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Dynamics of zonal flow saturation in strong collisionless

drift wave turbulence
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Department of Physics, University of California San Diego, La Jolla, California 92093-0319

(Received 16 November 2001; accepted 19 August 2002)

Generalized Kelvin—Helmholtz (GKH) instability is examined as a mechanism for the saturation of
zonal flows in the collisionless regime. By focusing on strong turbulence regimes, GKH instability
is analyzed in the presence of a background of finite-amplitude drift waves. A detailed study of a
simple model with cold ions shows that nonlinear excitation of GKH modes via modulational
instability can be comparable to their linear generation. Furthermore, it is demonstrated that zonal
flows are likely to grow faster than GKH mode near marginality, with insignificant turbulent viscous
damping by linear GKH. The effect of finite ion temperature fluctuations is incorporated in a simple
toroidal ion temperature gradient model, within which both zonal flow and temperature are
generated by modulational instability. The phase between the two is calculated self-consistently and
shown to be positive. Furthermore, the correction to nonlinear generation of GKH modes appears to
be small, being of order O(pl-zkz). Thus, the role of linear GKH instability in the saturation of

collisionless zonal flows, in general, seems dubious. © 2002 American Institute of Physics.

[DOL: 10.1063/1.1514641]

I. INTRODUCTION

The elimination of turbulent transport in fusion devices
is critical in utilizing magnetic fusion as a realistic future
energy source. For this reason, the origin and suppression of
turbulent transport has been a hot research topic in magneti-
cally confined plasmas. A classical paradigm for turbulent
transport in tokamaks is drift wave (DW) turbulence, which
arises due to the inhomogeneity in the background density,
temperature, magnetic field, etc.' On the other hand, recent
works have indicated that zonal flows play an important role
in regulating turbulent transport.>> As toroidally symmetric,
mainly poloidal (EXB) flows with finite k,, zonal flows
reduce the radial transport by shearing eddies associated with
the underlying turbulence.* Thus, the dynamics of a coupled
system of DW and zonal flows is central to the understanding
of turbulent transport. In fact, this coupled system is self-
regulating since zonal flows, generated by DW through
modulational instability, backreact on DW by shearing, thus
weakening the very source of their generation (i.e., DW).
This shall be explained in more detail in the following.

In simple terms, the generation of zonal flows by DW
can be viewed as a decay instability. It is because zonal flow
shearing preserves action of DW so that the wave quanta
density N, , proportional to E;/w, , is conserved. Here, E,,
and w; are the energy and frequency of DW. The decay
instability occurs when DW has more modes with higher
energy than the ones with lower energy, i.e., when DW spec-
trum N, has more population for higher energy mode. A
mode with higher energy can then decay into a DW with
slightly lower energy and a zonal flow. As the energy of DW
E<1/(1+k% p?), this decay is entailed when dN, /dk,<O0,
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which is the criterion for modulational instability. When
zonal flows grow, they shear turbulent eddies of DW and
thus generate modes of DW with higher k,, flattening N,
spectrum, which initially satisfies dN,/dk,<0. Thus, the
modification of the DW spectrum leads to the saturation of
zonal flows as dN, /dk,—0. The main feature of this nonlin-
ear feedback can be captured in a simple ‘““predator—prey”
model by employing a quasilinear closure.”®

The aforementioned nonlinear spectral feedback is one
of the mechanisms for the saturation of collisionless zonal
flows. In the presence of an effective collision of ions (Vg
+0), zonal flows are directly subject to collisional damping.’
Note that in tokamak core, v arises from collisions be-
tween trapped and passing ions, due to high temperature. As
zonal flows damp more for larger v, the amplitude of DW
increases with v . So, v regulates the amplitude of under-
lying DW turbulence, and thus the turbulent transport.

In addition to v, the amplitude of DW turbulence is
also set by its deviation from the marginal stability e
=(1/Ly—1/L.)/(1/L,), which determines the strength of
turbulent drive. Here, Ly is the scale length of the back-
ground ion temperature (L, '=— 9, InTy) and L, is the criti-
cal temperature gradient scale length for the onset of
instability. Therefore, the state of the coupled system of
zonal flows and DW hinges on both v.; and €. That is, to
characterize the state of the coupled system, the dependence
on these two parameters should be explored in the two-
dimensional space formed by v.; and €. It is interesting to
note that previous works focused on the dependence on only
one parameter. For instance, Lin er al.® studied the depen-
dence of y; on v, near marginality while Rogers et al’®
investigated y; as a function of € in the purely collision-
less limit (i.e., for v.z=0). A systematic scan of the two-

© 2002 American Institute of Physics
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FIG. 1. A required systematic scan of the two-dimensional space of € and
v - Reference 8 explores yx; as a function of v while Ref. 9 focuses on the
dependence of y; as a function of e.

dimensional space of € and v.s remains to be done (see
Fig. 1).

It is illuminating to consider the behavior of the system
in detail as v varies. In the limit of v.Aw/y*>1, zonal
flow damping is efficient, so that DW saturates by wave—
wave nonlinearity (mixing processes).” Here y and Aw are
linear growth and nonlinear damping rates of DW. In the
opposite and more relevant limit of v.zAw/y*<1, the damp-
ing of DW by shearing becomes effective, resulting in the
scaling relation (N, )~ vey/y.> Here (N,) is the mean wave
number density of DW, representative of its amplitude. That
is, the amplitude of DW is directly proportional to vz . Con-
sequently, in the collisionless limit v.;=0 and near marginal
stability e<<1, the zonal flow shearing can damp DW to a
very small amplitude in certain cases, thereby leading to a
pure flow (or, Dimits upshift) regime.lO Note, however, that
there are cases when DW amplitude are not significantly
reduced. In the case of a pure flow regime with very weak
DW turbulence, an interesting question is what happens to
this pure flow regime as e is further increased especially in
the collisionless limit (where v.=0), in other words,
whether and how this pure flow regime terminates. When
vo=0, X; is numerically observed to rapidly increase from
almost zero beyond this pure flow regime upon the increase
of €, suggesting the reappearance of DW upon the termina-
tion of this regime. As the zonal flow shearing is responsible
for a pure flow regime via damping of DW, the reappearance
of DW (as € increases) must be due to the saturation (or
damping) of zonal flows.

In fact, the recent work by Rogers ez al.? invoked a lin-
ear Kelvin—Helmholtz (KH)-type (shear) instability as a
damping mechanism for zonal flows, which breaks up zonal
flows and thus quenches the pure flow regime. Their analysis
is linear in the sense that (1) they neglect the presence of DW
and (2) they envision KH as a tertiary, linear instability about
a zonal flow state. Even if their analysis is appropriate for the
dynamics of zonal flows in the pure flow regime, it is not
likely universally valid in general. This is particularly true
since the incorporation of a weak but experimentally relevant
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FIG. 2. The contrast of the linear view of the GKH modes to a more general
case where GKH modes are generated by both linear and nonlinear modu-
lational instabilities. The linear view is hierarchical in that GKH is generated
by the linear instability of zonal flows (ZF), which are already generated by
DW. In general, GKH modes can, however, be generated directly from DW
by modulational instability.

amount of collisional damping can lead to sufficient damping
of zonal flows, removing this pure flow regime.® That is, a
pure flow regime is very unusual, occupying a vanishingly
small measure of the entire parameter space.

Therefore, one has to face the problem of understanding
a generalized KH (GKH) in the background of DW. In par-
ticular, when DWs are adiabatically modulated by GKH
mode (i.e., when ygy<w, where yxy and o are the growth
rate of GKH and real frequency of DW, respectively), GKH
can extract energy from the DW spectrum (see Fig. 2). This
nonlinear generation of GKH is similar to that of zonal flows
(or streamers). Here, the distinction between the two is that
GKH is a nonaxisymmetric mode (m#0) while zonal flows
are axisymmetric (m=0). Thus, in the following discussion,
nonaxisymmetric and GKH modes will be used interchange-
ably; a KH mode will refer to only a linear KH mode that
results from linear KH (shear) instability while GKH mode
represents a nonaxisymmetric mode, due to both linear and
nonlinear generation. The nonlinear excitation is especially
important as the linear KH instability is easily quenched or
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FIG. 3. A schematic picture showing the magnetic shear and zonal flow
profile; the exchange of two vortices requires the alignment of those vortices
with tilted magnetic field lines.

reduced by magnetic shear.'>!> This is because the inter-
change of two vortices, which is energetically favorable in
the absence of a magnetic shear, needs to pay an energy
penalty to maintain alignment of vortices with the magnetic
field in the presence of shear (see Fig. 3). Note that the effect
of magnetic shear was not incorporated in the linear analysis
in Ref. 9. Furthermore, KH tends to have a narrow mixing
region,"” even if excited so that the effective viscosity, as
estimated by yA?, is weak.

The consideration of nonlinear generation of GKH as
well as zonal flow then points to the possibility that there
may be no clear distinction between the secondary zonal
flows and tertiary KH modes (see Fig. 2). That is, the treat-
ment of KH as a tertiary instability of a secondary mode
(zonal flows) is valid only when zonal flows evolve on time
scale much longer than that of the KH. However, if the
growth rate of zonal flows exceeds that of KH, this time
ordering cannot be satisfied.

In this paper, we study these issues in detail by consid-
ering GKH in the background of DW, specifically focusing
on a strong turbulence regime, excluding a pure flow regime.
In the background of DW, GKH modes are nonlinearly ex-
cited by modulational instability of DW turbulence. This
nonlinear excitation of GKH is due to the nonaxisymmetric
modulation of DW spectrum. Specifically, we examine the
validity of the linear picture of KH instability and clarify the
role of linear KH instability in the saturation of collisionless
zonal flows. (Note that as zonal flows are not subject to
Landau damping due to k,= k=0, their collisionless damp-
ing is especially important.) To this end, we address the fol-
lowing specific questions:

(i) When does the linear generation of GKH modes
dominate their nonlinear generation?

(i)  When is the nonlinear generation of zonal flow negli-
gible, so as to justify the treatment of zonal flow as a
fixed background for the linear KH instability?

(iii) How efficiently is momentum transported by the lin-
ear KH mode?

The linear picture of GKH is valid only if the linear genera-
tion of GKH dominates nonlinear generation [in (i)] and also
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if the nonlinear growth rate of zonal flow is much smaller
than the linear growth rate of KH mode [in (ii)]. And, the
damping of zonal flows by linear KH instability is insignifi-
cant if it is much smaller than the nonlinear growth rate of
zonal flows [in (iii)]. To study these issues in detail, we first
consider a simple model with cold ions. After that, the effect
of the finite ion temperature fluctuations will be incorporated
in a simple, two-dimensional toroidal ion temperature gradi-
ent model.

The remainder of the paper is organized as follows. In
Sec. II, we adopt a simple model with cold ions and compute
the linear growth rate of GKH by inflection point instability
and nonlinear growth rate through modulational instability.
The comparison of these two growth rates then illustrates
that the nonlinear excitation can become comparable to the
linear excitation of the nonaxisymmetric mode for parameter
values typical of tokamaks. We also establish the momentum
transport by KH by computing the flux of zonal flow mo-
mentum via quasilinear analysis. Results indicate that the
momentum transport by GKH is likely insignificant near
marginality. In Sec. III, we extend our model to two-
dimensional toroidal ion temperature gradient (ITG) mode,'*
by incorporating ion temperature fluctuations. In this model,
zonal temperature as well as zonal flow are excited by modu-
lational instability. We determine the amplitude of zonal tem-
perature and its phase with zonal flow. This phase relation is
then used for the linear stability analysis for KH. Nonlinear
generation of GKH is revisited in this extended model. The
conclusions of this paper are discussed in Sec. IV.

Il. MINIMAL MODEL WITH COLD IONS

We treat a GKH instability as a flute-like-mode with a
small k;, and assume nonadiabatic electrons. This is in con-
trast to the work by Rogers ef al., who considered k|
~1/gR. As the adiabaticity of electrons reduces a linear KH
instability via enhanced inertia, the assumption of nonadia-
batic electrons allows us to obtain an upper bound on linear
KH instability. In this section, we first study a simple model
with cold ions to elucidate some of the key features of GKH
in the simplest context. After studying this model in detail,
we incorporate the effect of ion temperature fluctuation in
Sec. III.

The governing equations for the large-scale electric po-
tential can be obtained from the gyrokinetic equations for
ions and drift kinetic equation for electrons. By using T},
=0 (T, is the ion background temperature) and k=0, to-
gether with a quasineutrality, and by keeping terms up to first
order in O(p,-2k2), we obtain

a-i—V
o

VZ$=(NL), (1)
where
(NL)=(v'-VV]¢')

=(dy = dyy)(viv )+ 5050y —v 2. ()

Our notation is as follows: ¢’ is the electric potential pertur-
bation associated with DW while ¢ contains both zonal flow
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and GKH mode, ie., ¢= ¢yp+ dgy, Where ¢z and dgy
are zonal and GKH components; v=—VX¢@Z and v’
=—VX¢'2; (NL) represents the Reynolds stress (nonlinear
contribution) from DW; x and y represent radial (r) and
poloidal () directions, respectively. In Egs. (1) and (2), the
length, velocity, time, and ¢ are measured in units of p, , ¢,
1/Q);, and T,q/e, respectively; angular brackets denote the
average over DW. Here, p;, ¢, ;, and T, are ion gyro-
radius, sound speed, ion gyro-frequency, and electron back-
ground temperature. Note that Eq. (2) can also be obtained
from (V-J,)=0 (J, polarization current).

The dynamics of the DW in the background of slowly
varying ¢ can be described by the wave-kinetic equation for

wave quanta density (potential enstrophy) N,=(1

+ k)%

i N i k i N i k i N

J— + — v+ —_— —— v+ J—

Vet kvt @) g S kvt o) 5N
=yN;—AoN{, 3)

where y and Aw are linear growth and nonlinear damping
rates of DW. Note here that the wave-kinetic equation is
valid in a strong turbulence regime.'® For this minimal
model, the frequency of DW is given by w=w, /(1 +k?)
with w,=v .k, . Here, v,=p,/L, is the electron diamag-
netic velocity, and L,=—(d, Inn,)~ ! is the scale length of
the background density.

If the zonal flow ¢zg evolves very slowly compared to
dxu» ¢z serves as the equilibrium background for ¢gy . In
that case, the equation for ¢gy is obtained by considering the
linear perturbation of Eq. (1) around ¢p= ¢ p(x) as

J
o +vzerV ) V2 bt ViV dze=(NL)ya “4)

where the nonlinear term (NL)y, represents the nonaxisym-
metric (m#0) part. In the absence of DW ((NL)ys=0), the
previous equation reduces to the Rayleigh equation, which
has been extensively studied as a paradigm for linear KH
instability in hydrodynamics. This shear instability is a clas-
sical problem!”'® and is well-known to arise because of an
inflection point where the gradient of a shear flow vanishes
(i.e., vorticity maximum). It is because the interchange of
two vortices around an inflection point is energetically favor-
able, due to the lack of restoring force around this point.
However, the presence of an inflection point is a necessary,
but not sufficient condition for instability as the KH instabil-
ity depends sensitively on the global geometry of a shear
flow and the boundary conditions. Note that in Ref. 9, the
linear KH instability of zonal flows was treated by a local
analysis, by implicitly assuming a parabolic profile for a
zonal flow, thereby overlooking these important issues.

In the presence of DW ((NL)ys#0), the Rayleigh cri-
terion (inflection theorem) is no longer applicable due to the
(NL)ya term. Thus, the presence of an inflection point is not
necessarily required for instability. This is clear since GKH
can be generated solely by the nonlinear contribution from
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DW (see Sec. II B). Indeed, it will be demonstrated there that
nonlinear generation of GKH can be comparable to the linear
generation.

The simultaneous growth of both zonal flow and GKH
by the same mechanism then makes the treatment of zonal
flows as background for GKH mode dubious, especially
when the nonlinear growth rate of zonal flow is larger than
that of GKH, as noted in Sec. I. Thus, in general, the linear-
ization of KH around zonal flow in Eq. (4) may not be jus-
tified in the presence of DW. For this reason, in the follow-
ing, we shall look into linear and nonlinear generation of
GKH, separately. First, by assuming stationary zonal flow,
we estimate the linear growth rate of KH in Sec. II A. Then,
in Sec. II B, we focus on the nonlinear generation of GKH,
by treating GKH and zonal flows on an equal footing. That
is, we shall consider the modulation of the DW spectrum by
a large-scale flow, consisting of the axisymmetric part (zonal
flow) and nonaxisymmetric part (GKH).

A. Linear instability

In this section, we ignore the presence of DW and esti-
mate the linear growth rate of the KH mode. To this end, it is
useful to consider a simple sinusoidal profile for the mean
flow,!” which reveals some valuable information. We assume
that the background zonal flow takes the form

¢zr= ¢ cos px, (5)

and substitute it in Eq. (4) with (NL)=0. As ¢, is periodic
in x, we seek a Flouquet solution for ¢y in the following
form:

0

Sxu= 2 Buexplil(potnplxtaylt vt (©

Upon the substitution of Eq. (6) in (4), we truncate the equa-
tions by keeping the mode coupling among three adjacent
modes (n=0,%1) to obtain the growth rate:

I pota’-—p
¢2—2 2

, 1
[
pi+d*—p* pi+q*-p’
a—— | (7
p-itq Pitq

where p,=np+p,. It is interesting to note that the instabil-
ity is possible (i.e., y%>0) when p(z)S 3p2. In fact, the maxi-
mum v, is obtained for py=0 and g/p~0.5. Thus, for sim-
plicity, we approximate Eq. (7) with p,~0 as

=2__ 2
,P ¢

PPt

1_
vi=5 8P ®)
Therefore, [72>q2 is required for the instability; the scale of
the KH mode in the poloidal direction (y) should be larger
than the characteristic radial scale of zonal flows. For in-
stance, in the limit of p—o, Eq. (8) recovers the well-
known result that all ¢ modes are unstable for a discontinu-
ous profile in the absence of dissipation. In order to compare
the linear growth rate with nonlinear growth rate (Sec. Il B),
we further approximate Eq. (8) as
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We remark that the effect of magnetic shear, which tends
to localize a mode, may be captured by taking p(2)> p? within
this model. In this limit, Eq. (7) becomes yi~ — $*p>q>/2
<0, consistent with the stabilization by magnetic shear.

B. Nonlinear generation

In this section, we study the nonlinear generation of both
zonal flow and GKH by modulation of DW spectrum. As
zonal flow and GKH are generated by axisymmetric and
nonaxisymmetric parts of the DW spectrum, one of the key
issues is to calculate the branching ratio between the two. To
this end, it is convenient to consider the equation for a large-
scale electric potential, consisting of both components,
which satisfies

J 2 roor 1 r2 r2
EVL<¢>:((9XX_(9}’}’)<vxvy>+5(9.’6)’<vy Uy > (10)

Note that the second term on the right-hand side of Eq. (10)
vanishes for isotropic DW turbulence with (v ;2)=<v;2),
and thus shall be neglected compared to the first term in this
paper.

When the generation of ¢= ¢ p+ Py occurs on a
time scale which is much larger than the characteristic time
scale of the underlying DW turbulence, DW turbulence is
adiabatically modulated by ¢, which is growing. Thus, we
let Ny=(N)+N,, where (N,) and N, are background
and modulated parts of the DW spectrum. In the absence of
zonal flows and GKH mode, the background DW turbulence
is assumed to be stationary and homogeneous, satisfying
YN)=Aw(N,)*. By using this leading order balance
in Eq. (3) and by assuming harmonic modulation N,
~exp{—i(Q—px—qy)}, we obtain

oSNy (Pky=qk)(pdx +qd; )(N)
w, — 1 .
o¢ Q= (pvgtqugy) +iy

To obtain the nonlinear growth rate, we relate the Reynolds

(11)

stress term in Eq. (10) to N, as:
2,2

! ! —— 2 R y ~
<vay> fdk(l+kf)_2Nk (]2)
Then, by using Eqgs. (11) and (12) with ¢~ exp{—i(Qr—px
—qy)}, Eq. (10) gives us

:pz_qzj ) kxky
p*tq’ (1+43)°

(pky=qk.)(pdx +qd; )(Ny)

[Q_(pvgx+qvgy)+i7]
(13)

In the limit as ¢—0, the imaginary part of Eq. (13) repro-
duces the growth rate of zonal flow,

212 2
., ~fd2k kiky Py
= 2(1+K%)? (pvy)*+v?

It manifests the generation of zonal flow for d, (N)<O0,

KNy
ok?

). (14)

which is satisfied for virtually all DW turbulence. To esti-
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mate yyp, we let y=wd (6<1 near marginality) and use
Y/|vgp|~ Sk, /p(psk)*=1 (by assuming p.k=<1) to obtain

Ve~ ke p N v~ pye,p® SLuk (15)
Here, ky is the characteristic scale of DW; we used o
~kopycs /Ly, (N)~(k*)~¢ with £~0(1), and the mixing-
length estimate (N,)~ 1/(koL,)*. Note that we assumed a
strong turbulence for this estimate, excluding the pure flow
regime where (N;) can be much smaller due to the efficient
damping of DW by zonal flow shearing. An accurate descrip-
tion of this regime requires the incorporation of spectral
feedback.

On the other hand, by using v, k., and |v,p|
>, a zero real frequency of zonal flow (z=0) can be
shown to be a consistent solution to Eq. (13) if DW turbu-
lence has reflectional symmetry in y, ie., (Ny(k,,—k,))
= <Nk(kx »ky)>'

In contrast, GKH mode has nonvanishing real frequency,
as can easily be shown from Eq. (13). And, its imaginary
part can be somewhat simplified as follows. First, we employ
the following ordering: v,,>v,., 7/|vqu|~ Sk, /q<1,
y/lvgxpl~5kx/p(psk)221, and p~q ((p—q)°~(p

+¢)~). Then, the assumption of isotropy of the background
DW turbulence (k,=k,) reduces Eq. (13) to
Kk: oy [ AN
| P T K
YNL Jd k2(1+k2)2 U;y( T ) (16)

To compare this with linear KH growth rate, we further sim-
plify yn in Eq. (16) by using y=dw, (N)~(k?)~¢ with
E~0(1), and (N)~1/(kL,)? to obtain

YNL™ kOCspsg/Ln . (17)
Thus, from Egs. (9) and (17),

gLy (18)

For v,z=<10"2%c, (e.g., see Ref. 19) and p,/L,~001,
vaL/ Y. =(0ky/q). That is, nonlinear generation of GKH
may become comparable to linear generation, i.e., for v g
<107 2¢, . Note that if the above-assumed orderings are not
valid, for instance, when v,,<v,,<7y/q such that &k,/q
>1, ynL becomes comparable to vy, as given in Eq. (15).

To calculate the branching ratio between axisymmetric
(zonal flow) and non axisymmetric modes (GKH), we take
the ratio of Egs. (15) and (17)

Ew(vqu)2~<i)2 (19)
YNL Y koo| -

It reveals the following two important points. First, zonal
flow can grow faster than GKH near marginality where &
<plkq. Second, away from the marginality, say 6>p/k,
the generation of GKH can be comparable to that of zonal
flow [recall that Egs. (17) and (19) are valid only when
Uoyq/ ¥y~ p/Sko>1 and that yy, ~ yzp for 6>p/ky]. How-
ever, considering that GKH modes are more easily damped
(via Landau damping) than zonal flows, GKH modes are
likely weaker than zonal flows. It is important to note that
unlike zonal flows, GKH contains a radial flow and is ca-
pable of transporting energy in the radial direction, possibly
contributing to x;. We thus speculate that the excitation of
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GKH with the amplitude comparable to zonal flow may pro-
vide another mechanism for the increase in x; away from
marginality.

A rapidly growing zonal flow near marginality implies
that the assumption of stationary zonal flow for linear KH
mode may not be justified in a strong turbulence regime. In
order to find out when this is the case, we compare y,r and
v, by using Egs. (18) and (19):

S Ske o Ly (20)

Thus, for v,~10"%¢c, and p,/L,~0.01, v/, ~pl/ Sk,
which suggests that near marginality with 6<p/k,, zonal
flows grow faster than a linear KH mode. Therefore, near
marginality, zonal flow cannot be assumed to be stationary
for the evolution of GKH instability.

To summarize, we have shown that in strong turbulence
regimes, (1) the nonlinear generation of zonal flow can be
more effective than both nonlinear and linear generation of
GKH (ie., yzp= yn. and yzp= ;) near marginality with §
<qlky, and (2) the nonlinear generation of GKH can be
comparable to its linear generation (i.e., Y.~ .). That is,
near marginality (excluding a very weak turbulence regime),
satisfying 6<q/kq, a linear shear instability analysis of
zonal flow is invalid and the nonlinear generation of GKH
should be taken into account.

C. Momentum transport by KH mode

To quantify the damping of zonal flows by linear KH, it
is necessary to calculate the momentum transport (or mixing)
by KH. To this end, we shall assume zonal flow to be fixed
and compute the momentum flux induced by KH. This stress
represents momentum transport by KH. We then compare the
damping of zonal flow by KH with the nonlinear growth rate
of zonal flow to demonstrate that the former is likely small
compared to the latter near marginality (i.e., for 6<<1).

In the presence of both linear KH mode and DW, the
evolution equation for zonal flows takes the following form:

d
5V2¢ZF+<VKH'VVi¢KH>+<V,'VVi¢,>:0» (21)

where angular brackets in the second term are to be inter-
preted as the averages in the poloidal direction. The second
term in Eq. (21) represents the stress by KH, and thus pos-
sible damping of zonal flows, while the third term is the
Reynolds stress by DW, responsible for the growth of zonal
flows. Note that, as J,=0 for zonal flows, the stress by KH
can be written as

<VKH'VVi dxn) = ax<vKH,xVi dxn)-

To estimate this term, we first compute quasilinear response
of ¢gy from Eq. (4):

V2 Sdxu=— Tc[UZFﬁ)~V2¢KH+ U0V bzrl, (22)

where 7'6_1 = —iw+ 7y, . By using Eq. (22), the stress can be
shown to be (see the Appendix for details)
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<UKH,xVi bxu) = (v KH,xVi dxut UKH,xVi Spxn)
~ =Vl Ugzp= — VT&xVi bzr (23)
where
! 2 - 2
vr~ _dq_[|UKH,x(O’Q)| +|UKH,x(|p|’q)| ]
9<p YL
2
Ukn)
) (24)
qUzr

In obtaining Eq. (24), 7,= vy, with ®=0 and the conditions
for KH instability p>¢ have been used. Equations (21) and
(23) clearly show that the stress (v;>0) associated with KH
leads to the damping of KH, as expected. The damping rate
of zonal flow due to KH can be estimated to be

<U§H> )
Dzg QU p- (25)
To appreciate how effective this damping is, it is necessary to
compare D,p with yzr. The maximum damping rate Dyp is
estimated from Eq. (25) to be Dyp~quyp, by using vgy
~vyzr and p~¢. Upon using Eq. (15), p,/L,~0.01, and
vzr/c~0.01, the ratio of these two becomes

1 $Cs
ﬁ~_<£) P ~ P (26)
Dzg 6\ ko) \L,vzp koo

Thus, near marginality where 6<p/k,, the momentum
transport by KH (or damping of zonal flows) is insignificant
compared to the growth rate of zonal flows. This is consis-
tent with the result obtained in Sec. I B.

On the other hand, Eq. (26) indicates that the damping of
the zonal flow by linear KH instability may be important
away from the marginality. However, this effect is likely to
be weakened by Landau damping which damps KH modes,
but not zonal flows. Furthermore, in this region, the nonlin-
ear generation of GKH must be incorporated (see Sec. II B).

lll. THE EFFECT OF ION TEMPERATURE

We extend the simple model in Sec. II by including the
ion temperature fluctuations. As is well known, ion tempera-
ture fluctuations lead to ITG modes, which can become un-
stable due to the gradient of background ion temperature. To
keep the analysis tractable, we choose a simple toroidal ITG
model in two dimensions. In this model, the instability of
DW originates from the bad curvature where Vp-VB=>0.

The main governing equations for large-scale electric
potential ¢ and temperature 7" with k;=0 can be obtained by
taking moments of the gyrokinetic equations for ions and
drift equations for electrons and then using quasineutrality.
By keeping the FLR effect for ¢ to first order in (pizkz)
<1, we can obtain

IV ¢+ p+ 7TV pl—13:,0,T]
=—([¢'+1p' Vi’ I+ [did".dp']). (27)
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Here, 7=T,y,/T,y; ¢' and p' are perturbations associated
with DW, and angular brackets denote the average over DW;
¢= pzpt ¢pxy and T=Tzp+ Txy, Where Tor and Tky are
temperature of zonal flow and GKH; square brackets denote
Poisson brackets, ie., [A,B]=d,AdyB—3,Ad.B. In Egs.
(27) and (28), ion temperature is measured in unit of Ty,
and p is measured in unit of p;,. Note that when 7 is small
(<1), Eq. (27) states the conservation of total potential vor-
ticity, Vi( ¢+ 7T/2), to first order in 7. Compared to Eq. (1),
Eq. (27) contains additional nonlinear terms due to pressure
fluctuations of DW (i.e., diamagnetic effects). In principle,
there should also be a drift term due to magnetic curvature
and gradient in Eq. (27) for KH mode (d,#0), which was
neglected. The ballooning effect due to this term cannot be
treated in the framework of the local analysis employed in
the present paper and will be addressed in future works. Fur-
thermore, the density fluctuation of KH is neglected for sim-
plicity, i.e., n;oT=p. Note that the density fluctuation of
zonal flow is very small (~O(p; kz))

In the following, we shall first look at the linear disper-
sion relation for DW. We then examine the effect of 7on the
generation of zonal flows, while establishing the phase rela-
tion between zonal flow and temperature. Linear and nonlin-
ear growth rates of GKH shall be revisited by incorporating
7#0.

A. Linear dispersion

In this model, the parallel dynamics is not critical for the
instability of DW. Thus, it is used only to ensure the adiaba-
ticity of electrons for DW; k=0 is assumed otherwise.

The governing equation for DW is obtained from the
gyro-kinetic equation for ions by using adiabatic electron
response as

a(1-V1) ' —[d.¢'1-[d+7p. Vi 1+ d:.0p]
—2¢€,+7(1+ 17,»)V2]o7y¢’ —2€,v,7d,p' =0,
(29)

dp'+d.pltv,(1+75;,)d,¢"=0. (30)

Here, €,=L,/R, wu,=L,/Ly, L,=—(d,Inny)"', R
=—(d,InBy)" ", Ly=—(d,InTy)"", and v,=p,/L,. ¢
and p' are electric potential and pressure perturbation asso-
ciated with DW while ¢ and p contain contributions from all
three components of zonal flow, GKH, and DW. The linear
part of Egs. (29) and (30) leads to the following dispersion
relation:

+v,[1

_ =24 _ _ =7,2\2
wr= 2(1+k2)[1 2€,— Tk E[(1—2€,—Tk")

—87€,(1+k%)]"], (31)

where wr=w+iy is the total frequency of DW and 7
=71(1+ n;). As expected, this dispersion relation manifests
that the instability sets in only when €,%(d,p;)(d,B)>0.
The group velocity follows from Eq. (31) as

v kk,
-

ox m[l 2€,+7]. (32)
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B. Zonal flow and temperature

In this section, we revisit modulational instability for the
generation of both zonal flow and temperature, by including
the effect of finite ion temperature (7#0). As we are in a
strong turbulence regime, we envision that zonal flows and
temperatures are continuously generated by DW, and thus
ignore the transit time damping®® in establishing phase rela-
tion between zonal flows and temperatures. We note that in a
pure flow regime (with no collisional damping and no modu-
lational drive), the transit time damping may be critical in
determining the phase between zonal flow and temperature,
since in this limit, the system chooses the phase between the
two to minimize linear transit time damping. However, this is
unlikely true in a more general case where a small but real-
istic collisional damping of zonal flow is present, and when
finite amplitude drift wave turbulence is actively exciting the
zonal flow. It is because collisional damping, even if very
weak, will damp out even residual flows which survive the
transient time damping.’ Thus, in strong turbulence regimes,
the phase between zonal flow and temperature is dynami-
cally determined, as shall be shown.

By neglecting the contribution from linear KH, we re-
write Egs. (27) and (28) as

IV bgm=—([¢' +1p' Vi D+ ([d,;¢".0p']),  (33)

9 Tzz=—([¢".p']). (34)
To compute the modulation of stresses on the right-hand
sides of Egs. (33) and (34), we use the wave-kinetic equation
(3) for wave quanta density N,=(1+k*)?|¢,|>. Note that
N, does not involve the contribution from the pressure per-
turbation. This is because in two dimensions (with v;=0),
both potential enstrophy and pressure are conserved
separately,”’ allowing us to use the conservation of N,=(1
+k%)?2|¢;|* (cf. Ref. 22). Consequently, the shearing by
zonal flows, which increases the k, of DW (i.e., N;), is ex-
plicitly incorporated in Eq. (3), while the effect of growing
zonal temperature appears only implicitly through the fre-
quency w and vy there. With growing zonal temperature 7'z,
both w and vy are modulated. However, since y<<w near mar-
ginality, only the modulation of w will be incorporated as

5w:§kyaxTZF9 (35)

where &= 7k2/2(1+k?).

The pressure perturbation p’ appearing in Egs. (27) and
(28) is calculated by using the linear response from Eq. (30)
as

i
p,:__v*(1+77i)a}f¢” (36)
T

where w is given by Eq. (31). By using this relation, it can
easily be shown that the two terms containing p’ on the
right-hand side of Eq. (33) cancel each other. Therefore, the
zonal flow is driven by the Reynolds stress term alone by Eq.
(12), similar to the case with 7=0. On the other hand, by
using Eq. (36), the thermal flux in Eq. (34) reduces to
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2 o~
Yk, Ny

ot (11kD)2 (37)

([¢".p' D=0, (1+ n,«)axf d*k

We incorporate the modulation of N, by ¢, and T as
Nk: ( 5Nk/ 5¢ZF)N]<+ ( 5Nk/ 5TZF)Nk
Nyxexp{—i(Qt—px)} and using Eq. (35), Eq. (3) gives us

Then, by assuming

SN, T SN, T (38)
=1l =1 s
Oz 6Tz
where
I=— ﬁ2ky ‘9<Nk>

‘Q‘_pvgx—i_i’y é’kx
By using Eq. (38) in Egs. (33) and (34), together with ¢,

= ¢ rexp{—i(Qt—px)} and Tzp=T pexp{—i(Qt—px)}, we
obtain

Q= =2 (Pt ET4p), (39)
OT7p=ipv 2,0 (dzpt T 7). (40)
Here, v,=v,(1+ 7,) and 3, and X, are integral operators:
k.k
— 2 Xy
El_fd e

2
S,= szk il
2+ 2(1+k2)2

The coupled equations (39) and (40) are easily solved by
dividing Eq. (40) by (39) to obtain

TZF . _ EZF

——=—iv,p .

s 20
The previous equation establishes the phase relation between
zonal flows and temperature as follows. In the presence of
reflectional symmetry of DW turbulence in y, the real part of
3, I" and imaginary part of 3,I" vanish. Thus, Eq. (41) be-
comes

(41)

Tzr _ ﬁ(EZF)R
b7k ! (),
kg,
~02(1+ 9)(1—-2€,+P)p*— . (42)
' w ty

where the subscripts R and / denote real and imaginary parts,
respectively. After restoring dimensions, this leads to the es-
timate Typ/ed e~ 71(1+ 5;)(1—2€,+7)(p,p)>. Further-
more, Eq. (42) reveals that the phase relation between zonal
flow and temperature is likely positive (as €,<1/2 in most
cases) when the underlying DW turbulence is reflectionally
symmetric in y. This positive phase was obtained self-
consistently by considering modulational instability of zonal
flow and temperature, and is one of our main results.

Finally, the substitution of Eq. (41) in Eq. (39) then
gives us the frequency of modulational instability as
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i§vpﬁ22r

Q:_Ell—‘ 1—
>,

""_Elr

¢ZF

1+§g]. (43)

As previously shown, for (N(—k,))=(N(k,)), Tzg/ bz is
real and positive while —(2,T"),;>0 is the growth rate of
zonal flows with cold ions. Therefore, the effect of ion tem-
perature fluctuation appears to increase the growth rate of
modulational instability, even if by only a small amount.

The zonal temperature provides the extra source of free
energy for KH mode in addition to zonal flow. Thus, the
phase relation between zonal flow and temperature obtained
here is critical in determining whether finite ion temperature
promotes or inhibits linear KH instability. This issue will be
addressed in the next section.

C. Linear KH instability with 7#0

As mentioned in Sec. III B, the zonal temperature pro-
vides the extra source of free energy for the instability of
linear KH mode. To see this clearly, it is advantageous to
recast Eqs. (27) and (28) in terms of = ¢+ 7T/2 with
(NL)=0, as follows:

2 2 TZ 2
é’tVJ_ ¢+[¢’VL lﬁ]: I[T’VLTL (44)

3,T+[,T]=0. (45)

For 7<1, Eq. (44) becomes identical to Eq. (1) up to first
order in 7, implying the conservation of total potential vor-
ticity Vi((ﬁ-f— 7T/2) to that order. Note that in this case Tgy
is weekly coupled to iy . Consequently, if 7<<1, the leading
order term in the linear KH growth rate is simply given by
Egs. (7)-(9) with ¢— ¢+ 7T/2 when the zonal temperature
has the same spatial variation as zonal flow in Eq. (5), ie.,

T,+=T cos px. For instance, Eq. (8) becomes (p,=0)

=2 2

(¢+TT/2)2 52 2}’; 32. (46)

Without having to repeat a similar analysis to that in Sec. II,
Eq. (46) already implies one important effect of 7. That is,
since both zonal flow and temperature appear together as a
simple sum in growth rate (46), the phase relation between
the two is critical in determining the effect of 7on instability.
As shown in Sec. IIl B, this phase is a dynamical quantity,
determined by the generation of zonal flow and temperature
by modulational instability (or more generally, the zonal flow
generation mechanism), and thus cannot be treated as a free
parameter. Since the analysis in Sec. III B suggests that
zonal flow and temperature are likely to have the same phase
when (N (k,,—k,))=(N(k,.k,)), the ion temperature
fluctuation (7#0) enhances the growth rate of the unstable
mode (for p>g¢). On the other hand, stable modes (for p
<g) remain stable. Note, however, that Eq. (42) implies that
T7r! zp> Tk§2(p,-k)2< 1. Thus, the correction due to 7 is
small.
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D. Nonlinear generation of GKH with 70

In this section, we demonstrate that the effect of 7 on
nonlinear generation GKH appears only as a small correction
of order Tk2=pi2k2< 1. This will be sufficient to justify the
order of estimates in yy; and vy, in Sec. II.

As GKH modes are generated by the nonaxisymmetric
part of DW spectrum, they satisfy the following:

OV dxu=—{[d' +7p" Vi Dxa
+7—<[‘?i¢/’aip,]>NA’ (47)
3, Txu=—([o".p" Dxa> (48)

where the subscript NA denotes the nonaxisymmetric part.
To compute the stresses and thermal flux, we again use the
quasilinear response of p’ given by Eq. (36). Then, the two
terms containing p’ can be shown to cancel out each other.
Thus, ¢y is driven by Reynolds stress alone, while Txy is
by thermal flux. Since Ty is weakly coupled to ¢gy only
through the modulation of DW frequency (35), the effect of 7
is bound to appear in 7y as a small correction of order
7k*=(p;k)*. Note that this is similar to the case for ¢, and
Tyr. Thus, the effect of finite ion temperature would not
fundamentally change the conclusions based upon estimates
obtained in Sec. II.

IV. CONCLUSIONS

In view of the crucial role that zonal flows play in regu-
lating turbulent transport, the understanding of the nature of
zonal flow damping remains as a critical issue. In particular,
as zonal flows do not undergo Landau damping (unlike
streamers), a detailed study of the saturation of collisionless
zonal flows is especially important in quantifying the dynam-
ics of a coupled system of DW turbulence and zonal flows.
One of the possible mechanisms for collisionless saturation
of zonal flows is linear KH instability. Seemingly plausible,
this mechanism was shown to be ineffective in damping
zonal flows for realistic tokamak parameters, i.e., magnetic
shear.!? The recent work by Rogers et al.,” however, revived
the interest in this instability, suggesting its potential impor-
tance in the pure flow (Dimits upshift) regime near marginal
stability of DW turbulence. While their linear analysis (ne-
glecting the background DW turbulence and treating zonal
flow as a fixed background) is valid in a pure flow regime, it
needs be generalized outside this regime. This is important as
a pure flow regime is atypical and can easily be eliminated
by a weak collisional damping.

In this paper, we generalize KH instability in a strong
turbulence regime, by taking into account the DW turbulence
background. In the background of DW, GKH modes are non-
linearly excited by modulational instability of DW turbu-
lence. This nonlinear excitation of GKH is due to the non-
axisymmetric modulation of DW spectrum. In particular, we
focused on: (i) the comparison between the linear and non-
linear growth rates of GKH to determine when nonlinear
generation of GKH can be neglected, (ii) the comparison
between the linear generation of GKH with the growth of
zonal flows to see whether the linear picture of KH instabil-
ity, which assumes a fixed background zonal flow, can be
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justified, and (iii) the momentum transport by the linear KH
to compute the damping of zonal flow, which is then com-
pared with the growth of zonal flow.

First, through a detailed study of a simple model with
cold ions, we have shown that: (1) the nonlinear generation
of zonal flow can be more effective than both linear and
nonlinear generation of GKH near marginality for 6<<g/k,
(6= 7y/w); (2) the nonlinear generation of GKH can be com-
parable to its linear generation away from marginality &
>plky; (3) near marginality where d<<p/k( , the momentum
transport by KH (or damping of zonal flows) is insignificant
compared to the nonlinear growth of zonal flows.

These findings imply the following. (i) The linear analy-
sis of KH, which treats a zonal flow as an equilibrium back-
ground for the evolution of GKH, is invalid near marginal
stability, where DW turbulence is strong. (ii) There is no
clear distinction between secondary (zonal flow) and tertiary
mode (KH). (iii) The excitation of GKH modes with the
amplitude comparable to zonal flow away from marginality
may contribute to y;, if GKH modes are not efficiently
damped via Landau damping, etc. (iv) Considering that GKH
is more subject to damping than zonal flows (due to the
presence of Landau damping and magnetic shear), it is pos-
sible that zonal flows dominate over GKH, even away from
marginality.

By extending this simple model to the two-dimensional
toroidal ITG to incorporate finite ion temperature fluctua-
tions, zonal temperature as well as zonal flow are shown to
be generated simultaneously by modulational instability. The
phase between the two is set dynamically, and was found to
be positive for DW turbulence with a reflectional symmetry
in the poloidal direction. Furthermore, the effect of ion tem-
perature appears as a small correction of order O(p?kz) in
nonlinear growth rate of GKH, and thus does not qualita-
tively change the estimates obtained from the simple model
with cold ions. However, although small, it enhances the
growth rate of the zonal flow.

We note that, conventionally, the dynamics of DW wave
turbulence has been described by small-scale ITG modes and
large-scale zonal flows or streamers (radially extended and
poloidally localized structures). Here, ITG modes with finite
m and k| are responsible for transport while zonal flows with
m=k;=0 suppress it. However, in general, GKH modes
with finite m but with k;=0 should also be taken into ac-
count. These GKH modes seem interesting, being generated
by small-scale ITG modes, but also then contributing to
transport. In this sense, they are somewhat similar to stream-
ers, which can also be excited nonlinearly and then play an
important role in radial transport. Recall that for various es-
timates in the paper, GKH modes are assumed to be nonlin-
early generated by nonresonant interaction only. As GKH
modes have finite frequency, their resonant generation may
be significant, as in the case of streamers. Thus, it is plau-
sible that GKH modes (with comparable wavelength in both
radial and poloidal directions, for instance) may constitute a
large-scale nonlinear structure in ITG turbulence, in addition
to zonal flows and streamers. The crucial question would
then be what structure is selected in what circumstances and
also how they interact with each other.
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In conclusion, the role of shear flow instability in colli-
sionless zonal flow saturation seems quite unclear. Perhaps,
the nonlinear spectral feedback may be more robust in satu-
rating zonal flows,” and should be investigated in more de-
tail. Note that nonlinear spectral feedback is likely to result
in {(N,)<(kL,)?, thus reducing 7yx/y, . Furthermore, given
the complexity of the problem, involving linear and nonlin-
ear aspects of GKH modes and the interplay among DW,
zonal flows, and GKH, further studies of the following issues
would be worthwhile. First, the distinction between linear
and nonlinear generation of GKH modes observed in com-
puter simulations may be made possible by using bispectral
analysis which has proved to be successful in capturing
mode couplings between zonal flows and DW.** Second, a
rigorous study on the linear KH instability is necessary, in-
cluding realistic profiles of zonal flows. Also, the momentum
transport by linear KH modes and DW should also be com-
puted by using these realistic profiles. Third, although DWs
are thought to be almost completely damped in the pure flow
(Dimits shift) regime near marginality, a recent study indi-
cates that the amplitude of DW is not negligible compared to
GKH modes."" Thus, one should precisely quantify how
weak the amplitude of DWs is, in this regime. Fourth, non-
linear shear instability and the effect of high order perturba-
tion should also be incorporated. Finally, the ballooning ef-
fect due to varying €,, which was neglected in this work,
may have a potentially important effect on GKH mode, and
should be investigated in detail.
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APPENDIX: DERIVATION OF EQS. (23) AND (24)

As b= drcos px=(y/2) (e’ +e P¥), we need to
compute both of the following:

I =(gu 0V bt Svgn V dxmlp.g-0-

1= (Uku . OV bt Svkn, V> bxm)| —5.4-0 -

To compute these, we express both Eq. (A1) and Eq. (22) in
Fourier space as:

(A1)

211=if dp dq q[p>—2pp1d(p.q)3b(p—p.—q).

(A2)
212:if dp dq q[p*+2ppld(p.q)Sp(—P—p.—q),
P—p:—q) ~ _
Oy 2 loa )8, b —p.~a)

+03(—p.—q) 0.V bo(P)],

%KH(ﬁ‘P’_Q):

(A3)
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where a tilde denotes the Fourier transform. By using Eq.
(A3) in (A2), we obtain
21,= —f dp dq[p*=2pplloku.(p.q)|?

S (+ )+ 0.5 s
(A4

212: — f dp dq[[_)2+2pﬁ]|vKH,x(p’q)|2

(—=p—p.—q)
(p+p)*+q*

+0,97 ¢z~ P)].

[(p*+qHvze(—p)

To compute /, and /,, we replace fdp=2"?_, with p
=np, and then use Eq. (8), ie., 7(p,q)=1/v.(p.q)
~N(P*+g) (P> —q*)/|quye. As p>q for instability, we
keep the terms to leading order in g/p to obtain Egs. (23)
and (24).
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