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M A J O R A R T I C L E

Comparative Impacts Over 5 Years of
Artemisinin-Based Combination Therapies on
Plasmodium falciparum Polymorphisms That
Modulate Drug Sensitivity in Ugandan Children

Melissa D. Conrad,1 Norbert LeClair,1 Emmanuel Arinaitwe,2 Humphrey Wanzira,2 Abel Kakuru,2 Victor Bigira,2

Mary Muhindo,2 Moses R. Kamya,3 Jordan W. Tappero,4 Bryan Greenhouse,1 Grant Dorsey,1 and Philip J. Rosenthal1

1Department of Medicine, University of California, San Francisco; 2Infectious Diseases Research Collaboration, and 3Department of Medicine, Makerere
University College of Health Sciences, Kampala, Uganda; and 4Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia

(See the editorial commentary by Taylor and Juliano on pages 335–7.)

Background. Artemisinin-based combination therapies, including artemether-lumefantrine (AL) and dihy-
droartemisinin-piperaquine (DP), are recommended to treat uncomplicated falciparum malaria. Sensitivities to
components of AL and DP are impacted by polymorphisms in pfmdr1 and pfcrt. We monitored changes in preva-
lences of polymorphisms in Tororo, Uganda, from 2008 to 2012.

Methods. Polymorphic loci in pfmdr1 and pfcrt were characterized in samples from 312 children randomized to
AL or DP for each episode of uncomplicated malaria (50 samples per arm for each 3-month interval) utilizing a
fluorescent microsphere assay. Treatment outcomes and impacts of prior therapies were also characterized.

Results. Prevalence increased significantly over time for pfmdr1 N86 (AL: odds ratio [OR], 2.08 [95% confidence
interval {CI}, 1.83–2.38]; DP: 1.41 [95% CI, 1.25–1.57]), pfmdr1 D1246 (AL: 1.46 [95% CI, 1.29–1.64]; DP: 1.36 [95%
CI, 1.23–1.50]), and pfcrt K76 (AL: 3.37 [95% CI, 1.85–6.16]; DP: 5.84 [95% CI, 1.94–17.53], and decreased for pfmdr1
Y184 (AL: 0.78 [95% CI, .70–.86]; DP: 0.84 [95%CI, .76–1.50]); changes were consistently greater in the AL arm. Recent
AL treatment selected for pfmdr1 N86, D1246, and 184F in subsequent episodes; DP selected for the opposite alleles.

Conclusions. Genotypes with decreased sensitivity to AL components increased over time. This increase was great-
er in children receiving AL, suggesting that the choice of treatment regimen can profoundly influence parasite genetics
and drug sensitivity.

Clinical Trials Registration. NCT00527800.

Keywords. Plasmodium falciparum; artemether-lumefantrine; dihydroartemisinin-piperaquine; pfcrt; pfmdr1.

Artemisinin-based combination therapies (ACTs) have
shown excellent efficacy and are now recommended to
treat falciparum malaria in nearly all countries [1].

ACTs include potent, short-acting artemisinins that rap-
idly reduce parasite biomass and alleviate malaria symp-
toms and longer-acting partner drugs that improve
antimalarial efficacy and reduce the risk of selection for
artemisinin resistance [2]. However, as partner drugs cir-
culate well after artemisinins have been cleared, there is
concern that subsequent infections will be exposed to
subtherapeutic concentrations, facilitating the selection
of parasites with reduced sensitivity to the partner drugs.

Artemether-lumefantrine (AL) is the most widely
recommended ACT in Africa and the national malaria
treatment regimen in Uganda [1, 3]. It has shown out-
standing efficacy [4,5],but treatment selects in recurrent
Plasmodium falciparum infections for polymorphisms
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in pfcrt and pfmdr1 [6–11]—genes encoding 2 putative drug
transporters—that reduce sensitivity to artemether, lumefan-
trine, and other antimalarial drugs [12–15]. AL exerts an oppo-
site selective pressure compared to that of the aminoquinolines
chloroquine and amodiaquine. Specifically, the aminoquino-
lines select for the mutant pfcrt 76T, pfmdr1 86Y, and pfmdr1
1246Y alleles, which decrease sensitivity to these drugs, whereas
AL selects for the wild-type alleles [6–11, 16]. AL also selected
for the I876 polymorphism in pfmrp1, which encodes another
putative drug transporter, in Tanzania [17]. Three additional
pfmdr1 polymorphisms (S1034C, N1042D, and increased
gene copy number) are associated with altered sensitivity to
some drugs, but are primarily seen outside of Africa [12, 15,
18–20]. Ex vivo sensitivities of field isolates to lumefantrine
have varied widely, but clinically relevant resistance does not
appear to be a problem [14, 21, 22].Analysis of parasites selected
in vitro for high-level lumefantrine resistance demonstrated
multiple differentially expressed genes, including pfmdr1, but
the phenotype was unstable [23].

Dihydroartemisinin-piperaquine (DP) has shown excellent
efficacy in clinical trials in Africa [16, 24–27], but has only
been adopted as a first-line therapy in Southeast Asia [1]. Par-
ticularly in areas with high malaria transmission intensity, DP
benefits from the pharmacokinetics of piperaquine, which has a
much longer half-life (3–4 weeks) than that of lumefantrine (3–
5 days) and other ACT partner drugs [28], yielding a long post-
treatment prophylactic effect [5, 24, 27]. Piperaquine was used
extensively to prevent and treat malaria decades ago in China
[29, 30], but reported resistance led to reduced use by the
1980s. More recently, with implementation of DP as a standard
therapy, piperaquine resistance does not appear to be a major
problem, although ex vivo sensitivities of field isolates to piper-
aquine have varied [14, 22, 31, 32]. Mechanisms of resistance to
piperaquine are poorly understood. Parasites selected in vitro
for resistance acquired a number of genetic changes, including
a novel mutation in pfcrt and deamplification of pfmdr1, but the
phenotype was unstable [33].

AL replaced chloroquine plus sulfadoxine-pyrimethamine as
the first-line regimen for uncomplicated malaria in Uganda in
2004, although implementation did not begin until 2006 and
was initially slow [34, 35]. With improved utilization of AL in re-
cent years, it was of interest to determine the prevalence over time
of parasite polymorphisms that alter sensitivity to ACT compo-
nents and to determine how use of AL impacts upon these poly-
morphisms. Therefore, we analyzed the prevalence of
polymorphisms of interest in samples from a 5-year longitudinal
trial comparing the antimalarial efficacies of AL and DP in Ugan-
dan children. Polymorphisms associated with reduced sensitivity
to AL increased markedly in prevalence over the course of the
study, and this increase was greater in children treated with AL
compared to those treated with DP, consistent with our demon-
stration of opposite selective pressures of the 2 regimens.

MATERIALS AND METHODS

Clinical Trial
Samples were from a longitudinal trial conducted in Tororo,
Uganda, from 2007 to 2012 [27, 36]. In brief, a cohort 6 weeks
to 12 months of age was enrolled and followed for all medical
problems. Subjects with fever and a positive thick blood smear
were diagnosed with malaria. At the time of their first episode
of uncomplicated malaria, participants ≥4 months of age and
≥5 kg in weight were randomly assigned to AL or DP, adminis-
tered according to weight-based guidelines, and participants re-
ceived the same assigned treatment for each subsequent
episode of uncomplicated malaria [27, 36]. This trial was ap-
proved by the institutional review boards of Makerere University
and the University of California, San Francisco, and is registered
at ClinicalTrials.gov (NCT00527800).

Selection of Samples for Testing of Parasite Polymorphisms
To establish baseline prevalences, samples from the first malaria
episode after enrollment for 50 study participants were random-
ly selected for assessment of polymorphisms of interest. To fol-
low changes in prevalences over time, samples from 50 malaria
episodes from each treatment arm were randomly selected for
each 3-month interval from January 2008 through June 2012.
Fewer samples were selected for July–December 2013 (50 ran-
domly selected samples from the AL arm and all 39 from the DP
arm) due to a reduced number available. A total of 1889 longi-
tudinal samples, each of which had been preceded by at least 1
prior episode treated with study drugs, was studied. For pfmdr1
copy number assessment and multiplicity of infection (MOI)
quantification, 10 recurrent malaria episodes from each 3-
month interval were randomly selected from each treatment
arm.

Characterization of Parasite Polymorphisms
DNAwas extracted from filter paper blood spots into 100 µL of
water using Chelex-100 [37]. Gene fragments spanning all loci
of interest were amplified [38], and failed reactions were repeat-
ed using nested polymerase chain reaction (PCR) (Supplemen-
tary Table 1). To detect polymorphisms, multiplex ligase
detection reaction–fluorescent microsphere assays were per-
formed as previously described [38]. Pfmdr1 copy number
was quantified using TaqMan real-time PCR as previously de-
scribed, with 3D7 and Dd2 strain standards [8]. Reactions were
performed in quadruplicate, and repeated if results did not con-
form to exponential kinetics, if the standard deviation of the
cycle threshold was >0.30, or if copy number was >1.3 or <0.7.

Multiplicity of Infection and Allele Frequency
MOI was estimated by characterizing complexity of the msp1
and msp2 genes using capillary electrophoresis, as previously
described (Supplementary Table 2) [39–41]. Fluorescently la-
beled ampliconsweremultiplexed inHi-Di formamide.MOIwas
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defined as the highest number of alleles found at either locus.
Allele frequencies were estimated using MalHaploFreq [42]
(available at: http://pcwww.liv.ac.uk/hastings/MalHaploFreq),
which utilizes allele prevalences and MOI data to estimate allele
frequencies using maximum likelihood methodology.

Treatment Outcomes
We compared genotypes between paired samples from 50 ran-
domly selected consecutive episodes of malaria from each year
from 2009 to 2012 with recurrence within 63 days. Compari-
sons were performed using 6 previously described genetic
markers and capillary electrophoresis (Supplementary Tables 2
and 3) [43]. Paired samples that shared alleles at all successfully
genotyped loci were categorized as recrudescences; those that
did not were categorized as new infections.

Statistical Methods
Data analysis was done using Stata version 12 (StataCorp ). Out-
comes of interest were the prevalence of wild-type alleles (ex-
cluding mixed infections) for each locus of interest. Exposure
variables of interest were calendar time (date of treatment)
and duration since prior malaria treatment for each episode
of malaria. Calendar time was evaluated as a continuous

variable for each locus except pfcrt 76, due to a lack of linearity
for this locus. Duration since last treatment was evaluated as a
categorical variable, with the selection of categories driven by
the distribution of recurrent malaria episodes over time
(Table 1); this differed between the AL and DP arms, as expect-
ed due to the different pharmacokinetics of lumefantrine and
piperaquine. Independent associations between outcomes and
exposure variables were measured using multivariate general-
ized estimating equations with exchangeable correlations and
robust standard errors to account for repeated measures in
the same child. To compare arms, treatment with AL or
DP was added as an exposure variable, and duration since treat-
ment was categorized using the delineations utilized for the AL
arm. Differences in rates of change in allele prevalence were
tested by assessing the significance of an additional variable rep-
resenting the interaction between calendar time and treatment
arm. All other analyses used Fisher exact or Kruskal–Wallis
tests. In all analyses, a 2-tailed P value <.05 was considered
significant.

RESULTS

Treatment Outcomes and Sample Selection
We enrolled 351 children and randomized 312 upon their first
malaria episode following enrollment to treatment with AL or
DP for every episode of uncomplicated malaria during the
course of the study (August 2007 to December 2012) (Figure 1)
[36]. The incidence of malaria was very high (treated episodes
per person-year: 4.53 in the DP arm and 5.31 in the AL arm).
Study children received 5564 treatments for uncomplicated ma-
laria over 1260 person-years of follow-up. Recurrent malaria
14–63 days after therapy was common [36], but characterization
of treatment outcomes for 50 pairs of successive isolates per
treatment arm from each year during 2009–2012 indicated
that treatment efficacies were outstanding. Only 3 outcomes
were classified as recrudescence, one from the AL arm in
2012 and 2 from the DP arm in 2010. A similarly low incidence
of recrudescence was reported for outcomes from 2007 to 2008
[27]. Thus, we can assume that nearly all samples evaluated for
this study were from independent episodes of malaria.

Samples from a subset of malaria episodes were selected for
molecular analyses. These totaled 1889 episodes from 274 indi-
viduals, 140 randomized to DP and 134 to AL. There were no
significant differences in characteristics of treatment arm sub-
jects, except that the DP arm had a lower proportion of females
(41.4% vs 54.5%, P = .031; Table 1). The median age at random-
ization was 10.5 months, and children were followed for a me-
dian of 4.5 years following randomization. We detected no
difference in the MOI for episodes that occurred in the 2 treat-
ment arms (mean, 2.95 [95% confidence interval [CI], 2.81–
3.08]). Children in the DP arm had a longer duration between
episodes of malaria (P = .0012).

Table 1. Characteristics of Children and Malaria Episodes

Characteristic/Episode

Treatment Arm

AL DP

Characteristic n = 134 n = 140

Median age at
randomization, mo
(range)

10.6 (3.8–35.9) 10.2 (4.3–45.3)

Median duration of
observation, y (range)

4.5 (0.32–4.87) 4.6 (0.48–4.87)

Female sex, No. 73 (54.5%) 58 (41.4%)

Living in a rural area, No. 117 (87.3%) 117 (83.6%)
Malaria episodes n = 950 n = 939

Recrudescencesa 1/200 (0.5%) 2/200 (1.0%)

Mean multiplicity of
infectionb (range)

2.81 (1–7) 3.09 (1–7)

Median time since last
malaria episode, d (IQR)

40 (28–63) 54 (44–74)

Duration since prior treatment for each recurrent episode
≤28 d 286 (30%) 33 (4%)

29–42 d 235 (25%) 182 (19%)

43–56 d 150 (16%) 308 (33%)
57–70 d 79 (8%) 163 (17%)

>70 d 200 (21%) 253 (27%)

Abbreviations: AL, artemether-lumefantrine; DP, dihydroartemisinin-
piperaquine; IQR, interquartile range.
a Ten episodes assessed by 6-allele genotyping for each 3-month interval for
each treatment arm.
b Ten episodes assayed by msp1 and msp2 genotyping for each 3-month
interval for each treatment arm.
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Detection of Polymorphisms in First and Recurrent Malaria
Episodes
To establish baseline prevalences of polymorphisms of interest
independent of study drugs, we assessed 50 samples for each
treatment arm from first episodes after enrollment. These sam-
ples were assessed at 8 loci (N86Y, Y184F, S1034C, N1042D,
and D1246Y in pfmdr1; K76T in pfcrt; and I876V and
K1466R in pfmrp1), and, as expected, there were no significant
differences between the baseline allele prevalences in the 2 treat-
ment groups (Table 2).

Samples from the 1889 recurrent malaria episodes selected as
described above were assessed at the same 8 loci. More than 99%
of the loci were successfully genotyped (Supplementary Table 4).
All but 2 of the loci were highly polymorphic; onlywild-type alleles

were detected for pfmdr1 1034 and 1042, consistent with prior
reports from Uganda [11] (Figure 1; Supplementary Table 4).

Changes in Allele Prevalence Over Time
We observed changes in the prevalence of pfmdr1 86, 184, and
1246 wild-type alleles across the 5 years surveyed for both treat-
ment arms (Figure 2; Table 3). Multivariate analyses incorporat-
ing calendar time and the duration of time since the subject’s
last malaria treatment showed that in both treatment arms the
pure wild-type genotype increased over time for pfmdr1 N86
(AL: odds ratio [OR], 2.08/year, P < .001; DP: OR, 1.41/year,
P < .001) and pfmdr1 D1246 (AL: OR, 1.46/year, P < .001; DP:
OR, 1.36/year, P < .001), and decreased over time for pfmdr1
Y184 (AL: OR, 0.78/year, P < .001; DP: OR, 0.84/year,

Figure 1. Trial and experimental profile. Abbreviations: AL, artemether-lumefantrine; DP, dihydroartemisinin-piperaquine.
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P < .001). We also detected an increased prevalence of
wild-type pfcrt K76 in 2012 compared with the previous 4
years (AL: OR, 3.37, P < .001; DP: OR, 5.84, P = .002) and a de-
creased prevalence of pfmrp1 I876 limited to the AL arm (OR,
0.90/year, P = .034). No changes were detected over time for
pfmrp1 1466.

Of particular interest were differences in prevalences of poly-
morphisms between treatment arms. Importantly, across the 5-
year course of the study, the AL treatment arm was associated
with greater prevalences, compared to the DP arm, for the wild-
type alleles pfmdr1 N86 (OR, 3.74 [95% CI, 2.90–4.81],
P < .001), pfmdr1 D1246 (OR, 2.06 [95% CI, 1.65–2.57],
P < .001) and pfcrt K76 (OR, 2.38 [95% CI, 1.31–4.30],
P = .004), and lower prevalences for wild-type pfmdr1 Y184
(OR, 0.82 [95% CI, .68–1.00], P = .052). For pfmdr1 86, the
rate of increase for the wild-type allele was significantly more
rapid for the AL treatment arm compared with the DP arm
(P < .001); for the other pfmdr1 alleles rates of change were con-
sistently higher for the AL arm, but the differences were not sig-
nificant. At the end of the study, differences between treatment
arms were large: during the last 6 months of 2012, prevalences
of the pure wild-type alleles for AL and DP, respectively, were
94% vs 51% for pfmdr1 N86 (P < .001), 14% vs 28% for pfmdr1
Y184 (P = .10), 78% vs 56% for pfmdr1 D1246 (P = .030), and
14% vs 5% for pfcrt K76 (P = .172) (Supplementary Table 4).

Impacts of Prior Therapies on Allele Prevalence
Malaria treatments may have an impact on subsequent malaria
episodes by selecting for polymorphisms in parasites that
emerge soon after prior therapy. Therefore, we examined asso-
ciations between duration since prior treatment and allele prev-
alence. Recent treatment with AL was associated with higher
prevalences of wild-type alleles at pfmdr1 N86, pfmdr1
D1246, and pfcrt K76, and with a lower prevalence of pfmdr1
Y184, with decreasing influence of prior therapy as the duration
since the therapy increased (Figure 3). Allele prevalences were
significantly different than baseline (prevalence in parasites that

emerged >56 days after prior AL treatment) in samples that
emerged up to 56 days after prior therapy for pfmdr1 N86
(P ≤ .004), 42 days for pfmdr1 Y184 (P ≤ .025) and D1246
(P≤ .013), and 21 days for pfcrt K76 (P = .009). Similar associa-
tions were seen with multivariate analyses adjusting for calendar
time (Table 3). In contrast, recent treatment with DP was associ-
ated with changes in prevalence in the opposite direction for each
studied allele, although the extent of selection was generally
lower. Genotype prevalences were significantly different than
baseline (prevalence in parasites that emerged >70 days since
prior DP treatment) in samples that emerged up to 56 days
after prior DP treatment for pfmdr1 N86 (P ≤ .002) and 49
days for pfmdr1 D1246 (P < .001) (Figure 3). As with AL, similar
associations were seen with multivariate analyses adjusting for
calendar time (Table 3), and the influence of prior therapy de-
creased as the duration since the therapy increased. We saw no
selection by either regimen for the studied pfmrp1 alleles.

Comparative Allele Frequencies
In areas with high MOI, malaria infections often contain several
genetically distinct parasite clones. As a result, genotyping effec-
tively detects allele prevalence but may not reflect allele frequen-
cy, as different clones typically comprise different proportions
of an infection [42]. To determine if variation in MOI between
treatment arms and over time might bias our prevalence esti-
mates, we genotyped samples from 380 malaria episodes evenly
distributed over time and treatment arm. We estimated a mean
MOI of 2.94 among these samples, with little variation between
years, treatment arms, or duration since last treatment (Table 1).
In addition, we modeled allele frequency over time using the
MalHaploFreq program [42]. The dynamics of estimated allele
frequencies were consistent with the dynamics of calculated al-
lele prevalences (Figure 2).

Pfmdr1 Copy Number Variation
We assessed pfmdr1 copy number in 10 isolates from each treat-
ment arm selected randomly for every 3-month interval during
2008–2012. Among the 380 isolates, copy number was ≥1.5 for

Table 2. Baseline Allele Prevalences in the 2 Treatment Arms

Locus

AL (n = 50) DP (n = 50)

P ValueaWild-type Mutant Mixed Wild-type Mutant Mixed

Pfmdr1 N86Y 20% 46% 34% 26% 56% 18% .207
Pfmdr1 Y184F 34% 6% 60% 32% 12% 56% .684

Pfmdr1 D1246Y 41% 39% 20% 56% 35% 8% .151

Pfcrt K76T 4% 92% 4% 0% 94% 6% .678
Pfmrp1 I876V 34% 42% 24% 48% 32% 20% .436

Pfmrp1 K1466R 39% 37% 24% 29% 41% 31% .622

Abbreviations: AL, artemether-lumefantrine; DP, dihydroartemisinin-piperaquine.
a Fisher exact test, comparing categorical composition of wild-type, mutant, and mixed alleles.
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Figure 2. Allele prevalences over time. Prevalences, each based on analysis of 50 samples per treatment arm, are shown over 3-month intervals for
wild-type, mixed, and mutant alleles of pfmdr1 86, 184, and 1246; pfcrt 76; and pfmrp1 876 and 1466. Frequency curves, based onMalHaploFreq frequency
estimations for each year, are superimposed; error bars represent the 95% confidence intervals for the estimates. Abbreviations: AL, artemether-
lumefantrine; DP, dihydroartemisinin-piperaquine.
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14 (3.7%) and ≥2.6 for 3 (0.8%). Ten of these isolates were from
AL-treated patients (7 from 2008 and 3 from 2009); 4 were from
DP-treated patients (all from 2008). We found no association
between increased copy number and treatment arm and did
not see a trend toward increased pfmdr1 copy number over
time.

DISCUSSION

We examined changes in the prevalence of P. falciparum poly-
morphisms associated with altered drug sensitivity in a cohort
of Ugandan children randomly assigned to receive either AL or
DP for each episode of uncomplicated malaria from 2007 to 2012,
a period during which AL was increasingly utilized as the nation-
al treatment regimen. Both treatments were highly efficacious,
consistent with prior reports [24, 27]. However, the prevalences
of 4 polymorphisms associated with reduced sensitivity to AL
components—pfmdr1 N86, pfmdr1 184F, pfmdr1 D1246, and
pfcrtK76—all increased over time. Comparing results for samples
from the 2 treatment arms, the prevalences of all of these alleles
were greater in the AL treatment arm. Thus, over a 5-year span
during which AL was increasingly utilized to treat malaria, para-
sites increasingly contained polymorphisms associated with de-
creased sensitivity to lumefantrine. These changes were seen in
children treated with either AL or DP, indicative of the selective
pressure of widespread use of AL in Uganda. However, the
changes were greater in children treated for each episode of ma-
laria with AL, compared to DP, consistent with the opposite se-
lective pressures of AL and DP that we demonstrated. Thus, the
choice of national antimalarial regimen can have a profound im-
pact on parasite genetics, and specifically on the selection of par-
asites with altered sensitivity to ACT components.

Emerging resistance to artemisinins is of great concern [44,
45], although at present the problem appears to be limited to
Southeast Asia [46]. Of more urgent concern in Africa is resis-
tance to artemisinin partner drugs, which may be readily selected.
Evaluation of the ex vivo sensitivities of Ugandan [22] and other
African [14, 21, 47] parasites to lumefantrine and piperaquine
have shown a range of sensitivities, but it is unclear if clinically
relevant resistance is yet occurring. Mediators of high-level resis-
tance are uncertain [23, 33], but sensitivity to many antimalarials
is affected by polymorphisms in pfcrt and pfmdr1. Relevant to our
study, lumefantrine selects for the wild-type pfcrt K76, pfmdr1
N86, and pfmdr1 D1246 alleles, which are associated with de-
creased lumefantrine sensitivity [12–14]. In the only available
study to consider this question, DP did not exert selective pres-
sure on these alleles in Burkina Faso [9].

With the deployment of AL as the standard treatment for ma-
laria in Uganda and the threat of emerging drug resistance, un-
derstanding the dynamics of changes in key parasite alleles, and
how these alleles are influenced by the use of different ACTs, is of
great importance. Parasites causing uncomplicated malaria inTa
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Tororo changed markedly, with changes likely facilitated both by
decreasing selective pressure from chloroquine and increasing
pressure from AL, as supported by the demonstration of in-
creased selection toward relevant genotypes in the AL treatment
arm of our study. Differing selection between treatment arms was
also apparent upon examination of parasites that emerged after
recent treatment, as, consistent with prior studies [6–11, 16],
treatment with AL selected for the same wild-type alleles in par-
asites that emerged after therapy. Importantly, recent DP treat-
ment selected for the opposite variants, consistent with
selection seen for amodiaquine [7, 16, 48], but differing from re-
sults for DP from Burkina Faso [9]. The difference between sites
might be explained by different genetic backgrounds of parasites
in West Africa (eg, low prevalence of the pfmdr1 1246Y muta-
tion), differences in experimental designs, or other factors.

Our results highlight the profound influence that the choice
of national malaria treatment regimen can have on parasite ge-
netics and specifically on potential mediators of drug resistance.

In Uganda, replacement of a chloroquine-containing regimen
with AL has been accompanied by marked changes in parasite
genotypes, with selection of alleles that mediate diminished sen-
sitivity to AL components. In children who were treated for
each episode of malaria with AL, following national treatment
guidelines, selection was enhanced compared with that in chil-
dren treated with DP, another highly efficacious regimen. This
observation is consistent with our finding that DP selects in the
opposite direction as AL, as has been observed with the related
4-aminoquinolines chloroquine and amodiaquine [7, 16, 48].
Importantly, the parasite polymorphisms described here do
not appear to mediate high-level drug resistance. Nonetheless,
they will likely facilitate continued selection toward clinically
relevant resistance, which is commonly stepwise in P. falcipa-
rum [49]. Thus, consideration should be given to changes in
malaria treatment regimens, possibly with sequential adminis-
tration of different ACTs, to limit the selection of parasites with
decreasing drug sensitivity.

Figure 3. Impact of prior therapy on allele prevalences. The prevalences of wild-type, mixed, and mutant sequences at the indicated alleles are shown
for samples from episodes that emerged within the indicated time after a prior treatment with artemether-lumefantrine (AL) or dihydroartemisinin-
piperaquine (DP). Based on consideration of the distribution of recurrent malaria episodes over time, samples from episodes that emerged more than
56 days and 70 days after treatment are considered not to be under selection for AL and DP, respectively. Asterisks indicate wild-type allele prevalences
that are significantly different from those for samples not under selection (P < .05, χ2 test). Abbreviations: AL, artemether-lumefantrine; DP, dihydroarte-
misinin-piperaquine.
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