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ABSTRACT

Science networks and their hosted applications require large and frequent data transfers, but these
transfers are subject to network performance degradation, including queuing delays and packet drops.
However, well known network dynamics along with limited instrumentation access complicate the
creation of an accurate method that predicts different performance aspects of data transfers. In this
study, we develop a lightweight machine learning tool to predict end-to-end packet retransmission in
science flows of arbitrary size. We also identify the minimum set of necessary path and host measure-
ments needed as input features in our predictor in order to achieve high accuracy. In our evaluation
process our predictor demonstrated low training times and was able to provide accurate estimates (97—
99%) for packet retransmissions of data transfers of arbitrary sizes. The results also manifest that the
our solution was able to predict retransmit behavior reasonably well (66%) even for previously unseen

data if training and testing datasets had similar statistics.

1. Introduction

Science networks host applications that process large amount:

of data derived from a diverse set of complex experiments.
Oftentimes, these applications require large and frequent data
transfers with explicit network performance requirements such
as high-speed data delivery. Consequently, these transfers
become very sensitive to performance degradation events.
Even the slightest amount of packet loss can significantly
increase the overall data transfer time [1], which in the con-
text of complex experiments can be interpreted in delays in
data availability. In order to ensure timely data availabil-
ity, science networks feature dedicated systems (e.g., Perf-
SONAR [2]) that are able to detect and report on perfor-
mance degradation events (e.g., latency increase, throughput
degradation). However, these systems report transfer degra-
dation events after they occur and to this day no scientific
method that predicts different negative performance events
is available for science networks.

Solutions that predict different aspects of TCP perfor-
mance such as throughput or packet loss prediction, are largely
centered around two approaches: formula-based and history-
based predictions. Formula-based methods predict perfor-
mance aspects using mathematical expressions that relate
the predicted variable to path and end host properties such
as Round Trip Time (RTT) or the receiver’s window size. In
most cases, measurements for the aforementioned properties
are gathered using different active or passive network mea-
surement tools. A common shortcoming of formula-based
approaches is that they are greatly affected by the continu-
ously evolving TCP implementations, making maintenance
of up to date formula-based models a cumbersome process.
On the other hand, history-based approaches produce a time
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series forecast of the desired attribute (e.g., packet loss) based
on measurements derived from previous file transfers, col-

ected either passively (e.g. through monitoring a link) or

actively (e.g. by conducting file transfers of different size).
Although for certain aspects of TCP performance, history-
based approaches tend to be more accurate than formula-
based predictions [3], existing solutions focus mostly on pre-
dicting network throughput.

The goal of this work is to develop an accurate light
weight machine learning tool to predict end-to-end packet
loss, manifested in the number of retransmitted packets in
science flows of arbitrary size. We believe that understand-
ing the nature of packet retransmissions would allow both
scientists and network operators to mitigate packet loss through
different host or flow reconfiguration techniques. We inves-
tigate the hypothesis that packet retransmissions are due to
a combination of factors related to the selected "path" along
with end host network configuration. We argue that the ac-
curacy of formula-based solutions can be augmented by a
tool that takes into account measurements of path and host
attributes from previous data transfers.

Towards our goal for developing a robust analytical frame-
work for retransmission prediction we focus our efforts on
answering the following questions: 1. Which path proper-
ties or combination of path properties are needed in order
to generate an accurate prediction? Do different combina-
tions of input parameters demonstrate different levels of ac-
curacy? 2. Do we need to take into account end host (i.e.
client/server) network configuration parameters in our pre-
diction? 3. Can we generate accurate predictions for data
transfers of arbitrary sizes? and finally, 4. How robust is a
history-based solution shifts in data transfer behavior? (e.g.,
when path properties change significantly or when the end
hosts are reconfigured).

The contributions of this paper are:

o A light weight machine learning tool based on Ran-
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dom Forest Regression that is able to predict packet
retransmissions in science flows of arbitrary size. Our
predictor takes into account a combination of path prop-
erties (including RTT) and host parameters (such as
TCP maximum congestion window) in order to pre-
dict the number of retransmitted packets in each net-
work flow.

e A thorough evaluation of our proposed solution made
with real world flow traces that represent data trans-
fers between different scientific facilities and/or end
users across the world. We evaluate our predictor us-
ing flow data that follow multiple network paths that
exhibit fundamentally different behavior in terms of
TCP related parameters (e.g., Round Trip Time, avail-
able throughput, etc). We measure the accuracy of our
tool under different subsets of input parameters in or-
der to make a recommendation on the most suitable
combination of path and host related properties. To
generate predictions for different sizes, we purposely
train and test on datasets with transfers that range be-
tween a few hundred megabytes to many gigabytes.

The paper is organized as follows: Section 2 describes
related work and Section 3 describes the individual datasets
used for our analysis as well as the collection and aggrega-
tion tools used. Our solution and architecture is presented
in detail in Section 4. Important evaluation aspects and ob-
tained results are presented in Section 5. Finally, we con-
clude with important observations and suggestions for future
work in Section 7.

2. Related Work

This section describes solutions that utilize machine learn-
ing techniques for predicting different performance aspects
of TCP connections. We then present some empirical stud-
ies for TCP performance followed by mathematical models
that are used to predict different aspects of a TCP flow.

Mirza et al. [4] propose a throughput estimation tool based
on Support Vector Machines. The tool uses multiple flow-
level features as input in order to predict end-to-end through-
put. Although their solution’s accuracy is considerably higher
than standard history-based methods, it was only evaluated
on artificial network traces where only specific network paths
were considered. Furthermore, the tool has not been tested
in a high volume and scientific traffic environment.

Nunes et al. [5] use the Experts Framework machine learn-
ing technique in order to provide accurate estimates of the
round trip time (RTT) in TCP transfers. Their framework
quickly adapts the predicted value based on average distance
of previously predicted RTT from the actual value. The sug-
gested solution achieves a reduction in the number of retrans-
mitted packets but the evaluation process did not not include
tests with large file transfers or congested network links. Hu
et al. [6] aim at predicting RTT between two specific IP pairs
(sender/receiver) based on their geographic distance. The
authors collect their own network traces by discovering (us-
ing traceroute) the intermediate routers between source and

destination pairs. Then they use the difference between two
pings in order to calculate intermediate latencies. Their ap-
proach has not been tested in the context of science traffic
or for source/destination pairs that belong to different scien-
tific organizations (with large georgraphic distance between
them).

Paxson et al. [7] conducted a comprehensive empirical
study of TCP behavior focusing on modeling different pat-
terns of packet loss. Although this work exposed a plethora
of other issues as well (e.g., queuing delays, bottlenecks, etc)
it also proved that the distribution of the packet loss duration
across different TCP bulk transfers exhibits infinite variance.
Barford et al. [8] expand this work by diving into the rela-
tionship between large transfer latency and individual packet
loss events and server/client related delays. The authors fo-
cus only on http traffic and analyze traces obtained from only
eight hosts in close proximity to each other. Furthermore,
their analysis was limited to small file sizes (up to 3.2 MB).
Ghasemi et al. [9] investigate the effect of sender/receiver
misconfiguration (e.g., small receiver buffer or slow server)
to packet loss and overall TCP performance in cloud environ-
ments. Their work identifies the effects of end host configu-
ration on poor performance of TCP transfers. Their analysis
only includes data from a single client/server pair conduct-
ing a small file transfer of 1IMB. Although the solution yields
satisfactory results when compared with the ground truth, it
has not been evaluated in the context of large high frequency
scientific data transfers.

In terms of developing mathematical expressions that cor-
relate different aspects of TCP performance with packet loss
Abouzeid et al. [10] use a stochastic model to predict net-
work throughput based on bursty packet loss events. The
evaluation process only included packet traces generated from
ns simulator [11]. Parisi et al. [12] use Markov chains to
correlate packet losses due to timeout and TCP flow perfor-
mance. Their analysis is only theoretical without real net-
work flow data. Altman et al. [13] also derive a stochastic
model for packet loss and flow throughput incorporating the
sender’s window size. The authors create long lived TCP
connections with large file transfers in order to test their ap-
proach. However, the dataset analyzed only includes three
TCP connections.

Our work differs from the approaches described above in
two core elements: First, we predict packet retransmission
in the context of scientific data transfers using real network
traces from data flows of arbitrary size. Second, our train-
ing and testing datasets include transfers between end hosts
in different geographic locations (i.e., respectively varying
RTT values) and network configuration parameters.

3. Data

This section describes the data that we used for testing
our solution. We present the available features and the flow
collection tool we used, as well as any modifications made
in the original datasets.

Our packet loss prediction model operates on flow data.
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We define a network flow as a five tuple identifier of Source
IP, Destination IP, Source Port, Destination Port and Com-
munication Protocol (TCP or UDP). Our data are collected
from the 10 systems referred to as Data Transfer Nodes (DTNs)
located at the National Energy Research Scientific Comput-
ing Center (NERSC) [14]. DTN are explicitly dedicated and
fine tuned for performing large data transfers between the
NERSC scientific facility and the external scientific com-
munity. They tend to have low-latency, high-bandwidth net-
work interface cards (NICs) and I/O systems designed to
limit disk-related bottlenecks. A variety of tools such as
Globus online [15] and GridFTP [16] are typically used
in order to automate transfer of large datasets.

We collected flow-like data from each DTN using the
“tstat” network monitoring tool [17]. Tstat is able to ag-
gregate packet traces into flows and derive detailed statistics
and performance metrics for each flow. Grouping packets
into flows is particularly useful for optimizing efficiency in
processing large amounts of network data. As opposed to
other flow collection tools like NetFlow [18], tstat records
non-sampled network data and also computes a wider set of
performance features (the full list of the 53 metrics can be
found here [17]). Furthermore, for ensuring anonymity of
source and destination hosts, we drop the last octet of source
and destination IPs.

In our analysis we only use flow data where the percent-
age of packet retransmissions is greater than zero. We opt
for flows that demonstrate packet loss and discard “perfect,”
loss-free data transfers.

4. Proposed Solution

In this section, we describe our proposed solution along
with the subset of features used as input as well as any data
preprocessing made.

Our tool predicts the percentage of retransmitted pack-
ets for TCP data transfers of arbitrary size based on prior
data transfers. Per transfer measurements include a com-
bination of end host configuration metrics along with path-
related metrics. Our solution aims to address two fundamen-
tal questions:

1. which path and end host properties provide the most
accurate prediction of retransmits per flow? and

2. is there a confidence value that we can include in our
predictions?

Predicting the number (and respectively percentage) of
retransmitted packets can be formulated as a regression prob-
lem of predicting the value of a real valued number (i.e.

number of retransmitted packets) based on multiple real-valued

input features. Each data transfer is represented by a col-
lection of features x = {xy,x,,...,x;} € R. Each x; is
an observed feature e.g., size of the file being transferred,
TCP congestion window, average round trip time, etc. Our
goal is given x to predict the number of retransmitted pack-
ets y € R. This is achieved by training the predictor using
training data i.e. previous data transfers with known features

and the corresponding measured number (and percentage) of
retransmitted packets.

The analytical framework that we apply to this problem
is Random Forest Regression, an established machine learn-
ing technique suitable for multivariate regression. We disc-
cuss details of RFR on the following section.

4.0.1. Random Forest (RF)

Random Forest Regressor (RFR), demonstrates several
properties that make it suitable for our solution: 1. It can
accept multiple features or combination of features [19] and
use all of them to generate the prediction for the number of
retransmitted packets. In addition, RFR has the ability to
show the importance of different input features in the predic-
tion outcome. 2. The input provided to RFR does not need to
be in any specific parametric form as opposed to strict formu-
la-based solutions. Finally, 3. RFR has low computational
costs and exhibits small training times for large datasets that
include hundreds of thousands of data transfers.

To best describe the RFR, we first describe a regression

tree and forest. A forest is an ensemble of trees (Figure ??);
regression trees are created by partitioning the samples (i.e.,
the root nodes into homogeneous groups [nodes]). This pro-
cess is repeated recursively until the terminal nodes are not
defined. Each split is chosen according to a splitting crite-
rion and on the values of a selected variable. The response
of input variables can be predicted by simply following the
path of a tree from the root node to the terminal node. The
predicted response value is computed by RFR by averaging
the probabilistic prediction of the ensemble of trees in that
terminal node [20]. For our random forest model, we lever-
aged the RandomForestClassifier [21] as part of the scikit-
learn package [22] with default parameters.
To avoid the overfitting, K-fold (fivefold) cross-validation
was used in predicting the restransmit behavior. Further-
more, we also provide the relative importance of features to
choose the best subset of inputs for predicting the packet loss
with the highest accuracy.

4.1. Feature Selection

In order to select the optimal set of features for our pre-
diction we first need to investigate the relationship between
major causes of packet retransmissions and the available flow-
level metrics in our datasets. Since retransmissions are mostly
due to physical loss along the selected path and suboptimal
end host network tuning, different combinations of end host
properties (e.g., TCP max segment size) and path-related
measurements (e.g., Round Trip Time) need to be taken into
account in our model. We note that incorporating all 52 tstat
collected measurements would provide an overly general-
ized solution with increased computational cost. The set of
selected features is shown in Table 1.

A variety of studies [24] [25] [8] have demonstrated the
relationship between TCP performance (in terms of through-
put and packet loss) and different flow-level measurements
such as file size (a host-controlled parameter), round trip
time (a path-related parameter) and congestion window ( a
host-controlled parameter as well). Based on the findings
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Random Forest
Instances

Multiple
Random Samples

Figure 1: A Random Forest Regressor (modified from [23]).

Table 1

Input features and their tstat representation

Input Variables Tstat field

File size file_size_ MB
Flow duration duration
Throughput throughput Mbps
Source IP src_geoip
Destination IP dst_geoip

TCP initial congestion window | tcp cwin

Average RTT tcp rtt_avg

presented in the aforementioned studies, the seven selected
features provide an accurate representation of both host and
path related factors that influence packet loss in scientific
network transfers. In order to make our tool robust to level
shifts (i.e. when path properties change significantly) we opt
for incorporating the average round trip time for each flow.
Average values smooth out any rtt variations related to in-
creased latency due to a congested path.

In order to increase the quality and applicability of our
solution we train our predictor on a wide range of file sizes,
as opposed to solutions that target only bulk transfers or small
files [4].

5. Evaluation

In this section we describe our methodology for evalu-
ating our solution, and the datasets used. We conclude our
analysis with a discussion on obtained results.

5.1. Methodology

Our evaluation approach focuses on two directions:

1. How well can our solution predict packet retranmis-
sions in scientific data transfers or arbitrary size?

2. Does feature distribution variability in different datasets
affect the ability of our solution to provide reasonably
good accuracy?

Different
Variables For

To answer the first question we train our RFR model with
flows from one dataset (see subsection 5.2 for detailed de-
scription) and record its accuracy when tested on different
datasets. Furthermore, we examine whether noise reducing
techniques (e.g., data smoothing) would improve the accu-
racy of our predictions. For answering the second question
we compute our solution’s accuracy when tested on datasets
that are a year apart. Depending on the obtained value, we
conduct a correlation analysis that allows us to identify whether
different input features maintain the same importance across
datasets.

5.2. Datasets
The datasets used for training and testing our solution are
described in Table 2.

Table 2

Dataset composition
Dataset Duration Year

Datasets for testing RFR
Datasetl Jan 1 — Feb 28 2017
Dataset2 July 1 — Nov 30 2017
Dataset3 Jan 1 - Feb 28 2018
Datasets for testing seasonality

Dataset4 Feb 1 — Feb 28 2017
Datasetb Feb 1 — Feb 28 2018
Dataset6 Jan 1 — Jan 31 2017
Dataset7 Jan 1 — Jan 31 2018

We evaluated the RFR with the data collected at three
different times: January to February 2017 (dataset1); July to
November 2017 (dataset2); and January to February 2018
(dataset3) (Table 2). To understand different performance
aspects of data transfers, we tested the RFR’s ability to pre-
dict the retransmit behavior for different combinations of
datasets: (a) individually datasetl, dataset2, and dataset3
(b) combining all datasets (datasetl, dataset2, dataset3), and
(3) across datasets (e.g., training on datasetl and testing on
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Figure 2: Retransmit data showing significant variability across
times.

dataset2; training on dataset2 and testing on dataset3; train-
ing on dataset]l and testing on dataset3). All these evalua-
tions were performed on the raw data as well smoothed data
using the Automatic Smoothing for Attention Prioritization
(ASAP) algorithm as described in (Section 5.3).

As opposed to other predictors [4], where both training
and test traffic was artificial, our solution utilizes flow logs
from real scientific data transfers of arbitrary size. Further-
more, in artificial lab-generated file transfers host configura-
tion parameters and path properties are strictly set at explicit
values (see evaluation section in [4]). However, our predic-
tor’s input features distribution demonstrate higher variabil-
ity which increases the robustness of our approach under dif-
ferent network conditions. Finally, our solution is trained on
a wide range of transfer sizes that range between a few hun-
dred megabytes to many gigabytes.

5.3. Data smoothing

We also evaluated the RFR by smoothing the training
and testing data. The rationale behind smoothing was that
small-scale noise often obscures large-scale trends. There-
fore, machine learning algorithms (e.g., RFR) do not per-
form reasonably well in the presence of noise in the data.
With smoothing, it is possible to retain the large-scale struc-
ture of the data while removing as much noise as possible.
To smooth the data, we used Automatic Smoothing for At-
tention Prioritization (ASAP) in the Time Series algorithm
developed by Stanford InfoLab [26]. ASAP makes use of the
sliding window aggregation model and performs hyperpa-
rameter tuning for automatically selecting a window so that
the data retain the long-term trends. More details about the
ASAP algorithm can be explored in [26].

6. Results and Discussion
6.1. Accuracy

We tested RFR’s prediction accuracy for the percentage
of retransmissions (percent retransmits from here after) us-
ing different combination of input variables. The accuracy of
a RFR’s prediction was estimated using R” values. The re-
sults using throughput [Mbps], duration and RTT are shown

in Table 3. As our results demonstrate prediction accuracy
was moderate. We tested the RFR’s accuracy after smooth-
ing the data and found that smoothing significantly improved
the prediction accuracy (Table 3). Figure 3, which shows the
percent retransmits as a time series of the raw data as well
smoothed data, demonstrates that the ASAP algorithm re-
moved small-scale noise while keeping the large-scale trends.
Hence, the RFR performed better after smoothing due to the
cleaner data. In order to investigate moderate accuracy re-
sults, we examine the behavior of retransmissions on dif-
ferent datasets. Figure 2 shows the percentage of retrans-
mitted (percent retransmits) versus average RTT for differ-
ent times. Percent retransmits show significant variability.
Although percent retransmits are consistent in the bulk part
for specific parts of some datasets, there are subtle differ-
ences in percent retransmits across datasets (e.g., January
18 with July-November 2017). The same behavior was ob-
served in percent retransmits with other input variables, such
as throughput (Mbps) and duration (not shown).

Table 3
Prediction accuracy of the retransmit behavior of RFRs for
different datasets with and without smoothing.

Accuracy Accuracy
Without Smoothing  With Smoothing

Datasetl, Dataset2,

Dataset3, & all Datasets 60% 97-99%
Training on Feb17, and o o
testing on Janl7 <% 66%
Training on Feb18, and

testing on Jan18; <2% <2%

Training on Feb17, and
testing on Janl8

Table 4

Correlation of the retransmits with input features. Corre-
lation values vary significantly across datasets, for example,
tcp_win__max ranges from 0.08 (shown in blue) to 0.15.

Correlation Correlation  Correlation
Variable (Entire Dataset) (Jan17 and  (Feb17 and
Jan18) Feb18)
tcp_rttavg 0.29 0.26 0.25
tcp_initial _cwin  0.19 0.18 0.16
tcp_ win_max 0.15 0.08 0.10

6.2. Feature Variability

Although the RFR predicted the retransmit behavior with
moderate (without smoothing) to high accuracy (with smooth-
ing), it did not perform well with scenarios in which there
is unseen data, as shown in Table 3 (except for training on
Feb17 and testing on Jan17 scenarios). To examine this anoma-
lous behaviorwe critically analyzed data and conducted a
correlation analysis. Table 3 presents the correlation anal-
ysis of retransmits with different input features and Figure 6
shows various features at different times. It is clear from the
correlation values that the relative importance of each input
variable varies over time. This can be attributed to the fact
that packet retransmission of bulk network flows can also be
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Figure 3: Reducing noise (e.g., smoothing) improves the prediction accuracy.
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Figure 4: Data show different distributions for different times.
The x-axis shows the bins that correspond to specific ranges
of the average RTT, whereas the y-axis is the frequency of
percent retransmits (the number of samples) for each bin.

affected by competing concurrent flows of different traffic
type.

It is evident from Figure 6 that variability across factors
is not consistent over time. For example, percent retransmits
are small whereas throughput values are high with interme-
diate average RTT values in January 2017. In comparison,
percent retransmits, throughput, and average RTT values are
all high in January 2018. These results suggest that the rel-
ative importance of each feature changes over time.

Figures 4 and 5 show histograms of percent retransmits
with average RTT. The x-axis shows the number of percent
retransmits samples present for a range of the average RTT.
The bin width on the Y-axis corresponds to a specific range
of the average RTT. Smoothing did not change the distri-
bution in general (not shown); however, the RFR’s perfor-
mance depended on the consistency of ranges of training and
testing datasets. For example, the RFR performed reason-

120000 -
100000 7
80000
] Feb17
60000 == Janl7

40000 -

20000 -

Frequency (Percent Retransmits)

0 0 20 40 60 80 100 120 140 160

Average RTT

Figure 5: Data show consistent distributions for different
times. The x-axis shows the bins that correspond to specific
ranges of the average RTT, whereas the y-axis is the frequency
of percent retransmits (the number of samples) for each bin.

ably well (66% accuracy) when trained on Feb17 and tested
on Janl7. The moderate performance on the Jan17 dataset
can be attributed to a variety of factors including the differ-
ent distribution of the input variables. We noticed that only
the average RTT has comparable ranges in Feb17 and Jan 17
for similar retransmit values (see Figure 5).

Taken together, we can conclude that the RFR was able
to predict retransmit behavior reasonably well even for data
not in the training dataset if training and testing datasets have
similar statistics. Although the problem of different statis-
tics can be avoided if the training set is made large, the to-
tal amount of data is limited in our case. However, training
sets can be made large to include similar statistics as future
datasets.
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Figure 6: Different factors show variability across times.

7. Conclusion and Future Work

In this paper we investigated the issue of packet loss man-
ifested through packet retransmissions in scientific data trans-
fers. We presented a multi-variate machine learning frame-
work that predicts packet retransmissions for file transfers of
arbitrary size. We were able to identify the minimum set
of path and host measurements that should be used as input
features for generating accurate and robust predictions. Our
framework, based on Random Forest Regression, demon-
strates short training times and is able to provide accurate
estimates for packet retransmissions occuring on data trans-
fers of arbitrary sizes.

We have evaluated our framework on datasets that con-
tain different number of flows exhibit significantly differ-
ent distributions of the input features. In our analysis we
were able to correlate different factors with the retransmis-
sion behavior. Our RFR models performed reasonably well
in all datasets. We also found that smoothing reduced noise
in the data by removing outlier events and significantly im-
proved predictions. In addition, input variables showed dif-
ferent distributions for different times (e.g., January 17 vs.
February 17); however, smoothing did not change the distri-
butions. In order to account for outlier packet loss events, we
plan to evaluate our framework’s accuracy without smooth-
ing techniques.

Although this work is a first step towards improving the
performance and quality of scientific data transfers, it has
some limitations. Our framework’s prediction model was
build using only Random Forest Regression (due to its flex-
ibility in input parameters, see section 4.0.1 for detailed ex-
planation). In order to compare with other model training
techniques, we plan to include additional regression algo-
rithms in our framework’s prediction process. Although pre-
dicting retransmissions is one factor affecting the quality of
scientific data transfers, we realize that in order to have a

Datasets at Different Times

complete view of performance degradation events one needs
to be able to also predict network throughput. We plan to
add throughput predictions in the next version of our frame-
work.We purposefully excluded flow data from data trans-
fers that did not demonstrate any packet retransmission. Hence
our solution cannot predict retransmit-free data transfers. Cur-
rently our predictor’s accuracy is significantly affected by
changes in the distribution of the input features (e.g., if the
RTT distribution changes between two datasets then our pre-
dictions will render poor accuracy). In order to address this
issue in our future work, we plan to include a weighted ap-
proach as part of data preproccessing. Furthermore, as a
medium term goal, we would to include periodic passive
measurements such as perfSONAR collected data in our train-
ing datasets. Improving the accuracy of our solution on pre-
viously unseen scientific data transfers can lead to mitigation
of packet loss through different reconfiguration strategies.
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of this work.

A. Artifact Description

A Machine Learning Approach for Packet Loss Predic-
tion in Science Flows

A.1. Abstract

Science networks hosting applications require large and
frequent data transfers, but these transfers are subject to net-
work performance degradation, including queuing delays and
packet drops. Several factors can be ascribed to the network
performance degradation; however, no accurate, known ex-
isting method is available for predicting different performance
aspects of data transfers. In this study, we developed an ac-
curate lightweight machine learning tool to predict end-to-
end packet retransmission in science flows of arbitrary size.
We also identified the minimum set of necessary path and
host measurements needed as input features in our predic-
tor in order to achieve high accuracy. The Random Forest
Regression demonstrated low training times and was able to
provide accurate estimates (97-99%) for packet retransmis-
sions of data transfers of arbitrary sizes. The results also
demonstrated that the Random Forest Regressor was able to
predict retransmit behavior reasonably well (66%) even for
previously undata if training and testing datasets had similar
statistics.

A.2. Description
A.2.1. Check-list (artifact meta information)
e Algorithm: Packet loss prediction leveraging the Random
Forest Regression algorithm from scikit-learn

e Program: Python

e Compilation: None needed

e Data set: Dataset description in Section 5.2
e Experiment customization: None

e Publicly available?: Code can be made available upon re-
quest by contacting the authors of this paper. The tstat data
used was collected and provided by the NERSC computing
facility at LBNL. The tstat data contains source and destina-
tion IP addresses, and so is not publicly available for privacy
reasons. However, NERSC periodically makes data avail-
able to qualified researchers. Inquiries should be directed to
security@nersc.gov.

A.2.2. How software can be obtained (if available)
Code can be made available upon request

A.2.3. Hardware dependencies
None

A.2.4. Software dependencies

Required python packages: requests, sockets, elasticsearch,

json, sys, os, re, datetime, ipaddress, numpy, sklearn.metrics,
pandas, sklearn.ensemble. sklearn,model_selection, pandas

A.2.5. Datasets
See section 5.2 for detailed description

A.3. Installation
No installation for python script

A.4. Experiment workflow
See section 5.1

A.5. Evaluation and expected result
See Section 6

A.6. Experiment customization
None needed

A.7. Notes
n/a
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