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Abstract	

The	ability	to	computationally	predict	protein-small	molecule	binding	affinities	with	high	
accuracy	would	accelerate	drug	discovery	and	reduce	its	cost	by	eliminating	rounds	of	trial-and-
error	synthesis	and	experimental	evaluation	of	candidate	ligands.	As	academic	and	industrial	
groups	work	toward	this	capability,	there	is	an	ongoing	need	for	datasets	that	can	be	used	to	
rigorously	test	new	computational	methods.		Although	protein-ligand	data	are	clearly	
important	for	this	purpose,	their	size	and	complexity	make	it	difficult	to	obtain	well-converged	
results	and	to	troubleshoot	computational	methods.	Host-guest	systems	offer	a	valuable	
alternative	class	of	test	cases,	as	they	exemplify	noncovalent	molecular	recognition	but	are	far	
smaller	and	simpler.	As	a	consequence,	host-guest	systems	have	been	part	of	the	prior	two	
rounds	of	SAMPL	prediction	exercises,	and	they	also	figure	in	the	present	SAMPL5	round.	In	
addition	to	being	blinded,	and	thus	avoiding	biases	that	may	arise	in	retrospective	studies,	the	
SAMPL	challenges	have	the	merit	of	focusing	multiple	researchers	on	a	common	set	of	
molecular	systems,	so	that	methods	may	be	compared	and	ideas	exchanged.	The	present	paper	
provides	an	overview	of	the	host-guest	component	of	SAMPL5,	which	centers	on	three	
different	hosts,	two	octa-acids	and	a	glycoluril-based	molecular	clip,	and	two	different	sets	of	
guest	molecules,	in	aqueous	solution.		A	range	of	methods	were	applied,	including	electronic	
structure	calculations	with	implicit	solvent	models;	methods	that	combine	empirical	force	fields	
with	implicit	solvent	models;	and	explicit	solvent	free	energy	simulations.	The	most	reliable	
methods	tend	to	fall	in	the	latter	class,	consistent	with	results	in	prior	SAMPL	rounds,	but	the	
level	of	accuracy	is	still	below	that	sought	for	reliable	computer-aided	drug	design.		Advances	in	
force	field	accuracy,	modeling	of	protonation	equilibria,	electronic	structure	methods,	and	
solvent	models,	hold	promise	for	future	improvements.			
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Introduction		

Structure-based	computer-aided	drug	design	(CADD)	methodologies	are	widely	used	to	assist	in	
the	discovery	of	small	molecule	ligands	for	proteins	of	known	three-dimensional	structure	[1–3].	
Docking	and	scoring	methods	can	assist	with	qualitative	hit	identification	and	optimization	[4–
6],	and	explicit	solvent	free	energy	methods	[7–10]	are	beginning	to	show	promise	as	an		at	
least	semi-quantitative	tool	to	identify	promising	variants	on	a	defined	chemical	scaffold	[11–
14].	However,	despite	numerous	efforts	to	improve	the	reliability	of	CADD	by	going	beyond	
docking	and	scoring	methods,	ligand	design	still	includes	a	large	component	of	experimental	
trial	and	error,	and	the	reasons	why	CADD	methods	are	often	not	predictive	are	unclear.	
Although	likely	sources	of	substantial	systematic	error	are	well	known	–	such	as	inaccuracy	in	
the	energy	models	used	and	uncertainty	in	protonation	and	tautomer	states	–	it	is	difficult,	and	
perhaps	impossible,	to	analyze	systematic	errors	in	any	detail,	because	incomplete	
conformational	sampling	of	proteins	adds	large,	ill-characterized	random	error.	

As	a	consequence,	host-guest	systems	[15–25]	are	finding	increasing	application	as	substitutes	
for	protein-ligand	systems	in	the	evaluation	of	computational	methods	of	predicting	binding	
affinities	[26–28].	A	host	is	a	compound	much	smaller	than	a	protein	but	still	large	enough	to	
have	a	cavity	or	cleft	into	which	a	guest	molecule	can	bind	by	non-covalent	forces.	Host-guest	
systems	can	be	identified	that	highlight	various	issues	in	protein-ligand	binding,	including	
receptor	flexibility,	solvation,	hydrogen	bonding,	the	hydrophobic	effect,	tautomerization	and	
ionization.	Because	host	molecules	tend	to	be	more	rigid	and	always	have	far	fewer	degrees	of	
freedom	than	proteins,	random	error	due	to	inadequate	or	uncertain	conformational	sampling	
can	be	dramatically	reduced,	allowing	a	tight	focus	on	other	sources	of	error.		Additionally,	
host-guest	systems	arguably	represent	a	minimalist	threshold	test	for	methods	of	estimating	
binding	affinities,	as	it	is	improbable	that	a	method	which	does	not	work	for	such	simple	
systems	could	succeed	for	more	complex	proteins.	

Accordingly,	host-guest	systems	have	been	included	in	rounds	3,	4	and	now	5,	of	the	Statistical	
Assessment	of	the	Modeling	of	Proteins	and	Ligands	(SAMPL)	project,	a	community-wide	
prediction	challenge	to	evaluate	computational	methods	related	to	CADD	[29–32].	The	SAMPL	
project	has	traditionally	posed	challenges	involving	not	only	binding	affinities	but	also	simpler	
physical	properties,	such	as	hydration	free	energies	of	small	molecules,	and,	in	the	present	
SAMPL5,	distribution	coefficients	of	drug-like	molecules	between	water	and	cyclohexane.	
Importantly,	SAMPL	is	a	blinded	challenge,	which	means	that	the	unpublished	experimental	
measurements	are	withheld	from	participants	until	the	predictions	have	been	made	and	
submitted.	This	approach	avoids	the	risk,	in	retrospective	computational	studies,	of	adjusting	
parameters	or	protocols	to	yield	agreement	with	the	known	data,	leading	to	results	which	
appear	promising	but	are	not	in	fact	reflective	of	how	the	method	will	perform	on	new	data.	In	
addition,	SAMPL	challenges	facilitate	comparisons	among	methods,	because	all	participants	
address	the	same	problems,	and	the	consistency	of	the	procedures	offers	the	possibility	of	
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comparing	results	from	one	challenge	to	the	next,	in	order	to	at	least	begin	to	track	the	state	of	
the	art.	

The	most	recent	challenge,	SAMPL5,	included	22	host-guest	systems	(Figure	1),	which	attracted	
54	sets	of	predictions	from	seven	research	groups.		Here,	we	provide	an	overview	of	this	
challenge	and	the	results.	(Note	that	many	participants	also	have	provided	individual	papers	on	
their	host-guest	predictions,	most	in	this	same	special	issue,	and	that	additional	papers	address	
the	distribution	coefficient	challenge	that	also	was	part	of	SAMPL5.)	The	present	paper	is	
organized	as	follows.	We	first	introduce	the	design	of	the	current	SAMPL	challenge,	including	
descriptions	of	the	host-guest	systems	and	measurements,	information	on	how	the	challenge	
was	organized,	and	the	nature	of	the	submissions.	We	then	analyze	the	performance	of	the	
various	computational	methods,	using	a	number	of	different	error	metrics,	and	compare	the	
results	with	each	other	and	with	those	from	prior	SAMPL	host-guest	challenges.	
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Figure	1.		Structures	of	host	OAH,	OAMe,	CBClip	and	their	guest	molecules.	OA	and	OAMe	are	
also	known	as	OA	and	TEMOA,	respectively.	All	host	molecules	are	shown	in	two	perspectives.	
Silver:	carbon;	Blue:	nitrogen;	Red:	oxygen;	Yellow:	sulfur.	Non-polar	hydrogen	atoms	were	
omitted	for	clarity.		OA-G1	–	OA-G6	are	the	common	guest	molecules	for	OAH	and	OAMe,	and	
CBC-G1	–	CBC-G10	are	guests	for	CBClip.	Protonation	states	of	all	host	and	guest	molecules	
shown	in	the	figure	were	suggested	by	the	organizers	based	on	the	expected	pKas	and	the	
experimental	pH	values.	
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Methods	

Structures	of	Host-Guest	Systems	and	Experimental	Measurements	

The	SAMPL5	host-guest	challenge	involves	three	host	molecules,	which	were	synthesized	and	
studied	in	the	laboratories	of	Prof.	Bruce	Gibb	and	Prof.	Lyle	Isaacs,	who	kindly	allowed	the	
experimental	data	to	be	included	in	the	SAMPL5	challenge	before	being	published.	The	first	two	
hosts,	OAH	[33]	and	OAMe,	from	the	Gibb	laboratory,	are	also	known	as	octa-acid	(OA)	and	
tetra-endo-methyl	octa-acid	(TEMOA)	[34,	35].	The	third,	CBClip	[36],	was	developed	in	the	
Isaacs	laboratory.	Representative	3D	structures	along	with	the	2D	drawings	of	their	respective	
SAMPL5	guest	molecules,	are	shown	in	Figure	1.	Host	OAH	was	used	in	the	SAMPL4	challenge	
[31],	but	with	a	different	set	of	guests.	One	end	of	it	has	a	wide	opening	to	a	bowl-shaped	
binding	site,	while	the	other	end	has	a	narrow	opening	that	is	too	small	to	admit	most	guests.	
The	bowl’s	opening	is	rimmed	by	four	carboxylic	acids,	and	another	four	carboxylic	groups	
extend	into	solution	from	the	closed	end.	The	carboxylic	groups	were	added	to	promote	
solubility	and	are	not	thought	to	interact	closely	with	any	of	the	guests.	Host	OAMe	is	identical	
to	OAH,	except	for	the	addition	of	four	methyl	groups	to	the	aromatic	rings	at	the	rim	of	the	
portal.	The	common	guest	molecules	of	OAH	and	OAMe,	OA-G1	–	OA-G6	were	chosen	based	on	
chemical	diversity,	solubility,	and	an	expectation	that	they	would	exhibit	significant	binding	to	
these	hosts.	Host	CBClip	is	an	acyclic	molecular	clip	that	is	chemically	related	to	the	
cucurbiturils	used	in	previous	SAMPL	projects	[30,	31].	It	consists	of	two	glycoluril	units,	each	
with	an	aromatic	sidewall,	and	four	sulfonate	solubilizing	groups.	Ten	molecules,	CBC-G1	–	CBC-
G10,	were	chosen	as	guests	of	CBClip,	with	the	aim	of	attaining	a	wide	range	of	affinities.	

The	experimental	binding	data	for	all	three	sets	of	host-guest	systems	are	listed	in	Table	1.	A	
1:1	binding	stoichiometry	was	confirmed	experimentally	in	all	cases.	The	binding	affinities	of	
most	OAH/OAMe	complexes	were	measured	using	two	different	techniques,	NMR	and	ITC,	and	
binding	enthalpies	are	also	available	for	the	ones	studied	by	ITC.	The	NMR	experiments	were	
carried	out	in	10	mM	sodium	phosphate	buffer	at	a	pH	value	of	11.3,	while	the	ITC	experiments	
were	performed	in	50	mM	sodium	phosphate	buffer	at	pH	11.5.	Both	sets	of	experiments	were	
conducted	at	298	K,	except	that	the	NMR	results	for	OAMe-G4	were	obtained	at	278	K.	In	the	
SAMPL5	instruction	file	(see	Supplementary	Material),	we	provided	expected	buffer	conditions	
for	OAH/OAMe	systems	as	“aqueous	10mM	sodium	phosphate	buffer	at	pH	11.5,	at	298	K,	
except	for	OA-G6,	for	which	the	buffer	was	50mM	sodium	phosphate”,	based	on	information	
from	Dr.	Gibb.	Therefore,	the	binding	affinities	measured	under	these	conditions	were	used	for	
the	present	error	analysis	whenever	they	are	available;	i.e.,	the	ITC	values	for	OA-G6	and	NMR	
values	for	the	rest.	Note	that	OA-G4	with	OAH	was	measured	only	by	ITC,	so	this	value	was	
used	in	the	present	analysis.	For	the	CBClip	systems,	the	experimental	studies	were	carried	out	
in	20	mM	sodium	phosphate	buffer	at	pH	7.4,	at	a	temperature	of	298	K.	Most	of	the	CBClip	
binding	affinities	were	measured	by	either	NMR	or	UV/Vis	spectroscopy.	However,	CBC-G6	and	
CBC-G10	were	measured	by	both	techniques;	for	these,	the	present	analysis	uses	the	results	
with	the	highest	confidence	level	indicated	by	the	experimentalists:		UV/Vis	measurement	for	
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CBC-G6	and	fluorescence	for	CBC-G10.	Detailed	experimental	data	for	OAH	and	OAMe	system	
are	provided	in	the	SAMPL5	special	issue	[37],	and	data	for	CBClip	systems	are	provided	
elsewhere	[38].	Note	that	a	different	set	of	numbering	was	used	for	both	hosts	and	guests	in	
the	octa	acid	experimental	paper.			

Table	1.	Experimental	standard	binding	affinities	(∆G°)	of	OAH,	OAMe	and	CBClip	(1	M	standard	
concentration)	used	as	references	for	SAMPL5	host-guest	affinity	predictions.	All	binding	
affinities	discussed	in	the	present	work	denote	standard	binding	affinities.		

Compd	
ID	 Technique	 Buffer	

Conc	(mM)	 Ka	(M-1)a	 ∆G°		
(kcal/mol)b	

Uncertainty	
(kcal/mol)	

OAH
c
	 	 	 	 	 	

OA-G1	 NMR	 10	 (5.00	±	0.07)	×	103		 -5.04		 0.01	
OA-G2	 NMR	 10	 (1.31	±	0.04)	×	103		 -4.25		 0.01	
OA-G3	 NMR	 10	 (5.16	±	0.09)	×	103		 -5.06		 0.01	
OA-G4	 ITC	 50	 (7.43	±	0.04)	×	106		 -9.37		 0.00	
OA-G5	 NMR	 10	 (1.996	±	0.005)	×	103	 -4.50		 0.00	
OA-G6	 ITC	 50	 (8.15	±	0.07)	×	103		 -5.33		 0.00	
OAMe

c
	 	 	 	 	 	

OA-G1	 NMR	 10	 (6.94	±	0.76)	×	103		 -5.24		 0.05	
OA-G2	 NMR	 10	 (4.96	±	0.37)	×	103		 -5.04		 0.03	
OA-G3	 NMR	 10	 (2.31	±	0.66)	×	104		 -5.94		 0.12	
OA-G4d	 NMR	 10	 (5.58	±	0.28)	×	101		 -2.38		 0.02	
OA-G5	 NMR	 10	 (7.29	±	0.33)	×	102		 -3.90		 0.02	
OA-G6	 ITC	 50	 (2.05	±	0.10)	×	103		 -4.52		 0.02	
CBClip	 	 	 	 	 	
CBC-G1	 NMR	 20	 (1.9	±	0.1)	×	104		 -5.83		 0.03	
CBC-G2	 NMR	 20	 70	±	8	 -2.51		 0.07	
CBC-G3	 NMR	 20	 (8.8	±	0.5)	×	102		 -4.02		 0.03	
CBC-G4	 UV/VIS	 20	 (2.0	±	0.1)	×	105		 -7.24		 0.03	
CBC-G5	 UV/VIS	 20	 (1.8	±	0.2)	×	106		 -8.53		 0.07	
CBC-G6e	 UV/VIS	 20	 (2.2	±	0.2)	×	106		 -8.64		 0.05	
CBC-G7	 UV/VIS	 20	 (6.2	±	0.2)	×	103		 -5.17		 0.02	
CBC-G8	 UV/VIS	 20	 (3.3	±	0.2)	×	104		 -6.17		 0.04	
CBC-G9	 UV/VIS	 20	 (2.6	±	0.1)	×	105		 -7.39		 0.02	
CBC-G10f	 Fluorescence	 20	 (3.9	±	0.2)	×	107	 -10.35	 0.03	

a	All	Ka	values	are	reported	as	mean	±	standard	deviation	(SD),	where	the	SD	was	computed	from	the	experimental	
replicates.	

b	The	uncertainties	of	experimental	∆Go	values	are	reported	as	standard	error	of	the	mean	(SEM),	obtained	from	
the	experimental	replicates	of	Ka	(see	Table	S1).	

c	For	the	complete	set	of	NMR	and	ITC	data	for	OAH/OAMe	systems,	please	see	ref	[37].	
d	Ka	values	were	measured	at	298	K	except	OAMe-G4	was	measured	at	278	K.	
e	The	binding	constant	of	CBClip-G6	measured	by	fluorescence	titration	is	(2.3	±	0.2)	×	106	M-1.		
f	The	binding	constant	of	CBClip-G10	is	(2.4	±	0.4)	×	107	M-1	measured	by	UV/Vis	titration	and	(6.6	±	0.7)	×	107	M-1	

measured	by	UV/Vis	competition	assay.	
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Design	of	the	SAMPL5	Host-Guest	Challenge	

The	SAMPL5	challenge	was	organized	in	collaboration	with	the	Drug	Design	Data	Resource	
(D3R).	The	general	information,	detailed	instructions,	and	input	files	for	SAMPL5	were	posted	
on	the	D3R	website	(https://drugdesigndata.org/about/sampl5)	mostly	before	September	15,	
2015;	the	information	for	three	guest	molecules	in	the	CBClip	series	was	added	in	mid-October.	
Submissions	were	accepted	from	registered	participants	until	the	February	2	deadline.	Multiple	
sets	of	predictions	were	allowed	for	any	or	all	of	the	host-guest	series.	Experimental	
measurements	and	error	analyses	of	all	predictions	were	released	shortly	after	the	submission	
deadline,	and	many	participants	discussed	their	results	and	the	challenge	at	the	D3R	workshop	
held	March	9	–	11,	2016,	at	University	of	California	San	Diego.	All	participants	were	invited	to	
submit	a	manuscript	about	their	calculations	and	results	before	a	June	20,	2016	deadline,	and	
the	resulting	papers	accompany	this	overview	in	the	special	issue	of	the	Journal	of	Computer-
Aided	Molecular	Design.		

The	SAMPL5	host-guest	instruction	files	provided	the	expected	experimental	conditions	for	
each	set	of	host-guest	systems,	including	pH,	buffer	composition	and	temperature,	though	
these	were	subject	to	adjustment	because	some	experiments	were	still	being	done	when	the	
instructions	were	distributed.	The	instructions	noted	that	all	acidic	groups	of	the	host	
molecules	seemed	likely	to	be	ionized	at	the	experimental	pH	values	(above),	leading	to	net	
charges	of	net	charges	of	-8,	-8	and	-4	for	OAH,	OAMe	and	CBClip,	respectively;	but	also	noted	
that	this	assumption	was	open	to	modification	by	each	participant.	Plausible	three-dimensional	
coordinates	of	host	CBClip	were	provided	by	Prof.	Lyle	Isaacs,	while	the	starting	3D	structures	
of	OAH	and	OAMe	were	built	and	energy-minimized	with	the	program	MOE	[39].	The	
protonation	states	of	all	guest	molecules	in	their	unbound	state	were	also	suggested,	based	on	
their	expected	pKas	and	the	experimental	pH	values	(Figure	1),	but,	again,	it	was	made	clear	
that	each	participant	had	to	make	his	or	her	own	judgment	regarding	the	ionization	states	and	
whether	they	remained	unchanged	on	binding	their	respective	hosts.		The	initial	structures	of	
the	free	guest	molecules	were	constructed	by	conformational	search	with	MOE.	The	resulting	
structures	of	free	hosts	and	guests	were	provided	in	the	download	as	PDB,	mol2	and	SD	files.	(A	
bond	order	issue	in	a	few	SD	files	of	the	free	CBClip	guests	were	reported	by	SAMPL	users	at	
the	workshop;	two	submissions	using	the	Movable	Type	method	were	adversely	affected	[40].)	
When	submitting	their	predictions,	participants	were	required	to	provide	not	only	estimated	
binding	free	energies,	but	also	computational	uncertainties,	in	the	form	of	standard	errors	of	
the	mean	(SEM).	New	in	SAMPL5,	participants	were	also	invited,	to	provide	predictions	of	the	
binding	enthalpies	for	the	octa-acid	host-guest	systems,	OA	and	OAMe,	but	this	aspect	of	the	
challenge	is	not	discussed	in	the	present	overview	paper	because	only	one	group	predicted	
enthalpies	[41].	

In	prior	rounds	of	SAMPL,	it	was	observed	that	participants	using	ostensibly	equivalent	force	
fields	and	simulation	procedures	to	compute	binding	free	energies	sometimes	reported	rather	
different	predictions.	To	help	resolve	such	situations	in	case	they	arose	in	SAMPL5,	participants	
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using	explicit	solvent	free	energy	methods	were	encouraged	to	submit	additional	“standard”	
runs	with	a	prescribed	set	of	force	field	and	simulation	parameters.	The	systems	selected	for	
these	standard	runs	were	OAH-G3	and	OAH-G4.	The	input	files	for	plausibly	docked	host-guest	
complexes	solvated	in	TIP3P	water	with	counterions	were	provided	to	participants	in	Amber	
[42],	Gromacs	[43],	Desmond	[44],	and	LAMMPS	[45]	formats,	along	with	the	other	SAMPL5	
starting	data.	The	procedures	used	to	ascertain	that	all	four	standard	setups	were	equivalent	
across	all	four	software	packages	are	detailed	in	another	paper	in	this	issue	[46].		

Error	Analysis	

The	experimental	binding	affinities	of	some	host-guest	complexes	in	SAMPL5	were	measured	
by	more	than	one	technique	and	all	available	data	were	provided	to	the	participants	after	the	
close	of	the	challenge.	Some	participants	used	the	averaged	affinities	for	their	error	analysis,	
while	others	selected	affinities	measured	by	particular	techniques.	It	is	up	to	the	participants	to	
determine	which	set	of	experimental	affinities	to	use	for	analysis,	as	long	as	consistent	criteria	
were	used	for	selecting	the	experimental	data,	rather	than	choosing	the	ones	that	generate	the	
best	agreement	with	their	computational	estimates.	Overall,	given	that	the	affinities	measured	
for	the	same	guests	are	only	slightly	different,	this	factor	should	not	influence	the	judgement	of	
the	performance	of	any	submissions	to	a	significant	extent.	In	particular,	the	error	analysis	for	
OAH	and	OAMe	in	this	overview	paper	is	based	on	comparisons	with	the	selected	NMR/ITC	
affinities	listed	in	Table	1,	and	the	results	change	little	on	comparing	instead	with	different	
selections	or	an	average	of	all	affinities	for	each	host-guest	pair.	For	example,	the	RMSE	
changed	by	at	most	0.1	kcal/mol	when	using	the	selected	NMR/ITC	experimental	data	in	Table	
1	rather	than	the	average	of	all	data	for	each	host-guest	pair	(see	spreadsheet	ExpVals	in	SI).	
The	detailed	error	metrics	based	on	both	sets	of	experimental	affinities	are	provided	in	
Supplementary	Material,	and	the	complete	experimental	data	are	provided	in	references	[37]	
and	[38].		

All	binding	affinity	prediction	sets	were	compared	with	the	corresponding	experimental	data	by	
four	measures:	root	mean-squared	error	(RMSE),	Pearson	coefficient	of	determination	(R2),	
linear	regression	slope	(m),	and	the	Kendall	rank	correlation	coefficient	(τ).	Evaluating	these	
statistics	was	straightforward	for	predictions	of	absolute	(also	known	as	standard)	binding	free	
energies,	and	the	results	are	presented	here	as	“absolute	error	metrics”.	For	OAH	and	OAMe,	
some	submissions	included	only	relative	binding	free	energies,	and	comparing	these	with	
experiment	is	more	complicated.		One	approach	for	handling	relative	free	energies	would	be	to	
reference	all	of	the	relative	binding	free	energies	to	a	single	guest	molecule,	but	then	the	
apparent	accuracy	can	become	particularly	sensitive	to	the	quality	of	the	calculations	for	the	
reference	guest.	Another	approach	would	be	to	consider	all	pairwise	free	energy	differences,	
but	this	becomes	cumbersome	and	redundant.	Additionally,	a	method	is	needed	to	compare	
the	accuracy	of	relative	and	absolute	free	energy	calculations	on	a	uniform	footing.		

Here,	we	adopted	an	approach	used	in	analyzing	the	SAMPL4	challenge	[31],	in	which	the	mean	
signed	error	(MSE)	of	each	submission	set,	whether	relative	or	absolute,	is	subtracted	from		
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each	prediction	leading	to	“offset”	binding	affinity	estimates.	The	error	metrics	for	comparisons	
to	experiment	are	less	sensitive	with	this	approach	than	using	any	particular	host-guest	system	
as	a	reference.	We	compute	the	offset	binding	free	energies	for	each	method	as	follows	

∆#$,&'()' = 	∆#$,,'()' − ./0																																																																																	(eq	1)	

		./0 = 1
2	 Δ#$

456 − Δ#$,,'()'2
$71 																																																															(eq	2)	

where	∆#$,,'()'	is	the	reported	(absolute	or	relative)	binding	affinity	for	each	prediction	i,		Δ#$456	
is	the	corresponding	absolute	experimental	binding	affinity,	∆#$,&'()'	is	the	offset	binding	affinity,	
and	n	is	the	total	number	of	guests	considered.	By	offsetting	both	relative	and	absolute	
predictions,	we	can	make	a	fair	comparison	of	their	agreement	with	experiment.	We	term	the	
error	metrics	computed	with	this	approach	“offset	error	metrics”	and	they	are	named	RMSEo,	
R&9 ,	mo,	and	τo.	

Given	the	similarity	of	the	OAH	and	OAMe	hosts,	the	fact	that	the	same	guests	were	studied	for	
both,	and	the	fact	that	most	submissions	included	results	for	both	subsets,	we	provide	error	
statistics	for	the	combined	OAH/OAMe	datasets.	Note	that,	in	the	submissions	that	reported	
relative	affinities,	the	binding	estimates	of	OAH-G1	and	OAMe-G1	were	both	arbitrarily	set	as	
zero,	even	though	the	experimental	binding	affinities	of	OAH-G1	and	OAMe-G1	are	not	
identical.		We	addressed	this	problem	by	applying	a	separate	MSE	offset	to	the	data	for	these	
two	hosts;	that	is,	by	subtracting	the	MSE	of	the	OAH	subset	from	the	OAH	estimates,	and	the	
MSE	of	the	OAMe	subset	from	the	OAMe	estimates.	For	instance,	in	a	combined	set	of	
OAH/OAMe	predictions	which	contains	six	relative	binding	affinity	estimates	for	host	OAH	and	
six	for	OAMe,	the	offset	RMSE	error	metric,	termed	RMSEo,	is	given	by		

RMSEo	=	
1
19 ∆#$

456 − ∆#$,,'()' − ./0 :;<
9=

$71 + 	 ∆#?
456 − ∆#?,,'()' − ./0 :;@4

9=
?71 					(eq	3)	

We	also	tested	how	well	the	computational	predictions	performed	by	comparison	with	two	
simple	null	models,	Null1	and	Null2.	In	Null1,	all	binding	free	energies	were	set	to	0.0	kcal/mol	
and	the	statistical	uncertainty	for	each	data	point	was	set	to	0.0	kcal/mol.	In	the	Null2	model,	
the	binding	affinity	estimate	for	each	guest	was	computed	via	a	linear	regression	of	the	
experimental	binding	free	energies	versus	the	number	of	heavy	atoms	in	the	corresponding	
guest	molecule,	for	identical	or	similar	host-guest	used	in	the	SAMPL3	[30]	and	SAMPL4	[31]	
exercises;	the	resulting	expression	is	∆G	=	-1.11	×	number	of	heavy	atoms	+	5.06	(kcal/mol)	for	
OAH	and	OAMe	systems	and	∆G	=	-0.25	×	number	of	heavy	atoms	-	1.81	(kcal/mol)	for	the	
CBClip	systems.		In	order	to	simulate	a	real	submission,	we	assigned	a	statistical	uncertainty	of	
1.0	kcal/mol	to	each	data	point	in	Null2.		

In	addition	to	evaluating	how	each	calculation	method	performed	in	this	specific	challenge	(i.e.,	
the	two	types	of	error	metrics	described	above),	we	wanted	to	provide	an	estimate	of	how	well	
each	method	would	perform	in	general.		In	other	words,	we	wanted	to	compute	error	metric	
uncertainties	which	accounted	for	how	the	reported	statistical	error	and	composition	of	the	
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data	set	influences	the	error	metric	results.	The	uncertainty	in	the	error	metrics	was	
determined	via	bootstrap	resampling	with	replacement.	Conceptually,	this	involves	creating	
thousands	of	hypothetical	"experiment	vs.	calculation"	data	sets	which	are	consistent	with	the	
reported	uncertainties,	and	then	recording	the	distribution	of	the	error	metrics	across	all	of	the	
hypothetical	sets.	More	specifically,	we	considered	each	data	point,	whether	experiment	or	
calculated,	as	a	normal	distribution	centered	on	the	reported	mean	value	with	the	width	
determined	by	the	reported	SEM.	For	each	bootstrap	cycle,	we	selected	a	single	random	value	
from	that	distribution	for	each	data	point,	which	we	term	"resampling".	Additionally,	while	
each	bootstrap	cycle	always	had	the	same	total	number	of	host-guest	systems	(12	for	
OAH/OAMe,	10	for	CBClip),	the	composition	of	the	data	set	was	selected	"with	replacement",	
meaning	that	in	some	cycles	there	were	multiple	copies	of	a	host-guest	pair,	while	other	pairs	
were	absent.	The	error	metric	distributions	were	generated	with	a	sufficient	number	of	
bootstrap	cycles,	100,000	in	this	case,	such	that	the	mean	and	SEM	of	the	distributions	were	
reproducible	to	the	second	decimal	place.	For	submissions	which	did	not	report	an	uncertainty	
(see	Table	3	and	4	footnotes),	the	resampling	step	was	omitted.	The	code	for	generating	the	
error	metrics	and	plotting	the	distributions	is	available	both	in	the	SI	and	on	Github.	

Results		

The	SAMPL5	host-guest	challenge	received	a	total	of	54	submissions	from	7	research	groups,	
comprising	12	submissions	for	host	CBClip,	21	submissions	for	OAH	and	21	submissions	for	
OAMe.	Key	aspects	of	all	prediction	methods	—	the	conformational	sampling	method,	the	force	
field	used	for	the	host	and	guest,	and	the	water	model	—	are	summarized	in	Table	2.	After	
merging	submissions	that	used	identical	methods	for	both	OAH	and	OAMe,	the	42	OAH/OAMe	
submissions	reduce	to	20	sets	of	combined	predictions,	along	with	two	subset	predictions:	TI-
BAR	(Table	2)	for	only	OAH,	and	MMPBSA-OPLS	(Table	2)	for	only	OAMe.	The	conformational	
sampling	techniques	used	include	docking,	molecular	dynamics	(MD)	simulations	with	explicit	
or	implicit	solvent,	and	Monte	Carlo	methods.	Compared	with	SAMPL3	and	SAMPL4	exercises,	
docking	was	less	frequently	used	as	the	sole	sampling	technique,	but	it	was	commonly	used	for	
obtaining	the	starting	structures	for	more	detailed	computational	approaches.	Extensive	use	
was	made	of	generalized	classical	force	fields	with	fixed	charges	and	no	explicit	treatment	of	
electronic	polarizability,	and	methods	using	explicit	solvent	models	employed	chiefly	the	TIP3P	
water	model	[47].	However,	a	few	methods	focused	less	on	conformational	sampling	and	more	
on	the	quality	of	the	energy	calculations,	through	the	use	of	various	quantum	methods.	For	the	
quantum	methods	to	obtain	configurational	entropy,	low-lying	vibrational	modes	were	treated	
by	the	free-rotor	approximation,	using	the	interpolation	model	implemented	in	the	thermo	
program	provided	by	Grimme	[48].	The	methods	to	derive	affinities	or	relative	affinities	range	
from	relatively	established	approaches,	such	as	thermodynamic	integration	(TI)	[49],	Bennett	
acceptance	ratio	(BAR)	[50],	metadynamics	[51],	and	MM/PBSA	[52],	to	the	more	recently	
developed	Movable	Type	method	[53].				
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Table	2.	Summary	of	computational	methods	in	all	SAMPL5	host-guest	submissions.	

Method		 Conformational	Sampling	 Energy	model	
Solvent	

Model	

SAMPL5	

Ref.	

OAH/OAMe	 	 	 	 	
APR-OPC	(C,	E)		 MD;	docking	 GAFF/RESP	 OPC	 [41]	
APR-TIP3P	(C,	E)	 MD;	docking	 GAFF/RESP	 TIP3P	 [41]	
BEDAM	(C,	I)	 MD	 OPLS-2005	 AGBNP2	 [54]	

DFT/TPSS-ca	(Q,	I)		 Manual	 DFT-D3(TPSS	functional)	 COSMO-RS	 [55]	
DFT/TPSS-na	(Q,	I)	 Manual	 DFT-D3	(TPSS	functional)	 COSMO-RS	 [55]	

DLPNO-CCSD(T)a	(Q,	I)	 Manual	 DLPNO-CCSD(T)	 COSMO-RS	 [55]	
Metadynamics	(C,	E)	 funnel	metadynamics		 GAFF/RESP	 TIP3P	 [56]	
MMPBSA-GAFF	(C,	E)	 MD	 GAFF/RESP	 PBSA;	TIP3P	 [56]	
MMPBSA-OPLSb	(C,	E)	 MD	 OPLS/RESP	 PBSA;	TIP3P	 [56]	

MovTyp-1	(C,	I)	 Mixed	torsion/low	mode		 KECSA	1		 implicit	 [40]	
MovTyp-2	(C,	I)	 Mixed	torsion/low	mode		 KECSA	2	 implicit	 [40]	
TI/BARc	(C,	E)		 MD;	docking	 CGenFF	 TIP3P	 [57]	
TI-psc	(C,	E)	 MD;	docking	 CGenFF	 TIP3P	 [57]	
TI-rawc	(C,	E)	 MD;	docking	 CGenFF	 TIP3P	 [57]	
HBARd	(C,	E)	 MD;	docking	 CGenFF	 TIP3P	 [57]	

HBAR-psd	(C,	E)	 MD;	docking	 CGenFF	 TIP3P	 [57]	
HBAR-ps1d	(C,	E)	 MD;	docking	 CGenFF	 TIP3P	 [57]	
HBAR-ps2d	(C,	E)	 MD;	docking	 CGenFF	 TIP3P	 [57]	
SOMD-1e	(C,	E)	 MD	 GAFF/RESP	 TIP3P	 [58]	
SOMD-2	(C,	E)	 MD	 GAFF/RESP	 TIP3P	 [58]	
SOMD-3	(C,	E)	 MD	 GAFF/RESP	 TIP3P	 [58]	
SOMD-4	(C,	E)	 MD	 GAFF/RESP	 TIP3P	 [58]	

	 	 	 	 	
CBClip	 	 	 	 	

BAR-ab-initiof(C,	E)		 MD	 CGenFF	 TIP3P	 [59]	
BAR-dockf	(C,	E)	 MD;	docking	 CGenFF	 TIP3P	 [59]	
TI-ab-initiof	(C,	E)	 MD	 CGenFF	 TIP3P	 [59]	
TI-BARf	(C,	E)	 MD;	docking	 CGenFF	 TIP3P	 [59]	
TI-dockf	(C,	E)	 MD;	docking	 CGenFF	 TIP3P	 [59]	
BEDAM	(C,	I)	 MD	 OPLS-2005	 AGBNP2	 [54]	

MovTyp-1	(C,	I)	 Mixed	torsion/low	mode		 KECSA	1		 implicit	 [40]	
MovTyp-2	(C,	I)	 Mixed	torsion/low	mode		 KECSA	2	 implicit	 [40]	
SOMD-1g	(C,	E)	 MD	 GAFF/RESP	 TIP3P	 [58]	
SOMD-2	(C,	E)	 MD	 GAFF/RESP	 TIP3P	 [58]	
SOMD-3	(C,	E)	 MD	 GAFF/RESP	 TIP3P	 [58]	
SOMD-4	(C,	E)	 MD	 GAFF/RESP	 TIP3P	 [58]	

APR:	attach-pull-release	approach	[60],	OPC	“optimal”	3-charge,	4-point	rigid	water	model	[61];	TIP3P:	transferable	
interaction	potential	three-point	[47];	BEDAM:	binding	energy	distribution	analysis	method	[62];	DLPNO-CCSD(T):	
domain	based,	local	pair	natural	orbital-coupled-cluster	single	double	and	perturbative	triple	excitations	[63];		DFT-
D3:	density	functional	theory	with	the	latest	dispersion	corrections	[64];	MovTyp:	Movable	Type	method	[53];	
SOMD:	single	topology	relative	free	energy	calculations	performed	with	Sire/OpenMM6.3	software	[65,	66];	BAR:	
Bennett	acceptance	ratio	[50];	TI:	thermodynamic	integration	[49,	67];	GAFF:	generalized	AMBER	force	field	[68];	
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CGenFF:	CHARMM	generalized	force-field	[69];	RESP:	restrained	electrostatic	potential	[70];	OPLS-2005:	optimized	
potentials	for	liquid	simulations	2005	force	field	[71,	72];	KECSA:	knowledge-based	and	empirical	combined	scoring	
algorithm	[73];	AGBNP2:	analytical	generalized	born	plus	non-polar	2	[74];	COSMO-RS:		conductor-like	screening	
model	for	real	solvents	[75];	MMPBSA:	molecular	mechanics	Poisson	Boltzmann/solvent	accessible	surface	area	
[52].	The	classifications	of	the	energy	model:	quantum	(Q)	or	Classic	(C),	as	well	as	the	solvent	model:	implicit	(I)	or	
explicit	(E)	are	listed	in	parentheses	following	the	name	of	each	method.	

a	DLPNO-CCSD(T)	and	DFT/TPSS-n	(n	indicates	neutralized)	used	neutralized	hosts,	yet	fully	charged	guests.	
DFT/TPSS-c	(c	indicates	charged)	used	both	fully	charged	hosts	and	guests.	

b	The	MMPBSA-OPLS	approach	was	only	used	to	generate	predictions	for	the	OAMe	subset.		
c	TI	was	used	to	compute	binding	affinities	in	both	TI-raw	and	TI-ps.	Lowest	values	of	the	computed	binding	free	
energies	were	reported	in	TI-raw.	In	TI-ps,	possible	corrections	were	added	through	calculating	the	relative	
pKa/pKb	of	the	ligands	to	known	analogs.	
d	Binding	free	energies	in	HBAR	submission	were	computed	by	Hamiltonian	replica	exchange	method	(HREM)	
combined	with	the	BAR	method.	The	protonation	state	correction	was	used	in	HBAR-ps,	HBAR-ps1	and	HBAR-ps2.	
Results	from	the	neutralized-only	systems	were	reported	as	HBAR-ps1	and	those	from	systems	at	the	experimental	
ionic	strength	were	reported	as	HBAR-ps2.	TI/BAR	prediction	only	reported	binding	affinities	for	the	OAH	subset	
based	on	the	averaged	results	computed	by	TI	and	HREM/BAR	for	each	guest.		

e	All	SOMD	predictions	were	produced	based	on	single	topology	relative	free	energy	calculations	combined	with	
multistate	Bennet	acceptance	ratio	(MBAR)	method,	but	with	different	protocols.	SOMD-1:	No	corrections;	SOMD-
2:	includes	a	correction	term	for	long-range	dispersion	interactions;	SOMD-3:	same	as	SOMD-2,	but	a	correction	
term	for	the	use	of	the	flat-bottom	distance	restraints	was	also	applied	to	bring	the	decoupled	guest	to	a	standard	
concentration;	SOMD-4:	same	as	SOMD-3	but	with	an	additional	correction	term	for	electrostatic	energies.	

f	Predictions	were	generated	by	either	TI	(labeled	with	TI-)	or	HREM/BAR	(label	by	BAR-).	Also	the	starting	
structures	were	obtained	by	quantum	calculations	(labeled	with	“ab-initio”)	or	docking	(labeled	with	“dock”).	
TI/BAR	reported	the	lowest	binding	affinity	from	either	method.				

g	Same	as	e.	
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Table	3.	Absolute	and	offset	error	metrics	of	binding	affinity	predictions	for	the	combined	OAH/OAMe	datasetsa.	

a	The	values	before	the	parentheses	are	error	metrics	computed	from	the	original	data	in	the	left	column	and	the	offset	data	in	the	right	column.	The	mean	
values	and	uncertainties	inside	the	parentheses	were	obtained	through	resampling	the	original	data	with	replacement.	RMSE,	R2,	m	and	τ	are	the	root	mean-
squared	error,	Pearson	coefficient	of	determination,	linear	regression	slope	and	Kendall	rank	correlation	coefficient	of	the	absolute	error	metrics,	as	opposed	
to	their	respective	counterparts,	the	offset	error	metrics	RMSEo,	R"# ,	mo	and	τo.	

b	Null1	model	with	a	constant	value	of	0.0	kcal/mol	and	no	computational	uncertainties.	

	 Absolute	error	metrics	 	 Offset	error	metrics	
Method	 				RMSE	 R2	 m	 τ	 RMSEo	 R"# 	 mo	 τo	

	 	 	 	 	 	 	 	 	
Null1b	 5.3(5.3	±	0.5)	 				-					 				-					 				-					 1.5(1.4	±	0.4)	 0.1(0.2	±	0.1)	 0.1(0.1	±	0.1)	 -					
Null2c	 3.5(3.5	±	0.8)	 0.0(0.2	±	0.2)	 0.1(-0.4	±	1.0)	 -0.3(-0.2	±	0.3)	 2.5(2.6	±	0.5)	 0.0(0.2	±	0.2)	 0.2(-0.3	±	1.0)	 -0.2(-0.2	±	0.3)	

APR-OPC	 2.1(2.1	±	0.2)	 0.8(0.8	±	0.2)	 1.4(1.5	±	0.5)	 0.6(0.6	±	0.2)	 1.2(1.2	±	0.4)	 0.8(0.8	±	0.2)	 1.4(1.5	±	0.5)	 0.6(0.6	±	0.2)	
APR-TIP3P	 1.6(1.6	±	0.2)	 0.9(0.9	±	0.1)	 1.4(1.4	±	0.2)	 0.7(0.7	±	0.1)	 0.8(0.9	±	0.2)	 0.9(0.9	±	0.1)	 1.4(1.4	±	0.2)	 0.7(0.7	±	0.1)	
BEDAM	 6.1(6.0	±	1.0)	 0.0(0.1	±	0.2)	 0.2(0.6	±	1.5)	 0.0(0.1	±	0.3)	 4.4(4.3	±	0.6)	 0.0(0.1	±	0.2)	 0.5(0.8	±	1.4)	 0.1(0.1	±	0.2)	

DFT/TPSS-cd	 				-					 				-					 				-					 				-					 5.3(5.2	±	0.8)	 0.3(0.4	±	0.2)	 2.2(2.8	±	1.5)	 0.5(0.5	±	0.2)	
DFT/TPSS-nd	 				-					 				-					 				-					 				-					 5.5(5.5	±	0.8)	 0.4(0.4	±	0.2)	 2.5(2.4	±	1.5)	 0.3(0.3	±	0.3)	

DLPNO-CCSD(T)d	 				-					 				-					 				-					 				-					 7.3(7.2	±	1.1)	 0.4(0.4	±	0.2)	 3.1(2.6	±	2.0)	 0.3(0.3	±	0.2)	
Metadynamics	 3.1(3.2	±	0.5)	 0.7(0.5	±	0.3)	 1.2(1.1	±	0.6)	 0.4(0.4	±	0.2)	 1.0(1.4	±	0.4)	 0.7(0.5	±	0.3)	 1.0(1.0	±	0.5)	 0.5(0.4	±	0.2)	
MMPBSA-GAFF	 3.6(3.6	±	0.5)	 0.0(0.2	±	0.2)	 0.3(0.1	±	1.1)	 0.1(0.1	±	0.3)	 3.0(2.9	±	0.8)	 0.0(0.2	±	0.2)	 0.3(0.1	±	1.1)	 0.1(0.0	±	0.3)	
MovTyp-1e	 3.0(2.9	±	1.1)	 0.0(0.3	±	0.3)	 0.2(-0.1	±	0.9)	 0.0(0.0	±	0.3)	 2.2(2.1	±	0.7)	 0.1(0.3	±	0.3)	 0.3(0.0	±	0.9)	 0.0(0.0	±	0.3)	
MovTyp-2e	 3.1(2.9	±	1.1)	 0.0(0.3	±	0.3)	 0.2(-0.1	±	1.1)	 0.1(0.1	±	0.3)	 2.6(2.5	±	0.7)	 0.1(0.3	±	0.2)	 0.4(0.1	±	1.0)	 0.1(0.1	±	0.3)	

TI-ps	 2.7(2.7	±	0.9)	 0.0(0.2	±	0.2)	 0.2(0.2	±	1.0)	 0.2(0.2	±	0.2)	 2.2(2.4	±	0.8)	 0.1(0.3	±	0.2)	 0.5(0.5	±	0.9)	 0.3(0.2	±	0.3)	
TI-raw	 2.7(2.8	±	0.9)	 0.0(0.2	±	0.2)	 0.2(0.3	±	1.1)	 0.2(0.2	±	0.2)	 2.3(2.5	±	0.7)	 0.1(0.2	±	0.2)	 0.5(0.6	±	1.0)	 0.4(0.2	±	0.2)	
HBAR	 3.0(3.0	±	0.9)	 0.0(0.2	±	0.2)	 -0.3(-0.2	±	1.0)	 0.1(0.1	±	0.2)	 2.4(2.4	±	0.7)	 0.0(0.2	±	0.2)	 0.1(0.1	±	0.8)	 0.2(0.2	±	0.3)	

HBAR-ps	 3.0(2.9	±	0.9)	 0.0(0.2	±	0.2)	 -0.3(-0.2	±	1.0)	 0.1(0.1	±	0.2)	 2.3(2.3	±	0.7)	 0.0(0.2	±	0.2)	 0.1(0.1	±	0.8)	 0.2(0.2	±	0.3)	
HBAR-ps1	 3.0(3.0	±	0.9)	 0.0(0.2	±	0.2)	 -0.3(-0.2	±	1.0)	 0.1(0.1	±	0.3)	 2.4(2.4	±	0.7)	 0.0(0.2	±	0.2)	 0.1(0.1	±	0.8)	 0.2(0.2	±	0.3)	
HBAR-ps2	 2.2(2.3	±	0.5)	 0.0(0.1	±	0.2)	 0.0(0.1	±	0.7)	 0.1(0.1	±	0.3)	 1.7(1.8	±	0.4)	 0.1(0.2	±	0.2)	 0.3(0.4	±	0.5)	 0.3(0.2	±	0.2)	
SOMD-1	 3.6(3.6	±	0.3)	 0.9(0.8	±	0.2)	 1.3(1.2	±	0.3)	 0.5(0.4	±	0.2)	 0.8(0.9	±	0.2)	 0.9(0.8	±	0.2)	 1.2(1.1	±	0.3)	 0.5(0.5	±	0.2)	
SOMD-2	 3.6(3.6	±	0.3)	 0.9(0.8	±	0.2)	 1.3(1.2	±	0.3)	 0.5(0.4	±	0.2)	 0.8(0.9	±	0.2)	 0.9(0.8	±	0.2)	 1.2(1.2	±	0.3)	 0.5(0.5	±	0.2)	
SOMD-3	 2.1(2.1	±	0.3)	 0.9(0.7	±	0.2)	 1.3(1.2	±	0.3)	 0.4(0.4	±	0.2)	 0.9(1.0	±	0.2)	 0.9(0.7	±	0.2)	 1.2(1.1	±	0.3)	 0.5(0.4	±	0.2)	
SOMD-4	 10.0(10.0	±	0.5)	 0.1(0.2	±	0.2)	 2.0(1.7	±	3.1)	 0.3(0.3	±	0.2)	 9.8(9.7	±	1.0)	 0.1(0.2	±	0.1)	 1.9(1.6	±	3.1)	 0.3(0.3	±	0.2)	
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c	Null2	model	based	on	the	linear	regression	equation	∆G	=	-1.11	×	number	of	heavy	atoms	+	5.06	kcal/mol	(based	on	SAMPL4	OA	data);	SEM	was	set	to	1.0	
kcal/mol.		
d	Relative	binding	affinities	were	reported;	computational	uncertainties	were	not	provided.				
e	Computational	uncertainties	were	not	reported.	
	
Table	4.	Offset	error	metrics	of	binding	affinity	predictions	for	the	separate	OAH	and	OAMe	datasetsa.	
	 OAH	

	

OAMe	
Method	 				RMSEo	 R"# 	 mo	 τo	 RMSEo	 R$# 	 mο	 το	

	 	 	 	 	 	 	 	 	
Null1b	 1.7(1.6	±	0.6)	 				-					 				-					 				-					 1.1(1.1	±	0.3)	 				-					 				-					 				-					
Null2c	 1.7(1.9	±	0.5)	 0.4(0.4	±	0.3)	 0.8(0.4	±	4.5)	 0.4(0.3	±	0.3)	 3.1(3.1	±	0.8)	 0.7(0.6	±	0.2)	 -1.5(-1.6	±	1.0)	 -0.8(-0.6	±	0.2)	

APR-OPC	 0.7(0.7	±	0.2)	 0.9(0.7	±	0.3)	 1.1(1.2	±	2.7)	 0.6(0.5	±	0.3)	 1.6(1.6	±	0.6)	 0.9(0.9	±	0.2)	 2.2(1.9	±	0.7)	 0.9(0.7	±	0.2)	
APR-TIP3P	 0.8(0.8	±	0.2)	 1.0(0.9	±	0.2)	 1.4(1.5	±	0.9)	 0.6(0.5	±	0.3)	 0.9(0.9	±	0.3)	 0.9(0.9	±	0.1)	 1.6(1.5	±	0.4)	 0.9(0.7	±	0.2)	
BEDAM	 4.8(4.7	±	0.9)	 0.0(0.1	±	0.2)	 -0.5(0.2	±	18.5)	 -0.1(0.0	±	0.3)	 3.9(3.8	±	0.7)	 0.4(0.5	±	0.3)	 2.7(2.1	±	2.4)	 0.3(0.3	±	0.4)	

DFT/TPSS-cd	 5.7(5.6	±	1.3)	 0.2(0.4	±	0.3)	 1.7(3.7	±	9.1)	 0.5(0.4	±	0.3)	 4.8(4.7	±	0.8)	 0.7(0.7	±	0.2)	 4.1(3.9	±	2.4)	 0.3(0.3	±	0.4)	
DFT/TPSS-nd	 4.4(4.3	±	0.7)	 0.5(0.6	±	0.3)	 2.2(2.0	±	5.8)	 0.3(0.3	±	0.4)	 6.5(6.4	±	1.3)	 0.4(0.5	±	0.3)	 3.9(2.7	±	4.3)	 0.3(0.3	±	0.4)	

DLPNO-CCSD(T)d	 7.0(6.9	±	1.3)	 0.5(0.5	±	0.3)	 3.3(1.8	±	9.9)	 0.3(0.3	±	0.4)	 7.6(7.4	±	1.7)	 0.3(0.4	±	0.3)	 3.7(2.2	±	5.4)	 0.2(0.2	±	0.4)	
Metadynamics	 0.7(0.9	±	0.3)	 0.9(0.7	±	0.3)	 1.2(1.1	±	1.9)	 0.6(0.4	±	0.3)	 1.2(1.6	±	0.5)	 0.3(0.3	±	0.3)	 0.6(0.8	±	1.1)	 0.3(0.3	±	0.3)	
MMPBSA-GAFF	 1.8(1.8	±	0.3)	 0.5(0.5	±	0.3)	 1.0(1.3	±	5.4)	 0.5(0.4	±	0.4)	 3.9(3.7	±	1.2)	 0.4(0.5	±	0.3)	 -1.7(-1.2	±	1.9)	 -0.3(-0.3	±	0.4)	
MovTyp-1e	 0.8(0.7	±	0.2)	 0.8(0.7	±	0.3)	 1.0(0.9	±	2.4)	 0.5(0.4	±	0.4)	 3.1(2.9	±	1.0)	 0.7(0.6	±	0.3)	 -1.5(-1.3	±	0.9)	 -0.5(-0.4	±	0.4)	
MovTyp-2e	 1.2(1.2	±	0.2)	 0.8(0.7	±	0.3)	 1.2(1.4	±	4.2)	 0.9(0.8	±	0.2)	 3.5(3.4	±	1.0)	 0.5(0.5	±	0.3)	 -1.7(-1.5	±	1.3)	 -0.5(-0.4	±	0.4)	

TI-ps	 0.8(1.3	±	0.4)	 0.8(0.7	±	0.2)	 1.0(1.6	±	3.6)	 0.7(0.5	±	0.3)	 3.0(3.1	±	1.1)	 0.2(0.3	±	0.3)	 -0.8(-0.4	±	1.8)	 -0.2(-0.1	±	0.4)	
TI-raw	 1.7(1.9	±	0.5)	 0.5(0.5	±	0.3)	 1.0(1.7	±	4.6)	 0.6(0.4	±	0.3)	 2.7(2.8	±	1.1)	 0.1(0.4	±	0.3)	 -0.6(-0.2	±	1.7)	 -0.2(-0.1	±	0.4)	
HBAR	 1.7(1.7	±	0.5)	 0.2(0.4	±	0.3)	 0.3(0.7	±	4.8)	 0.5(0.4	±	0.3)	 3.0(2.9	±	1.0)	 0.2(0.4	±	0.3)	 -0.9(-0.4	±	1.5)	 -0.1(-0.1	±	0.4)	

HBAR-ps	 1.3(1.3	±	0.3)	 0.4(0.6	±	0.2)	 0.4(0.8	±	2.2)	 0.6(0.5	±	0.3)	 3.0(2.9	±	1.0)	 0.2(0.4	±	0.3)	 -0.9(-0.4	±	1.5)	 -0.1(-0.1	±	0.4)	
HBAR-ps1	 1.2(1.2	±	0.4)	 0.5(0.6	±	0.2)	 0.5(1.0	±	2.0)	 0.6(0.6	±	0.3)	 3.2(3.2	±	1.0)	 0.2(0.4	±	0.3)	 -1.1(-0.6	±	1.6)	 -0.2(-0.2	±	0.4)	
HBAR-ps2	 1.5(1.5	±	0.4)	 0.3(0.4	±	0.2)	 0.3(0.7	±	1.8)	 0.5(0.4	±	0.3)	 1.9(2.0	±	0.5)	 0.0(0.3	±	0.3)	 -0.1(0.2	±	1.1)	 -0.1(0.0	±	0.4)	
SOMD-1	 0.8(1.0	±	0.4)	 0.9(0.7	±	0.3)	 1.3(1.1	±	1.6)	 0.5(0.4	±	0.4)	 0.7(0.8	±	0.3)	 0.8(0.7	±	0.3)	 1.1(1.0	±	0.5)	 0.5(0.5	±	0.3)	
SOMD-2	 0.9(1.0	±	0.3)	 0.9(0.8	±	0.3)	 1.4(1.1	±	1.6)	 0.5(0.4	±	0.4)	 0.7(0.8	±	0.3)	 0.8(0.7	±	0.3)	 1.1(1.0	±	0.5)	 0.6(0.5	±	0.3)	
SOMD-3	 1.0(1.1	±	0.3)	 0.9(0.7	±	0.3)	 1.3(1.0	±	1.7)	 0.3(0.3	±	0.4)	 0.7(0.8	±	0.3)	 0.8(0.7	±	0.3)	 1.1(1.0	±	0.5)	 0.6(0.5	±	0.3)	
SOMD-4	 9.5(9.5	±	1.5)	 0.4(0.4	±	0.3)	 3.6(3.5	±	30.8)	 0.5(0.4	±	0.3)	 10.0(9.9	±	1.5)	 0.0(0.3	±	0.3)	 -1.4(-0.5	±	7.1)	 0.1(0.1	±	0.4)	
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a	The	values	before	the	parentheses	are	error	metrics	computed	from	the	original	data	offset	by	the	MSE.	The	mean	values	and	uncertainties	inside	the	
parentheses	were	obtained	through	resampling	the	original	data	using	replacement.	The	offset	error	metrics	RMSEo,	R"# ,	mo	and	τo	are	provided.	
b	Null1	model	with	a	constant	value	0.0	kcal/mol	and	no	computational	uncertainties.		
c	Null2	model	based	on	the	linear	regression	equation	∆G	=	-1.11	×	number	of	heavy	atoms	+	5.06	kcal/mol	(based	on	SAMPL4	OA	data);	SEM	was	set	to	1.0	
kcal/mol.		
d	Computational	uncertainties	were	not	reported.				
e	Computational	uncertainties	were	not	reported.		
	
	
Table	5.	Absolute	error	metrics	of	binding	affinity	predictions	for	the	CBClip	datasetsa.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

a	The	values	before	the	parentheses	are	raw	error	metrics	computed	from	the	original	data.	The	mean	values	and	uncertainties	inside	the	parentheses	were	
obtained	through	resampling	the	original	data	using	replacement.	The	absolute	error	metrics	RMSE,	R2,	m	and	τ	are	provided.	
b	Null1	model	with	a	constant	value	0.0	and	no	computational	uncertainties	were	assigned	to	guests.	

TI/BAR	 1.0(1.2	±	0.4)	 0.6(0.6	±	0.2)	 0.6(1.1	±	2.5)	 0.9(0.6	±	0.3)	 				-					 				-					 				-					 				-					
MMPBSA-OPLS	 				-					 				-					 				-					 				-					 3.4(3.2	±	1.1)	 0.7(0.6	±	0.3)	 -1.7(-1.4	±	1.0)	 -0.6(-0.4	±	0.3)	

Method	 									RMSE	 								R2	 								m	 								τ	
	 	 	 	 	

Null1b	 6.9(6.9	±	0.7)	 -	 -	 -	
Null2c	 2.2(2.4	±	0.5)	 0.2(0.2	±	0.2)	 0.4(0.4	±	0.3)	 0.4(0.3	±	0.2)	

BAR-ab-initio	 4.0(4.0	±	0.8)	 0.0(0.1	±	0.1)	 -0.1(-0.1	±	0.4)	 -0.2(-0.1	±	0.2)	
BAR-dock	 4.7(4.9	±	1.0)		 0.1(0.1	±	0.1)		 -0.4(-0.4	±	0.6)		 -0.2(-0.2	±	0.2)		
TI-ab-initio	 4.7(4.8	±	0.8)	 0.2(0.2	±	0.2)	 -0.6(-0.6	±	0.5)	 -0.2(-0.2	±	0.3)	
TI-dock	 3.4(3.6	±	0.7)	 0.0(0.1	±	0.1)	 -0.1(-0.1	±	0.5)	 -0.2(-0.1	±	0.2)	
TI/BAR	 4.0(4.0	±	0.9)	 0.0(0.1	±	0.1)	 -0.1(-0.1	±	0.4)	 -0.2(-0.1	±	0.2)	
BEDAM	 4.8(4.6	±	1.3)	 0.4(0.5	±	0.2)	 1.7(1.8	±	0.8)	 0.4(0.4	±	0.2)	

MovTyp-1d	 3.5(3.5	±	0.7)	 0.0(0.1	±	0.1)	 0.0(0.0	±	0.3)	 0.0(0.0	±	0.3)	
MovTyp-2d	 4.2(4.1	±	0.8)	 0.0(0.1	±	0.1)	 0.0(0.0	±	0.5)	 0.0(0.0	±	0.3)	
SOMD-1	 6.4(6.4	±	0.9)	 0.8(0.7	±	0.2)	 2.7(2.7	±	0.5)	 0.7(0.6	±	0.1)	
SOMD-2	 6.3(6.3	±	0.9)	 0.8(0.7	±	0.2)	 2.7(2.7	±	0.5)	 0.7(0.6	±	0.1)	
SOMD-3	 5.7(5.7	±	0.7)	 0.8(0.7	±	0.2)	 2.7(2.7	±	0.5)	 0.7(0.6	±	0.2)	
SOMD-4	 18.4(17.7	±	5.3)	 0.5(0.5	±	0.3)	 5.6(5.6	±	2.4)	 0.5(0.5	±	0.3)	
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c	Null2	model	based	on	the	linear	regression	equation	∆G	=	-0.25	×	number	of	heavy	atoms	-	1.81	kcal/mol	(based	on	SAMPL3	Host1	data);	SEM	was	set	to	1.0	
kcal/mol.	

d	Computational	uncertainties	were	not	reported.		Results	were	adversely	affected	by	bond	order	issues	in	the	provided	SD	files	of	free	guests	[40].	
	 	



	 18	

	

Fig	2.	OAH/OAMe	submissions	ranked	based	on	the	original	values	of	absolute	error	metrics	(white	circles),	which	were	computed	from	reported	
binding	affinities	without	resampling	or	considering	any	uncertainty	sources.	The	violin	plot	describes	the	shape	of	sampling	distribution	for	each	
set	of	predictions	when	bootstrapping	100,	000	samples	with	replacement,	and	the	vertical	bar	represents	the	mean	of	the	distribution.	The	
computational	uncertainties	are	absent	in	the	Null1,	MovTyp-1,	and	MoveTyp-2	predictions.	Two	null	models	are	shown	in	red.	The	violin	plot	
area,	here	and	below,	are	normalized	not	to	unity,	but	instead	to	give	the	same	maximum	thickness.	
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Fig	3.	OAH/OAMe	submissions	ranked	based	on	the	original	values	of	offset	error	metrics	(white	circles),	which	were	computed	from	reported	
binding	affinities	without	resampling	or	considering	any	uncertainty	sources.	The	violin	plot	describes	the	shape	of	sampling	distribution	for	each	
set	of	predictions	when	bootstrapping	100,	000	samples	with	replacement,	and	the	vertical	bar	represents	the	mean	of	the	distribution.	The	
computational	uncertainties	are	absent	in	Null1	model,	MovTyp-1,	MoveTyp-2	DFT/TPSS-n,	DFT/TPSS-C	and	DLPNO-CCSD(T)	predictions.	Two	
null	models	are	shown	in	red.	
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Fig	4.	CBClip	submissions	ranked	based	on	the	original	values	of	absolute	error	metrics	(white	circles),	which	were	computed	from	reported	
binding	affinities	without	resampling	or	considering	any	uncertainty	sources.	The	violin	plot	describes	the	shape	of	sampling	distribution	for	each	
set	of	predictions	when	bootstrapping	100,	000	samples	with	replacement,	and	the	vertical	bar	represents	the	mean	of	the	distribution.	Two	null	
models	are	shown	in	red.	The	computational	uncertainties	are	absent	in	Null1	model,	MovTyp-1	and	MoveTyp-2	predictions.	
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Error	statistics	
Error	statistics	for	all	17	sets	of	absolute	binding	free	energy	predictions	for	the	combined	

OAH/OAMe	dataset	are	summarized	in	Table	3	(left-hand	side)	and	Figure	2.	These	absolute	

binding	free	energy	predictions,	in	addition	to	three	sets	of	relative	binding	free	energy	

predictions:	DFT/TPSS-n,	DFT/TPSS-c,	and	DLPNO-CCSD(T),		were	then	converted	to	offset	

binding	free	energies,	using	Eq	1,	and	the	error	statistics	are	presented	in	Table	3	(right-hand	

side)	and	Figure	3.	The	offset	free	energy	statistics	for	all	methods	for	the	separate	OAH	and	

OAMe	sets	are	presented	in	Table	4.	All	12	sets	of	CBClip	predictions	are	absolute	binding	free	

energies,	and	error	statistics	for	these	are	presented	in	Table	5	and	Figure	4.	Scatter	plots	of	

original	data	and	offset	predictions	versus	experimental	binding	free	energies	for	all	methods	

and	systems	are	provided	in	Figure	S1	and	S2	respectively.	

Inspection	of	the	absolute	binding	free	energy	results	for	OAH	and	OAMe	(Figure	2	and	Table	3)	

reveals	that	most	prediction	sets	outperformed	both	Null	models	for	this	dataset,	and	that	

comparatively	favorable	results	were	provided	by	several	explicit	solvent	free	energy	methods	

with	fixed	charge	models	and	the	GAFF	parameters	[68].	The	attach-pull-release	(APR)	method	

[60]	with	either	the	TIP3P	or	the	OPC	water	model,	performed	well,	as	did	the	SOMD-3	method	

(Figure	5a	and	b),	followed	closely	by	the	SOMD-1	and	SOMD-2	methods.		The	APR	method	

obtains	the	binding	free	energy	in	terms	of	the	reversible	work	to	pull	the	guest	from	the	host	

along	a	physical	pathway	[60,	76],	while	the	SOMD	calculations	use	the	double-decoupling	

approach	[77].	The	APR-TIP3P,	APR-OPC	and	SOMD-3	methods	all	yielded	R2	≥	0.8,	linear	
regression	slopes	1.3	<	m	<	1.4,	and	1.6	≤	RMSE	≤	2.1	kcal/mol.	The	other	two	SOMD	

predictions,	SOMD-1	and	SOMD-2,	which	closely	resemble	SOMD-3	but	use	different	correction	

protocols,	provide	similar	correlations	with	experiment,	but	larger	RMSE	values,	3.6	kcal/mol.	

The	Metadynamics	method	uses	funnel	metadynamics	approach	[78]	to	obtain	the	binding	free	

energy	via	the	potential	of	mean	force	along	a	physical	binding	pathway,	again	using	molecular	

dynamics	with	GAFF	and	TIP3P;	this	method	also	performed	relatively	well,	with	R2	of	0.7,	slope	

near	1,	and	RMSE	of	3.1	kcal/mol.	It	is	not	immediately	clear	why	the	Metadynamics	and	APR-

TIP3P	differ,	as	the	force	fields	used	appear	to	match,	but	it	is	worth	noting	that	the	

Metadynamics	calculations	actually	provided	relative	binding	free	energies,	which	were	

converted	into	absolute	binding	free	energies	for	submission	by	referring	to	a	known	octa-acid	

guest	result	from	SAMPL4.	The	accurate	absolute	binding	free	energies	cannot	be	obtained	by	

Metadynamics	due	to	the	special	treatment	of	the	unbound	state	as	a	“dry	state”,	in	which	all	

water	molecules	were	restrained	from	entering	the	host	cavity	[56].	

The	analysis	of	relative	binding	free	energies	(Figure	3,	Tables	2	and	3)	provides	a	similar	overall	

picture,	but	allows	the	three	sets	of	relative	predictions	—		DLPNO-CCSD(T),	DFT/TPSS-n	and	

DFT/TPSS-c	to	be	compared	with	the	other	predictions	on	an	equal	footing.		The	DFT/TPSS-n	

and	DFT/TPSS-c	predictions	were	generated	with	dispersion-corrected	density	functional	theory	

calculations,	in	conjunction	with	COSMO-RS	continuum	solvation	model	[75],	while	DLPNO-

CCSD(T)	approach	used	the	DLPNO-CCSD(T)	level	of	theory,	again	combined	with	COSMO-RS.	

Both	DLOPNO-CCSD(T)	and	DFT/TPSS-n	treated	the	host	as	neutral	and	the	guest	as	fully	
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charged,	while	the	DFT/TPSS-c	assumed	charges	appropriate	to	the	experimental	pH	for	both	

host	and	guest	molecules.	According	to	the	participant,	the	correlations	shown	in	DFT/TPSS-n	

(R&' 	=	0.5;	Figure	5c)	and	other	two	quantum	submissions	actually	resulted	from	including	the	

OAMe-G4	data	point	based	on	a	faulty	binding	configuration.	When	the	proper	configuration	

was	used	in	later	calculations,	no	correlations	were	found	with	experimental	data	[54].	

The	offset	error	analysis	also	provides	separate	statistics	for	OAH	and	OAMe,	and	it	is	

noteworthy	that,	despite	its	relatively	low	correlations	for	the	OAH/OAMe	combined	set,	the	

MovTyp-1	and	MovTyp-2	methods	yield	good	error	statistics	for	the	OAH	subset	(Table	4),	with	

R&' 	of	0.8	and	regression	slopes	near	1.	However,	the	two	Movable	Type	methods	yield	anti-

correlations	for	the	OAMe	subset,	and	this	degrades	the	overall	performance	of	these	methods	

for	the	combined	OAH/OAMe	set.	Similar	performance	deterioration	by	including	estimates	

from	the	OAMe	subset	was	also	observed	for	several	other	methods,	including	Metadynamics,	

TI-raw	and	TI-ps,	and	to	some	degree	for	MMPBSA-GAFF	predictions.	Interestingly,	although	

the	Null2	model	showed	a	large	RMSEo	value	of	3.1	kcal/mol	and	anti-correlation	for	the	OAMe	

subset,	it	seems	to	be	able	to	generate	reasonable	predictions	for	the	OAH	subset,	with	the	

RMSEo	value	of	1.7	kcal/mol,	R&' 	value	of	0.4	and	mo	value	of	0.8.	Null2	model	resembles	what	

was	observed	in	about	one	third	of	the	predictions	for	OAH	and	OAMe	systems:	a	method	that	

performed	well	on	OAH	systems	could	totally	fail	on	OAMe	systems.	It	is	also	worth	noting	that	

methods	that	showed	much	weaker	correlation	for	the	OAMe	set	also	yielded	larger	RMSEo	

values	for	OAMe,	suggesting	that	the	narrower	spread	of	experimental	binding	energies	in	the	

OAMe	dataset,	relative	to	OAH,	cannot	fully	account	for	the	weak	correlations.	

Fewer	methods	were	applied	to	the	CBClip	set	(Figure	4,	Table	5),	and	results	are	in	general	less	

favorable	than	those	for	OAH	and	OAMe.	Indeed,	the	Null-2	model,	which	estimates	affinity	

based	on	the	number	of	guest	heavy	atoms,	outperformed	all	methods	in	terms	of	RMSE	and	

regression	slope,	and	turned	in	a	mid-range	performance	for	the	measures	of	correlation	

(Figure	5d).	The	SOMD	methods	again	provided	high	correlations	with	experiment,	yet	large	

regression	slopes	of	2.7	and	RMSE	values	on	the	order	of	6	kcal/mol	(Table	5	and	Figure	5e).		

The	BEDAM	method	provided	a	balanced	performance,	with	an	R2	value	of	0.4,	a	RMSE	value	of	

4.8	kcal/mol,	and	a	regression	slope	of	1.7	(Table	5	and	Figure	5f).	MovTyp-1	and	MovTyp-2	

submissions	showed	near-zero	correlations.	However,	according	to	the	participant,	moderate	

correlations	and	lower	RMSEo	values	were	obtained	when	structures	with	corrected	bond	

orders	were	used	[40].	The	remaining	five	sets	of	predictions	generated	by	either	TI	or	

HREM/BAR	approach,	yielded	either	zero	or	negative	correlations	with	experiment.	One	

possible	explanation	for	the	worse	performance	of	multiple	methods	for	CBClip,	versus	the	

octa-acids,	is	that	CBClip	is	acyclic	and	hence	may	be	more	flexible	and	slower	to	converge.	

However,	this	would	presumably	lead	to	greater	scatter	of	the	binding	estimates	and	thus	

lower	correlation,	yet	the	SOMD	method	still	showed	good	correlations	for	the	CBClip	set	(R2	~	

0.8).	Instead,	the	large	errors	in	this	case	seem	to	derive	from	the	fact	that	the	slopes	(m)	are	as	

high	as	2.7	for	the	CBClip	cases.	This	would	suggest	some	systematic	error,	such	as	finite-size	
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effects	or	problems	in	the	treatment	of	short-range	electrostatics,	since	the	four	sulfonate	

groups	are	positioned	where	they	can	interact	strongly	with	the	guests.	
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Fig	5.	Combined	OAH/OAMe	predictions	with	MSE	offsets	using	(a)	APR-TIP3P,	(b)	SOMD-3,	and	

(c)	DFT/TPSS-n	method.	CBClip	predictions	without	MSE	offset	using	(d)	the	Null2	model,	(e)	

SOMD-3,	and	(f)	BEDAM	method.	Purple	dots:	OAH;	red	dots:	OAMe;	cyan	dots:	CBClip.	solid	

black:	line	of	identity.	

	

Comparison	with	SAMPL3	and	SAMPL4	Host-Guest	Challenges	

Host-guest	systems	were	first	introduced	to	SAMPL	for	the	SAMPL3	challenge,	and	all	SAMPL	

hosts	to	date	have	been	drawn	from	the	cucurbituril	and	octa-acid	families	of	hosts,	a	trend	

which	reflects	the	continuing	data	contributions	of	Professors	Lyle	Isaacs	and	Bruce	Gibb.	

Although	some	hosts	are	new	chemical	variants,	others	have	recurred	across	challenges.	Thus,	

the	current	OAH	host	is	identical	to	the	OA	host	in	SAMPL4;	and	the	present	CBClip	resembles	

the	glycoluril-based	molecular	clip	Host	H1	in	SAMPL3	and	the	glycoluril	host	CB7	in	SAMPL4.	

The	structures	of	H1	and	CB7	are	shown	in	Figure	6.	In	addition,	some	SAMPL5	participants	

used	closely	related	methods	to	generate	predictions	for	prior	rounds	of	SAMPL.	One	may	thus	

begin	to	look	for	trends	in	computational	performance	over	time.			
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Fig	6.	Structures	of	host	H1	and	cucurbit[7]uril	(CB7)	tested	in	prior	SAMPL	host-guest	

challenges.	Silver:	carbon;	Blue:	nitrogen;	Red:	oxygen.	Hydrogen	atoms	were	omitted	for	

clarity.			

Two	methods,	BEDAM	and	TI/BAR,	applied	to	the	present	CBClip	case,	were	also	used	to	predict	

the	binding	affinities	for	the	chemically	related	H1	in	SAMPL3	[30,	79].	Both	methods	yielded	

larger	RMSE	values	in	the	present	study:	4.8	kcal/mol	(Table	5)	versus	2.5	kcal/mol	in	SAMPL3	

for	BEDAM,	and	4.0	kcal/mol	versus	2.6	kcal/mol	for	TI/BAR.	However,	the	correlations	were	

similar:	R2	values	between	0.4	and	0.5	for	BEDAM,	and	R2	values	near	zero	for	TI/BAR	in	both	

SAMPL	exercises.		

Binding	data	for	the	octa-acid	host	OAH	were	also	used	in	the	SAMPL4	challenge	[31],	where	

this	host	was	termed	OA	instead	of	OAH,	and	several	identical	or	similar	computational	

methods	were	applied	to	this	host	in	both	SAMPL	challenges.	Note	that,	since	the	error	analysis	

in	SAMPL4	was	based	on	relative	binding	affinity	predictions,	we	compared	the	SAMPL4	error	

metrics	of	OA	with	the	offset	error	metrics	of	OAH	in	the	current	challenge.	In	particular,	

RMSE_o	in	SAMPL4	was	obtained	in	a	similar	manner	to	RMSEo	here	by	using	offset	binding	

affinity	estimates.	The	BEDAM	method	yielded	substantially	more	accurate	predictions	for	this	

host	in	SAMPL4,	with	R2	of	0.9	then	versus	0.04	now,	and	the	offset	RMSE	0.9	kcal/mol	then	and	

4.8	kcal/mol	now.	It	is	important	to	note	that	although	the	methods,	energy	models,	solvent	

models	and	sampling	techniques	appear	mostly	the	same	between	SAMPL3	and	SAMPL5	for	

this	approach,	a	more	diverse	guest	set	in	SAMPL5	may	add	difficulties	to	its	implicit	solvent	

model.	An	in-depth	discussion	on	the	performance	of	BEDAM	can	be	found	in	the	SAMPL5	

special	issue	[54].		
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It	also	seemed	appropriate	to	compare	the	present	DFT/TPSS-n	predictions	with	RRHO-551	

(SAMPL4	ID:551),	which	used	DFT-D,	an	early	version	of	dispersion-corrected	DFT	with	COSMO-

RS;	and	the	DLPNO-CCSD(T)	predictions	with	RRHO-552	(SAMPL4	ID:552),	which	used	LCCSD(T),	

a	local	coupled-cluster	method	with	COSMO-RS	[80].	Comparable	performance	was	observed	in	

both	cases	on	going	from	SAMPL4	to	SAMPL5	for	the	OAH	set	only.	For	the	DFT	methods,	the	

prior	offset	RMSE,	R2	and	regression	slopes	were,	respectively,	5.8	kcal/mol,	0.5	and	3.9,	while	

the	current	values	are	4.4	kcal/mol,	0.5,	and	2.2.	For	the	coupled-cluster	methods,	the	prior	

offset	RMSE,	R2	and	regression	slopes	were,	respectively,	6.1	kcal/mol,	0.4	and	3.3,	while	the	

current	values	are	7.0	kcal/mol,	0.5,	and	3.3.	However,	as	mentioned	above,	the	quantum	

submissions	showed	zero	correlation	on	the	mixed	OAH/OAMe	set	after	the	faulty	

configuration	of	OAMe-G4	was	replaced	with	a	more	proper	one	[55].	Given	this	adjustment,	

the	quantum	methods	performed	worse	in	SAMPL5	compared	with	SAMPL4.		

It	is	perhaps	worth	noting	that	the	Metadynamics	approach	yielded	more	accurate	predictions	

in	SAMPL5	than	in	SAMPL4	(ID:579),	though	it	is	important	to	note	that,	for	this	method,	the	

hosts	studied	are	largely	distinct,	and	a	different	force	field	was	used	previously	[81].	The	

SAMPL4	predictions	with	this	method	showed	near-zero	or	anti-correlations	for	the	CB7	host,	

whereas	the	SAMPL5	predictions	showed	moderate	correlations	in	the	OAH/OAMe	combined	

set	and	fairly	good	agreement	with	experiments	in	the	OAH	subset.		

Although	two	top-ranked	SAMPL5	methods	SOMD	and	APR	were	not	tested	in	prior	SAMPL	

challenges,	it	is	of	interest	to	compare	each	with	one	of	the	free	energy	perturbation	(FEP)	

methods	that	also	employed	GAFF	parameters,	RESP	charges	and	TIP3P	water	model	in	SAMPL4.	

APR-TIP3P	and	SOMD-1	were	thus	compared	with	FEP-526	(SAMPL4	ID:	526)[80]	for	the	octa	

acid	predictions.	In	spite	of	the	increased	chemical	diversity	of	the	SAMPL5	set	of	guests,	all	

three	methods	performed	equally	well:	the	R2	values	in	all	three	methods	are	no	less	than	0.9;	

the	offset	RMSE	measures	ranged	from	0.8	to	0.9	kcal/mol,	and	slopes	ranged	from	1.3	to	1.5.	

APR-TIP3P	and	SOMD-1	even	showed	slightly	better	performance	for	the	OAH/OAMe	combined	

datasets	than	FEP-526	for	OAH	alone.		

Discussion	
The	SAMPL5	host-guest	blinded	prediction	challenge	has	provided	a	fresh	opportunity	to	

rigorously	test	the	reliability	of	computational	tools	for	predicting	binding	affinities,	and	the	

fact	that	host-guest	systems	were	also	used	in	two	prior	rounds	of	SAMPL	makes	it	possible	to	

look	for	consistencies	and	trends	over	time.	A	full	analysis	of	the	varied	prediction	methods	

used	is	beyond	the	scope	of	this	overview,	and	readers	desiring	greater	detail	are	referred	to	

the	more	focused	articles	provided	by	SAMPL5	participants.	However,	some	general	

observations	may	be	made.	

Overall,	the	reliability	of	methods	based	on	explicit	solvent	free	energy	simulations	and	of	those	

based	on	electronic	structure	calculations	appear	to	be	fairly	consistent	across	SAMPL	

challenges,	with	the	simulation-based	methods	generally	providing	greater	reliability.	However,	
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it	should	be	emphasized	that	the	number	of	observations	is	still	modest,	even	across	three	

SAMPL	rounds	and	that	each	class	of	methods	includes	multiple	variants	with	different	levels	of	

performance.	Moreover,	there	is	significant	variation	in	performance	across	different	host-

guest	series,	even	within	SAMPL5.	Thus,	predictions	for	the	octa-acid	hosts	tend	to	be	more	

accurate	than	those	for	CBClip,	and	accuracy	is	somewhat	greater	for	the	OAH	systems	than	for	

OAMe,	although	OAMe	differs	from	OAH	only	by	the	addition	of	four	methyl	groups.	Based	on	

informal	discussions	at	the	D3R/SAMPL5	workshop,	it	appears	that	the	methyl	groups,	which	

are	disposed	around	the	opening	of	the	binding	site,	increased	difficulties	in	sampling	guest	

poses	in	the	bound	state.	

Even	the	best	performing	simulation-based	methods	in	SAMPL5	yield	absolute	RMSE	values	on	

the	order	of	2	kcal/mol	and	tend	to	overestimate	binding	affinities	(Figure	S1).	Previous	binding	

calculations	have	shown	that	extensive	sampling	and	small	statistical	uncertainties	of	binding	

estimates	can	be	feasibly	achieved	on	host-guest	systems	nowadays,	with	the	aid	of	high-

performance	computing	capabilities	[60,	82].	Given	that	conformational	sampling	is	no	longer	a	

major	obstacle	for	such	moderate-sized	systems,	and	that	the	ionization	states	of	these	systems	

are	relatively	straightforward	to	ascertain	at	the	experimental	pH,	these	errors	presumably	

trace	to	limitations	in	the	potential	functions,	or	force	fields,	used	in	the	simulations.	It	should	

be	emphasized	that,	if	current	force	fields	yield	errors	of	this	magnitude	on	host-guest	systems,	

one	should	not	expect	to	achieve	any	better	in	blinded	predictions	of	protein-small	molecule	

binding	free	energies,	even	with	greater	simulation	times	and	a	correct	treatment	of	

protonation	states.	Although	a	recent	report	describes	encouraging	results	for	alchemical	

calculations	of	relative	protein-ligand	binding	free	energies	[11],	it	should	be	noted	that	the	

statistics	come	from	a	retrospective	analysis,	rather	than	from	blinded	prediction	along	the	

lines	of	those	described	in	the	present	paper.	The	present	results	thus	underscore	the	need	for	

improvements	in	force	field	parameters	and	perhaps	functional	forms.	

Electronic	structure	methods,	such	as	the	DFT	and	coupled	cluster	methods	discussed	above,	

offer	an	alternative	route	to	improved	accuracy	in	the	potential	function,	since	they	largely	

avoid	the	need	for	empirical	force	fields.	However,	such	methods	still	are,	arguably,	restricted	

by	the	challenge	of	achieving	adequate	conformational	sampling,	due	to	the	high	

computational	cost	of	evaluating	the	energy	for	each	conformation.		In	addition,	their	accuracy	

may	be	limited	by	the	fact	that	it	is	difficult	to	couple	them	to	an	explicit	solvent	model.		

Although	implicit	solvent	models	have	predictive	power	for	molecular	systems	that	are	

essentially	convex	in	shape	(see,	e.g.,	SAMPL5	papers	regarding	the	calculation	of	distribution	

coefficients	for	drug-like	molecules),	it	is	unknown	whether	they	can	capture	the	properties	of	

water	in	confined	spaces,	such	as	the	binding	sites	of	host	molecules	or	proteins,	well	enough	

to	provide	binding	free	energies	with	kcal/mol	accuracy.	It	seems	probable	that	continued	

improvements	in	computer	power	and	algorithms	will	make	quantum	methods,	perhaps	

hybridized	with	classical	methods,	increasingly	competitive	with	classical	free	energy	methods.	

More	computationally	efficient	methods,	such	as	BEDAM	and	Movable	Type,	also	generated	

some	encouraging	results	and	are	amenable	to	continued	refinement,	such	as	through	the	
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development	of	improved	solvent	models,	and	the	incorporation	of	more	accurate	force	fields	

as	they	become	available.	

In	the	current	host-guest	challenge,	a	number	of	groups	submitted	multiple	predictions,	and	

the	results	often	provided	clear	signals	as	to	the	relative	merits	of	the	various	approaches	

tested.	Indeed,	the	simplicity	of	host-guest	model	systems	makes	it	relatively	easy	to	evaluate	

errors	and	isolate	their	sources,	and	the	blinded	nature	of	the	SAMPL	challenges	eliminates	the	

risk	of	even	unintentionally	adjusting	one’s	method	to	agree	with	known	data.	Thus,	submission	

of	multiple	predictions	is	encouraged	for	future	rounds	of	SAMPL.	It	is	also	hoped	that	more	

groups	will	participate,	so	that	an	even	wider	range	of	methods	may	be	tested;	additional	

methods	may	also	be	evaluated	by	participants	using	software	developed	outside	their	own	

research	groups,	including	commercial	packages.		

SAMPL	is	a	community	effort.	It	depends	on	the	generosity	of	experimentalists	who	make	their	

data	available	on	a	prepublication	basis,	which	is	not	always	convenient,	and	it	requires	courage	

on	the	part	of	the	computational	chemists,	who	are	making	truly	blinded	predictions	in	a	public	

setting.	It	is	indeed	encouraging	that	so	many	groups	contributed	to	and	participated	in	the	

SAMPL5	host-guest	challenge,	and	thus	to	the	continuing	improvement	of	the	entire	field.	

	

Supplementary	Material	
A	Microsoft	Excel	spreadsheet	that	contains	two	sets	error	metrics,	one	using	the	NMR/ITC	

binding	affinities	in	Table	1	and	the	second	set,	using	averaged	affinities	with	an	accompanying	

Microsoft	Word	document	explaining	the	terms.	A	table	containing	all	experimentally	measured	

Ka	values	for	the	OAH/OAMe	set.	The	correlation	graphs	of	all	OAH,	OAMe,	and	CBClip	

predictions.	Code	for	generating	the	error	metrics	and	plotting	the	distributions.	Starting	

structures	of	three	free	hosts	provided	to	the	SAMPL5	participants	as	well	as	the	instruction	file	

for	SAMPL5	participants.	Code	used	to	generate	the	graphs	can	also	be	found	online	at	

https://github.com/GilsonLabUCSD/SAMPL5-bootstrapping-error-

analysis/blob/master/SAMPL5-error-metrics.ipynb	and	up	to	date	versions,	including	the	data	

files	necessary	to	recreate	the	graphs,	can	be	found	online	at	

https://github.com/GilsonLabUCSD/SAMPL5-bootstrapping-error-analysis.		
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