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Macroscopic network circulation for planar graphs

Fariba Ariaei”, Zahra Askarzadeh”, Yongxin Chen and Tryphon T. Georgiou

Abstract— The analysis of networks, aimed at suitably
defined functionality, often focuses on partitions into
subnetworks that capture desired features. Chief among
the relevant concepts is a 2-partition, that underlies the
classical Cheeger inequality, and highlights a constriction
(bottleneck) that limits accessibility between the respective
parts of the network. In a similar spirit, the purpose of
the present work is to introduce a concept of macroscopic
circulation and to explore 3-partitions that expose this type
of feature in flows on networks. It is motivated by trans-
portation networks and probabilistic flows (Markov chains)
on graphs. While we introduce and propose such notions
in a general setting, we only work out the case of planar
graphs. Specifically, we explain that circulation depends on
a scalar potential in a manner that is similar to the curl of
planar vector fields. For general graphs, assessing global
circulation remains at present a combinatorial problem.

I. INTRODUCTION

Time asymmetry of traffic flow in city streets is
unmistakeable. Specifically, traffic flows in one direction
around city squares and, often, in one-way in many
city streets as well. Yet, from a macroscopic vantage
point, circulation may or may not be evident. Flux
from one part of town to another may average out
with flux in the opposite direction. When this is not
the case, it is of interest to identify the nature and
to quantify any large scale flow imbalance. What we
seek in the present article is precisely such a notion of
macroscopic circulation that, depending on the network
and flow conditions, captures the flow asymmetry and a
preference in directionality while traversing the graph.

Perhaps, circulation is nowhere more apparent than in
air currents at the planetary scale. The vorticity, locally
as well as at earth-scale, very much as in planar vector
fields, can be quantified by a suitably defined scalar
potential. In turn, as we will explain, this scalar potential
helps quantify maximal circulation macroscopically.
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In this work we define a notion of macroscopic cir-
culation for graphs. At present, computing macroscopic
circulation in general is a combinatorial problem. For
the special case of embedded planar graphs, taking
advantage of insights from the Helmholtz-Hodge decom-
position of vector fields, we explain on how circulation
can be effectively computed by determining a scalar
potential with support on the nodes of the dual graph.

We contemplate a setting where a stationary discrete-
time Markov model models probability flux on the
network of the nodes and edges of the Markov chain.
In this setting, the famous Cheeger inequality relates
the likelihood of transitioning between two parts in a
2-partition of the nodes as well as the rate of mixing, to
spectral properties of the graph Laplacian; the 2-partition
captures bottlenecks that impede mixing.

In a similar manner, considering circulatory imbal-
ance, we are led to a 3-partition of a network; in
a 2-partition stationary probability currents across the
boundary balance out. Circulatory asymmetry can only
manifest when more than two components exchange
“mass.” For a 3-state partitioning of a network into parts
A, B, and C, the net flow from A — B (considered
positive when the net flux is in the direction of B),
by mass conservation, must equal to the net flux from
B — C, and must also equal the net flux from C — A.
The asymmetry manifests itself as a network circula-
tion current. For reasons akin to those underlying the
Cheeger constant, careful consideration of the size and
regularity of the boundary between parts is warranted.

The structure of the paper is as follows. In Section
we discuss probability currents and flow fields on
graphs. In Section we highlight the concept of
macroscopic circulation for Markov chains. The setting
of Markov chains is not restricted by the dimensionality
of possible embedding of the respective graph, but the
formulation of circulation in general requires further
refinement. In Section we discuss planar graph.
In section [V] we explain how to calculate the scalar
potential supported on the dual graph and a method
for partitioning the graph into three parts for assessing
macroscopic circulation. The issue of embedding is
revisited in Section |[VI| where it is explained that a given
graph may have non-equivalent embeddings, leading to



different values for the macroscopic circulation.

II. CURRENTS & FLOW FIELDS ON GRAPHS

We explain flows on graphs and probability currents,
induced by a Markov structure.

Consider a time-homogeneous, discrete-time, N-state
finite Markov chain X;, with t € N, with states V =
{v1,...,vn}, comprised of the nodes of a network, and
transition probabilities 71y, ;, i.€.,

P{Xtp1 =vj [ Xe =vi} =m0 ;.

We assume that the Markov chain is ergodic and
hence, irreducible and aperiodic. Thus, the matrix TT :=
[ﬂ\,i,\,j]\‘,\'i vy has non-negative entries and is such that
111 = 1, where 1 denotes a column vector with all entries
equal to 1. The ergodicity assumption implies that for
a sufficiently large integer k (e.g., k = N), TT* has
all entries positive. The dimensionality of vectors and
matrices will be explicit, unless their dimension is clear
from the context.

The Markov chain is associated to a graph § :=
(V, &), where the (directed) edge set € is specified by
the allowed transitions, i.e.,

€ ={e = (vi,v;) [ Toyym; # 0,

We consider G to have only one edge for any ordered
pair of nodes. Further, G is strongly connected due to
the ergodicity assumption.

Let now 71 = [7'[\,1}1)\" _, denote the (column) stationary

probability vector of the Markov chain. Thus,
T =mn"

and 7t" is the (unique left/row Frobenious-Perron) eigen-
vector of TT with eigenvalue 1. Throughout, T denotes
transposition. The entries of

P := diag(m,,, ..., )T (D

represent probability current Pyviv; = T Ty, from
vertex/state vi to vj. Probability currents quantify flux
on G.

Our aim is to identify (large scale) imbalance in the
net flux across G, and to this end, we will be working
with the antisymmetric part of P (modulo a factor of

1/ F=P—P' )

This retains information on only local flux imbalance
between nodes. Note that since, TT1 = 1 and 7' TT = 7',
it follows that P1 = PT1, and therefore, that F1 = 0 (the

zero vector) as well.

We view the matrix F as representing a “divergence
free” (i.e., with no sources) flow (“vector”) field on G.
Besides the fact that

F=—F'

F1=0,

(3a)
(3b)

the positive part of F, namely,

F, := [max{F;;, 0]

ij=1"

has entries that are less than or equal to P, and since
1"P1 =1,
1"F 1< 1. (3¢)
It turns out that characterize divergence-free
flow fields on graphs, i.e., antisymmetric matrices
satisfying originate from a Markovian
probability structure, as stated next

Proposition 1. Let F be and n x n matrix satisfying
(BdBd). In case holds with equality, assume that
1"F, has all entries positive. Then, F originates as a
divergence-free flow-field on a graph G = (V, &), with
|V| = n, associated with a Markov chain.

Proof. 1If holds with equality, let P = F., otherwise
define P := M +F,, for a symmetric matrix M = MT,
of the same size, with nonnegative entries such that

1™1=1—-1TF,1,

ensuring that " := 17P has all entries positive. This
is clearly possible from the standing assumptions. Now,
verify that

1T = diag(my,,..., 7, ) 'P )

is a transition probability matrix that leads to the
divergence-free flow field F. Specifically, i) TT has non-
negative entries. i) In view of ' = 1TP and (@),
70T = 7t" holds. iii) Note that F =F, — FI and hence,
F 1= FII from @I) It follows that P1 = PT1, and
from (@) the definition ' = 1TP, that TT1 = 1. iv)
Lastly, P—P" =F, —Fl =F. O

III. MACROSCOPIC CIRCULATION ON GRAPHS

Consider an N x N antisymmetric matrix F of net
fluxes that defines a divergence-fre flow field on a
(simple) graph G. We seek a suitable definition of
(maximal) macroscopic circulation by partitioning the
states into three subsets A, B, and C, in such a way so
as to maximize the flux between the parts.

UIf this is not the case, we replace F by its restriction on the
complement of the range of 117, namely, (I — %11T JF(I— %IIT),
so that F1 = 0.



For the case of a three-state Markov chain (N = 3),
the net flux matrix (antisymmetric part of the probability
current matrix P, modulo a factor of 1/2) is

0 —v v
F=1lv 0 —v|,
v v 0

with the directionality encoded in the sign of y. Ob-
viously, the off-diagonal entries of F must have the
same magnitude, since F1 = 0. Evidently, the value |y|
quantifies circulation in this example.

In the general case with N states, we seek partitioning
the graph into three subsets of nodes

A,B,eCV
that are pairwise non-intersecting with
V=AUBUC.

Such a triple of subsets of V will be referred to as a
3-partition.

Define the characteristic (column) vector Ig of a set
8§ C 'V, with V ordered, as follows: the vt entry of Ig is
equal to 1 when v € & and 0 otherwise. It is convenient
to define entry-wise Boolean addition and multiplication
of characteristic vectors, & and o, respectively, and also
the notation 1,0 to denote the (column) vectors with all
I’s and all O’s, respectively. Then, it can be shown that
(A, B, C) is a 3-partition of V if and only if

[1Dlpg®le=1,
IAOLB:IBOIGZI@OIA:O,

(52)
(5b)

Given F, as before, and a 3-partition (A, B, C) of the
(ordered) vertex set V, then IILFI(B is the (signed) flux
directed from A to B. That is, if IJTQFIE < 0, the net
flux, summed over all edges connecting directly A and
B, is directed from B into A. Thus,

[ Fly = —1LFL,,

while the absolute value |ILFLB| is the total net flux be-
tween the two parts. In fact, for any 3-partition (A, B, )
of the (ordered) vertex set V, it can be shown that

I} Flp = ILFle = ILFI,.
Now, one is naturaly led to define the circulation
c(A,B,@) = |1} Flg|

associated to any given 3-partition and, accordingly, the
maximal macroscopic circulation

max c(A,B,0C).

3-partitions

Cmax ‘=

Evidently, c(A, B, €) depends on the partition as well as
the “divergence-free” flow field on the graph G = (V, &)
that is specified by the skew symmetric matrix F (which
is implicit in the notation from the context).

A moment’s reflection reveals that these concepts do
not take into account the topology of the partition. More
specifically, the nature and size of the boundary between
the parts of a partition may be relevant to the type of
global feature one may want to capture. One option is to
normalize the flux between any two parts of a partition,
by dividing by the size of the corresponding boundaries.
However, such an approach leads us to a combinatorial
problem with possible number of cases to consider being
a Stirling number of the second kind [1] in the number
of vertices. Thus, in this paper, we focus on the case
of planar graphs, where partitions and a rather natural
notion of circulation can be easily computed.

IV. PLANAR GRAPHS AND NETWORK CIRCULATION

We are interested in the case where geographic prox-
imity of nodes is dictated by an actual embedding of
the graph into a linear (metric) space, specifically R?.
Graphs that can be embedded in R2, without intersection
of edges, are called planar. Flow fields on such graphs
have a resemblance to planar vector fields on manifold.
Circulation in vector fields on 2-dimensional manifolds,
relates to the curl in a certain canonical decomposition,
and can be conveniently quantified by a scalar potential.
As we will see, a similar fact holds true for planar
graphs, and a notion of circulation can be defined and
quantified by a scalar potential on the vertex set of a dual
graph. We next discuss planar graphs juxtaposed with
elements of Helmholtz-Hodge decomposition of vector
fields for insight into the corresponding flow fields on
graphs.

A. Planar graphs

Graph planarity is a well studied topic going back to
Euler who showed that, for planar graphs,

VI — 1€l +13] =2, (6)

with F the face set (with the exterior of the graph
counted in as an outside face). Interestingly, Euler for-
mula is not sufficient to ensure planarity. A condition
that fully characterized planarity was given in 1930’s by
Kuratowski and Wagner and it is the absence of two
specific subgraphs, Ks or K33 [2], [3], [4], [5].

The next important consideration is how to embed
a planar graph in R?, see [6]. It turns out that there
may be several “nonequivalent embeddings” [7], [8] and,



moreover, as we will see, network circulation depends
on the particular embedding.

Interestingly, every planar graph can be drawn on a
sphere (and vice versa) by a sterographic projection.
This amounts to projecting points on R? onto the
(Riemann) sphere corresponding the “north pole” with
the “point at co.” For our purposes, two graph embed-
dings are said to be equivalent if their corresponding
projections onto the sphere can be continuously rotated
(and the corresponding vertices shifted onto the sphere
without crossing edges) so as to match. The equivalence
of two graphs is exemplified in Figure|l| In fact, it turns
out that there are m = || isomorphic embeddings for

every planar graph.

h-

3 ‘, o I l

W - & N\

Fig. 1: Isomorphic graphs and sequence of graph morphisms;
0 and & are rotation and projection maps, respectively.

B. Helmholtz-Hodge decomposition

The Helmholtz-Hodge decomposition [9], [10], states
that the space of vector fields on a manifold can be
uniquely decomposed into mutually L?-orthogonal sub-
spaces using potential functions [11]. These can be
expressed as the gradient of a scalar potential, curl of
vector potential, and harmonic component that is both
“divergence-free” and “curl-free”.

In the case of vector fields on R2, the curl can be
expressed as ¥ = JV1p, where | is an antisymmetric
matrix and 1 a scalar potential. It can further be
shown (Stokes’ theorem) that the flux crossing any curve
connecting two points a and b on R? is given by the
difference of the endpoint potentials. It follows that the
flux across the path connecting the extrema of a curl
potential field is maximum, and this gives us a way to
define optimal partitions by spliting the manifold into
three parts, that connect the two extreme points of the
potential . In a bit more detail, the flux between two
points a,b € R? is defined as

I = J: IV . Jds,

in which the operator | rotates a 2D vector counterclock-
wise by 7t/2. Then, the flux across any path linking a

and b is

b b
1= J JV . Jds= J Vi .ds=9P(b)— ¥ (a).

a a (7)
Hence,

max (P (b) —p(a)). ®)

max(I) =
a,beR?

That is, {(a) and \(b) are the minimum and maximum
curl potentials, respectively. Partitioning the manifold
into three regions now can be done by delineating the
regions to lie between three (non-intersecting) paths
connecting a and b.

C. Planar Graphs

Starting from an antisymmetric net flux matrix F =
[Fi;]i; in (@) of Markov chain on a planar graph, we
consider the graph with adjacency matrix having the zero
pattern of F; the space of vertices and edges are the
collection of the nodes and edges, respectively, that have
corresponding non-zero elements in F,

Ve={vi € VIF; #0}, & ={ey € E[Fy #0}.

In addition we specify a sign function o : Ef x Vp —
{—1,1} that assigns an orientation, specifically o =
sign(F;;) for all non-zero elements of the net flux matrix,
and define the digraph G¢(VF, EF, 0). The vector of edge
flow weights wW— (Wij)i,j
corresponding to edges ej; € Cf with values wy; =
|Fi;] represents the flow field. The space of all flow
fields is denoted by Ur and assumes a Helmholtz-Hodge
decomposition,
uF — u%url o) ullmzarmonic o u%radiem,

dient .
where UE“™™ and U™ are curl-free and divergent-free

components. If Weud, Wharmonic; Weradien: denote projec-
tions of W in the respective components, then clearly
Waradient = 0, since by assumption F has no “sources.”

We wish to capture circulation in a similar manner as
in planar flow fields and thereby we seek a curl potential
1. The harmonic component Wh,menic relates to circu-
lation about “holes” (non-triangular faces [12]) in the
graph. Thus, before we proceed, we triangulate G, and
generate a new graph §$""%! by adding suitably many
edges with zero flux (i.e., zeros in the corresponding
entries of the flow field, formely W), so as to remove
holes and ensure that the harmonic component is zero as
well. Thus, we replace the holes with chordal subgraphs
by adding the minimum number of chords, that are not
part of the cycle but each connects two vertices of the
cycle. In this way, we generate a planar chordal graph
such that every chordless cycle subgraph is a triangle.



The corresponding potential function 1\ is now de-
fined on the graph’s faces, and hence, can be assigned
to the nodes of the dual graph, (G$*9)* The maximum
flux, in complete analogy with (8, is then obtained
by identifying those vertices of the dual graph with
minimum and maximum curl potentials.

V. GRAPH PARTITIONING

We summarize the insights gained and highlight the
steps needed in Algorithm [I] which helps obtain a
3-partition corresponding to maximum circulation by
providing the curl potential {p on the vertices of its
dual graph (i.e., faces of the original graph) and how
to numerically calculate this. The outcome depends on
the embedding of G, further discussed in Section

Algorithm 1: Finding curl potential extrema

Input:

A strongly connected, aperiodic, planar, digraph § with
a transition matrix TT.

Offline Preprocessing:

1. Calculate the net flux matrix F from (2).

2. Construct and triangulate Gr as described in
Subsection to generate 9°Fh°rd"‘l.

3. Find dual graph (Gghordal)*,

4. Set the potential 1 for the outside face to zero.

Computations:

Repeat (m — 1) times:

1. Find { for vertices of the dual graph using
(consider e.g., clockwise as positive direction).

Output:

Two faces of the primal with potential extrema.

Knowing 1 allows carving 3-partitions that entail
maximal circulation. Indeed, any set of two paths on the
dual graph between the points of \p-extrema separates
the graph in the three regions, A,B and C, discussed
earlier. This is summarized next.

Proposition 2. Consider a divergence-free flow field W
on the edges of a strongly connected digraph. Algorithm
generates the chordal digraph S%hordal and its dual with
an associated curl potential \p. Then, there exist paths in
the dual graph connecting two chosen extrema points of
b that provide a 3-partition with maximal macroscopic
circulation.

Proof. Completion of the graph into a chordal graph
is the first step of the algorithm and was explained
before. We compute 1 as follows. We assign O at the
vertex of the dual of the chordal graph corresponding
to the outside face, and proceed to assign values to
the remaining vertices of the dual graph so that the

difference between values of adjacent vertices equals
the (signed, e.g., in the clockwise sense) flux on the
corresponding edge of the primal graph. We now explain
the last part of the proposition.

Since Gl is simple, its dual is 3-edge-connected.
By Menger theorem [13], [14], for 3-edge-connected
graphs every pair of vertices has 3 edge-disjoint paths
in between. Now consider a pair of vertices on the
dual graph corresponding to a minimum and maximum
of 1. The connecting 3 edge-disjoint paths, P;, P»,
and P; generate three cycles, C;, C;, and Cj;, e.g.,
P,UP =C, P,UP; = Cy, and Py UP3 = C3. If
the extrema of the scalar potential do not include the
outside node of the (now chordal) dual graph, which is
the only node with degree higher than three, two paths
may share this node as well as the extremal nodes. As
a consequence, the outside will be visited twice while
tracing C;. Properly selecting interior or exterior of
those cycles, these delineate three disjoint sets of primal
vertices. Then, that by (BI), the flow that crosses their
shared boundaries (i.e., Py, P,, and P3) is maximal. [

Fig. 3] exemplifies the result of Proposition [2] for
a planar graph with two non-equivalent embeddings,
where the 3-partitions are marked using different colors
(red, blue, green) and shapes ( J, O, AA). We note that
for a planar, strongly connected graph, provided the
“outside” is not a part of the path between extremum
potentials in the dual, the partitions are connected. This
follows from the fact that the graph is chordal.

VI. EFFECT OF EMBEDDING ON GRAPH
PARTITIONING

Whitney showed that 3-connected graphs have unique
embedding, and consequently unique dual graph [7]. But
in general it is possible that if we consider two different
embeddings G, 9, of a planar graph G, the duals G}, 95
become non-isomorphic. And this may result into a
different output in Algorithm [I]
A. Example

Given transition matrix for a planar graph as in (9),
netflux matrix is calculated using equation (2). Fig. [2)in-
dicates two possible graphs which are constructed based
on calculated net flux matrix. These two embeddings
of a connected planar graph are related by flipping
at separating pair. As described in graphs are
triangulated, G{, G5 in Fig.

0 0.25 0 0 0.25 0 025 025

0.333 0 0333 0333 0 0 0 0

0 0.25 0 0.25 0 0.25 0 0.25

0 0333 0333 0 0333 0 0 0

m= 0333 0.333 0 0.333 0 0 0 0 (9)

0 0 0333 0 0 0 0333 0.333

0.5 0 0 0 0 0.5 0 0

0.25 0 0.25 0 0 0.25 025 0



Fig. 2: Two possible embeddings, constructed based on netflux matrix.

Based on the Algorithm [I] vector of curl potentials
for each triangulated graph is calculated,

P=[0,—0.0076, 0.0181, 0.0082, 0.0064, 0.0064, 0.0064, 0.0064, 0.009, 0.0205, —0.0096]",

P,=[0, —0.0076, 0.0181,0.0082, 0.0064, 0.0064, 0.0064, —0.0025, —0.014, 0.016]" .

(10
where 1, corresponds to the curl potential of the jth
face of graph G/, i € {1,2}.

The faces with maximum and minimum potential
for G| and G} are {5,9} and {2,8}, respectively. Ap-
plying Proposition 2] the 3-partitions for them are
{{6}9 {7}5 {1 s 2’ 3’ 4’a 59 8}} and {{49 8}9 {25 35 6}9 {1 s 57 7}}9 re-
spectively.

This example highlights that the output of Algorithm
[I} and consequently the partitioning of a graph, varies
according to the particular embedding chosen.
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