UC Berkeley
Working Papers

Title

Weak Variations Optimal Boundary Control of Hyperbolic PDEs with Application to Traffic
Flow and Delay Systems

Permalink
https://escholarship.org/uc/item/1n92f6rx
Author

Moura, Scott |

Publication Date
2012-09-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1n92f6rx
https://escholarship.org
http://www.cdlib.org/

Weak Variations Optimal Boundary Control of Hyperbolic PDEs
with Application to Traffic Flow and Delay Systems

Scott J. Moura

Abstract— We investigate optimal boundary control of first-
order hyperbolic PDEs. These equations are ubiquitous in
engineered systems, such as traffic flows, fluid flows, heat
exchangers, chemical reactors, and oil production systems. We
derive linear quadratic regulator (LQR) results using a weak
variations approach, recently developed for parabolic PDEs.
The distinguishing characteristic of this approach is that it
provides a systematic procedure for deriving LQR control laws
without semi-group theoretic concepts. Ultimately, these control
laws are given by the solution of an associated Riccati PDE.
We demonstrate the applicability of these results on two case
studies: traffic flow control and input-delayed systems. Finally,
we extend the LQR results to solve the output reference tracking
problem. Unlike motion planning, these reference tracking
equations do not require state trajectory generation.

I. INTRODUCTION

This paper develops linear quadratic regulator (LQR)
results for boundary controlled first-order hyperbolic par-
tial differential equations (PDEs). These equations describe
several physical problems of interest, including traffic flows
[1], shallow water flow dynamics [2], heat exchangers [3],
chemical reactors [4], oil production systems [5], thermostat-
ically controlled loads [6], [7], and as we shall see, input-
delayed systems [8]. In addition to deriving LQR results, we
seek a constructive method which is easily applicable and
generalizable to physically relevant engineering systems. To
this end, we consider the weak-variations approach, recently
developed for parabolic PDEs [9], [10].

Several results already exist for hyperbolic equations,
including [8], [11]-[13], which utilize concepts from ge-
ometic control, Riemann invariants, semi-group theory, and
infinite-dimensional backstepping. The current work focuses
on a weak-variations approach to deriving LQR results for
first-order hyperbolic PDEs. This approach has the unique
advantage of providing a constructive approach to deriving
Riccati equations without approximating the system as finite-
dimensional, while requiring relatively simple mathematical
concepts. Ultimately, the control laws require the solution
of Riccati PDEs, derived from the original model. We first
focus on finite-time LQR results for a general class of
hyperbolic PDEs. Both open-loop and closed-loop control
laws are provided. Second, we apply these results to a
standard problem in traffic flow control. Third, the results are
extended to solve the stabilization problem in input-delayed
finite-dimensional systems. Finally, we provide an output
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reference tracking algorithm for hyperbolic PDEs. Although
several of these results are known, our approach provides a
general and systematic procedure to handle linear quadratic
regulation in hyperbolic equations, without discretization or
semi-group theoretic concepts.

Throughout this paper, we consider models from the
following class of linear hyperbolic PDEs:

Ut(mat) = uw(.’L‘,t)—i-g(CE)u(O,t)—i—/Om f(xay)u(y7t>dy (1

defined over the domain (z,t) € (0,1) x R™ with initial
condition u(z,0) = up(z). Assume the functions g, f are
continuous. We consider the controllable boundary condition

u(l,t) = U(t). (2

We consider the particular class of systems represented by
(1)-(2) for two reasons. First, this system is unstable for
sufficiently large and positive g and f. Secondly, this model
often arises from the reduced model of a singularly perturbed
hyperbolic-parabolic system [14].

Our goal is to develop a state-feedback controller that
optimally regulates the system to the origin. Specifically, we
wish to minimize the following quadratic objective over a
finite time-horizon ¢ € [0, ¢]:

1

J = 5/Of [{u(z, 1), Q(u(z, 1)) + RUZ(8)] dt +

5 (0l ), Py(ula, 1)), G

The symbols (), R, and P; are weighting kernels that
respectively weight the state, control, and terminal state of
the closed loop system. We assume that @ > 0, R > 0,
P; > 0, where Q,P; € C([0,1] x [0,1]) and R € R,
thus producing a convex cost functional. First, we derive the
necessary conditions for optimality of the open-loop finite-
horizon control problem using weak variations. These condi-
tions form coupled PDEs with split initial conditions. Next,
we derive the associated Riccati equation for the feedback
linear operator. This Riccati equation is a 2-D spatial, 1-
D temporal PDE. We then consider applications to traffic
flows and input-delayed systems. Finally, we extend the LQR
results to solve the output reference tracking problem.

This paper is organized as follows. Section II provides the
main LQR results for a general class of hyperbolic PDEs.
Section III considers the application of these results to con-
trol traffic flow. Section IV demonstrates how these results
can be used to stabilize input-delayed systems. Section V
provides results for the output reference tracking problem,



Fig. 1. A visualization of the weak variations concept for optimal state
and control trajectories.

for hyperbolic PDEs. Finally, Section VI summarizes the key
results.

II. LQR FOR FIRST-ORDER HYPERBOLIC PDES

A. Open-Loop Control

We start by stating the first order necessary conditions for
the open loop finite-time horizon problem.

Lemma 1: Consider the linear first-order hyperbolic PDE
described by (1)-(2) defined on the finite-time horizon ¢ €
[0,tf] with quadratic cost criterion (3). Let u*(x,t), U*(t),
and \(zx, t) respectively denote the optimal state, control, and
co-state that minimize the quadratic cost. Then the first order
necessary conditions for optimality are

g (,t) = ug (2, 1) + g(z)u” (0, 1)

+ [ flz,y)u(y,t)dy, 4)
0

M) = Ao ) — / NE (€ 2)dE — Q(u" (2,1)

)

with boundary conditions
(LY = U, ©)
208 = /Olg<y>A<y>dy, ™

and split initial/final conditions

u*(z,0) = up(x), Ma,ty) = Py(u®(z,tf)),  (8)

and the optimal control input is

U (t) = —%A(l,t). ©)

Proof: The necessary conditions are derived via weak
variations [9], [10]. Suppose u*(z,t) and U*(t) are the
optimal state and control inputs. Let u(z,t) = u*(x,t) +
edu(x,t), U(t) = U*(t)+edU(t) and du(x,0) = O represent
perturbations from the optimal solutions. See Fig. 1 for a
visualization of the weak variations concept. Consequently,

the cost is

J(u* + edu, U* + edU) =
1

- /tf [(u* + edu, Q(u* + edu)) + R(U* + eéU)z} dt
2 Jo

L . .
+5(u(ty) + edulty), Pr(u”(ty) + edulty))).  (10)
Define g(e) to be the cost functional above combined with
the system dynamics constraint (1), using the method of
Lagrange multipliers as follows

(1)

5 / ! [(u* + edu, Q(u* + edu)) + R(U* + edU)?] dt
2 Jo

1 * *
+5 (W (ty) + €dulty), Pr(u®(ty) + edulty)))
tf
Jr/ Mz, t),ul + eduy + g(z)u*(0) + g(x)edu(0)
0
* * a *
4 [ ) o)+ edulw)dy — g0 + esu,
0
where A(z, t) is the Lagrange multiplier (a.k.a. the co-state in
the context of optimal control). Then the necessary condition
for optimality is dg(e)/de|c=o = 0. Differentiating g(e)
and a series of computations involving integration by parts
produces

Bo= [ @) -a4r [ a0 ow)] ar
+ [0 + O gla))] dul0.
0

+/0 [RU* + \(1)] 6U

+<Pf(u*(xatf)) _A(xatf)aéu(xvtf» = 0. (12)

For the previous equation to hold true for arbitrary
du(x,t),8U(t), du(x,ty), the following conditions are suffi-
cient

1
M2, 8) = A (2, 1) — / AE)F(E.2)dE + Q(u* (2, 1)),

(13)

1
A0, 1) = / ()M (y)dy, (14)
A, ts) = Py(u*(z, 7)), 15)
U*(t) = —%A(l,t). (16)

These conditions represent the co-state’s PDE dynamics,
boundary condition, final condition, and the optimal bound-
ary control, respectively. Coupled together with the plant
model (1)-(2), these conditions verify the first order nec-
essary conditions of optimality, which completes the proof.

|



B. State-Feedback Control

Now let us consider the state-feedback problem. That is,
let us postulate that the co-state A\ is related to the states
according to the time-varying linear transformation:

A1) = / P, y, t)u* (4, t)dy.

Theorem 2: The optimal control in state-feedback form is

1
U*(t)Z—E ; P(1,y,t)u*(y, t)dy.

The time-varying kernel P(z,y,t) must satisfy the following
Riccati PDE

1 1
P=P 4P, / P&, y) (€, 2)de / P, €) (€. y)de
Y

a7

(18)

+ P )P(Ly) - @ (19)
with boundary conditions
1
Paot) = [ Paytgwd, @0
0
1
PO = [ Plyto@is, @)
0
and final condition
P(x,y,ty) = Ps(x,y). (22)

Proof: The proof consists of evaluating each A\ term
in (5), (7), and (8) using the postulated form in (17). The
computations involve integration by parts and charging the
order of integration in double integrals. [ ]

Remark 3 (Time-Invariant Control Law): The  infinite-
time horizon optimal controller is given by the steady-state
solution of the Riccati PDE. Namely,

1 1
e - [ Penscais- [ pegreas
x Y
1
1
P> (z,0)= | P>(z,y)9(y)dy, (24)
0
1
Pe0.) = [ Pyl (25)
0
The solution of this Riccati PDE, denoted P> (z,y), pro-
duces the time-invariant state-feedback control law
1

. 0. . .
Next we consider an application of this result to a proto-
typical problem encountered in traffic flow control research.

IITI. APPLICATION TO TRAFFIC FLOW CONTROL
A. Model and LOR Control Design

Consider the modified Lighthill-Whitham-Richards (LWR)
model of highway and air trafﬁc flows [1]

Plet) = gb@6ol @D
WL = Vo) + ), e8)
p(§70) = pO(f)v (29)

defined over the domain (&,¢) € (0, L) x R*. The variable
p(&,t) is the density of vehicles, v(§) is the spatially-
dependent mean velocity profile, U(t) is a controllable flux
of vehicles, and d(t) is an exogenous disturbance that models
an uncontrollable flux of vehicles at the boundary. We
assume v(&) > 0 V¢. Define the flux of vehicles F'(¢,t) =
v(&)p(€,t). Then the LWR model can be written as

OF
F(Lt) = U(t)+d(), (3D
F(£0) = v(&)po(§) (32)

Suppose we wish to stabilize the traffic flow around the
equilibrium flux of vehicles F(£,t) = FY, V&, t. Define the
error variable F(£,t) = F(&,t) — FO. Then the PDE of
interest becomes

OF
5(57 t) =
F(L,t) =

v(§) 5(5, t),
U(t) 4 d(t) — F°.

(33)
(34)

Our goal is to design a feedback control law for the influx
of vehicles U(t) which regulates traffic flow to the desired
equilibrium profile. We mathematically formulate this using
the objective function (3).

First, we apply the following invertible transformation
F(&,t) ¢ u(z,t)

Ft) = u(zt), (35)
¢ ds
r = UO/O @7 (36)
L ds -
v o= [/o ()] GD

and assume v(§) and L are selected such that vo = 1. This
renders the F' system (33)-(34) into the form

ug(xz,t) =
u(1,t)

This PDE fits within the class of PDEs considered in (1)-
(2). Hence, we are in position to apply the weak variation
optimal control results.

The time-invariant optimal control law in the original
coordinates is given by

t) = F‘L% /O1 P>(1,y) {F (/Oyv(s)ds,t) - FO} dy,

(40)
v(€)p(&,t) and P>(x,y) verifies the

ug(x,t),
U(t) +d(t) — F°.

(38)
(39)

where F(§,t) =
Riccati PDE

P§°+P;"+%P°¢(x, DHP>(1,y)—Q =0, (41
P®(z,0)=0, (42)
“(y,0)=0.  (43)
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Fig. 2. Evolution of flux of vehicles, F'(§,t), regulated by the LQR
controller (40). Note that F'(&,¢) stabilizes around the desired value of
FO = 1. A zero-mean normally distributed disturbance enters at the
controlled boundary F'(L,t).
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Fig. 3.  Evolution of vehicle density, p(&,t), regulated by the LQR
controller (40). A zero-mean normally distributed disturbance enters at the
controlled boundary v(L)p(L,t).

B. Simulations

Next we present simulation examples for v(§) = 2 +
sin(2r%), FO = 1, d(t) ~ N[0,0.2%], po(§) = 0,
Q(z,y) =1, R = 1. All equations are discretized and solved
numerically using the Lax-Friedrichs method [15]. We can
see in Fig. 2 the controller stabilizes the flux F'(,t) around
the desired equilibrium profile of F'® = 1. The evolution of
the state, vehicle density p(,t), is provided in Fig. 3. The
control gain P*°(1,y), obtained from solving (41)-(43), is
shown in Fig. 4(a). The controlled influx of vehicles at the
boundary, U(t), is shown in Fig. 4(b). Finally, the evolution
of the spatial 2-norm of vehicle flux tracking error, || F'(&, )],
decays towards zero in Fig. 4(c).
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Fig. 4. (a) Control gain P>°(1,y) for LQR control law in traffic flow

problem. Plots (b) and (c) depict the evolution of the boundary control
signal U(¢) and the spatial 2-norm of the flux tracking error ||F'(&,¢t)]],
respectively. The LQR controller regulates tracking error to zero.

IV. APPLICATION TO ODES WITH INPUT DELAY

We now consider the application of weak-variations opti-
mal boundary control to ODEs with arbitrarily long actuator
delay. In particular, consider a linear finite-dimensional sys-
tem described by the ODE

X = AX 4+ BU(t — D), (44)

where X € R"™, A is possibly non-Hurwitz, (A4, B) is
controllable, and the input signal U(t) is delayed by a
constant D units of time. Following the idea exploited in
[8], [16] and demonstrated visually in Fig. 5, we model the
delay as a first-order hyperbolic PDE

u(z,t) =
u(D,t) =

ug (7, t), 45)
U(t). (46)

such that the output u(0,¢) = U(t— D) provides the delayed
input to the ODE. We now write the ODE as

X = AX + Bu(0,t). (47)

Equations (45)-(47) form a PDE-ODE cascade driven by the
input U. The key advantage of this representation is that
the cascade is linear and amenable to our weak-variations
optimal control techniques for PDEs.

A. State Regulation

We seek the optimal control which minimizes the follow-
ing criterion

t
J:i/fH%MHJWﬂﬁ+%ﬂWFﬂXW%
0
(48)
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Fig. 5. Block diagrams for the two equivalent models of an actuator delayed
system: the delay transfer function and a hyperbolic equation.

whereQ:QT>O€R"X”,R>O€]R,Pf:PJT206
R™*™. First, we state the open-loop optimal control result.

Lemma 4: Consider the input delayed ODE system de-
scribed by (45)-(47) defined on the finite-time horizon ¢ €
[0, ¢f] with quadratic cost criterion (48). Let X *(t), u*(x, 1),
and U*(t), respectively denote the optimal ODE state, ac-
tuator state, and control that minimize the quadratic cost.
Moreover, let A(t) and p(x,t) represent the co-states for
X (t) and u(x,t), respectively. Then the first order necessary
conditions for optimality are

X* = AX* + Bu*(0,t), (49)

A = AThx+QXx*, (50)

X*(0) = Xo, Alty)=PrX*(ty), (51)

for the ODE states. The PDE state equations are

uy = uy, (52)

u*(1,t) = U*(¢), (53)

:ut - ;ulv (54)

p(0,8) = BT\, (55)

u*(x,0) = up(z), (56)
and the optimal control input is
N 1

U*(t) = —u(D,1). (57)

Proof:  Suppose X*(t),u*(x,t) and U*(t) are the

optimal states and control input. Let X (¢) = X*(¢) +

IX(t),u(z,t) = u*(x,t) + edu(x,t), U(t) = U*(t) +
edU(t),ou(D,t) = 6U(t), and du(x,0) = O represent
perturbations from the optimal solutions. Consequently, we
can write the cost using the method of Lagrange multipliers

> ¢ » X = AX + BU(t-D) F——>»

%/ [(X*+e0X)"Q(X* +e5X) + R(U* + e0U)?] dt

—_
[}

+5 (X" (tr) + €0X (tg)" Pr(X*(ty) + e6 X (t5))

+/)\
0

[\V]

A(X™ +e0X) + B(u*(0,t) 4+ edu(0,1))

d *

ty
—|—/ (u(z,t),uy + eduy — 0 —(u" + edu))dt

where A(t) and u(x, t) are the co-states for X (¢) and u(z,t),
respectively. Then the necessary condition for optimality is
dg(e)/dele=o = 0. After differentiating g(e) and applying
a series of computations involving integration by parts,
we find the conditions (49)-(57) are necessary to satisfy
dg(e€)/delc—o = 0. [ |

Now we seek to determine the state-feedback law from
the first order necessary conditions in Lemma 4. As before,
we postulate the co-state A is related to the optimal state

according to
A(t) = P(t)X™(¢t).

Under this postulation, we are in position to state the state-
feedback control law for input delayed systems.
Proposition 5: The optimal state-feedback control law is

(58)

U*(t) = BT P(t + D)

t
X [eADX*(t) + / A0 BU*(0)dh| . (59)
t—D
The time-varying matrix P(t) must satisfy the Riccati ODE

. 1
P = PA+ATP—PB§BTP+Q, (60)

P(tf) = Py 61)
Remark 6: Notice that control law (59) is defined recur-
sively, where U*(¢) depends on previous values of U*(¢).
Remark 7: The controller (59) is a predictor-based law.
That is, it advances the measured state by D units of time and
applies the corresponding optimal feedback gain. This result
is not new. In fact, it is a variation of the venerable Smith
Predictor [17]. However, the weak variations procedure pro-
vides a completely new and constructive method for control
of input delayed systems, in an optimal control context.
Now we supply the proof for Proposition 5.
Proof: First we substitute (58) into (50) to obtain

—P,X* = PAX* + PBu*(0) + ATPX* + QX*. (62)
The term «*(0,¢) can be written as
w*(0,t) = U*(t = D) = = (D, t = D)
1 1
= ——u(0,t) = —=BT\(t
7h0:t) = -5 B A()
1
——BTPX*(t 63



using (52)-(53), (54), (55), and (58) respectively. Conse-
quently, (60) must be satisfied for any value of X™*(¢).
Substituting (58) into final condition (51) produces the final
condition (61) for the Riccati ODE. To derive (59), note that

. 1 1
Ur(t) = —RM(Dat) = —Eﬂ(oyt + D)
1 1
= —EBT)\(t +D) = —EBTP(t + D)X*(t+ D),

(64)

using (57), (52), (55), and then (58). The term X*(¢t + D)
can be written explicitly in terms of X*(¢) and U*(¢) using
the exponential matrix as follows

t+D
X*(t+ D) =P X*(t) + / eAMTD=7) By (0, 7)dr
t
t+D
=eAPX*(t) + / AP BU* (7 — D)dr
t

t
= AP X (1) + / A= BU*(0)db
t—D

This furnishes (59) and completes the proof. [ ]

B. Simulations

For demonstration we consider an LTI system with system
matrices

2 0 1 0
A=|1 -2 —2|, B=1o (65)
0 1 -1 1

and an input time delay of D = 0.3. The open-loop system
is unstable and its eigenvalues are 2 and —1.5 = 1.45. We
consider an infinite-time horizon LQR controller with unity
weighting matrices. This example is adopted from [8]. The
simulation results in Fig. 6 demonstrate how a non-predictor-
based LQR controller fails to stabilize the input-delayed
system, whereas the controller (59)-(61) succeeds. Note that
reducing the transient during the initial D time units is
impossible, due to the input delay.

V. OUTPUT REFERENCE TRACKING
Next we consider the output reference tracking problem.

For simplicity of presentation, we shall consider a subclass
of the benchmark hyperbolic PDE (1), given by

Uy (.’t, t) = Uy (:L'a t)a (66)
u(l,t) =U(t), (67)
with output function
1
y(t) = / h(w)u(z)dz. 68)
0

It is relatively straight-forward to extend these results to the
broader class in (1). Our goal is to derive a state feedback
boundary control law such that output z(¢) asymptotically
tracks the reference signal z"(¢). To this end, define the
error variable e(t) = 2" (t) — z(t) and consider the objective
functional

t«
=5 [ lae®? + RUGP]de+ Saselts? (@)
0

’
;l"‘
5 P ]
< R
g 07 . -
<
7
-S—LaR I
- - - Predictor LQR
--'Open Loop
-10 ‘
@ 200
5 100
E
g 0
)
=]
% -100
5 _200 Il Il Il Il Il
0 0.5 1 1.5 2 25 3
Time
Fig. 6. State X7 and delayed control U(t — D) evolution for an input-

delayed system. The open-loop system (dashed-dotted) is unstable. An LQR
controller (solid) fails to stabilize the system, whereas the predictor-based
controller (dashed) from (59)-(61) succeeds.

where ¢ > 0,R > 0,qr >0 € R.
Proposition 8: The reference tracking controller is given
by a feedback and feed forward term as follows:

I 1
U0 =~ [ POyt 0dy+ 600, (0

The time-varying kernel P(z,y, t) must satisfy the following
Riccati PDE

1
Po=P,+ P, + EP(JJ, DP(1,y) — qgh(x)h(y), (71)

with boundary conditions

P(z,0,t) = 0, (72)
P(0,y,t) = 0, (73)

and final condition
P(x,y,ty) = qrh(z)h(y). (74)

The time-varying feed forward term G(x,t) must satisfy the
following PDE

G(0,t) = ¢2" (1), (76)
Gz, ty) = qrh(x)2"(ty). a7

Notice that the PDE for G(x,t) depends on z"(¢) and
is coupled with P(z,y,t). The proof is provided in the
Appendix.

Remark 9: Notice that we do not need to generate a
reference trajectory for the state - a key advantage. In
contrast, alternative methods, such as differential flatness or



backstepping [18], [19], require one to generate the reference
state trajectory for the feed forward term. These approaches
then stabilize the system around this reference trajectory.
Here, the output reference 2" (t) is incorporated via the feed
forward term G(x,t) and the associated PDE (75)-(77).

VI. CONCLUSIONS

This paper presents a new approach to linear quadratic reg-
ulation of first-order hyperbolic PDEs, via weak-variations.
Ultimately, the control gains are obtained from the solu-
tion of a Riccati PDE. Two interesting applications are
considered, including traffic flow control and input-delayed
systems. The key benefit of this approach is that it provides
a systematic procedure to derive Riccati equations, via an
accessible set of mathematical tools. Consequently, the re-
sults are useful for a wide spectrum of engineered systems,
including traffic flows, chemical reactors, oil production
systems, shallow water fluid flows, and delay systems.

The generalizability of this approach creates many inter-
esting opportunities for future work. Throughout, we have
assumed full-state feedback. Consequently, optimal observers
using boundary measurements are of interest [9]. One might
also consider adaptive versions [20] of the controllers pre-
sented here. Other classes of PDEs can be considered as well,
such as wave, beam, Navier-Stokes, and nonlinear hyperbolic
PDE:s. Finally, systems of multiple coupled hyperbolic PDEs
also provide a particularly relevant and interesting system to
study [21]. Ultimately, this paper provides a systematic pro-
cedure for deriving LQR control laws for physical systems
described by first-order linear hyperbolic PDE:s.

VII. APPENDIX

A. Proof of Proposition 8 [Reference Tracking]

The necessary conditions are derived via weak variations
[9], [10]. Suppose u*(x,t) and U*(t) are the optimal state
and control inputs. Let u(z,t) = u*(z, t)+edu(x, t), U(t) =
U*(t) + edU(t) and du(z,0) = O represent perturbations
from the optimal solutions. Consequently, the cost is

J(u" + edu, U* 4+ e0U) =

%/O ' [q(2"(t) — (h,u* + edu))® + R(U* + €6U)?] dt
s tg) — (b () + ebuliy))” 78)

Define g(e) to be the cost functional above combined with
the system dynamics constraint (1), using the method of
Lagrange multipliers as follows

g(e) =
% /O "L () — (hyu” + du))? + R(U* + edU)?] dt
20527 (tg) — (o™ (tg) + edu(ty)))?

2

23
—|—/ Az, t),uy + eduy — %(u* + edu))dt,
0

where A(x,t) is the Lagrange multiplier. Then the necessary
condition for optimality is dg(e)/de|c=o = 0. Differentiating
g(€) produces

dg
de (€) =

| et su e = o+ e
+ROU(U* + edU)] dt
g th,Sue, ) (27 (1) — (o (2 ) — ebu(a, 1)

th(S 85d
+/O<7uw_§u>ta

Using integration by parts we can show

(A(), dugz(x)) = A(1)6U — A(0)du(0) — (Ag, du), (80)

(79)

tf a f,f
/ (A,—éu}dt:()\(x,tf),éu(x,tf))—/ O, Su)dt.
0 ot 0

81)

Now we plug (80), (81) into (79), set ¢ = 0, and group like
terms

_ 99 _
0="2(0)= (82)

/0 "0 = A — gh(@) (" — (b u")), 5u)
+ /0 _A(0)5u(0)

ty
+/ [RU* 4+ X(1)] oU

0
+ <—th($)(zr(tf) - <h7 U*(x7 tf)>) - /\(.2?, tf)? 6“(-17’ tf)>
For the previous equation to hold true for all arbitrary

du(z,t),0U(t), 0u(x, ts), the following conditions are suffi-
cient

Az, t) = A(z,t), (83)
A0, 8) = 0, (84)
Mz, ty) = —qph(z)[2" — (h,u"(x,t5))], (85)
Ut = —%A(l,t). (86)

Postulate that the co-state \ is related to the states accord-
ing to the time-varying linear transformation

1
Az, t) = / P(z,y,t)u*(y,t)dy — G(z,1). (87)
0

After evaluating each term with this postulated form, we
arrive at the control law and corresponding equations given
in (70)-(77).
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