 

specific DNA methylation patterns [115, 119, 120]. Consistent with these theories, the 

widespread correlation between somatic mutations and DNA methylation patterns 

suggests that in addition to IDH1 mutation and G-CIMP, other epigenetic patterns might 

be directly or indirectly induced by mutations, or vice versa. It will be of interest to 

determine the extent to which these findings hold for IDH1-wild-type low-grade gliomas 

and their recurrences. 

 

We also discovered a convergence of genetic and epigenetic changes driving aberrant cell 

cycle function (Figure 3.14). We previously found that recurrent tumors that underwent 

malignant progression to GBM acquired somatic mutations in the RB pathway that 

inactivate the G1/S cell cycle checkpoint [45]. Here we identified a pattern of functional 

DNA hypomethylation specific to recurrence as GBM that alters cell cycle genes. This 

phenotypic convergence of genetic and epigenetic mechanisms on the same pathway 

underscores the importance of cell cycle deregulation on the process of malignant 
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progression, while also raising questions about how these two processes might be 

connected. Of note, we identify hypomethylation at TP73 as a recurrent event. 

Transcription of TP73 is upregulated by E2F1 [121], a transcription factor that itself 

activates cell cycle progression-related genes following inactivation of the RB pathway 

[122], which is deregulated by genetic mechanisms in these tumors. Further work will be 

required to deconvolute these relationships. By combining the information from somatic 

mutations, copy number alteration and DNA methylation patterns, we derived a 

comprehensive model of glioma evolution (Figure 5). Chronological ordering of IDH1, 

TP53, and ATRX mutations and copy number alterations was derived from our previous 

tumor phylogenetic analyses [45], other studies [93, 94], and additional data presented 

here. This model is derived from 32 patients with paired initial and recurrent samples and 

includes 70 DNA methylation profiles, 26 mRNA expression profiles and 130 exome 

sequencing profiles. The model extends from the initiating genetic and epigenetic lesions 

and captures clinically divergent paths at recurrence, including an evolutionary path 

driven by treatment. 

 

These findings underscore the power of integrated genetic and epigenetic analyses of 

tumors. Deregulated cell cycle control is among the essential phenotypes of cancer cells, 

and we demonstrate that this deregulation is encoded in both the genome and epigenome, 

raising the question of the extent to which this reflects a functional interaction between 

genetics and epigenetics. This finding also raises the possibility that other critical 

molecular phenotypes, such as genomic instability, angiogenesis, or invasion, may leave 

their imprint on DNA methylation patterns during tumor evolution. 
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FUTURE DIRECTIONS 

While important steps have been taken to understand heterogeneity from multiple spatial 

samples of a tumor, additional work is still necessary to compute an overall measure of 

heterogeneity for a spatially-distributed tumor. Thus an essential next step is to develop 

methods that infer tumor-wide heterogeneity across multiple spatially distinct samples 

from the same individual. Lui et al. [123] demonstrated the effectiveness of one approach 

for determining heterogeneity across multiple samples. The authors built a gene co-

expression network from 96 serial samplings of normal brain tissue. They then identified 

modules of genes with similar expression profiles across the 96 samples. Finally, using 

the number of separate modules that the genes can be separated into, the authors 

estimated the number of subtypes present within this tissue. So far this method has been 

applied to gene expression, but the underlying technique can be applied to data types 

including DNA methylation and other epigenetic marks. While the utility of this 

approach has already been demonstrated for normal tissue, further work is required to 

extend this method to apply into cancer cells. 

Furthermore, to more fully understand tumor heterogeneity between tumor subclones and 

to build a comprehensive evolutionary history of cancer progression, a novel analytical 

approach combining genetic and epigenetic data is required. Although several studies 

have found a substantial correlation between tumor evolution traced from DNA 

methylation compared to genetic alterations such as somatic mutations or CNVs, it is not 

yet possible to create a theoretical mathematical model to understand how much co-
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dependency exists between the genetics and epigenetics, as the rate, timing, and location 

of exact DNA methylation changes is not well known. 

 
FIGURES 

!
Figure'3.1.'Beta'value'disttributions.''
Density!plots!of!background!corrected!and!normalized!beta!values!in!each!initial!and!recurrent!tumor.!

!
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!
Figure'3.2.'GLCIMP'signature'across'tumors'and'normal'samples.''
Confirmation!of!the!presence!of!the!glioma!CpG!island!methylatory!phenotype!(G=!CIMP)!in!all!initial!tumors!and!

maintenance!of!G=CIMP!at!recurrence!(tumor!N=70).!G=!CIMP!is!absent!from!all!normal!brain!tissues!examined!

(normal!brain!N=38).!

!

!
Figure'3.3.'Unsupervised'clustering'of'beta'values'at'gradual'cutoffs.''
(Left)!Unsupervised!hierarchical!clustering!of!the!top!0.5%!most!variable!CpG!sites!and!heatmap!of!beta!values.!

(Right)!Unsupervised!hierarchical!clustering!of!the!most!variable!CpG!sites!at!intermediate!(top!1%,!2.5%,!5%,!

10%,!25%)!cutoffs.!
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'
Figure'3.4.'Unsupervised'hierarchical'clustering'of'the'top'50%'most'variable'CpG'sites.'
Annotations! of! sample! type,! grade! of! recurrence,! and! patient! identification! numbers! are! provided.! The! lines!

beneath!the!patient!identification!numbers!connect!initial!and!recurrent!tumors!from!the!same!patient!that!are!

not!adjacent!to!each!other.!

!

!
Figure'3.5.'Boxplot'showing'the'difference'between'the'correlations'of'the'lowLgrade'and'GBM'groups.''
Boxplot!summarizing!Pearson!correlations!of!beta!values!between!initial!and!recurrent!tumors!for!each!patient,!

grouped!by!the!grade!of!the!recurrent!tumor,!show!decreased!correlations!in!patients!that!recur!as!GBM.'
!
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!
Figure'3.6.'Clustering'of'the'samples'based'on'RNALseq.''
Unsupervised!hierarchical!clustering!of!the!(F)!top!1%!or!(G)!top!50%!most!variably!expressed!genes!across!the!

cohort.!

!
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!
Figure'3.7.'Volcano'plots'for'changes'across'all'tumors.''
The!methylation!change!(left)!and!expression!change!(right)!from!initial!low=grade!tumor!to!recurrence!at!each!

CpG!site!(left)!and!gene!(right),!averaged!across!all!patients!in!the!cohort.!Colored!dots!represent!CpG!sites!(left)!

and! genes! (right)! that! show! significant! changes! at! recurrence.! The! number! of! significant! CpG! sites! (left)! and!

genes!(right)!are!provided!at!the!top!of!each!quadrant.!

!
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!
Figure'3.8.'Volcano'plots'for'changes'separated'by'grade'of'recurrence.''
Methylation!(top)!and!expression!(bottom)!changes!from!initial!to!recurrent!tumor,!subdivided!by!the!grade!of!

the! recurrent! tumor.! Tumors! that! recurred! as!GBMs! show! the! strongest! pattern! of! common!methylation! and!

expression!changes.!

!
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!
Figure'3.9.'Volcano'plots'for'methylation'and'transcriptome'changes'specific'to'malignant'progression.''
Left! panel! shows! a! scatter! plot! of! differences! between! GBM! and! non=GBM! recurrent! tumors! in! methylation!

changes!from!initial!grade!II!to!recurrent!gliomas.!Right!panel!shows!an!equivalent!representation!of!differences!

in! expression! changes! between! GBM! and! non=GBM! recurrent! tumors.! Colored! points! indicate! significant!

differences.! Purple! triangles! highlight! genes! that! become! hypomethylated! at! promoter! CpGs! (left)! and! over=!

expressed!(right)!during!malignant!progression!to!GBM.!

!

!
Figure'3.10.'Scatterplots'show'how'the'average'change'from'initial'to'recurrent'tumor'in'methylation.''
(Left)!and!expression!(Right)!for!each!CpG!site!or!gene!differs!between!patients!that!recur!as!GBM!(y=axis)!and!

those! that! recur! at! grades! II! or! III! (x=axis).! Purple! triangles! highlight! genes! that! become! hypomethylated! at!

promoter!CpGs!(Left)!and!over=!expressed!(Right)!during!malignant!progression!to!GBM.!

!

0

-1.0

-lo
g 10

p

-0.5 0.0 0.5 1.0

2

4

6

8

10

Δ βGBM - Δ βnon-GBM

0
-lo

g 10
p

-4 -2 0 2 4

1

2

3

4

5

6

 Δ log2FPKMGBM - Δ log2FPKMnon-GBM

A B

EC

D

Figure2

DNA methylation (Illumina 450K) Gene expression (transcriptome sequencing)

1953 148 528588

Initial

Rec.

Grade of rec.

3% 2%

36%4%
III IV

Patient02 Patient01

II,IIIGrade of rec.

0

20

40

60

Ki
-6

7 
in

de
x 80

100

IV II,III IV
Initial InitialSample type Rec. Rec.

0.5

-0.5
5

-5

DMR
CpG island

TP73

W
G

BS
Ill

um
in

a 
45

0K
±l

og
10

p
Δ

 m
et

h

Initial

Rec.

200 bases

*

cg26208930cg03846767cg16607065cg18873878 SIG cg24878868cg25115460cg04493946

−0.4
−0.6

−0.2
0.0
0.2

II,III IV II,III IV II,III IV II,III IV II,III IV II,III IV II,III IVGrade of rec.

Δ
 β

mitotic nuclear division
cell division

DNA metabolic process
cell cycle

cell cycle process
mitotic cell cycle process

mitotic cell cycle

0-log10padjust 1 2 3 4



! 94!

!
Figure'3.11.'Enrichment'of'hypomethylated'and'upregulated'cell'cycle'genes.'
(Left)!Barplot!of!the!top!results!of!a!gene!ontology!analysis!of!genes!that!are!both!significantly!hypomethylated!

and!over=expressed!specifically!upon!recurrence!as!GBM.!(Right)!Representative!staining!for!Ki=67,!a!marker!of!

actively!cycling!cells,!in!a!patient!that!recurred!at!grade!III!(left)!and!a!patient!that!recurred!at!grade!IV!(right).!

!

!
Figure'3.12.'Phylogenetic'and'phyloepigenetic'reconstruction'of'spatial'and'longitudinal'samples'of'a'
tumor.''
(A)!A!phyloepigenetic!tree!constructed!from!seven!samples!from!Patient17!(left)!replicates!the!structure!derived!

from!somatic!mutations!from!exome!sequencing!of!the!same!DNA!samples!(right).!Tumor!grade!is!provided!in!

parentheses!after!each!sample!name.!!

(B)! Singular! value!decomposition!biplot! shows! the!probes! involved! in! separating! tumor! samples.! Each!probe!

used! to! build! the! phyloepigenetic! tree! in! (A)! is! plotted! (grey! dots).! The! most! highly! weighted! probes! are!

highlighted!(triangles).!(C)!A!heatmap!of!the!beta!values!at!the!220!probes!most!highly!weighted!by!SV1.!(D)!A!

phyloepigenetic! tree! (left)! and! a! phylogenetic! tree! (right)! were! constructed! to! infer! the! evolutionary!

relationships!within! and! between! the! initial! and! recurrent! tumors! of! Patient01.! Tumor! grade! is! provided! in!
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parentheses!after!each!sample!name.!(E=G)!Phyloepigenetic!(top)!and!phylogenetic!trees!(bottom)!for!Patient!18!

(E),! Patient90! (F)! and! Patient49! (G)! show! similar! evolutionary! relationships.! Tumor! grade! is! provided! in!

parentheses!after!each!sample!name.!!

!

!
Figure'3.13.'Phyloepigenetic'(left)'and'phylogenetic'(right)'trees'of'Patient04'present'evolutionary'
relations'across'four'surgical'time'points.'
Tumor!grade!is!provided!in!parentheses!after!each!sample!name.!!

!

!
Figure'3.14.'Integrated'model'of'glioma'evolution.''
Low=grade! gliomas! exhibit! intratumoral! heterogeneity! at! initial! presentation,! with! subclones! that! share! the!

initiating!genetic!(IDH1'followed!by!TP53'and!ATRX'and!copy!number!alterations,!CNA)!and!epigenetic!(IDH1=
associated! glioma!CpG! island!methylator! phenotype,!G=CIMP)! alterations,! but! further!develop!distinct! genetic!

and!epigenetic!characteristics.!Following!surgical!resection,!the!outgrowth!from!residual!disease!may!be!grade!II!

or! III,! while! still! continuing! to! evolve! subclones! with! genetic! and! co=dependent! epigenetic! features! that! are!

distinct!from!the!initial!tumor.!In!other!patients,!residual!disease!may!undergo!malignant!progression!to!GBM,!

either! spontaneously! or! as! a! consequence!of! treatment=associated!mutations,! in! either! case! acquiring! genetic!

defects! in! the!RB! and!Akt=mTOR!pathways! and!promoter! hypomethylation! and! activation! of! cell! cycle! genes.!

Treatment! associated! progression! to! GBM! is! uniquely! associated! with! an! increased! epigenetic! silencing! of!

MGMT!(van!Thuijl,!2015)!and!acquisition!of!genetic!defects!in!mismatch!repair!genes.!

! !
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TABLES 

!
a!Recurrent!surgery!for!residual!disease,!no!evidence!of!radiographic!progression! ! ! ! !

b!Including!a!month!each!of!TMZ!plus!either!Accutane!or!Thalidomide! ! ! ! !

c!Patient!lost!to!follow=up! ! ! ! !

d!Patient!alive! ! ! ! '
'
Table'3.1.'Summary'of'the'data'types'acquired,'clinical'features,'treatment'history'and'molecular'
features'of'each'tumor'in'the'cohort.

Patient Gender Age at 
diagnosis

Tumor sample Diagnosis (WHO grade)
Surgical 
interval 

(months)

Non-surgical 
treatment 
(months)

Overall 
survival 

(months)

IDH1 
status

1p19q 
status

Illumina 
405K 
array

RNA-seq

Initial tumor Astrocytoma (II) 31 TMZ (14)b R132H intact yes yes
Recurrence Glioblastoma (IV) R132H intact yes yes
Initial tumor Oligoastrocytoma (II) 74 None R132H intact yes no
Recurrence Anaplastic astrocytoma (III) R132H intact yes no
Initial tumor Astrocytoma (II) 76 TMZ (7), TMZ (11) R132H intact yes yes
Recurrence Glioblastoma (IV) R132H intact yes yes
Initial tumor Astrocytoma (II) 15 None R132C intact yes yes
Recurrence 1 Anaplastic astrocytoma (III) 20 TMZ (7) R132C intact yes yes
Recurrence 2 Anaplastic astrocytoma (III) 9 TMZ (6) R132C intact yes no
Recurrence 3 Anaplastic astrocytoma (III) R132C intact yes no
Initial tumor Astrocytoma (II) 105 XRT (1) R132H intact yes yes
Recurrence Astrocytoma (II) R132H intact yes yes
Initial tumor Oligoastrocytoma (II) 40 None R132H intact yes no
Recurrence Glioblastoma (IV) R132H intact yes no
Initial tumor Astrocytoma (II) 25 TMZ (9) R132H intact yes yes
Recurrence Glioblastoma (IV) R132H intact yes yes
Initial tumor Oligoastrocytoma (II) 132 XRT (1), TMZ (26) R132H intact yes no
Recurrence Oligoastrocytoma (II) R132H intact yes no
Initial tumor Astrocytoma (II) 17 None R132H intact yes yes
Recurrence Anaplastic astrocytoma (III) R132H intact yes yes
Initial tumor Oligoastrocytoma (II) 21 None R132G intact yes yes
Recurrence Oligoastrocytoma (II) R132G intact yes yes
Initial tumor Astrocytoma (II) 30 None R132H intact yes yes
Recurrence Astrocytoma (II) R132H intact yes yes
Initial tumor Astrocytoma (II) 5a None R132H intact yes yes
Recurrence Astrocytoma (II) R132H intact yes yes
Initial tumor Oligodendroglioma (II) 30 TMZ (12) R132H intact yes yes
Recurrence Glioblastoma (IV) R132H intact yes yes
Initial tumor Oligoastrocytoma (II) 94 TMZ (11) R132H intact yes no
Recurrence Glioblastoma (IV) R132H intact yes no
Initial tumor Astrocytoma (II) 56 XRT (1) R132H intact yes yes
Recurrence Glioblastoma (IV) R132H intact yes yes
Initial tumor Astrocytoma (II) 71 None R132H intact yes no
Recurrence Anaplastic astrocytoma (III) R132H intact yes no
Initial tumor Oligoastrocytoma (II) 57 None R132H intact no yes
Recurrence Anaplastic oligoastrocytoma (III) R132H intact no yes
Initial tumor Astrocytoma (II) 20 None R132H intact yes yes
Recurrence Astrocytoma (II) R132H intact yes yes

49 Male 23 Initial tumor Anaplastic oligodendroglioma (III) 14d R132H codel yes no
Initial tumor Oligoastrocytoma (II) 17 TMZ (12) R132H intact yes no
Recurrence Anaplastic oligoastrocytoma (III) R132H intact yes no
Initial tumor Oligodendroglioma (II) 22 None R132H intact yes no
Recurrence 1 Oligoastrocytoma (II) 34 None R132H intact yes no

01 Male 28 58

02 Female 26 79c

03 Female 28 85

04 Male 22 61

07 Male 30 148

08 Male 44 103

10 Female 41 44

11 Female 30 186

12 Male 35 82d

13 Male 24 106

14 Male 25 149d

16 Female 35 38

17 Male 27 59d

18 Male 49 106d

22 Male 22 70

36 Female 31 73d

37 Male 31 105d

38 Female 21 25d

64d39Female90

68 Female 31 23d
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